JP2529492B2 - 荷電粒子偏向電磁石用コイルおよびその製造方法 - Google Patents

荷電粒子偏向電磁石用コイルおよびその製造方法

Info

Publication number
JP2529492B2
JP2529492B2 JP3206777A JP20677791A JP2529492B2 JP 2529492 B2 JP2529492 B2 JP 2529492B2 JP 3206777 A JP3206777 A JP 3206777A JP 20677791 A JP20677791 A JP 20677791A JP 2529492 B2 JP2529492 B2 JP 2529492B2
Authority
JP
Japan
Prior art keywords
coil
layer
diameter portion
outer diameter
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3206777A
Other languages
English (en)
Other versions
JPH053116A (ja
Inventor
武男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3206777A priority Critical patent/JP2529492B2/ja
Priority to US07/751,054 priority patent/US5278533A/en
Priority to DE4128931A priority patent/DE4128931C2/de
Publication of JPH053116A publication Critical patent/JPH053116A/ja
Priority to US08/133,340 priority patent/US5461773A/en
Application granted granted Critical
Publication of JP2529492B2 publication Critical patent/JP2529492B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/071Winding coils of special form
    • H01F2041/0711Winding saddle or deflection coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Particle Accelerators (AREA)
  • Coil Winding Methods And Apparatuses (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、例えばシンクロトロ
ン放射光発生装置などに用いられる荷電粒子偏向電磁石
用コイルおよびその製造方法に関するものである。
【0002】
【従来の技術】図12は例えば特開昭64−2300号公報に
示されたものと同種の荷電粒子装置の概略構成を示す平
面図であり、図において入射部(図示せず)及び加速部
(図示せず)を経て入射された荷電粒子は、互いに対向す
る2個の超電導偏向電磁石(30)により偏向されること
により、図のような長円形の軌道(20)上を運動する。
【0003】図13は図12の超電導偏向電磁石(30)
の超電導コイルの一例を示すもので、(a)は平面図、
(b)は(a)のXIIIB−XIIIB線に沿った断面図である。
図において、それぞれ超電導線(2)を巻回してなる2つ
の超電導コイル(1)は、軌道(20)を挟んで上下に互い
に対向するように配置されている。所定の曲率で曲げら
れている超電導コイル(1)は、軌道(20)の内径側に位
置する内径部(1a)、この内径部(1a)と同様に曲げら
れ軌道(20)の外径側に位置する外径部(1b)、及び内
径部(1a)と外径部(1b)との間に位置するコイル端部
(1c)に区分される。
【0004】上記のように構成された超電導コイル(1)
は、例えば−268℃の極低温に冷却されて超電導状態に
なる。超電導状態になった超電導コイル(1)に電流を流
すことにより、数テスラの高い磁束密度の磁界が得られ
る。この磁界により、荷電粒子の軌道(20)は図に示す
ように偏向される。
【0005】一方、図14は例えば『IEEE・トラン
ザクシャンズ・オン・マグネティクス』(IEEE TRANSACTIO
NS ON MAGNETICS,Vol.1,Mag-24,No.6,November 198
5)第2457頁〜第2460頁に示された超電導コイル(1)の他
の例を示す。図14の(a)は超電導コイル(1)の斜視
図、(b)は(a)の外径部(1b)のXIVB−XIVB線に沿っ
た断面図、および(c)はコイル端部(1c)のXIVC−XIV
C線に沿った断面図である。
【0006】図において、この超電導コイル(1)は、い
わゆる端部跳ね上げ形バナナコイルと呼ばれるもので、
各コイル端部(1c)が軌道(20)から遠ざかるように所
定の角度θで跳ね上げられており、これによりコイル端
部(1c)が作る磁界の軌道(20)への影響が低減されて
いる。超電導コイル(1)は、図13と同様に2つの超電
導コイル(1)が軌道(20)の上下に配置される。図14
の(b)の断面図に示すように、外径部(1b)では超電導
線(2)の第1層(L1)から第N層(LN)までが内側から
外側へ横方向に積層された構造になっている。内径部
(1a)では第1層(L1)が右端になる同様の横方向に積
層された構造となる。一方、コイル端部(1c)では超電
導線(2)の第1層(L1)から第N層(LN)までが下から
上へ縦方向に積層された構造となっている。
【0007】次に、図14の超電導コイル(1)の従来の
製造方法を製造途中の状態を示す図15により説明す
る。まず、超電導線(2)を、外径部(1b)、コイル端部
(1c)、内径部(1a)、コイル端部(1c)の順で左巻き
で内側から外側へ(図14Bにおいて上方から下方へ)向
かって所定回数巻回して第1層(L1)を形成する。続い
て、第1層(L1)に沿って超電導線(2)を左巻きで外側
から内側へ向かって巻回して第2層(L2)を形成する。
この後、所定の層数Nになるまで、前の層に沿って超電
導線(2)を巻回していくことにより、超電導コイル(1)
が製造される。
【0008】
【発明が解決しようとする課題】上記のような従来の超
電導コイルにおいては、曲線的かつ立体的に超電導線
(2)を巻回していく必要があるため、複雑な巻回装置
(図示せず)を必要とし、従って製造コストが高くなり、
コイルが高価になってしまうという問題点があった。ま
た、奇数層は内側から外側へ向けて、偶数層では外側か
ら内側へ向けて、超電導線(2)を連続して巻回してい
く。このとき、特に偶数層の巻回時に、図15の矢印R
で示す部分では、隣接する超電導線(2)との間に隙間が
生じてしまう。このように超電導線(2)間に隙間がある
と、超電導コイル(1)に電流を流した際に、電磁力によ
り超電導線(2)が移動し、クエンチ現象が生じて超電導
状態を維持できなくなるという問題点があった。
【0009】この発明は、上記のような課題を解決する
ためになされたものであり、複雑な巻回装置を用いるこ
となく製造でき、かつ良好な特性を有する、両側のコイ
ル端部を折り曲げた荷電粒子偏向電磁石用コイルを得る
ことおよびその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】この発明に係る荷電粒子
偏向電磁石用コイルは、両側のコイル端部を互いに向か
い合うように折り曲げた平形のコイルユニットを複数枚
積層し、各コイルユニットを互いに電気的に接続する構
造とし、特に各コイルユニットの導線の両端はコイルの
外径部にくるようにした。またこの発明の別の実施例で
は、導線の両端がコイルユニットの外径部の外側にある
2層コイルユニットを積層し、各2層コイルユニット間
の導線同士の接続部が全て外径部の外側になるようにし
た。さらに別の実施例では、各コイルユニット間の導線
同士の接続部をコイルユニットから離れるように引き出
して設けた。また、この発明に係る荷電粒子偏向電磁石
用コイルの製造方法は、導線を所定回数巻回して平形コ
イルを形成する巻回工程と、これの両側のコイル端部を
互いに向かい合うように折り曲げてコイルユニットを形
成する折り曲げ工程と、コイルユニットを積層する積層
工程と、各コイルユニットを互いに電気的に接続する接
続工程を備えるものである。また別の実施例では、2層
分の長さを有する導線の中間部から両側にそれぞれ巻回
して、導線の両端が外径部に位置するように2層平形コ
イルを形成する巻回工程と、2層平形コイルの両側のコ
イル端部を互いに向かい合うように折り曲げて2層コイ
ルユニットを形成する折り曲げ工程と、この2層コイル
ユニットを所要個数積層する積層工程と、各2層コイル
ユニットを互いに電気的に接続する接続工程とを備えた
ものである。
【0011】
【作用】この発明の偏向電磁石用コイルでは、導線を内
側から外側に巻回して形成された平形コイルが使用され
ているので、導体間の隙間が小さく、導体の移動を防止
でき、また、接続部を全てコイルの外径部にくるように
し、コイルが発生する磁界が接続部に与える影響が軽減
されている。また、2層コイルユニットを積層したもの
では接続部の数を減らすことができると共に、接続部が
全て外径部の外側になるので、コイルが発生する磁界が
接続部に与える影響がさらに軽減される。また接続部を
コイルから引き出して設けることにより、さらに磁界の
影響を受け難くくなる。また、この発明の偏向電磁石用
コイルの製造方法では、平形コイルの形成後に両側のコ
イル端部を折り曲げてコイルユニットを形成するので、
複雑な巻回装置は必要でなくなる。また、接続部が全て
外径部の外側になる2層コイルユニットを、導体を中間
部から両側にそれぞれ内側から外側に左右反対に巻回す
ることで得ることができ、導体を外側から内側へ巻いて
いく工程がないので導体間の隙間を小さくでき、導体の
移動を防止できる。なお、この発明は以下に説明するよ
うにその他の特徴部分も備えている。
【0012】
【実施例】以下、この発明の実施例を図について説明す
る。図1の(a)〜(c)はこの発明の第1の実施例による
超電導コイルの製造方法を工程順に示す斜視図である。
また図2には図1に示される製造方法のフローチャート
図を示す。以下、図1および図2に従って第1の実施例
の製造方法を工程順に説明する。
【0013】まず、超電導線(2)を内側から外側へ向け
て左巻で所定巻数巻回して、図1の(a)に示すような1
層目の平形コイル(3)を形成する(ステップS1)。この
平形コイル(3)は、荷電粒子の軌道(20)(図12参照)
の内径側に配置される内径部(3a)、外径側に配置され
る外径部(3b)、及び内径部(3a)と外径部(3b)との
間に位置するコイル端部(3c)からなっている。この実
施例では複数枚の平形コイル(3)を積層して超電導コイ
ルを形成する。積層された平形コイルは後工程におい
て、順に直列に接続する必要があるため、右巻のコイル
と左巻のコイルを交互に積層するようにする。この例で
は奇数層を左巻コイル、偶数層を右巻コイルとした。
【0014】次に、このように形成された平形コイル
(3)に超電導線(2)同士を固定するための接着材である
熱硬化性ワニス(図示せず)を塗布する(ステップS2)。
そしてプレス機(図示せず)により押圧して平形コイル
(3)の整形を行い、さらに加熱してワニスを硬化させて
超電導線(2)同士を接着して固定する(ステップS3)。
次に、図1の(b)に示すように内径部(3a)および外径
部(3b)を含む面に対して両側のコイル端部(3c)を折
り曲げ機(図示せず)により折り曲げる。コイル端部(3
c)は、互いに向かい合うように軌道(20)と反対側に
所定の角度θで跳ね上げる(ステップS4)。これにより
1層目のコイルユニット(パンケーキユニット)(4)が形
成される(ステップS5)。
【0015】次にステップS1に戻り2層目のコイルユ
ニットを形成する。偶数層である2層目のコイルユニッ
トの場合は、超電導線(2)を内側から外側へ向けて今度
は右巻で所定巻数巻回して平形コイル(3)を形成する
(ステップS1)。2層目の平形コイル(3)の全体的な形
状は図1の(a)のものと同じであるが、超電導線(2)の
両端が、内側端が図面の上方向に延び、外側端が下方向
に延びるものとなる。また、2層目の平形コイル(3)の
長手方向の長さLは1層目のコイルより短くする。これ
は、積層された際の各層のコイルユニット(4)の立ち上
げられたコイル端部(3c)の高さを揃えるためである。
すなわち、内側或は上層の平形コイル程、長手方向の長
さLが短くなる。
【0016】次に、1層目と同様に巻回された平形コイ
ル(3)にワニス(図示せず)を塗布(ステップS2)、プレ
ス機により押圧、さらに加熱して超電導線(2)同士を固
定する(ステップS3)。次に、平形コイル(3)の両側の
コイル端部(3c)を、1層目の平形コイル上に積層され
た時にこれとピッタリ重なるように折り曲げる(ステッ
プS4)。これにより2層目のコイルユニット(4)が形
成される(ステップS5)。以上のステップS1からステ
ップS5までの工程を所定の層分(例えばN層)のコイル
ユニットが完成するまで繰り返して行う(ステップS
6)。
【0017】第N層までのコイルユニットが完成する
と、第1層から第N層までのコイルユニット(4)を所定
の順番で積層する。これがコイル部となる。この際、図
3に示すように接着部材である櫛形の熱硬化性接着シー
ト(9)を各層のコイルユニット(4)間に挟んで積層する
(ステップS7)。この櫛形の接着シート(9)は各コイル
ユニット間の接着を行うと共に、コイルユニット間の接
着シートのない部分(隙間)に冷媒が流れ込んでコイルユ
ニットの冷却効率を高める効果を有する。この接着シー
トのない隙間部分は、超電導線(2)を横切る方向に延び
るものであり、従って超電導線(2)が移動する原因には
ならない。なお、接着シート(9)の外側の不必要な部分
は後で切り取られる。
【0018】次に、積層された各コイルユニット(4)の
隣接するコイルユニットの超電導線(2)の内側端同士、
外側端同士を互いに電気的に接続し、積層されたN層分
のコイルユニットを順番に直列接続する(ステップS
8)。図4の(a)および(b)には、図1の(c)に示され
ている完成された超電導コイル(5)の矢印IVAの方向か
ら見た外径部(3b)の内側の接続部分、および矢印IVB
の方向から見た外径部(3b)の外側の接続部分を示す。
この実施例では、第1層(L1)ないし第N層(LN)のう
ちの、偶数層のコイルユニット(4)の外径部の内側およ
び外側にそれぞれ、超電導線(2)同士の接続部(2A)が
ある。これらの接続部(2A)では超電導線(2)の端部同
士が圧着、半田付け或は溶着により接続されている。
なお、図4では各コイルユニット間に挟まれている接着
シート(9)(図3参照)の図示は省略されている。
【0019】そして積層されたN層のコイルユニット
(4)を押圧治具(図示せず)により押圧して整形し、さら
に加熱して接着一体化することにより、図1の(c)に示
された超電導コイル(5)が製造される(ステップS9お
よびS10)。図5には図1の(c)に示された超電導コ
イル(5)の各部の断面図を示した。図5の(a)はVA−V
A線に沿った外径部の断面図、(b)はVB−VB線に沿っ
たコイル端部の断面図である。この発明のものでは従来
の超電導コイルとは異なり、超電導コイル(5)の外径部
では第1層(L1)から第N層(LN)までが下から上へ縦
方向に積層された構造となる。内径部でも同様な断面図
となる。また両端のコイル端部では第1層(L1)が最外
側になり、外側から内側へ横方向に積層された構造とな
っている。なお、図5において、各コイルユニット間に
挟まれている接着シート(9)(図3参照)の図示は省略さ
れている。
【0020】また、製造された超電導コイル(5)の各部
分の寸法の一例をあげると、図1の(c)の超電導コイル
(5)の直径(D)は約2m、幅(W1)は約60cm、コイ
ル端部の高さ(T1)は約45cmである。また、図5に
示された超電導コイルの断面の高さ(T2)および幅(W
2)はそれぞれ約13cmである。
【0021】以上のような第1の実施例の超電導コイル
の製造方法によれば、超電導線(2)の巻回作業は平形
コイル(3)の形成時のみであるため、複雑な巻回装置
を必要とせず、従って製造コストを低減でき、超電導コ
イル(5)を安価に提供することができる。また、上記
の方法では、曲げ成形後にコイルユニット(4)を積層
するので、コイル端部の曲げ成形は1層の平形コイル
(3)に対して行われるので、折り曲げ機も小形のもの
でよい。また、超電導線(2)を隙間なく巻回して平形
コイル(3)を形成した後、コイル端部(3c)を跳ね
上げるようにしたので、超電導線(2)間に隙間が残ら
ず、超電導線(2)の移動によるクエンチの発生を防止
することができ、超電導コイル(5)の超電導特性を安
定させることができ、信頼性の高いコイルを得ることが
できる。
【0022】図6はコイル容器に収納されたこの発明に
よる超導コイルの外観を示す斜視図であり、一部を破
断して示している。超電導コイル(5)はその形状に合
わせて形成されたステンレス鋼製のコイル容器(10)
の中に収納されている。容器(10)内では超電導コイ
ル(5)は外壁(10a)と内枠(10b)の間に固定
手段(図示せず)により固定されて、コイル(5)が自
らが発生する磁界による電磁力により動かないようにさ
れている。コイル容器(10)の中は液体ヘリウム等の
冷媒(図示せず)が満たされ極低温に保たれており、超
電導コイル(5)は超電導状態に保たれている。内枠
(10b)の内側には磁界を補正する補正コイル或は磁
界強度を補う補助コイルが設けられるが、図示およびそ
の説明は省略する。
【0023】また、図7の(a)および(b)にはこの発明
において超電導コイル(5)を形成するのに使用される超
電導線(2)の平面図および横断面図を示す。超電導線
(2)は平角線(2a)に、束にしたフィラメント(2b)を
図7の(a)に示すようにヘリカル(つる巻状)に、かつ粗
密巻きしたものである。平角線(2a)の縦横の長さはそ
れぞれ2〜3mm程度である。平角線(2a)の内部構造
は、中心にはニオブチタン(NbTi)からなる複数の超
電導フィラメントである細線(2c)が通っており、これ
らの細線(2c)が銅(2d)で覆われている。そしてこの
銅(2d)の表面にはホルマール絶縁(2e)が施されてい
る。またフィラメント(2b)はポリアミド、ガラス、ナ
イロン等からなるもので、素線径が10〜50μm程度
のものである。そして50〜100本のフィラメント
(2b)が束ねられ、平角線(2a)の表面にヘリカルにか
つ粗密巻きされている。
【0024】超電導線(2)を巻回して超電導コイル(5)
を形成する際に、ワニスを塗って超電導線(2)同士を固
定するが、このときワニスがフィラメント(2b)にも浸
透付着する。従来の超電導線では幅の細いテープを導線
に巻回していたが、断面寸法の小さい導線にテープをヘ
リカルに巻回することは非常に困難であった。そこでこ
の発明では、束にしたフィラメント(2b)を使用した。
また、このフィラメント(2b)を粗密巻きにするのは、
平角線(2a)のフィラメント(2b)のない隙間部分が直
接、冷媒に触れて冷却効果を高めるためである。
【0025】なお、上述した第1の実施例では平形コイ
ル状に巻回された超伝導線(2)にワニスを塗布していた
が、予め熱硬化性ワニスを含浸させた束状のフィラメン
ト(2b)を平角線(2a)にヘリカルに、かつ粗密巻した
超電導線(2)を平形コイルに巻回してもよい。
【0026】図8にはこの発明の他の実施例による超電
導コイルの製造方法を工程順に示す斜視図、図9はその
フローチャート図を示した。この実施例では2層分の長
さを有する超伝導線を中央部から両側にそれぞれ左右反
対方向に巻回して2層分の平形コイルを形成し、この2
層平形コイルを積層して超伝導コイルを形成する。
【0027】以下、図8および図9に従って第2の実施
例の製造方法を工程順に説明する。この実施例では、予
め熱硬化性ワニスを含浸させた束状のフィラメント(2
b)が巻いてある超伝導線(2)を使用する。平形コイル
2層分の長さを有する超電導線(2)のほぼ中間部を巻始
めとして、超伝導線(2)の一方側を内側から外側へ向け
て右巻で所定巻数巻回して1層目の平形コイルを形成す
る(ステップS20)。次にプレス機(図示せず)により押
圧して巻回された平形コイルの整形を行い、さらに加熱
してワニスを硬化させて超電導線(2)同士を接着固定す
る(ステップS21)。次に1層目の平形コイルの両側の
コイル端部(6c)(図8の(a)参照)を除く部分に、図3
に示す櫛形の接着シート(9)を乗せる(ステップS2
2)。なお、接着シート(9)の外側の不必要な部分は後
に切り取られる。
【0028】次に超伝導線(2)の中間部から他方側を内
側から外側へ向けて左巻で、接着シート(9)を挟むよう
にして所定巻数巻回して、2層目の平形コイルを形成す
る(ステップS23)。次に1層目と2層目の平形コイル
を重ねた状態でプレス機により押圧して巻回された2層
平形コイルの整形を行い、さらに加熱して2層目の平形
コイルの超電導線(2)同士を固定すると共に、1層目と
2層目の平形コイル同士を接着する。これにより図8の
(a)に示す2層平形コイル(6)が形成される(ステップ
S24)。この2層平形コイル(6)は、2層内径部(6
a)、2層外径部(6b)及び2層コイル端部(6c)から
なっている。次に、図8の(b)に示すように2層内径部
(6a)および2層外径部(6b)を含む面に対して両側の
2層コイル端部(6c)を折り曲げ機(図示せず)により折
り曲げる。2層コイル端部(6c)は互いに向かい合うよ
うに、軌道(20)(図12参照)と反対側に所定の角度θ
で跳ね上げる(ステップS25)。次に跳ね上げられた1
層目と2層目のコイル端部(6c)の間に接着シート(9)
を挿入して加熱し、これらを接着するこれにより1段目
の2層コイルユニット(2層パンケーキユニット)(7)が
完成する(ステップS26)。
【0029】次にステップS20に戻り2段目の2層コ
イルユニット(7)をステップS20〜S26に従って形
成する。2段目の2層コイルユニットを形成する際、ス
テップS25において両側の2層コイル端部(6c)は、
1枚目のコイルユニット上に積層された時にこれとピッ
タリ重なるように折り曲げられる。また内側すなわち上
層の平形コイル程、長手方向の長さが短いことは言うま
でもない。以上のステップS20からステップS26ま
での工程を、所定段数分(例えばN/2段)の2層コイル
ユニットが完成するまで繰り返して行う(ステップS2
7)。
【0030】所定の段数分の2層コイルユニット(7)が
完成すると、これらのコイルユニット(7)を所定の順番
で積層する。この際、図3に示した接着シート(9)を各
段のコイルユニット(7)間に挟んで積層する(ステップ
S28)。なお、接着シート(9)の外側の不必要な部分
は後で切り取られる。次に、積層された各2層コイルユ
ニット(7)のそれぞれの2層外径部(6b)の外側にある
超電導線(2)の端部を隣接する層間でそれぞれ電気的に
接続し、積層されたコイルユニット(7)を順番に電気的
に直列接続する(ステップS29)。図10は図8の(c)
に示されている完成された超電導コイル(8)の矢印Xの
方向から見た外形部の外側の接続部分(2A)を示す。接
続部(2A)は各2層コイルユニット(7)の2層目にあ
り、これらの接続部(2A)では超電導線(2)の端部同士
が圧着、半田付け或は溶着により接続されている。な
お、各2層コイルユニット(7)間に挟まれている接着シ
ート(図3参照)の図示は省略されている。
【0031】そして積層された2層コイルユニット(7)
を押圧治具(図示せず)により押圧して整形し、さらに加
熱して接着一体化することにより、図8の(c)に示され
た超電導コイル(8)が製造される(ステップS30およ
びS31)。超電導コイル(8)の各部の断面図は図5の
ものとほぼ同じであるので図示を省略する。
【0032】この実施例では、2層分の長さを有する1
本の超電導線を巻回して2層平形コイル(6)を形成する
ようにしたので、第1の実施例に比べて、超電導線(2)
の接続部(2A)の数を減らすことができ、また全ての接
続部を磁束密度の低い外径部の外側に置くことができる
ので、超電導コイル(8)が発生する磁界の接続部への影
響を軽減できる。また、折り曲げ工程後に2層コイルユ
ニット(7)の1層目と2層目のコイル端部同士を接着す
るようにしたので、曲げ部分(6d)およびコイル端部
(6c)(図8の(b)参照)の超電導線(2)の機械的な歪み
を小さくすることができ、これにより超電導線(2)の劣
化を防ぐとともに、曲げ加工後の寸法精度を良くするこ
とができる。
【0033】また、図8の実施例においては、各層間の
接続部(2A)は磁束密度の比較的低い超電導コイルの外
径部の外側に設けているが、さらに接続部を磁束密度の
低い場所に設けるための実施例を以下に示して説明す
る。図11の(a)〜(c)はこの発明の第3の実施例によ
る超伝導コイルを示し、(a)は超伝導コイルを収納した
コイル容器の斜視図、(b)は(a)図のXIB−XIB線に沿
った断面図、(c)は(b)図の矢印XICの方向からの超伝
導コイルの側面図である。
【0034】この実施例では、図8の(b)に示した2層
コイルユニット(7)を積層して形成された超電導コイル
(80)が、冷媒(図示せず)が満たされたコイル容器(4
0)内に収納されている。この超電導コイル(80)は、
内径部(80a)、外径部(80b)および両側のコイル端
部(図示せず)を有する。超電導線(2)の両端は超電導コ
イル(80)の外径部(80b)の外側にある。各2層コイ
ルユニット(7)の超電導線(2)の両端は、それぞれの隣
接するユニット(7)間において接続部(2B)で電気的に
接続され、積層されたコイルユニット(7)が順番に直列
に接続されている。各ユニット(7)の超電導線(2)の両
端は、超電導コイル(80)から遠避けるようにそれぞれ
上方に引き出されており、接続部(2B)はより磁束密度
の低い位置に設けられている。これらの接続部(2B)は
開口(40b)を通って容器(40)上に形成された接続部
カバー(40a)内に延びている。この接続部カバー(4
0a)内も冷媒により極低温状態に維持されている。
【0035】このように各ユニット間の超電導線(2)
同士の接続部(2B)を、磁束密度のより低い位置に引
き出したことにより、接続部(2B)にかかる電磁力は
小さくなり、接続部(2B)の信頼性が増すことができ
る。また、接続部の臨界電流(超電導状態で流すことの
できる限界の電流)を大きくできる。また接続部(2
B)は上記各実施例と同様に圧着、半田付け或は溶着に
より接続が行われてもよいし、また、図7の(b)に示
した超電導線(2)内の超電導フィラメントである細線
(2c)を剥き出しにして、細線(2c)同士を圧着も
しくは溶着により接続する、いわゆる超電導接続を行っ
てもよ。この超電導接続は接続した後に、確実に超電
導接続されたか否かの試験を行う必要がある。この実施
例のように接続部(2B)を超電導コイル(80)から
引き出したものでは、その試験が容易に行える。
【0036】なお、上記各実施例ではコイルユニット
(4)あるいは2層コイルユニット(7)がそれぞれ、積層
されたコイルユニットが順次直列に接続された場合を示
したが、この発明はこれに限定されるものではなく、並
列あるいは直並列、さらにはこれらの組み合わせた接続
を適宜組み合わせて行ってもよい。また、上記各実施例
では導線として超電導線(2)を示したが、常電導のもの
でもよい。即ち、常電導コイルにもこの発明は適用でき
る。また、導線の断面形状なども特に限定されない。ま
た、上記各実施例では荷電粒子偏向電磁石用コイルとし
てビームの軌道(20)に数テスラの磁界を発生させる主
コイルである超電導コイルを示したが、主コイルで発生
する磁界を補正する補正コイルや、主コイルで発生する
磁界強度を補う補助コイルなどにも、この発明は適用で
きる。
【0037】
【発明の効果】以上説明したように、この発明による荷
電粒子偏向電磁石用コイルでは、平形コイルのコイル端
部を折り曲げて形成されたコイルユニットを所定の枚数
積層するとともに、積層されたコイルユニットを順に電
気的に接続した構造にした。これにより、導線の複雑な
巻回作業がなくなりそのための装置が必要なくなり、安
価なコイルを提供できる。また、導線は全て内側から外
側に巻回されるのでコイル内に隙間が生じる可能性が極
めて少なく、より信頼性の高いコイルを提供できる。
【図面の簡単な説明】
【図1】(a)〜(c)はこの発明の一実施例による超電導
コイルの製造方法を工程順に示す斜視図である。
【図2】図1の実施例のフローチャート図である。
【図3】この発明における積層されたコイルユニット間
に櫛形の接着シートを挿入した状態を示す部分斜視図で
ある。
【図4】(a)は図1の(c)の矢印IVAの方向から見た内
側の接続部分の部分側面図、(b)は図1の(c)の矢印IV
Bの方向から見た外側の接続部分の部分側面図である。
【図5】(a)は図1の(c)のVA−VA線に沿った外径部
の断面図、(b)は図1の(c)のVB−VB線に沿ったコイ
ル端部の断面図である。
【図6】この発明による超電導コイルがコイル容器内に
収納された状態を一部を破断して示した斜視図である。
【図7】(a)はこの発明で使用される超電導線の平面
図、(b)は横断面図である。
【図8】(a)〜(c)はこの発明の他の実施例による超電
導コイルの製造方法を工程順に示す斜視図である。
【図9】図8の実施例のフローチャート図である。
【図10】図8の(c)の矢印Xの方向から見た内側の接
続部分の部分側面図である。
【図11】(a)はこの発明のさらに別の実施例による超
電導コイルを収納したコイル容器の外観を示す斜視図、
(b)は(a)のXIB−XIB線に沿った断面図、(c)は(b)
の矢印XICの方向から見た超電導コイルの接続部分の部
分側面図である。
【図12】既知の荷電粒子装置の一例の概略構成を示す
平面図である。
【図13】(a)は図12の超電導偏向電磁石の超電導コ
イルの一例を示す平面図、(b)は(a)のXIIIB−XIIIB
線に沿った断面図である。
【図14】(a)は別の従来の超電導コイルの斜視図、
(b)は(a)のXIVB−XIVB線に沿った断面図、(c)は
(a)のXIVC−XIVC線に沿った断面図である。
【図15】従来の超電導コイルの製造方法を説明するた
めの説明図である。
【符号の説明】
2 超電導線(導線) 3 平形コイル 3a 内径部 3b 外径部 3c コイル端部 4 コイルユニット 6 2層平形コイル 6a 2層内径部 6b 2層外径部 6c 2層コイル端部 7 2層コイルユニット
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05H 7/04 H01F 5/08 N

Claims (8)

    (57)【特許請求の範囲】
  1. 【請求項1】 荷電粒子の弧状の軌道の内径側に配置さ
    れる内径部、上記軌道の外径側に配置される外径部、お
    よび上記内径部と外径部とを接続する両側のコイル端部
    を含み、上記両側のコイル端部が上記軌道と反対側に互
    いに向かい合うように折り曲げられている、導線を巻回
    してなるコイルユニットが複数枚積層されたコイル部
    と、 これらの積層されたコイルユニットの導線の端を順次電
    気的に接続した、上記コイル部の発生する磁界の影響の
    少ない位置に設けられた複数の接続部と、 を備えた荷電粒子偏向電磁石用コイル。
  2. 【請求項2】 上記コイル部が、1層分の導線が巻回さ
    れ、上記接続部が上記外径部にあるコイルユニットを複
    数枚積層したものである請求項1に記載の荷電粒子偏向
    電磁石用コイル。
  3. 【請求項3】 上記コイル部が、2層分が連続して巻回
    され、上記接続部が上記外径部の外側にある2層コイル
    ユニットを複数枚積層したものである請求項1に記載の
    荷電粒子偏向電磁石用コイル。
  4. 【請求項4】 上記接続部がさらに、上記コイル部の発
    生する磁界の影響の少ない位置に引き出されている請求
    項2または3に記載の荷電粒子偏向電磁石用コイル。
  5. 【請求項5】 上記偏向電磁石用コイルが冷媒を満たし
    たコイル容器内に収納されており、上記導線にフィラメ
    ントの束がヘリカルに、かつ粗密巻され、上記フィラメ
    ントの束により形成された、巻回された上記導線を横切
    る方向に延びる隙間に上記冷媒が流れ込んで上記導線を
    冷却する請求項1ないし4のいずれかに記載の荷電粒子
    偏向電磁石用コイル。
  6. 【請求項6】 上記偏向電磁石用コイルが冷媒を満たし
    たコイル容器内に収納されており、積層された上記コイ
    ルユニット間が、間をあけて設けられた厚みを有する接
    着シートで接着され、上記接着シートの間に上記冷媒が
    流れ込んで上記導線を冷却する請求項1ないし5のいず
    れかに記載の荷電粒子偏向電磁石用コイル。
  7. 【請求項7】 荷電粒子の弧状の軌道の内径側に配置さ
    れる内径部、上記軌道の外径側に配置される外径部、お
    よび上記内径部と外径部とを接続する両側のコイル端部
    を含む平形コイルを、導線を内側から外側へ、かつ上記
    導線の両端が共に上記外径部にくるように巻回して複数
    枚形成する巻回工程と、 上記平形コイルの両側のコイル端部を上記軌道と反対側
    に、互いに向かい合うように折り曲げてコイルユニット
    を形成する折り曲げ工程と、 上記コイルユニットを所定枚数積層する積層工程と、 積層されたコイルユニットの上記導線の端を順次電気的
    接続する接続工程と、 を備えた荷電粒子偏向電磁石用コイルの製造方法。
  8. 【請求項8】 2層分が1本の導線で巻回され上記導線
    の両端がコイルユニットの外周部にある2層コイルユニ
    ットを複数枚積層した荷電粒子偏向電磁石用コイルの製
    造方法であって、 荷電粒子の弧状の軌道の内径側に配置される内径部、上
    記軌道の外径側に配置される外径部、および上記内径部
    と外径部とを接続する両側のコイル端部を含む2層平形
    コイルを形成するために、 a)2層分の長さを有する1本の導線の中間部を巻始め
    として、一方側を内側から外側へ左右いずれか一方の方
    向に巻回して1層目の平形コイルを形成する1層目形成
    ステップ、 b)上記導線の上記中間部を巻始めとして、他方側を内
    側から外側へ1層目と左右反対方向に巻回して2層目の
    平形コイルを形成する2層目形成ステップ、 を含み、上記1層目および2層目形成ステップを繰り返
    して複数枚の上記2層平形コイルを形成する巻回工程
    と、 上記2層平形コイルの両側のコイル端部を上記軌道と反
    対側に、互いに向かい合うように折り曲げて2層コイル
    ユニットを形成する折り曲げ工程と、 上記複数枚の2層コイルユニットを所定の順に積層する
    積層工程と、 積層された2層コイルユニットの導線の端同士を電気的
    に接続する接続工程と、 を備えた荷電粒子偏向電磁石用コイルの製造方法。
JP3206777A 1990-08-31 1991-08-19 荷電粒子偏向電磁石用コイルおよびその製造方法 Expired - Fee Related JP2529492B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3206777A JP2529492B2 (ja) 1990-08-31 1991-08-19 荷電粒子偏向電磁石用コイルおよびその製造方法
US07/751,054 US5278533A (en) 1990-08-31 1991-08-28 Coil for use in charged particle deflecting electromagnet and method of manufacturing the same
DE4128931A DE4128931C2 (de) 1990-08-31 1991-08-30 Ablenkspule in einem Elektromagneten und ein Verfahren zu ihrer Herstellung
US08/133,340 US5461773A (en) 1990-08-31 1993-10-08 Method of manufacturing coils for use in charged particle deflecting electromagnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22802090 1990-08-31
JP2-228020 1990-08-31
JP3206777A JP2529492B2 (ja) 1990-08-31 1991-08-19 荷電粒子偏向電磁石用コイルおよびその製造方法

Publications (2)

Publication Number Publication Date
JPH053116A JPH053116A (ja) 1993-01-08
JP2529492B2 true JP2529492B2 (ja) 1996-08-28

Family

ID=26515863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3206777A Expired - Fee Related JP2529492B2 (ja) 1990-08-31 1991-08-19 荷電粒子偏向電磁石用コイルおよびその製造方法

Country Status (3)

Country Link
US (2) US5278533A (ja)
JP (1) JP2529492B2 (ja)
DE (1) DE4128931C2 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605480A1 (de) * 1991-09-25 1994-07-13 Siemens Aktiengesellschaft Spulenanordnung mit verdrillten enden, aus einem leiter mit supraleitfähigen fäden
FR2782410B1 (fr) * 1998-08-14 2000-10-13 Alstom Technology Procede et dispositif de bobinage
EP2259664B1 (en) 2004-07-21 2017-10-18 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
EP2389981A3 (en) 2005-11-18 2012-03-07 Still River Systems, Inc. Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) * 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
GB2459253B (en) * 2008-04-09 2010-07-07 Siemens Magnet Technology Ltd Method of forming a coupled coil arrangement
US9071114B2 (en) * 2011-05-26 2015-06-30 Toyota Jidosha Kabushiki Kaisha Coil correction method
EP2651197B1 (en) * 2012-02-13 2016-04-06 Mitsubishi Electric Corporation Septum electromagnet and particle beam therapy device
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
TW201433331A (zh) 2012-09-28 2014-09-01 Mevion Medical Systems Inc 線圈位置調整
CN104813749B (zh) 2012-09-28 2019-07-02 梅维昂医疗***股份有限公司 控制粒子束的强度
TW201422279A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 聚焦粒子束
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
CN104812444B (zh) 2012-09-28 2017-11-21 梅维昂医疗***股份有限公司 粒子束的能量调节
TW201438787A (zh) 2012-09-28 2014-10-16 Mevion Medical Systems Inc 控制粒子治療
JP6254600B2 (ja) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (zh) 2013-09-27 2021-11-02 梅维昂医疗***股份有限公司 粒子治疗***
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
JP6439213B2 (ja) * 2015-05-26 2018-12-19 新シコー科技株式会社 積層コイル、レンズ駆動装置、カメラ装置及び電子機器
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
WO2020185544A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427955A (en) * 1977-08-03 1979-03-02 Sumitomo Electric Industries Method of forming magnetic coil
DE3705294A1 (de) * 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
JPH0824080B2 (ja) * 1987-06-24 1996-03-06 株式会社日立製作所 電子蓄積リング
GB2223350B (en) * 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
US5117212A (en) * 1989-01-12 1992-05-26 Mitsubishi Denki Kabushiki Kaisha Electromagnet for charged-particle apparatus
JP2896188B2 (ja) * 1990-03-27 1999-05-31 三菱電機株式会社 荷電粒子装置用偏向電磁石

Also Published As

Publication number Publication date
US5278533A (en) 1994-01-11
JPH053116A (ja) 1993-01-08
US5461773A (en) 1995-10-31
DE4128931A1 (de) 1992-03-12
DE4128931C2 (de) 1996-10-02

Similar Documents

Publication Publication Date Title
JP2529492B2 (ja) 荷電粒子偏向電磁石用コイルおよびその製造方法
US9065306B2 (en) Oxide superconducting coil, oxide-superconducting-coil assembly, and rotating machine
JP4657921B2 (ja) 超電導線材及びそれを用いた超電導コイル
KR20080002987A (ko) 초전도체들을 이용한 안장형 코일 와인딩, 및 그 제조 방법
JPH0614522A (ja) 電磁ポンプ用の内側固定子を作る方法
JPH08298209A (ja) 超電導コイル
JP2010219252A (ja) リアクトル用コイル部材及びその製造方法並びにリアクトル
JP2009049040A (ja) 超電導コイルおよび該超電導コイルの製造方法
JP4881225B2 (ja) 超電導コイル及び超電導マグネット装置
US6002320A (en) Electrical coil assembly having a plurality of coils arranged in pairs
JPS6139439A (ja) 電磁偏向ユニツトのサドルコイル
JPH0330299A (ja) 荷電粒子偏向電磁石用コイルの製造方法
US5623208A (en) Z-axis magnetic field gradient coil structure for magnetic resonance system
JPS62274535A (ja) 偏向ヨ−ク
EP2256754A1 (en) Reactor
JP5710312B2 (ja) 超電導コイル装置
JPH08168229A (ja) リニアモータ
JP2001267119A (ja) 超電導コイル装置
JPH06260335A (ja) 高温超電導マグネット
US11600416B1 (en) Cryogen-free high-temperature superconductor undulator structure and method for manufacturing the same
JP2010267780A (ja) リアクトル用コイルの製造方法
JP3720854B2 (ja) 超電導コイル
JPH03220500A (ja) 荷電粒子偏向電磁石用コイル
CN117558540A (zh) 一种连绕线圈、磁性元件和连绕线圈的制备方法
JP2001229750A (ja) 超電導ケーブル

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees