EP1429345A1 - Dispositif et procédé de production de radio-isotopes - Google Patents

Dispositif et procédé de production de radio-isotopes Download PDF

Info

Publication number
EP1429345A1
EP1429345A1 EP02447253A EP02447253A EP1429345A1 EP 1429345 A1 EP1429345 A1 EP 1429345A1 EP 02447253 A EP02447253 A EP 02447253A EP 02447253 A EP02447253 A EP 02447253A EP 1429345 A1 EP1429345 A1 EP 1429345A1
Authority
EP
European Patent Office
Prior art keywords
target material
cavity
irradiation
target
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02447253A
Other languages
German (de)
English (en)
Inventor
Yves Jongen
Jr. Comor J. Comor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Priority to EP02447253A priority Critical patent/EP1429345A1/fr
Priority to JP2004557684A priority patent/JP4751615B2/ja
Priority to EP03782015A priority patent/EP1570493B1/fr
Priority to US10/537,975 priority patent/US7940881B2/en
Priority to PCT/BE2003/000217 priority patent/WO2004053892A2/fr
Priority to AT03782015T priority patent/ATE498183T1/de
Priority to AU2003289768A priority patent/AU2003289768A1/en
Priority to CNB2003801048544A priority patent/CN100419917C/zh
Priority to DE60336009T priority patent/DE60336009D1/de
Priority to CA2502287A priority patent/CA2502287C/fr
Publication of EP1429345A1 publication Critical patent/EP1429345A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles

Definitions

  • the present invention relates to a device and a method intended for the production of radioisotopes such as 18 F, by irradiation using a proton beam of a target material comprising a precursor of said radioisotope.
  • One of the applications of the present invention concerns nuclear medicine.
  • Positron emission tomography is a precise, non-invasive medical imaging technique.
  • a radiopharmaceutical marked with a positron emitting radioisotope is injected into the body of a patient, the disintegration of which in situ leads to the emission of ⁇ radiation.
  • These ⁇ rays are detected by an imaging device and analyzed in order to reconstruct in three dimensions the biodistribution of the injected radioisotope and to obtain its tissue concentration.
  • radiopharmaceuticals synthesized from the radioisotope of interest that is fluorine 18, 2- [ 18 F] fluoro-2-deoxy-D-glucose (FDG)
  • FDG fluoro-2-deoxy-D-glucose
  • an irradiation device which comprises a cavity "hollowed out” in a metal part and intended to receive the target material.
  • the 18 F is generally produced using this production device, by bombardment of a beam of charged particles, and more particularly of protons, on the target material previously disposed in said cavity.
  • This charged particle beam comes from an accelerator such as a cyclotron.
  • the cavity in which the target material is located being closed by a window called “irradiation window" which can be crossed by the protons of the irradiation beam, said protons meet the target material and it is the interaction of said protons with the target material which generates the nuclear reaction intended for the production of the radioisotope of interest.
  • the target material consists of water enriched in 18 O (H 2 18 O).
  • the material target must always produce more radioisotope.
  • This increase in production supposes either to modify the energy of the charged particle beam (protons), and in this case the cross section of the reaction is increased to modify the intensity of said beam, and in this case it is a question of modifying the number of particles accelerated hitting the target material.
  • the power dissipated by the target material irradiated by the boundary particle beam the intensity and / or energy of the particle beam that we can hope to use.
  • the power dissipated by a target material is therefore all the more important as the intensity and / or energy of the particle beam is important.
  • the problem of dissipation of the heat produced by the irradiation of the target material on such a small volume constitutes a major problem to be overcome.
  • the power to be dissipated is between 900 and 1800 watts, for currents of 50 to 100 ⁇ A of protons accelerated to 18 MeV and for irradiation times can range from a few minutes to a few hours.
  • Solutions have been proposed in the state of technique in order to overcome the problem of dissipation of heat by the target material in the cavity within the radioisotope production device.
  • devices have been proposed means for cooling the target material.
  • Belgian patent n ° 1011263 A6 describes an irradiation cell comprising a cavity closed by a window in which the material is placed target, said cavity being surrounded by a double wall allowing the circulation of a refrigerant for cooling said target material, the window being cooled with helium.
  • the present invention aims to provide a device and a method intended for the production of radioisotopes, and in particular 18 F, from a target material irradiated by a beam of charged particles which do not have the drawbacks of the devices and state of the art processes.
  • the present invention aims to provide a device intended for the production of radioisotopes, and in particular of 18 F, and capable of operating with a beam of protons whose current intensity is high, that is to say - say greater than 40 ⁇ A.
  • Another object of the invention is to provide a device which ensures in operation, that is to say during of radioisotope production, heat exchange sufficient with the external environment, so that its temperature mean remains below an average threshold temperature, said average threshold temperature preferably being located around 130 ° C.
  • this device comprises in in addition to internal cooling means to said irradiation cell, said cooling means interns taking the form of a double wall filled with a coolant and which equips said cell irradiation.
  • the external heat exchanger essentially consists of a material chosen from group consisting of silver, titanium, tantalum, niobium and / or palladium.
  • the insert is essentially made of a material selected from the group consisting of Niobium, Niobium / Palladium, silver or titanium.
  • said inlet duct is positioned essentially tangential to said cavity to create a flow vortex therein.
  • Essentially tangential means that the inlet duct forms with the tangent of the cavity assimilated to a sphere, an angle of plus or minus 25 °.
  • said outlet duct is not not located in the same plane, but on the same side as the inlet duct.
  • said cavity is capable of contain a volume of target material between 0.25 and 2.4 mL.
  • said cavity has a diameter less than 25 mm and a minimum depth of 3.5 mm.
  • the device according to the invention is configured to contain as a whole an overall volume of the target material which is less than 20 mL.
  • the various elements of said device are interconnected with each other by pipes (17) having an internal diameter between 0.5 and 2 mm.
  • the device is such that the direction of flow of the target material inside the device can be reversed depending on the layout of the various constituent elements of it.
  • said pipes connecting the different elements of the devices are basically made of a material chosen from the tantalum group, titanium, niobium, palladium, stainless steel and / or money.
  • the present invention also relates to a process for manufacturing radioisotopes by through an irradiation cell in which we placed an insert with a window and a cavity containing a target material, characterized in that said target material is recirculated through at least one conduit inlet and at least one outlet pipe from the cavity at y creating a flow vortex and through a heat exchanger heat external to said irradiation cell, by a pump with sufficient flow to cool the material target target, the device being pressurized so as to maintain the target essentially in a liquid state.
  • the direction of circulation of the target material in the device can be reversed from so that the inlet duct becomes the duct of outlet and the outlet duct becomes the duct inlet (4) of the target material.
  • said pump delivers at least 200mL / min for the duration of the irradiation.
  • the present invention relates to also the use of the device and / or the process according to the invention for the manufacture of radioisotopes.
  • Figure 1 shows a plan view of the irradiation cell of the present invention, seen in the direction of arrow X in Figures 2 and 3.
  • Figure 2 shows a section along the A-A shots of the radiation cell.
  • Figure 3 shows a section along the B-B shots of irradiation cell.
  • Figure 4 shows an overall diagram a device for producing radioisotopes comprising the device of the present invention.
  • Figure 5A shows the procedure for filling the device according to the invention.
  • Figure 5B shows the flow diagram for the target during filling
  • Figure 5C shows the routing of the target after irradiation to the FDG module.
  • the device according to the present invention comprises a cell irradiation 1 and which constitutes the mechanical assembly which, during the operation of said device, is subject to irradiation.
  • the irradiation cell 1 comprises an insert 2 which is a metal part in which a volume corresponding to a cavity is “hollowed out”.
  • the insert 2 therefore comprises the cavity 8.
  • This cavity 8 has a configuration such that it can receive the target material from which the device is capable of producing the radioisotope of interest, that is to say the 18 F in this case here.
  • the irradiation cell 1 is also fitted with 5.6 and 6.5 outlet pipes for the delivery or circulation of the target material.
  • the 5.6 inlet / 6.5 outlet ducts allow the arrival / departure of the target material or vice versa, depending on the direction of flow of the target material within the device in operation (reverse arrival and departure).
  • the cavity 8 intended to contain the target material is closed by a window called irradiation window 7.
  • the device is designed to work with a target material in the fluid state, that is to say liquid and / or gaseous.
  • the device also includes external cooling means intended to cool the target material when the device works.
  • these means of external cooling of the target material take the form of an external heat exchanger 15.
  • This external heat exchanger 15 is preferably coupled to a high-flow pump 16, which is preferably a pump specific volumetric.
  • the external heat exchanger 15 / pump 16 assembly is such that when the device operates and is pressurized, this assembly makes it possible to keep the target material in circulation essentially in its initial state, that is to say essentially liquid in the case water enriched in 18 O for the production of 18 F.
  • the configuration of the external means of cooling of target material compared to others elements of the device is such that it allows in operating a circulation speed of said material target high enough to allow an exchange of sufficient heat between said device and the medium outside so that the average internal temperature of the device is located below 130 ° C.
  • the external heat exchanger 15 can be made of silver pipes and other materials resistant to radiation, pressure and ions fluorides.
  • copper is unusable and the Nb seems difficult to machine, the money or titanium therefore being the best compromise.
  • tantalum, niobium or palladium being however possible.
  • the production device comprises advantageously further internal means of cooling intended to cool the target material when the device is working.
  • These internal means of cooling here take the form of a double wall 9 which delimits the irradiation cell 1 and which can contain a refrigerant inside circulation.
  • inserts 2 in the device according to the invention is particularly important. Indeed, depending on the type of insert 2 chosen, undesirable secondary products are likely to be generated by irradiation, during the operation of the device. This can indeed produce radioisotopes disintegrating by emission of energetic ⁇ particle and limiting the repairs on cell 1. It can also give secondary products having an influence on the subsequent synthesis of the radiotracer to be marked by 18 F thus produced.
  • a determining parameter also in the choice of the type of material of the inserts of the device according to the invention is the thermal conductivity of this material. This is how silver is a good conductor, but has the disadvantage that after several irradiations, a contaminating silver oxide formation occurs. Titanium is chemically inert but produces 48 V with a half-life of 16 days. Consequently, in the case of titanium, if there is a break in a target window, its replacement will pose serious problems of exposure to ionizing radiation to the engineers responsible for maintenance.
  • Nb which is two and a half times more conductive than titanium but less than silver. Nb produces few isotopes with a long half-life, an example being 92m Nb (parasitic nuclear reaction 93 Nb (p, d) 92m Nb) whose half-life is around ten days. The overall activation of insert 2, measured after irradiation for production, is however low in comparison with the values measured with a comparable titanium insert.
  • N 2 inserts When N 2 inserts are used, these can be covered with palladium, the latter catalyzing the reaction for the formation of 18 H 2 O from H 2 and 18 O 2 , themselves derived from the 18 H 2 O radiolysis during irradiation.
  • the radioisotope production device is a device for producing 18 F from water enriched in 18 O and a beam of protons.
  • the device can work with proton beams accelerated at understood speeds between 5 and 30 MeV, a current intensity ranging from 1 to 150 ⁇ A with an irradiation time from 1 minute to 10 hours.
  • the device has a system of high speed recirculation of enriched water which includes an advantageously combined external heat exchanger 15 internal cooling means 9 in the cell irradiation, as well as a specific positive displacement pump 16 to generate sufficient flow to maintain enriched water (target material) in the liquid state, i.e. about 200 to 500 ml per minute, the passage (transfer) of enriched water through the heat exchanger external heat 15 and the internal means of cooling to obtain cooling of 70 ° of enriched water.
  • the pump used in the embodiment described is the 120 series, supplied by the company Micropump, Inc. ( http://www.micropump.com ).
  • This pump is a gear pump. Equipped with N21 gears, it is capable of delivering 900 ml / min, under a pressure of 5.6 bar.
  • the device further comprises external means of additional cooling which take the form of a other heat exchanger external to the device and intended to cool the irradiation window 7 with helium.
  • window 7 is in Havar or in niobium and with a thickness between 50 and 200 ⁇ m.
  • the pipes used have a internal diameter between 0.5 and 2 mm. This is here very high speed recirculation which can go up to more than one full circuit tour per second.
  • the recirculation is ensured by a pump 16 which can supply a flow between 0.2 and 0.5 L / min with a gradient of significant pressure.
  • a traffic speed requires careful positioning of the inlet duct 4 and outlet conduit 5 in the cavity containing the target liquid. The goal is to create forced circulation through a vortex in this small volume for avoid the subsistence of "static" areas where the material target would circulate little.
  • the inlet duct 4 of the target material has therefore positioned on the same side as the outlet duct 5 of the target material but on an offset plane. This is fine visible in Figure 1. If the two conduits had been positioned face to face, we would inevitably have created a "static" zone within the cavity 8 containing the target material.
  • the target inlet pipe 4 is positioned tangentially in the direction of rounding of the cavity 8.
  • Target circulation within the circuit 17 and therefore of the cavity 8 can also be reversed by so that the inlet duct becomes the duct of exit.
  • the direction of rotation of the liquid within the device of the present invention is above all determined depending on the pressures generated in the circuit and the different components of it.
  • conduit 5 can be used as input for the filling, and outlet for recirculation.
  • the exit 6 serves as an overflow during filling and is connected to the expansion vessel during irradiation.
  • the valve V5 multi-channel can be placed in two positions. In the first position, it allows filling and in the second, high speed traffic during irradiation and evacuation to the FDG module. this is shown in Figure 5A, 5B and 5C.
  • the V6 valve allows provide helium, argon or nitrogen back pressure for the formation of a working "gas cushion" as an expansion tank. Helium, argon or nitrogen generally allow pressurization of all circuit which is done in particular through valves V1 and V3. Valves V2 and V4 are used for filling of the system.
  • the overall target volume contained in the entire device of the invention must not exceed 20 mL which means that the dead volume of the pump should be reduced as much as possible.
  • the heat exchanger external 15 which also contains a very small volume of target liquid, normally less than 10 mL, and preferably less than 5 mL is generally connected to a secondary cooling system (not shown) to dissipate the heat produced by irradiation of the target liquid in the cell irradiation 1.
  • the irradiation cell 1 is necessarily positioned in the axis of the incident beam.
  • the materials of which it is made must therefore be able to withstand the ionizing radiation. It is however possible to arrange pump 16, external heat exchanger 15 and valve V5 so that they are deported to be at sheltered from this radiation.
  • the inventor was able to design a solution in which these components can be brought protected from ionizing radiation by the back flow of the magnet of the cyclotron, without however the length of the pipes does not exceed 20 cm.
  • the device according to the invention allows to produce radioisotopes from a target material irradiated with a particle beam charged produced by a cyclotron. Thanks to its design, the device according to the invention has the advantage to optimize the use of the irradiation capacities of current cyclotrons. Indeed, while the windows 7 currently do not withstand pressures caused by radiation intensities greater than 45 ⁇ A, the device nevertheless allows to use the maximum intensities available on the cyclotrons currently used in nuclear medicine, i.e. approximately 100 ⁇ A.
  • the device allows to use the maximum capacities of current cyclotrons capable of producing radiation intensities exceeding 100 ⁇ A while controlling the temperature rise.
  • Target remains essentially in the liquid state which allows high speed recirculation without defusing the pump.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention se rapporte à un dispositif de production d'un radio-isotope à partir d'un matériau cible irradié à l'aide d'un faisceau de particules chargées, ledit dispositif comprenant : une cellule d'irradiation (1) comprenant un insert (2) avec une fenêtre (7) et une cavité (8) destinée à recevoir un matériau cible, ladite cavité (8) comprenant au moins un conduit d'entrée (4) et au moins un conduit de sortie (5) ; des moyens de refroidissement externes à ladite cellule d'irradiation (1) se présentant sous la forme d'au moins un échangeur externe de chaleur (15); une pompe (16) ; et un moyen de pressurisation (14), caractérisé en ce que : ladite pompe (16) génère un débit suffisant pour maintenir ledit matériau cible à une température inférieure à 130° C, et ledit moyen de pressurisation (14), permet audit matériau cible de rester essentiellement à l'état liquide. La présente invention se rapporte également à un procédé utilisant ledit dispositif, ainsi qu'à ses utilisations. <IMAGE>

Description

Objet de l'invention
La présente invention se rapporte à un dispositif et un procédé destiné à la production de radio-isotopes tels que le 18F, par irradiation à l'aide d'un faisceau de protons d'un matériau cible comprenant un précurseur dudit radio-isotope.
Une des applications de la présente invention concerne la médecine nucléaire.
Arrière-plan technologique et état de la technique
La tomographie par émission de positons est une technique d'imagerie médicale précise et non invasive. En pratique, on injecte dans l'organisme d'un patient un radiopharmaceutique marqué par un radio-isotope émetteur de positons dont la désintégration in situ conduit à l'émission de rayonnements γ. Ces rayonnements γ sont détectés par un dispositif d'imagerie et analysés en vue de reconstruire en trois dimensions la biodistribution du radio-isotope injecté et d'obtenir sa concentration tissulaire.
Le fluor 18 (T1/2 = 109,6 min) est le seul des quatre radio-isotopes légers d'intérêt (13N, 11C, 15O, 18F), émetteur de positons, qui présente une demi-vie suffisamment longue pour permettre une utilisation en dehors de son lieu de production.
Parmi les nombreux radiopharmaceutiques synthétisés à partir du radio-isotope d'intérêt qu'est le fluor 18, le 2-[18F]fluoro-2-déoxy-D-glucose (FDG), est le plus utilisé en tomographie par émission de positons. Il permet d'analyser le métabolisme du glucose dans les tumeurs, en cardiologie, et dans diverses pathologies du cerveau.
Pour produire le 18F, on utilise généralement un dispositif d'irradiation qui comprend une cavité « creusée » dans une pièce métallique et destinée à recevoir le matériau cible. Le 18F est généralement produit à l'aide de ce dispositif de production, par bombardement d'un faisceau de particules chargées, et plus particulièrement de protons, sur le matériau cible préalablement disposé dans ladite cavité. Ce faisceau de particules chargées provient d'un accélérateur tel qu'un cyclotron. La cavité dans laquelle est situé le matériau cible étant fermée par une fenêtre dite « fenêtre d'irradiation » qui peut est traversée par les protons du faisceau d'irradiation, lesdits protons rencontrent le matériau cible et c'est l'interaction desdits protons avec le matériau cible qui génère la réaction nucléaire destinée à la production du radio-isotope d'intérêt.
Dans le cas particulier de la production de 18F, le matériau cible est constitué d'eau enrichie en 18O (H2 18O).
A l'heure actuelle, en raison d'une demande toujours plus importante de radio-isotopes, le matériau cible doit toujours produire davantage de radio-isotope. Cet accroissement de production suppose soit de modifier l'énergie du faisceau de particules chargées (protons), et dans ce cas on augmente la section efficace de la réaction nucléaire, soit de modifier l'intensité dudit faisceau, et dans ce cas il s'agit de modifier le nombre de particules accélérées heurtant le matériau cible.
Pour autant, la puissance dissipée par le matériau cible irradié par le faisceau de particules limite l'intensité et/ou l'énergie du faisceau de particules que l'on peut espérer utiliser.
En effet, la puissance dissipée par un matériau cible est liée à l'énergie et l'intensité du faisceau de particules par la relation (1) suivante : P (watt) = E (MeV) x I (µA) avec :
  • P = puissance exprimée en watt
  • E = énergie du faisceau exprimée en MeV (million d'électron Volt)
  • I = intensité du faisceau exprimée en µA (micro Ampère).
En d'autres termes, la puissance dissipée par un matériau cible est donc d'autant plus importante que l'intensité et/ou l'énergie du faisceau de particules est importante.
On comprendra dès lors que l'on ne puisse augmenter l'énergie et/ou l'intensité du faisceau de particules chargées, sans générer rapidement, au niveau de la cavité du dispositif de production, et notamment au niveau de la fenêtre d'irradiation, des pressions et/ou températures importantes susceptibles de l'endommager.
Dans le cas de la production de 18F, étant donné le coût particulièrement élevé de l'eau enrichie en 18O, on ne dispose dans la cavité qu'un petit volume de ce matériau cible, tout au plus quelques millilitres. De ce fait, le problème de la dissipation de la chaleur produite par l'irradiation du matériau cible sur un tel petit volume constitue un problème majeur à surmonter. Typiquement, pour un volume d'eau enrichie H2 18O de 0,2 à 4 ml, la puissance à dissiper est comprise entre 900 et 1800 watts, pour des courants de 50 à 100 µA de protons accélérés à 18 MeV et pour des durées d'irradiation pouvant aller de quelques minutes à quelques heures.
De façon plus générale, étant donné ce problème de dissipation de chaleur par le matériau cible, les intensités d'irradiation en vue de la production de radio-isotopes sont de nos jours limitées à 40 µA pour un volume de matériau cible de 2ml. Or les cyclotrons actuels utilisés en médecine nucléaire sont cependant théoriquement capables d'accélérer des courants de protons de 80 à 100 µA, voire plus. Les possibilités des cyclotrons actuels sont donc incontestablement sous-exploitées et il convient de résoudre de façon urgente ce problème.
Des solutions ont été proposées dans l'état de la technique en vue de surmonter le problème de la dissipation de la chaleur par le matériau cible dans la cavité au sein du dispositif de production du radio-isotope. Il a notamment été proposé des dispositifs munis de moyens de refroidissement du matériau cible.
Ainsi, le brevet belge n° 1011263 A6 décrit une cellule d'irradiation comprenant une cavité fermée par une fenêtre et dans laquelle est disposée le matériau cible, ladite cavité étant entourée d'une double paroi permettant la circulation d'un fluide frigorifique pour refroidir ledit matériau cible, la fenêtre étant refroidie à l'hélium.
Néanmoins, dans ce dispositif, le matériau cible est statique, ce qui confère audit dispositif ainsi configuré une série d'inconvénients dans la mesure où la dissipation de la chaleur dans cette configuration a des limites physiques liées au coefficient d'échange thermique du liquide avec son contenant. Par ailleurs, du fait des températures élevées qui sont atteintes, il est nécessaire de prévoir une pressurisation à des niveaux élevés de l'ensemble du dispositif. Dans les faits, un « monitoring » de la quantité de 18F produite à l'aide d'un tel dispositif est pratiquement impossible, et le résultat en termes d'activité et de rendement n'est donc connu qu'a posteriori.
Il a également été proposé d'utiliser (publication de Jongen et Morelle, Symposium international « Proceedings of the third workshop on targetry and target chemistry », http://www.triumf.ca/wttc/proceedings.html, Vancouver, juin 1989) un dispositif comprenant une cellule d'irradiation avec une cavité contenant un matériau cible et un échangeur de chaleur externe dans lequel ledit matériau cible H2 18O est recirculé pour être refroidie. Par rapport au dispositif de l'état de la technique précédemment cité, ce dispositif présente donc l'avantage d'utiliser un matériau cible que l'on peut qualifier de « dynamique » puisqu'il est recirculé. Pour autant, ce dispositif et procédé n'ont cependant pas été détaillés et se heurtent en pratique à des difficultés techniques majeures.
Buts de l'invention
La présente invention vise à proposer un dispositif et un procédé destinés à la production de radio-isotopes, et en particulier de 18F, à partir d'un matériau cible irradié par un faisceau de particules chargées qui ne présentent pas les inconvénients des dispositifs et procédés de l'état de la technique.
En particulier, la présente invention vise à fournir un dispositif destiné à la production de radio-isotopes, et en particulier de 18F, et capable de fonctionner avec un faisceau de protons dont l'intensité de courant est élevée, c'est-à-dire supérieure à 40 µA.
Un autre but de l'invention est de fournir un dispositif qui assure en fonctionnement, c'est-à-dire lors de la production de radio-isotope, un échange thermique suffisant avec le milieu extérieur, pour que sa température moyenne reste inférieure à une température moyenne seuil, ladite température moyenne seuil étant de préférence située autour de 130°C.
Éléments caractéristiques de l'invention
La présente invention se rapporte à un dispositif de production d'un radio-isotope à partir d'un matériau cible irradié à l'aide d'un faisceau de particules chargées, ledit dispositif comprenant :
  • une cellule d'irradiation comprenant un insert avec une fenêtre d'irradiation et une cavité destinée à recevoir un matériau cible, ladite cavité comprenant au moins un conduit d'entrée et au moins un conduit de sortie;
  • des moyens de refroidissement externes à ladite cellule d'irradiation se présentant sous la forme d'au moins un échangeur externe de chaleur;
  • une pompe;
  • et un moyen de pressurisation,
caractérisé en ce que :
  • ladite pompe génère un débit suffisant pour maintenir ledit matériau cible à une température inférieure à 130°C,
  • et ledit moyen de pressurisation, permet audit matériau cible de rester essentiellement à l'état liquide.
De préférence, ce dispositif comprend en outre des moyens de refroidissement internes à ladite cellule d'irradiation, lesdits moyens de refroidissement internes prenant la forme d'une double paroi remplie d'un liquide de refroidissement et qui équipe ladite cellule d'irradiation.
De préférence, l'échangeur de chaleur externe est essentiellement constitué d'un matériau choisi parmi le groupe constitué par l'argent, le titane, le tantale, le niobium et/ou le palladium.
De préférence, l'insert est essentiellement constitué d'un matériau sélectionné parmi le groupe constitué par le Niobium, le Niobium/Palladium, l'argent ou le titane.
De préférence, ledit conduit d'entrée est positionné de façon essentiellement tangentielle à ladite cavité afin de créer un vortex d'écoulement dans celle-ci. On entend par « essentiellement tangentielle » le fait que le conduit d'entrée forme avec la tangente de la cavité assimilée à une sphère, un angle de plus ou moins 25°.
De préférence, ledit conduit de sortie n'est pas situé dans le même plan, mais du même côté que le conduit d'entrée.
De préférence, ladite cavité est capable de contenir un volume de matériau cible compris entre 0.25 et 2.4 mL.
De préférence, ladite cavité a un diamètre inférieur à 25 mm et une profondeur minimale de 3,5 mm.
De préférence, le dispositif selon l'invention est configuré pour contenir dans son ensemble un volume global du matériau cible qui est inférieur à 20 mL.
De préférence, les différents éléments dudit dispositif sont interconnectés entre eux par des tuyaux (17) ayant un diamètre intérieur compris entre 0.5 et 2 mm.
De préférence, le dispositif est tel que le sens de circulation du matériau cible à l'intérieur du dispsoitif peut être inversé en fonction de la disposition des différents éléments constitutifs de celui-ci.
De préférence, lesdits tuyaux reliant les différents éléments du dispositifs sont essentiellement constitués d'un matériau choisi parmi le groupe du tantale, du titane, du niobium, du palladium, de l'inox et/ou de l'argent.
La présente invention se rapporte également à un procédé de fabrication de radio-isotopes par l'intermédiaire d'une cellule d'irradiation dans laquelle on a placé un insert avec une fenêtre et une cavité contenant un matériau cible, caractérisé en ce que ledit matériau cible est recirculé à travers au moins un conduit d'entrée et au moins un conduit de sortie de la cavité en y créant un vortex d'écoulement et à travers un échangeur de chaleur externe à ladite cellule d'irradiation, par une pompe ayant un débit suffisant pour refroidir le matériau cible cible, le dispositif étant pressurisé de façon à maintenir la cible essentiellement à l'état liquide.
De préférence, le sens de circulation du matériau cible dans le dispositif peut être inversé de façon à ce que le conduit d'entrée devienne le conduit de sortie et que le conduit de sortie devienne le conduit d'entrée (4) du matériau cible.
De préférence, ladite pompe débite au moins 200mL/min pendant toute la durée de l'irradiation.
Enfin, la présente invention concerne également l'utilisation du dispositif et/ou du procédé selon l'invention pour la fabrication de radio-isotopes.
Brève description des figures
La figure 1 représente une vue en plan de la cellule d'irradiation de la présente invention, vue dans le sens de la flèche X des figures 2 et 3.
La figure 2 représente une coupe selon les plans A-A de la cellule d'irradiation.
La figure 3 représente une coupe selon les plans B-B de la cellule d'irradiation.
La figure 4 représente un schéma d'ensemble d'un dispositif de production de radio-isotopes comprenant le dispositif de la présente invention.
La figure 5 A représente la procédure de remplissage du dispositif selon l'invention.
La figure 5 B représente le schéma de flux de la cible durant le remplissage
La figure 5 C représente l'acheminement de la cible après irradiation vers le module FDG.
Description détaillée de l'invention
Ainsi qu'illustré sur les figures 1 à 3, le dispositif selon la présente invention comprend une cellule d'irradiation 1 et qui constitue l'ensemble mécanique qui, lors du fonctionnement dudit dispositif, est soumis à l'irradiation.
La cellule d'irradiation 1 comprend un insert 2 qui est une pièce métallique dans laquelle est « creusée » un volume correspondant à une cavité 8. L'insert 2 comprend donc la cavité 8. Cette cavité 8 a une configuration telle qu'elle peut recevoir le matériau cible à partir duquel le dispositif est capable de produire le radio-isotope d'intérêt, c'est-à-dire le 18F en l'occurrence ici.
La cellule d'irradiation 1 est par ailleurs munie de conduits d'arrivée 5,6 et de départ 6,5 pour l'acheminement ou la circulation du matériau cible. Les conduits d'arrivée 5,6/de départ 6,5 permettent l'arrivée/le départ du matériau cible ou inversement, selon le sens de circulation du matériau cible au sein du dispositif en fonctionnement (arrivée et départ inversés).
On notera que de préférence la cavité 8 destinée à contenir le matériau cible est obturée par une fenêtre dite fenêtre d'irradiation 7.
Le dispositif est conçu pour fonctionner avec un matériau cible à l'état de fluide c'est-à-dire liquide et/ou gazeux.
Dans la présente invention, le dispositif comprend également des moyens externes de refroidissement destinés à refroidir le matériau cible lorsque le dispositif fonctionne.
De manière particulièrement avantageuse, ces moyens de externe de refroidissement du matériau cible prennent la forme d'un échangeur de chaleur externe 15. Cet échangeur externe de chaleur 15 est de préférence couplé à une pompe 16 à haut débit, qui est de préférence une pompe volumétrique spécifique.
L'ensemble échangeur externe de chaleur 15/pompe 16 est tel que lorsque le dispositif fonctionne et est pressurisé, cet ensemble permet de maintenir le matériau cible en circulation essentiellement dans son état initial, c'est-à-dire essentiellement liquide dans le cas de l'eau enrichie en 18O pour la production de 18F.
En d'autres termes, dans la présente invention, la configuration des moyens externes de refroidissement du matériau cible par rapport aux autres éléments du dispositif est telle qu'elle permet en fonctionnement une vitesse de circulation dudit matériau cible suffisamment élevée pour permettre un échange de chaleur suffisant entre ledit dispositif et le milieu extérieur pour que la température interne moyenne du dispositif se situe en dessous de 130° C.
L'échangeur de chaleur externe 15 peut être constitué de tuyaux en argent ainsi que d'autres matériaux résistant aux rayonnements, à la pression et aux ions fluorures. Pour cette application, le cuivre est inutilisable et le Nb paraít difficile à usiner, l'argent ou le titane étant donc le meilleur compromis. L'utilisation de tantale, niobium ou palladium étant cependant possible.
Selon une forme préférée d'exécution de l'invention, le dispositif de production comprend avantageusement en outre des moyens internes de refroidissement destinés à refroidir le matériau cible lorsque le dispositif fonctionne. Ces moyens internes de refroidissement prennent ici la forme d'une double paroi 9 qui délimite la cellule d'irradiation 1 et qui peut contenir à l'intérieur un fluide frigorifique en circulation.
Il faut par ailleurs noter que le choix des inserts 2 dans le dispositif selon l'invention est particulièrement important. En effet, selon le type d'insert 2 choisi, des produits secondaires non désirables sont susceptibles d'être générés par l'irradiation, lors du fonctionnement du dispositif. Celle-ci peut en effet produire des radio-isotopes se désintégrant par émission de particule γ énergétique et limitant les réparations sur la cellule 1. Elle peut aussi donner des produits secondaires ayant une influence sur la synthèse ultérieure du radiotraceur à marquer par le 18F ainsi produit.
Un paramètre déterminant également dans le choix du type de matériau des inserts du dispositif selon l'invention est la conductivité thermique de ce matériau. C'est ainsi que l'argent est un bon conducteur mais présente l'inconvénient qu'après plusieurs irradiations, il se produit une formation d'oxyde d'argent contaminante. Le titane est inerte chimiquement mais produit du 48V ayant un temps de demi-vie de 16 jours. Par conséquent, dans le cas du titane, s'il y a bris d'une fenêtre de la cible, son remplacement posera de sérieux problèmes d'exposition aux rayonnements ionisants aux ingénieurs chargés de la maintenance.
On utilise également pour les inserts 2 le Nb qui est deux fois et demi plus conducteur que le titane mais moins que l'argent. Le Nb produit peu d'isotopes à long temps de demi-vie, un exemple étant le 92mNb (réaction nucléaire parasite 93Nb (p, d) 92mNb) dont le temps de demi-vie est d'une dizaine de jours. L'activation globale de l'insert 2, mesurée après irradiation pour production, est toutefois faible en comparaison des valeurs mesurées avec un insert en titane comparable.
Dans le cas d'utilisation d'inserts 2 en Nb, ceux-ci peuvent être recouverts de palladium, ce dernier catalysant la réaction de formation de 18H2O à partir de H2 et 18O2, eux-mêmes issus de la radiolyse de l'18H2O pendant l'irradiation.
Exemple préféré de réalisation
Dans cet exemple de réalisation, le dispositif de production de radio-isotope est un dispositif de production de 18F à partir d'eau enrichie en 18O et d'un faisceau de protons.
Le dispositif peut fonctionner avec des faisceaux de protons accélérés à des vitesses comprises entre 5 et 30 MeV, une intensité de courant allant de 1 à 150 µA avec une durée d'irradiation de 1 minute à 10 heures.
Le dispositif présente un système de recirculation à grande vitesse de l'eau enrichie qui inclut un échangeur externe 15 de chaleur avantageusement combiné à des moyens de refroidissement internes 9 à la cellule d'irradiation, ainsi qu'une pompe volumétrique spécifique 16 permettant de générer un débit suffisant pour maintenir l'eau enrichie (matériau cible) à l'état liquide, c'est-à-dire environ 200 à 500 ml par minute, le passage (transfert) de l'eau enrichie à travers l'échangeur de chaleur externe 15 et les moyens internes de refroidissement permettant d'obtenir un refroidissement de 70° de l'eau enrichie.
On notera que la pompe utilisée dans l'exemple de réalisation décrit est la série 120, fournie par la société Micropump, Inc. (http://www.micropump.com). Cette pompe est une pompe à engrenages. Munie des engrenages N21, elle est capable de débiter 900 ml/min, sous une pression de 5,6 bar.
Dans le présent exemple de réalsisation, le dispositif comprend en outre des moyens externes de refroidissement supplémentaires qui prennent la forme d'un autre échangeur de chaleur externe au dispositif et destiné à refroidir le fenêtre d'irradiation 7 à l'hélium.
Par ailleurs, la fenêtre 7 est en Havar ou en niobium et d'une épaisseur comprise entre 50 et 200 µm.
Il faut noter que l'on peut envisager de façon intéressante en termes de performances que dans le dispositif, le refroidissement du matériau cible puisse aussi se faire uniquement par l'échange de chaleur externe. Mais il faut noter qu'avec les seuls moyens 9 de refroidissement internes 9 à la cellule d'irradiation 1, l'irradiation serait limitée à environ 40 µA et donc d'un intérêt tout relatif.
On évacue donc le liquide cible de la cellule 1 par l'intermédiaire d'un circuit 17 vers un échangeur de chaleur 15 se trouvant à l'extérieur de cette cellule 1 pour ensuite ramener le liquide cible refroidi vers la cellule d'irradiation 1. Les tuyaux utilisés ont un diamètre intérieur compris entre 0.5 et 2 mm. Il s'agit ici d'une recirculation à très haute vitesse pouvant aller jusqu'à plus de un tour complet de circuit par seconde. La recirculation est assurée par une pompe 16 pouvant fournir un débit entre 0.2 et 0.5 L/min avec un gradient de pression important. Une telle vitesse de circulation nécessite un positionnement judicieux du conduit d'entrée 4 et du conduit de sortie 5 dans la cavité contenant le liquide cible. Le but est de créer une circulation forcée par l'intermédiaire d'un vortex dans ce petit volume pour éviter la subsistance de zones « statiques » où le matériau cible circulerait peu.
Le conduit d'entrée 4 du matériau cible a donc été positionné du même coté que le conduit de sortie 5 du matériau cible mais sur un plan décalé. Ceci est bien visible sur la figure 1. Si les deux conduits avaient été positionnés face à face, on aurait inévitablement créé une zone « statique » au sein de la cavité 8 contenant le matériau cible.
Pour entraíner la formation du vortex mentionné plus haut, le conduit d'entrée 4 de la cible est positionné de façon tangentielle dans le sens de l'arrondi de la cavité 8.
La circulation de la cible au sein du circuit 17 et donc de la cavité 8 peut également être inversée de façon à ce que le conduit d'entrée devienne le conduit de sortie. Le sens de rotation du liquide au sein du dispositif de la présente invention est surtout déterminé en fonction des pressions générées dans le circuit et des différents éléments constitutifs de celui-ci.
Par ailleurs, le remplissage et la vidange de la cavité 8 se font également par ces conduits et à ce titre le conduit 5 peut servir d'entrée pour le remplissage, et de sortie pour la recirculation. La sortie 6 sert de trop plein lors du remplissage et est connectée au vase d'expansion durant l'irradiation. Ceci est schématiquement représenté dans la figure 4. La vanne multivoie V5 peut être placée dans deux positions. Dans la première position, elle permet le remplissage et dans la seconde, la circulation à haute vitesse durant l'irradiation et l'évacuation vers le module FDG. Ceci est montré dans la figure 5A, 5B et 5C. La vanne V6 permet de fournir une contre pression d'hélium, d'argon ou d'azote pour la formation d'un « coussin de gaz » fonctionnant comme vase d'expansion. L'hélium, l'argon ou l'azote permettent de façon générale une pressurisation de tout le circuit qui se fait notamment par l'intermédiaire des vannes V1 et V3. Les vannes V2 et V4 servent au remplissage du système.
Le volume global de cible contenu dans l'entièreté du dispositif de l'invention ne doit pas dépasser 20 mL ce qui signifie que le volume mort de la pompe doit être réduit au maximum. L'échangeur de chaleur externe 15 qui contient également un très petit volume de liquide cible, normalement inférieur à 10 mL, et de préférence inférieur à 5 mL est généralement raccordé à un circuit de refroidissement secondaire (non représenté) permettant de dissiper la chaleur produite par l'irradiation du liquide cible dans la cellule d'irradiation 1.
La cellule d'irradiation 1 est nécessairement positionnée dans l'axe du faisceau incident. Les matériaux dont elle est constituée doivent donc pouvoir résister au rayonnement ionisant. Il est cependant possible d'agencer la pompe 16, l'échangeur de chaleur externe 15 et la vanne V5 de manière à ce que ceux-ci soient déportés pour être à l'abri de ce rayonnement. L'inventeur a pu concevoir une solution dans laquelle ces composants peuvent être mis à l'abri du rayonnement ionisant par les retour de flux de l'aimant du cyclotron, sans pour autant que la longueur des canalisations n'excède 20 cm.
Différentes formes d'échangeur bien connues de l'homme de métier peuvent être utilisées. Sans être limitatif, nous citerons les échangeurs à serpentin ou avec un tuyau à double paroi ou encore un échangeur à tube ou à plaques. Les seules contraintes d'un tel échangeur étant un volume mort très faible ne dépassant pas quelques mL, une perte de charge minime et bien entendu un pouvoir d'échange maximalisé (entre 1 et 2.5 kW) tout en résistant à des pH acides (compris entre 2 et 7), à de l'eau oxygénée ou à d'autres produits résultant de l'irradiation.
En résumé, le dispositif selon l'invention permet de produire des radio-isotopes à partir d'un matériau cible irradié par un faisceau de particules chargées produites par un cyclotron. Grâce à sa conception, le dispositif selon l'invention présente l'avantage d'optimiser l'utilisation des capacités d'irradiation des cyclotrons actuels. En effet, alors que les fenêtres d'irradiation 7 ne résistent actuellement pas à des pressions entraínées par des intensités d'irradiation supérieures à 45 µA, le dispositif permet cependant d'utiliser les intensités maximales disponibles sur les cyclotrons utilisés actuellement en médecine nucléaire, c'est à dire environ 100 µA.
De manière générale, le dispositif permet d'utiliser les capacités maximales des cyclotrons actuels pouvant produire des intensités d'irradiation dépassant 100 µA tout en maítrisant l'élévation de température. La cible reste donc essentiellement à l'état liquide ce qui permet une recirculation à grande vitesse sans désamorçage de la pompe.
Le fait de pouvoir irradier un matériau cible à 80 µA plutôt qu'à 40µA permet de produire davantage de 18F ce qui est économiquement très intéressant.
Légende
  • 1. Cellule d'irradiation
  • 2. Insert en Nb ou Nb/Pd
  • 3. Port pour l'entrée d'eau de refroidissement interne à la cellule d'irradiation.
  • 4. Conduit d'entrée d'H2 18O pour la recirculation durant l'irradiation
  • 5. Conduit de sortie d'H2 18O pour la recirculation durant l'irradiation et entrée pour le remplissage de la cavité
  • 6. Trop plein d'H2 18O connecté au vase d'expansion
  • 7. Fenêtre d'irradiation de la cellule
  • 8. Cavité contenant la cible à irradier
  • 9. Liquide de refroidissement interne à la cellule d'irradiation
  • 10. Réservoir accueillant le trop plein
  • 11. Seringue
  • 12. Réservoir d' H2 18O
  • 13. Sortie vers un module de synthèse de chimie, tel que par exemple le module FDG
  • 14. Vase d'expansion- moyen de pressurisation
  • 15. Échangeur de chaleur externe
  • 16. Pompe
  • 17. Tuyaux de connexion
    Figure 00190001
    Figure 00200001
    Figure 00210001
  • Claims (16)

    1. Dispositif de production d'un radio-isotope à partir d'un matériau cible irradié à l'aide d'un faisceau de particules chargées, ledit dispositif comprenant :
      une cellule d'irradiation (1) comprenant un insert (2) avec une fenêtre (7) et une cavité (8) destinée à recevoir un matériau cible, ladite cavité (8) comprenant au moins un conduit d'entrée (4) et au moins un conduit de sortie (5) ;
      des moyens de refroidissement externes à ladite cellule d'irradiation (1) se présentant sous la forme d'au moins un échangeur externe de chaleur (15);
      une pompe (16) ;
      et un moyen de pressurisation (14),
      caractérisé en ce que :
      ladite pompe (16) génère un débit suffisant pour maintenir ledit matériau cible à une température inférieure à 130° C,
      et ledit moyen de pressurisation (14), permet audit matériau cible de rester essentiellement à l'état liquide.
    2. Dispositif selon la revendication 1 caractérisé en ce qu'il comprend en outre des moyens de refroidissement internes à ladite cellule d'irradiation (1), lesdits moyens de refroidissement internes prenant la forme d'une double paroi qui équipe ladite cellule d'irradiation (1).
    3. Dispositif selon la revendication 1 ou 2 caractérisé en ce que l'échangeur de chaleur externe (15) est essentiellement constitué d'un matériau choisi parmi le groupe constitué par l'argent, le titane, le tantale, le niobium et/ou le palladium.
    4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'insert(2) est essentiellement constitué d'un matériau choisi parmi le groupe du Niobium, du Niobium/Palladium, de l'argent et/ou du titane.
    5. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que ledit conduit d'entrée (4) est positionné de façon essentiellement tangentielle à ladite cavité (8) afin de créer un vortex d'écoulement dans celle-ci.
    6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit conduit de sortie (5) n'est pas situé dans le même plan, mais du même côté que le conduit d'entrée (4).
    7. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que ladite cavité (8) est capable de contenir un volume de matériau cible compris entre 0.25 et 2.4 mL.
    8. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que ladite cavité (8) a un diamètre inférieur à 25 mm et une profondeur minimale de 3,5 mm.
    9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est configuré pour contenir dans son ensemble un volume global du matériau cible qui est inférieur à 20 mL.
    10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les différents éléments dudit dispositif sont interconnectés entre eux par des tuyaux (17) ayant un diamètre intérieur compris entre 0.5 et 2 mm.
    11. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le sens de circulation de la cible dans le dispositif peut être inversé en fonction de la disposition des différents éléments constitutifs de celui-ci.
    12. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce lesdits tuyaux (17) reliant les différents éléments du dispositifs sont essentiellement constitués d'un matériau choisi parmi le groupe du tantale, du titane, du niobium, du palladium, de l'inox et/ou de l'argent.
    13. Procédé de fabrication de radio-isotopes par l'intermédiaire d'une cellule d'irradiation dans laquelle on a placé un insert (2) avec une fenêtre (7) et une cavité (8) contenant un matériau cible, caractérisé en ce que ledit matériau cible est recirculé à travers au moins un conduit d'entrée (4) et au moins un conduit de sortie (5) de la cavité (8) en y créant un vortex d'écoulement et à travers un échangeur de chaleur externe (15) à ladite cellule d'irradiation (1), par une pompe (16) ayant un débit suffisant pour refroidir le matériau cible cible, le dispositif étant pressurisé de façon à maintenir la cible essentiellement à l'état liquide.
    14. Procédé selon la revendication 13 caractérisé en ce que le sens de circulation du matériau cible dans le dispositif peut être inversé de façon à ce que le conduit d'entrée (4) devienne le conduit de sortie et que le conduit de sortie (5) devienne le conduit d'entrée (4) du matériau cible.
    15. Procédé selon la revendication 13 caractérisé en ce que ladite pompe débite au moins 200mL/min pendant toute la durée de l'irradiation.
    16. Utilisation du dispositif selon l'une quelconque des revendications précédentes pour la fabrication de radio-isotopes.
    EP02447253A 2002-12-10 2002-12-10 Dispositif et procédé de production de radio-isotopes Withdrawn EP1429345A1 (fr)

    Priority Applications (10)

    Application Number Priority Date Filing Date Title
    EP02447253A EP1429345A1 (fr) 2002-12-10 2002-12-10 Dispositif et procédé de production de radio-isotopes
    JP2004557684A JP4751615B2 (ja) 2002-12-10 2003-12-10 放射性同位体を製造する装置及び方法
    EP03782015A EP1570493B1 (fr) 2002-12-10 2003-12-10 Dispositif et procede destines a la production de radio-isotopes
    US10/537,975 US7940881B2 (en) 2002-12-10 2003-12-10 Device and method for producing radioisotopes
    PCT/BE2003/000217 WO2004053892A2 (fr) 2002-12-10 2003-12-10 Dispositif et procede destines a la production de radio-isotopes
    AT03782015T ATE498183T1 (de) 2002-12-10 2003-12-10 Einrichtung und verfahren zur herstellung von radioisotopen
    AU2003289768A AU2003289768A1 (en) 2002-12-10 2003-12-10 Device and method for producing radioisotopes
    CNB2003801048544A CN100419917C (zh) 2002-12-10 2003-12-10 用于制造放射性同位素的装置和方法
    DE60336009T DE60336009D1 (de) 2002-12-10 2003-12-10 Einrichtung und verfahren zur herstellung von radioisotopen
    CA2502287A CA2502287C (fr) 2002-12-10 2003-12-10 Dispositif et procede destines a la production de radio-isotopes

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP02447253A EP1429345A1 (fr) 2002-12-10 2002-12-10 Dispositif et procédé de production de radio-isotopes

    Publications (1)

    Publication Number Publication Date
    EP1429345A1 true EP1429345A1 (fr) 2004-06-16

    Family

    ID=32319750

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP02447253A Withdrawn EP1429345A1 (fr) 2002-12-10 2002-12-10 Dispositif et procédé de production de radio-isotopes
    EP03782015A Expired - Lifetime EP1570493B1 (fr) 2002-12-10 2003-12-10 Dispositif et procede destines a la production de radio-isotopes

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP03782015A Expired - Lifetime EP1570493B1 (fr) 2002-12-10 2003-12-10 Dispositif et procede destines a la production de radio-isotopes

    Country Status (9)

    Country Link
    US (1) US7940881B2 (fr)
    EP (2) EP1429345A1 (fr)
    JP (1) JP4751615B2 (fr)
    CN (1) CN100419917C (fr)
    AT (1) ATE498183T1 (fr)
    AU (1) AU2003289768A1 (fr)
    CA (1) CA2502287C (fr)
    DE (1) DE60336009D1 (fr)
    WO (1) WO2004053892A2 (fr)

    Families Citing this family (60)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7410458B2 (en) 2003-11-12 2008-08-12 Isoray Medical, Inc. Brachytherapy implant seeds
    EP1569243A1 (fr) * 2004-02-20 2005-08-31 Ion Beam Applications S.A. Dispositif de cible pour la production d'un radioisotope
    US9627097B2 (en) * 2004-03-02 2017-04-18 General Electric Company Systems, methods and apparatus for infusion of radiopharmaceuticals
    DE602005005675D1 (de) 2004-06-28 2008-05-08 Isoray Medical Inc Verfahren zum trennen und reinigen von cäsium-131 von bariumnitrat
    WO2006000104A1 (fr) * 2004-06-29 2006-01-05 Triumf, Operating As A Joint Venture By The Governors Of The University Of Alberta, The University Of British Columbia, Carleton University, Simon Fraser University, The University Of Toronto, And The Ensemble cible a convection forcee
    EP2259664B1 (fr) 2004-07-21 2017-10-18 Mevion Medical Systems, Inc. Générateur programmable de forme d'onde à radiofréquence pour un synchrocyclotron
    US7517508B2 (en) 2004-07-26 2009-04-14 Isoray Medical, Inc. Method of separating and purifying Yttrium-90 from Strontium-90
    EA009820B1 (ru) 2004-07-28 2008-04-28 Айсорей Медикал, Инк. Способ отделения и очистки цезия-131 от карбоната бария
    EP1784838A2 (fr) 2004-08-18 2007-05-16 Isoray Medical, Inc. Procede de preparation de particules de poudre radioactive renfermant du cesium-131 a utiliser dans des sources de curietherapie
    EP2389980A3 (fr) 2005-11-18 2012-03-14 Still River Systems, Inc. Radiothérapie à particules chargées
    US7510691B2 (en) 2006-02-28 2009-03-31 Isoray Medical, Inc. Method for improving the recovery of cesium-131 from barium carbonate
    CN101681689B (zh) * 2007-06-08 2012-07-04 住友重机械工业株式会社 放射性同位素制造装置及放射性同位素的制造方法
    JP5179142B2 (ja) * 2007-10-24 2013-04-10 行政院原子能委員会核能研究所 ターゲット物質コンベヤシステム
    US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
    US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
    EP2250649B1 (fr) * 2008-02-05 2012-05-09 The Curators Of The University Of Missouri Production de radio-isotopes et traitement d une solution d un matériau cible
    RU2494484C2 (ru) 2008-05-02 2013-09-27 Шайн Медикал Текнолоджис, Инк. Устройство и способ производства медицинских изотопов
    US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
    US8257681B2 (en) * 2008-12-26 2012-09-04 Clear Vascular Inc. Compositions of high specific activity SN-117M and methods of preparing the same
    US8106370B2 (en) * 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity
    US8153997B2 (en) * 2009-05-05 2012-04-10 General Electric Company Isotope production system and cyclotron
    US8106570B2 (en) * 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having reduced magnetic stray fields
    US8374306B2 (en) 2009-06-26 2013-02-12 General Electric Company Isotope production system with separated shielding
    US10978214B2 (en) 2010-01-28 2021-04-13 SHINE Medical Technologies, LLC Segmented reaction chamber for radioisotope production
    DE102010006435B3 (de) * 2010-02-01 2011-07-21 Siemens Aktiengesellschaft, 80333 Verfahren und Vorrichtung zur Produktion von 99mTc
    US9336916B2 (en) * 2010-05-14 2016-05-10 Tcnet, Llc Tc-99m produced by proton irradiation of a fluid target system
    BE1019556A3 (fr) * 2010-10-27 2012-08-07 Ion Beam Applic Sa Dispositif destine a la production de radioisotopes.
    US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
    US9336915B2 (en) * 2011-06-17 2016-05-10 General Electric Company Target apparatus and isotope production systems and methods using the same
    US20130083881A1 (en) * 2011-09-29 2013-04-04 Abt Molecular Imaging, Inc. Radioisotope Target Assembly
    US9686851B2 (en) 2011-09-29 2017-06-20 Abt Molecular Imaging Inc. Radioisotope target assembly
    EP2581914B1 (fr) * 2011-10-10 2014-12-31 Ion Beam Applications S.A. Procédé et installation pour la production d'un radioisotope
    IN2014DN09137A (fr) 2012-04-05 2015-05-22 Shine Medical Technologies Inc
    TW201434508A (zh) 2012-09-28 2014-09-16 Mevion Medical Systems Inc 一粒子束之能量調整
    JP6254600B2 (ja) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器
    TW201424467A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 一粒子束之強度控制
    TW201422278A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 粒子加速器之控制系統
    CN104812443B (zh) 2012-09-28 2018-02-02 梅维昂医疗***股份有限公司 粒子治疗***
    US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
    EP2901824B1 (fr) 2012-09-28 2020-04-15 Mevion Medical Systems, Inc. Éléments d'homogénéisation de champ magnétique permettant d'ajuster la position de la bobine principale et procédé correspondant
    TW201422279A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 聚焦粒子束
    JP6138947B2 (ja) 2012-09-28 2017-05-31 メビオン・メディカル・システムズ・インコーポレーテッド 磁場再生器
    US20140270723A1 (en) * 2013-03-15 2014-09-18 Vertech Ip, Llc Electro-acoustic resonance heater
    JP2016519769A (ja) * 2013-04-01 2016-07-07 ハーランド,ピーター 放射性同位元素の準中性のプラズマ発生
    US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
    US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
    JP6855240B2 (ja) 2013-09-27 2021-04-07 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビーム走査
    US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
    US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
    US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
    BE1023217B1 (fr) * 2014-07-10 2016-12-22 Pac Sprl Conteneur, son procede d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur
    US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
    US9991013B2 (en) 2015-06-30 2018-06-05 General Electric Company Production assemblies and removable target assemblies for isotope production
    US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
    JP7059245B2 (ja) 2016-07-08 2022-04-25 メビオン・メディカル・システムズ・インコーポレーテッド 治療計画の決定
    US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
    CN106910547A (zh) * 2017-03-28 2017-06-30 佛山市来保利高能科技有限公司 一种适用于流体辐射改性的装置
    EP3645111A1 (fr) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Collimateur configurable commandé au moyen de moteurs linéaires
    US10714225B2 (en) 2018-03-07 2020-07-14 PN Labs, Inc. Scalable continuous-wave ion linac PET radioisotope system
    TW202039026A (zh) 2019-03-08 2020-11-01 美商美威高能離子醫療系統公司 藉由管柱之輻射遞送及自其產生治療計劃

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5346598A (en) * 1976-10-07 1978-04-26 Ebara Corp Cooling system and device of particle accelerator irradiation aperture
    JPH0954196A (ja) * 1995-08-17 1997-02-25 Nihon Medi Physics Co Ltd 18−f製造ターゲット部材及びターゲットシステム

    Family Cites Families (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2868987A (en) * 1952-01-03 1959-01-13 Jr William W Salsig Liquid target
    US3349001A (en) * 1966-07-22 1967-10-24 Stanton Richard Myles Molten metal proton target assembly
    US4800060A (en) 1982-08-03 1989-01-24 Yeda Research & Development Co., Ltd. Window assembly for positron emitter
    US4752432A (en) 1986-06-18 1988-06-21 Computer Technology And Imaging, Inc. Device and process for the production of nitrogen-13 ammonium ion from carbon-13/fluid slurry target
    DE3808973A1 (de) 1988-03-17 1989-10-05 Kernforschungsz Karlsruhe Gastargetvorrichtung
    US5425063A (en) 1993-04-05 1995-06-13 Associated Universities, Inc. Method for selective recovery of PET-usable quantities of [18 F] fluoride and [13 N] nitrate/nitrite from a single irradiation of low-enriched [18 O] water
    US5586153A (en) 1995-08-14 1996-12-17 Cti, Inc. Process for producing radionuclides using porous carbon
    US5917874A (en) 1998-01-20 1999-06-29 Brookhaven Science Associates Accelerator target
    JP3564599B2 (ja) 1998-09-02 2004-09-15 独立行政法人理化学研究所 陽電子線源及びその製造方法並びに陽電子線源自動供給装置
    BE1011263A6 (fr) 1999-02-03 1999-06-01 Ion Beam Applic Sa Dispositif destine a la production de radio-isotopes.
    US6359952B1 (en) 2000-02-24 2002-03-19 Cti, Inc. Target grid assembly
    US6586747B1 (en) 2000-06-23 2003-07-01 Ebco Industries, Ltd. Particle accelerator assembly with liquid-target holder
    US6917044B2 (en) 2000-11-28 2005-07-12 Behrouz Amini High power high yield target for production of all radioisotopes for positron emission tomography
    US6567492B2 (en) * 2001-06-11 2003-05-20 Eastern Isotopes, Inc. Process and apparatus for production of F-18 fluoride
    EP1412951A2 (fr) 2001-06-13 2004-04-28 The Uni. Of Alberta, the Uni. of British Columbia, Carleton Uni., Simon Fraser Uni., the Uni. of Victoria, d.b.a. TRIUMF Appareil et procede de generation de ?18 f-fluorure au moyen de faisceaux ioniques
    US20040100214A1 (en) 2002-05-13 2004-05-27 Karl Erdman Particle accelerator assembly with high power gas target
    WO2003099208A2 (fr) * 2002-05-21 2003-12-04 Duke University Cible en recirculation et procede de fabrication de nucleide radioactif
    US7831009B2 (en) 2003-09-25 2010-11-09 Siemens Medical Solutions Usa, Inc. Tantalum water target body for production of radioisotopes

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5346598A (en) * 1976-10-07 1978-04-26 Ebara Corp Cooling system and device of particle accelerator irradiation aperture
    JPH0954196A (ja) * 1995-08-17 1997-02-25 Nihon Medi Physics Co Ltd 18−f製造ターゲット部材及びターゲットシステム

    Non-Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Title
    B.W. WIELAND, G.T. BIDER ET AL: "Current status of CTI target systems for the production of PET Radiochemicals", PROCEEDINGS OF THE 3RD WORKSHOP ON TARGETRY AND TARGET CHEMISTRY 19-23 JUNE 1989, December 1990 (1990-12-01), Vancouver, Canada, pages 34 - 48, XP002242974 *
    JEAN-LUC MORELLE, YVES JONGEN, BENOIT GEORGES: "An efficient 18-F fluoride production method using a recirculating 18-O water target", PROCEEDINGS OF THE 3RD WORKSHOP ON TARGETRY AND TARGET CHEMISTRY, 19-23 JUNE 1989, December 1990 (1990-12-01), Vancouver, Canada, pages 50,51, XP002242973 *
    PATENT ABSTRACTS OF JAPAN vol. 002, no. 080 (M - 025) 24 June 1978 (1978-06-24) *
    PATENT ABSTRACTS OF JAPAN vol. 1997, no. 06 30 June 1997 (1997-06-30) *

    Also Published As

    Publication number Publication date
    ATE498183T1 (de) 2011-02-15
    CN100419917C (zh) 2008-09-17
    CN1726563A (zh) 2006-01-25
    WO2004053892A3 (fr) 2004-09-02
    DE60336009D1 (de) 2011-03-24
    WO2004053892A2 (fr) 2004-06-24
    US7940881B2 (en) 2011-05-10
    AU2003289768A1 (en) 2004-06-30
    CA2502287A1 (fr) 2004-06-24
    EP1570493A2 (fr) 2005-09-07
    CA2502287C (fr) 2011-08-23
    JP4751615B2 (ja) 2011-08-17
    JP2006509202A (ja) 2006-03-16
    EP1570493B1 (fr) 2011-02-09
    US20060104401A1 (en) 2006-05-18

    Similar Documents

    Publication Publication Date Title
    EP1429345A1 (fr) Dispositif et procédé de production de radio-isotopes
    KR101106118B1 (ko) 방사성 동위 원소 생성용 타겟 장치
    JP6113453B2 (ja) 中性子発生装置用のターゲットとその製造方法
    RU2501107C2 (ru) Устройства и способы для создания радиоизотопов в инструментальных трубках ядерного реактора
    US20070297554A1 (en) Method And System For Production Of Radioisotopes, And Radioisotopes Produced Thereby
    EP3167456B1 (fr) Conteneur, son procédé d&#39;obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur
    FR2819098A1 (fr) Tubes a rayons x et systemes a rayons x comportant un dispositif a gradient thermique
    EP3560302B1 (fr) Système de ciblerie à gaz pour production de radio-isotopes
    JP2005517151A (ja) イオンビームによる18f−フッ化物の製造のための装置と方法
    EP2633527B1 (fr) Dispositif destiné à la production de radioisotopes
    JP2014044098A (ja) 荷電粒子照射ターゲット冷却装置、荷電粒子照射ターゲット、および中性子発生方法
    CA3207439A1 (fr) Reacteur de fission a sels fondus et a echangeur primaire integre, et electrogenerateur comprenant un tel reacteur
    CA2337271C (fr) Cible primaire pour la formation de produits de fission
    BE1019054A3 (fr) Dispositif de production de radio-isotopes.
    KR101130997B1 (ko) 방사성 동위 원소를 생산하기 위한 장치 및 방법
    EP2425686B1 (fr) Cible de faisceau de particules avec transfert de chaleur amélioré et procédé associé
    WO2020249524A1 (fr) Cibles liquides pour la production de particules nucléaires
    EP0128092A1 (fr) Dispositif de couverture de réacteur à fusion nucléaire utilisant la réaction deutérium tritium, à matériau tritigène solide
    Bernat Target technologies for indirect drive ignition on the NIF
    Peir et al. Simulation of Thermal Responses of 125TeO2 Solid Target to Energetic Proton Bombardment from Cyclotron When Fabricating 124I Nuclear Medicine
    EP3069352A1 (fr) Composant a geometrie variable pour une structure a grande dimension et procede d&#39;assemblage
    FR2839243A1 (fr) Cible pour la production d&#39;au moins un radio-element

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    AKX Designation fees paid
    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20041217