CN106423276B - 一种氮掺杂碳负载镍电Fenton催化剂的制备方法 - Google Patents

一种氮掺杂碳负载镍电Fenton催化剂的制备方法 Download PDF

Info

Publication number
CN106423276B
CN106423276B CN201610821188.5A CN201610821188A CN106423276B CN 106423276 B CN106423276 B CN 106423276B CN 201610821188 A CN201610821188 A CN 201610821188A CN 106423276 B CN106423276 B CN 106423276B
Authority
CN
China
Prior art keywords
nickel
preparation
carbon
salt
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610821188.5A
Other languages
English (en)
Other versions
CN106423276A (zh
Inventor
孙敏
项伟
翟林峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610821188.5A priority Critical patent/CN106423276B/zh
Publication of CN106423276A publication Critical patent/CN106423276A/zh
Application granted granted Critical
Publication of CN106423276B publication Critical patent/CN106423276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Abstract

本发明公开了一种氮掺杂碳负载镍电Fenton催化剂的制备方法,是将碳材前处理后放入马弗炉中,350℃下热处理1h,冷却后浸入镍盐和氨基羧酸类化合物的水溶液中,超声分散0.5h后于50℃下将溶液蒸发完全,随后于40℃下真空干燥12h,将干燥后的材料放入管式炉中,在氮气保护下经高温热处理,获得Ni/N‑C复合材料。将本发明制备的Ni/N‑C电Fenton催化剂作为电Fenton阴极材料催化降解浓度为25mg·L‑1的罗丹明B溶液,5h内降解率达100%。

Description

一种氮掺杂碳负载镍电Fenton催化剂的制备方法
一、技术领域
本发明涉及一种氮掺杂碳负载镍电Fenton催化剂的制备方法,是在碳材料表面原位修饰改性,得到氮掺杂碳负载镍复合材料,并将其作为电Fenton催化剂应用于有机废水降解处理。
二、背景技术
电Fenton催化氧化技术的原理是将溶解于水中的氧气在电解池的阴极还原产生H2O2,并在铁等催化剂的作用下分解生成氢自由基和羟基自由基氧化有机污染物,该技术的关键在于阴极材料的高催化活性。可用于电Fenton阴极的材料有石墨、碳-PTFE氧气扩散电极和三维电极如碳/石墨毡、活性碳纤维、玻璃态碳、海绵碳以及碳纳米管等。
碳/石墨毡由于具有较大的三维活性表面、结构完整、工业易得以及易于催化剂的负载与再生等优点而被广泛应用于处理废水中的有毒或难降解有机污染物,如染料、酚类、杀虫剂、药物以及垃圾渗透液等。目前为进一步提高电Fenton电极表面的催化活性,科研工作者在提高电极表面氧含量或比表面积等电化学活性方面开展了大量的研究,如热处理、酸处理(Shen et al.,Electrochim.Acta.2014,132,37-41;Miao et al.,Chem.Eng.J.2014,250,312-318)、化学和电化学氧化(Zhou et al.,Electrochim.Acta.2014,140,376-383)、有机改性(Wang et al.,CarbohydratePolymers,2011,86,1807-1813;Zhang et al.,Electrochim.Acta.,2008,53,5155-5161)金属或金属氧化物负载(Wang et al.,Appl.Catal.B:Environ.,2009,89,111-117;Li etal.,J.Hazard.Mater.,2009,164,18-25),专利CN 103928689A报道了在常温空气阴极燃料电池阳极自发氧化亚铁离子,并通过热处理制备了具有不同电Fenton催化活性的FeOOH/C、Fe2O3/C、Fe3O4/C碳载纳米氧化铁复合材料。
三、发明内容
本发明旨在提供一种氮掺杂碳负载镍电Fenton催化剂的制备方法,首先采用浸渍法将镍离子与氨基羧酸类配体形成的配合物吸附到碳材表面,再通过热处理得到Ni/N-C复合材料。将该复合材料作为电Fenton阴极材料催化降解浓度为25mg·L-1的罗丹明B溶液,5h内使其降解率达100%,并保持较好的稳定性。
本发明氮掺杂碳负载镍电Fenton催化剂的制备方法,包括如下步骤:
将碳材前处理后放入马弗炉中,350℃下热处理1h,冷却后浸入镍盐和氨基羧酸类化合物的水溶液中,超声分散0.5h后于50℃下将溶液蒸发完全,随后于40℃下真空干燥12h,将干燥后的材料放入管式炉中,在氮气保护下经高温热处理,获得Ni/N-C复合材料。将本发明制备的Ni/N-C电Fenton催化剂作为电Fenton阴极材料催化降解浓度为25mg·L-1的罗丹明B溶液,5h内降解率达100%。
所述碳材选自碳纤维、碳毡或碳布。
所述碳材前处理的方法是先用1mol·L-1的盐酸浸泡0.5h,再用丙酮浸泡0.5h。
所述镍盐和氨基羧酸类化合物的水溶液中镍盐和氨基羧酸类化合物的摩尔比为1:1~6;所述镍盐选自硝酸镍、醋酸镍、氯化镍或硫酸镍;所述氨基羧酸类化合物为乙二胺四乙酸及其钠盐(EDTA)、氮川三乙酸(NTA)或二乙撑三胺五乙酸(DTPA)等中的一种;镍盐和氨基羧酸类化合物的水溶液中镍盐的量以镍单质的质量计占碳材质量的10~80%。
高温热处理过程中氮气的流速为30~100mL·s-1
所述高温热处理是于500~900℃热处理0.5~3h。
本发明电Fenton催化降解实验是在一个双室电解池中进行,阴阳极室之间通过质子交换膜隔开,Ni/N-C复合材料为阴极,碳棒为阳极,0.05mol·L-1Na2SO4为电解质。将25mg·L-1的罗丹明B溶液加入到阴极室后,以30ml·s-1的流速从底部鼓入空气,并用导线将电池的阴阳极相连并接入2V直流源,每隔1h取样分析有机物降解率。5h内降解率达100%。
与已有技术相比,本发明的有益效果体现在:
1、本发明制备方法简单,易操作,周期短。
2、本发明采用氨基羧酸类化合物与镍盐配位,无需还原性气氛,通过一次热处理可形成镍氮共掺杂,起到协同催化作用。
3、本发明制备的Ni/N-C复合材料比表面积大,在应用于电Fenton催化反应时,能够快速吸附有机污染物并在电极附近实施快速降解,可应用于较高浓度有机污染物的降解,并且催化剂的可循环性良好。
四、附图说明
图1为实施例1制备的Ni/N-C复合材料的不同放大倍数SEM照片;
图2为实施例1制备的Ni/N-C复合材料的X射线衍射图;
图3为实施例1制备的Ni/N-C复合材料作为电Fenton阴极材料连续循环使用6次催化降解罗丹明B的浓度变化曲线图,其中罗丹明B的起始浓度为25mg·L-1,每次的降解时间为5h。
五、具体实施方式
以下结合部分技术方案详细叙述本发明的实施方式:
实施例1:
取面积为3×3cm2的碳毡0.6g,分别用1mol·L-1的盐酸和丙酮浸泡0.5h,随后将其放入马弗炉中350℃下热处理1h,冷却后浸入含有0.16mol·L-1硝酸镍和0.48mol·L-1EDTA的50mL水溶液中,超声分散0.5h后于50℃下缓慢将水分蒸法至有晶体析出时,取出材料并于40℃下真空干燥12h;将干燥后的材料放入管式炉中,在流速为80mL·s-1的氮气氛下,500℃热处理3h,获得Ni/N-C复合材料。
在一个容积均为250mL的双室电解池中,阴阳极室之间通过质子交换膜隔开,上述制备的Ni/N-C复合材料为阴极,直径为6mm、长4cm的碳棒为阳极,0.05mol·L-1Na2SO4为电解质。在电解池的阴极室加入25mg·L-1的罗丹明B溶液并以30ml·s-1的流速从底部鼓入空气,用导线将电池的阴阳极相连并接入2V直流源,接通电源后5h内罗丹明B的降解率达100%。
实施例2:
取面积为3×3cm2的碳毡0.6g,分别用1mol·L-1的盐酸和丙酮浸泡0.5h,随后将其放入马弗炉中350℃下热处理1h,冷却后浸入含有0.02mol·L-1醋酸镍和0.12mol·L-1NTA的50mL水溶液中,超声分散0.5h后于50℃下缓慢将水分蒸法至有晶体析出时,取出材料并于40℃下真空干燥12h;将干燥后的材料放入管式炉中,在流速为30mL·s-1的氮气氛下,700℃热处理2h后获得Ni/N-C复合材料。
在一个容积均为250mL的双室电解池中,阴阳极室之间通过质子交换膜隔开,上述制备的Ni/N-C复合材料为阴极,直径为6mm、长4cm的碳棒为阳极,0.05mol·L-1Na2SO4为电解质。在电解池的阴极室加入25mg·L-1的罗丹明B溶液并以30ml·s-1的流速从底部鼓入空气,用导线将电池的阴阳极相连并接入2V直流源,接通电源后4h内罗丹明B的降解率达100%。
实施例3:
取面积为3×3cm2的碳毡0.6g,分别用1mol·L-1的盐酸和丙酮浸泡0.5h,随后将其放入马弗炉中350℃下热处理1h,冷却后浸入含有0.05mol·L-1氯化镍和0.05mol·L-1DTPA的50mL水溶液中,超声分散0.5h后于50℃下缓慢将水分蒸法至有晶体析出时,取出材料并于40℃下真空干燥12h;将干燥后的材料放入管式炉中,在流速为100mL·s-1的氮气氛下,900℃热处理0.5h后得Ni/N-C复合材料。
在一个容积均为250mL的双室电解池中,阴阳极室之间通过质子交换膜隔开,上述制备的Ni/N-C复合材料为阴极,直径为6mm、长4cm的碳棒为阳极,0.05mol·L-1Na2SO4为电解质。在电解池的阴极室加入25mg·L-1的罗丹明B溶液并以30ml·s-1的流速从底部鼓入空气,用导线将电池的阴阳极相连并接入2V直流源,接通电源后4h内罗丹明B的降解率达100%。

Claims (6)

1.一种氮掺杂碳负载镍电Fenton催化剂的制备方法,其特征在于包括如下步骤:
将碳材前处理后放入马弗炉中,350℃下热处理1h,冷却后浸入镍盐和氨基羧酸类化合物的水溶液中,超声分散0.5h后于50℃下将溶液蒸发完全,随后于40℃下真空干燥12h,将干燥后的材料放入管式炉中,在氮气保护下经高温热处理,获得Ni/N-C复合材料;
所述镍盐选自硝酸镍、醋酸镍、氯化镍或硫酸镍;所述氨基羧酸类化合物为乙二胺四乙酸及其钠盐、氮川三乙酸或二乙撑三胺五乙酸中的一种。
2.根据权利要求1所述的制备方法,其特征在于:
所述碳材选自碳纤维、碳毡或碳布。
3.根据权利要求1所述的制备方法,其特征在于:
所述碳材前处理的方法是先用1mol·L-1的盐酸浸泡0.5h,再用丙酮浸泡0.5h。
4.根据权利要求1所述的制备方法,其特征在于:
所述镍盐和氨基羧酸类化合物的水溶液中镍盐和氨基羧酸类化合物的摩尔比为1:1~6;镍盐和氨基羧酸类化合物的水溶液中镍盐的量以镍单质的质量计占碳材质量的10~80%。
5.根据权利要求1所述的制备方法,其特征在于:
高温热处理过程中氮气的流速为30~100mL·s-1
6.根据权利要求1所述的制备方法,其特征在于:
所述高温热处理是于500~900℃热处理0.5~3h。
CN201610821188.5A 2016-09-13 2016-09-13 一种氮掺杂碳负载镍电Fenton催化剂的制备方法 Active CN106423276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610821188.5A CN106423276B (zh) 2016-09-13 2016-09-13 一种氮掺杂碳负载镍电Fenton催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610821188.5A CN106423276B (zh) 2016-09-13 2016-09-13 一种氮掺杂碳负载镍电Fenton催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN106423276A CN106423276A (zh) 2017-02-22
CN106423276B true CN106423276B (zh) 2018-11-06

Family

ID=58168097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610821188.5A Active CN106423276B (zh) 2016-09-13 2016-09-13 一种氮掺杂碳负载镍电Fenton催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106423276B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106925219A (zh) * 2017-04-20 2017-07-07 兰州交通大学 一种磁性碳复合吸附材料的制备方法
CN109305917B (zh) * 2017-07-28 2021-11-12 中国石油化工股份有限公司 一种卤代苯胺的合成方法
CN110255697B (zh) * 2019-06-26 2021-11-19 合肥工业大学 一种氮掺杂碳材阳极的制备及其在催化湿式空气氧化中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294239A (zh) * 2011-06-02 2011-12-28 湖南科技大学 用于燃料电池氧还原反应的金属纳米电催化剂及其制备方法和应用
CN102909073A (zh) * 2012-10-12 2013-02-06 浙江理工大学 一种非均相类芬顿催化剂的制备方法及其应用
CN103641212A (zh) * 2013-12-13 2014-03-19 南开大学 一种处理有机废水的石墨毡阴极材料的制备方法
CN103964412A (zh) * 2013-01-30 2014-08-06 北京化工大学 一种氮掺杂多孔结构碳材料的制备方法
CN104229949A (zh) * 2014-09-18 2014-12-24 西安建筑科技大学 负载铁离子和锰离子活性炭纤维复合阴极的制备及其应用
CN104386784A (zh) * 2014-09-18 2015-03-04 西安建筑科技大学 一种负载铁离子活性炭纤维复合阴极、制备方法及其应用
CN104437643A (zh) * 2014-11-04 2015-03-25 内蒙古民族大学 集成芬顿效应和光催化的固态超分子光催化剂及其制备方法和应用
CN105854801A (zh) * 2016-05-10 2016-08-17 江苏大学 一种氮掺杂的多孔碳材料及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120063163A (ko) * 2010-12-07 2012-06-15 삼성전자주식회사 리튬 공기 전지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294239A (zh) * 2011-06-02 2011-12-28 湖南科技大学 用于燃料电池氧还原反应的金属纳米电催化剂及其制备方法和应用
CN102909073A (zh) * 2012-10-12 2013-02-06 浙江理工大学 一种非均相类芬顿催化剂的制备方法及其应用
CN103964412A (zh) * 2013-01-30 2014-08-06 北京化工大学 一种氮掺杂多孔结构碳材料的制备方法
CN103641212A (zh) * 2013-12-13 2014-03-19 南开大学 一种处理有机废水的石墨毡阴极材料的制备方法
CN104229949A (zh) * 2014-09-18 2014-12-24 西安建筑科技大学 负载铁离子和锰离子活性炭纤维复合阴极的制备及其应用
CN104386784A (zh) * 2014-09-18 2015-03-04 西安建筑科技大学 一种负载铁离子活性炭纤维复合阴极、制备方法及其应用
CN104437643A (zh) * 2014-11-04 2015-03-25 内蒙古民族大学 集成芬顿效应和光催化的固态超分子光催化剂及其制备方法和应用
CN105854801A (zh) * 2016-05-10 2016-08-17 江苏大学 一种氮掺杂的多孔碳材料及其制备方法和用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal;Yunjun Yao等;《Journal of Hazardous Materials》;20160331;第314卷;全文 *
Simple Synthesis of Nanostructured Sn/Nitrogen-Doped Carbon Composite Using Nitrilotriacetic Acid as Lithium Ion Battery Anode;Duck Hyun Youn等;《Chemistry of Materials》;20160208;第28卷(第5期);全文 *
Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions;Yanyan Liu等;《Journal of Materials Chemistry A》;20160106;第4卷(第5期);全文 *
泡沫镍作阴极板的E-Fenton法处理RhB染料废水;邱珊等;《中国给水排水》;20160531;第32卷(第9期);全文 *
电芬顿反应原理研究进展;邱珊等;《环境科学与管理》;20140930;第39卷(第9期);全文 *

Also Published As

Publication number Publication date
CN106423276A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
Ye et al. Highly porous nickel@ carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium
Yan et al. MoC–graphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction
Tang et al. Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry?
Yu et al. Enhancing the yield of H2O2 from oxygen reduction reaction performance by hierarchically porous carbon modified active carbon fiber as an effective cathode used in electro-Fenton
CN104269566A (zh) 一种氮掺杂多孔碳纳米片复合材料的制备方法和应用
Chen et al. Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts
Yan et al. A bimetallic carbide Fe2MoC promoted Pd electrocatalyst with performance superior to Pt/C towards the oxygen reduction reaction in acidic media
Feng et al. Effects of sulfide on microbial fuel cells with platinum and nitrogen-doped carbon powder cathodes
Park et al. Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment
Dange et al. A comprehensive review on oxygen reduction reaction in microbial fuel cells
CN103915633B (zh) 一种复合碳纤维载金属催化剂及其制备方法和应用
CN103435134B (zh) 一种基于CNTs/Fe3O4三维电-Fenton提高兰炭废水可生化性的方法
CN106423276B (zh) 一种氮掺杂碳负载镍电Fenton催化剂的制备方法
Galal et al. Graphene supported-Pt-M (M= Ru or Pd) for electrocatalytic methanol oxidation
Wu et al. Supramolecular gel assisted synthesis of Co 2 P nanosheets as an efficient and stable catalyst for oxygen reduction reaction
CN109686988A (zh) 一种碳负载过渡金属原子对电催化剂及其制备方法与应用
Lan et al. Synergy between copper and iron sites inside carbon nanofibers for superior electrocatalytic denitrification
Yu et al. Bimetallic platinum–iron electrocatalyst supported on carbon fibers for coal electrolysis
Li et al. Boosting the performance of formic acid microfluidic fuel cell: Oxygen annealing enhanced Pd@ graphene electrocatalyst
Gao et al. Self-sustained recovery of silver with stainless-steel based Cobalt/Molybdenum/Manganese polycrystalline catalytic electrode in bio-electroreduction microbial fuel cell (BEMFC)
Jia et al. One-step synthesis of Co2P/NP co-doped porous carbon composites derived from soybean derivatives as acidic and alkaline HER electrocatalysts
CN112811529B (zh) 一种石墨烯基非均相电催化阴极及其制备方法和应用
Wang et al. Elaborately tailored NiCo 2 O 4 for highly efficient overall water splitting and urea electrolysis
Cui et al. Removal of radioactive ions in low-concentration nuclear industry wastewater with carbon-felt based iron/magnesium/zirconium polycrystalline catalytic cathode in a dual-chamber microbial fuel cell
Ma et al. Anti-corrosion porous RuO 2/NbC anodes for the electrochemical oxidation of phenol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant