ES2654328T3 - Generador en forma de onda de radio frecuencia programable para un sincrociclotrón - Google Patents

Generador en forma de onda de radio frecuencia programable para un sincrociclotrón Download PDF

Info

Publication number
ES2654328T3
ES2654328T3 ES10175727.6T ES10175727T ES2654328T3 ES 2654328 T3 ES2654328 T3 ES 2654328T3 ES 10175727 T ES10175727 T ES 10175727T ES 2654328 T3 ES2654328 T3 ES 2654328T3
Authority
ES
Spain
Prior art keywords
voltage input
particle beam
synchrocyclotron
resonant
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES10175727.6T
Other languages
English (en)
Inventor
Alan Sliski
Kenneth Gall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mevion Medical Systems Inc
Original Assignee
Mevion Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mevion Medical Systems Inc filed Critical Mevion Medical Systems Inc
Application granted granted Critical
Publication of ES2654328T3 publication Critical patent/ES2654328T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons

Abstract

Un sincrociclotrón (300) incluyendo: polos magnéticos (4a, 4b) que tienen un intervalo (13) entremedio, un generador de campo magnético para generar el campo magnético en el intervalo; un circuito resonante, incluyendo: electrodos de aceleración (10 y 12), dispuestos entre polos magnéticos (4a y 4b), y un elemento reactivo variable (28) en circuito con los electrodos (10 y 12) para variar la frecuencia resonante (602 y 604) del circuito resonante; un generador de forma de onda programable (319) configurado para producir una entrada de voltaje (RF(ω,t)/A(ω,t)) al circuito resonante, siendo la entrada de voltaje (RF(ω,t)/A(ω,t)) un voltaje oscilante; y un sistema de realimentación adaptativo (350) que está configurado para variar la entrada de voltaje (RF(ω),t)/A(ω,t)) en el tiempo de aceleración de partículas cargadas; caracterizado porque el generador de forma de onda programable está configurado para ajustar la entrada de voltaje (RF(ω,t)/A(ω,t)) en base a una propiedad de un haz de partículas extraído del sincrociclotrón, siendo la propiedad la intensidad del haz de partículas.

Description

5
10
15
20
25
30
35
40
45
50
55
60
65
DESCRIPCION
Generador de forma de onda de radio frecuencia programable para un sincrociclotrón Solicitudes relacionadas
Esta solicitud reivindica prioridad por la Solicitud Provisional de Estados Unidos número 60/590.089, presentada el 21 de julio de 2004.
Antecedentes de la invención
Desde la década de los años 1930 se han desarrollado muchos tipos de aceleradores de partículas con el fin de acelerar partículas cargadas a altas energías. Un tipo de acelerador de partículas es un ciclotrón. Un ciclotrón acelera partículas cargadas en un campo magnético axial aplicando un voltaje alterno a una o varias “Ds” en una cámara de vacío. El término “D” describe la forma de los electrodos en los primeros ciclotrones, aunque puede no asemejarse a la letra D en algunos ciclotrones. El recorrido en espiral producido por las partículas en aceleración es normal al campo magnético. Cuando las partículas salen, se aplica un campo eléctrico de aceleración en el intervalo entre las Ds. El voltaje de radio frecuencia (RF) crea un campo eléctrico alterno a través del intervalo entre las Ds. El voltaje RF, y por ello el campo, es sincronizado al período orbital de las partículas cargadas en el campo magnético de modo que las partículas son aceleradas por la forma de onda de radio frecuencia cuando cruzan repetidas veces el intervalo. La energía de las partículas aumenta a un nivel de energía muy superior al voltaje pico del voltaje de radio frecuencia (RF) aplicado. Cuando las partículas cargadas se aceleran, sus masas crecen debido a efectos relativísticos. En consecuencia, la aceleración de las partículas no es uniforme y las partículas llegan al intervalo de forma asíncrona con los picos del voltaje aplicado.
Dos tipos de ciclotrones actualmente empleados, un ciclotrón isócrono y un sincrociclotrón, superan el reto del aumento de la masa relativística de las partículas aceleradas de formas diferentes. El ciclotrón isócrono usa una frecuencia constante del voltaje con un campo magnético que incrementa con el radio para mantener la aceleración apropiada. El sincrociclotrón usa un campo magnético decreciente con radio creciente y varía la frecuencia del voltaje de aceleración para adaptación al aumento de masa producido por la velocidad relativística de las partículas cargadas.
En un sincrociclotrón, “paquetes” discretos de partículas cargadas son acelerados a la energía final antes de que el ciclo se inicie de nuevo. En los ciclotrones isócronos, las partículas cargadas pueden ser aceleradas de forma continua, más bien que en paquetes, lo que permite lograr una potencia de haz más alta.
En un sincrociclotrón, capaz de acelerar un protón, por ejemplo, a la energía de 250 MeV, la velocidad final de los protones es 0,61c, donde c es la velocidad de la luz, y el aumento de masa es 27% superior a la masa restante. La frecuencia tiene que disminuir una cantidad correspondiente, además de reducir la frecuencia para tener en cuenta la intensidad radialmente decreciente del campo magnético. La dependencia de la frecuencia del tiempo no será lineal, y un perfil óptimo de la función que describe esta dependencia dependerá de gran número de detalles.
La Patente de Estados Unidos 2.659.000 describe un medio para controlar la frecuencia de un sincrociclotrón con un oscilador modulado en frecuencia que suministra una entrada a la cámara en D. Esto se logra usando una réplica de un condensador de sintonización para obtener un voltaje de corriente continua para controlar la frecuencia de un oscilador controlado por corriente continua cuya salida es realimentada a la cámara en D del sincrociclotrón.
EP 1.265.462 describe un medio para optimizar el arco de corriente usado por una fuente de iones para generar los iones a acelerar en un acelerador de partículas. Esto se logra usando un comparador que determina la diferencia entre una señal digital que representa la intensidad del haz medida en la salida del acelerador y un valor establecido de la intensidad del haz; un predictor SMITH que determina, a partir de la diferencia, un valor corregido de la intensidad del haz; una tabla de correspondencia inversa que proporciona, a partir del valor corregido, un valor para el suministro de un arco de corriente para la fuente de iones.
Enchevich I. B. y colaboradores: “Minimizing Phase Losses in the 680 Mev Synchrocyclotron by Correcting the Accelerating Voltage Amplitude” llama la atención sobre la caída de la amplitud del voltaje de aceleración en un sincrociclotrón a frecuencia de 18,5 y 15,5 MHz que se ha hallado que da lugar a intensidad reducida debido a pérdidas de fase. El documento describe que se usan pulsos de corrección para aumentar la intensidad, y reporta valores óptimos experimentalmente determinados.
La Patente de Estados Unidos 4.641.057 describe un sincrociclotrón con bobinas superconductoras. Las bobinas están dispuestas en una vasija que es soportada por elementos de bajo escape de calor en un criostato. Se dispone un gas licuado en el recipiente para enfriar las bobinas con el fin de hacerlas superconductoras.
Resumen de la invención
5
10
15
20
25
30
35
40
45
50
55
60
65
La presente solicitud es divisional de la Solicitud EP número 05776532.3.
El control exacto y reproducible de la frecuencia en el rango requerido por una energía final deseada que compensa tanto el aumento de masa relativística como la dependencia del campo magnético a distancia del centro de la D ha sido históricamente un reto. Además, es posible que la amplitud del voltaje de aceleración tenga que variarse en el ciclo de aceleración para mantener el enfoque y aumentar la estabilidad del haz. Además, las Ds y otro hardware incluyendo un ciclotrón definen un circuito resonante, donde las Ds pueden considerarse los electrodos de un condensador. Este circuito resonante se describe por el factor Q, que contribuye al perfil de voltaje a través del intervalo.
Un sincrociclotrón para acelerar partículas cargadas, tal como protones, incluye un generador de campo magnético y un circuito resonante que incluye electrodos, dispuestos entre polos magnéticos. Un intervalo entre los electrodos está dispuesto a través del campo magnético. Una entrada de voltaje oscilante activa un campo eléctrico oscilante a través del intervalo. La entrada de voltaje oscilante es controlada de modo que varíe al tiempo de aceleración de las partículas cargadas. Se puede variar la amplitud o la frecuencia, o ambas, de la entrada de voltaje oscilante. La entrada de voltaje oscilante es generada por un generador de forma de onda digital programable.
El circuito resonante incluye además un elemento reactivo variable en circuito con la entrada de voltaje y electrodos para variar la frecuencia resonante del circuito resonante. El elemento reactivo variable puede ser un elemento de capacitancia variable tal como un condensador rotativo o una lámina vibrante. Variando la reactancia de tal elemento reactivo y ajustando la frecuencia resonante del circuito resonante, las condiciones resonantes pueden mantenerse en el rango de frecuencia operativo del sincrociclotrón.
El sincrociclotrón puede incluir además un sensor de voltaje para medir el campo eléctrico oscilante a través del intervalo. Midiendo el campo eléctrico oscilante a través del intervalo y comparándolo con la entrada de voltaje oscilante, se pueden detectar las condiciones resonantes en el circuito resonante. El generador de forma de onda programable puede ajustar la entrada de voltaje y frecuencia para mantener las condiciones resonantes.
El sincrociclotrón puede incluir además un electrodo de inyección, dispuesto entre los polos magnéticos, bajo un voltaje controlado por el generador de forma de onda digital programable. El electrodo de inyección se usa para inyectar partículas cargadas al sincrociclotrón. El sincrociclotrón puede incluir además un electrodo de extracción, dispuesto entre los polos magnéticos, bajo un voltaje controlado por el generador de forma de onda digital programable. El electrodo de extracción se usa para extraer un haz de partículas del sincrociclotrón.
El sincrociclotrón puede incluir además un supervisor de haz para medir propiedades del haz de partículas. Por ejemplo, el supervisor de haz puede medir la intensidad del haz de partículas, el tiempo del haz de partículas o la distribución espacial del haz de partículas. El generador de forma de onda programable puede ajustar al menos uno de la entrada de voltaje, el voltaje en el electrodo de inyección y el voltaje en el electrodo de extracción para compensar variaciones en las propiedades del haz de partículas.
Esta invención tiene la finalidad de afrontar la generación de las señales moduladas en amplitud y frecuencia variables apropiadas para la eficiente inyección a, la aceleración por, y la extracción de partículas cargadas de un acelerador.
Según un primer aspecto se facilita un sincrociclotrón según la reivindicación 1. Según un segundo aspecto se facilita un método de producir un haz de partículas en un sincrociclotrón, según la reivindicación 9.
Breve descripción de los dibujos
Los anteriores y otros objetos, características y ventajas de la invención serán evidentes por la siguiente descripción más concreta de realizaciones preferidas de la invención, como se ilustra en los dibujos acompañantes en los que caracteres de referencia análogos hacen referencia a las mismas partes en todas las diferentes vistas. Los dibujos no están necesariamente a escala, insistiéndose en cambio en que ilustran los principios de la invención.
La figura 1A es una vista en planta en sección transversal de un sincrociclotrón de la presente invención.
La figura 1B es una vista lateral en sección transversal del sincrociclotrón representado en la figura 1A.
La figura 2 es una ilustración de una forma de onda idealizada que puede ser usada para acelerar partículas cargadas en un sincrociclotrón representado en las figuras 1A y 1B.
La figura 3 ilustra un diagrama de bloques de un sincrociclotrón de la presente invención que incluye un sistema generador de forma de onda.
La figura 4 es un diagrama de flujo que ilustra los principios de operación de un generador de forma de onda digital y un sistema de realimentación adaptativo (optimizador) de la presente invención.
5
10
15
20
25
30
35
40
45
50
55
60
65
La figura 5A representa el efecto del retardo de propagación finito de la señal a través de recorridos diferentes en una estructura de electrodo de aceleración (“D”).
La figura 5B representa el tiempo de forma de onda de entrada ajustado para corregir la variación del retardo de propagación a través de la estructura en “D”.
La figura 6A representa una respuesta de frecuencia ilustrativa del sistema resonante con variaciones debidas a efectos de circuitos parásitos.
La figura 6B representa una forma de onda calculada para corregir las variaciones en la respuesta de frecuencia debidas a efectos de circuitos parásitos.
La figura 6C representa la respuesta de frecuencia “plana” resultante del sistema cuando la forma de onda representada en la figura 6B se usa como voltaje de entrada.
La figura 7A representa un voltaje de entrada de amplitud constante aplicado a los electrodos de aceleración representados en la figura 7B.
La figura 7B representa un ejemplo de la geometría de electrodo de aceleración donde la distancia entre los electrodos se reduce hacia el centro.
La figura 7C representa la intensidad de campo eléctrico deseada y resultante en el intervalo de electrodos como una función del radio que logra una aceleración estable y eficiente de partículas cargadas aplicando voltaje de entrada como se representa en la figura 7A a la geometría de electrodo representada en la figura 7B.
La figura 7D representa la amplitud de voltaje de entrada como una función del radio que corresponde directamente a la intensidad de campo eléctrico deseada y puede producirse usando un generador de forma de onda digital.
La figura 7E representa una geometría paralela de los electrodos de aceleración que da una proporcionalidad directa entre voltaje aplicado e intensidad de campo eléctrico.
La figura 7F representa la intensidad de campo eléctrico deseada y resultante en el intervalo de electrodos como una función del radio que logra una aceleración estable y eficiente de partículas cargadas aplicando voltaje de entrada como se representa en la figura 7D a la geometría de electrodo representada en la figura 7E.
La figura 8A representa un ejemplo de una forma de onda del voltaje de aceleración generado por el generador de forma de onda programable.
La figura 8B representa un ejemplo de una señal temporizada del inyector de iones.
La figura 8C representa otro ejemplo de una señal temporizada del inyector de iones.
Descripción detallada de la invención
Esta invención se refiere a los dispositivos y métodos para generar los voltajes de aceleración de temporización exacta y complejos a través del intervalo en “D” en un sincrociclotrón. Esta invención incluye un aparato y un método para activar el voltaje a través del intervalo en “D” generando una forma de onda específica, donde la amplitud, la frecuencia y la fase son controladas de tal manera que creen la aceleración muy efectiva de partículas dada la configuración física del acelerador individual, el perfil de campo magnético, y otras variables que pueden ser conocidas a priori o no. Un sincrociclotrón necesita un campo magnético decreciente con el fin de mantener el enfoque del haz de partículas, modificando por ello la forma deseada del barrido de frecuencia. Hay retardos de propagación finitos predecibles de la señal eléctrica aplicada al punto efectivo en la D donde el paquete de partículas en aceleración experimenta el campo eléctrico que da lugar a aceleración continua. El amplificador usado para amplificar la señal de radio frecuencia (RF) que activa el voltaje a través del intervalo en D también puede tener un desplazamiento de fase que varía con la frecuencia. Algunos de los efectos pueden no ser conocidos a priori, y solamente pueden observarse después de la integración de todo el sincrociclotrón. Además, el tiempo de la inyección y extracción de partículas en una escala de tiempo de nanosegundos puede aumentar la eficiencia de extracción del acelerador, reduciendo así la radiación parásita debida a las partículas perdidas en las fases de aceleración y extracción de la operación.
Con referencia a las figuras 1A y 1B, un sincrociclotrón de la presente invención incluye bobinas eléctricas 2a y 2b alrededor de dos polos magnéticos metálicos espaciados 4a y 4b configurados para generar un campo magnético. Los polos magnéticos 4a y 4b se definen por dos porciones de yugo opuestas 6a y 6b (representadas en sección transversal). El espacio entre los polos 4a y 4b define una cámara de vacío 8 o puede instalarse una cámara de vacío separada entre los polos 4a y 4b. La intensidad de campo magnético es generalmente una función de la
5
10
15
20
25
30
35
40
45
50
55
60
65
distancia desde el centro de la cámara de vacío 8 y se determina en gran parte por la opción de la geometría de las bobinas 2a y 2b y la forma y el material de los polos magnéticos 4a y 4b.
Los electrodos de aceleración incluyen la “D” 10 y la “D” 12, que tienen un intervalo 13 entremedio. La D 10 está conectada a un potencial de voltaje alterno cuya frecuencia se cambia de alta a baja durante el ciclo de aceleración con el fin de tener en cuenta la masa relativística creciente de una partícula cargada y el campo magnético radialmente decreciente (medido desde el centro de la cámara de vacío 8) producido por las bobinas 2a y 2b y las porciones de polo 4a y 4b. El perfil característico del voltaje alterno en las Ds 10 y 12 se muestra en la figura, 2 y se explicará en detalle más adelante. La D 10 es una estructura de medio cilindro, hueca por dentro. La D 12, también denominada la “D simulada”, no tiene que ser una estructura cilíndrica hueca puesto que está puesta a tierra en las paredes 14 de la cámara de vacío. La D 12, como se representa en las figuras 1A y 1B, incluye una tira de metal, por ejemplo, de cobre, que tiene una ranura conformada para adaptación a una ranura sustancialmente similar en la D 10. La D 12 puede estar conformada para formar una imagen especular de la superficie 16 de la D 10.
La fuente de iones 18 que incluye el electrodo de fuente de iones 20, situado en el centro de la cámara de vacío 8, se ha previsto para inyectar partículas cargadas. Se han dispuesto electrodos de extracción 22 para dirigir las partículas cargadas al canal de extracción 24, formando por ello el haz 26 de las partículas cargadas. La fuente de iones también puede montarse externamente e inyectar los iones de forma sustancialmente axial a la región de aceleración.
Las Ds 10 y 12 y otros elementos de hardware que forman un ciclotrón, definen un circuito resonante sintonizable bajo una entrada de voltaje oscilante que crea un campo eléctrico oscilante a través del intervalo 13. Este circuito resonante puede ser sintonizado para mantener alto el factor Q durante el barrido de frecuencia usando un medio de sintonización.
En el sentido en que se usa aquí, el factor Q es una medida de la “calidad” de un sistema resonante en su respuesta a frecuencias próximas a la frecuencia resonante. El factor Q se define como
Q = 1/R xV(L/C),
donde R es la resistencia activa de un circuito resonante, L es la inductancia y C es la capacitancia de dicho circuito.
El medio de sintonización puede ser una bobina de inductancia variable o una capacitancia variable. Un dispositivo de capacitancia variable puede ser una lámina vibrante o un condensador rotativo. En el ejemplo representado en las figuras 1A y 1B, el medio de sintonización es el condensador rotativo 28. El condensador rotativo 28 incluye álabes rotativos 30 movidos por un motor 31. Durante cada cuarto de ciclo del motor 31, cuando los álabes 30 engranan con los álabes 32, la capacitancia del circuito resonante que incluye “Ds” 10 y 12 y el condensador rotativo 28 aumenta y la frecuencia resonante disminuye. El proceso se invierte cuando los álabes se desengranan. Así, la frecuencia resonante se cambia cambiando la capacitancia del circuito resonante. Esto cumple la finalidad de reducir en un factor grande la potencia requerida para generar el alto voltaje aplicado a las “Ds” y necesaria para acelerar el haz. La forma de los álabes 30 y 32 puede maquinarse con el fin de crear la dependencia requerida de la frecuencia resonante en el tiempo.
La rotación de los álabes puede sincronizarse con la generación de frecuencia RF de modo que, variando el factor Q de la cavidad RF, la frecuencia resonante del circuito resonante, definida por el ciclotrón, se mantenga cerca de la frecuencia del potencial de voltaje alterno aplicado a las “Ds” 10 y 12.
La rotación de los álabes puede ser controlada por el generador de forma de onda digital, descrito más adelante con referencia a la figura 3 y la figura 4, de manera que mantenga la frecuencia resonante del circuito resonante cerca de la frecuencia actual generada por el generador de forma de onda digital. Alternativamente, el generador de forma de onda digital puede ser controlado por medio de un sensor de posición angular (no representado) en el eje 33 del condensador rotativo para controlar la frecuencia de reloj del generador de forma de onda para mantener la condición resonante óptima. Este método puede emplearse si el perfil de los álabes en engrane del condensador rotativo está exactamente relacionado con la posición angular del eje.
Un sensor que detecta la condición resonante máxima (no representada) también puede emplearse para proporcionar realimentación al reloj del generador de forma de onda digital para mantener la adaptación más alta a la frecuencia resonante. Los sensores para detectar condiciones resonantes pueden medir el voltaje oscilante y la corriente en el circuito resonante. En otro ejemplo, el sensor puede ser un sensor de capacitancia. Este método puede acomodar pequeñas irregularidades en la relación entre el perfil de los álabes de engrane del condensador rotativo y la posición angular del eje.
Un sistema de bombeo de vacío 40 mantiene la cámara de vacío 8 a una presión muy baja para no dispersar el haz de aceleración.
5
10
15
20
25
30
35
40
45
50
55
60
65
Para lograr la aceleración uniforme en un sincrociclotrón, la frecuencia y la amplitud del campo eléctrico a través del intervalo en “D” tiene que variarse para tener en cuenta el aumento de masa relativística y la variación radial (medida como distancia desde el centro de la trayectoria en espiral de las partículas cargadas) del campo magnético así como para mantener el enfoque del haz de partículas.
La figura 2 es una ilustración de una forma de onda idealizada que puede ser necesaria para acelerar partículas cargadas en un sincrociclotrón. Representa solamente unos pocos ciclos de la forma de onda y no representa necesariamente los perfiles ideales de modulación de amplitud y frecuencia. La figura 2 ilustra las propiedades de amplitud y frecuencia variables en el tiempo de la forma de onda usada en un sincrociclotrón dado. Los cambios de frecuencia de alta a baja cuando la masa relativística de la partícula aumenta mientras la velocidad de partícula se aproxima a una fracción significativa de la velocidad de la luz.
La presente invención usa un conjunto de convertidores digital a analógico de alta velocidad (CDA) que pueden generar, a partir de una memoria de alta velocidad, las señales requeridas en una escala de tiempo de nanosegundos. Con referencia a la figura 1A, tanto una señal de radio frecuencia (RF) que activa el voltaje a través del intervalo en D 13 como las señales que activan el voltaje en el electrodo de inyector 20 y el electrodo de extractor 22 pueden ser generadas a partir de la memoria por los CDAs. La señal de aceleración es una forma de onda de frecuencia y amplitud variables. Las señales del inyector y extractor pueden ser de al menos tres tipos: continuas; señales discretas, como pulsos, que pueden operar en uno o varios períodos de la forma de onda de acelerador en sincronismo con la forma de onda de acelerador; o señales discretas, tal como pulsos, que pueden operar en instancias de temporización exacta durante el barrido de frecuencia de forma de onda de acelerador en sincronismo con la forma de onda de acelerador. (Véase más adelante con referencia a las figuras 8A-C).
La figura 3 ilustra un diagrama de bloques de un sincrociclotrón de la presente invención 300 que incluye acelerador de partículas 302, sistema generador de forma de onda 319 y sistema de amplificación 330. La figura 3 también representa un sistema de realimentación adaptativo que incluye un optimizador 350. El condensador variable opcional 28 y subsistema de accionamiento del motor 31 no se representan.
Con referencia a la figura 3, el acelerador de partículas 302 es sustancialmente similar al ilustrado en las figuras 1A y 1B e incluye la “D simulada” (D puesta a tierra) 304, la “D” 306 y el yugo 308, el electrodo de inyección 310, conectado a la fuente de iones 312, y electrodos de extracción 314. El supervisor de haz 316 supervisa la intensidad del haz 318.
El sincrociclotrón 300 incluye un generador de forma de onda digital 319. El generador de forma de onda digital 319 incluye uno o varios convertidores digital a analógico (CDAs) 320 que convierten representaciones digitales de formas de onda almacenadas en la memoria 322 a señales analógicas. El controlador 324 controla el direccionamiento de la memoria 322 para enviar los datos apropiados y controla los CDAs 320 a los que se aplican los datos en cualquier punto del tiempo. El controlador 324 también escribe datos en la memoria 322. La interfaz 326 proporciona un enlace de datos a un ordenador exterior (no representado). La interfaz 326 puede ser una interfaz de fibra óptica.
La señal de reloj que controla el tiempo del proceso de conversión “analógico a digital” puede estar disponible como una entrada al generador de forma de onda digital. Esta señal puede ser usada en unión con un codificador de posición de eje (no representado) en el condensador rotativo (véanse las figuras 1A y 1B) o un detector de condición resonante para sintonizar finamente la frecuencia generada.
La figura 3 ilustra tres CDAs 320a, 320b y 320c. En este ejemplo, las señales procedentes de los CDAs 320a y 320b son amplificadas por amplificadores 328a y 328b, respectivamente. La señal amplificada procedente del CDA 320a activa la fuente de iones 312 y/o el electrodo de inyección 310, mientras que la señal amplificada procedente del CDA 320b mueve los electrodos de extracción 314.
La señal generada por el CDA 320c se pasa al sistema de amplificación 330, operado bajo el control del sistema de control de amplificador RF 332. En el sistema de amplificación 330, la señal procedente del CDA 320c es aplicada por el activador RF 334 al divisor RF 336, que envía la señal RF a amplificar por un amplificador de potencia Rf 338. En el ejemplo representado en la figura 3 se usan cuatro amplificadores de potencia, 338a, b, c y d. Puede usarse cualquier número de amplificadores 338 dependiendo de la extensión deseada de la amplificación. La señal amplificada, combinada por el combinador RF 340 y filtrada por el filtro 342, sale del sistema de amplificación 330 a través del acoplador direccional 344, que asegura que las ondas RF no se reflejen de nuevo al sistema de amplificación 330. La potencia para operar el sistema de amplificación 330 es suministrada por la fuente de alimentación 346.
A la salida del sistema de amplificación 330, la señal procedente del CDA 320c se pasa al acelerador de partículas 302 a través de la red de adaptación 348. La red de adaptación 348 adapta la impedancia de una carga (acelerador de partículas 302) y una fuente (sistema de amplificación 330). La red de adaptación 348 incluye un conjunto de elementos reactivos variables.
5
10
15
20
25
30
35
40
45
50
55
60
65
El sincrociclotrón 300 incluye además un sistema de realimentación adaptativo 350. Usando la medición de la intensidad de haz 318 efectuada por el supervisor de haz 316, el sistema de realimentación adaptativo 350, bajo el control de un procesador programable, puede ajustar las formas de onda producidas por los CDAs 320a, b y c y su tiempo para optimizar la operación del sincrociclotrón 300 y lograr una aceleración óptima de las partículas cargadas.
Los principios de operación del generador de forma de onda digital programable 319 y el sistema de realimentación adaptativo 350 se explicarán ahora con referencia a la figura 4.
Las condiciones iniciales para las formas de onda pueden calcularse a partir de principios físicos que controlan el movimiento de partículas cargadas en un campo magnético, a partir de la mecánica relativista que describe el comportamiento de una masa de partículas cargadas, así como de la descripción teórica de campo magnético en función del radio en una cámara de vacío. Estos cálculos se efectúan en el paso 402. La forma de onda teórica del voltaje en el intervalo D, RF (w, t), donde w es la frecuencia del campo eléctrico a través del intervalo D y t es el tiempo, se calcula en base a los principios físicos de un ciclotrón, la mecánica relativista del movimiento de las partículas cargadas, y la dependencia radial teórica del campo magnético.
Pueden medirse los alejamientos de la práctica con respecto a la teoría, y la forma de onda se puede corregir cuando el sincrociclotrón opera en estas condiciones iniciales. Por ejemplo, como se describirá más adelante con referencia a las figuras 8A-C, el tiempo del inyector de iones con respecto a la forma de onda de aceleración se puede variar para maximizar la captura de las partículas inyectadas en el paquete de partículas aceleradas.
El tiempo de la forma de onda de acelerador puede ajustarse y optimizarse, como se describe más adelante, en base de un ciclo a otro, para corregir los retardos de propagación presentes en la disposición física del cableado de radio frecuencia; la asimetría de la colocación o la fabricación de las Ds puede corregirse poniendo el voltaje positivo máximo más próximo en el tiempo al voltaje negativo máximo posterior o viceversa, creando en efecto una onda sinusoidal asimétrica.
En general, la distorsión de la forma de onda debida a características del hardware puede corregirse predistorsionando la forma de onda teórica RF(w, t) usando una función de transferencia dependiente de dispositivo A, dando lugar así a la forma de onda deseada que aparece en el punto específico en el electrodo de aceleración donde los protones están en el ciclo de aceleración. Consiguientemente, y con referencia de nuevo a la figura 4, en el paso 404, se calcula una función de transferencia A(w, t) en base a la respuesta medida experimentalmente del dispositivo al voltaje de entrada.
En el paso 405, se calcula una forma de onda que corresponde a una expresión (RF(w,t)/A(w,t)) y se almacena en la memoria 322. En el paso 406, el generador de forma de onda digital 319 genera la forma de onda RF/A a partir de la memoria. La señal de activación (RF(w,t)/A(w,t)) es amplificada en el paso 408, y la señal amplificada se propaga a través de todo el dispositivo 300 en el paso 410 para generar un voltaje a través del intervalo D en el paso 412. Una descripción más detallada de una función de transferencia representativa A(co,t) se dará a continuación con referencia a las figuras 6A-C.
Después de que el haz ha alcanzado la energía deseada, se puede aplicar un voltaje de temporización exacta a un electrodo o dispositivo de extracción para crear la trayectoria de haz deseada con el fin de extraer el haz del acelerador, donde se mide por el supervisor de haz en el paso 414a. El voltaje y la frecuencia RF son medidos por sensores de voltaje en el paso 414b. La información acerca de la intensidad del haz y la frecuencia RF es devuelta al generador de forma de onda digital 319, que ahora puede ajustar la forma de la señal (RF(w,t)/A(w,t)) en el paso 406.
Todo el proceso puede ser controlado en el paso 416 por el sistema de realimentación adaptativo 350. El optimizador 350 puede ejecutar un algoritmo semiautomático o completamente automático diseñado para optimizar las formas de onda y el tiempo relativo de las formas de onda. El recocido simulado es un ejemplo de una clase de algoritmos de optimización que puede emplearse. Instrumentos de diagnóstico online pueden sondear el haz en diferentes etapas de aceleración para proporcionar realimentación para el algoritmo de optimización. Cuando se han hallado las condiciones óptimas, la memoria que contiene las formas de onda optimizadas puede fijarse y reforzarse para operación estable continuada durante algún período de tiempo. Esta capacidad de ajustar la forma de onda exacta a las propiedades del acelerador individual disminuye la variabilidad de una unidad a otra en la operación y puede compensar las tolerancias de fabricación y la variación de las propiedades de los materiales usados en la construcción del ciclotrón.
El concepto del condensador rotativo (tal como el condensador 28 representado en la figura 1A y 1B) puede integrarse en este esquema de control digital midiendo el voltaje y la corriente de la forma de onda RF con el fin de detectar el pico de la condición resonante. La desviación de la condición resonante puede ser realimentada al generador de forma de onda digital 319 (véase la figura 3) para ajustar la frecuencia de la forma de onda almacenada para mantener la condición resonante máxima durante todo el ciclo de aceleración. La amplitud todavía puede ser controlada de forma exacta mientras se emplea este método.
5
10
15
20
25
30
35
40
45
50
55
60
65
La estructura del condensador rotativo 28 (véanse las figuras 1A y 1B) puede integrarse opcionalmente con una bomba de vacío turbomolecular, tal como la bomba de vacío 40 representada en las figuras 1A y 1B, que realiza bombeo de vacío a la cavidad de acelerador. Esta integración daría lugar a una estructura altamente integrada y a ahorros de costos. El motor y el dispositivo de accionamiento de la turbobomba pueden estar provistos de un elemento de realimentación tal como un codificador rotativo para realizar un control fino de la velocidad y la posición angular de los álabes rotativos 30, y el control del accionamiento del motor se integraría con la circuitería de control del generador de forma de onda 319 para asegurar la sincronización apropiada de la forma de onda de aceleración.
Como se ha mencionado anteriormente, el tiempo de la forma de onda de la entrada de voltaje oscilante puede ajustarse para corregir los retardos de propagación que se producen en el dispositivo. La figura 5A ilustra un ejemplo de errores de propagación de onda debidos a la diferencia en las distancias R1 y R2 desde el punto de entrada RF 504 a los puntos 506 y 508, respectivamente, en la superficie de aceleración 502 del electrodo de aceleración 500. La diferencia en las distancias R1 y R2 da lugar a un retardo de propagación de señal que afecta a las partículas cuando son aceleradas a lo largo de un recorrido en espiral (no representado) centrado en el punto 506. Si la forma de onda de entrada, representada por la curva 510, no tiene en cuenta el retardo de propagación extra producido por la distancia creciente, las partículas pueden salir del sincronismo con la forma de onda de aceleración. La forma de onda de entrada 510 en el punto 504 en el electrodo de aceleración 500 experimenta un retardo variable cuando las partículas aceleran hacia fuera con respecto al centro en el punto 506. Este retardo da lugar a un voltaje de entrada que tiene una forma de onda 512 en el punto 506, pero una forma de onda diferentemente temporizada 514 en el punto 508. La forma de onda 514 representa un desplazamiento de fase con respecto a la forma de onda 512 y esto puede afectar al proceso de aceleración. Dado que el tamaño físico de la estructura de aceleración (aproximadamente 0,6 metros) es una fracción significativa de la longitud de onda de la frecuencia de aceleración (aproximadamente 2 metros), un desplazamiento de fase significativo se experimenta entre partes diferentes de la estructura de aceleración.
En la figura 5B, el voltaje de entrada que tiene la forma de onda 516 se preajusta con relación al voltaje de entrada descrito por la forma de onda 510 de manera que tenga la misma magnitud, pero signo contrario, de retardo de tiempo. Como resultado, se corrige el retardo de fase producido por las diferentes longitudes de recorrido a través del electrodo de aceleración 500. Las formas de onda resultantes 518 y 520 están ahora correctamente alineadas de manera que aumentan la eficiencia del proceso de aceleración de partículas. Este ejemplo ilustra un caso simple de retardo de propagación producido por un efecto geométrico fácilmente predecible. Puede haber otros efectos de temporización de forma de onda que son generados por la geometría más compleja usada en el acelerador real, y estos efectos, si se pueden predecir o medir, pueden compensarse utilizando los mismos principios ilustrados en este ejemplo.
Como se ha descrito anteriormente, el generador de forma de onda digital produce un voltaje oscilante de entrada de la forma (RF(u>,t)/A(u>,t)), donde RF(w, t) es un voltaje deseado a través del intervalo D y A(w, t) es una función de transferencia. La curva 600 de la figura 6A ilustra una función de transferencia específica de dispositivo representativa A. La curva 600 representa el factor Q en función de la frecuencia. La curva 600 tiene dos desviaciones indeseadas de una función de transferencia ideal, a saber, los canales 602 y 604. Esta desviación puede ser producida por efectos debidos a la longitud física de componentes del circuito resonante, características autorresonantes indeseadas de los componentes u otros efectos. Esta función de transferencia puede medirse y un voltaje de entrada de compensación puede calcularse y almacenarse en la memoria del generador de formas de onda. Una representación de esta función de compensación 610 se representa en la figura 6B. Cuando el voltaje de entrada compensado 610 se aplica al dispositivo 300, el voltaje resultante 620 es uniforme con respecto al perfil de voltaje deseado calculado dando una aceleración eficiente.
Otro ejemplo del tipo de efectos que pueden ser controlados con el generador de forma de onda programable se representa en la figura 7. En algunos sincrociclotrones, la intensidad de campo eléctrico usada para aceleración puede seleccionarse algo reducida cuando las partículas se aceleran hacia fuera a lo largo del recorrido en espiral 705. Esta reducción de la intensidad de campo eléctrico se realiza aplicando voltaje de aceleración 700, que se mantiene relativamente constante como se representa en la figura 7A, al electrodo de aceleración 702. El electrodo 704 está en general a potencial de tierra. La intensidad de campo eléctrico en el intervalo es el voltaje aplicado dividido por la longitud del intervalo. Como se representa en la figura 7B, la distancia entre electrodos de aceleración 702 y 704 aumenta con el radio R. La intensidad resultante del campo eléctrico en función del radio R se representa como curva 706 en la figura 7C.
Con el uso del generador de forma de onda programable, la amplitud del voltaje de aceleración 708 puede modularse en la forma deseada, como se representa en la figura 7D. Esta modulación permite mantener la distancia entre los electrodos de aceleración 710 y 712 de manera que siga siendo constante, como se representa en la figura 7E. Como resultado, se produce la misma intensidad resultante del campo eléctrico en función del radio 714, representado en la figura 7F, como se representa en la figura 7C. Aunque éste es un ejemplo sencillo de otro tipo de control de los efectos del sistema de sincrociclotrón, la forma real de los electrodos y el perfil del voltaje de aceleración en función del radio puede no seguir este ejemplo sencillo.
5
10
15
20
25
30
35
Como se ha mencionado anteriormente, el generador de forma de onda programable puede ser usado para controlar el inyector de iones (fuente de iones) para lograr una aceleración óptima de las partículas cargadas temporizando exactamente las inyecciones de partículas. La figura 8A representa la forma de onda de aceleración RF generada por el generador de forma de onda programable. La figura 8B representa una señal de inyector ciclo a ciclo de temporización exacta que puede activar la fuente de iones de la forma precisa para inyectar un paquete pequeño de iones a la cavidad de acelerador a intervalos controlados con exactitud al objeto de sincronización con el ángulo de fase de aceptación del proceso de aceleración. Las señales se representan aproximadamente en la alineación correcta, cuando los paquetes de partículas avanzan en general a través del acelerador aproximadamente en un ángulo de retardo de 30 grados en comparación con la forma de onda del campo eléctrico RF para estabilidad del haz. El tiempo real de las señales en algún punto externo, tal como la salida de los convertidores digital a analógico, puede no tener esta relación exacta puesto que es probable que los retardos de propagación de las dos señales sean diferentes. Con el generador de forma de onda programable, el tiempo de los pulsos de inyección se puede variar de forma continua con respecto a la forma de onda RF con el fin de optimizar el acoplamiento de los pulsos inyectados al proceso de aceleración. Esta señal puede ser habilitada o inhabilitada para encender y apagar el haz. La señal también puede ser modulada mediante técnicas de caída de pulso para mantener una corriente de haz media requerida. Esta regulación de la corriente del haz se efectúa eligiendo un intervalo de tiempo macroscópico que contiene algún número relativamente grande de pulsos, del orden de 1000, y cambiando la fracción de pulsos que están habilitados durante este intervalo.
La figura 8C representa un pulso de control de inyección más largo que corresponde a un número múltiple de ciclos RF. Este pulso se genera cuando se ha de acelerar un paquete de protones. El proceso de aceleración periódica captura solamente un número limitado de partículas que serán aceleradas a la energía final y extraídas. El control del tiempo de la inyección de iones puede dar lugar a una menor carga de gas y, en consecuencia, a mejores condiciones de vacío que reduce los requisitos de bombeo de vacío y mejora las propiedades de pérdida del haz y alto voltaje durante el ciclo de aceleración. Esto puede usarse donde el tiempo preciso de la inyección representada en la figura 8B no es necesario para un acoplamiento aceptable de la fuente de iones al ángulo de fase de la forma de onda RF. Este acercamiento inyecta iones durante un número de ciclos RF que corresponde aproximadamente al número de “vueltas” que acepta el proceso de aceleración en el sincrociclotrón. Esta señal también es habilitada o inhabilitada para encender y apagar el haz o modular la corriente media del haz.
Aunque esta invención se ha representado y descrito en particular con referencias a sus realizaciones preferidas, los expertos en la técnica entenderán que se puede hacer en ella varios cambios en la forma y los detalles sin apartarse del alcance de la invención que abarcan las reivindicaciones anexas.

Claims (16)

  1. 5
    10
    15
    20
    25
    30
    35
    40
    45
    50
    55
    60
    65
    REIVINDICACIONES
    1. Un sincrociclotrón (300) incluyendo:
    polos magnéticos (4a, 4b) que tienen un intervalo (13) entremedio,
    un generador de campo magnético para generar el campo magnético en el intervalo;
    un circuito resonante, incluyendo:
    electrodos de aceleración (10 y 12), dispuestos entre polos magnéticos (4a y 4b), y
    un elemento reactivo variable (28) en circuito con los electrodos (10 y 12) para variar la frecuencia resonante (602 y 604) del circuito resonante;
    un generador de forma de onda programable (319) configurado para producir una entrada de voltaje (RF(w,t)/A(u>,t)) al circuito resonante, siendo la entrada de voltaje (RF(w,t)/A(u>,t)) un voltaje oscilante; y un sistema de realimentación adaptativo (350) que está configurado para variar la entrada de voltaje (RF(w),t)/A(u>,t)) en el tiempo de aceleración de partículas cargadas; caracterizado porque el generador de forma de onda programable está configurado para ajustar la entrada de voltaje (RF(w,t)/A(u>,t)) en base a una propiedad de un haz de partículas extraído del sincrociclotrón, siendo la propiedad la intensidad del haz de partículas.
  2. 2. El sincrociclotrón (300) según la reivindicación 1, caracterizado además porque el sistema de realimentación (350) está configurado para variar la frecuencia de la entrada de voltaje (RF((u>,t)/A((u>,t)).
  3. 3. El sincrociclotrón (300) de la reivindicación 1 o la reivindicación 2, caracterizado además porque el sistema de realimentación (350) está configurado para variar la amplitud de la entrada de voltaje (RF(w,t)/A(w,t)) .
  4. 4. El sincrociclotrón (300) de cualquiera de las reivindicaciones 1-3, incluyendo además:
    una fuente de iones (18) configurada para inyectar partículas cargadas al sincrociclotrón (300).
  5. 5. El sincrociclotrón (300) de cualquiera de las reivindicaciones 1-4, incluyendo además:
    un medio para controlar la reactancia del elemento reactivo variable (28) y ajustar la frecuencia resonante (602 y 604) del circuito resonante para mantener las condiciones resonantes, y caracterizado además porque el sistema de realimentación (350) está configurado para ajustar la frecuencia de la entrada de voltaje (RF(u>,t)/A(w,t)) o la frecuencia resonante (602 y 604) del circuito resonante, o ambas, para mantener las condiciones resonantes.
  6. 6. El sincrociclotrón (300) de cualquiera de las reivindicaciones 1-5 incluyendo además:
    un supervisor de haz (316) para medir al menos uno de la intensidad del haz de partículas, el tiempo del haz de partículas o la distribución espacial del haz de partículas.
  7. 7. El sincrociclotrón (300) de cualquiera de las reivindicaciones 1-6 incluyendo además:
    un electrodo de extracción (22) dispuesto entre los polos magnéticos (4a y 4b) configurado para extraer el haz de partículas del sincrociclotrón (300).
  8. 8. El sincrociclotrón (300) de la reivindicación 7, caracterizado además porque al menos uno de la fuente de iones (18) y el electrodo de extracción (22) está configurado para ser controlado para compensar variaciones en el haz de partículas.
  9. 9. Un método de producir un haz de partículas en un sincrociclotrón (300) según la reivindicación 1, incluyendo: inyectar partículas cargadas al sincrociclotrón (300) por una fuente de iones (18);
    generar mediante un generador de forma de onda programable una entrada de voltaje (RF(w,t)/A(u>,t)), siendo la entrada de voltaje (RF(u>,t)/A(w,t)) un voltaje oscilante;
    aplicar la entrada de voltaje (RF(w,t)/A(u>,t)) a un circuito resonante incluyendo los electrodos de aceleración (10 y 12) que tienen un intervalo (13) entremedio a través de un campo magnético, para crear un campo eléctrico oscilante a través del intervalo (13) y acelerar partículas cargadas; y
    extraer las partículas cargadas aceleradas para formar un haz de partículas; y la entrada de voltaje (RF(u>,t)/A(w,t)) se varía usando un sistema de realimentación (350) en el tiempo de aceleración de partículas cargadas;
    5
    10
    15
    20
    25
    30
    caracterizado porque la entrada de voltaje (RF(w,t)/A(u>,t)) se ajusta en base a una propiedad del haz de partículas, siendo la propiedad la intensidad del haz de partículas.
  10. 10. El método de la reivindicación 9, caracterizado además porque el sistema de realimentación (350) varía la frecuencia de la entrada de voltaje (RF(ui,t)/A(w,t)) .
  11. 11. El método de alguna de las reivindicaciones 9 o 10, caracterizado además porque el sistema de realimentación (350) varía la amplitud de la entrada de voltaje.
  12. 12. El método de cualquiera de las reivindicaciones 9-10, caracterizado porque incluye además: detectar condiciones resonantes en el circuito resonante.
  13. 13. El método de cualquiera de las reivindicaciones 9-12, caracterizado porque incluye además:
    medir al menos uno de la intensidad del haz de partículas, el tiempo del haz o la distribución espacial del haz de partículas.
  14. 14. El método de cualquiera de las reivindicaciones 9-13, donde un electrodo de extracción (22) extrae las partículas cargadas aceleradas.
  15. 15. El método de la reivindicación 14, caracterizado porque incluye además:
    controlar al menos uno de la fuente de iones (18) y el electrodo de extracción (22) para compensar variaciones en el haz de partículas.
  16. 16. El método de cualquiera de las reivindicaciones 9-15, caracterizado porque incluye además:
    ajustar la reactancia de un elemento reactivo variable (28) en circuito con la entrada de voltaje oscilante (RF(w,t)/A(w,t)) y los electrodos de aceleración (10 y 12) para mantener las condiciones resonantes en el circuito resonante.
ES10175727.6T 2004-07-21 2005-07-21 Generador en forma de onda de radio frecuencia programable para un sincrociclotrón Active ES2654328T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59008904P 2004-07-21 2004-07-21
US590089P 2004-07-21

Publications (1)

Publication Number Publication Date
ES2654328T3 true ES2654328T3 (es) 2018-02-13

Family

ID=35311846

Family Applications (3)

Application Number Title Priority Date Filing Date
ES10175727.6T Active ES2654328T3 (es) 2004-07-21 2005-07-21 Generador en forma de onda de radio frecuencia programable para un sincrociclotrón
ES05776532.3T Active ES2558978T3 (es) 2004-07-21 2005-07-21 Generador de formas de ondas de radiofrecuencia programable para un sincrociclotrón
ES17191182T Active ES2720574T3 (es) 2004-07-21 2005-07-21 Generador de forma de onda de radio frecuencia programable para un sincrociclotrón

Family Applications After (2)

Application Number Title Priority Date Filing Date
ES05776532.3T Active ES2558978T3 (es) 2004-07-21 2005-07-21 Generador de formas de ondas de radiofrecuencia programable para un sincrociclotrón
ES17191182T Active ES2720574T3 (es) 2004-07-21 2005-07-21 Generador de forma de onda de radio frecuencia programable para un sincrociclotrón

Country Status (8)

Country Link
US (5) US7402963B2 (es)
EP (4) EP3294045B1 (es)
JP (1) JP5046928B2 (es)
CN (2) CN101061759B (es)
AU (1) AU2005267078B8 (es)
CA (1) CA2574122A1 (es)
ES (3) ES2654328T3 (es)
WO (1) WO2006012467A2 (es)

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2654328T3 (es) 2004-07-21 2018-02-13 Mevion Medical Systems, Inc. Generador en forma de onda de radio frecuencia programable para un sincrociclotrón
US7791290B2 (en) 2005-09-30 2010-09-07 Virgin Islands Microsystems, Inc. Ultra-small resonating charged particle beam modulator
US7626179B2 (en) 2005-09-30 2009-12-01 Virgin Island Microsystems, Inc. Electron beam induced resonance
US7586097B2 (en) 2006-01-05 2009-09-08 Virgin Islands Microsystems, Inc. Switching micro-resonant structures using at least one director
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US7315140B2 (en) * 2005-01-27 2008-01-01 Matsushita Electric Industrial Co., Ltd. Cyclotron with beam phase selector
CN101361156B (zh) 2005-11-18 2012-12-12 梅维昂医疗***股份有限公司 用于实施放射治疗的设备
US7876793B2 (en) 2006-04-26 2011-01-25 Virgin Islands Microsystems, Inc. Micro free electron laser (FEL)
US7728702B2 (en) 2006-05-05 2010-06-01 Virgin Islands Microsystems, Inc. Shielding of integrated circuit package with high-permeability magnetic material
US7728397B2 (en) 2006-05-05 2010-06-01 Virgin Islands Microsystems, Inc. Coupled nano-resonating energy emitting structures
US8188431B2 (en) 2006-05-05 2012-05-29 Jonathan Gorrell Integration of vacuum microelectronic device with integrated circuit
US7986113B2 (en) 2006-05-05 2011-07-26 Virgin Islands Microsystems, Inc. Selectable frequency light emitter
US7732786B2 (en) 2006-05-05 2010-06-08 Virgin Islands Microsystems, Inc. Coupling energy in a plasmon wave to an electron beam
US7990336B2 (en) 2007-06-19 2011-08-02 Virgin Islands Microsystems, Inc. Microwave coupled excitation of solid state resonant arrays
US8003964B2 (en) * 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
EP2213147B1 (en) 2007-10-29 2015-01-21 Ion Beam Applications S.A. Device and method for fast beam current modulation in a particle accelerator
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) * 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
EP2232959A4 (en) * 2008-01-09 2015-04-08 Passport Systems Inc DIAGNOSTIC METHODS AND APPARATUS FOR ACCELERATOR USING INDUCTION TO GENERATE MAGNETIC FIELD WITH LOCALIZED CURVE
US8169167B2 (en) * 2008-01-09 2012-05-01 Passport Systems, Inc. Methods for diagnosing and automatically controlling the operation of a particle accelerator
CN101940069B (zh) * 2008-01-09 2012-10-10 护照***公司 通过将电感用于产生具有局部旋度的电场来加速粒子的方法和***
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) * 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
MX2010012716A (es) 2008-05-22 2011-07-01 Vladimir Yegorovich Balakin Metodo y aparato de rayos x usados en conjunto con un sistema de terapia contra el cancer mediante particulas cargadas.
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8901509B2 (en) 2008-05-22 2014-12-02 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy method and apparatus
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
NZ589387A (en) 2008-05-22 2012-11-30 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8688197B2 (en) 2008-05-22 2014-04-01 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
CA2725493C (en) 2008-05-22 2015-08-18 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US9058910B2 (en) 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
AU2009249863B2 (en) 2008-05-22 2013-12-12 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US10566169B1 (en) * 2008-06-30 2020-02-18 Nexgen Semi Holding, Inc. Method and device for spatial charged particle bunching
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
SG173879A1 (en) 2009-03-04 2011-10-28 Protom Aozt Multi-field charged particle cancer therapy method and apparatus
US8153997B2 (en) 2009-05-05 2012-04-10 General Electric Company Isotope production system and cyclotron
US8106570B2 (en) 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having reduced magnetic stray fields
US8106370B2 (en) * 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity
KR101671854B1 (ko) * 2009-06-24 2016-11-03 이온빔 어플리케이션스 에스.에이. 입자 비임 생성을 위한 장치와 방법
US8374306B2 (en) 2009-06-26 2013-02-12 General Electric Company Isotope production system with separated shielding
DE102009048063A1 (de) * 2009-09-30 2011-03-31 Eads Deutschland Gmbh Ionisationsverfahren, Ionenerzeugungsvorrichtung sowie Verwendung derselben bei der Ionenmobilitätsspektronomie
DE102009048150A1 (de) * 2009-10-02 2011-04-07 Siemens Aktiengesellschaft Beschleuniger und Verfahren zur Ansteuerung eines Beschleunigers
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
JP5606793B2 (ja) * 2010-05-26 2014-10-15 住友重機械工業株式会社 加速器及びサイクロトロン
EP2410823B1 (fr) * 2010-07-22 2012-11-28 Ion Beam Applications Cyclotron apte à accélérer au moins deux types de particules
JP5665721B2 (ja) * 2011-02-28 2015-02-04 三菱電機株式会社 円形加速器および円形加速器の運転方法
JP5638457B2 (ja) * 2011-05-09 2014-12-10 住友重機械工業株式会社 シンクロサイクロトロン及びそれを備えた荷電粒子線照射装置
EP2716141B1 (en) * 2011-05-23 2016-11-30 Schmor Particle Accelerator Consulting Inc. Particle accelerator and method of reducing beam divergence in the particle accelerator
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8639853B2 (en) 2011-07-28 2014-01-28 National Intruments Corporation Programmable waveform technology for interfacing to disparate devices
EP2809133B1 (en) * 2012-01-26 2017-05-03 Mitsubishi Electric Corporation Charged particle accelerator and particle beam therapy system
JP5844169B2 (ja) 2012-01-31 2016-01-13 住友重機械工業株式会社 シンクロサイクロトロン
US9603235B2 (en) * 2012-07-27 2017-03-21 Massachusetts Institute Of Technology Phase-lock loop synchronization between beam orbit and RF drive in synchrocyclotrons
US8878432B2 (en) * 2012-08-20 2014-11-04 Varian Medical Systems, Inc. On board diagnosis of RF spectra in accelerators
CN102869185B (zh) * 2012-09-12 2015-03-11 中国原子能科学研究院 一种强流紧凑型回旋加速器腔体锻炼方法
EP2901822B1 (en) 2012-09-28 2020-04-08 Mevion Medical Systems, Inc. Focusing a particle beam
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
JP6367201B2 (ja) * 2012-09-28 2018-08-01 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの強度の制御
WO2014052708A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
TW201422278A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 粒子加速器之控制系統
JP6254600B2 (ja) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
EP2900325B1 (en) 2012-09-28 2018-01-03 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
WO2014052734A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling particle therapy
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
JP2014102990A (ja) * 2012-11-20 2014-06-05 Sumitomo Heavy Ind Ltd サイクロトロン
US9119281B2 (en) 2012-12-03 2015-08-25 Varian Medical Systems, Inc. Charged particle accelerator systems including beam dose and energy compensation and methods therefor
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9550077B2 (en) * 2013-06-27 2017-01-24 Brookhaven Science Associates, Llc Multi turn beam extraction from synchrotron
CN110237447B (zh) 2013-09-27 2021-11-02 梅维昂医疗***股份有限公司 粒子治疗***
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
DE102014003536A1 (de) * 2014-03-13 2015-09-17 Forschungszentrum Jülich GmbH Fachbereich Patente Supraleitender Magnetfeldstabilisator
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
CN105282956B (zh) * 2015-10-09 2018-08-07 中国原子能科学研究院 一种强流回旋加速器高频***智能自启动方法
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
CN105376925B (zh) * 2015-12-09 2017-11-21 中国原子能科学研究院 同步回旋加速器腔体频率调制方法
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
CN105848403B (zh) * 2016-06-15 2018-01-30 中国工程物理研究院流体物理研究所 内离子源回旋加速器
EP3481503B1 (en) 2016-07-08 2021-04-21 Mevion Medical Systems, Inc. Treatment planning
WO2018015896A1 (en) * 2016-07-22 2018-01-25 Bhosale Devesh Suryabhan An apparatus for generating electromagnetic waves
US10339148B2 (en) 2016-07-27 2019-07-02 Microsoft Technology Licensing, Llc Cross-platform computer application query categories
EP3307031B1 (en) * 2016-10-05 2019-04-17 Ion Beam Applications S.A. Method and system for controlling ion beam pulses extraction
US10568196B1 (en) * 2016-11-21 2020-02-18 Triad National Security, Llc Compact, high-efficiency accelerators driven by low-voltage solid-state amplifiers
WO2018127990A1 (ja) * 2017-01-05 2018-07-12 三菱電機株式会社 円形加速器の高周波加速装置及び円形加速器
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
CN107134399B (zh) * 2017-04-06 2019-06-25 中国电子科技集团公司第四十八研究所 用于高能离子注入机的射频加速调谐装置及控制方法
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. CONFIGURABLE COLLIMATOR CONTROLLED BY LINEAR MOTORS
US10404210B1 (en) * 2018-05-02 2019-09-03 United States Of America As Represented By The Secretary Of The Navy Superconductive cavity oscillator
JP2020038797A (ja) * 2018-09-04 2020-03-12 株式会社日立製作所 加速器、およびそれを備えた粒子線治療システム
RU2689297C1 (ru) * 2018-09-27 2019-05-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ синхронизации устройств в накопительных электронных синхротронах источников синхротронного излучения
WO2020185543A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
JP7319144B2 (ja) * 2019-08-30 2023-08-01 株式会社日立製作所 円形加速器および粒子線治療システム、円形加速器の作動方法
US11187745B2 (en) 2019-10-30 2021-11-30 Teradyne, Inc. Stabilizing a voltage at a device under test
US11576252B2 (en) * 2020-03-24 2023-02-07 Applied Materials, Inc. Controller and control techniques for linear accelerator and ion implanter having linear accelerator
CN111417251B (zh) * 2020-04-07 2022-08-09 哈尔滨工业大学 一种高温超导无磁扼多离子变能量回旋加速器高频腔体
JP2023087587A (ja) * 2021-12-13 2023-06-23 株式会社日立製作所 加速器、粒子線治療システム及び制御方法
JP2023122453A (ja) * 2022-02-22 2023-09-01 株式会社日立製作所 加速器および加速器を備える粒子線治療システム。

Family Cites Families (629)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280606A (en) 1940-01-26 1942-04-21 Rca Corp Electronic reactance circuits
US2615129A (en) * 1947-05-16 1952-10-21 Edwin M Mcmillan Synchro-cyclotron
US2492324A (en) * 1947-12-24 1949-12-27 Collins Radio Co Cyclotron oscillator system
US2616042A (en) * 1950-05-17 1952-10-28 Weeks Robert Ray Stabilizer arrangement for cyclotrons and the like
US2659000A (en) * 1951-04-27 1953-11-10 Collins Radio Co Variable frequency cyclotron
US2701304A (en) * 1951-05-31 1955-02-01 Gen Electric Cyclotron
US2789222A (en) * 1954-07-21 1957-04-16 Marvin D Martin Frequency modulation system
US2958327A (en) 1957-03-29 1960-11-01 Gladys W Geissmann Foundation garment
GB957342A (en) 1960-08-01 1964-05-06 Varian Associates Apparatus for directing ionising radiation in the form of or produced by beams from particle accelerators
US3360647A (en) 1964-09-14 1967-12-26 Varian Associates Electron accelerator with specific deflecting magnet structure and x-ray target
US3175131A (en) * 1961-02-08 1965-03-23 Richard J Burleigh Magnet construction for a variable energy cyclotron
FR1409412A (fr) 1964-07-16 1965-08-27 Comp Generale Electricite Perfectionnements aux bobines de réactance
US3432721A (en) * 1966-01-17 1969-03-11 Gen Electric Beam plasma high frequency wave generating system
JPS4323267Y1 (es) 1966-10-11 1968-10-01
NL7007871A (es) * 1970-05-29 1971-12-01
FR2109273A5 (es) 1970-10-09 1972-05-26 Thomson Csf
US3679899A (en) 1971-04-16 1972-07-25 Nasa Nondispersive gas analyzing method and apparatus wherein radiation is serially passed through a reference and unknown gas
US3757118A (en) 1972-02-22 1973-09-04 Ca Atomic Energy Ltd Electron beam therapy unit
JPS5036158Y2 (es) 1972-03-09 1975-10-21
CA966893A (en) * 1973-06-19 1975-04-29 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Superconducting cyclotron
US4047068A (en) * 1973-11-26 1977-09-06 Kreidl Chemico Physical K.G. Synchronous plasma packet accelerator
US3992625A (en) 1973-12-27 1976-11-16 Jersey Nuclear-Avco Isotopes, Inc. Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient
US3886367A (en) 1974-01-18 1975-05-27 Us Energy Ion-beam mask for cancer patient therapy
US3958327A (en) 1974-05-01 1976-05-25 Airco, Inc. Stabilized high-field superconductor
US4129784A (en) 1974-06-14 1978-12-12 Siemens Aktiengesellschaft Gamma camera
US3925676A (en) 1974-07-31 1975-12-09 Ca Atomic Energy Ltd Superconducting cyclotron neutron source for therapy
US3955089A (en) 1974-10-21 1976-05-04 Varian Associates Automatic steering of a high velocity beam of charged particles
CA1008125A (en) 1975-03-07 1977-04-05 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Method and apparatus for magnetic field shimming in an isochronous cyclotron
US4230129A (en) 1975-07-11 1980-10-28 Leveen Harry H Radio frequency, electromagnetic radiation device having orbital mount
ZA757266B (en) * 1975-11-19 1977-09-28 W Rautenbach Cyclotron and neutron therapy installation incorporating such a cyclotron
SU569635A1 (ru) 1976-03-01 1977-08-25 Предприятие П/Я М-5649 Магнитный сплав
US4038622A (en) 1976-04-13 1977-07-26 The United States Of America As Represented By The United States Energy Research And Development Administration Superconducting dipole electromagnet
US4112306A (en) 1976-12-06 1978-09-05 Varian Associates, Inc. Neutron irradiation therapy machine
DE2754791A1 (de) 1976-12-13 1978-10-26 Varian Associates Rennbahn-mikrotron
DE2759073C3 (de) 1977-12-30 1981-10-22 Siemens AG, 1000 Berlin und 8000 München Elektronentubus
GB2015821B (en) 1978-02-28 1982-03-31 Radiation Dynamics Ltd Racetrack linear accelerators
US4197510A (en) 1978-06-23 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Isochronous cyclotron
JPS5924520B2 (ja) 1979-03-07 1984-06-09 理化学研究所 等時性サイクロトロンの磁極の構造とそれの使用方法
FR2458201A1 (fr) * 1979-05-31 1980-12-26 Cgr Mev Systeme resonnant micro-onde a double frequence de resonance et cyclotron muni d'un tel systeme
DE2926873A1 (de) * 1979-07-03 1981-01-22 Siemens Ag Strahlentherapiegeraet mit zwei lichtvisieren
US4293772A (en) 1980-03-31 1981-10-06 Siemens Medical Laboratories, Inc. Wobbling device for a charged particle accelerator
US4342060A (en) 1980-05-22 1982-07-27 Siemens Medical Laboratories, Inc. Energy interlock system for a linear accelerator
US4336505A (en) 1980-07-14 1982-06-22 John Fluke Mfg. Co., Inc. Controlled frequency signal source apparatus including a feedback path for the reduction of phase noise
JPS57162527A (en) 1981-03-31 1982-10-06 Fujitsu Ltd Setting device for preset voltage of frequency synthesizer
JPS57162527U (es) 1981-04-07 1982-10-13
US4425506A (en) * 1981-11-19 1984-01-10 Varian Associates, Inc. Stepped gap achromatic bending magnet
DE3148100A1 (de) 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks "synchrotron-roentgenstrahlungsquelle"
JPS58141000A (ja) 1982-02-16 1983-08-20 住友重機械工業株式会社 サイクロトロン
US4507616A (en) * 1982-03-08 1985-03-26 Board Of Trustees Operating Michigan State University Rotatable superconducting cyclotron adapted for medical use
JPS58141000U (ja) 1982-03-15 1983-09-22 和泉鉄工株式会社 上下反転積込排出装置
US4490616A (en) 1982-09-30 1984-12-25 Cipollina John J Cephalometric shield
JPS5964069A (ja) 1982-10-04 1984-04-11 バリアン・アソシエイツ・インコ−ポレイテツド 電子アーク治療用視準装置のための遮蔽物保持装置
US4507614A (en) * 1983-03-21 1985-03-26 The United States Of America As Represented By The United States Department Of Energy Electrostatic wire for stabilizing a charged particle beam
US4736173A (en) 1983-06-30 1988-04-05 Hughes Aircraft Company Thermally-compensated microwave resonator utilizing current-null segmentation
SE462013B (sv) 1984-01-26 1990-04-30 Kjell Olov Torgny Lindstroem Behandlingsbord foer radioterapi av patienter
FR2560421B1 (fr) 1984-02-28 1988-06-17 Commissariat Energie Atomique Dispositif de refroidissement de bobinages supraconducteurs
US4865284A (en) 1984-03-13 1989-09-12 Siemens Gammasonics, Inc. Collimator storage device in particular a collimator cart
US4641104A (en) * 1984-04-26 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting medical cyclotron
GB8421867D0 (en) 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
US4651007A (en) * 1984-09-13 1987-03-17 Technicare Corporation Medical diagnostic mechanical positioner
JPS6180800A (ja) 1984-09-28 1986-04-24 株式会社日立製作所 放射光照射装置
JPS6180800U (es) 1984-10-30 1986-05-29
US4641057A (en) * 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron
DE3506562A1 (de) * 1985-02-25 1986-08-28 Siemens AG, 1000 Berlin und 8000 München Magnetfeldeinrichtung fuer eine teilchenbeschleuniger-anlage
DE3670943D1 (de) 1985-03-08 1990-06-07 Siemens Ag Magnetfelderzeugende einrichtung fuer eine teilchenbeschleuniger-anlage.
NL8500748A (nl) 1985-03-15 1986-10-01 Philips Nv Collimator wisselsysteem.
DE3511282C1 (de) * 1985-03-28 1986-08-21 Brown, Boveri & Cie Ag, 6800 Mannheim Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
JPS61225798A (ja) 1985-03-29 1986-10-07 三菱電機株式会社 プラズマ発生装置
US4705955A (en) 1985-04-02 1987-11-10 Curt Mileikowsky Radiation therapy for cancer patients
US4633125A (en) 1985-05-09 1986-12-30 Board Of Trustees Operating Michigan State University Vented 360 degree rotatable vessel for containing liquids
LU85895A1 (fr) 1985-05-10 1986-12-05 Univ Louvain Cyclotron
US4628523A (en) 1985-05-13 1986-12-09 B.V. Optische Industrie De Oude Delft Direction control for radiographic therapy apparatus
GB8512804D0 (en) 1985-05-21 1985-06-26 Oxford Instr Ltd Cyclotrons
EP0208163B1 (de) 1985-06-24 1989-01-04 Siemens Aktiengesellschaft Magnetfeldeinrichtung für eine Anlage zur Beschleunigung und/oder Speicherung elektrisch geladener Teilchen
US4726046A (en) * 1985-11-05 1988-02-16 Varian Associates, Inc. X-ray and electron radiotherapy clinical treatment machine
JPS62150804A (ja) 1985-12-25 1987-07-04 Sumitomo Electric Ind Ltd シンクロトロン軌道放射システムの荷電粒子偏向装置
JPS62186500A (ja) 1986-02-12 1987-08-14 三菱電機株式会社 荷電ビ−ム装置
DE3704442A1 (de) 1986-02-12 1987-08-13 Mitsubishi Electric Corp Ladungstraegerstrahlvorrichtung
US4783634A (en) 1986-02-27 1988-11-08 Mitsubishi Denki Kabushiki Kaisha Superconducting synchrotron orbital radiation apparatus
JPS62150804U (es) 1986-03-14 1987-09-24
US4739173A (en) 1986-04-11 1988-04-19 Board Of Trustees Operating Michigan State University Collimator apparatus and method
US4754147A (en) 1986-04-11 1988-06-28 Michigan State University Variable radiation collimator
JPS62186500U (es) 1986-05-20 1987-11-27
US4763483A (en) 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
US4868843A (en) 1986-09-10 1989-09-19 Varian Associates, Inc. Multileaf collimator and compensator for radiotherapy machines
US4808941A (en) * 1986-10-29 1989-02-28 Siemens Aktiengesellschaft Synchrotron with radiation absorber
JP2670670B2 (ja) 1986-12-12 1997-10-29 日鉱金属 株式会社 高力高導電性銅合金
DE3644536C1 (de) 1986-12-24 1987-11-19 Basf Lacke & Farben Vorrichtung fuer eine Wasserlackapplikation mit Hochrotationszerstaeubern ueber Direktaufladung oder Kontaktaufladung
GB8701363D0 (en) 1987-01-22 1987-02-25 Oxford Instr Ltd Magnetic field generating assembly
EP0276360B1 (de) 1987-01-28 1993-06-09 Siemens Aktiengesellschaft Magneteinrichtung mit gekrümmten Spulenwicklungen
EP0277521B1 (de) 1987-01-28 1991-11-06 Siemens Aktiengesellschaft Synchrotronstrahlungsquelle mit einer Fixierung ihrer gekrümmten Spulenwicklungen
DE3705294A1 (de) * 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
JPS63218200A (ja) 1987-03-05 1988-09-12 Furukawa Electric Co Ltd:The 超伝導sor発生装置
JPS63226899A (ja) 1987-03-16 1988-09-21 Ishikawajima Harima Heavy Ind Co Ltd 超電導ウイグラ−
JPH0517318Y2 (es) 1987-03-24 1993-05-10
US4767930A (en) 1987-03-31 1988-08-30 Siemens Medical Laboratories, Inc. Method and apparatus for enlarging a charged particle beam
JPH0546928Y2 (es) 1987-04-01 1993-12-09
US4812658A (en) * 1987-07-23 1989-03-14 President And Fellows Of Harvard College Beam Redirecting
JPS6435838A (en) * 1987-07-31 1989-02-06 Jeol Ltd Charged particle beam device
DE3844716C2 (de) 1987-08-24 2001-02-22 Mitsubishi Electric Corp Partikelstrahlmonitorvorrichtung
JP2667832B2 (ja) * 1987-09-11 1997-10-27 株式会社日立製作所 偏向マグネット
JPS6489621A (en) 1987-09-30 1989-04-04 Nec Corp Frequency synthesizer
GB8725459D0 (en) 1987-10-30 1987-12-02 Nat Research Dev Corpn Generating particle beams
US4945478A (en) 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
WO1989005171A2 (en) * 1987-12-03 1989-06-15 University Of Florida Apparatus for stereotactic radiosurgery
US4896206A (en) * 1987-12-14 1990-01-23 Electro Science Industries, Inc. Video detection system
US4870287A (en) 1988-03-03 1989-09-26 Loma Linda University Medical Center Multi-station proton beam therapy system
US4845371A (en) 1988-03-29 1989-07-04 Siemens Medical Laboratories, Inc. Apparatus for generating and transporting a charged particle beam
US4917344A (en) 1988-04-07 1990-04-17 Loma Linda University Medical Center Roller-supported, modular, isocentric gantry and method of assembly
JP2645314B2 (ja) 1988-04-28 1997-08-25 清水建設株式会社 磁気遮蔽器
US4905267A (en) * 1988-04-29 1990-02-27 Loma Linda University Medical Center Method of assembly and whole body, patient positioning and repositioning support for use in radiation beam therapy systems
US5006759A (en) 1988-05-09 1991-04-09 Siemens Medical Laboratories, Inc. Two piece apparatus for accelerating and transporting a charged particle beam
JPH079839B2 (ja) * 1988-05-30 1995-02-01 株式会社島津製作所 高周波多重極線型加速器
JPH078300B2 (ja) 1988-06-21 1995-02-01 三菱電機株式会社 荷電粒子ビームの照射装置
GB2223350B (en) 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
GB8820628D0 (en) 1988-09-01 1988-10-26 Amersham Int Plc Proton source
US4880985A (en) 1988-10-05 1989-11-14 Douglas Jones Detached collimator apparatus for radiation therapy
EP0371303B1 (de) * 1988-11-29 1994-04-27 Varian International AG. Strahlentherapiegerät
DE4000666C2 (de) 1989-01-12 1996-10-17 Mitsubishi Electric Corp Elektromagnetanordnung für einen Teilchenbeschleuniger
JPH0834130B2 (ja) 1989-03-15 1996-03-29 株式会社日立製作所 シンクロトロン放射光発生装置
US5017789A (en) 1989-03-31 1991-05-21 Loma Linda University Medical Center Raster scan control system for a charged-particle beam
US5117829A (en) 1989-03-31 1992-06-02 Loma Linda University Medical Center Patient alignment system and procedure for radiation treatment
US5046078A (en) 1989-08-31 1991-09-03 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
US5010562A (en) 1989-08-31 1991-04-23 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
JP2896188B2 (ja) 1990-03-27 1999-05-31 三菱電機株式会社 荷電粒子装置用偏向電磁石
US5072123A (en) 1990-05-03 1991-12-10 Varian Associates, Inc. Method of measuring total ionization current in a segmented ionization chamber
JP2593576B2 (ja) 1990-07-31 1997-03-26 株式会社東芝 放射線位置決め装置
WO1992003028A1 (de) 1990-08-06 1992-02-20 Siemens Aktiengesellschaft Synchrotronstrahlungsquelle
JPH0494198A (ja) 1990-08-09 1992-03-26 Nippon Steel Corp 電磁気シールド用材料
JP2896217B2 (ja) 1990-09-21 1999-05-31 キヤノン株式会社 記録装置
JP2529492B2 (ja) * 1990-08-31 1996-08-28 三菱電機株式会社 荷電粒子偏向電磁石用コイルおよびその製造方法
JP3215409B2 (ja) 1990-09-19 2001-10-09 セイコーインスツルメンツ株式会社 光弁装置
JP2786330B2 (ja) 1990-11-30 1998-08-13 株式会社日立製作所 超電導マグネットコイル、及び該マグネットコイルに用いる硬化性樹脂組成物
DE4101094C1 (en) 1991-01-16 1992-05-27 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De Superconducting micro-undulator for particle accelerator synchrotron source - has superconductor which produces strong magnetic field along track and allows intensity and wavelength of radiation to be varied by conrolling current
IT1244689B (it) 1991-01-25 1994-08-08 Getters Spa Dispositivo per eliminare l'idrogeno da una camera a vuoto, a temperature criogeniche,specialmente in acceleratori di particelle ad alta energia
JPH04258781A (ja) 1991-02-14 1992-09-14 Toshiba Corp ガンマカメラ
JPH04273409A (ja) 1991-02-28 1992-09-29 Hitachi Ltd 超電導マグネツト装置及び該超電導マグネツト装置を使用した粒子加速器
EP0508151B1 (en) 1991-03-13 1998-08-12 Fujitsu Limited Charged particle beam exposure system and charged particle beam exposure method
JPH04337300A (ja) 1991-05-15 1992-11-25 Res Dev Corp Of Japan 超電導偏向マグネット
JP2540900Y2 (ja) 1991-05-16 1997-07-09 株式会社シマノ スピニングリールのストッパ装置
JPH05154210A (ja) 1991-12-06 1993-06-22 Mitsubishi Electric Corp 放射線治療装置
US5148032A (en) 1991-06-28 1992-09-15 Siemens Medical Laboratories, Inc. Radiation emitting device with moveable aperture plate
US5191706A (en) * 1991-07-15 1993-03-09 Delmarva Sash & Door Company Of Maryland, Inc. Machine and method for attaching casing to a structural frame assembly
WO1993002537A1 (en) 1991-07-16 1993-02-04 Sergei Nikolaevich Lapitsky Superconducting electromagnet for charged-particle accelerator
FR2679509B1 (fr) 1991-07-26 1993-11-05 Lebre Charles Dispositif de serrage automatique, sur le mat d'un diable a fut, de l'element de prise en suspension du fut.
US5166531A (en) 1991-08-05 1992-11-24 Varian Associates, Inc. Leaf-end configuration for multileaf collimator
JP2501261B2 (ja) 1991-08-13 1996-05-29 ティーディーケイ株式会社 薄膜磁気ヘッド
JP3125805B2 (ja) * 1991-10-16 2001-01-22 株式会社日立製作所 円形加速器
US5240218A (en) 1991-10-23 1993-08-31 Loma Linda University Medical Center Retractable support assembly
BE1005530A4 (fr) * 1991-11-22 1993-09-28 Ion Beam Applic Sa Cyclotron isochrone
US5374913A (en) 1991-12-13 1994-12-20 Houston Advanced Research Center Twin-bore flux pipe dipole magnet
US5260581A (en) 1992-03-04 1993-11-09 Loma Linda University Medical Center Method of treatment room selection verification in a radiation beam therapy system
US5382914A (en) * 1992-05-05 1995-01-17 Accsys Technology, Inc. Proton-beam therapy linac
JPH05341352A (ja) 1992-06-08 1993-12-24 Minolta Camera Co Ltd カメラ及び交換レンズのバヨネットマウント用キャップ
JPH0636893A (ja) 1992-06-11 1994-02-10 Ishikawajima Harima Heavy Ind Co Ltd 粒子加速器
US5336891A (en) * 1992-06-16 1994-08-09 Arch Development Corporation Aberration free lens system for electron microscope
JP2824363B2 (ja) 1992-07-15 1998-11-11 三菱電機株式会社 ビーム供給装置
US5401973A (en) 1992-12-04 1995-03-28 Atomic Energy Of Canada Limited Industrial material processing electron linear accelerator
JP3121157B2 (ja) 1992-12-15 2000-12-25 株式会社日立メディコ マイクロトロン電子加速器
JPH06233831A (ja) 1993-02-10 1994-08-23 Hitachi Medical Corp 定位的放射線治療装置
US5440133A (en) 1993-07-02 1995-08-08 Loma Linda University Medical Center Charged particle beam scattering system
US5464411A (en) * 1993-11-02 1995-11-07 Loma Linda University Medical Center Vacuum-assisted fixation apparatus
US5549616A (en) 1993-11-02 1996-08-27 Loma Linda University Medical Center Vacuum-assisted stereotactic fixation system with patient-activated switch
US5463291A (en) 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process
JPH07191199A (ja) 1993-12-27 1995-07-28 Fujitsu Ltd 荷電粒子ビーム露光システム及び露光方法
JP3307059B2 (ja) 1994-03-17 2002-07-24 株式会社日立製作所 加速器及び医療用装置並びに出射方法
JPH07260939A (ja) 1994-03-17 1995-10-13 Hitachi Medical Corp シンチレーションカメラのコリメータ交換台車
JPH07263196A (ja) 1994-03-18 1995-10-13 Toshiba Corp 高周波加速空洞
DE4411171A1 (de) 1994-03-30 1995-10-05 Siemens Ag Vorrichtung zur Bereitstellung eines Strahls aus geladenen Teilchen, der eine Achse auf einer diese schneidenden Zielgeraden anfliegt, sowie ihre Verwendung
EP0776595B1 (en) 1994-08-19 1998-12-30 AMERSHAM INTERNATIONAL plc Superconducting cyclotron and target for use in the production of heavy isotopes
IT1281184B1 (it) 1994-09-19 1998-02-17 Giorgio Trozzi Amministratore Apparecchiatura per la radioterapia intraoperatoria mediante acceleratori lineari utilizzabili direttamente in sala operatoria
DE69528509T2 (de) 1994-10-27 2003-06-26 Gen Electric Stromzuleitung von supraleitender Keramik
US5633747A (en) 1994-12-21 1997-05-27 Tencor Instruments Variable spot-size scanning apparatus
JP3629054B2 (ja) 1994-12-22 2005-03-16 北海製罐株式会社 溶接缶サイドシームの外面補正塗装方法
US5511549A (en) 1995-02-13 1996-04-30 Loma Linda Medical Center Normalizing and calibrating therapeutic radiation delivery systems
US5585642A (en) 1995-02-15 1996-12-17 Loma Linda University Medical Center Beamline control and security system for a radiation treatment facility
US5510357A (en) * 1995-02-28 1996-04-23 Eli Lilly And Company Benzothiophene compounds as anti-estrogenic agents
JP3023533B2 (ja) 1995-03-23 2000-03-21 住友重機械工業株式会社 サイクロトロン
ATE226842T1 (de) * 1995-04-18 2002-11-15 Univ Loma Linda Med System für mehrfachpartikel-therapie
US5668371A (en) 1995-06-06 1997-09-16 Wisconsin Alumni Research Foundation Method and apparatus for proton therapy
BE1009669A3 (fr) * 1995-10-06 1997-06-03 Ion Beam Applic Sa Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode.
GB9520564D0 (en) 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
JPH09162585A (ja) 1995-12-05 1997-06-20 Kanazawa Kogyo Univ 磁気シールドルーム及びその組立方法
JP2867933B2 (ja) * 1995-12-14 1999-03-10 株式会社日立製作所 高周波加速装置及び環状加速器
JP3472657B2 (ja) 1996-01-18 2003-12-02 三菱電機株式会社 粒子線照射装置
JP3121265B2 (ja) 1996-05-07 2000-12-25 株式会社日立製作所 放射線遮蔽体
US5811944A (en) 1996-06-25 1998-09-22 The United States Of America As Represented By The Department Of Energy Enhanced dielectric-wall linear accelerator
US5821705A (en) 1996-06-25 1998-10-13 The United States Of America As Represented By The United States Department Of Energy Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators
US5726448A (en) * 1996-08-09 1998-03-10 California Institute Of Technology Rotating field mass and velocity analyzer
EP1378265B1 (en) 1996-08-30 2007-01-17 Hitachi, Ltd. Charged particle beam apparatus
JPH1071213A (ja) 1996-08-30 1998-03-17 Hitachi Ltd 陽子線治療システム
US5851182A (en) 1996-09-11 1998-12-22 Sahadevan; Velayudhan Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology
US5727554A (en) * 1996-09-19 1998-03-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus responsive to movement of a patient during treatment/diagnosis
US5672878A (en) 1996-10-24 1997-09-30 Siemens Medical Systems Inc. Ionization chamber having off-passageway measuring electrodes
US5778047A (en) 1996-10-24 1998-07-07 Varian Associates, Inc. Radiotherapy couch top
US5920601A (en) 1996-10-25 1999-07-06 Lockheed Martin Idaho Technologies Company System and method for delivery of neutron beams for medical therapy
US5825845A (en) 1996-10-28 1998-10-20 Loma Linda University Medical Center Proton beam digital imaging system
US5784431A (en) 1996-10-29 1998-07-21 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for matching X-ray images with reference images
JP3841898B2 (ja) 1996-11-21 2006-11-08 三菱電機株式会社 深部線量測定装置
US6256591B1 (en) 1996-11-26 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Method of forming energy distribution
JP3246364B2 (ja) 1996-12-03 2002-01-15 株式会社日立製作所 シンクロトロン型加速器及びそれを用いた医療用装置
US5744919A (en) * 1996-12-12 1998-04-28 Mishin; Andrey V. CW particle accelerator with low particle injection velocity
JPH10247600A (ja) 1997-03-04 1998-09-14 Toshiba Corp 陽子加速器
EP0864337A3 (en) 1997-03-15 1999-03-10 Shenzhen OUR International Technology & Science Co., Ltd. Three-dimensional irradiation technique with charged particles of Bragg peak properties and its device
JPH10270200A (ja) 1997-03-27 1998-10-09 Mitsubishi Electric Corp 出射ビーム強度制御装置及び制御方法
US5841237A (en) 1997-07-14 1998-11-24 Lockheed Martin Energy Research Corporation Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
BE1012534A3 (fr) 1997-08-04 2000-12-05 Sumitomo Heavy Industries Systeme de lit pour therapie par irradiation.
US5846043A (en) 1997-08-05 1998-12-08 Spath; John J. Cart and caddie system for storing and delivering water bottles
JP3532739B2 (ja) 1997-08-07 2004-05-31 住友重機械工業株式会社 放射線の照射野形成部材固定装置
US5963615A (en) 1997-08-08 1999-10-05 Siemens Medical Systems, Inc. Rotational flatness improvement
JP3519248B2 (ja) 1997-08-08 2004-04-12 住友重機械工業株式会社 放射線治療用回転照射室
JP3203211B2 (ja) * 1997-08-11 2001-08-27 住友重機械工業株式会社 水ファントム型線量分布測定装置及び放射線治療装置
CN1209037A (zh) * 1997-08-14 1999-02-24 深圳奥沃国际科技发展有限公司 大跨度回旋加速器
JPH11102800A (ja) 1997-09-29 1999-04-13 Toshiba Corp 超電導高周波加速空胴および粒子加速器
EP0943148A1 (en) 1997-10-06 1999-09-22 Koninklijke Philips Electronics N.V. X-ray examination apparatus including adjustable x-ray filter and collimator
JP3577201B2 (ja) 1997-10-20 2004-10-13 三菱電機株式会社 荷電粒子線照射装置、荷電粒子線回転照射装置、および荷電粒子線照射方法
JPH11142600A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 荷電粒子線照射装置及び照射方法
JP3528583B2 (ja) 1997-12-25 2004-05-17 三菱電機株式会社 荷電粒子ビーム照射装置および磁界発生装置
EP1047337B1 (en) 1998-01-14 2007-10-10 Leonard Reiffel System to stabilize an irradiated internal target
AUPP156698A0 (en) 1998-01-30 1998-02-19 Pacific Solar Pty Limited New method for hydrogen passivation
JPH11243295A (ja) 1998-02-26 1999-09-07 Shimizu Corp 磁気シールド方法及び磁気シールド構造
JPH11253563A (ja) 1998-03-10 1999-09-21 Hitachi Ltd 荷電粒子ビーム照射方法及び装置
JP3053389B1 (ja) 1998-12-03 2000-06-19 三菱電機株式会社 動体追跡照射装置
US6576916B2 (en) * 1998-03-23 2003-06-10 Penn State Research Foundation Container for transporting antiprotons and reaction trap
GB2361523B (en) 1998-03-31 2002-05-01 Toshiba Kk Superconducting magnet apparatus
JPH11329945A (ja) 1998-05-08 1999-11-30 Nikon Corp 荷電粒子ビーム転写方法及び荷電粒子ビーム転写装置
JP2000070389A (ja) 1998-08-27 2000-03-07 Mitsubishi Electric Corp 照射線量値計算装置、照射線量値計算方法および記録媒体
ATE472807T1 (de) * 1998-09-11 2010-07-15 Gsi Helmholtzzentrum Schwerionenforschung Gmbh Ionenstrahl-therapieanlage und verfahren zum betrieb der anlage
SE513192C2 (sv) 1998-09-29 2000-07-24 Gems Pet Systems Ab Förfarande och system för HF-styrning
US6369585B2 (en) 1998-10-02 2002-04-09 Siemens Medical Solutions Usa, Inc. System and method for tuning a resonant structure
US6279579B1 (en) 1998-10-23 2001-08-28 Varian Medical Systems, Inc. Method and system for positioning patients for medical treatment procedures
US6621889B1 (en) 1998-10-23 2003-09-16 Varian Medical Systems, Inc. Method and system for predictive physiological gating of radiation therapy
US6241671B1 (en) 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US6441569B1 (en) * 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
BE1012358A5 (fr) 1998-12-21 2000-10-03 Ion Beam Applic Sa Procede de variation de l'energie d'un faisceau de particules extraites d'un accelerateur et dispositif a cet effet.
BE1012371A5 (fr) 1998-12-24 2000-10-03 Ion Beam Applic Sa Procede de traitement d'un faisceau de protons et dispositif appliquant ce procede.
JP2000237335A (ja) 1999-02-17 2000-09-05 Mitsubishi Electric Corp 放射線治療方法及びそのシステム
JP3464406B2 (ja) 1999-02-18 2003-11-10 高エネルギー加速器研究機構長 サイクロトロン用内部負イオン源
DE19907138A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung der Strahlerzeugungsmittel und der Strahlbeschleunigungsmittel eines Ionenstrahl-Therapiesystems
DE19907097A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Bestrahlungsdosisverteilung
DE19907205A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Strahlposition
DE19907774A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Verifizieren der berechneten Bestrahlungsdosis eines Ionenstrahl-Therapiesystems
DE19907065A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung eines Isozentrums und einer Patientenpositionierungseinrichtung eines Ionenstrahl-Therapiesystems
DE19907098A1 (de) 1999-02-19 2000-08-24 Schwerionenforsch Gmbh Ionenstrahl-Abtastsystem und Verfahren zum Betrieb des Systems
DE19907121A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung der Strahlführung eines Ionenstrahl-Therapiesystems
US6414614B1 (en) * 1999-02-23 2002-07-02 Cirrus Logic, Inc. Power output stage compensation for digital output amplifiers
US6501981B1 (en) * 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
US6144875A (en) 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
EP1041579A1 (en) 1999-04-01 2000-10-04 GSI Gesellschaft für Schwerionenforschung mbH Gantry with an ion-optical system
CA2365838C (en) 1999-04-07 2011-01-18 Loma Linda University Medical Center Patient motion monitoring system for proton therapy
JP2000294399A (ja) 1999-04-12 2000-10-20 Toshiba Corp 超電導高周波加速空胴及び粒子加速器
US6433494B1 (en) * 1999-04-22 2002-08-13 Victor V. Kulish Inductional undulative EH-accelerator
JP3530072B2 (ja) 1999-05-13 2004-05-24 三菱電機株式会社 放射線治療用の放射線照射装置の制御装置
SE9902163D0 (sv) 1999-06-09 1999-06-09 Scanditronix Medical Ab Stable rotable radiation gantry
JP2001006900A (ja) 1999-06-18 2001-01-12 Toshiba Corp 放射光発生装置
US6814694B1 (en) 1999-06-25 2004-11-09 Paul Scherrer Institut Device for carrying out proton therapy
JP2001009050A (ja) 1999-06-29 2001-01-16 Hitachi Medical Corp 放射線治療装置
EP1069809A1 (en) 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
JP2001029490A (ja) 1999-07-19 2001-02-06 Hitachi Ltd 混合照射評価支援システム
NL1012677C2 (nl) 1999-07-22 2001-01-23 William Van Der Burg Inrichting en werkwijze voor het plaatsen van een informatiedrager.
US6380545B1 (en) 1999-08-30 2002-04-30 Southeastern Universities Research Association, Inc. Uniform raster pattern generating system
US6420917B1 (en) 1999-10-01 2002-07-16 Ericsson Inc. PLL loop filter with switched-capacitor resistor
US6713773B1 (en) * 1999-10-07 2004-03-30 Mitec, Inc. Irradiation system and method
AU8002500A (en) 1999-10-08 2001-04-23 Advanced Research And Technology Institute, Inc. Apparatus and method for non-invasive myocardial revascularization
JP4185637B2 (ja) 1999-11-01 2008-11-26 株式会社神鋼エンジニアリング&メンテナンス 粒子線治療用回転照射室
US6803585B2 (en) 2000-01-03 2004-10-12 Yuri Glukhoy Electron-cyclotron resonance type ion beam source for ion implanter
US6366021B1 (en) 2000-01-06 2002-04-02 Varian Medical Systems, Inc. Standing wave particle beam accelerator with switchable beam energy
CA2320597A1 (en) 2000-01-06 2001-07-06 Blacklight Power, Inc. Ion cyclotron power converter and radio and microwave generator
US6498444B1 (en) 2000-04-10 2002-12-24 Siemens Medical Solutions Usa, Inc. Computer-aided tuning of charged particle accelerators
US6787771B2 (en) 2000-04-27 2004-09-07 Loma Linda University Nanodosimeter based on single ion detection
JP2001346893A (ja) 2000-06-06 2001-12-18 Ishikawajima Harima Heavy Ind Co Ltd 放射線治療装置
DE10031074A1 (de) * 2000-06-30 2002-01-31 Schwerionenforsch Gmbh Vorrichtung zur Bestrahlung eines Tumorgewebes
JP3705091B2 (ja) 2000-07-27 2005-10-12 株式会社日立製作所 医療用加速器システム及びその運転方法
US6914396B1 (en) 2000-07-31 2005-07-05 Yale University Multi-stage cavity cyclotron resonance accelerator
US7041479B2 (en) 2000-09-06 2006-05-09 The Board Of Trustess Of The Leland Stanford Junior University Enhanced in vitro synthesis of active proteins containing disulfide bonds
CA2325362A1 (en) 2000-11-08 2002-05-08 Kirk Flippo Method and apparatus for high-energy generation and for inducing nuclear reactions
EP1209720A3 (en) * 2000-11-21 2006-11-15 Hitachi High-Technologies Corporation Energy spectrum measurement
JP3633475B2 (ja) 2000-11-27 2005-03-30 鹿島建設株式会社 すだれ型磁気シールド方法及びパネル並びに磁気暗室
WO2002045793A2 (en) 2000-12-08 2002-06-13 Loma Linda University Medical Center Proton beam therapy control system
US6492922B1 (en) 2000-12-14 2002-12-10 Xilinx Inc. Anti-aliasing filter with automatic cutoff frequency adaptation
JP2002210028A (ja) 2001-01-23 2002-07-30 Mitsubishi Electric Corp 放射線照射システム及び放射線照射方法
US6407505B1 (en) 2001-02-01 2002-06-18 Siemens Medical Solutions Usa, Inc. Variable energy linear accelerator
DE60219283T2 (de) 2001-02-05 2008-01-03 Gesellschaft für Schwerionenforschung mbH Vorrichtung zum Erzeugen und zum Auswählen von Ionen, die in einer Schwerionen-Krebstherapie-Anlage verwendet werden
WO2002069350A1 (en) * 2001-02-06 2002-09-06 Gesellschaft für Schwerionenforschung mbH Beam scanning system for a heavy ion gantry
US6493424B2 (en) 2001-03-05 2002-12-10 Siemens Medical Solutions Usa, Inc. Multi-mode operation of a standing wave linear accelerator
JP4115675B2 (ja) 2001-03-14 2008-07-09 三菱電機株式会社 強度変調療法用吸収線量測定装置
US6646383B2 (en) 2001-03-15 2003-11-11 Siemens Medical Solutions Usa, Inc. Monolithic structure with asymmetric coupling
US6627875B2 (en) * 2001-04-23 2003-09-30 Beyond Genomics, Inc. Tailored waveform/charge reduction mass spectrometry
US6465957B1 (en) 2001-05-25 2002-10-15 Siemens Medical Solutions Usa, Inc. Standing wave linear accelerator with integral prebunching section
EP1265462A1 (fr) 2001-06-08 2002-12-11 Ion Beam Applications S.A. Dispositif et méthode de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules
US6853703B2 (en) * 2001-07-20 2005-02-08 Siemens Medical Solutions Usa, Inc. Automated delivery of treatment fields
WO2003017745A2 (en) 2001-08-23 2003-03-06 Sciperio, Inc. Architecture tool and methods of use
JP2003086400A (ja) * 2001-09-11 2003-03-20 Hitachi Ltd 加速器システム及び医療用加速器施設
ATE357839T1 (de) * 2001-10-30 2007-04-15 Univ Loma Linda Med Einrichtung zum ausrichten eines patienten zur strahlentherapie
US6519316B1 (en) * 2001-11-02 2003-02-11 Siemens Medical Solutions Usa, Inc.. Integrated control of portal imaging device
US6777689B2 (en) 2001-11-16 2004-08-17 Ion Beam Application, S.A. Article irradiation system shielding
US7221733B1 (en) 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target
US6593696B2 (en) 2002-01-04 2003-07-15 Siemens Medical Solutions Usa, Inc. Low dark current linear accelerator
US6819117B2 (en) * 2002-01-30 2004-11-16 Credence Systems Corporation PICA system timing measurement & calibration
DE10205949B4 (de) 2002-02-12 2013-04-25 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Verfahren und Vorrichtung zum Steuern einer nach dem Rasterscanverfahren arbeitenden Bestrahlungseinrichtung für schwere Ionen oder Protonen mit Strahlextraktion
JP3691020B2 (ja) 2002-02-28 2005-08-31 株式会社日立製作所 医療用荷電粒子照射装置
JP4072359B2 (ja) 2002-02-28 2008-04-09 株式会社日立製作所 荷電粒子ビーム照射装置
WO2003076016A1 (de) * 2002-03-12 2003-09-18 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Vorrichtung zur durchführung und verifikation einer therapeutischen behandlung sowie zugehöriges computerprogramm und steuerungsverfahren
JP3801938B2 (ja) * 2002-03-26 2006-07-26 株式会社日立製作所 粒子線治療システム及び荷電粒子ビーム軌道の調整方法
CN1631061A (zh) 2002-04-25 2005-06-22 Eps·爱玛·工程促进会·工程及医学应用加速器会 粒子加速器
EP1358908A1 (en) 2002-05-03 2003-11-05 Ion Beam Applications S.A. Device for irradiation therapy with charged particles
DE10221180A1 (de) 2002-05-13 2003-12-24 Siemens Ag Patientenlagerungsvorrichtung für eine Strahlentherapie
US6735277B2 (en) 2002-05-23 2004-05-11 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
EP1531902A1 (en) 2002-05-31 2005-05-25 Ion Beam Applications S.A. Apparatus for irradiating a target volume
US6777700B2 (en) 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US6865254B2 (en) 2002-07-02 2005-03-08 Pencilbeam Technologies Ab Radiation system with inner and outer gantry parts
US7162005B2 (en) * 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
US7103137B2 (en) * 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
DE10241178B4 (de) 2002-09-05 2007-03-29 Mt Aerospace Ag Isokinetische Gantry-Anordnung zur isozentrischen Führung eines Teilchenstrahls und Verfahren zu deren Auslegung
AU2003258441A1 (en) 2002-09-18 2004-04-08 Paul Scherrer Institut System for performing proton therapy
JP3748426B2 (ja) 2002-09-30 2006-02-22 株式会社日立製作所 医療用粒子線照射装置
JP3961925B2 (ja) * 2002-10-17 2007-08-22 三菱電機株式会社 ビーム加速装置
JP2004139944A (ja) 2002-10-21 2004-05-13 Applied Materials Inc イオン注入装置及び方法
US6853142B2 (en) 2002-11-04 2005-02-08 Zond, Inc. Methods and apparatus for generating high-density plasma
EP1566082B1 (fr) 2002-11-25 2012-05-30 Ion Beam Applications S.A. Cyclotron
EP1429345A1 (fr) 2002-12-10 2004-06-16 Ion Beam Applications S.A. Dispositif et procédé de production de radio-isotopes
DE10261099B4 (de) 2002-12-20 2005-12-08 Siemens Ag Ionenstrahlanlage
WO2004060486A1 (en) 2003-01-02 2004-07-22 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
EP1439566B1 (en) 2003-01-17 2019-08-28 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam apparatus and method for operating the same
US7814937B2 (en) 2005-10-26 2010-10-19 University Of Southern California Deployable contour crafting
JP4186636B2 (ja) 2003-01-30 2008-11-26 株式会社日立製作所 超電導磁石
US7259529B2 (en) 2003-02-17 2007-08-21 Mitsubishi Denki Kabushiki Kaisha Charged particle accelerator
JP3748433B2 (ja) 2003-03-05 2006-02-22 株式会社日立製作所 ベッド位置決め装置及びその位置決め方法
JP3859605B2 (ja) 2003-03-07 2006-12-20 株式会社日立製作所 粒子線治療システム及び粒子線出射方法
EP1605742B1 (en) 2003-03-17 2011-06-29 Kajima Corporation Open magnetic shield structure and its magnetic frame
JP3655292B2 (ja) 2003-04-14 2005-06-02 株式会社日立製作所 粒子線照射装置及び荷電粒子ビーム照射装置の調整方法
JP2004321408A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 放射線照射装置および放射線照射方法
EP1477206B2 (en) 2003-05-13 2011-02-23 Hitachi, Ltd. Particle beam irradiation apparatus and treatment planning unit
US20070018121A1 (en) 2003-05-13 2007-01-25 Ion Beam Applications Sa Of Method and system for automatic beam allocation in a multi-room particle beam treatment facility
AU2003235405A1 (en) 2003-05-22 2004-12-13 Mitsubishi Chemical Corporation Light-sensitive body drum, method and device for assembling the drum, and image forming device using the drum
US7317192B2 (en) 2003-06-02 2008-01-08 Fox Chase Cancer Center High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers
JP2005027681A (ja) 2003-07-07 2005-02-03 Hitachi Ltd 荷電粒子治療装置及び荷電粒子治療システム
US7038403B2 (en) * 2003-07-31 2006-05-02 Ge Medical Technology Services, Inc. Method and apparatus for maintaining alignment of a cyclotron dee
CA2891712A1 (en) * 2003-08-12 2005-03-03 Loma Linda University Medical Center Patient positioning system for radiation therapy system
KR101249815B1 (ko) 2003-08-12 2013-04-03 로마 린다 유니버시티 메디칼 센터 방사선 테라피 시스템을 위한 환자 배치 시스템
US6902646B2 (en) * 2003-08-14 2005-06-07 Advanced Energy Industries, Inc. Sensor array for measuring plasma characteristics in plasma processing environments
JP3685194B2 (ja) 2003-09-10 2005-08-17 株式会社日立製作所 粒子線治療装置,レンジモジュレーション回転装置及びレンジモジュレーション回転装置の取り付け方法
US20050058245A1 (en) 2003-09-11 2005-03-17 Moshe Ein-Gal Intensity-modulated radiation therapy with a multilayer multileaf collimator
US7557359B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7786451B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7557360B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7786452B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7557358B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7554096B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7557361B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7554097B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7154991B2 (en) 2003-10-17 2006-12-26 Accuray, Inc. Patient positioning assembly for therapeutic radiation system
CN1537657A (zh) 2003-10-22 2004-10-20 高春平 手术中放射治疗装置
US7295648B2 (en) 2003-10-23 2007-11-13 Elektra Ab (Publ) Method and apparatus for treatment by ionizing radiation
JP4114590B2 (ja) 2003-10-24 2008-07-09 株式会社日立製作所 粒子線治療装置
JP3912364B2 (ja) 2003-11-07 2007-05-09 株式会社日立製作所 粒子線治療装置
EP1690113B1 (en) 2003-12-04 2012-06-27 Paul Scherrer Institut An inorganic scintillating mixture and a sensor assembly for charged particle dosimetry
JP3643371B1 (ja) 2003-12-10 2005-04-27 株式会社日立製作所 粒子線照射装置及び照射野形成装置の調整方法
JP4443917B2 (ja) 2003-12-26 2010-03-31 株式会社日立製作所 粒子線治療装置
US7173385B2 (en) 2004-01-15 2007-02-06 The Regents Of The University Of California Compact accelerator
US7710051B2 (en) 2004-01-15 2010-05-04 Lawrence Livermore National Security, Llc Compact accelerator for medical therapy
EP1566647B1 (en) * 2004-02-23 2007-09-12 Zyvex Instruments, LLC Particle beam device probe operation
EP1584353A1 (en) 2004-04-05 2005-10-12 Paul Scherrer Institut A system for delivery of proton therapy
US7860550B2 (en) 2004-04-06 2010-12-28 Accuray, Inc. Patient positioning assembly
US8160205B2 (en) 2004-04-06 2012-04-17 Accuray Incorporated Robotic arm for patient positioning assembly
JP4257741B2 (ja) 2004-04-19 2009-04-22 三菱電機株式会社 荷電粒子ビーム加速器、荷電粒子ビーム加速器を用いた粒子線照射医療システムおよび、粒子線照射医療システムの運転方法
DE102004027071A1 (de) 2004-05-19 2006-01-05 Gesellschaft für Schwerionenforschung mbH Strahlzuteilungsvorrichtung und Strahlzuteilungsverfahren für medizinische Teilchenbeschleuniger
DE102004028035A1 (de) * 2004-06-09 2005-12-29 Gesellschaft für Schwerionenforschung mbH Vorrichtung und Verfahren zur Kompensation von Bewegungen eines Zielvolumens während einer Ionenstrahl-Bestrahlung
DE202004009421U1 (de) 2004-06-16 2005-11-03 Gesellschaft für Schwerionenforschung mbH Teilchenbeschleuniger für die Strahlentherapie mit Ionenstrahlen
US7073508B2 (en) 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
US7323682B2 (en) * 2004-07-02 2008-01-29 Thermo Finnigan Llc Pulsed ion source for quadrupole mass spectrometer and method
US7135678B2 (en) 2004-07-09 2006-11-14 Credence Systems Corporation Charged particle guide
US7208748B2 (en) * 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation
ES2654328T3 (es) 2004-07-21 2018-02-13 Mevion Medical Systems, Inc. Generador en forma de onda de radio frecuencia programable para un sincrociclotrón
JP4104008B2 (ja) * 2004-07-21 2008-06-18 独立行政法人放射線医学総合研究所 螺旋軌道型荷電粒子加速器及びその加速方法
US6965116B1 (en) 2004-07-23 2005-11-15 Applied Materials, Inc. Method of determining dose uniformity of a scanning ion implanter
JP4489529B2 (ja) 2004-07-28 2010-06-23 株式会社日立製作所 粒子線治療システム及び粒子線治療システムの制御システム
GB2418061B (en) 2004-09-03 2006-10-18 Zeiss Carl Smt Ltd Scanning particle beam instrument
DE102004048212B4 (de) 2004-09-30 2007-02-01 Siemens Ag Strahlentherapieanlage mit Bildgebungsvorrichtung
JP2006128087A (ja) 2004-09-30 2006-05-18 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP3806723B2 (ja) 2004-11-16 2006-08-09 株式会社日立製作所 粒子線照射システム
DE102004057726B4 (de) 2004-11-30 2010-03-18 Siemens Ag Medizinische Untersuchungs- und Behandlungseinrichtung
CN100561332C (zh) 2004-12-09 2009-11-18 Ge医疗***环球技术有限公司 X射线辐照器和x射线成像设备
US7122966B2 (en) 2004-12-16 2006-10-17 General Electric Company Ion source apparatus and method
US7349730B2 (en) 2005-01-11 2008-03-25 Moshe Ein-Gal Radiation modulator positioner
WO2006076545A2 (en) 2005-01-14 2006-07-20 Indiana University Research And Technology Corporation Automatic retractable floor system for a rotating gantry
US7193227B2 (en) 2005-01-24 2007-03-20 Hitachi, Ltd. Ion beam therapy system and its couch positioning method
US7468506B2 (en) 2005-01-26 2008-12-23 Applied Materials, Israel, Ltd. Spot grid array scanning system
ITCO20050007A1 (it) 2005-02-02 2006-08-03 Fond Per Adroterapia Oncologia Sistema di accelerazione di ioni per adroterapia
CN101031336B (zh) 2005-02-04 2011-08-10 三菱电机株式会社 粒子射线照射方法及该方法中使用的粒子射线照射装置
DE112005002171B4 (de) 2005-02-04 2009-11-12 Mitsubishi Denki K.K. Teilchenstrahl-Bestrahlungsverfahren und dafür verwendete Teilchenstrahl-Bestrahlungsvorrichtung
GB2422958B (en) * 2005-02-04 2008-07-09 Siemens Magnet Technology Ltd Quench protection circuit for a superconducting magnet
JP4345688B2 (ja) 2005-02-24 2009-10-14 株式会社日立製作所 内燃機関の診断装置および制御装置
JP4219905B2 (ja) 2005-02-25 2009-02-04 株式会社日立製作所 放射線治療装置の回転ガントリー
JP5094707B2 (ja) * 2005-03-09 2012-12-12 パウル・シェラー・インスティトゥート 陽子線治療を施すと同時に広視野のビームズアイビュー(bev)によるx線画像を撮影するシステム
JP4363344B2 (ja) * 2005-03-15 2009-11-11 三菱電機株式会社 粒子線加速器
JP2006280457A (ja) 2005-03-31 2006-10-19 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP4751635B2 (ja) 2005-04-13 2011-08-17 株式会社日立ハイテクノロジーズ 磁界重畳型電子銃
JP4158931B2 (ja) 2005-04-13 2008-10-01 三菱電機株式会社 粒子線治療装置
US7420182B2 (en) 2005-04-27 2008-09-02 Busek Company Combined radio frequency and hall effect ion source and plasma accelerator system
US7014361B1 (en) 2005-05-11 2006-03-21 Moshe Ein-Gal Adaptive rotator for gantry
WO2006126075A2 (en) * 2005-05-27 2006-11-30 Ion Beam Applications, S.A. Device and method for quality assurance and online verification of radiation therapy
US7385203B2 (en) 2005-06-07 2008-06-10 Hitachi, Ltd. Charged particle beam extraction system and method
US7575242B2 (en) * 2005-06-16 2009-08-18 Siemens Medical Solutions Usa, Inc. Collimator change cart
GB2427478B (en) 2005-06-22 2008-02-20 Siemens Magnet Technology Ltd Particle radiation therapy equipment and method for simultaneous application of magnetic resonance imaging and particle radiation
US7436932B2 (en) 2005-06-24 2008-10-14 Varian Medical Systems Technologies, Inc. X-ray radiation sources with low neutron emissions for radiation scanning
JP3882843B2 (ja) * 2005-06-30 2007-02-21 株式会社日立製作所 回転照射装置
CN100564232C (zh) * 2005-07-13 2009-12-02 克朗设备公司 材料装卸车辆
EP1907981A4 (en) * 2005-07-22 2009-10-21 Tomotherapy Inc METHOD AND SYSTEM FOR DOSE EVALUATION ADMINISTERED
CA2616299A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method of placing constraints on a deformation map and system for implementing same
JP2009514559A (ja) 2005-07-22 2009-04-09 トモセラピー・インコーポレーテッド 線量体積ヒストグラムを用いて輪郭構造を生成するシステムおよび方法
CA2616316A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for adapting a radiation therapy treatment plan based on a biological model
CA2616292A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treament plan
EP1907059A4 (en) 2005-07-22 2009-10-21 Tomotherapy Inc METHOD AND SYSTEM FOR PREDICTING DOSAGE ADMINISTRATION
JP2009502250A (ja) 2005-07-22 2009-01-29 トモセラピー・インコーポレーテッド 放射線療法治療計画に関連するデータを処理するための方法およびシステム
WO2007014104A2 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated System and method of evaluating dose delivered by a radiation therapy system
DE102006033501A1 (de) * 2005-08-05 2007-02-15 Siemens Ag Gantry-System für eine Partikeltherapieanlage
EP1752992A1 (de) 2005-08-12 2007-02-14 Siemens Aktiengesellschaft Vorrichtung zur Anpassung mindestens eines Partikelstrahlparameters eines Partikelstrahls einer Partikelbeschleunigeranlage und Partikelbeschleunigeranlage mit einer derartigen Vorrichtung
DE102005038242B3 (de) 2005-08-12 2007-04-12 Siemens Ag Vorrichtung zur Aufweitung einer Partikelenergieverteilung eines Partikelstrahls einer Partikeltherapieanlage, Strahlüberwachungs- und Strahlanpassungseinheit und Verfahren
DE102005041122B3 (de) 2005-08-30 2007-05-31 Siemens Ag Gantry-System für eine Partikeltherapieanlage, Partikeltherapieanlage und Bestrahlungsverfahren für eine Partikeltherapieanlage mit einem derartigen Gantry-System
US20070061937A1 (en) 2005-09-06 2007-03-22 Curle Dennis W Method and apparatus for aerodynamic hat brim and hat
JP5245193B2 (ja) 2005-09-07 2013-07-24 株式会社日立製作所 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
DE102005044408B4 (de) 2005-09-16 2008-03-27 Siemens Ag Partikeltherapieanlage, Verfahren und Vorrichtung zur Anforderung eines Partikelstrahls
DE102005044409B4 (de) 2005-09-16 2007-11-29 Siemens Ag Partikeltherapieanlage und Verfahren zur Ausbildung eines Strahlpfads für einen Bestrahlungsvorgang in einer Partikeltherapieanlage
US7295649B2 (en) 2005-10-13 2007-11-13 Varian Medical Systems Technologies, Inc. Radiation therapy system and method of using the same
US7658901B2 (en) 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
CA2626800A1 (en) 2005-10-24 2007-10-25 Lawrence Livermore National Security, Llc Optically- initiated silicon carbide high voltage switch
US8466415B2 (en) 2005-11-07 2013-06-18 Fibics Incorporated Methods for performing circuit edit operations with low landing energy electron beams
DE102005053719B3 (de) 2005-11-10 2007-07-05 Siemens Ag Partikeltherapieanlage, Therapieplan und Bestrahlungsverfahren für eine derartige Partikeltherapieanlage
US7518108B2 (en) 2005-11-10 2009-04-14 Wisconsin Alumni Research Foundation Electrospray ionization ion source with tunable charge reduction
AU2006342170A1 (en) 2005-11-14 2007-10-25 Lawrence Livermore National Security, Llc Cast dielectric composite linear accelerator
CN101361156B (zh) 2005-11-18 2012-12-12 梅维昂医疗***股份有限公司 用于实施放射治疗的设备
US7459899B2 (en) 2005-11-21 2008-12-02 Thermo Fisher Scientific Inc. Inductively-coupled RF power source
EP1795229A1 (en) 2005-12-12 2007-06-13 Ion Beam Applications S.A. Device and method for positioning a patient in a radiation therapy apparatus
US7298821B2 (en) 2005-12-12 2007-11-20 Moshe Ein-Gal Imaging and treatment system
DE102005063220A1 (de) 2005-12-22 2007-06-28 GSI Gesellschaft für Schwerionenforschung mbH Vorrichtung zum Bestrahlen von Tumorgewebe eines Patienten mit einem Teilchenstrahl
US7656258B1 (en) * 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
WO2007084701A1 (en) 2006-01-19 2007-07-26 Massachusetts Institute Of Technology Magnet structure for particle acceleration
US7432516B2 (en) 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
JP4696965B2 (ja) 2006-02-24 2011-06-08 株式会社日立製作所 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
JP4310319B2 (ja) 2006-03-10 2009-08-05 三菱重工業株式会社 放射線治療装置制御装置および放射線照射方法
DE102006011828A1 (de) 2006-03-13 2007-09-20 Gesellschaft für Schwerionenforschung mbH Bestrahlungsverifikationsvorrichtung für Strahlentherapieanlagen und Verfahren zur Handhabung derselben
DE102006012680B3 (de) 2006-03-20 2007-08-02 Siemens Ag Partikeltherapie-Anlage und Verfahren zum Ausgleichen einer axialen Abweichung in der Position eines Partikelstrahls einer Partikeltherapie-Anlage
JP4644617B2 (ja) 2006-03-23 2011-03-02 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP4762020B2 (ja) 2006-03-27 2011-08-31 株式会社小松製作所 成形方法及び成形品
JP4730167B2 (ja) 2006-03-29 2011-07-20 株式会社日立製作所 粒子線照射システム
US7507975B2 (en) 2006-04-21 2009-03-24 Varian Medical Systems, Inc. System and method for high resolution radiation field shaping
US7394082B2 (en) 2006-05-01 2008-07-01 Hitachi, Ltd. Ion beam delivery equipment and an ion beam delivery method
US8173981B2 (en) 2006-05-12 2012-05-08 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US8426833B2 (en) 2006-05-12 2013-04-23 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US7582886B2 (en) 2006-05-12 2009-09-01 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US7466085B2 (en) 2007-04-17 2008-12-16 Advanced Biomarker Technologies, Llc Cyclotron having permanent magnets
US7476883B2 (en) * 2006-05-26 2009-01-13 Advanced Biomarker Technologies, Llc Biomarker generator system
US7627267B2 (en) 2006-06-01 2009-12-01 Fuji Xerox Co., Ltd. Image formation apparatus, image formation unit, methods of assembling and disassembling image formation apparatus, and temporarily tacking member used for image formation apparatus
JP4495112B2 (ja) 2006-06-01 2010-06-30 三菱重工業株式会社 放射線治療装置制御装置および放射線照射方法
US7402823B2 (en) 2006-06-05 2008-07-22 Varian Medical Systems Technologies, Inc. Particle beam system including exchangeable particle beam nozzle
US7817836B2 (en) 2006-06-05 2010-10-19 Varian Medical Systems, Inc. Methods for volumetric contouring with expert guidance
JP5116996B2 (ja) 2006-06-20 2013-01-09 キヤノン株式会社 荷電粒子線描画方法、露光装置、及びデバイス製造方法
US7990524B2 (en) 2006-06-30 2011-08-02 The University Of Chicago Stochastic scanning apparatus using multiphoton multifocal source
JP4206414B2 (ja) 2006-07-07 2009-01-14 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US7801269B2 (en) 2006-07-28 2010-09-21 Tomotherapy Incorporated Method and apparatus for calibrating a radiation therapy treatment system
JP4872540B2 (ja) 2006-08-31 2012-02-08 株式会社日立製作所 回転照射治療装置
JP4881677B2 (ja) 2006-08-31 2012-02-22 株式会社日立ハイテクノロジーズ 荷電粒子線走査方法及び荷電粒子線装置
US7701677B2 (en) 2006-09-07 2010-04-20 Massachusetts Institute Of Technology Inductive quench for magnet protection
JP4365844B2 (ja) 2006-09-08 2009-11-18 三菱電機株式会社 荷電粒子線の線量分布測定装置
US7950587B2 (en) 2006-09-22 2011-05-31 The Board of Regents of the Nevada System of Higher Education on behalf of the University of Reno, Nevada Devices and methods for storing data
JP4250180B2 (ja) 2006-09-29 2009-04-08 株式会社日立製作所 放射線撮像装置およびそれを用いた核医学診断装置
US8069675B2 (en) 2006-10-10 2011-12-06 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler
DE102006048426B3 (de) 2006-10-12 2008-05-21 Siemens Ag Verfahren zur Bestimmung der Reichweite von Strahlung
DE202006019307U1 (de) 2006-12-21 2008-04-24 Accel Instruments Gmbh Bestrahlungsvorrichtung
JP4948382B2 (ja) 2006-12-22 2012-06-06 キヤノン株式会社 感光ドラム取り付け用カップリング部材
CN101622913A (zh) 2006-12-28 2010-01-06 丰达齐奥尼·佩尔·阿德罗特拉皮埃·安克罗吉卡-特拉 用于医疗和/或其它领域的离子加速***
JP4655046B2 (ja) 2007-01-10 2011-03-23 三菱電機株式会社 線形イオン加速器
FR2911843B1 (fr) 2007-01-30 2009-04-10 Peugeot Citroen Automobiles Sa Systeme de chariots pour le transport et la manipulation de bacs destines a l'approvisionnement en pieces d'une ligne de montage de vehicules
JP4228018B2 (ja) 2007-02-16 2009-02-25 三菱重工業株式会社 医療装置
JP4936924B2 (ja) * 2007-02-20 2012-05-23 稔 植松 粒子線照射システム
WO2008106484A1 (en) * 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Ion radiation therapy system with rocking gantry motion
WO2008106483A1 (en) 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Ion radiation therapy system with distal gradient tracking
US7977648B2 (en) 2007-02-27 2011-07-12 Wisconsin Alumni Research Foundation Scanning aperture ion beam modulator
US7397901B1 (en) 2007-02-28 2008-07-08 Varian Medical Systems Technologies, Inc. Multi-leaf collimator with leaves formed of different materials
US7453076B2 (en) 2007-03-23 2008-11-18 Nanolife Sciences, Inc. Bi-polar treatment facility for treating target cells with both positive and negative ions
US7778488B2 (en) 2007-03-23 2010-08-17 Varian Medical Systems International Ag Image deformation using multiple image regions
US8041006B2 (en) 2007-04-11 2011-10-18 The Invention Science Fund I Llc Aspects of compton scattered X-ray visualization, imaging, or information providing
JP5055011B2 (ja) 2007-04-23 2012-10-24 株式会社日立ハイテクノロジーズ イオン源
DE102008064781B3 (de) 2007-04-23 2016-01-07 Hitachi High-Technologies Corporation lonenstrahlbearbeitungs-/Betrachtungsvorrichtung
DE102007020599A1 (de) 2007-05-02 2008-11-06 Siemens Ag Partikeltherapieanlage
DE102007021033B3 (de) 2007-05-04 2009-03-05 Siemens Ag Strahlführungsmagnet zur Ablenkung eines Strahls elektrisch geladener Teilchen längs einer gekrümmten Teilchenbahn und Bestrahlungsanlage mit einem solchen Magneten
US7668291B2 (en) * 2007-05-18 2010-02-23 Varian Medical Systems International Ag Leaf sequencing
JP5004659B2 (ja) 2007-05-22 2012-08-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US7947969B2 (en) 2007-06-27 2011-05-24 Mitsubishi Electric Corporation Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same
DE102007036035A1 (de) 2007-08-01 2009-02-05 Siemens Ag Steuervorrichtung zur Steuerung eines Bestrahlungsvorgangs, Partikeltherapieanlage sowie Verfahren zur Bestrahlung eines Zielvolumens
US7770231B2 (en) 2007-08-02 2010-08-03 Veeco Instruments, Inc. Fast-scanning SPM and method of operating same
DE102007037896A1 (de) 2007-08-10 2009-02-26 Enocean Gmbh System mit Anwesenheitsmelder, Verfahren mit Anwesenheitsmelder, Anwesenheitsmelder, Funkempfänger
GB2451708B (en) 2007-08-10 2011-07-13 Tesla Engineering Ltd Cooling methods
JP4339904B2 (ja) 2007-08-17 2009-10-07 株式会社日立製作所 粒子線治療システム
WO2009032935A2 (en) 2007-09-04 2009-03-12 Tomotherapy Incorporated Patient support device
DE102007042340C5 (de) 2007-09-06 2011-09-22 Mt Mechatronics Gmbh Partikeltherapie-Anlage mit verfahrbarem C-Bogen
US7848488B2 (en) 2007-09-10 2010-12-07 Varian Medical Systems, Inc. Radiation systems having tiltable gantry
EP2189185B1 (en) 2007-09-12 2014-04-30 Kabushiki Kaisha Toshiba Particle beam projection apparatus
US7582866B2 (en) 2007-10-03 2009-09-01 Shimadzu Corporation Ion trap mass spectrometry
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
DE102007050035B4 (de) * 2007-10-17 2015-10-08 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Ablenkung eines Strahls elektrisch geladener Teilchen auf eine gekrümmte Teilchenbahn
DE102007050168B3 (de) 2007-10-19 2009-04-30 Siemens Ag Gantry, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Gantry mit beweglichem Stellelement
EP2213147B1 (en) 2007-10-29 2015-01-21 Ion Beam Applications S.A. Device and method for fast beam current modulation in a particle accelerator
TWI448313B (zh) 2007-11-30 2014-08-11 Mevion Medical Systems Inc 具有一內部起重機龍門架之系統
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
EP2363170B1 (en) 2007-11-30 2014-01-08 Mevion Medical Systems, Inc. Inner gantry
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8193508B2 (en) 2007-12-05 2012-06-05 Navotek Medical Ltd. Detecting photons in the presence of a pulsed radiation beam
US8085899B2 (en) 2007-12-12 2011-12-27 Varian Medical Systems International Ag Treatment planning system and method for radiotherapy
US8304750B2 (en) 2007-12-17 2012-11-06 Carl Zeiss Nts Gmbh Scanning charged particle beams
WO2009117033A2 (en) 2007-12-19 2009-09-24 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
JP5074915B2 (ja) * 2007-12-21 2012-11-14 株式会社日立製作所 荷電粒子ビーム照射システム
EP2229805B1 (en) 2007-12-21 2011-10-12 Elekta AB (PUBL) X-ray apparatus
DE102008005069B4 (de) * 2008-01-18 2017-06-08 Siemens Healthcare Gmbh Positioniervorrichtung zum Positionieren eines Patienten, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Positioniervorrichtung
DE102008014406A1 (de) 2008-03-14 2009-09-24 Siemens Aktiengesellschaft Partikeltherapieanlage und Verfahren zur Modulation eines in einem Beschleuniger erzeugten Partikelstrahls
US7919765B2 (en) 2008-03-20 2011-04-05 Varian Medical Systems Particle Therapy Gmbh Non-continuous particle beam irradiation method and apparatus
JP5143606B2 (ja) 2008-03-28 2013-02-13 住友重機械工業株式会社 荷電粒子線照射装置
JP5107113B2 (ja) 2008-03-28 2012-12-26 住友重機械工業株式会社 荷電粒子線照射装置
DE102008018417A1 (de) 2008-04-10 2009-10-29 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Erstellen eines Bestrahlungsplans
JP4719241B2 (ja) 2008-04-15 2011-07-06 三菱電機株式会社 円形加速器
US7759642B2 (en) 2008-04-30 2010-07-20 Applied Materials Israel, Ltd. Pattern invariant focusing of a charged particle beam
US8291717B2 (en) 2008-05-02 2012-10-23 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler with cross-axial actuation
JP4691574B2 (ja) 2008-05-14 2011-06-01 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US20090314960A1 (en) 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8089054B2 (en) * 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US7940894B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
AU2009249863B2 (en) 2008-05-22 2013-12-12 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8093564B2 (en) * 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8901509B2 (en) 2008-05-22 2014-12-02 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy method and apparatus
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
CA2725493C (en) 2008-05-22 2015-08-18 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
MX2010012716A (es) 2008-05-22 2011-07-01 Vladimir Yegorovich Balakin Metodo y aparato de rayos x usados en conjunto con un sistema de terapia contra el cancer mediante particulas cargadas.
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US9058910B2 (en) 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US7943913B2 (en) 2008-05-22 2011-05-17 Vladimir Balakin Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US7834336B2 (en) 2008-05-28 2010-11-16 Varian Medical Systems, Inc. Treatment of patient tumors by charged particle therapy
US7987053B2 (en) 2008-05-30 2011-07-26 Varian Medical Systems International Ag Monitor units calculation method for proton fields
US7801270B2 (en) 2008-06-19 2010-09-21 Varian Medical Systems International Ag Treatment plan optimization method for radiation therapy
DE102008029609A1 (de) 2008-06-23 2009-12-31 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Vermessung eines Strahlflecks eines Partikelstrahls sowie Anlage zur Erzeugung eines Partikelstrahls
US8227768B2 (en) 2008-06-25 2012-07-24 Axcelis Technologies, Inc. Low-inertia multi-axis multi-directional mechanically scanned ion implantation system
US7809107B2 (en) 2008-06-30 2010-10-05 Varian Medical Systems International Ag Method for controlling modulation strength in radiation therapy
JP4691587B2 (ja) * 2008-08-06 2011-06-01 三菱重工業株式会社 放射線治療装置および放射線照射方法
US7796731B2 (en) 2008-08-22 2010-09-14 Varian Medical Systems International Ag Leaf sequencing algorithm for moving targets
US8330132B2 (en) 2008-08-27 2012-12-11 Varian Medical Systems, Inc. Energy modulator for modulating an energy of a particle beam
US7835494B2 (en) 2008-08-28 2010-11-16 Varian Medical Systems International Ag Trajectory optimization method
US7817778B2 (en) 2008-08-29 2010-10-19 Varian Medical Systems International Ag Interactive treatment plan optimization for radiation therapy
JP5430115B2 (ja) 2008-10-15 2014-02-26 三菱電機株式会社 荷電粒子線ビームのスキャニング照射装置
WO2010047378A1 (ja) 2008-10-24 2010-04-29 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
US7609811B1 (en) 2008-11-07 2009-10-27 Varian Medical Systems International Ag Method for minimizing the tongue and groove effect in intensity modulated radiation delivery
ES2628757T3 (es) * 2008-12-31 2017-08-03 Ion Beam Applications S.A. Suelo rodante para cilindro de exploración
US7839973B2 (en) 2009-01-14 2010-11-23 Varian Medical Systems International Ag Treatment planning using modulability and visibility factors
WO2010082451A1 (ja) * 2009-01-15 2010-07-22 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
GB2467595B (en) 2009-02-09 2011-08-24 Tesla Engineering Ltd Cooling systems and methods
US7835502B2 (en) 2009-02-11 2010-11-16 Tomotherapy Incorporated Target pedestal assembly and method of preserving the target
US7986768B2 (en) 2009-02-19 2011-07-26 Varian Medical Systems International Ag Apparatus and method to facilitate generating a treatment plan for irradiating a patient's treatment volume
US8053745B2 (en) 2009-02-24 2011-11-08 Moore John F Device and method for administering particle beam therapy
SG173879A1 (en) 2009-03-04 2011-10-28 Protom Aozt Multi-field charged particle cancer therapy method and apparatus
JP5627186B2 (ja) 2009-03-05 2014-11-19 三菱電機株式会社 電気機器の異常監視装置及び加速器装置の異常監視装置
US8063381B2 (en) 2009-03-13 2011-11-22 Brookhaven Science Associates, Llc Achromatic and uncoupled medical gantry
US8975816B2 (en) 2009-05-05 2015-03-10 Varian Medical Systems, Inc. Multiple output cavities in sheet beam klystron
CN102292122B (zh) 2009-06-09 2015-04-22 三菱电机株式会社 粒子射线治疗装置及粒子射线治疗装置的调整方法
KR101671854B1 (ko) 2009-06-24 2016-11-03 이온빔 어플리케이션스 에스.에이. 입자 비임 생성을 위한 장치와 방법
US7934869B2 (en) 2009-06-30 2011-05-03 Mitsubishi Electric Research Labs, Inc. Positioning an object based on aligned images of the object
US7894574B1 (en) * 2009-09-22 2011-02-22 Varian Medical Systems International Ag Apparatus and method pertaining to dynamic use of a radiation therapy collimator
US8009803B2 (en) 2009-09-28 2011-08-30 Varian Medical Systems International Ag Treatment plan optimization method for radiosurgery
ES2368113T3 (es) 2009-09-28 2011-11-14 Ion Beam Applications Pórtico compacto para terapia de partículas.
US8009804B2 (en) 2009-10-20 2011-08-30 Varian Medical Systems International Ag Dose calculation method for multiple fields
US8382943B2 (en) * 2009-10-23 2013-02-26 William George Clark Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation
WO2011053960A1 (en) 2009-11-02 2011-05-05 Procure Treatment Centers, Inc. Compact isocentric gantry
US8405042B2 (en) 2010-01-28 2013-03-26 Mitsubishi Electric Corporation Particle beam therapy system
JP5463509B2 (ja) 2010-02-10 2014-04-09 株式会社東芝 粒子線ビーム照射装置及びその制御方法
JP2011182987A (ja) 2010-03-09 2011-09-22 Sumitomo Heavy Ind Ltd 加速粒子照射設備
EP2365514B1 (en) * 2010-03-10 2015-08-26 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Twin beam charged particle column and method of operating thereof
JP5432028B2 (ja) 2010-03-29 2014-03-05 株式会社日立ハイテクサイエンス 集束イオンビーム装置、チップ先端構造検査方法及びチップ先端構造再生方法
JP5473727B2 (ja) 2010-03-31 2014-04-16 キヤノン株式会社 潤滑剤供給方法、支持部材及び回転体ユニット
JP5646312B2 (ja) 2010-04-02 2014-12-24 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
EP2579265B1 (en) 2010-05-27 2015-12-02 Mitsubishi Electric Corporation Particle beam irradiation system
US9125570B2 (en) 2010-07-16 2015-09-08 The Board Of Trustees Of The Leland Stanford Junior University Real-time tomosynthesis guidance for radiation therapy
WO2012014705A1 (ja) * 2010-07-28 2012-02-02 住友重機械工業株式会社 荷電粒子線照射装置
US8416918B2 (en) 2010-08-20 2013-04-09 Varian Medical Systems International Ag Apparatus and method pertaining to radiation-treatment planning optimization
JP5670126B2 (ja) 2010-08-26 2015-02-18 住友重機械工業株式会社 荷電粒子線照射装置、荷電粒子線照射方法及び荷電粒子線照射プログラム
US8445872B2 (en) 2010-09-03 2013-05-21 Varian Medical Systems Particle Therapy Gmbh System and method for layer-wise proton beam current variation
US8472583B2 (en) 2010-09-29 2013-06-25 Varian Medical Systems, Inc. Radiation scanning of objects for contraband
US9258876B2 (en) 2010-10-01 2016-02-09 Accuray, Inc. Traveling wave linear accelerator based x-ray source using pulse width to modulate pulse-to-pulse dosage
DE102010048233B4 (de) 2010-10-12 2014-04-30 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Verfahren zur Erstellung einer Bestrahlungsplanung sowie Verfahren zur Applizierung einer ortsaufgelösten Strahlendosis
US8525447B2 (en) 2010-11-22 2013-09-03 Massachusetts Institute Of Technology Compact cold, weak-focusing, superconducting cyclotron
EP2845623B1 (en) 2011-02-17 2016-12-21 Mitsubishi Electric Corporation Particle beam therapy system
JP5665721B2 (ja) 2011-02-28 2015-02-04 三菱電機株式会社 円形加速器および円形加速器の運転方法
US8653314B2 (en) * 2011-05-22 2014-02-18 Fina Technology, Inc. Method for providing a co-feed in the coupling of toluene with a carbon source
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
JP6009577B2 (ja) 2011-11-29 2016-10-19 イオン ビーム アプリケーションズIon Beam Applications Rf装置及びrf装置を備えるシンクロサイクロトロン
WO2013098089A1 (en) 2011-12-28 2013-07-04 Ion Beam Applications S.A. Extraction device for a synchrocyclotron
EP2637181B1 (en) 2012-03-06 2018-05-02 Tesla Engineering Limited Multi orientation cryostats
US8581525B2 (en) 2012-03-23 2013-11-12 Massachusetts Institute Of Technology Compensated precessional beam extraction for cyclotrons
JP5163824B1 (ja) 2012-03-30 2013-03-13 富士ゼロックス株式会社 回転体および軸受
US8975836B2 (en) 2012-07-27 2015-03-10 Massachusetts Institute Of Technology Ultra-light, magnetically shielded, high-current, compact cyclotron
US9603235B2 (en) 2012-07-27 2017-03-21 Massachusetts Institute Of Technology Phase-lock loop synchronization between beam orbit and RF drive in synchrocyclotrons
JP2014038738A (ja) 2012-08-13 2014-02-27 Sumitomo Heavy Ind Ltd サイクロトロン
WO2014052734A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling particle therapy
EP2900325B1 (en) 2012-09-28 2018-01-03 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
EP2901822B1 (en) 2012-09-28 2020-04-08 Mevion Medical Systems, Inc. Focusing a particle beam
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
JP6254600B2 (ja) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器
WO2014052708A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
TW201422278A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 粒子加速器之控制系統
JP6367201B2 (ja) 2012-09-28 2018-08-01 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの強度の制御
GB201217782D0 (en) 2012-10-04 2012-11-14 Tesla Engineering Ltd Magnet apparatus
CN104768612A (zh) 2012-11-05 2015-07-08 三菱电机株式会社 三维图像拍摄***及粒子射线治疗装置
US9012866B2 (en) 2013-03-15 2015-04-21 Varian Medical Systems, Inc. Compact proton therapy system with energy selection onboard a rotatable gantry
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
KR102043641B1 (ko) 2013-07-08 2019-11-13 삼성전자 주식회사 통신 기능 처리 방법 및 이를 지원하는 전자 장치
US9955510B2 (en) 2013-07-08 2018-04-24 Electronics And Telecommunications Research Institute Method and terminal for distributed access

Also Published As

Publication number Publication date
CN102036461B (zh) 2012-11-14
EP1790203A2 (en) 2007-05-30
CA2574122A1 (en) 2006-02-02
AU2005267078B2 (en) 2009-03-26
CN101061759B (zh) 2011-05-25
EP1790203B1 (en) 2015-12-30
EP2259664A3 (en) 2016-01-06
WO2006012467A3 (en) 2007-02-08
US7626347B2 (en) 2009-12-01
CN101061759A (zh) 2007-10-24
US8952634B2 (en) 2015-02-10
US20070001128A1 (en) 2007-01-04
EP2259664A2 (en) 2010-12-08
WO2006012467A2 (en) 2006-02-02
ES2720574T3 (es) 2019-07-23
AU2005267078A1 (en) 2006-02-02
USRE48047E1 (en) 2020-06-09
EP3294045B1 (en) 2019-03-27
US20080218102A1 (en) 2008-09-11
EP3294045A1 (en) 2018-03-14
US20100045213A1 (en) 2010-02-25
ES2558978T3 (es) 2016-02-09
AU2005267078B8 (en) 2009-05-07
CN102036461A (zh) 2011-04-27
US20130127375A1 (en) 2013-05-23
EP3557956A1 (en) 2019-10-23
EP2259664B1 (en) 2017-10-18
JP5046928B2 (ja) 2012-10-10
JP2008507826A (ja) 2008-03-13
US7402963B2 (en) 2008-07-22

Similar Documents

Publication Publication Date Title
ES2654328T3 (es) Generador en forma de onda de radio frecuencia programable para un sincrociclotrón
US9947514B2 (en) Plasma RF bias cancellation system
JP2021180180A (ja) 制御方法、プラズマ処理装置、プロセッサ、及び非一時的コンピュータ可読記録媒体
Li et al. Design and performance of the LLRF system for CSNS/RCS
US20140265910A1 (en) Digital phase controller for two-phase operation of a plasma reactor
US8736198B2 (en) Circular accelerator and its operation method
TWI776184B (zh) 一種射頻電源系統、電漿處理器及其調頻匹配方法
JP2008535260A5 (es)
JP2013543249A (ja) サブナノ秒イオンビームパルス高周波四重極(rfq)線形加速器システム及びそのための方法
CA3166860A1 (en) Time-domain analysis of signals for charge detection mass spectrometry
Karsli et al. Implementation of high power microwave pulse compressor
JPH10233298A (ja) 高周波加速空胴の制御装置
JP2002237399A (ja) 電子ビーム加速装置及び電子ビーム加速方法
JP2010257631A (ja) 円形加速器
JP2002324699A (ja) 荷電粒子加速装置およびその運転方法
Drevlak New Results on the Beam Dynamics in the SBLC
JP2003347641A (ja) Rf型遠赤外fel波長変更方法および装置