JP3648480B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP3648480B2
JP3648480B2 JP2001395237A JP2001395237A JP3648480B2 JP 3648480 B2 JP3648480 B2 JP 3648480B2 JP 2001395237 A JP2001395237 A JP 2001395237A JP 2001395237 A JP2001395237 A JP 2001395237A JP 3648480 B2 JP3648480 B2 JP 3648480B2
Authority
JP
Japan
Prior art keywords
insulating film
dielectric constant
low dielectric
modulus
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001395237A
Other languages
English (en)
Other versions
JP2003197742A (ja
Inventor
祥代 伊藤
正彦 蓮沼
孝 川ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001395237A priority Critical patent/JP3648480B2/ja
Priority to US10/247,378 priority patent/US6975033B2/en
Priority to EP02021330A priority patent/EP1324383A3/en
Priority to TW091125054A priority patent/TW587274B/zh
Priority to CNB021568146A priority patent/CN1293622C/zh
Priority to KR1020020083208A priority patent/KR20030055135A/ko
Publication of JP2003197742A publication Critical patent/JP2003197742A/ja
Application granted granted Critical
Publication of JP3648480B2 publication Critical patent/JP3648480B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76888By rendering at least a portion of the conductor non conductive, e.g. oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低誘電率層間絶縁膜を用いた多層配線構造を有する半導体装置、およびその製造方法に関する。
【0002】
【従来の技術】
近年、LSIの動作を高速化するために、3以下の低い比誘電率を有する材料が層間絶縁膜として使用されている。このような低誘電率絶縁膜は、一般にヤング率が10GPa前後からそれ以下と低い。配線材料として用いられるCuの線膨張係数は約16ppmと大きいが、Cu配線を形成する場合には、TaやTiといった高融点金属やその化合物からなるバリアメタル層が、層間絶縁膜との間に形成される。バリアメタルの線膨張係数は10ppm以下とCuと比較して小さいため、アニールやシンターといった高温プロセス中に、Cuとの線膨張係数差に起因して、バリアメタル層には大きな熱応力が生じてしまう。
【0003】
低誘電率絶縁膜のヤング率が十分に大きければ、Cuの熱膨張を抑制して、バリアメタル層にかかる応力を抑えることが可能である。しかしながら、上述したように、低誘電率絶縁膜のヤング率は10GPa前後からそれ以下と小さい。このため、バリアメタル層にかかる熱応力は大きくなり、その熱応力に起因して低誘電率絶縁膜にクラックが発生する。
【0004】
こうしたクラックの発生が最も起こりやすいのが、ビアホール周辺である。図14を参照して、従来の半導体装置の配線構造におけるこの問題について説明する。
【0005】
まず、図14(a)に示すように、低誘電率絶縁膜1aと破壊強度の高いキャップ絶縁膜1bとの積層構造からなる絶縁膜1を半導体基板24上に形成し、その中にバリアメタル層9を介して下部配線層2を埋め込み形成する。さらに、エッチングストッパー絶縁膜3、低誘電率絶縁膜4、および破壊強度の高いキャップ絶縁膜5を順次形成する。次に、図14(b)に示すように、下部配線層2に接続するビアホール6および配線溝7を、絶縁膜3、4および5にRIE(Reactive Ion Etching)加工により形成する。このとき、低誘電率絶縁膜4の表面はRIEによりダメージを受けて、破壊強度の小さいダメージ層8が形成される。
【0006】
続いて、図14(c)に示すように、バリアメタルをスパッタリングによりビアホール6および配線溝7の全面に堆積する。ビアホール6の側壁部に形成されるバリアメタル層9は、配線溝7側壁、配線溝7およびビアホール6底面に比べると膜厚が薄い。続いて、Cu等の導電性材料10を堆積した後、アニールが行なわれる。高温でのアニール中には、線膨張係数差による引張り応力がバリアメタル層9に働く。
【0007】
特に、ビアホール6側壁部ではバリアメタル層9の膜厚が薄いため、この引張り応力によってバリアメタル層9にクラックが生じるおそれがある。バリアメタル層9に接して存在しているダメージ層8の破壊強度が低く、バリアメタル層9で生じたクラックは、ダメージ層8を経て低誘電率絶縁膜4内にまで進展することがある。その結果、高温で圧縮応力状態にあるCu等の導電性材料10が、クラックによる亀裂に突出することに起因して、ショート不良が発生することになる。
【0008】
【発明が解決しようとする課題】
そこで本発明は、ショート不良が生じず、高速で動作可能な半導体装置およびその製造方法を提供すること目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、素子が形成された半導体基板と、前記半導体基板上に形成された3以下の比誘電率を有する低誘電率絶縁膜と、前記低誘電率絶縁膜中に埋め込まれたプラグおよび配線層を含む導電材料層を具備し前記低誘電率絶縁膜と前記導電材料層間のうち、前記低誘電率絶縁膜と前記プラグの間のみに、前記プラグ側面に接して形成されたヤング率が15GPa以上の高ヤング率絶縁膜を有することを特徴とする半導体装置を提供する。
【0010】
また本発明は、素子が形成された半導体基板と、前記半導体基板上に形成された3以下の比誘電率を有する低誘電率絶縁膜と、前記低誘電率絶縁膜中に埋め込まれたプラグおよび配線層を含む導電材料層とを具備し、前記低誘電率絶縁膜と前記導電材料層間のうち、前記低誘電率絶縁膜と前記プラグの間のみに、前記プラグ側面に接して形成されたヤング率が15GPa以上の高ヤング率絶縁膜を有する半導体装置の製造方法であって、
素子が形成された半導体基板上に、絶縁膜を介して下部配線層を形成する工程と、
前記下部配線層上に3以下の比誘電率を有する低誘電率絶縁膜を形成する工程と、
前記低誘電率絶縁膜にビアホールを形成する工程と、
前記ビアホールの側面に、15GPa以上のヤング率を有する高ヤング率絶縁膜を形成する工程と、
側面に前記高ヤング率絶縁膜が形成されたビアホールを有する前記低誘電率絶縁膜に配線溝を形成する工程と、
前記下部配線層と電気的に接続するように、前記ビアホールおよび配線溝が形成された前記低誘電率絶縁膜の全面にバリアメタルおよび導電性材料を順次堆積する工程と、
前記低誘電率絶縁膜上の前記バリアメタルおよび前記導電性材料を除去して、表面にバリアメタル層を有するプラグおよび上部配線層を、前記ビアホール内および前記配線溝内にそれぞれ形成する工程とを具備することを特徴とする半導体装置の製造方法を提供する。
【0011】
さらに本発明は、素子が形成された半導体基板上に、絶縁膜を介して下部配線層を形成する工程と、前記下部配線層上に3以下の比誘電率を有する低誘電率絶縁膜を形成する工程と、前記低誘電率絶縁膜にビアホールおよび配線溝を形成する工程と、前記ビアホールおよび配線溝が形成された前記低誘電率絶縁膜の表面に、Ta、Ti、およびNbからなる群から選択される少なくとも1種の金属を含む金属酸化物からなり、15GPa以上のヤング率を有する高ヤング率絶縁膜を形成する工程と、前記下部配線層と電気的に接続するように、前記高ヤング率絶縁膜が形成された前記低誘電率絶縁膜の全面に導電性材料を堆積する工程と、前記低誘電率絶縁膜上の前記導電性材料を除去して、前記ビアホール内および前記配線溝内にプラグおよび上部配線層をそれぞれ形成する工程とを具備し、前記金属酸化物は、前記ビアホールおよび配線溝が形成された前記低誘電率絶縁膜の表面にTa、Ti、およびNbからなる群から選択される少なくとも1種の金属を300℃以上の高温で堆積して前記低誘電率絶縁膜と反応させることにより形成されることを特徴とする半導体装置の製造方法を提供する。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0013】
(実施例1)
図1は、本発明の実施例1に係る半導体装置における配線構造を示す断面図である。
【0014】
図示するように、半導体基板24上には、バリアメタル層18を介して下部配線層12が埋め込み形成された絶縁層11が設けられている。絶縁層11は、以下に説明するような低誘電率絶縁膜11aと、シリコン酸化膜、シリコン窒化膜、シリコン炭化膜などの破壊強度が高くキャップ層として機能する高強度絶縁膜11bとの積層構造から形成されているが、単層で形成することもできる。絶縁層11上には、エッチングストッパー層として作用するシリコン窒化膜13(比誘電率=7.0、ヤング率=100GPa)および低誘電率絶縁膜14が順次形成される。低誘電率絶縁膜14としては、例えば、SiO(CH3x(比誘電率=2.5、ヤング率=10GPa以下)を用いることができる。また、ハイドロジェンシルセスキオキサン、カーボン含有SiO2膜(SiOC)、多孔質シリカ膜、高分子膜、アモルファスカーボン膜(Fドープ)等を用いて低誘電率絶縁膜14を形成してもよい。これらの材料のヤング率は、いずれも10GPa以下程度である。
【0015】
低誘電率絶縁膜14には、上部配線層19bが埋め込み形成され、この上部配線層19bはプラグ19aにより下部配線層12に接続されている。なお、上部配線層19bおよびプラグ19aは、その表面にバリアメタル層18を有している。バリアメタル層18は、Ta、Ti、Nb、それらを含む合金、それらの化合物、またはそれらの積層膜から構成することができる。また、上部配線層19bおよびプラグ19aといった導電材料層19は、Cu、Alまたはそれらを含む合金から構成することができる。
【0016】
プラグ19a側面のバリアメタル層18と低誘電率層間絶縁膜14との間には、ヤング率15GPa以上の高ヤング率絶縁膜16が形成されている。高ヤング率絶縁膜16としては、例えば、シリコン酸化膜(比誘電率=4.0、ヤング率=60GPa)、シリコン窒化膜(比誘電率=7.0、ヤング率=100GPa)を用いることができる。さらに、シリコン酸窒化膜(比誘電率=4.0〜5.0、ヤング率=80〜100GPa)、シリコン炭窒化膜(比誘電率=4.0〜5.0、ヤング率=100GPa)を用いてもよい。
【0017】
ここで、図2のグラフに、ビア側壁のバリアメタル層に働く応力のシミュレーションによる計算結果を示す。バリアメタル層に接する絶縁層のヤング率が15GPa未満になると、バリアメタル層に働く応力が急激に増加することが図2のグラフに表わされている。この応力集中によって、バリアメタル層にクラックが生じる。
【0018】
そこで、本発明の実施の形態においては、15GPa以上のヤング率を有する高ヤング率絶縁膜をビアホールの側面に設けることによって、バリアメタル層での応力の増加を防止することを可能にした。しかも、高ヤング率絶縁膜は高い破壊強度を有しているので、仮にバリアメタル層でクラックが発生したところで、このクラックが低誘電率絶縁膜まで進展することは避けられる。
【0019】
ビアホールの側面に形成される高ヤング率絶縁膜の膜厚は、少なくとも1nmであればその効果を顕著に発揮することができる。ただし、過剰に厚く形成された場合には、層間絶縁膜の誘電率の上昇という不都合を生じるおそれがあるので、その上限は100nm程度にとどめることが望まれる。
【0020】
なお、図1に示される配線構造においては、前述と同様の高ヤング率絶縁膜16は、低誘電率絶縁膜14上にも形成されてキャップ層として機能する。こうした高ヤング率絶縁膜16および上部配線層19b上には、シリコン窒化膜20が配設される。
【0021】
図3(a)〜(e)を参照して、図1に示した配線構造の形成方法を説明する。
【0022】
まず、図3(a)に示すように、半導体基板24上に、低誘電率絶縁膜11aおよび高強度絶縁層11bを順次堆積して絶縁膜11を形成し、表面にバリアメタル層18を有する下部配線層12を絶縁膜11に埋め込み形成する。さらに、エッチングストッパー膜として作用するシリコン窒化膜13をプラズマCVD法により形成した後、例えばSiO(CH3xを用いて低誘電率絶縁膜14をスピン塗布法により形成する。
【0023】
次に、図3(b)に示すように、低誘電率絶縁膜14にビアホール15をRIE加工によって形成する。このとき、低誘電率絶縁膜14表面にはRIEによるダメージ層21が形成される。
【0024】
こうして生じたダメージ層21を、フッ酸を用いたウェットエッチングにより除去した後、ビアホール15が形成された低誘電率絶縁膜14の全面に、図3(c)に示すように、高ヤング率絶縁膜16としてのシリコン酸化膜をプラズマCVD法により形成する。ここで形成されたシリコン酸化膜は、ヤング率60GPa、膜厚50nmである。
【0025】
さらに、図3(d)に示すように、低誘電率絶縁膜14および高ヤング率絶縁膜16のビアホール15を含む領域に、配線溝17をRIE加工により形成する。配線溝17のRIE加工によって、ビアホール15底部の高ヤング率絶縁膜16は除去されるが、低誘電率絶縁膜14上の高ヤング率絶縁膜16はそのまま残り、これはキャップ層として機能する。配線溝17の側壁および底面の低誘電率絶縁膜14表面には、RIEによるダメージ層21が生じるが、これは特に問題とならない。その後、ビアホール15底部のシリコン窒化膜13をRIEにより除去して、下部配線層12の表面を露出させる。
【0026】
次に、図3(e)に示すように、全面にTa、Ti、Nb、TaN、TiN、NbNのいずれか、あるいは2種類以上を含む積層膜を150℃程度で堆積して、バリアメタル層18を形成する。さらに、めっきのシードとなるCuを堆積した後、導電材料としてのCuをめっき法により堆積して、ビアホール15および配線溝17の内部に導電材料層19を埋め込む。その後、フォーミングガス中で400℃程度のアニールを行なう。
【0027】
最後に、低誘電率絶縁膜14上の配線溝17以外の領域に堆積されたバリアメタル層18および導電材料層19をCMP法により除去し、プラズマCVD法を用いてシリコン窒化膜20を全面に形成することによって、図1に示した配線構造が得られる。
【0028】
こうして形成された配線構造を有する半導体装置の一部を図4に示す。図示する半導体装置における半導体基板24には、素子分離絶縁膜32に囲まれた領域にソース・ドレイン領域31a、31bが離間して形成され、その間にゲート絶縁膜33を介してゲート電極34が形成されている。こうして能動素子30が形成された半導体基板24上に、図1に示したものと同様の配線構造が設けられている。
【0029】
図4に示す半導体装置の配線構造においては、すでに説明したように、最もクラックの発生しやすいビア側壁部分は、ヤング率が15GPa以上の高ヤング率絶縁膜16によって覆われている。このため、バリアメタル層18にかかる熱応力が抑制される。しかも、ダメージ層は除去されているので、破壊強度の低い領域はビア側壁部分には存在しない。このビア側壁部分に形成された高ヤング率絶縁膜16は、上述したように高い破壊強度を有することに起因して、アニールやその後のシンター工程を経ても、低誘電率絶縁膜14にクラックが発生することはなかった。
【0030】
(実施例2)
図5(a)〜(f)は、本発明の実施例2に係る半導体装置の配線構造の形成方法を示す断面図である。
【0031】
まず、前述の実施例1と同様の手法により、絶縁膜11に埋め込まれた下部配線層12、エッチングストッパー膜として作用するシリコン窒化膜13、および低誘電率絶縁膜14を、図5(a)に示すように半導体基板24上に順次形成する。
【0032】
次に、図5(b)に示すように、レジストパターン22をエッチングマスクとしたRIE加工により、ビアホール15を低誘電率絶縁膜14に形成する。低誘電率絶縁膜14表面には、RIEによるダメージ層21が形成される。
【0033】
レジストパターン22を除去する前に、図5(c)に示すように、15GPa以上のヤング率を有する高ヤング率絶縁膜16をプラズマCVD法により全面に形成する。高ヤング率絶縁膜16としては、すでに説明したようにシリコン酸化膜あるいはシリコン窒化膜を用いることができる。高ヤング率絶縁膜16を形成する前に、低誘電率絶縁膜14表面のダメージ層21を実施例1で説明したような手法により除去してもよい。
【0034】
レジストパターン22およびその上に形成された高ヤング率絶縁膜16を図5(d)に示すようにリフトオフにより除去した後、図5(e)に示すように、低誘電率絶縁膜14に配線溝17をRIE加工により形成する。配線溝17の側壁および底面の低誘電率絶縁膜14には、RIEによるダメージ層21が形成されるが、これは問題にはならない。その後、ビアホール15底部のシリコン窒化膜13をRIEにより除去して、下部配線層12の表面を露出させる。
【0035】
さらに、実施例1の場合と同様の手法により、ビアホール15および配線溝17内にバリアメタル層18および導電材料層19を埋め込んだ後、シリコン窒化膜20を全面に形成することによって、図5(f)に示すような配線構造が得られる。
【0036】
こうして形成された配線構造を有する半導体装置においては、最もクラックの発生しやすいビア側壁部分は、ヤング率が15GPa以上の高ヤング率絶縁膜16によって覆われている。このため、バリアメタル層18にかかる熱応力が抑制される。しかも、高ヤング率絶縁膜16は破壊強度が高いため、アニールやその後のシンター工程を経ても、低誘電率絶縁膜14にクラックが発生することはなかった。
【0037】
(実施例3)
図6に、実施例3に係る半導体装置における配線構造の断面図を示す。
【0038】
図示する配線構造においては、半導体基板24上には下部配線層12が埋め込み形成され、低誘電率絶縁膜11aと高強度絶縁膜11bとの積層構造からなる絶縁層11が設けられている、この絶縁層11上には、エッチングストッパー層としてのシリコン窒化膜13(比誘電率=7.0、ヤング率=100GPa)および低誘電率絶縁膜14が順次形成される。低誘電率絶縁膜14としては、例えば、SiO(CH3x(比誘電率=2.5、ヤング率=10GPa以下)を用いることができる。さらに、ハイドロジェンシルセスキオキサン、カーボン含有SiO2膜(SiOC)、および多孔質シリカといった酸化物系の材料を用いて本実施例における低誘電率絶縁膜14を形成してもよい。
【0039】
低誘電率絶縁膜14には、上部配線層19bが埋め込み形成され、この上部配線層19bはプラグ19aにより下部配線層12に接続されている。なお、上部配線層19bおよびプラグ19aは、その表面にバリアメタル層18を有している。低誘電率絶縁膜14とバリアメタル層18との界面には、金属酸化物層からなる15GPa以上のヤング率を有する高ヤング率絶縁膜23’が形成されている。
【0040】
高ヤング率絶縁膜23’として用いられる金属酸化物層は、Ta、Ti、およびNbからなる群から選択される少なくとも1種の金属を含有する酸化物である。この金属酸化物層は、以下に説明するように、高温でスパッタ成膜することにより、あるいは金属膜を形成した後アニールを施すことによって形成することができる。こうした金属を含有する酸化物層は、100〜200GPa程度の高いヤング率を有しているため、ビアホールの側面に設けることによってバリアメタル層の応力の増加を防止することができる。しかも、ここで形成される金属酸化物層は、シリコン酸化膜やシリコン窒化膜と同様に高い破壊強度を有しているので、仮にバリアメタル層18でクラックが発生したところで、このクラックが低誘電率絶縁膜14まで進展することは避けられる。
【0041】
すでに説明したような理由から、金属酸化物からなる高ヤング率絶縁膜23’の膜厚は1nm以上100nm以下とすることが望まれる。
【0042】
図6に示される配線構造においては、低誘電率絶縁膜14上にはシリコン酸化膜25およびシリコン窒化膜20が配設される。
【0043】
図7(a)〜(e)を参照して、図6に示した配線構造の形成方法を説明する。
【0044】
まず、実施例1と同様の手法により、図7(a)に示すように、絶縁膜11に埋め込まれた配線層12、エッチングストッパーとして作用するシリコン窒化膜13、および低誘電率絶縁膜14を形成する。低誘電率絶縁膜14上には、キャップ層として作用するシリコン酸化膜25をプラズマCVD法により形成する。
【0045】
次に、シリコン窒化膜13、低誘電率絶縁膜14およびシリコン酸化膜25を含む絶縁層に、図7(b)に示すように、下部配線層12に接続するビアホール15および配線溝17をRIE加工により形成する。このとき、低誘電率絶縁膜14の表面には、RIEによるダメージ層21が形成される。
【0046】
このダメージ層21の領域に、図7(c)に示すようにTa、Ti、またはNbを含む金属酸化物層からなる高ヤング率絶縁膜23’を形成する。Ta、TiまたはNbを含む金属酸化物層は、真空中、300〜450℃程度でスパッタ成膜することにより形成することができる。高温でのスパッタにより、こうした金属は低誘電率絶縁膜14のダメージ層21中に拡散し、この低誘電率絶縁膜14と反応して金属酸化物層からなる高ヤング率絶縁膜23’が形成される。高ヤング率絶縁膜23’は、Alを含む金属酸化物層により構成することもできる。Alを含む金属酸化物層は、スパッタ法やMOCVD法によりAl膜を成膜した後、100〜450℃程度でアニールを行なうことにより形成される。この際の雰囲気は限定されず、真空中、フォーミングガス中で行なうことができる。アニールによって、Alは低誘電率絶縁膜14のダメージ層21中に拡散し、この低誘電率絶縁膜14と反応して金属酸化物層からなる高ヤング率絶縁膜23’が形成される。
【0047】
こうした高ヤング率絶縁膜23’が低誘電率絶縁膜14表面に形成されることによって、ダメージ層21は消失したといえる。いずれの場合も、ビアホール15の底部およびシリコン酸化膜25表面といった低誘電率絶縁膜14以外の部分では、上述したような金属の反応が生じないので図7(c)に示されるように金属膜23が形成される。
【0048】
Ta、TiおよびNbは、単体でCuバリア性を有しているので、金属酸化物を形成する際に膜厚を制御して、その表面に金属膜を残した場合には、バリアメタル層として用いることができる。なお、Alは、アルミナの状態でCuバリア性を有しているので、金属酸化物層自体をバリア層として用いることができる。したがって、堆積されたAl膜を全膜厚にわたって酸化してアルミナ層を形成した場合には、バリアメタル層を別途形成せずにCu配線を埋め込むことが可能となる必要な膜厚が確保されれば、金属酸化物層の表面に金属Al層が残留してもよい。
【0049】
次に、実施例1の場合と同様の手法により、ビアホール15および配線溝17内に、必要に応じて形成されるバリアメタル層18および導電材料層19を埋め込んだ後、フォーミングガス中でアニールを行なうことにより、図7(d)に示すような構造が得られる。
【0050】
最後に、シリコン酸化膜25上の配線溝17以外の領域に堆積されたバリアメタル層18、導電材料層19および未反応の金属膜23をCMPにより除去し、全面にプラズマCVD法を用いてシリコン窒化膜20を全面に形成することによって、図7(e)に示すような配線構造が形成される。
【0051】
こうして形成された配線構造を有する半導体装置においては、最もクラックの発生しやすいビア側壁部分は、ヤング率が15GPa以上の金属酸化物からなる高ヤング率絶縁膜23’によって覆われている。このため、バリアメタル層18にかかる熱応力が抑制される。ここでの高ヤング率絶縁膜23’は、破壊強度の低いダメージ層21中に金属が拡散することにより形成されるので、ダメージ層21は消失して、高い破壊強度を有する高ヤング率絶縁膜23’がバリアメタル層18に接触して配置される。したがって、アニールやその後のシンター工程を経ても、低誘電率絶縁膜14にクラックが発生することはなかった。
【0052】
すでに説明したように、図7(c)における高ヤング率絶縁膜23’を形成する際、Al膜を堆積し全膜厚にわたって酸化してアルミナ層を形成した場合には、別途バリアメタル層を形成する必要はない。すなわち、バリア層としても用いられる高ヤング率絶縁膜を一度の工程で形成することが可能である。この場合の配線構造を図8に示す。図示する配線構造は、バリアメタル層を形成しない以外は前述と同様の手法により形成することができ、プラグ19aの側面には、Alを含有する金属酸化物(アルミナ)層からなる高ヤング率絶縁膜26が接触して設けられている。
【0053】
こうした配線構造を有する半導体装置においても、最もクラックの発生しやすいビア側壁部分ではダメージ層21が消失して、高い破壊強度を有するとともにヤング率が15GPa以上のアルミナ層からなる高ヤング率絶縁膜26によって覆われている。したがって、アニールやその後のシンター工程を経ても、低誘電率絶縁膜14にクラックが発生することはなかった。
【0054】
図8に示した配線構造は、図9に示すように変更することができる。
【0055】
図示する配線構造においては、半導体基板24上には下部配線層42が埋め込み形成された絶縁層41が設けられている。この絶縁層41は、低誘電率絶縁膜と高強度絶縁膜との積層構造から構成することもできる。また、下部配線層42は、表面にバリアメタル層が設けられていてもよい。あるいは、この下部配線層42に接する絶縁層41の表面をアルミナ層とすることもできる。
【0056】
絶縁層41上には、シリコン炭化膜からなるストッパー絶縁膜43、多孔質有機シリコン酸化膜からなる低誘電率絶縁膜44、シリコン炭化膜からなるミッドストッパー層45、多孔質有機シリコン酸化膜からなる低誘電率絶縁膜46、および有機シリコン酸化膜からなるキャップ絶縁膜47が順次積層される。
【0057】
このような積層構造には、上部配線層49bが埋め込み形成され、この上部配線層49bはプラグ49aにより下部配線層42に接続されている。なお、上部配線層49bおよびプラグ49aと低誘電率絶縁膜44,46およびキャップ絶縁膜47との間には、アルミナからなる高ヤング率絶縁膜48が形成されている。
【0058】
図10(a)〜(e)を参照して、図9に示した配線構造の形成方法を説明する。
【0059】
まず、絶縁層41に埋め込まれた配線層42、シリコン炭化膜からなるストッパー絶縁膜43、多孔質有機シリコン酸化膜からなる低誘電率絶縁膜44、シリコン炭化膜からなるミッドストッパー層45、および多孔質有機シリコン酸化膜からなる低誘電率絶縁膜46を順次形成する。低誘電率絶縁膜46上には、キャップ層として作用する有機シリコン酸化膜47を形成する。
【0060】
次に、ストッパー絶縁膜43およびミッドストッパー層45を、それぞれエッチングストッパーとして、下部配線層42に接続するビアホールおよび配線溝をRIE加工によりこれらの絶縁膜に形成する。低誘電率絶縁膜44および46の表面には、すでに説明したようにダメージ層(図示せず)が形成される。なおここでは、ビアホール底部のストッパー絶縁膜43を除去する際に、配線溝底面のミッドストッパー層45も併せて除去される。その後、実施例3と同様の手法により、図10(a)に示すように全面にAl膜50を形成する。
【0061】
続くアニールによって、低誘電率絶縁膜44、46とAl膜50との界面には、図10(b)に示すようにアルミナ層からなる高ヤング率絶縁膜48が形成される。また、キャップ絶縁膜47が有機シリコン酸化膜から構成されているので、その上面および側面にもアルミナ層からなる高ヤング率絶縁膜48が形成される。
【0062】
次いで、ウェットエッチングにより未反応のAlを除去して、図10(c)に示すようにアルミナ層からなる高ヤング率絶縁膜48を露出する。このとき、配線溝およびビアホールの側面には、ストッパー層43および45が露出する領域が存在するが、これらもCuバリア性を有している。
【0063】
その後、全面にCuシード膜(図示せず)を形成し、図10(d)に示すように導電材料層49をCu電解めっきにより埋め込み形成する。溝以外の領域に堆積された導電材料層49をCMPにより図10(e)に示すように除去する。最後に、キャップ層47上面の高ヤング率絶縁膜48をCMPによりさらに除去することによって、図9に示すような配線構造が得られる。
【0064】
こうした構造は、配線溝の底面にアルミナ層からなる高ヤング率絶縁膜48が形成されているので、これに起因して上層配線層49bと層間絶縁膜との密着性が向上する。しかも、図8に示した配線構造と比較すると、ビアホール底部にAl膜が存在しないので、次のような利点が得られる。すなわち、下部配線層42とビアプラグとの界面抵抗が低下するとともに、上下層の配線の導電材料が異種材料によって分断されないため、エレクトロマイグレーション耐性およびストレスボイド耐性が向上する。
【0065】
さらに、図11に示すような構造に変更することも可能である。
【0066】
図11に示す配線構造は、上層配線層49bの底面にシリコン炭化膜からなるミッドストッパー層45が存在する以外は、図9に示したものと同様である。
【0067】
図12(a)〜(e)を参照して、図11に示した配線構造の形成方法を説明する。
【0068】
まず、ミッドストッパー層45の膜厚を厚く形成する以外は、図10(a)の場合と同様に、各絶縁層41、43、44、45、46および47を形成し、RIE加工によりビアホールおよび配線溝を形成する。このとき、ミッドストッパー層45は、ビアホール底部のストッパー絶縁膜43の除去の際にも、膜厚が厚いために完全には除去されず残留する。その後、前述と同様の手法により、図12(a)に示すように全面にAl膜50を形成する。
【0069】
続くアニールによって、低誘電率絶縁膜44、46とAl膜50との界面には、図12(b)に示すようにアルミナ層からなる高ヤング率絶縁膜48が形成される。また、キャップ絶縁膜47が有機シリコン酸化膜から構成されているので、その上面および側面にもアルミナ層からなる高ヤング率絶縁膜48が形成される。
【0070】
次いで、ウェットエッチングにより未反応のAlを除去して、図12(c)に示すようにアルミナ層からなる高ヤング率絶縁膜48を露出する。さらに、前述と同様の手法により図12(d)に示すように導電材料層49を形成し、溝以外の領域に堆積された導電材料層49を図12(e)に示すように除去する。最後に、キャップ層47上面の高ヤング率絶縁膜48を除去することによって、図11に示すような配線構造が得られる。
【0071】
こうした配線構造は、配線溝の底面にシリコン炭化膜からなるミッドストッパー層45が存在する。このシリコン炭化膜は、アルミナより低誘電率であるので、LSI動作の高速化に有利である。
【0072】
またさらに、図13に示すような構造に変更することもできる。
【0073】
図示する配線構造は、低誘電率絶縁膜52および53を芳香族炭化水素ポリマーから構成し、Cu導電材料層49との界面に炭化アルミニウムからなる高ヤング率絶縁膜54が形成された以外は、図9に示したものと同様である。すなわち、芳香族炭化水素ポリマーを用いて低誘電率絶縁膜を形成する以外は、図10(a)〜(e)と同様の手法により形成することができる。Alは、芳香族炭化水素ポリマーと反応して、炭化アルミニウムからなる高ヤング率絶縁膜54が形成される。
【0074】
このような炭化アルミニウムについても、アルミナと同様、15GPa以上のヤング率を有するとともに、単体でバリア性を有しており、Cu配線のバリア層として用いることができる。
【0075】
【発明の効果】
以上詳述したように、本発明によれば、ショート不良が生じず、高速で動作可能な半導体装置およびその製造方法が提供される。
【0076】
本発明は、低誘電率層間絶縁膜を用いた多層配線構造の形成に極めて有効に用いられ、その工業的価値は絶大である。
【図面の簡単な説明】
【図1】実施例1の半導体装置における配線構造を表わす断面図。
【図2】ビア側壁のバリアメタル層に働く応力のシミュレーションによる計算結果を示すグラフ図。
【図3】実施例1の半導体装置における配線構造の製造工程を表わす断面図。
【図4】実施例1の半導体装置の一部を表わす断面図。
【図5】実施例2の半導体装置における配線構造の製造工程を表わす断面図。
【図6】実施例3の半導体装置における配線構造の一例を表わす断面図。
【図7】実施例3の半導体装置における配線構造の製造工程を表わす断面図。
【図8】 参考例の配線構造の一例を表わす断面図。
【図9】 図8に示した配線構造の他の例を表わす断面図。
【図10】図9に示した配線構造の製造工程を表わす断面図。
【図11】 図8に示した配線構造の他の例を表わす断面図。
【図12】図11に示した配線構造の製造工程を表わす断面図。
【図13】 図8に示した配線構造の他の例を表わす断面図。
【図14】従来の半導体装置における配線構造の製造工程を表わす断面図。
【符号の説明】
1a…低誘電率絶縁層
1b…高強度絶縁層
2…配線層
3…エッチングストッパー絶縁層
4…低誘電率絶縁膜
5…キャップ絶縁層
6…ビアホール
7…配線溝
8…ダメージ層
9…バリアメタル層
10…導電材料層
11a…低誘電率絶縁層
11b…高強度絶縁層
12…配線層
13…シリコン窒化膜
14…低誘電率絶縁膜
15…ビアホール
16…高ヤング率絶縁膜
17…配線溝
18…バリアメタル層
19…導電材料層
19a…プラグ
19b…配線層
20…シリコン窒化膜
21…ダメージ層
22…レジストパターン
23…金属膜
23’…金属酸化物からなる高ヤング率絶縁膜
24…半導体基板
25…シリコン酸化膜
26…アルミナからなる高ヤング率絶縁膜
30…能動素子
31a,31b…ソース・ドレイン領域
32…素子分離絶縁膜
33…ゲート絶縁膜
34…ゲート電極
41…絶縁層
42…下部配線層
43…シリコン炭化膜からなるストッパー絶縁膜
44…多孔質有機シリコン酸化膜からなる低誘電率絶縁膜
45…シリコン炭化膜からなるミッドストッパー層
46…多孔質有機シリコン酸化膜からなる低誘電率絶縁膜
47…有機シリコン酸化膜からなるキャップ絶縁膜
48…アルミナからなる高ヤング率絶縁膜
49…導電材料層
49a…プラグ
49b…配線層
50…Al膜
52,53…芳香族炭化水素ポリマーからなる低誘電率絶縁膜
54…炭化アルミニウムからなる高ヤング率絶縁膜

Claims (16)

  1. 素子が形成された半導体基板と、
    前記半導体基板上に形成された3以下の比誘電率を有する低誘電率絶縁膜と、
    前記低誘電率絶縁膜中に埋め込まれたプラグおよび配線層を含む導電材料層とを具備し、
    前記低誘電率絶縁膜と前記導電材料層間のうち、前記低誘電率絶縁膜と前記プラグの間のみに、前記プラグ側面に接して形成されたヤング率が15GPa以上の高ヤング率絶縁膜を有することを特徴とする半導体装置。
  2. 前記高ヤング率絶縁膜は、シリコン酸化膜またはシリコン窒化膜からなり、前記プラグは、表面にバリアメタル層を有することを特徴とする請求項1に記載の半導体装置。
  3. 前記低誘電率絶縁膜上に形成され、ヤング率が15GPa以上の高ヤング率絶縁膜からなるキャップ層をさらに具備することを特徴とする請求項1または2に記載の半導体装置。
  4. 前記高ヤング率絶縁膜は、Ta、Ti、Nb、およびAlからなる群から選択される少なくとも1種の金属を含む金属酸化物層であることを特徴とする請求項1に記載の半導体装置。
  5. 前記高ヤング率絶縁膜は、Ta、Ti、およびNbからなる群から選択される少なくとも1種の金属を含む金属酸化物層であり、前記プラグは、表面にバリアメタル層を有することを特徴とする請求項4に記載の半導体装置。
  6. 前記高ヤング率絶縁膜はアルミナからなり、前記プラグはCuからなることを特徴とする請求項4に記載の半導体装置。
  7. 前記低誘電率絶縁膜は、15GPa未満のヤング率を有することを特徴とする請求項1ないし6のいずれか1項に記載の半導体装置。
  8. 前記プラグ側面に接して形成された前記高ヤング率絶縁膜の膜厚は、1nm以上100nm以下であることを特徴とする請求項1ないし7のいずれか1項に記載の半導体装置。
  9. 素子が形成された半導体基板と、前記半導体基板上に形成された3以下の比誘電率を有する低誘電率絶縁膜と、前記低誘電率絶縁膜中に埋め込まれたプラグおよび配線層を含む導電材料層とを具備し、前記低誘電率絶縁膜と前記導電材料層間のうち、前記低誘電率絶縁膜と前記プラグの間のみに、前記プラグ側面に接して形成されたヤング率が15GPa以上の高ヤング率絶縁膜を有する半導体装置の製造方法であって、
    素子が形成された半導体基板上に、絶縁膜を介して下部配線層を形成する工程と、
    前記下部配線層上に3以下の比誘電率を有する低誘電率絶縁膜を形成する工程と、
    前記低誘電率絶縁膜にビアホールを形成する工程と、
    前記ビアホールの側面に、15GPa以上のヤング率を有する高ヤング率絶縁膜を形成する工程と、
    側面に前記高ヤング率絶縁膜が形成されたビアホールを有する前記低誘電率絶縁膜に配線溝を形成する工程と、
    前記下部配線層と電気的に接続するように、前記ビアホールおよび配線溝が形成された前記低誘電率絶縁膜の全面にバリアメタルおよび導電性材料を順次堆積する工程と、
    前記低誘電率絶縁膜上の前記バリアメタルおよび前記導電性材料を除去して、表面にバリアメタル層を有するプラグおよび上部配線層を、前記ビアホール内および前記配線溝内にそれぞれ形成する工程とを具備することを特徴とする半導体装置の製造方法。
  10. 前記ビアホールを形成後、前記ビアホールの側面に前記高ヤング率絶縁膜を形成する前の前記低誘電率絶縁膜に、フッ酸によるウェットエッチング処理を施す工程をさらに具備することを特徴とする請求項9に記載の半導体装置の製造方法。
  11. 前記高ヤング率絶縁膜は、前記ビアホールの側面に加えて前記低誘電率絶縁膜上に形成されることを特徴とする請求項9または10に記載の半導体装置の製造方法。
  12. 前記ビアホールの側面に形成された前記高ヤング率絶縁膜は、シリコン酸化膜またはシリコン窒化膜からなることを特徴とする請求項9ないし11のいずれか1項に記載の半導体装置の製造方法。
  13. 素子が形成された半導体基板上に、絶縁膜を介して下部配線層を形成する工程と、
    前記下部配線層上に3以下の比誘電率を有する低誘電率絶縁膜を形成する工程と、
    前記低誘電率絶縁膜にビアホールおよび配線溝を形成する工程と、
    前記ビアホールおよび配線溝が形成された前記低誘電率絶縁膜の表面に、Ta、Ti、およびNbからなる群から選択される少なくとも1種の金属を含む金属酸化物からなり、15GPa以上のヤング率を有する高ヤング率絶縁膜を形成する工程と、
    前記下部配線層と電気的に接続するように、前記高ヤング率絶縁膜が形成された前記低誘電率絶縁膜の全面に導電性材料を堆積する工程と、
    前記低誘電率絶縁膜上の前記導電性材料を除去して、前記ビアホール内および前記配線溝内にプラグおよび上部配線層をそれぞれ形成する工程とを具備し、
    前記金属酸化物は、前記ビアホールおよび配線溝が形成された前記低誘電率絶縁膜の表面にTa、Ti、およびNbからなる群から選択される少なくとも1種の金属を300℃以上の高温で堆積して前記低誘電率絶縁膜と反応させることにより形成されることを特徴とする半導体装置の製造方法。
  14. 前記低誘電率絶縁膜の全面に前記導電性材料を堆積する前に、バリアメタルを堆積する工程をさらに具備し、前記プラグおよび前記上部配線層は表面にバリアメタル層を有して前記ビアホール内および前記配線溝内に形成されることを特徴とする請求項13に記載の半導体装置の製造方法。
  15. 前記低誘電率絶縁膜は、15GPa未満のヤング率を有することを特徴とする請求項9ないし14のいずれか1項に記載の半導体装置の製造方法。
  16. 前記高ヤング率絶縁膜は、1nm以上100nm以下の膜厚で形成されることを特徴とする請求項9ないし14のいずれか1項に記載の半導体装置の製造方法。
JP2001395237A 2001-12-26 2001-12-26 半導体装置およびその製造方法 Expired - Fee Related JP3648480B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001395237A JP3648480B2 (ja) 2001-12-26 2001-12-26 半導体装置およびその製造方法
US10/247,378 US6975033B2 (en) 2001-12-26 2002-09-20 Semiconductor device and method for manufacturing the same
EP02021330A EP1324383A3 (en) 2001-12-26 2002-09-20 Semiconductor device and method for manufacturing the same
TW091125054A TW587274B (en) 2001-12-26 2002-10-25 Semiconductor device and a method for manufacturing thereof
CNB021568146A CN1293622C (zh) 2001-12-26 2002-12-13 半导体器件及其制造方法
KR1020020083208A KR20030055135A (ko) 2001-12-26 2002-12-24 반도체 장치 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001395237A JP3648480B2 (ja) 2001-12-26 2001-12-26 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2003197742A JP2003197742A (ja) 2003-07-11
JP3648480B2 true JP3648480B2 (ja) 2005-05-18

Family

ID=19188950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001395237A Expired - Fee Related JP3648480B2 (ja) 2001-12-26 2001-12-26 半導体装置およびその製造方法

Country Status (6)

Country Link
US (1) US6975033B2 (ja)
EP (1) EP1324383A3 (ja)
JP (1) JP3648480B2 (ja)
KR (1) KR20030055135A (ja)
CN (1) CN1293622C (ja)
TW (1) TW587274B (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103971A (ja) * 2002-09-12 2004-04-02 Hitachi High-Technologies Corp ダマシン処理方法、ダマシン処理装置および、ダマシン構造
JP2005005383A (ja) * 2003-06-10 2005-01-06 Toshiba Corp 半導体装置および半導体装置の製造方法
US7071539B2 (en) * 2003-07-28 2006-07-04 International Business Machines Corporation Chemical planarization performance for copper/low-k interconnect structures
JP4413556B2 (ja) * 2003-08-15 2010-02-10 東京エレクトロン株式会社 成膜方法、半導体装置の製造方法
CN1839468B (zh) * 2003-10-08 2010-11-24 霍尼韦尔国际公司 使用甲硅烷基化剂修复低k介电材料的损伤
US7081407B2 (en) 2003-12-16 2006-07-25 Lam Research Corporation Method of preventing damage to porous low-k materials during resist stripping
JP4012163B2 (ja) 2004-03-11 2007-11-21 株式会社東芝 半導体装置
KR101080401B1 (ko) * 2004-04-23 2011-11-04 삼성전자주식회사 평판 표시장치의 접합구조체 및 그 형성방법과 이를구비하는 평판 표시장치
US20050260847A1 (en) * 2004-05-24 2005-11-24 Yang J H Method for forming contact window
JP2005347511A (ja) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP4492947B2 (ja) 2004-07-23 2010-06-30 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2006140404A (ja) * 2004-11-15 2006-06-01 Renesas Technology Corp 半導体装置
US7351656B2 (en) * 2005-01-21 2008-04-01 Kabushiki Kaihsa Toshiba Semiconductor device having oxidized metal film and manufacture method of the same
US7422979B2 (en) * 2005-03-11 2008-09-09 Freescale Semiconductor, Inc. Method of forming a semiconductor device having a diffusion barrier stack and structure thereof
JP4199206B2 (ja) * 2005-03-18 2008-12-17 シャープ株式会社 半導体装置の製造方法
JP2006294905A (ja) * 2005-04-12 2006-10-26 Sony Corp 半導体装置及び半導体素子
US7335588B2 (en) * 2005-04-15 2008-02-26 International Business Machines Corporation Interconnect structure and method of fabrication of same
GB2440881A (en) * 2005-05-31 2008-02-13 Advanced Micro Devices Inc Technique for forming copper-containing lines embedded in low-K dielectric by providing a stiffening layer
JP2007027347A (ja) * 2005-07-15 2007-02-01 Sony Corp 半導体装置およびその製造方法
JP2007173511A (ja) * 2005-12-22 2007-07-05 Sony Corp 半導体装置の製造方法
US7564136B2 (en) * 2006-02-24 2009-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. Integration scheme for Cu/low-k interconnects
WO2007099428A1 (en) * 2006-02-28 2007-09-07 Stmicroelectronics (Crolles 2) Sas Metal interconnects in a dielectric material
US7645710B2 (en) 2006-03-09 2010-01-12 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US20070209930A1 (en) * 2006-03-09 2007-09-13 Applied Materials, Inc. Apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7678710B2 (en) * 2006-03-09 2010-03-16 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7837838B2 (en) 2006-03-09 2010-11-23 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus
KR100732773B1 (ko) * 2006-06-29 2007-06-27 주식회사 하이닉스반도체 절연층들간의 들뜸을 방지한 반도체 소자 제조 방법
US7968967B2 (en) * 2006-07-17 2011-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. One-time-programmable anti-fuse formed using damascene process
TW200814156A (en) * 2006-07-21 2008-03-16 Toshiba Kk Method for manufacturing semiconductor device and semiconductor device
KR20090057089A (ko) * 2006-09-04 2009-06-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 상호접속 구조체, 상호접속 구조체의 제조 방법 및 집적 회로 디바이스의 제조 방법
US9087877B2 (en) * 2006-10-24 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. Low-k interconnect structures with reduced RC delay
JP5326202B2 (ja) * 2006-11-24 2013-10-30 富士通株式会社 半導体装置及びその製造方法
JP4389962B2 (ja) * 2007-04-26 2009-12-24 ソニー株式会社 半導体装置、電子機器、および半導体装置の製造方法
US7851234B2 (en) * 2007-11-29 2010-12-14 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for enhanced control of copper trench sheet resistance uniformity
JP4675393B2 (ja) * 2008-05-12 2011-04-20 パナソニック株式会社 半導体装置および半導体装置の製造方法
US10096544B2 (en) * 2012-05-04 2018-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor interconnect structure
JP5889118B2 (ja) 2012-06-13 2016-03-22 株式会社東芝 半導体装置及びその製造方法
WO2014013956A1 (ja) * 2012-07-17 2014-01-23 三井化学株式会社 半導体装置及びその製造方法並びにリンス液
JP2015072998A (ja) * 2013-10-02 2015-04-16 富士通株式会社 強誘電体メモリ及びその製造方法
US9343357B2 (en) 2014-02-28 2016-05-17 Qualcomm Incorporated Selective conductive barrier layer formation
US10014382B2 (en) * 2014-03-13 2018-07-03 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device with sidewall passivation and method of making
US20160329213A1 (en) * 2015-05-04 2016-11-10 Lam Research Corporation Highly selective deposition of amorphous carbon as a metal diffusion barrier layer
US9728501B2 (en) * 2015-12-21 2017-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming trenches
US10504821B2 (en) * 2016-01-29 2019-12-10 United Microelectronics Corp. Through-silicon via structure
CN111584725A (zh) * 2020-05-15 2020-08-25 武汉华星光电半导体显示技术有限公司 Oled的面板及其制造方法
KR20220006686A (ko) * 2020-07-08 2022-01-18 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US260770A (en) * 1882-07-11 Carriage-jack
US306988A (en) * 1884-10-21 Whiffletree
US312291A (en) * 1885-02-17 Leof coediee pikel
US35917A (en) * 1862-07-22 Improved ivhrror for attachment to windows
US520447A (en) * 1894-05-29 Chusetts
US284600A (en) * 1883-09-11 bower
US294634A (en) * 1884-03-04 Territory
US1154621A (en) * 1914-09-21 1915-09-28 Charles A Elton Punching-machine.
US1340330A (en) * 1919-11-11 1920-05-18 Richard E Enos Shuttle tension
JPH04259242A (ja) * 1991-02-14 1992-09-14 Fujitsu Ltd 半導体装置の製造方法
JPH08191104A (ja) * 1995-01-11 1996-07-23 Hitachi Ltd 半導体集積回路装置およびその製造方法
JPH09306988A (ja) 1996-03-13 1997-11-28 Sony Corp 多層配線の形成方法
JP3281260B2 (ja) 1996-05-21 2002-05-13 株式会社東芝 半導体装置の製造方法
JPH10125783A (ja) * 1996-10-15 1998-05-15 Sony Corp 半導体装置の製造方法
JPH10284600A (ja) 1997-03-31 1998-10-23 Sony Corp 半導体装置及びその製造方法
JPH1154621A (ja) 1997-08-07 1999-02-26 Sony Corp 半導体装置およびその製造方法
US5942799A (en) * 1997-11-20 1999-08-24 Novellus Systems, Inc. Multilayer diffusion barriers
US6130156A (en) * 1998-04-01 2000-10-10 Texas Instruments Incorporated Variable doping of metal plugs for enhanced reliability
JP3107047B2 (ja) * 1998-05-28 2000-11-06 日本電気株式会社 半導体装置の製造方法
JP3400353B2 (ja) 1998-05-28 2003-04-28 株式会社東芝 半導体装置の製造方法
JP2000049116A (ja) * 1998-07-30 2000-02-18 Toshiba Corp 半導体装置及びその製造方法
JP2000106397A (ja) 1998-07-31 2000-04-11 Sony Corp 半導体装置における配線構造及びその形成方法
JP4044236B2 (ja) 1999-03-11 2008-02-06 株式会社東芝 半導体装置の製造方法
JP3974284B2 (ja) * 1999-03-18 2007-09-12 株式会社東芝 半導体装置の製造方法
TW444252B (en) * 1999-03-19 2001-07-01 Toshiba Corp Semiconductor apparatus and its fabricating method
JP3727818B2 (ja) * 1999-03-19 2005-12-21 株式会社東芝 半導体装置の配線構造及びその形成方法
JP2000294634A (ja) 1999-04-07 2000-10-20 Nec Corp 半導体装置及びその製造方法
JP2001035917A (ja) 1999-07-19 2001-02-09 Hitachi Ltd 半導体装置およびその製造方法
US6221780B1 (en) * 1999-09-29 2001-04-24 International Business Machines Corporation Dual damascene flowable oxide insulation structure and metallic barrier
KR100390951B1 (ko) * 1999-12-29 2003-07-10 주식회사 하이닉스반도체 반도체 소자의 구리 배선 형성 방법
US20010051420A1 (en) * 2000-01-19 2001-12-13 Besser Paul R. Dielectric formation to seal porosity of low dielectic constant (low k) materials after etch
US6329290B1 (en) * 2000-02-24 2001-12-11 Conexant Systems, Inc. Method for fabrication and structure for high aspect ratio vias
TW478101B (en) * 2000-03-23 2002-03-01 Ibm Structure for protecting copper interconnects in low dielectric constant materials from oxidation
US6583047B2 (en) * 2000-12-26 2003-06-24 Honeywell International, Inc. Method for eliminating reaction between photoresist and OSG

Also Published As

Publication number Publication date
US20030116854A1 (en) 2003-06-26
TW587274B (en) 2004-05-11
US6975033B2 (en) 2005-12-13
JP2003197742A (ja) 2003-07-11
CN1428840A (zh) 2003-07-09
KR20030055135A (ko) 2003-07-02
EP1324383A2 (en) 2003-07-02
CN1293622C (zh) 2007-01-03
EP1324383A3 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP3648480B2 (ja) 半導体装置およびその製造方法
US7419916B2 (en) Manufacturing method of semiconductor device
US8053901B2 (en) Sacrificial inorganic polymer intermetal dielectric damascene wire and via liner
US7163883B2 (en) Edge seal for a semiconductor device
KR20070036528A (ko) 이미지 센서 및 그 제조방법
KR100812731B1 (ko) 조화된 응력을 갖는 상호 접속물들 및 그의 제조 방법
JPH05144811A (ja) 薄膜半導体装置及びその製造方法
US7879733B2 (en) Method for manufacturing semiconductor device free from layer-lifting between insulating layers
CN100452387C (zh) 具有多层铜线路层的半导体器件及其制造方法
JP2002203899A (ja) 銅相互接続構造の形成方法
JPH09312291A (ja) 半導体装置及びその製造方法
US7250364B2 (en) Semiconductor devices with composite etch stop layers and methods of fabrication thereof
KR100367487B1 (ko) 반도체소자의 제조방법
KR100443148B1 (ko) 반도체소자의 제조방법
US7572720B2 (en) Semiconductor device and method for fabricating the same
KR20070048820A (ko) 반도체 장치의 배선 구조물 및 그 제조 방법
JPH06244287A (ja) 半導体装置の製造方法
US7608536B2 (en) Method of manufacturing contact opening
KR100702803B1 (ko) 반도체 소자의 금속 배선 형성 방법
JP2004072080A (ja) 半導体装置の製造方法および半導体装置
JP2001093973A (ja) 半導体集積回路およびその製造方法
KR20080098681A (ko) 로우 케이 스페이서를 사용하여 상호 연결 라인 대 라인 커패시턴스를 감소하는 방법
JP2005101597A (ja) 半導体装置およびその製造方法
JPH06275725A (ja) 半導体装置の製造方法
JP2000082740A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R151 Written notification of patent or utility model registration

Ref document number: 3648480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees