CN109304178A - 一种烷烃类化合物的合成方法 - Google Patents

一种烷烃类化合物的合成方法 Download PDF

Info

Publication number
CN109304178A
CN109304178A CN201810841717.7A CN201810841717A CN109304178A CN 109304178 A CN109304178 A CN 109304178A CN 201810841717 A CN201810841717 A CN 201810841717A CN 109304178 A CN109304178 A CN 109304178A
Authority
CN
China
Prior art keywords
nanocomposite
synthetic method
carbon
nickel
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810841717.7A
Other languages
English (en)
Other versions
CN109304178B (zh
Inventor
宗明生
荣峻峰
谢婧新
吴耿煌
于鹏
林伟国
纪洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Publication of CN109304178A publication Critical patent/CN109304178A/zh
Application granted granted Critical
Publication of CN109304178B publication Critical patent/CN109304178B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1143Making porous workpieces or articles involving an oxidation, reduction or reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0205Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
    • B01J35/23
    • B01J35/30
    • B01J35/33
    • B01J35/393
    • B01J35/396
    • B01J35/397
    • B01J35/398
    • B01J35/40
    • B01J35/50
    • B01J35/615
    • B01J35/633
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • B01J35/66
    • B01J35/69
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B43/00Formation or introduction of functional groups containing nitrogen
    • C07B43/04Formation or introduction of functional groups containing nitrogen of amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/02Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/16Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring
    • C07C13/18Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring with a cyclohexane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/073Ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/45Monoamines
    • C07C211/46Aniline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/172Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with the obtention of a fully saturated alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/19Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings
    • C07C29/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings in a non-condensed rings substituted with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/10Monohydroxylic acyclic alcohols containing three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/12Monohydroxylic acyclic alcohols containing four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic
    • C07C35/08Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/21Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • B01D2255/702Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/60Two oxygen atoms, e.g. succinic anhydride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明提供一种烷烃类化合物的合成方法,包括:以碳包覆镍的纳米复合材料为催化剂,在氢气气氛下催化烯烃类化合物进行加氢还原反应;其中,所述纳米复合材料含具有壳层和内核的核壳结构,所述壳层为掺杂氧的石墨化碳层,所述内核为镍纳米颗粒,所述纳米复合材料的酸洗损失率≤60%。该方法采用含核壳结构的碳包覆镍的纳米复合材料为催化剂,其丰富的介孔结构,有利于催化反应的传质,用于烯烃类化合物加氢还原合成烷烃类化合物,具有优异的活性、选择性及安全性。

Description

一种烷烃类化合物的合成方法
技术领域
本发明属于催化领域,具体涉及一种烷烃类化合物的合成方法。
背景技术
加氢反应在石油化工生产中具有广泛的应用,其中将烯烃的碳碳双键通过催化加氢的方法得到饱和的烷烃具有十分重要的意义。例如,某些反应过程中,其原料或者中间产物含有烯烃组分,这些烯烃是主要的积碳前驱体,极易导致催化剂积碳失活。利用催化剂将烯烃加氢饱和为烷烃,降低烯烃的比例,可以抑制积碳前驱体的产生,提高催化剂的稳定性。利用C4、C5馏分将其中的烯烃加氢成为烷烃,所得产物可作为优质的裂解原料。
目前烯烃加氢适宜的催化剂主要是负载型贵金属催化剂和过渡金属基催化剂,如铂(Pt)、钯(Pd)和铑(Rh)等贵金属催化剂及镍(Ni)基非贵金属催化剂。Pt、Pd贵金属催化剂具有催化活性高、反应条件温和等优点,在烯烃类化合物催化加氢生成烷烃化合物占有很重要的地位。虽然贵金属有这些优点,但是贵金属催化剂价格成本过高,对原料杂质要求苛刻,且容易积碳。金属硫化物催化剂的寿命长,但活性低,操作条件苛刻,需要较高的温度和压力。负载型镍催化剂在制备过程中易发生团聚,催化效率较低,容易发生副反应。
由上述可知,开发在空气中稳定并具有优异催化性能的加氢还原催化剂用于烯烃类化合物的加氢还原,是本领域亟待解决的问题。
需注意的是,前述背景技术部分公开的信息仅用于加强对本发明的背景理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明提供一种烷烃类化合物的合成方法,该方法采用含核壳结构的碳包覆镍的纳米复合材料为催化剂,其丰富的介孔结构,有利于催化反应的传质,其包覆严密的金属纳米粒子,有利于在更苛刻的条件下发挥作用,用于烯烃类化合物加氢还原合成烷烃类化合物,具有优异的活性、选择性及安全性。
为了实现上述目的,本发明采用如下技术方案:
本发明提供一种烷烃类化合物的合成方法,包括:
以碳包覆镍的纳米复合材料为催化剂,在氢气气氛下催化烯烃类化合物进行加氢还原反应;
其中,所述纳米复合材料含具有壳层和内核的核壳结构,所述壳层为掺杂氧的石墨化碳层,所述内核为镍纳米颗粒,其中所述纳米复合材料为具有至少一个介孔分布峰的介孔材料。
根据本发明的一个实施方式,其中所述烯烃类化合物为链烯烃或环烯烃。
根据本发明的一个实施方式,所述烯烃类化合物优选为苯乙烯或环己烯。
根据本发明的一个实施方式,其中所述催化剂占所述烯烃类化合物质量的1-50%,优选为5-30%。
根据本发明的一个实施方式,其中所述加氢还原反应温度一般为100-130℃。
根据本发明的一个实施方式,其中所述氢气的压力一般为1~3MPa。
根据本发明的一个实施方式,所述加氢还原反应的反应时间优选为1~3h。
根据本发明的一个实施方式,其中所述催化剂与烯烃类化合物在溶剂中混合后进行加氢还原反应,其中所述溶剂选自醇类、醚类、烷烃类和水中的一种或多种。
根据本发明的一个实施方式,其中所述催化剂与醛类化合物在溶剂中混合后进行加氢还原反应,所述溶剂选自醇类、醚类、烷烃类和水中的一种或多种。
根据本发明的一个实施方式,上述合成方法中的纳米复合材料为具有至少一个介孔分布峰的介孔材料。任选地,所述纳米复合材料为具有两个或两个以上介孔分布峰的介孔材料。任选地,所述纳米复合材料在2~7nm的孔径范围和8~20nm的孔径范围分别具有一个介孔分布峰。任选地,其中所述介孔材料中介孔体积占总孔体积的比例大于50%,优选大于80%。任选地,所述纳米复合材料的介孔体积为0.05-1.25cm3/g,介孔体积也可以为0.30-0.50cm3/g。任选地,所述石墨化碳层的厚度为0.3nm~6.0nm,优选为0.3~3nm。任选地,所述核壳结构的粒径为1~200nm,优选为3~100nm,更优选为4~50nm。任选地,以质量百分比计,所述纳米复合材料的碳含量为10-60%,镍含量为30.0%-85.0%,优选地,碳含量为15.0%-40.0%,镍含量为50.0%-80.0%。任选地,其中以质量百分比计,该纳米复合材料中,氧含量小于15.0%,优选为0.2%-5.0%。上述纳米复合材料中各组分的含量之和为100%。
根据本发明的一个实施方式,上述合成方法中的纳米复合材料的酸洗损失率≤10%。任选地,所述纳米复合材料为具有至少一个介孔分布峰的介孔材料。任选地,所述纳米复合材料为具有两个或两个以上介孔分布峰的介孔材料。任选地,所述纳米复合材料在2~7nm的孔径范围和8~20nm的孔径范围分别具有一个介孔分布峰。任选地,其中所述介孔材料中介孔体积占总孔体积的比例大于50%,优选大于80%。任选地,所述纳米复合材料的介孔体积为0.05-1.25cm3/g,介孔体积也可以为0.30-0.50cm3/g。任选地,所述石墨化碳层的厚度为0.3nm~6.0nm,优选为0.3~3nm。任选地,所述核壳结构的粒径为1~200nm,优选为3~100nm,更优选为4~50nm。任选地,以质量百分比计,所述纳米复合材料的碳含量为15%-60%,镍含量为30%-80%,优选地,碳含量为30%-60%,镍含量为30%-60%。任选地,以质量百分比计,该纳米复合材料中,氧含量小于15.0%,优选为1.0%-10.0%。上述纳米复合材料中各组分的含量之和为100%。
本发明的有益效果在于,
本发明提供的烷烃类化合物的合成方法,以碳包覆镍的纳米复合材料作为催化剂对烯烃类化合物进行加氢还原,由于催化剂材料非常稳定,不自燃,抗氧化,耐酸腐蚀,危险性低,适合保存与运输,从而保证了烷烃类化合物合成过程的安全性。
本发明的碳包覆镍的纳米复合材料在催化还原烯烃类化合物为烷烃类化合物的反应中表现了良好的重复性、高活性及高选择性,由于该纳米复合材料具有较强的磁性,还可方便利用其磁性分离催化剂或用于磁稳定床等工艺。
附图说明
图1是制备例1所制备的固体前驱体的XRD图;
图2是制备例1所制备的氧掺杂碳包覆镍纳米复合材料的TEM图;
图3是制备例1所制备的氧掺杂碳包覆镍纳米复合材料的XRD图;
图4是制备例1所制备的氧掺杂碳包覆镍纳米复合材料的N2吸附-脱附等温线;
图5是制备例1所制备的氧掺杂碳包覆镍纳米复合材料的BJH孔径分布曲线;
图6是制备例1所制备的氧掺杂碳包覆镍纳米复合材料的XPS图;
图7是制备例1所制备的氧掺杂碳包覆镍纳米复合材料的XPS中的Ni2p谱图;
图8是制备例1所制备的氧掺杂碳包覆镍纳米复合材料的XPS中的O 1s分峰结果;
图9是制备例2所制备的氧掺杂碳包覆镍纳米复合材料的TEM图;
图10是制备例2所制备的氧掺杂碳包覆镍纳米复合材料的XRD图;
图11是制备例2所制备的氧掺杂碳包覆镍纳米复合材料的BJH孔径分布曲线;
图12是制备例3所制备的固体前驱体的XRD图;
图13是制备例3所制备的氧掺杂碳包覆镍纳米复合材料的TEM图;
图14是制备例3所制备的氧掺杂碳包覆镍纳米复合材料的XRD图;
图15是制备例3所制备的氧掺杂碳包覆镍纳米复合材料的BJH孔径分布曲线。
图16是制备例4所制备的固体前驱体的XRD图;
图17是制备例4所制备的严密包覆的氧掺杂碳包覆镍纳米复合材料的TEM图;
图18是制备例4所制备的严密包覆的氧掺杂碳包覆镍纳米复合材料的XRD图;
图19是制备例4所制备的严密包覆的氧掺杂碳包覆镍纳米复合材料的N2吸附-脱附等温线;
图20是制备例4所制备的严密包覆的氧掺杂碳包覆镍纳米复合材料的BJH孔径分布曲线;
图21是对比例1所制备的材料的XRD图。
具体实施方式
下面根据具体实施例对本发明的技术方案做进一步说明。本发明的保护范围不限于以下实施例,列举这些实例仅出于示例性目的而不以任何方式限制本发明。
本发明的数值范围包括定义该范围的数字。短语“包含”在此用作开放端术语,基本上等效于词语“包括,但不限于”,并且短语“包含了”具有对应含义。如在此使用的,除非上下文另外明确指出,否则单数形式的“一”、“一个”以及“该”包括复数指示物。因此,例如提及“一个事物”包括多于一个这样的事物,包括基本上如在此之前所述的所有实施方案以及变体并且参考实例和附图。
在此未直接定义的任何术语应当被理解为具有与它们在本发明技术领域中通常所理解的相关联的含义。如贯穿本说明书使用的下面术语除非另外说明,应当理解为具有下面含义。
术语
术语“烯烃类化合物”是指分子中具有C=C键(碳-碳双键)结构的一类碳氢化合物。
术语“石墨化碳层”是指在高分辨透射电镜下可明显观察到层状结构的碳结构,而非无定型结构,且层间距约为0.34nm。该石墨化碳层包覆镍纳米颗粒后形成的复合材料呈球形或类球形。
术语“介孔”定义为孔径在2~50nm范围的孔。孔径小于2nm的孔定义为微孔,大于50nm的孔定义为大孔。
术语“介孔材料”定义为包含介孔孔道结构的多孔材料。
术语“掺杂氧的石墨化碳层”中的“氧”是指氧元素,其中所述纳米复合材料的“氧含量”是指氧元素的含量,具体是指,在碳包覆纳米复合材料制备过程中,形成石墨化碳层中含有以各种形式存在的氧元素,所述“氧含量”为所有形式的氧元素的总含量。
术语“介孔分布峰”是指根据Barrett-Joyner-Halenda(BJH)方法对脱附曲线进行计算得到的孔分布曲线上的介孔分布峰。
术语“酸洗损失率”是指制备完成的碳包覆镍的纳米复合材料产品经酸洗后镍的损失比例。其反映了石墨化碳层对镍包覆的严密程度。如果石墨化碳层对镍包覆不严密,则在酸处理后,内核的镍会被酸溶解从而流失。酸洗损失率越大,表明石墨化碳层对镍包覆的严密程度越低,酸洗损失率越小,表明石墨化碳层对镍包覆的严密程度越高。
所述的“酸洗损失率”按以下方式测量并计算:
按20mL硫酸水溶液(1mol/L)投加1g样品的比例,在90℃下对样品处理8h,然后用去离子水洗涤至中性,干燥后称重、分析,按下式计算酸洗损失率。
酸洗损失率=[1-(酸洗后复合材料中镍的质量分数×酸洗后复合材料的质量)÷(待酸洗复合材料中镍的质量分数×待酸洗复合材料的质量)]×100%。
试剂、仪器与测试
如无特殊说明,本发明所采用试剂均为分析纯,所用试剂均为市售可得。
本发明所采用XRD衍射仪的型号为XRD-6000型X射线粉末衍射仪(日本岛津),XRD测试条件为:Cu靶,Kα射线(波长λ=0.154nm),管电压为40kV,管电流为200mA,扫描速度为10°(2θ)/min。
本发明所采用高分辨透射电镜(HRTEM)的型号为JEM-2100(HRTEM)(日本电子株式会社),高分辨透射电镜测试条件为:加速电压为200kV。。
本发明所采用X射线光电子能谱分析仪(XPS)为VG Scientifc公司生产配备有Avantage V5.926软件的ESCALab220i-XL型射线电子能谱仪,X射线光电子能谱分析测试条件为:激发源为单色化A1KαX射线,功率为330W,分析测试时基础真空为3×10-9mbar。另外,电子结合能用C1s峰(284.6eV)校正,后期分峰处理软件为XPSPEAK。
碳(C)、氢(H)、氧(O)三种元素的分析在Elementar Micro Cube元素分析仪上进行,具体操作方法和条件如下:样品在锡杯中称量1mg~2mg,放入自动进样盘,通过球阀进入燃烧管燃烧,燃烧温度为1000℃(为了去除进样时大气干扰,采用氦气吹扫),然后用还原铜对燃烧后的气体进行还原,形成二氧化碳和水。混合气体通过两根解吸柱进行分离,依次进TCD检测器检测。氧元素的分析是利用高温分解,在催化剂的作用下,将样品中的氧转化为CO,然后采用TCD检测CO。由于本发明的复合材料中仅含有碳、氢、氧和金属元素,因此由碳、氢、氧三种元素的总含量即可知金属元素的总含量。
不同金属元素之间的比例由X射线荧光光谱分析仪(XRF)测定,由已知的碳、氢、氧三种元素总含量,算出不同金属元素在复合材料中的含量。本发明所采用X射线荧光光谱分析仪(XRF)的型号为Rigaku 3013X射线荧光光谱仪,X射线荧光光谱分析测试条件为:扫描时间为100s,气氛为空气。
BET测试方法:本发明中,样品的孔结构性质由Quantachrome AS-6B型分析仪测定,催化剂的比表面积和孔体积由Brunauer-Emmett-Taller(BET)方法得到,孔分布曲线根据Barrett-Joyner-Halenda(BJH)方法对脱附曲线进行计算得到。
本发明中,金属纳米粒子的平均粒径由XRD图分峰后,由谢乐公式:D=kγ/(B cosθ)计算得到。其中k为Scherrer常数,k=0.89;B为半高宽;θ为衍射角,单位弧度;γ为x射线波长,0.154054nm。
本发明提供一种烷烃类化合物的合成方法,包括:
以碳包覆镍的纳米复合材料为催化剂,在氢气气氛下催化烯烃类化合物进行加氢还原反应;
其中,所述纳米复合材料含具有壳层和内核的核壳结构,所述壳层为掺杂氧的石墨化碳层,所述内核为镍纳米颗粒,所述纳米复合材料的酸洗损失率≤60%。在一些实施例中,所述烯烃类化合物为链烯烃或环烯烃,所述烯烃类化合物优选为苯乙烯或环己烯。
在一些实施例中,所述催化剂占所述烯烃类化合物质量的1-50%,优选为5-30%。
在一些实施例中,所述加氢还原反应温度一般为100-130℃。
在一些实施例中,所述氢气的压力一般为1~3MPa。
在一些实施例中,所述加氢还原反应的反应时间优选为1~3h。
在一些实施例中,所述催化剂与所述烯烃类化合物在溶剂中混合后进行加氢还原反应,溶剂选自醇类、醚类、烷烃类和水中的一种或多种,例如乙醇、四氢呋喃、环己烷等。
根据本发明的一个实施方式,在上述合成方法中采用的纳米复合材料为具有至少一个介孔分布峰的介孔材料。即指,该纳米复合材料在根据Barrett-Joyner-Halenda(BJH)方法对脱附曲线进行计算得到的孔分布曲线上,至少具有一个介孔分布峰。
上述纳米复合材料,其掺杂氧的石墨化碳层表面具有丰富的缺陷位,碳材料本身就具有催化活性,与镍纳米颗粒协同发挥作用,可使该纳米复合材料具有较佳的催化性能;此外,该纳米复合材料还具有丰富的介孔结构,使其传质效率更高,从而具有更优异的催化性能。
在一些实施例中,单批次制造的复合材料,在介孔范围内有两个分布峰;如将多批次制造的复合材料混合,则在介孔范围内可以有更多的分布峰。当纳米复合材料具有不同孔径范围的多级介孔结构时,可以使其表现出更独特的性能,且多级介孔结构可适用的应用范围更广。
在一些实施例中,所述纳米复合材料的介孔结构在2~7nm的孔径范围和8~20nm的孔径范围分别具有一个介孔分布峰。
在一些实施例中,所述纳米复合材料的介孔体积占总孔体积的比例大于50%,优选大于80%。在一些实施例中,介孔体积占总孔体积的比例大于90%,甚至100%。
在一些实施例中,所述纳米复合材料的介孔体积可以为0.05-1.25cm3/g,也可以为0.30-0.50cm3/g。
在一些实施例中,所述纳米复合材料的比表面积一般大于140m2/g,可以大于200m2/g。
根据本发明的纳米复合材料,其在空气中不自燃,可以在空气中储存。
在一些实施例中,所述纳米复合材料的碳层掺杂氧元素,不掺杂氮元素。
在一些实施例中,所述纳米复合材料的碳层只掺杂氧元素,不掺杂氢、氧以外的其他元素。
在一些实施例中,所述纳米复合材料的酸洗损失率一般为≤60%,可以为≤40%,也可以为10%~20%、20%~30%或30%~40%。如上文所述,酸洗损失率反映了石墨化碳层对镍包覆的严密程度。
在一些实施例中,以质量百分比计,该纳米复合材料中,碳含量为10.0%-60.0%,镍含量为30.0%-85.0%;优选地,碳含量为15.0%-40.0%,镍含量为50.0%-80.0%。
根据本发明的纳米复合材料,在石墨化碳层中掺杂有氧。氧含量可以通过在制造过程中额外引入含氧化合物,比如多元醇来调节。通过调节所述纳米复合材料中的氧含量,可以调节石墨化碳层的催化性能。在一些实施例中,以质量百分比计,所述纳米复合材料中,氧含量小于15.0%,优选为0.2%-5.0%。
根据本发明,所述纳米复合材料中,各组分的含量之和为100%。
在一些实施例中,所述石墨化碳层的厚度为0.3nm~6.0nm,优选为0.3~3nm。
在一些实施例中,所述核壳结构的粒径为1~200nm,优选为3~100nm,更优选为4~50nm。
在一些实施例中,上述碳包覆镍的纳米复合材料通过如下方法制备:
将镍盐与多元有机羧酸及其它有机化合物在溶剂中混合形成含镍的水溶性混合物;
将所述水溶性混合物在惰性气氛或还原性气氛下高温热解。
具体地,所述的水溶性混合物是将镍盐、多元有机羧酸及可选的除前述两种外的其它有机化合物在水、乙醇等溶剂中溶解成均相溶液,然后直接蒸发除去溶剂得到含镍的水溶性混合物。本发明对蒸发溶剂的温度和工艺没有特别的限制,可以采用任意可行的现有技术,例如,在80-120℃下喷雾干燥,或在烘箱中干燥。蒸发除去溶剂的过程一般在2小时内完成,优选在1小时内完成。
在一些实施例中,根据前述的制造方法,所述的有机多元羧酸包括但不限于柠檬酸和/或对苯二甲酸;所述的镍盐包括但不限于醋酸镍;所述的其它有机化合物包括但不限于有机多元醇。
在一些实施例中,高温热解步骤中所述的惰性气氛采用氮气或氩气,所述还原性气氛可以为在惰性气氛中掺有少量氢气的气氛,其中热解过程包括升温段和恒温段,所述升温段的升温速率为0.5-10℃/min,优选2.5-10℃/min;所述恒温段的温度为400-800℃,优选500-700℃;恒温时间为20-600min,优选30-300min。
在一些实施例中,镍盐、多元有机羧酸和其它有机化合物的质量比为1:0.5-10:0-10,优选1:1-3:0-3。
又根据本发明的另一个实施方式,在上述合成方法中采用的纳米复合材料的酸洗损失率≤10%。这种严密包覆的复合材料较上述相对非严密包覆的复合材料而言,可以更好的保证内核镍在制备和应用中损失率降低,在苛刻的应用条件下保持性能的稳定性,从而更好的发挥复合材料的作用。此外,本领域通常认为催化加氢反应的活性中心是内核镍,不管催化剂的具体结构如何,必须能使反应物与镍金属中心接触。而本发明的被石墨化碳层严密包覆镍的纳米复合材料,仍具有极佳的催化加氢还原有机化合物的能力,进一步证明了石墨化碳层包裹镍内核的严密性对其催化性能十分重要,金属镍在此起到了不可或缺的修饰作用。
在该实施方式中,该“严密包覆”的碳包覆镍的纳米复合材料,可以具有介孔结构,也可以不具有介孔结构。丰富的介孔结构,更有利于催化反应的传质。在一些实施例中,该纳米复合材料具有至少一个介孔分布峰。在一些实施中,单批次制造的复合材料,在介孔范围内有两个分布峰;如将多批次制造的复合材料混合,则在介孔范围内可以有更多的分布峰。当纳米复合材料具有不同孔径范围的多级介孔结构时,可以使其表现出更独特的性能,且多级介孔结构可适用的应用范围更广。
在一些实施例中,严密包覆的所述纳米复合材料的介孔结构在2~7nm的孔径范围和8~20nm的孔径范围分别具有一个介孔分布峰。
在一些实施例中,严密包覆的所述纳米复合材料的介孔体积占总孔体积的比例大于50%,优选大于80%。在一些实施例中,介孔体积占总孔体积的比例大于90%,甚至100%。
在一些实施例中,严密包覆的所述纳米复合材料的介孔体积可以为0.05-1.25cm3/g,也可以为0.30-0.50cm3/g。
在一些实施例中,严密包覆的所述纳米复合材料的比表面积一般大于140m2/g,可以大于200m2/g。
根据本发明的严密包覆的纳米复合材料,其在空气中不自燃,可以在空气中储存。
在一些实施例中,严密包覆的所述纳米复合材料的碳层掺杂氧元素,不掺杂氮元素。
在一些实施例中,严密包覆的所述纳米复合材料的碳层只掺杂氧元素,不掺杂氢、氧以外的其他元素。
在一些实施例中,其中以质量百分比计,严密包覆的所述纳米复合材料的碳含量为15%-60%,过渡金属含量为30%-80%,优选地,碳含量为30%-60%,过渡金属含量为30%-60%。
根据本发明的纳米复合材料,在石墨化碳层中掺杂有氧。氧含量可以通过在制造过程中额外引入含氧化合物,比如多元醇来调节。通过调节所述纳米复合材料中的氧含量,可以调节石墨化碳层的催化性能,使其适用于催化不同的反应。在一些实施例中,以质量百分比计,严密包覆的该纳米复合材料中,氧含量小于15.0%,优选为1.0%-10.0%。
根据本发明,严密包覆的所述纳米复合材料中,各组分的含量之和为100%。
根据本发明的严密包覆的纳米复合材料,在一些实施例中,石墨化碳层的厚度为0.3nm~6.0nm,优选为1~3nm。在一些实施例中,所述核壳结构的粒径为1~200nm,优选为3~100nm,更优选为4~50nm。
在一些实施例中,上述严密包覆的碳包覆镍的纳米复合材料通过如下方法制备:
将镍盐与多元有机羧酸及其它有机化合物在溶剂中混合形成含镍的水溶性混合物;
将所述水溶性混合物在惰性气氛或还原性气氛下高温热解;
将经过高温热解的产物用用酸处理。
具体地,所述的水溶性混合物是将镍盐、多元有机羧酸及可选的除前述两种外的其它有机化合物在水、乙醇等中溶解成均相溶液,然后直接蒸发除去水分得到含镍的水溶性混合物。本发明对蒸发水分的温度和工艺没有特别的限制,可以采用任意可行的现有技术。例如,在80-120℃下喷雾干燥,或在烘箱中干燥。蒸发除去溶剂的过程一般在2小时内完成,优选在1小时内完成。
在一些实施例中,根据前述的制造方法,所述的有机多元羧酸包括但不限于柠檬酸和/或对苯二甲酸;所述的镍盐包括但不限于醋酸镍;所述的其它有机化合物包括但不限于有机多元醇。
在一些实施例中,高温热解步骤中所述的惰性气氛采用氮气或氩气,所述还原性气氛可以为在惰性气氛中掺有少量氢气的气氛,其中热解过程包括升温段和恒温段,所述升温段的升温速率为0.5-10℃/min,优选1-5℃/min;所述恒温段的温度为400-800℃,优选500-700℃;恒温时间为20-600min,优选30-300min。
在一些实施例中,镍盐、多元有机羧酸和其它有机化合物的质量比为1:0.5-10:0-10,优选1:1-3:0-3。
在一些实施例中,所述酸处理中优选用非氧化性强酸处理,所述非氧化性强酸包括但不限于氢氟酸、盐酸、硝酸和硫酸中的一种或其任意的组合,优选盐酸和/或硫酸。
在一些实施例中,酸处理的条件为:在30℃~100℃之间处理1h以上,优选在60℃~100℃之间处理1h~20h,更优选在70℃~90℃之间处理1h~10h。
本发明通过上述方法制备碳包覆镍纳米复合材料,而没有采用以金属-有机骨架化合物(MOF)为前驱体热解的方法,该方法需要在高温、高压下于溶剂中制得具有周期性结构的晶态固体材料(即MOF),通常制备MOFs的条件比较严格,所需配体价格昂贵,并且很难进行大量生产;此外,该方法制备的复合材料中对金属粒子的包覆不严密,与本发明的纳米复合材料结构上有显著不同。本发明制备碳包覆镍复合材料的方法,方便在制备过程中调节石墨化碳层中的氧含量,从而方便调节纳米复合材料的电子特性,以适用于催化不同反应。
下面通过实施例来进一步说明本发明:
制备例1
(1)称取10g醋酸镍、10g柠檬酸加到含有30mL去离子水的烧杯中,在70℃下搅拌得到均相溶液,并继续加热蒸干,得到一固体前驱体。该固体的X射线衍射谱图如图1所示。
(2)将步骤(1)得到的固体至于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为100mL/min的氮气,并以5℃/min的速率升温至650℃,恒温2h后停止加热,并在氮气气氛下冷却至室温,得到碳包覆镍的纳米复合材料。经X射线荧光光谱分析仪(XRF)测定,该复合材料中所含元素的质量百分含量分别为:碳24.29%,氢0.47%,氧0.96%,镍74.28%。
材料的表征:该材料的TEM图如图2所示。可看出,该材料为碳包覆镍的纳米复合材料,在镍纳米颗粒的外层包裹着石墨化碳层,形成完整的核壳结构。碳包覆镍的纳米材料的X射线衍射谱图如图3所示,可看出,在该材料的衍射图中存在对应于石墨碳的衍射峰(2θ角为26°)和面心立方结构(fcc)Ni的衍射峰(2θ角为44.5°、51.7°和76.4°)由谢乐公式计算出该碳包覆镍纳米粒子的平均粒径为4.7nm。。
BET测试表明,该复合材料的比表面积为146m2/g,孔体积为0.37cm3/g,其中>2nm的介孔体积为0.365cm3/g,占总孔体积的98.6%。图4为该复合材料的N2吸附-脱附等温线,图5为该复合材料的BJH孔径分布曲线,可以看出,所述复合材料在3.77nm和10.26nm处存在两个介孔分布峰。
该纳米复合材料的X射线光电子能谱(XPS)如图6,从图6可以看到明显存在C、O、Ni的XPS峰,证明了O元素的有效掺杂。从图7可以看出,其中Ni价态为0价。从图8可以看出,该复合纳米材料中的O不存在金属-氧(M-O)键,只存在羧基氧、羰基氧和羟基氧,充分证明了这种核壳结构有效的将高活性的Ni纳米粒子与空气隔绝,核壳结构完整。
按术语部分所述方法测量、计算,本制备例制得的复合材料的酸洗损失率为36.2%。在术语部分所述方法的基础上,继续增加酸洗时间,酸洗损失率基本保持不变。
制备例2
(1)称取10g醋酸镍,20g柠檬酸加到含有50mL去离子水的烧杯中,在80℃下搅拌得到均相溶液,并继续加热蒸干,得到一固体前驱体。
(2)将步骤(1)得到的固体置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为150mL/min的氮气,并以5℃/min的速率升温至600℃,恒温2h后停止加热,并在氮气气氛下冷却至室温,得到碳包覆镍的纳米复合材料。经元素分析仪和X射线荧光光谱分析仪(XRF)测定,该复合材料中所含元素的质量百分含量为:碳:35.64%,氢0.78%,氧3.81%,镍59.77%。
材料的表征:该材料含有以纳米金属镍为核,以石墨化碳层为壳的核壳结构,TEM图如图9所示;碳包覆镍的纳米材料的X射线衍射谱图如图10所示,可看出,在该材料的衍射图中存在对应于碳的衍射峰(2θ角为26°)和fcc Ni的衍射峰(44.5°、51.9°和76.2°),由谢乐公式计算出该碳包覆镍纳米粒子的平均粒径为34.5nm;BET测试结果见图11,表明该材料的比表面积为137m2/g,孔体积为0.343cm3/g,其中>2nm的介孔体积为0.323cm3/g,占总孔体积的94%。
按术语部分所述方法测量、计算,本制备例制得的复合材料的酸洗损失率为13.2%。在术语部分所述方法的基础上,继续增加酸洗时间,酸洗损失率基本保持不变。
制备例3
(1)称取10g醋酸镍、10g对苯二甲酸加入30mL去离子水中,在70℃下搅拌得到均相溶液,并继续加热蒸干后得到前驱体。该固体的X衍射图如图12。
(2)将前驱体置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入氮气,流量100mL/min,并以5℃/min的速率升温至650℃,恒温2h后停止加热,在氮气气氛下冷却至室温,得到含有碳包覆镍纳米复合材料。经元素分析仪和X射线荧光光谱分析仪(XRF)测定,该纳米复合材料中所含元素的质量百分含量为:碳29.34%;氢0.23%;氧0.56%,镍69.87%。酸洗损失率:29.4%。
材料的表征:图13是制备的纳米复合材料的TEM图。可以看出,该材料含有以纳米金属镍为核,一定石墨化的碳为壳的核壳结构。在该材料的XRD衍射图中(图14)存在对应于碳的衍射峰(2θ角为25.8°)和fcc Ni的衍射峰(44.6°、51.8°和76.4°),由谢乐公式计算出该碳包覆镍纳米粒子的平均粒径为8.4nm。说明该材料包括一定石墨化程度的碳,其中Ni以面心立方结构存在。
BET测试结果表明,该纳米复合材料的比表面积为149.64m2/g,孔体积为0.29cm3/g,其中>2nm的介孔体积为0.285cm3/g,占总孔体积的98.3%。图15为该复合材料的BJH孔径分布曲线,可以看出,所述复合材料在3.87nm和18.88nm处存在两个介孔分布峰。
按术语部分所述方法测量、计算,本实施例制得的复合材料的酸洗损失率为29.4%。在术语部分所述方法的基础上,继续增加酸洗时间,酸洗损失率基本保持不变。
制备例4
(1)称取10g醋酸镍、10g柠檬酸加到含有30mL去离子水的烧杯中,在70℃下搅拌得到均相溶液,并继续加热蒸干,得到一固体前驱体。该固体的X射线衍射谱图如图16所示。
(2)将步骤(1)得到的固体置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为100mL/min的氮气,并以5℃/min的速率升温至650℃,恒温2h后停止加热,并在氮气气氛下冷却至室温,得到碳包覆镍的纳米复合材料。经元素分析仪和X射线荧光光谱分析仪(XRF)测定,该纳米复合材料中所含元素的质量百分含量分别为:碳24.29%,氢0.47%,氧0.96%,镍74.28%。
(3)按术语部分所述方法处理步骤(2)所得的纳米复合材料,干燥后得到酸洗后的纳米复合材料,即严密包覆的纳米复合材料。在所述方法的基础上,继续增加酸洗时间,酸洗损失率基本保持不变。
用元素分析仪和X射线荧光光谱分析仪(XRF)测定,该纳米复合材料中所含元素的质量百分含量为:碳44.87%,氢0.99%,氧1.81%,镍52.33%
材料的表征:该纳米复合材料的TEM图如图17所示,含有以纳米金属镍为核,石墨化碳层为壳的核壳结构;碳包覆镍的纳米复合材料的X射线衍射谱图如图18所示,可看出,在该材料的衍射图中存在对应于石墨碳的衍射峰(2θ角为25.7°)和fcc Ni的衍射峰(44.5°、51.9°和76.2°),由谢乐公式计算出该碳包覆纳米粒子的平均粒径为5.5nm;BET测试结果如图19、图20所示,该材料的比表面积为176m2/g,孔体积为0.381cm3/g,其中>2nm的介孔体积为0.376cm3/g,占总孔体积的98.7%。
对比例1:
将10g醋酸镍固体置于瓷舟内,然后将瓷舟置于管式炉的恒温区,通入流量为150mL/min的氮气,并以5℃/min的速率升温至600℃,恒温2h后停止加热,并在氮气气氛下冷却至室温,得到样品材料。经元素分析仪和X射线荧光光谱分析仪(XRF)测定,该材料中所含元素的质量百分含量为:碳1.34%,氢0.32%,氧0.18%,镍98.16%。该材料的X射线衍射谱图如图21所示,可看出,在该材料的衍射图中存在对应于fcc Ni的衍射峰(44.2°、51.6°和76.2°)。
按术语部分所述方法测量、计算,本对比例制得的材料的酸洗损失率为100%。
实施例1
将制备例1所得复合材料作为催化剂用于烯烃类化合物反应物加氢制备目的产物烷烃类化合物的反应,具体的实验步骤为:
将0.1g复合材料、1.96g苯乙烯,100mL环己烷加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为3MPa,搅拌升温,升温至预定反应温度100℃,反应预定时间3小时后停止加热,降至室温,排压,开反应釜取产物乙基苯进行色谱分析。通过以下公式计算反应物转化率及目的产物选择性:
转化率=已反应的反应物质量/反应物加入量×100%
选择性=目的产物质量/反应生成物质量×100%
经分析后,得苯乙烯转化率为100%,乙基苯选择性为98.4%。
实施例2
将制备例1所得复合材料作为催化剂用于烯烃类化合物反应物加氢制备目的产物烷烃类化合物的反应,具体的实验步骤为:
将0.1g复合材料、0.33g苯乙烯,30mL环己烷加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为1.5MPa,搅拌升温,升温至预定反应温度120℃,反应预定时间2小时后停止加热,降至室温,排压,开反应釜取产物乙基苯进行色谱分析。通过实施例1所列公式计算反应物转化率及目的产物选择性:
经分析后,得苯乙烯转化率为100%,乙基苯选择性为99.9%。
实施例3
将制备例1所得复合材料作为催化剂用于烯烃类化合物反应物加氢制备目的产物烷烃类化合物的反应,具体的实验步骤为:
将0.1g复合材料、0.5g苯乙烯,50mL环己烷加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为1MPa,搅拌升温,升温至预定反应温度130℃,反应预定时间1小时后停止加热,降至室温,排压,开反应釜取产物乙基苯进行色谱分析。通过实施例1所列公式计算反应物转化率及目的产物选择性:
经分析后,得苯乙烯转化率为100%,乙基苯选择性为99.7%。
实施例4
将制备例1所得复合材料作为催化剂用于烯烃类化合物反应物加氢制备目的产物烷烃类化合物的反应,具体的实验步骤为:
将0.1g复合材料、0.5g苯乙烯,30mL水加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为2MPa,搅拌升温,升温至预定反应温度110℃,反应预定时间2小时后停止加热,降至室温,排压,开反应釜取产物乙基苯进行色谱分析。通过实施例1所列公式计算反应物转化率及目的产物选择性:
经分析后,得苯乙烯转化率为100%,乙基苯选择性为98.5%。
实施例5
将制备例1所得复合材料作为催化剂用于烯烃类化合物反应物加氢制备目的产物烷烃类化合物的反应,具体的实验步骤为:
将0.1g复合材料、0.329g环己烯,30mL水加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为1.5MPa,搅拌升温,升温至预定反应温度120℃,反应预定时间2小时后停止加热,降至室温,排压,开反应釜取产物环己烷进行色谱分析。通过实施例1所列公式计算反应物转化率及目的产物选择性:
经分析后,得环己烯转化率为100%,环己烷选择性为99.6%。
实施例6
将制备例2所得复合材料作为催化剂用于烯烃类化合物反应物加氢制备目的产物烷烃类化合物的反应,具体的实验步骤为:
将0.1g复合材料、0.33g苯乙烯,30mL环己烷加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为1.5MPa,搅拌升温,升温至预定反应温度120℃,反应预定时间2小时后停止加热,降至室温,排压,开反应釜取产物乙基苯进行色谱分析。通过实施例1所列公式计算反应物转化率及目的产物选择性:
经分析后,得苯乙烯转化率为100%,乙基苯选择性为99.4%。
实施例7
将制备例3所得复合材料作为催化剂用于烯烃类化合物反应物加氢制备目的产物烷烃类化合物的反应,具体的实验步骤为:
将0.2g复合材料、0.667g苯乙烯,50mL环己烷加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为1.5MPa,搅拌升温,升温至预定反应温度120℃,反应预定时间2小时后停止加热,降至室温,排压,开反应釜取产物乙基苯进行色谱分析。通过实施例1所列公式计算反应物转化率及目的产物选择性:
经分析后,得苯乙烯转化率为100%,乙基苯选择性为99.2%。
实施例8
将制备例4所得复合材料作为催化剂用于烯烃类化合物反应物加氢制备目的产物烷烃类化合物的反应,具体的实验步骤为:
将0.2g复合材料、0.667g苯乙烯,50mL环己烷加入反应釜中,通H2置换反应釜3次后,通H2使反应釜内压力为1.5MPa,搅拌升温,升温至预定反应温度120℃,反应预定时间2小时后停止加热,降至室温,排压,开反应釜取产物乙基苯进行色谱分析。通过实施例1所列公式计算反应物转化率及目的产物选择性:
经分析后,得苯乙烯转化率为100%,乙基苯选择性为99.9%。
可见,采用本发明的碳包覆镍纳米复合材料催化烯烃类化合物加氢合成烷烃类化合物,在宽的温度范围和压力范围内,均可实现反应转化率100%,且烷烃类化合物的选择性均可达到98%以上,材料的催化性能稳定,表现了良好的重复性、高活性及高选择性。
本领域技术人员应当注意的是,本发明所描述的实施方式仅仅是示范性的,可在本发明的范围内作出各种其他替换、改变和改进。因而,本发明不限于上述实施方式,而仅由权利要求限定。

Claims (19)

1.一种烷烃类化合物的合成方法,包括:
以碳包覆镍的纳米复合材料为催化剂,在氢气气氛下催化烯烃类化合物进行加氢还原反应;
其中,所述纳米复合材料含具有壳层和内核的核壳结构,所述壳层为掺杂氧的石墨化碳层,所述内核为镍纳米颗粒,所述纳米复合材料的酸洗损失率≤60%。
2.根据权利要求1所述的合成方法,所述烯烃类化合物为链烯烃或环烯烃。
3.根据权利要求1所述的合成方法,所述烯烃类化合物为苯乙烯或环己烯。
4.根据权利要求1所述的合成方法,其中所述催化剂占所述烯烃类化合物质量的1-50%,优选为5-30%。
5.根据权利要求1所述的合成方法,其中所述加氢还原反应温度为100-130℃。
6.根据权利要求1所述的合成方法,其中所述氢气的压力为1~3MPa。
7.根据权利要求1所述的合成方法,其中所述催化剂与烯烃类化合物在溶剂中混合后进行加氢还原反应,其中所述溶剂选自醇类、醚类、烷烃类和水中的一种或多种。
8.根据权利要求1-7中任一项所述的合成方法,其中所述纳米复合材料为具有至少一个介孔分布峰的介孔材料。
9.根据权利要求1-7中任一项所述的合成方法,其中所述纳米复合材料的酸洗损失率≤10%。
10.根据权利要求9所述的合成方法,其中所述纳米复合材料为具有至少一个介孔分布峰的介孔材料。
11.根据权利要求8或10所述的合成方法,其中所述纳米复合材料为具有两个或两个以上介孔分布峰的介孔材料。
12.根据权利要求8或10所述的合成方法,其中所述介孔材料中介孔体积占总孔体积的比例大于50%,优选大于80%。
13.根据权利要求8或10所述的合成方法,其中纳米复合材料的介孔体积为0.05-1.25cm3/g。
14.根据权利要求8或9所述的合成方法,所述石墨化碳层的厚度为0.3nm~6.0nm,优选为0.3~3nm。
15.根据权利要求8或9所述的合成方法,所述核壳结构的粒径为1~200nm,优选为3~100nm,更优选为4~50nm。
16.根据权利要求8所述的合成方法,其中以质量百分比计,所述纳米复合材料的碳含量为10-60%,镍含量为30.0%-85.0%,优选地,碳含量为15.0%-40.0%,镍含量为50.0%-80.0%。
17.根据权利要求8所述的合成方法,其中以质量百分比计,该纳米复合材料中,氧含量小于15.0%,优选为0.2%-5.0%。
18.根据权利要求9所述的合成方法,其中以质量百分比计,所述纳米复合材料的碳含量为15%-60%,镍含量为30%-80%,优选地,碳含量为30%-60%,镍含量为30%-60%。
19.根据权利要求9所述的合成方法,其中以质量百分比计,该纳米复合材料中,氧含量小于15.0%,优选为1.0%-10.0%。
CN201810841717.7A 2017-07-28 2018-07-27 一种烷烃类化合物的合成方法 Active CN109304178B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017106272785 2017-07-28
CN201710627278 2017-07-28

Publications (2)

Publication Number Publication Date
CN109304178A true CN109304178A (zh) 2019-02-05
CN109304178B CN109304178B (zh) 2022-04-12

Family

ID=65040931

Family Applications (32)

Application Number Title Priority Date Filing Date
CN201810840955.6A Active CN109305917B (zh) 2017-07-28 2018-07-27 一种卤代苯胺的合成方法
CN201810841690.1A Pending CN109304476A (zh) 2017-07-28 2018-07-27 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN201810841421.5A Active CN109304177B (zh) 2017-07-28 2018-07-27 一种卤代苯胺的合成方法
CN201810841494.4A Active CN109305880B (zh) 2017-07-28 2018-07-27 一种醇类化合物的合成方法
CN201810841237.0A Active CN109305875B (zh) 2017-07-28 2018-07-27 一种环烷烃类化合物的合成方法
CN201810841383.3A Active CN109305913B (zh) 2017-07-28 2018-07-27 一种苯胺类化合物的合成方法
CN201810841764.1A Active CN109305919B (zh) 2017-07-28 2018-07-27 一种卤代苯胺的合成方法
CN201810841717.7A Active CN109304178B (zh) 2017-07-28 2018-07-27 一种烷烃类化合物的合成方法
CN201810841890.7A Active CN109305881B (zh) 2017-07-28 2018-07-27 一种醇类化合物的合成方法
CN201810841404.1A Active CN109304176B (zh) 2017-07-28 2018-07-27 一种环己醇类化合物的合成方法
CN201810841548.7A Active CN109305892B (zh) 2017-07-28 2018-07-27 一种环己醇类化合物的合成方法
CN201810841964.7A Active CN109305924B (zh) 2017-07-28 2018-07-27 一种氨基苯甲醚类化合物的合成方法
CN201810842134.6A Active CN109305922B (zh) 2017-07-28 2018-07-27 一种氨基苯酚类化合物的合成方法
CN201810841571.6A Pending CN109305914A (zh) 2017-07-28 2018-07-27 一种碳包覆过渡金属的纳米复合材料及其应用
CN201810842416.6A Active CN109304195B (zh) 2017-07-28 2018-07-27 一种碳包覆过渡金属的纳米复合材料及应用
CN201810842345.XA Active CN109305915B (zh) 2017-07-28 2018-07-27 对氯苯胺的合成方法
CN201810841678.0A Pending CN109304475A (zh) 2017-07-28 2018-07-27 碳包覆镍复合材料及其制备方法
CN201810841504.4A Active CN109305890B (zh) 2017-07-28 2018-07-27 一种醇类化合物的合成方法
CN201810841718.1A Active CN109304194B (zh) 2017-07-28 2018-07-27 一种碳包覆过渡金属的纳米复合材料及应用
CN201810841614.0A Active CN109305916B (zh) 2017-07-28 2018-07-27 一种苯胺类化合物的合成方法
CN201810841422.XA Active CN109309212B (zh) 2017-07-28 2018-07-27 碳包覆钴纳米复合材料及其制备方法
CN201810841347.7A Active CN109305874B (zh) 2017-07-28 2018-07-27 一种烷烃类化合物的合成方法
CN201810841483.6A Active CN109305879B (zh) 2017-07-28 2018-07-27 一种醇类化合物的合成方法
CN201810841374.4A Active CN109305918B (zh) 2017-07-28 2018-07-27 一种卤代苯胺的合成方法
CN201810841870.XA Active CN109305921B (zh) 2017-07-28 2018-07-27 一种氨基苯酚类化合物的合成方法
CN201810841686.5A Active CN109304201B (zh) 2017-07-28 2018-07-27 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN201810842117.2A Active CN109305876B (zh) 2017-07-28 2018-07-27 一种环烷烃类化合物的合成方法
CN201810842457.5A Active CN109309214B (zh) 2017-07-28 2018-07-27 碳包覆镍纳米复合材料的制备方法
CN201810841378.2A Active CN109305684B (zh) 2017-07-28 2018-07-27 碳包覆铁及碳化铁纳米复合材料及其制备方法
CN201810842342.6A Active CN109309213B (zh) 2017-07-28 2018-07-27 碳包覆镍纳米复合材料及其制备方法和应用
CN201810842013.1A Pending CN109304202A (zh) 2017-07-28 2018-07-27 一种碳包覆过渡金属的纳米复合材料及其应用
CN201810841239.XA Active CN109305923B (zh) 2017-07-28 2018-07-27 一种氨基苯甲醚类化合物的合成方法

Family Applications Before (7)

Application Number Title Priority Date Filing Date
CN201810840955.6A Active CN109305917B (zh) 2017-07-28 2018-07-27 一种卤代苯胺的合成方法
CN201810841690.1A Pending CN109304476A (zh) 2017-07-28 2018-07-27 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN201810841421.5A Active CN109304177B (zh) 2017-07-28 2018-07-27 一种卤代苯胺的合成方法
CN201810841494.4A Active CN109305880B (zh) 2017-07-28 2018-07-27 一种醇类化合物的合成方法
CN201810841237.0A Active CN109305875B (zh) 2017-07-28 2018-07-27 一种环烷烃类化合物的合成方法
CN201810841383.3A Active CN109305913B (zh) 2017-07-28 2018-07-27 一种苯胺类化合物的合成方法
CN201810841764.1A Active CN109305919B (zh) 2017-07-28 2018-07-27 一种卤代苯胺的合成方法

Family Applications After (24)

Application Number Title Priority Date Filing Date
CN201810841890.7A Active CN109305881B (zh) 2017-07-28 2018-07-27 一种醇类化合物的合成方法
CN201810841404.1A Active CN109304176B (zh) 2017-07-28 2018-07-27 一种环己醇类化合物的合成方法
CN201810841548.7A Active CN109305892B (zh) 2017-07-28 2018-07-27 一种环己醇类化合物的合成方法
CN201810841964.7A Active CN109305924B (zh) 2017-07-28 2018-07-27 一种氨基苯甲醚类化合物的合成方法
CN201810842134.6A Active CN109305922B (zh) 2017-07-28 2018-07-27 一种氨基苯酚类化合物的合成方法
CN201810841571.6A Pending CN109305914A (zh) 2017-07-28 2018-07-27 一种碳包覆过渡金属的纳米复合材料及其应用
CN201810842416.6A Active CN109304195B (zh) 2017-07-28 2018-07-27 一种碳包覆过渡金属的纳米复合材料及应用
CN201810842345.XA Active CN109305915B (zh) 2017-07-28 2018-07-27 对氯苯胺的合成方法
CN201810841678.0A Pending CN109304475A (zh) 2017-07-28 2018-07-27 碳包覆镍复合材料及其制备方法
CN201810841504.4A Active CN109305890B (zh) 2017-07-28 2018-07-27 一种醇类化合物的合成方法
CN201810841718.1A Active CN109304194B (zh) 2017-07-28 2018-07-27 一种碳包覆过渡金属的纳米复合材料及应用
CN201810841614.0A Active CN109305916B (zh) 2017-07-28 2018-07-27 一种苯胺类化合物的合成方法
CN201810841422.XA Active CN109309212B (zh) 2017-07-28 2018-07-27 碳包覆钴纳米复合材料及其制备方法
CN201810841347.7A Active CN109305874B (zh) 2017-07-28 2018-07-27 一种烷烃类化合物的合成方法
CN201810841483.6A Active CN109305879B (zh) 2017-07-28 2018-07-27 一种醇类化合物的合成方法
CN201810841374.4A Active CN109305918B (zh) 2017-07-28 2018-07-27 一种卤代苯胺的合成方法
CN201810841870.XA Active CN109305921B (zh) 2017-07-28 2018-07-27 一种氨基苯酚类化合物的合成方法
CN201810841686.5A Active CN109304201B (zh) 2017-07-28 2018-07-27 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN201810842117.2A Active CN109305876B (zh) 2017-07-28 2018-07-27 一种环烷烃类化合物的合成方法
CN201810842457.5A Active CN109309214B (zh) 2017-07-28 2018-07-27 碳包覆镍纳米复合材料的制备方法
CN201810841378.2A Active CN109305684B (zh) 2017-07-28 2018-07-27 碳包覆铁及碳化铁纳米复合材料及其制备方法
CN201810842342.6A Active CN109309213B (zh) 2017-07-28 2018-07-27 碳包覆镍纳米复合材料及其制备方法和应用
CN201810842013.1A Pending CN109304202A (zh) 2017-07-28 2018-07-27 一种碳包覆过渡金属的纳米复合材料及其应用
CN201810841239.XA Active CN109305923B (zh) 2017-07-28 2018-07-27 一种氨基苯甲醚类化合物的合成方法

Country Status (7)

Country Link
US (1) US11224859B2 (zh)
EP (1) EP3659725A4 (zh)
JP (1) JP7182604B2 (zh)
KR (1) KR102524420B1 (zh)
CN (32) CN109305917B (zh)
TW (1) TWI791574B (zh)
WO (1) WO2019020086A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109305874A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 一种烷烃类化合物的合成方法
CN112707802A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 一种饱和醛的合成方法
CN115121252A (zh) * 2021-03-24 2022-09-30 中国石油化工股份有限公司 碳包覆镍的纳米复合材料及其制备方法和应用

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940288B (zh) * 2018-07-27 2020-10-27 江苏大学 一种镍包覆碳纳米管高效析氢电催化剂的制备方法
CN109761746B (zh) * 2019-02-28 2022-03-22 江苏赛科化学有限公司 液蜡氧化制仲醇的工艺以及***
CN109759120B (zh) * 2019-03-07 2020-05-08 燕山大学 一种氮、镍共掺杂硒化钴超薄纳米片及其制备方法和应用
CN110034306B (zh) * 2019-03-13 2021-04-13 上海交通大学 氮掺杂多孔碳包覆钴纳米颗粒的复合材料的制备方法及应用
CN109904391A (zh) * 2019-03-14 2019-06-18 福建师范大学 一种锂金属电池锂负极的改性方法及锂金属电池
CN111755668B (zh) * 2019-03-26 2021-09-21 中南大学 氮氧共掺杂碳包覆金属锂阳极活性材料、阳极、锂金属电池及其制备和应用
CN109876801B (zh) * 2019-03-26 2021-08-17 中国科学院金属研究所 纳米碳负载高分散铂催化剂及其制备方法和在芳香族硝基化合物加氢反应中的应用
CN109847739B (zh) * 2019-03-26 2021-06-01 福州大学 一种Pd/γ-三氧化二铝催化剂的改性方法
CN109908940A (zh) * 2019-04-02 2019-06-21 大连理工大学 一种氮掺杂多孔碳负载金属的m@cn复合催化材料、制备方法及应用
CN109985651A (zh) * 2019-04-03 2019-07-09 武汉科技大学 一种石墨相氮化碳/氧化银复合光催化剂及其制备方法
CN109920955B (zh) * 2019-04-05 2021-12-14 浙江理工大学 一种应用于锂硫电池隔层的碳化铁复合纳米碳纤维膜及其制备方法
CN109860628B (zh) * 2019-04-15 2021-04-23 安徽大学 一种平面型柔性全固态锌空气电池的制备方法及应用
CN111889120B (zh) * 2019-05-05 2023-04-21 中国科学技术大学 一种Fe核壳纳米催化剂、其制备方法和应用
CN110104648B (zh) * 2019-05-10 2022-11-01 东华大学 一种高熵碳化物纳米粉体及其制备方法
CN110193347B (zh) * 2019-06-06 2021-05-28 华南农业大学 一种纳米碳包氧化亚钴及其制备方法和应用
CN110190264B (zh) * 2019-06-14 2020-12-08 陕西科技大学 一种超临界条件下制备的球状氮掺杂晶化碳包覆硫化铁及其制备方法和应用
ES2800224B2 (es) * 2019-06-19 2021-05-21 Univ Valencia Lamina catalitica de oxido de niquel, procedimiento para su obtencion y sus usos
CN112142037A (zh) * 2019-06-26 2020-12-29 天津大学 一种钴、氮掺杂碳纳米管及其制备方法和应用
CN110420641A (zh) * 2019-06-28 2019-11-08 东北石油大学 一种三维负载型氢氧化钴的制备及其用于催化过硫酸盐处理苯酚废水的方法
CN110480026B (zh) * 2019-07-10 2020-12-11 同济大学 一种纳米复合材料及其制备方法和用途
CN110534759A (zh) * 2019-07-26 2019-12-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种燃料电池用Fe-N-C非贵金属催化剂及其制备方法
CN110465319A (zh) * 2019-08-23 2019-11-19 江西夏氏春秋环境股份有限公司 一种氮掺杂的铜钯双金属纳米催化材料的制备方法及应用
EP3789113A1 (en) * 2019-09-05 2021-03-10 Evonik Operations GmbH Materials comprising carbon-embedded nickel nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
EP3789111A1 (en) * 2019-09-05 2021-03-10 Evonik Operations GmbH Materials comprising carbon-embedded iron nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
EP3789112A1 (en) * 2019-09-05 2021-03-10 Evonik Operations GmbH Materials comprising carbon-embedded cobalt nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
CN111203248A (zh) * 2019-09-18 2020-05-29 杭州电子科技大学 一种掺杂石墨烯包覆过渡金属碳化物纳米胶囊的制备方法及在微波催化中的应用
CN110628383B (zh) * 2019-09-19 2021-06-15 同济大学 一种用于吸收电磁波的纳米复合材料的制备方法
CN110921715A (zh) * 2019-09-26 2020-03-27 国网浙江省电力有限公司湖州供电公司 一种介孔CoO锂电池负极材料制备方法
WO2021078113A1 (zh) * 2019-10-21 2021-04-29 中国石油化工股份有限公司 碳包覆镍铝的纳米复合材料及制备方法和应用
CN112762469B (zh) * 2019-10-21 2022-04-12 中国石油化工股份有限公司 催化燃烧挥发性有机化合物的方法
CN113751042B (zh) * 2020-06-05 2022-07-15 中国石油化工股份有限公司 碳包覆氧化镍的纳米复合材料及其制备方法和应用
CN112755993B (zh) * 2019-10-21 2022-07-15 中国石油化工股份有限公司 碳包覆氧化镍的纳米复合材料及其制备方法和应用
CN112755994A (zh) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 碳包覆镍铝的纳米复合材料及制备方法和应用
CN112755780B (zh) * 2019-10-21 2022-11-15 中国石油化工股份有限公司 催化一氧化二氮分解的方法
CN112705237B (zh) * 2019-10-24 2023-08-08 中国石油化工股份有限公司 碳包覆碳化镍和镍的纳米复合材料及其制备方法和应用
CN112705235B (zh) * 2019-10-24 2023-08-08 中国石油化工股份有限公司 碳包覆碳化镍的纳米复合材料及其制备方法和应用
CN112705236B (zh) * 2019-10-24 2023-05-05 中国石油化工股份有限公司 碳包覆碳化镍的纳米复合材料及其制备方法和应用
CN112705239B (zh) * 2019-10-24 2023-06-09 中国石油化工股份有限公司 碳化镍纳米复合材料及其制备方法和应用
CN112705234B (zh) * 2019-10-24 2023-06-09 中国石油化工股份有限公司 氧掺杂碳基碳化镍纳米复合材料及其制备方法和应用
CN112705205A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种制备芳胺的催化剂及其制备方法和应用
CN110773212A (zh) * 2019-10-31 2020-02-11 西南大学 一种碳化铁-多孔碳复合材料及其制备方法和应用
CN110665505B (zh) * 2019-11-05 2022-07-08 陕西师范大学 一种高效催化乙酰丙酸加氢制γ-戊内酯的Cu@mZrO2核壳催化剂及应用
CN110773214A (zh) * 2019-11-13 2020-02-11 广东工业大学 一种碳层嵌入式的碳化铁及其制备方法和碳层嵌入式的碳化铁作为费托合成催化剂的应用
CN110803703A (zh) * 2019-11-13 2020-02-18 广东工业大学 一种磁性碳包覆碳化铁纳米材料及其制备方法和应用
CN110961134B (zh) * 2019-11-28 2021-12-21 华南理工大学 一种合成单原子催化剂的方法及单原子催化剂与应用
CN111013624B (zh) * 2019-12-16 2022-07-19 佛山职业技术学院 一种氮掺杂多孔碳包覆金属纳米复合催化剂及其制备方法
CN111036269B (zh) * 2019-12-20 2023-01-24 佛山科学技术学院 一种复合光催化剂及其制备方法
CN111063549B (zh) * 2019-12-23 2021-05-18 南京农业大学 二维MOFs纳米片衍生的混合电容器全电极材料
CN111137874B (zh) * 2020-01-10 2023-03-31 南昌航空大学 一种以hkust-1为模板制备复合吸波材料的方法
CN111302955A (zh) * 2020-04-08 2020-06-19 江苏扬农化工集团有限公司 一种氨基苯酚的合成方法
CN113735098B (zh) * 2020-05-29 2023-08-22 中国石油天然气股份有限公司 氮元素掺杂碳纳米环、其制备方法及应用
CN113751007B (zh) * 2020-06-05 2023-07-11 中国石油化工股份有限公司 碳包覆氧化镍的催化剂及其制备方法和应用
CN113751004B (zh) * 2020-06-05 2023-07-11 中国石油化工股份有限公司 碳包覆过渡金属氧化物的催化剂及其制备方法和应用
CN113751006B (zh) * 2020-06-05 2023-07-14 中国石油化工股份有限公司 碳包覆氧化镍的纳米复合材料及其制备方法和应用
CN111604075B (zh) * 2020-06-28 2023-07-25 江苏新瀚新材料股份有限公司 一种用于傅克酰基化反应的碳负载碳化铁催化剂及其制备方法
CN111686732B (zh) * 2020-06-29 2022-11-04 福州大学 一种碳包覆铁基催化剂及其制备方法和催化苯羟基化制苯酚的应用
KR102385377B1 (ko) * 2020-07-09 2022-04-13 한국에너지기술연구원 합금 촉매 화합물 및 합금 촉매 화합물 제조 방법
ES2809349B2 (es) * 2020-07-27 2021-07-06 Univ Alicante Procedimiento para obtencion de nanoparticulas de hierro cerovalente
CN112002886A (zh) * 2020-08-12 2020-11-27 中南大学 钾离子电池负极材料金属合金及其制备方法
KR102445295B1 (ko) 2020-08-12 2022-09-23 서울대학교산학협력단 탄소 코팅된 금속나노입자 촉매 및 그 제조방법
CN112108113A (zh) * 2020-08-14 2020-12-22 浙江农林大学 一种碳纳米管/石墨烯/镍纳米复合材料及其制备方法
CN114425339B (zh) * 2020-09-30 2023-07-11 中国石油化工股份有限公司 碳基六方密堆积相钴的纳米复合材料及其制备方法和应用
CN114425341B (zh) * 2020-10-12 2023-07-11 中国石油化工股份有限公司 含硫化物杂质的不饱和化合物的催化加氢方法
CN114426490A (zh) * 2020-10-12 2022-05-03 中国石油化工股份有限公司 不饱和化合物的催化加氢方法
CN112169805B (zh) * 2020-10-17 2022-07-29 重庆卡贝乐化工有限责任公司 一种用于合成气制低碳醇用钴镓催化剂
CN112457150A (zh) * 2020-11-26 2021-03-09 连云港鹏辰特种新材料有限公司 一种从c9重芳烃中分离纯化连三甲苯的方法
CN112430188B (zh) * 2020-12-04 2023-07-28 西安联众安科化工有限公司 一种新型加氢技术制备异丙基苯胺的方法
CN114619025B (zh) * 2020-12-11 2023-09-29 国家能源投资集团有限责任公司 碳包覆金属纳米粒子及其制备方法和应用
CN112743098B (zh) * 2020-12-23 2022-07-01 南昌航空大学 氮掺杂多孔碳包覆空心钴镍合金复合吸波材料的制备方法
CN112779550B (zh) * 2021-01-11 2022-05-17 中山大学 一种三维微米管状析氢反应电催化剂及其制备方法
KR20220103288A (ko) * 2021-01-15 2022-07-22 현대자동차주식회사 인터메탈릭 촉매 및 이의 제조 방법
CN112604706B (zh) * 2021-01-15 2023-11-10 荆楚理工学院 一种含氮超交联聚合物衍生的Co@CN催化剂的制备方法及应用
CN112973707A (zh) * 2021-02-26 2021-06-18 广东工业大学 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用
TWI789722B (zh) * 2021-03-16 2023-01-11 國立中正大學 觸媒結構、其用途與電化學裝置
CN115121110B (zh) * 2021-03-24 2023-08-08 中国石油化工股份有限公司 一种催化一氧化二氮分解的方法
CN113072070A (zh) * 2021-03-26 2021-07-06 华东理工大学 一种高比表面碳包裹的过渡金属碳化物材料的制备方法
CN113117719B (zh) * 2021-04-12 2022-06-14 中山大学 一种非常规晶相的镍基金属纳米材料及其制备方法与应用
CN113271758B (zh) * 2021-04-19 2022-08-23 杭州电子科技大学 一种电磁波屏蔽透气多孔碳复合材料及其制备方法、应用
CN113355687B (zh) * 2021-04-20 2022-05-24 广东石油化工学院 一种锡基双金属碳化物@碳纳米链核壳结构及其制备方法和应用
CN113101962A (zh) * 2021-04-25 2021-07-13 山西中科国蕴环保科技有限公司 一种用于活化过硫酸盐的多孔碳层保护催化剂、制备方法及应用
CN113275562A (zh) * 2021-05-21 2021-08-20 中国科学技术大学 RuNi合金纳米复合材料、其制备方法及其应用
CN115394969A (zh) * 2021-05-25 2022-11-25 中国石油化工股份有限公司 锂硫电池正极活性物质及其制备方法以及正极材料、正极及其制备方法和锂硫电池
CN113457575B (zh) * 2021-06-07 2022-08-12 东南大学 一种微波连续热解制碳纳米纤维及氢气的***及方法
CN113336624B (zh) * 2021-06-16 2023-08-18 东北石油大学 一种Ni基催化剂上苯酚选择加氢方法
CN113292437A (zh) * 2021-06-22 2021-08-24 中石化南京化工研究院有限公司 一种硝基氯苯选择性加氢制备氯代苯胺的方法
CN113611880A (zh) * 2021-07-01 2021-11-05 广东工业大学 一种碳纳米管负载过渡金属复合材料及其制备方法与应用
CN113813961B (zh) * 2021-08-25 2024-04-02 无锡碳谷科技有限公司 一种碳包覆型塑料氢解催化剂的制备方法
CN113856660B (zh) * 2021-08-31 2024-01-19 浙江工业大学 一种炭材料包覆镍纳米粒子催化剂及其制备方法和应用
CN113731423B (zh) * 2021-08-31 2024-04-09 浙江工业大学 炭材料包覆镍纳米粒子催化剂在对硝基苯乙酸加氢合成对氨基苯乙酸中的应用
CN113801043B (zh) * 2021-08-31 2022-10-11 浙江工业大学 炭材料包覆镍纳米粒子催化剂在间硝基苯磺酸钠加氢合成间氨基苯磺酸中的应用
CN113735722B (zh) * 2021-09-26 2023-05-16 武汉炼化工程设计有限责任公司 一种n-甲基-对氨基苯甲醚的制备工艺
CN114130395A (zh) * 2021-11-25 2022-03-04 西北民族大学 基于催化合成胺类化合物的磁性超疏水镍碳纳米复合催化材料的制备方法
CN114085154B (zh) * 2021-12-01 2024-03-19 浙江解氏新材料股份有限公司 一种基于高活性骨架镍合成对氟苯胺的方法
CN114029050B (zh) * 2021-12-13 2022-10-11 复旦大学 一种负载型高载量碳包覆贵金属纳米颗粒催化剂合成方法
CN114212779B (zh) * 2021-12-28 2023-07-21 洛阳尖端技术研究院 复合型吸波材料的制备方法和复合型吸波材料
CN114308024B (zh) * 2021-12-31 2023-09-05 浙江工业大学 一种掺杂碳包裹铂催化剂的制备方法和应用
CN114225935B (zh) * 2021-12-31 2023-09-05 浙江工业大学 “洋葱形”负载型碳包裹铂催化剂的制备及应用
CN114346250B (zh) * 2021-12-31 2023-09-26 广东技术师范大学 一种金属-碳复合颗粒及其制备方法和应用
CN115312792A (zh) * 2022-01-13 2022-11-08 青岛大学 一种碳层包覆钴锌合金复合材料催化剂及其制备方法
CN114535569B (zh) * 2022-01-24 2024-05-03 同济大学 一种磁性金属复合材料及其制备方法
CN114558578A (zh) * 2022-03-08 2022-05-31 中国石油大学(华东) 一种中心辐射状新型镍碳催化材料及其制备方法与应用
CN114703405B (zh) * 2022-04-12 2023-01-31 江苏中基复合材料有限公司 一种高强高电导率Al-Fe-La-Cu铝合金箔及其制备方法
CN114917907A (zh) * 2022-04-19 2022-08-19 大连理工大学 高催化加氢活性的负载型非贵金属催化剂、制备方法及其应用
CN114695857B (zh) * 2022-04-21 2024-04-05 厦门大学 单原子锑修饰和氮、氧共掺杂的多孔碳片复合材料
CN114870874A (zh) * 2022-05-10 2022-08-09 桂林电子科技大学 一种基于氧化石墨烯的掺氮多孔碳包覆嵌钌磷化钴复合材料
CN114908376B (zh) * 2022-06-06 2023-09-08 黔南民族师范学院 一种聚苯胺和磷化镍复合催化剂及其制备方法
CN115058725B (zh) * 2022-07-05 2023-08-22 河南大学 含金属的三维石墨化碳材料的制备方法及其在硝酸根电催化还原合成氨上的应用
CN115007155B (zh) * 2022-07-07 2024-03-26 中国科学院青岛生物能源与过程研究所 一种负载型含镍催化剂,其制备方法以及采用其催化炔烃加氢制备烯烃的方法
CN115254167B (zh) * 2022-08-09 2024-01-09 安徽大学 一种N,S共掺杂介孔碳负载Co催化剂的制备方法及其在加氢中的应用
CN115050950B (zh) * 2022-08-12 2022-11-01 中创新航科技股份有限公司 硅基负极材料、其制备方法及包含它的锂离子电池
CN115350706B (zh) * 2022-08-29 2023-07-18 南京信息工程大学 一种co2加氢热催化的三元金属mof衍生催化剂制备方法
CN115386770A (zh) * 2022-08-31 2022-11-25 天津中祥电气有限公司 一种纳米铝合金金具的超低速压铸方法及设备
CN115646526A (zh) * 2022-10-20 2023-01-31 东北大学 一种氮掺杂生物炭包埋钴基催化剂的制备方法和应用
CN115837286A (zh) * 2022-11-14 2023-03-24 北京师范大学 一种用于过氧化物活化的限域纳米反应器及其制备方法
CN115869955A (zh) * 2022-11-28 2023-03-31 东南大学 一种Co基多相磁性催化剂及其制备与应用
CN116037187A (zh) * 2022-12-30 2023-05-02 浙江大学 一种非贵金属生物质炭复合材料及其制备方法和应用
CN116651456A (zh) * 2023-05-11 2023-08-29 浙江大学 一种生物相容性析氢电催化剂及其制备方法和应用
CN116272954B (zh) * 2023-05-19 2023-08-01 山东格瑞德环保科技有限公司 一种基于MOFs金属骨架氧化物用于VOCs治理的催化剂及其制备方法
CN116553524B (zh) * 2023-07-04 2023-09-15 成都锂能科技有限公司 一种钠离子电池硬碳负极材料及其制备工艺、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056630A (zh) * 2014-06-30 2014-09-24 北京理工大学 一种碳包覆钴的析氧反应电催化剂的制备方法
CN104293370A (zh) * 2014-11-10 2015-01-21 华玉叶 一种制备烷烃的方法
CN105032424A (zh) * 2015-06-05 2015-11-11 中国科学院化学研究所 一种用于芳香硝基化合物选择性加氢反应的催化剂及其制备方法
CN105032355A (zh) * 2015-08-24 2015-11-11 东华大学 一种核壳结构的碳包覆磁性纳米微粒的制备方法

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037791A (en) * 1988-07-28 1991-08-06 Hri, Inc. Porous metal oxide supported carbon-coated catalysts and method for producing same
US6262129B1 (en) * 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
SG94805A1 (en) * 2000-05-02 2003-03-18 Shoei Chemical Ind Co Method for preparing metal powder
US6843919B2 (en) * 2002-10-04 2005-01-18 Kansas State University Research Foundation Carbon-coated metal oxide nanoparticles
DE10253399A1 (de) * 2002-11-15 2004-05-27 Eramet & Comilog Chemicals S.A. Carbon-Black-Zusammensetzungen und ihre Anwendungen
CN1199935C (zh) * 2002-12-09 2005-05-04 浙江工业大学 卤代硝基苯催化加氢合成卤代苯胺的生产方法
GB0401644D0 (en) * 2004-01-26 2004-02-25 Univ Cambridge Tech Method of producing carbon-encapsulated metal nanoparticles
US7285329B2 (en) * 2004-02-18 2007-10-23 Hitachi Metals, Ltd. Fine composite metal particles and their production method, micro-bodies, and magnetic beads
CN100522362C (zh) * 2004-03-25 2009-08-05 香港理工大学 双活性物种催化剂及应用
CN1233455C (zh) * 2004-05-27 2005-12-28 上海交通大学 喷射式连续制备纳米复合粒子的方法及其装置
WO2007095454A2 (en) * 2006-02-10 2007-08-23 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Carbon-encased metal nanoparticles and sponges, methods of synthesis, and methods of use
CA2661489A1 (en) * 2006-08-30 2008-03-06 Umicore Ag & Co. Kg Core/shell-type catalyst particles comprising metal or ceramic core materials and methods for their preparation
CN101176915B (zh) * 2006-11-09 2010-05-26 南京大学 一种碳包覆的纳米金属镍颗粒材料的制备方法
CN101049562A (zh) * 2007-05-11 2007-10-10 清华大学 用卤代硝基苯催化加氢制卤代苯胺的催化剂及其制备方法
JP4924824B2 (ja) * 2007-06-14 2012-04-25 戸田工業株式会社 炭素被覆ニッケル粉末の製造方法
CA2592124A1 (en) * 2007-06-19 2008-12-19 Josephine Hill Metal catalysts with perm-selective coatings, methods of making same and uses thereof
JP2009024204A (ja) * 2007-07-18 2009-02-05 Toda Kogyo Corp 炭化物被覆ニッケル粉末およびその製造方法
RU2359901C1 (ru) * 2007-12-10 2009-06-27 Институт физики металлов УрО РАН Способ гидрирования материала накопителя водорода - магния
CN101301580A (zh) * 2008-06-20 2008-11-12 上海东化环境工程有限公司 丁烷法顺酐装置尾气处理工艺
WO2011099493A1 (ja) * 2010-02-10 2011-08-18 昭和電工株式会社 燃料電池用電極触媒の製造方法、遷移金属炭窒酸化物の製造方法、燃料電池用電極触媒およびその用途
CN101954480B (zh) * 2010-11-08 2013-04-24 华东理工大学 一种碳包覆核壳结构纳米颗粒的连续化制备方法
EP2665119B1 (en) * 2011-01-14 2018-10-24 Showa Denko K.K. Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
CN103402633B (zh) * 2011-01-20 2017-03-01 昭和电工株式会社 催化剂载体的制造方法、复合催化剂的制造方法、复合催化剂和使用该复合催化剂的燃料电池
JP5744540B2 (ja) * 2011-01-26 2015-07-08 新光電気工業株式会社 金属複合材料、金属複合材料の製造方法、放熱部品、及び放熱部品の製造方法
CN102675129A (zh) * 2011-03-11 2012-09-19 上海吉康生化技术有限公司 二苯胺类化合物的催化合成方法
CN102208616A (zh) * 2011-05-09 2011-10-05 北京化工大学 一种碳包覆过渡金属纳米中空颗粒的制备方法
CN102320985B (zh) * 2011-07-22 2014-03-26 嘉兴市中华化工有限责任公司 高效还原反应生产邻氨基苯甲醚的方法
EP2744024B1 (en) * 2011-08-09 2020-05-06 Showa Denko K.K. Method for producing electrode catalyst for fuel cells
CN102500295A (zh) * 2011-10-26 2012-06-20 天津大学 碳包覆金属纳米颗粒的制备方法
KR101381646B1 (ko) * 2012-04-30 2014-04-14 한국에너지기술연구원 동시기화법을 이용한 코어-쉘 구조의 금속-탄소 복합체의 제조방법 및 이에 의해 제조된 코어-쉘 구조의 금속-탄소 복합체
CN102698755B (zh) * 2012-06-12 2014-04-09 西北师范大学 用于燃料电池阴极氧还原反应的非贵金属催化剂的制备方法
CN102784624B (zh) * 2012-07-23 2015-02-04 合肥工业大学 一种炭包覆磁性吸附材料的制备方法及其用途
CN103566976B (zh) * 2012-08-06 2016-04-20 中国石油化工股份有限公司 一种负载型催化剂及其制备方法
CN103623824B (zh) * 2012-08-23 2015-10-28 华东师范大学 一种磁性铁碳复合材料及其制备方法和应用
KR101365716B1 (ko) * 2012-09-24 2014-02-21 한국에너지기술연구원 동시기화법을 이용하는 수소 제조 공정용 금속-탄소 복합체 담지 촉매의 제조 방법 및 이에 의해 제조된 수소 제조 공정용 금속-탄소 복합체 담지 촉매
JP6129535B2 (ja) * 2012-12-14 2017-05-17 昭和電工株式会社 リチウム電池の負極材料、その製造方法、電極、及び電池
CN103072987B (zh) * 2012-12-20 2016-04-13 华南理工大学 一种制备金属碳化物或碳包覆金属碳化物的方法
KR101561377B1 (ko) * 2013-01-10 2015-10-20 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
CN103964412B (zh) * 2013-01-30 2016-12-28 北京化工大学 一种氮掺杂多孔结构碳材料的制备方法
CN103191746B (zh) * 2013-03-20 2015-02-18 北京化工大学 一种碳负载核壳结构纳米金属催化剂及其制备方法和应用
CN103303912B (zh) * 2013-07-05 2015-10-21 黑龙江大学 一种高比表面积多孔氮掺杂石墨化纳米碳材料的制备方法
CN103490047B (zh) * 2013-09-18 2016-01-13 山东理工大学 一种三维孔容碳/纳米NiO复合材料的制备方法
CN104607224B (zh) * 2013-11-04 2017-02-08 中国科学院大连化学物理研究所 一种氮掺杂的石墨化碳封装铁纳米颗粒的制备方法
CN103638974B (zh) * 2013-12-10 2015-09-23 中国科学院高能物理研究所 一种以石墨烯纳米片为骨架的催化剂及其制备方法和应用
CN103722169A (zh) * 2013-12-23 2014-04-16 天津大学 二维多孔石墨化碳包覆镍锡合金材料及制备与应用
KR101595827B1 (ko) * 2013-12-27 2016-02-19 한국화학연구원 금속 촉매(코어)/탄소(쉘) 구조를 갖는 수소화 촉매, 이의 제조방법 및 이의 용도
CN104841924B (zh) * 2014-02-19 2017-11-21 中国科学院大连化学物理研究所 一种碳完全封装金属纳米颗粒的制备方法
CN103811775A (zh) * 2014-03-06 2014-05-21 南开大学 一种用于燃料电池氧还原催化剂的多孔纳米复合材料
US20150306570A1 (en) * 2014-04-29 2015-10-29 Ut-Battelle, Llc Metal-carbon composites and methods for their production
CN103933981B (zh) * 2014-05-06 2015-12-02 河北大学 一种可磁性分离的核壳结构介孔纳米催化剂及其制备方法
US9833774B2 (en) * 2014-05-16 2017-12-05 Dow Global Technologies Llc Process for synthesizing iron carbide Fischer-Tropsch catalysts
KR101568247B1 (ko) * 2014-06-02 2015-11-12 한국에너지기술연구원 질소 도핑된 탄소 표면을 갖는 금속-탄소 하이브리드 복합체 및 그 제조방법
CN104078653B (zh) * 2014-07-23 2016-04-27 吉林大学 一种具有微孔结构的碳包覆过渡金属氧化物或过渡金属纳米粒子复合电极材料及其制备方法
CN104258896B (zh) * 2014-07-24 2016-08-17 中国石油大学(华东) 纳微尺度反应分离耦合多功能催化剂及其制备方法
CN104258897B (zh) * 2014-07-24 2016-06-29 中国石油大学(华东) 核壳型分子筛包覆催化剂及其制备方法
CN104201361B (zh) * 2014-08-29 2016-09-21 合肥国轩高科动力能源有限公司 多级结构碳包覆氧化锌量子点负极材料的制备方法
CN104226292B (zh) * 2014-09-18 2016-10-19 中国科学院合肥物质科学研究院 石墨化碳包覆纳米金属颗粒的多级结构材料及其制备方法
CN104269566B (zh) * 2014-09-22 2016-11-30 南开大学 一种氮掺杂多孔碳纳米片复合材料的制备方法和应用
CN104447209A (zh) * 2014-11-19 2015-03-25 浙江大学 一种贱金属催化剂催化制备环己醇的方法
CN104445079B (zh) * 2014-11-28 2017-02-22 中国科学院过程工程研究所 一种均相多元多孔氧化物材料、制备方法及其用途
CN105749947B (zh) * 2014-12-16 2018-06-26 中国科学院大连化学物理研究所 一种非贵金属氧还原催化剂及其制备和应用
CN104815983B (zh) * 2015-04-20 2016-11-02 齐鲁工业大学 一种碳包覆氧化镍/金属镍及其简单合成方法
CN104907069B (zh) * 2015-04-22 2017-06-06 中国科学院生态环境研究中心 一种用于室温甲醛净化的催化剂及其用途
CN104923204B (zh) * 2015-05-21 2017-10-17 大连理工大学 一种石墨烯包覆金属纳米粒子催化剂的制备方法及其应用
TWI622554B (zh) * 2015-06-22 2018-05-01 Univ Chung Yuan Christian Method for producing nitrogen-doped graphene and manufacturing method of composite heat sink
CN104923233B (zh) * 2015-06-29 2017-04-12 中国科学院广州能源研究所 一种催化愈创木酚选择性加氢脱氧制备环己醇的核壳结构催化剂
CN105428614B (zh) * 2015-11-06 2017-03-15 盐城工学院 一种氮元素掺杂多孔复合负极材料及其制备方法
CN105251491B (zh) * 2015-11-09 2018-03-27 中国科学院化学研究所 一种5‑羟甲基糠醛选择性氢解制备2,5‑二甲基呋喃的催化剂及其制备方法
WO2017081631A1 (en) * 2015-11-11 2017-05-18 Sabic Global Technologies B.V. Multifunctional and stable nano-architectures containing nanocarbon and nano- or micro structures and a calcined hydrotalcite shell
CN106898786B (zh) * 2015-12-18 2019-07-19 中国科学院大连化学物理研究所 一种氧还原催化剂及其制备和应用
CN105478755B (zh) * 2016-01-13 2018-05-01 合肥工业大学 一种非金属元素掺杂碳包覆金属纳米粒子磁性复合材料的制备方法
CN105776130A (zh) * 2016-03-03 2016-07-20 南京师范大学 一种中空多孔碳复合材料的制备方法
CN105854918B (zh) * 2016-03-30 2018-06-22 南京工业大学 纳米级钴基粒子与氮掺杂碳的复合材料、合成方法及用途
CN105935777B (zh) * 2016-04-25 2019-01-01 绍兴文理学院 一种制备石墨烯/纳米镍复合材料的方法
CN105921163B (zh) * 2016-05-03 2018-04-10 浙江大学 一种Fe‑N‑C氧还原催化剂及其合成方法和应用
CN105965009A (zh) * 2016-05-17 2016-09-28 中国石油大学(华东) 一种磁性碳包覆纳米材料的制备方法
CN105977483A (zh) * 2016-05-17 2016-09-28 中国石油大学(华东) 一种用于电极的碳基纳米复合材料
CN107442111B (zh) * 2016-05-30 2020-04-07 中国科学院长春应用化学研究所 碳包覆金属纳米立方体材料及其制备方法
CN106229162B (zh) * 2016-08-05 2018-07-06 威海南海碳材料有限公司 一种过渡金属碳纳米复合材料的制备方法
CN106076113A (zh) * 2016-08-08 2016-11-09 中国科学院广州能源研究所 一种低温氧化降解有机气体的方法
CN106391082B (zh) * 2016-09-06 2020-08-14 南京航空航天大学 一种Co-N-C催化剂、其制备方法及应用
CN106423276B (zh) * 2016-09-13 2018-11-06 合肥工业大学 一种氮掺杂碳负载镍电Fenton催化剂的制备方法
CN106378449B (zh) * 2016-10-11 2019-05-14 中国科学技术大学 一种用作电催化剂的钌钴合金纳米颗粒、其制备方法和应用
CN106563816B (zh) * 2016-10-26 2018-11-02 陕西科技大学 一种多孔碳负载石墨烯包覆纳米镍颗粒吸波材料的制备方法
CN106563484B (zh) * 2016-11-03 2019-01-22 太原理工大学 一种介孔型中空掺氮碳包铜纳米催化剂的制备方法
CN106552654B (zh) * 2016-11-04 2019-01-04 北京化工大学 一种碳包覆过渡金属磷化物复合材料的制备方法及其在析氧反应中的应用
CN106622248B (zh) * 2016-11-21 2019-09-27 清华大学 一种多孔镍与碳的复合物及其制备方法
CN106654307A (zh) * 2017-01-10 2017-05-10 大连理工大学 一种贵金属@石墨层核壳结构电催化剂的制备方法及应用
CN106732733B (zh) * 2017-01-11 2019-06-07 北京化工大学 一种氮掺杂碳包覆核壳结构镍铁合金纳米催化剂的制备及其催化邻氯硝基苯加氢反应的应用
CN106862589A (zh) * 2017-02-15 2017-06-20 珠海市吉林大学无机合成与制备化学重点实验室 金属镍‑氮掺杂多孔碳材料、制备方法及其应用
CN106944123A (zh) * 2017-04-05 2017-07-14 南通鼎新催化材料科技有限公司 一种加氢催化剂的制备方法及其用途
CN107118477B (zh) * 2017-05-12 2019-06-14 合肥工业大学 一种碳包覆金属纳米颗粒负载pvdf膜及其制备方法和应用
CN109305917B (zh) * 2017-07-28 2021-11-12 中国石油化工股份有限公司 一种卤代苯胺的合成方法
CN107597160B (zh) * 2017-07-31 2020-01-17 湖北大学 二氧化硅负载碳氮包覆钴钌催化剂的制备方法及其用于不饱和化合物催化转移加氢的方法
CN107785547A (zh) * 2017-09-15 2018-03-09 苏州思创源博电子科技有限公司 一种碳氮铁复合负极材料的制备方法
US20200119337A1 (en) * 2018-10-15 2020-04-16 Nanotek Instruments, Inc. Electrochemically stable anode particulates for lithium secondary batteries and method of production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056630A (zh) * 2014-06-30 2014-09-24 北京理工大学 一种碳包覆钴的析氧反应电催化剂的制备方法
CN104293370A (zh) * 2014-11-10 2015-01-21 华玉叶 一种制备烷烃的方法
CN105032424A (zh) * 2015-06-05 2015-11-11 中国科学院化学研究所 一种用于芳香硝基化合物选择性加氢反应的催化剂及其制备方法
CN105032355A (zh) * 2015-08-24 2015-11-11 东华大学 一种核壳结构的碳包覆磁性纳米微粒的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109305874A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 一种烷烃类化合物的合成方法
CN109305874B (zh) * 2017-07-28 2021-04-06 中国石油化工股份有限公司 一种烷烃类化合物的合成方法
CN112707802A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 一种饱和醛的合成方法
CN115121252A (zh) * 2021-03-24 2022-09-30 中国石油化工股份有限公司 碳包覆镍的纳米复合材料及其制备方法和应用
CN115121252B (zh) * 2021-03-24 2023-07-11 中国石油化工股份有限公司 碳包覆镍的纳米复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109305874A (zh) 2019-02-05
CN109305892B (zh) 2021-09-07
WO2019020086A1 (zh) 2019-01-31
CN109304195A (zh) 2019-02-05
CN109304178B (zh) 2022-04-12
CN109305880B (zh) 2021-09-07
CN109305921A (zh) 2019-02-05
CN109305913A (zh) 2019-02-05
US20200269215A1 (en) 2020-08-27
CN109305881B (zh) 2021-09-07
CN109305684B (zh) 2021-01-08
CN109305917A (zh) 2019-02-05
CN109304177B (zh) 2021-06-11
CN109309214A (zh) 2019-02-05
CN109305924B (zh) 2022-01-04
CN109305922B (zh) 2021-11-12
CN109305916B (zh) 2022-03-11
CN109305916A (zh) 2019-02-05
EP3659725A1 (en) 2020-06-03
CN109305890A (zh) 2019-02-05
CN109304476A (zh) 2019-02-05
CN109305876A (zh) 2019-02-05
CN109304475A (zh) 2019-02-05
CN109304176A (zh) 2019-02-05
CN109304194A (zh) 2019-02-05
CN109305921B (zh) 2022-01-04
CN109304201B (zh) 2021-08-06
US11224859B2 (en) 2022-01-18
KR20200037832A (ko) 2020-04-09
CN109304202A (zh) 2019-02-05
CN109305919B (zh) 2022-04-12
CN109305924A (zh) 2019-02-05
CN109305917B (zh) 2021-11-12
CN109305890B (zh) 2021-09-07
CN109305879A (zh) 2019-02-05
CN109305915A (zh) 2019-02-05
CN109309213A (zh) 2019-02-05
CN109305914A (zh) 2019-02-05
CN109305919A (zh) 2019-02-05
CN109304195B (zh) 2022-04-08
CN109305876B (zh) 2021-08-06
CN109305874B (zh) 2021-04-06
CN109304177A (zh) 2019-02-05
CN109305913B (zh) 2022-03-11
JP7182604B2 (ja) 2022-12-02
CN109309214B (zh) 2023-04-11
CN109305684A (zh) 2019-02-05
CN109305922A (zh) 2019-02-05
CN109305923B (zh) 2022-03-11
CN109305879B (zh) 2021-09-07
CN109304201A (zh) 2019-02-05
CN109304176B (zh) 2021-06-11
CN109309213B (zh) 2021-12-17
CN109305918B (zh) 2022-10-21
CN109305880A (zh) 2019-02-05
CN109305875B (zh) 2021-08-06
CN109305892A (zh) 2019-02-05
CN109305875A (zh) 2019-02-05
CN109309212A (zh) 2019-02-05
CN109305881A (zh) 2019-02-05
CN109305918A (zh) 2019-02-05
CN109305915B (zh) 2021-11-16
JP2020528499A (ja) 2020-09-24
CN109305923A (zh) 2019-02-05
KR102524420B1 (ko) 2023-04-21
TWI791574B (zh) 2023-02-11
TW201909998A (zh) 2019-03-16
CN109309212B (zh) 2022-12-13
EP3659725A4 (en) 2021-02-17
CN109304194B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN109304178A (zh) 一种烷烃类化合物的合成方法
CN111470985A (zh) 一种氨基苯甲醚类化合物的合成方法
CN112707802A (zh) 一种饱和醛的合成方法
CN111470943A (zh) 一种醇类化合物的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant