ES2321008T3 - Tinta para huecograbado que absorbe en el infrarrojo. - Google Patents

Tinta para huecograbado que absorbe en el infrarrojo. Download PDF

Info

Publication number
ES2321008T3
ES2321008T3 ES05111295T ES05111295T ES2321008T3 ES 2321008 T3 ES2321008 T3 ES 2321008T3 ES 05111295 T ES05111295 T ES 05111295T ES 05111295 T ES05111295 T ES 05111295T ES 2321008 T3 ES2321008 T3 ES 2321008T3
Authority
ES
Spain
Prior art keywords
ink
phosphate
copper
infrared
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES05111295T
Other languages
English (en)
Other versions
ES2321008T5 (es
Inventor
Marlyse Demartin Maeder
Edgar Muller
Claude Alain Despland
Pierre Degott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICPA Holding SA
Original Assignee
SICPA Holding SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35457739&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2321008(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SICPA Holding SA filed Critical SICPA Holding SA
Publication of ES2321008T3 publication Critical patent/ES2321008T3/es
Application granted granted Critical
Publication of ES2321008T5 publication Critical patent/ES2321008T5/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S283/00Printed matter
    • Y10S283/904Credit card
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24835Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including developable image or soluble portion in coating or impregnation [e.g., safety paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24934Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including paper layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Printing Methods (AREA)
  • Ink Jet (AREA)
  • Credit Cards Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Conductive Materials (AREA)

Abstract

Tinta para el proceso de impresión con plancha de acero grabada, que comprende un aglutinante orgánico polimérico y un material que absorbe en el infrarrojo, donde dicha tinta tiene una consistencia pastosa con un valor de viscosidad a 40ºC de por lo menos 3 Pa.s, preferiblemente por lo menos 5 Pa.s, caracterizada porque dicho material que absorbe en el infrarrojo comprende un compuesto de elementos de transición y porque su absorción en el infrarrojo es consecuencia de transiciones electrónicas dentro de la capa d de átomos o iones de elementos de transición.

Description

Tinta para huecograbado que absorbe en el infrarrojo.
La presente invención pertenece al campo de las tintas y composiciones de revestimiento. En particular, se refiere a una tinta para el proceso de impresión con plancha de acero grabada (plancha de cobre, Huecograbado), que se utiliza para imprimir moneda y otros documentos de seguridad. Más en particular, la tinta para huecograbado de la presente invención está diseñada para absorber radiación de manera selectiva en partes del espectro "infrarrojo óptico", mientras que es transparente en otras partes del mismo.
Aquellos con experiencia conocen los compuestos y revestimientos que absorben radiación en el rango "infrarrojo óptico" del espectro electromagnético, es decir longitudes de onda entre 700 nm y 2.500 nm. Dichos materiales se utilizan como absorbentes de energía solar, así como para producir marcas ocultas, legibles con una máquina sobre objetos o documentos, para el proceso o autenticación automatizados de dichos objetos o documentos mediante máquinas.
A través de toda la presente descripción, las expresiones "infrarrojo" o "IR" se utilizan para designar el rango espectral de longitudes de onda entre 700 nm y 2.500 nm. El término "visible" designará el rango espectral de longitudes de onda entre 400 nm y 700 nm. El término "ultravioleta" o "UV" se aplicará a longitudes de onda más cortas que 400 nm. Además, las expresiones "infrarrojo cercano" o "NIR" se utilizan para designar el rango espectral de longitudes de onda entre 700 nm y 1.100 nm, que corresponde a la radiación que detectan los fotodetectores de silicio usuales.
A través de toda la presente descripción, los términos "proceso de impresión con plancha de acero grabada", "proceso de impresión con plancha de cobre", y "proceso de impresión por huecograbado" se utilizan como sinónimos para la misma técnica de impresión.
Un primer grupo de las primeras patentes sobre tecnologías de impresión relacionadas con el infrarrojo se relacionaba exclusivamente con aspectos del proceso: US 3.705.043 (Zabiak) revela una composición de tinta que absorbe en el infrarrojo (que absorbe en el IR) para impresión por chorro de tinta, para la impresión de códigos de barras legibles con una máquina. En el momento de dicha presentación (1972), por razonas técnicas, los equipos lectores de códigos de barras estaban limitados al rango "infrarrojo cercano" (700 nm - 1100 nm) del espectro; por esta razón se le agregó a la tinta una tintura orgánica de nigrosina que absorbe en el infrarrojo, para hacerla también "visible para la máquina". Una técnica para un propósito similar se presentó en US 3.870.528 (Edds et al., IBM), y en US 4.244.741 (Kruse, US Postal Service); esta última patente describe el uso de un ácido heteropoli- (fosfomolíbdico-) reducido como absorbente infrarrojo inorgánico. Se puede resumir que dichas publicaciones no se referían al uso de sustancias que absorben en el IR como marcas de seguridad.
Un segundo grupo de publicaciones relacionadas con documentos de seguridad: EP-A-0 552 047 (Nishida et al., Hitachi Maxell Ltd.) revela un documento de seguridad con una marca impresa que absorbe en el infrarrojo, que comprende una capa de ocultamiento coloreada para ocultar el elemento de seguridad que absorbe en el IR en el rango espectral visible de 400 nm - 700 nm. Los absorbentes IR de acuerdo con la descripción del documento EP-A-0 552 047 se deben utilizar en conjunto con capas de ocultamiento que mimetizan su existencia y posición al ojo desnudo. EP-A-0 263 446 (Abe et al., Dainichiseika Color & Chemicals Mfg. Co. Ltd.) revela una impresión anti-copia que comprende información encubierta en un documento de seguridad, así como un método para producir dicho impreso, donde se utiliza una tinta negra que absorbe en el IR además del proceso de entintado a cuatro colores estándar, transparente al IR, y en conjunto con el mismo. El "negro que absorbe en el IR" es preferiblemente negro de humo, que absorbe indiscriminadamente en todo el rango espectral completo visible e infrarrojo, mientras que el "negro transparente al IR" es una tintura orgánica que absorbe solamente en el rango visible del espectro.
En el campo del proceso automatizado de papel moneda, la absorción IR desempeña un papel importante. La mayoría de la moneda actualmente en circulación no solo lleva impresiones coloreadas visibles, sino también características específicas que se detectan solamente en la parte infrarroja del espectro. En general, dichas características IR se implementan para ser utilizadas por equipos para el proceso automático de moneda, en aplicaciones bancarias y de venta automatizada (cajeros automáticos, máquinas expendedoras de venta automatizada, etc.), para reconocer un determinado billete de moneda y para verificar su autenticidad, en particular para discriminarlo de falsificaciones hechas mediante copiadoras a color. WO-A-04/016442 (Banque de France) trata sobre documentos protegidos por un material que absorbe en el infrarrojo.
La apariencia visible (negra) de las tintas que absorben en el infrarrojo de acuerdo con EP-A-0 263 446 se percibe como una desventaja en las aplicaciones en seguridad, donde la absorción IR se debería utilizar como una característica adicional, encubierta, es decir invisible. Una manera de obviar esta dificultad puede ser mimetizar la tinta que absorbe en el IR mediante sobreimpresión, o usando pares de tintas que absorben en el IR y transparentes al IR con un mismo color visible; sin embargo la última opción impone una limitación bastante restrictiva al diseñador del documento, ya que no es compatible con sombreados claros.
Otro grupo de patentes revela absorbentes IR invisibles, que se pueden utilizar en tintas de todos los matices (incluso blancos), sin contribuir a su apariencia visible: EP-A-0 608 118 (Yoshinaga et al., Canon K.K.) revela un medio (tal como un papel moneda, documento de seguridad, etc.), con información invisible registrada, como un medio de reconocimiento legible con una máquina para documentos de seguridad, para impedir su copia en máquinas copiadoras. El registro se realiza usando materiales orgánicos del tipo de las cianinas que absorben en el infrarrojo cercano, que son incoloros y transparentes en la parte visible del espectro, y por lo tanto son invisibles para el ojo humano. Un enfoque similar fue desarrollado por Tashima et al., Dainippon Printing Co. Ltd., quienes revelan el uso de fosfato de iterbio inorgánico (YbPO_{4}) como un elemento de seguridad invisible, que absorbe en el IR, así como las correspondientes tintas y composiciones de revestimiento que lo contienen, junto con documentos de seguridad y patrones de seguridad que se pueden realizar con el mismo (JP 08-143853 A2; JP 08-209110 A2; JP 09-030104 A2; JP 09-031382 A2; JP 09-077507 A2; JP 09-104857 A2; JP 10-060409 A2). Por último, US 5.911.921 (Takai et al.; Shin-Etsu Chemical Co., Ltd.) revela un fosfato de iterbio no estequiométrico de aún menor reflectividad en el infrarrojo, para utilizar como material de seguridad que absorbe en el IR.
Los absorbentes IR orgánicos e inorgánicos de este último grupo de documentos solucionan de esa manera las desventajas de la coloración visible del absorbente IR; sin embargo, existe otra desventaja digna de mención relacionada con su uso, que es el ancho espectral bastante estrecho de las bandas de absorción en el infrarrojo que muestran las tinturas orgánicas del tipo de las cianinas y el absorbente IR de YbPO_{4}. Es digno de mención que la detección (lectura) de características de absorción IR de banda estrecha requiere un equipo detector adaptado en particular para leer la longitud de onda de absorción precisa en cuestión, y, en el caso del YbPO_{4}, el uso de una concentración relativamente alta del material que absorbe en el IR en la tinta para impresión.
Actualmente hay en el mercado una gran cantidad de modelos diferentes de equipos para procesar moneda de muchos proveedores de todo el mundo. Estos equipos, aunque permiten controlar la absorción IR del papel moneda, no trabajan de ninguna manera en una sola longitud de onda IR y siempre en la misma; actualmente no existe un "color IR estándar", análogo al estándar CIELAB que se utiliza en la colorimetría visible. Por lo tanto, los absorbentes IR de banda estrecha no son compatibles con aplicaciones genéricas de proceso de moneda, debido a razonas de compatibilidad con el equipo de proceso ya existente. Se debe mencionar que normalmente no es factible adaptar con cada cambio el equipo existente para procesar moneda en aplicaciones de banca automática y de venta automatizada a un nuevo tipo de elemento de seguridad que absorbe en el IR.
Por otro lado, la opción clásica de usar negro de humo como absorbente IR indiscriminado, de banda ancha, tiene la antedicha desventaja de restringir al diseñador de papel moneda solamente a matices oscuros o negros. A esto se agrega la disponibilidad general de dicho tipo de materiales; por lo tanto, el negro de humo, aunque es un absorbente IR, puede no ser considerado un material de seguridad. Lo mismo es cierto para el material de grafito semi-metálico, cuyo uso como pigmento que absorbe en el IR en documentos de seguridad fue revelado por Mürl en WO-A-98/28374.
Idealmente, el absorbente IR para aplicaciones de proceso de moneda debería ser transparente en el rango visible (400 nm a 700 nm), por ejemplo para permitir su uso en todos los tipos de tintas visiblemente coloreadas y también en marcas que son invisibles a ojo desnudo, y debería mostrar una fuerte absorción en el rango infrarrojo cercano (700 nm a 1.100 nm), por ejemplo para permitir su fácil reconocimiento mediante equipo estándar para procesar moneda (basado en fotodetectores IR de silicio, que son sensibles hasta los 1.100 nm). El absorbente IR debería además ser transparente, nuevamente en alguna parte dentro del rango entre 1.100 nm y 2.500 nm, para permitir la discriminación de la característica de seguridad específica de la moneda, de una simple impresión con negro de humo o grafito, que absorbe indiscriminadamente sobre el rango IR completo. Dicha discriminación se puede llevar a cabo por ejemplo mediante un simple control de transparencia en la región de 1.100-2.500 nm, usando una célula fotoeléctrica apropiada (Ge, InGaAs, etc.).
La impresión con plancha de acero (plancha de cobre, huecograbado) es un método bastante específico para la producción de moneda y otros documentos estatales de alta seguridad. Las máquinas de impresión por huecograbado son equipo pesado y costoso, que no se encuentra disponible para otras aplicaciones de impresión comercial, y que se utiliza exclusivamente en las pocas instalaciones de impresión de alta seguridad que hay en el mundo. Como consecuencia, aún una característica de seguridad de modesta sofisticación física se puede tomar al nivel de alta seguridad si se aplica mediante un proceso de impresión por huecograbado. Para referencias del arte anterior relacionado con tintas para el proceso de impresión en plancha de acero véase EP-A-0 340 163; EP-A-0 432 093; US 4.966.628; US 5.658.964; así como WO 02/094952 de los inventores; donde los contenidos de dichos documentos se incluyen aquí como referencia.
Las tintas para huecograbado para impresión de seguridad se caracterizan por su consistencia pastosa (con un valor de viscosidad bastante alto, mayor de 3, preferiblemente mayor de 5 Pascal*sec (Pa.s) a 40ºC) y, en particular, por su alto contenido de sólidos, típicamente mayor al 50% en peso. Además, los documentos de seguridad tales como papel moneda deben ser duraderos y resistentes a la luz solar e influencias ambientales (es decir humedad, oxígeno, lavandería y los solventes y químicos disponibles comúnmente). Por lo tanto, para imprimir dichos documentos se utilizan formulaciones de tinta con resistencia particularmente buena, que comprenden resinas aglutinantes epoxi-éster o de uretano de alto rendimiento. Debido a la misma razón, para los pigmentos, cargas, y otros sólidos comprendidos en una tinta para huecograbado se seleccionan preferiblemente compuestos inorgánicos; sin embargo, también se pueden utilizar pigmentos orgánicos con una resistencia probadamente alta.
Un objeto de la presente invención consiste en proveer una tinta para impresión por huecograbado que satisface los anteriores requerimientos.
Ahora se ha descubierto sorprendentemente que el anterior objeto se resuelve mediante una tinta para el proceso de impresión con plancha de acero grabada, donde dicha tinta comprende un aglutinante orgánico polimérico, un material que absorbe en el infrarrojo, y, de ser necesario, solvente y/o carga, donde dicha tinta tiene una consistencia pastosa con un valor de viscosidad de por lo menos 3, preferiblemente 5 Pa.s a 40ºC, y donde dicho material que absorbe en el infrarrojo comprende átomos o iones de elementos de transición cuya absorción en el infrarrojo es consecuencia de transiciones electrónicas dentro de la capa d de los átomos o iones de elementos de transición.
Sorprendentemente, se ha descubierto una clase de materiales que son apropiados como absorbentes IR de banda ancha en tintas para impresión por huecograbado, que se ajustan a dichos requerimientos y solucionan las desventajas de ambos, los absorbentes IR de banda estrecha, y los absorbentes IR indiscriminados de negro de humo o grafito. Dichos materiales que absorben en el infrarrojo, que pueden ser de naturaleza orgánica o inorgánica, se caracterizan porque contienen elementos químicos específicos con una capa electrónica d incompleta (es decir átomos o iones de elementos de transición), y cuya absorción en el infrarrojo es consecuencia de las transiciones electrónicas dentro de dicha capa d del átomo o ion.
Se descubrió que determinados compuestos de átomos o iones apropiados de elementos de transición absorben en el rango NIR (700 nm a 1.100 nm), mientras que son casi transparentes en el rango visible (400 nm a 700 nm) del espectro, así como en cierto rango entre 1.100 nm y 2.500 nm. A pesar del hecho de que dichos materiales solo muestran una absorción moderadamente fuerte en dicho rango NIR, se pueden aplicar mediante impresión por huecograbado, de tal manera que se transfiera una cantidad suficiente de material que absorbe en el IR sobre el documento de seguridad para dar como resultado un contraste IR útil (densidad de absorción).
Las personas con experiencia en espectroscopía inorgánica conocen las transiciones electrónicas d-d, que suceden dentro de la capa d incompleta de un átomo o ion de un elemento de transición. En este contexto, se hace referencia a A.B.P. Lever, "Inorganic Electronic Spectroscopy", 2^{a} edición, "Studies in Physical and Theoretical Chemistry, Vol. 33", Elsevier, Amsterdam, 1984, Capítulo 6. Los términos "elemento de transición" o "metal de transición" se aplicarán en el contexto de la presente invención a las secuencias de elementos químicos Nº 22 (Ti) a 29 (Cu), Nº 40 (Zr) a 47 (Ag), y Nº 72 (Hf) a 79 (Au) de la Tabla Periódica, con particular énfasis en la primera serie de transición (Ti, V, Cr, Mn, Fe, Co, Ni, Cu).
Preferiblemente, el elemento de transición en el compuesto que absorbe en el infrarrojo está presente en la forma de un ion tal como un ion de titanio (III), vanadio (IV) = vanadilo, cromo (V), hierro (II), níquel (II), cobalto (II) o cobre (II) (correspondiente a las fórmulas químicas Ti^{3+}, VO^{2+}, Cr^{5+}, Fe^{2+}, Ni^{2+}, Co^{2+}, y Cu^{2+}). Además, en dicho compuesto puede haber presente más de un átomo o ion de elementos de transición, así como otros átomos o iones (cationes o aniones), ya sea por razonas estructurales, o para aprovechar un efecto acumulativo.
Los materiales cuya absorción de la luz es consecuencia de transiciones electrónicas dentro de la capa d de átomos o iones de elementos de transición muestran una absorción específica apenas moderada. Por lo tanto, su falta de absorción específica de la luz se debe compensar mediante una cantidad de material correspondientemente grande, es decir que debe haber presente una capa del material suficientemente gruesa como para producir la propiedad de absorción requerida. Por esta razón, los materiales con absorción IR basada en transiciones en la capa d del arte anterior se aplicaban ya sea en una capa de revestimiento gruesa (pinturas que absorben en el IR para paneles solares), o se utilizaban como carga en la masa de un material plástico.
Sin embargo, los absorbentes infrarrojos basados en elementos de transición de la capa d no se han utilizado en aplicaciones en impresión comunes, donde el espesor de la capa disponible varía dentro del rango entre apenas unos pocos micrómetros en impresión offset y flexográfica, como máximo entre 10 y 15 micrómetros de residuo seco en aplicaciones de impresión por serigrafía, y donde solamente una fracción del espesor total de la capa representa la carga de pigmento. Con dicha restricción, alguien con experiencia en el arte de la formulación de tintas prefiere usar un material que absorba en el IR que muestre una alta absorción específica en el infrarrojo, para conseguir el resultado que se busca con una reducida cantidad de material.
Se ha descubierto que al usar el proceso de impresión por huecograbado, es posible transferir una capa bastante gruesa (de hasta 50 micrómetros) de una tinta con alto contenido de sólidos sobre un sustrato. Por lo tanto, al usar el proceso de impresión por huecograbado, es posible aplicar una cantidad suficiente de dichos materiales con absorción IR basada en transiciones en la capa d, sobre un documento, de tal manera de obtener como resultado un contraste infrarrojo útil. Además, los materiales que absorben en el IR que se revelan comúnmente no se pueden obtener para aplicaciones de impresión, lo que los hace apropiados para utilizar en impresión de seguridad, debido a la ausencia de fáciles oportunidades de falsificación.
Las propiedades de los compuestos de elementos de transición que absorben en el infrarrojo son conocidas y ya se aprovechan en ciertas áreas de tecnología. Los compuestos de hierro (II) y cobre (II), con un ion Fe (^{2+}) o
Cu (^{2+}) en un ambiente químico apropiado, han probado ser eficientes materiales absorbentes IR de banda ancha en el rango infrarrojo cercano. Los compuestos apropiados de hierro (II) o cobre (II) son transparentes en el rango visible del espectro - mostrando como máximo un matiz levemente amarillento o azulado - y son estables en condiciones ambientes (es decir ante la exposición al oxígeno y la humedad). Un "ambiente químico apropiado" es por ejemplo un ion fosfato o polifosfato, o, más en general, un grupo que contiene fósforo y oxígeno; en muchos de los materiales que absorben en el IR que se revelan en el arte anterior, hay un ion Cu (^{2+}) o Fe (^{2+}) unido de hecho mediante un átomo de oxígeno a un átomo de fósforo, formando una secuencia de átomos M-O-P.
US 4.296.214 (Kamada et al., Mitsubishi Rayon Co., Ltd.) revelan una resina acrílica para absorción solar con ésteres acrílicos difosfonato que contienen cobre (II) copolimerizados en la misma. US 5.466.755 (Sakagami et al., Kureha Kagaku Kogyo K.K.) revela un material plástico de filtro óptico, basado en grupos diéster-fosfato monoácido y monoéster-fosfato diácido que contienen copolímero acrílico, en el cual se incorporan iones cobre (II) y/o hierro (II). US 6.410.613 (Ohnishi et al., Kureha Kagaku Kogyo K.K.) trata sobre otros polímeros éster fosfato que absorben en el IR que comprenden iones cobre. Dichos materiales poliméricos son útiles como absorbentes en el infrarrojo cercano (filtros) en el rango de longitudes de onda entre 700 nm y 1200 nm, pero hasta el presente no se han utilizado en tintas para impresión.
US 5.236.633 y US 5.354.514 (Satake et al., Jujo Paper Co., Ltd.) describen materiales que absorben en el infrarrojo cercano basados en un polímero termoplástico transparente (polimetacrilato, policarbonato, polietileno, cloruro de vinilo, etc.), un compuesto orgánico de tiourea, y un compuesto de cobre, que se funden juntos para dar un material plástico transparente a la luz visible (levemente azulada), que absorbe en el IR. US 5.723.075 (Hayasaka, Nippon Paper Industries, Co., Ltd.) revela una tecnología similar, excepto que se utilizan derivados orgánicos dimerizados de tiourea.
Las patentes US 2.265.437 y US 5.800.861, otorgadas a The Sherwin-Williams Company, revelan el uso de, entre otras cosas, fosfato de cobre, fosfato básico de cobre, y pirofosfato de cobre en revestimientos que absorben en el IR para producir colectores solares pasivos etcétera. Dichos revestimientos se caracterizan porque tienen, además de su absorción en el rango visible, una amplia banda de absorción en la región entre 700 nm y 1200 nm.
También se han utilizado vidrios que contienen fosfato y/o fluoruro que comprenden iones cobre (^{2+}) como absorbentes IR, en particular para filtros de corte IR en la industria óptica. US 5.173.212 (Speit et al., Schott Glaswerke) y US 2004/0082460 (Yamano et al., HOYA Corporación) revelan correspondientes fórmulas de vidrio y los espectros de absorción de la luz resultante.
JP 05-279078 A2 (Manabe et al., Asahi Glass Co. Ltd.) revela un material que absorbe en el infrarrojo cercano para aplicar por impresión serigráfica, que es un polvo de vidrio incoloro con cobre (II) y ácido fosfórico, mezclado con un material de resina, que se utiliza para la lectura a máquina de información mediante luz láser en el infrarrojo cercano. JP 06-207161 A2 (Usui et al., Asahi Glass Co. Ltd.) revela otra tinta para impresión serigráfica que contiene fosfatos de cobre (II), como absorbente para luz de láser semiconductor (810 nm). JP 05-093160 A2 (Matsudaira, Toppan Printing Co. Ltd.) revela una tinta para impresión serigráfica de dos componentes para la impresión de información clasificada, invisible. La tinta comprende, como absorbente IR, un vidrio de fosfato en polvo que contiene óxido de hierro (II) y/o cobre (II) (de Asahi Glass Co. Ltd.). JP 06-107985 A2 (Matsudaira et al., Toppan Printing Co. Ltd.) revela otra tinta de dos componentes que absorbe en el IR, basada en fosfatos de cobre (II) y/o cobre/hierro (II) vítreos, blancos, como absorbente IR. Dichas tintas se utilizan para la impresión de códigos de barras legibles con una máquina en documentos de seguridad, como por ejemplo tarjetas de crédito plásticas de larga duración, tarjetas de identidad, etc., donde la información impresa debe ser leída mediante un láser semiconductor que emite en el infrarrojo cercano.
Sin embargo, hasta ahora no se han revelado tintas para impresión con plancha de acero grabada (plancha de cobre, huecograbado), que comprendan dichas clases de compuestos con absorción de banda ancha en el infrarrojo cercano que contengan cobre (II) u otro átomo o ion de elementos de transición.
La tinta para el proceso de impresión con plancha de acero grabada de la presente invención comprende una resina aglutinante orgánica, preferiblemente del tipo epoxi-éster de alta resistencia, uretano-alquídica o de curado con UV, así como un material que absorbe en el infrarrojo de acuerdo con la invención, opcionalmente uno o más pigmentos para producir el color visible deseado, opcionalmente cargas y/o solvente para ajustar la viscosidad de la tinta hasta un valor mayor de 3 Pa.s, preferiblemente mayor de 5 Pa.s a 40ºC, y opcionalmente aditivos adicionales, como por ejemplo agentes secantes (secantes), fotoiniciadores, ceras, y aditivos reológicos. Dicho material que absorbe en el infrarrojo es un compuesto de elementos de transición cuya absorción IR se debe a transiciones electrónicas dentro de la capa d de átomos o iones de elementos de transición. Aquellos con experiencia conocen la formulación de tintas para huecograbado y los materiales que se emplean comúnmente para hacer tintas para huecograbado (es decir los aglutinantes, cargas, solventes, pigmentos y otros aditivos para tintas) y no es necesario profundizar aquí su divulgación.
El origen de la absorción IR en las tintas para impresión por huecograbado que se revelan aquí es diferente de la del absorbente IR de YbPO_{4} que revelan Tashima et al. (por ejemplo JP 08-143853), que es una absorción de banda estrecha y debida a una transición electrónica dentro de la capa f de un ion de una tierra rara (Yb (^{3+})). Esta también es diferente de la de los heteropoli ácidos reducidos (ácido fosfomolíbdico) que revela US 4.244.741, que se debe a transiciones por transferencia de carga electrónica cooperativa dentro de un ion molecular complejo, más que a una transición dentro de la capa d de un átomo de molibdeno aislado.
El origen de la absorción IR de las tintas para impresión por huecograbado que se revelan aquí es además claramente diferente del origen de la absorción IR de las tinturas orgánicas del tipo de las cianinas con absorción de banda estrecha en el infrarrojo cercano de EP-A-0 608 118, así como del origen de la absorción IR de las tinturas de nigrosina con absorción de banda ancha de US 3.705.043, y de otras tinturas orgánicas, como por ejemplo las ftalocianinas que absorben en el IR y compuestos relacionados. Las propiedades de absorción de la luz de las tinturas orgánicas mencionadas están notablemente relacionadas con su extenso sistema molecular de electrones \pi, que relaciona las capas electrónicas p del carbono y de los otros átomos. Dichos extensos sistemas \pi tienen, sin embargo, la desventaja de una mayor reactividad química; por esta razón, excepto por algunas excepciones, la mayoría de las moléculas de tinturas orgánicas conocidas no son muy estables bajo la influencia ambiental (luz, humedad, oxígeno atmosférico).
Los absorbentes IR de la presente invención no se basan en efectos de absorción cooperativa interatómica o inter-iónica de átomos o iones dentro de moléculas o compuestos en estado sólido, por ejemplo como las bandas de transferencia de carga intervalencia de compuestos "de valencia mixta" (Azul de Prusia, etc.) ni en la absorción por brecha de banda de los materiales semiconductores (GaAs, etc.); al contrario, los compuestos que se consideran aquí solamente se basan en la propiedad de las transiciones electrónicas d-d intraatómicas (respectivamente intraiónicas). Dichas transiciones d-d son en principio una propiedad de los átomos o iones aislados, aunque en cierto grado las mismas también se ven influenciadas por el ambiente químico del átomo o del ion.
Los materiales que absorben en el IR preferidos en el contexto de la presente invención son compuestos de cobre (II) y/o hierro (II), por ejemplo los fosfatos de dichos elementos, y preferiblemente en la forma de un compuesto en estado sólido para una máxima durabilidad. Sin embargo, como alternativa, los átomos o iones de elementos de transición que absorben en el IR también pueden estar unidos a un componente del aglutinante polimérico de la tinta, en particular si el componente aglutinante contiene sitios de unión específicos para iones de elementos de transición, preferiblemente para Cu (^{2+}), y/o para Fe (^{2+}). Dichos sitios de unión pueden ser grupos fosfato o fosfonato, preferiblemente grupos diéster fosfato monoácido, que se reticulan en un esqueleto principal polimérico, o se injertan sobre el mismo. Como alternativa, el complejo que absorbe en el IR entre un átomo o ion de un elemento de transición y un sitio de unión simplemente puede estar contenido en el polímero, por ejemplo como un complejo orgánico tioruea-cobre (II), disuelto en el aglutinante.
En el contexto de la presente invención, un absorbente IR en estado sólido preferido, que comprende los átomos o iones de elementos de transición que absorben en el IR, es un compuesto cristalino, compuesto por uno o más cationes y uno o más aniones. Los aniones preferidos se seleccionan entre los aniones que forman rocas, es decir aquellos que forman minerales insolubles oxigenados con una gran variedad de cationes, como por ejemplo los aniones hidróxido, óxido, y fluoruro, así como los diversos boratos, carbonatos, aluminatos, silicatos, fosfatos, sulfatos, titanatos, vanadatos, arseniatos, molibdatos y tungstatos. Preferiblemente, por lo menos un anión se selecciona entre el grupo que consiste en fosfato (PO_{4}^{3-}), fosfato ácido (HPO_{4}^{2-}), pirofosfato (P_{2}O_{7}^{4-}), metafosfato (P_{3}O_{9}^{3-}), polifosfato, silicato (SiO_{4}^{4-}), polisilicatos condensados, titanato (TiO_{3}^{2-}), polititanatos condensados, vanadato (VO_{4}^{3-}), polivanadatos condensados, molibdato (MoO_{4}^{2-}), polimobdatos condensados, tungstato (WO_{4}^{2-}), politungstatos condensados, fluoruro (F^{-}), óxido (O^{2-}), e hidróxido (OH^{-}).
Los cationes que absorben en el IR preferidos, en combinación con dichos aniones, son hierro (II) (Fe^{2+}) y cobre (II) (Cu^{2+}), ya sea solos, o en solución sólida con sus congéneres mineralógicos inactivos ante el IR, por ejemplo con magnesio (II) (Mg^{2+}) en el caso de hierro (II), y con cinc (II) (Zn^{2+}) en el caso de cobre (II).
Los compuestos cristalinos que absorben en el IR que son útiles en el contexto de la presente invención son aquellos que no pierden parte de su composición, por ejemplo el agua de cristalización incluida, cuando se calientan hasta una temperatura moderadamente alta, es decir hasta una temperatura que no excede los 400ºC. De hecho, se ha descubierto que es ventajoso usar compuestos deshidratados, respectivamente deshidratando antes aquellos compuestos que contienen agua de cristalización u otros grupos que se pueden desprender, calentándolos al aire hasta una temperatura entre 200ºC y 400ºC durante entre aproximadamente una y cuatro horas (dependiendo del compuesto en cuestión), hasta alcanzar un peso constante.
Específicamente, en la invención se pueden utilizar los siguientes compuestos: fluoruro de cobre (II) (CuF_{2}), hidroxifluoruro de cobre (CuFOH), hidróxido de cobre (Cu(OH)_{2}), fosfato de cobre (Cu_{3}(PO_{4})_{2}*2H_{2}O), fosfato de cobre anhidro (Cu_{3}(PO_{4})_{2}), fosfatos de cobre (II) básicos (por ejemplo Cu_{2}PO_{4}(OH), "Libetenita" cuya fórmula se escribe a veces Cu_{3}(PO_{4})_{2}*Cu(OH)_{2}; Cu_{3}(PO_{4}) (OH)_{3}, "Cornetita", Cu_{5}(PO_{4})_{3}(OH)_{4}, "Pseudomalaquita", CuAl_{6}(PO_{4})_{4}(OH)_{8}\cdot5H_{2}O "Turquesa", etc., pirofosfato de cobre (II) (Cu_{2}(P_{2}O_{7})*3H_{2}O), pirofosfato de cobre (II) anhidro (Cu_{2}(P_{2}O_{7})), metafosfato de cobre (II) (Cu(PO_{3})_{2}, que más correctamente se escribe Cu_{3}(P_{3}O_{9})_{2}), fluoruro de hierro (II) (FeF_{2}*4H_{2}O), fluoruro de hierro (II) anhidro (FeF_{2}), fosfato de hierro (II) (Fe_{3}(PO_{4})_{2}*8H_{2}O, "Vivianita"), fosfato de litio y hierro (II) (LiFePO_{4}, "Trifilina"), fosfato de sodio y hierro (II) (NaFePO_{4}, "Maricita"), silicatos de hierro (II) (Fe_{2}SiO_{4}, "Fayalita"; Fe_{x}Mg_{2-x}SiO_{4}, "Olivino"), carbonato de hierro (II) (FeCO_{3}, "Ankerita", "Siderita"); fosfato de níquel (II) (Ni_{3}(PO_{4})_{2}*8H_{2}O), o metafosfato de titanio (III) (Ti(P_{3}O_{9})). Además, el absorbente IR cristalino también puede contener compuestos iónicos mixtos, donde dos o más cationes participan en la estructura cristalina, por ejemplo, como en Ca_{2}Fe(PO_{4})_{2}*4H_{2}O, "Anapaita". De manera similar, dos o más aniones pueden participar en la estructura como en los fosfatos básicos de cobre mencionados, donde OH(^{-}) es el segundo anión, o aún ambos juntos, como en el fluorofosfato de magnesio y hierro, MgFe(PO_{4})F, "Wagnerita".
El absorbente IR en estado sólido puede ser además un vidrio, que comprende el ion o iones de elementos de transición que absorben en el IR. Los vidrios preferidos son de los tipos que comprenden fosfato y/o fluoruro, en los cuales existe una coordinación del ion o iones de elementos de transición con los aniones fosfato y/o fluoruro presentes en el vidrio. Dichos aniones están situados notablemente en el extremo inferior de la "serie espectroquímica", es decir que proveen transiciones d-d de baja energía de los iones de elementos de transición, que empujan las bandas de absorción del ion hacia el infrarrojo. Con respecto a la "serie espectroquímica", se refiere al lector a A.B.P. Lever, "Inorganic Electronic Spectroscopy", 2^{a} edición, "Studies in Physical and Theoretical Chemistry, Vol. 33", Elsevier, Amsterdam, 1984, Capítulo 9 y referencias que se citan en el mismo.
Los vidrios que absorben en el IR que se pueden introducir a la tinta para impresión por huecograbado que se revela aquí en la correspondiente forma en polvo son por ejemplo los de JP 05-279078 A2 y JP 05-093160 A2, cuyos documentos se citaron ya anteriormente.
Los pigmentos y aditivos para formulaciones de tinta para huecograbado tienen un tamaño estadístico de partícula que preferiblemente no excede los 50 micrómetros, más preferiblemente no excede los 20 micrómetros, aún más preferiblemente no excede los 10 micrómetros. Absolutamente ninguna partícula individual excederá un tamaño de 100 micrómetros (límite de corte superior), una meta que en general se consigue mediante una operación de clasificación final (tamizado). Las partículas demasiado grandes, aún en pequeña cantidad, producen notables problemas en la prensa durante la impresión, ya que la tinta tiende a ser barrida fuera de la chapa grabada.
De esta manera, la absorción específica en el rango "infrarrojo óptico" (es decir entre 700 nm y 2500 nm) del material que absorbe en el infrarrojo, que se aprovecha en la tinta para huecograbado de la presente invención, es solo una consecuencia de las transiciones electrónicas d-d intraatómicas o intraiónicas. Sin embargo, además de aprovechar esta absorción IR, el material absorbente puede mostrar otras bandas transición d-d adicionales en el rango visible (es decir entre 400 nm y 700 nm), así como todos los tipos de bandas de absorción en la región ultravioleta del espectro (es decir por debajo de 400 nm).
Sin embargo, los materiales que absorben en el IR que se utilizan en la tinta para huecograbado de la presente invención son diferentes de los pigmentos de metales de transición del arte anterior, como por ejemplo los pigmentos de níquel y cobalto que se utilizan en revestimientos decorativos ("azul cobalto", etc.; US 3.748.165), o los pigmentos amarillo, rojo y negro a base de hierro que se utilizan en aplicaciones clásicas de impresión y revestimientos. En dichos pigmentos de metales de transición del arte anterior, se busca intencionalmente y se aprovecha un efecto de absorción en el rango visible. Sin embargo, la idea básica de la presente invención se basa en pigmentos que absorben en el IR que no son coloreados en el rango visible del espectro (400 nm a 700 nm), o que como máximo solamente son poco coloreados, para que sean compatibles con todas las clases de matices de tinta visibles y para que sean útiles como marcas invisibles.
Por lo tanto, los materiales que absorben en el IR que se prefieren para la tinta de la presente invención son aquellos que no absorben sustancialmente en el rango visible del espectro (400 nm a 700 nm), es decir aquellos cuyo valor CIE (1976) de claridad por reflectancia difusa (L*) es mayor que 70, preferiblemente mayor que 80, según se mide en el polvo puro.
Para obtener un efecto de absorción suficientemente fuerte, los átomos o iones de metales de transición que absorben en el IR deben estar presentes en una concentración bastante alta en el material que absorbe en el IR; típicamente en una concentración de 10% o más, preferiblemente 20% o más, y aún más preferiblemente 40% o más, en peso. Por lo tanto, los materiales que absorben en el IR que se utilizan en la tinta para huecograbado de la presente invención son diferentes de los compuestos luminiscentes que contienen elementos de transición, como por ejemplo rubí (Al_{2}O_{3}:Cr) o los granates dopados con metal de transición (véase US 3.550.033) y otros cristales que se utilizan en aplicaciones en láser. Es digno de mención, que dichos compuestos luminiscentes contienen los iones de metal de transición sensibilizantes o emisores solo en bajas concentraciones, que son apropiadas para producir dichos efectos de luminiscencia.
Además, la tinta para huecograbado de la presente invención debe contener el material que absorbe en el IR en un nivel de concentración suficientemente alto, de tal manera de producir un buen contraste en el documento impreso en dicho rango IR del espectro. Las concentraciones útiles del material absorbente en la tinta varían dentro del rango entre 5% y 70%, preferiblemente entre 10% y 50%, aún más preferiblemente entre 20% y 50%, en peso de la tinta; dichos niveles de concentración son significativamente mayores que los niveles de concentración que se utilizan en el caso de los marcadores fosforescentes.
Además, el mencionado nivel de concentración del material que absorbe en el IR se puede hacer variar dentro de las tintas que se utilizan en un mismo documento, para producir más zonas oscuras y más claras en el infrarrojo en el documento, o para imprimir una figura grisada oculta que se ve en el infrarrojo, respectivamente. Esto se puede llevar a cabo, por ejemplo mediante un documento que tenga por lo menos dos tintas que absorben en el IR de acuerdo con la invención, donde dichas tintas que absorben en el IR difieren en su nivel de absorción IR.
En otra forma de realización, una misma tinta que comprende el absorbente IR se puede imprimir con una placa de huecograbado con zonas grabadas en la chapa con diferentes profundidades. Esto da como resultado, en particular en el caso de los compuestos de metales de transición que absorben moderadamente en el IR que se utilizan en la presente invención, que queden en el documento zonas que en el infrarrojo son más oscuras o más claras. Esta modulación de la densidad de absorción en el infrarrojo se puede mimetizar además mediante una fuerte pigmentación que absorba en el rango visible de la tinta para huecograbado, de tal manera que la diferencia de profundidad de la chapa grabada no se muestra como una diferencia del color visible.
Además, el material que absorbe en el IR de la presente invención, que proporciona un amplio perfil de absorción, se puede combinar útilmente, dentro de una misma tinta, con todos los otros tipos de materiales que absorben en el IR que se revelan en el arte, y en particular con materiales orgánicos que absorben en el IR. En este contexto, se prefieren en particular los materiales orgánicos que absorben en el IR con un pico de absorción más estrecho que los materiales que absorben en el IR a base de metales de transición. Esta combinación permite por cierto producir un perfil de absorción en el infrarrojo aún más complejo y aumentar de esta manera la sofisticación y la seguridad de la marca oculta. El material orgánico que absorbe en el IR puede estar presente también en una segunda tinta, impresa sobre el mismo documento, para aprovechar el contraste que se obtiene, que es legible con una máquina.
La tinta para huecograbado que absorbe en el IR de la presente invención se utiliza preferiblemente para producir documentos de seguridad, como por ejemplo papel moneda, pasaportes, cheques, vales, tarjetas de identidad, tarjetas de transacciones, estampillas, etiquetas de impuestos, etc. La tinta que absorbe en el IR se puede imprimir aquí ya sea como única característica de seguridad, o bien se puede utilizar en conjunto con tintas que no absorben en el IR con el mismo matiz visible, para producir un patrón oculto de absorción IR. Además, la tinta que absorbe en el IR de la presente invención se puede combinar sobre un mismo documento con otras tintas que absorben en el IR con una composición diferente que la que se revela aquí, en particular con tintas que contienen un absorbente IR orgánico.
Un proceso para fabricar una tinta para impresión con plancha de acero grabada, de acuerdo con la presente invención, comprende el paso de incorporar un material que absorbe en el infrarrojo que comprende un átomo o ion de un elemento de transición, cuya absorción en el infrarrojo es consecuencia de transiciones electrónicas dentro de la capa d de dicho átomo o ion de elemento de transición, en un aglutinante orgánico polimérico, junto con materiales adicionales opcionalmente necesarios.
Aquellos con experiencia saben cómo fabricar una tinta para huecograbado, incluyendo el ajuste de su viscosidad y sus otras propiedades reológicas para conseguir un buen comportamiento en la impresión, y el proceso de impresión por huecograbado en sí, y no es necesario explicarlos más aquí.
Ahora se explicará adicionalmente la tinta para huecograbado de la presente invención con ayuda de formas de realización no limitantes que sirven como ejemplo.
La Fig. 1 muestra las características de absorción IR del pigmento de vidrio de fosfato de cobre (II) que se utiliza en el Ejemplo 1 de la presente memoria descriptiva.
La Fig. 2 muestra las características de absorción IR de una tinta blanca para huecograbado que comprende fosfato de cobre de acuerdo con el Ejemplo 2 de la presente memoria descriptiva.
La Fig. 3 muestra las características de absorción IR del fosfato de hierro "Trifilina" (LiFePO_{4}) que se utiliza en el Ejemplo 3 de la presente memoria descriptiva.
La Fig. 4 muestra las características de absorción IR de los polímeros de fosfato de cobre (II) y/o hierro (II) que se utilizan en el Ejemplo 4 de la presente memoria descriptiva.
La Fig. 5 muestra las características de absorción IR de una tinta para huecograbado que comprende fosfato de cobre y un absorbente IR orgánico adicional, de acuerdo con el Ejemplo 5 de la presente memoria descriptiva.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
(Tabla pasa a página siguiente)
\newpage
Ejemplo 1 Formulación de tinta para huecograbado que seca por oxidación, que comprende vidrio de fosfato que absorbe en el infrarrojo
(para el proceso paper wipe de impresión por huecograbado con plancha de cobre)
100
(*) El pigmento vitrocerámico que absorbe en el IR se preparó moliendo un absorbente IR de vidrio de fosfato (Fig. 1) de acuerdo con US 2004/0082460, Ejemplo 1, a un tamaño de partícula promedio en el orden de los 8 a 10 micrómetros.
Para obtener tintas de los colores correspondientes, pero sin la característica de absorción IR, el pigmento que absorbe en el IR se remplazó por la misma cantidad en peso de carbonato de calcio.
(**) El pigmento coloreado se seleccionó de acuerdo con el matiz deseado, por ejemplo:
101
Pigmento Amarillo C.I. 13; Pigmento azul C.I. 15:3 en la proporción apropiada). Esta mezcla de pigmentos es un "negro transparente al IR" que permite la transparencia de la tinta en el rango infrarrojo óptico más lejano.
(***) La viscosidad de la tinta se ajustó con Solvente para Tinta 6/9 (Shell Industrial Chemicals) a un valor entre 5 y 10 Pa.s a 40ºC.
Se prepararon pares de tintas del mismo color de determinados matices visibles, cada matiz una vez con el absorbente IR y otra vez sin el mismo, cada vez, mezclando juntos todos los componentes de la fórmula, excepto los secantes, y llevando a cabo dos pasadas en un molino de tres rodillos, para obtener una tinta homogénea. Los secantes se agregaron al final y se mezclaron durante 15 minutos, y la tinta terminada se desgaseó al vacío. La viscosidad de la tinta se ajustó a 10 Pa.s a 40ºC.
Las tintas que se obtuvieron de esa manera se usaron para imprimir con una prensa de huecograbado estándar sobre papel moneda en la forma de un patrón que comprendía colores visibles y características IR ocultas. De esta manera se podrían realizar patrones de absorción IR, útiles para el proceso a máquina de la moneda, con una completa independencia del aspecto visible del documento.
\vskip1.000000\baselineskip
Ejemplo 2 Tinta para huecograbado que seca por oxidación alimentada por lámina para el proceso de impresión por huecograbado con plancha de cobre para enjuague con agua
Se hizo una tinta al agua para huecograbado no entrelazado de acuerdo con la siguiente fórmula:
102
(*) Como pigmento al fosfato que absorbe en el IR se usó fosfato de cobre deshidratado con la fórmula Cu_{3}(PO_{4})_{2}, que se obtuvo calentando fosfato de cobre hidratado durante 2 horas a 400ºC al aire.
Para obtener las tintas de los colores correspondientes, pero sin la característica de absorción IR, el pigmento que absorbe en el IR se remplazó por la misma cantidad en peso de carbonato de calcio.
(***) El éter de celulosa se seleccionó entre el grupo de metilcelulosa (MC) y/o carboximetilcelulosa sódica (sod-CMC) y se utilizó según se describe en C. Baker, The Book and Paper Group Annual, Vol. 1, 1982.
Se prepararon pares del mismo color de tintas blancas, una vez con el absorbente IR y otra vez sin el mismo, mezclando juntos cada vez todos los componentes de la fórmula, excepto el secante y el agua, durante 20 minutos a temperatura ambiente en una mezcladora Molteni, luego llevando a cabo dos pasadas por un molino de tres rodillos para conseguir una tinta homogénea. El secante y el agua se agregaron al final y se mezclaron durante 15 minutos; la tinta que se obtuvo como resultado se desgaseó al vacío en una mezcladora Molteni. La viscosidad de la tinta se ajustó a 10 Pa.s a 40ºC.
\vskip1.000000\baselineskip
Ejemplo 3
Se hizo una tinta para huecograbado polimerizable catiónicamente, de curado por UV, de la manera clásica (es decir pre-mezclando todos los ingredientes, luego llevando a cabo dos pasadas en un molino de tres rodillos) de acuerdo con la siguiente fórmula:
103
(*) Como pigmento al fosfato que absorbe en el IR se seleccionó fosfato de litio y hierro (II) (LiFePO_{4}, "Trifilina"), con un espectro de absorción según se muestra en la Fig. 3.
Para obtener las tintas de los colores correspondientes, pero sin la característica de absorción IR, el pigmento que absorbe en el IR se remplazó por la misma cantidad en peso de carbonato de calcio.
(**) El pigmento coloreado se seleccionó de acuerdo con el matiz deseado, según se da en el Ejemplo 1.
La tinta se ajustó hasta una viscosidad de 12,5 Pa.s a 40ºC. Esta mostró una excelente respuesta de curado con luz UV, así como un muy buen postcurado oscuro. La tinta se podía enjugar con papel y satisfizo todos los requerimientos que necesitan las tintas para plancha de acero grabada para utilizar en la impresión de documentos de seguridad.
Ejemplo 4 Tinta para huecograbado de curado con UV, de resina uretano-acrilato que comprende absorbente IR de fosfato
104
(*) El monómero que absorbe en el IR se preparó según US 5.466.755, Ejemplo 1 (véase Fig. 4, curva 1) o ejemplo 2 (véase Fig. 4, curva 2); los monómeros que se indican y la sal de cobre (II), respectivamente las sales de cobre (II) y hierro (II) se mezclaron juntos en caliente (60ºC), sin embargo, sin agregar un iniciador de polimerización.
(**) El pigmento coloreado se seleccionó de acuerdo con el matiz deseado, según se da en el Ejemplo 1.
(***) La tinta se ajustó hasta una viscosidad menor que 5 Pa.s a 40ºC. Esta mostró una buena respuesta de curado con luz UV de longitud de onda larga.
Se realizaron documentos impresos, como por ejemplo un papel moneda, un pasaporte, un cheque, un vale, una tarjeta de identidad o de transacción, una estampilla, una estampilla de impuesto, etc., con una tinta de acuerdo con la invención, según se da como ejemplo en particular en los ejemplos dados, imprimiendo con la tinta en una prensa de huecograbado estándar. Las tintas que absorben en el IR se usaron para imprimir como única característica de seguridad, o, como alternativa se combinaron con tintas que no absorben en el IR del mismo matiz, para producir patrones de absorción IR ocultos además de las características visibles en dichos documentos.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
(Tabla pasa a página siguiente)
Ejemplo 5 Tinta oxidativa para hueco grabado con picos de absorción IR específicos adicionales (con referencia a Fig. 5)
105

Claims (23)

1. Tinta para el proceso de impresión con plancha de acero grabada, que comprende un aglutinante orgánico polimérico y un material que absorbe en el infrarrojo, donde dicha tinta tiene una consistencia pastosa con un valor de viscosidad a 40ºC de por lo menos 3 Pa.s, preferiblemente por lo menos 5 Pa.s, caracterizada porque dicho material que absorbe en el infrarrojo comprende un compuesto de elementos de transición y porque su absorción en el infrarrojo es consecuencia de transiciones electrónicas dentro de la capa d de átomos o iones de elementos de transición.
2. Tinta de acuerdo con la reivindicación 1, caracterizada porque dicho elemento de transición se selecciona entre el grupo que consiste en Ti, V, Cr, Mn, Fe, Co, Ni, y Cu.
3. Tinta de acuerdo con la reivindicación 1 ó 2, caracterizada porque dicho elemento de transición es un ion que se selecciona entre el grupo de iones que consiste en Ti^{3+}, VO^{2+}, Cr^{5+}, Fe^{2+}, Ni^{2+}, Co^{2+}, y Cu^{2+}.
4. Tinta de acuerdo con cualquiera de las reivindicaciones 1 a 3, caracterizada porque el material que absorbe en el infrarrojo que comprende el ion o iones de elementos de transición que absorben en el IR es un vidrio, preferiblemente un vidrio que comprende fosfato y/o fluoruro, en el cual existe una coordinación del ion o iones de elementos de transición con los aniones fosfato y/o fluoruro presentes en el vidrio.
5. Tinta de acuerdo con cualquiera de las reivindicaciones 1 a 3, caracterizada porque el material que absorbe en el infrarrojo que comprende el ion o iones de elementos de transición que absorben en el IR es un compuesto cristalino, que está compuesto de uno o más cationes y uno o más aniones.
6. Tinta de acuerdo con la reivindicación 5, caracterizada porque un anión se selecciona entre el grupo que consiste en fosfato (PO_{4}^{3-}), fosfato ácido (HPO_{4}^{2-}), pirofosfato (P_{2}O_{7}^{4-}), metafosfato (P_{3}O_{9}^{3-}), polifosfato, silicato (SiO_{4}^{4-}), polisilicatos condensados; titanato (TiO_{3}^{2-}), polititanatos condensados, vanadato (VO_{4}^{3-}), polivanadatos condensados, molibdato (MoO_{4}^{2-}), polimobdatos condensados, tungstato (WO_{4}^{2-}), politungstatos condensados, fluoruro (F^{-}), óxido (O^{2-}), e hidróxido (OH^{-}).
7. Tinta de acuerdo con una de las reivindicaciones 5 o 6, caracterizada porque el material que absorbe en el infrarrojo se selecciona entre el grupo de compuestos que consiste en fluoruro de cobre (II) (CuF_{2}), hidroxifluoruro de cobre (CuFOH), hidróxido de cobre (Cu(OH)_{2}), fosfato de cobre (Cu_{3}(PO_{4})_{2}*2H_{2}O), fosfato de cobre anhidro (Cu_{3}(PO_{4})_{2}), fosfatos de cobre (II) básicos Cu_{2}PO_{4} (OH) (Libetenita), Cu_{3}(PO_{4}) (OH)_{3} (Cornetita), Cu_{5}(PO_{4})_{3} (OH)_{4} (Pseudomalaquita), CuAl_{6}(PO_{4})_{4} (OH)_{8}\cdot5H_{2}O (Turquesa), pirofosfato de cobre (II) (Cu_{2} (P_{2}O_{7})*3H_{2}O), pirofosfato de cobre (II) anhidro (Cu_{2} (P_{2}O_{7})), metafosfato de cobre (II) (Cu_{3} (P_{3}O_{9})_{2}), fluoruro de hierro (II) (FeF_{2}*4H_{2}O), fluoruro de hierro (II) anhidro (FeF_{2}), fosfato de hierro (II) (Fe_{3}(PO_{4})_{2}*8H_{2}O, Vivianita), fosfato de litio y hierro (II) (LiFePO_{4}, Trifilina), fosfato de sodio y hierro (II) (NaFePO_{4}, Maricita), silicatos de hierro (II) (Fe_{2}SiO_{4}, Fayalita; Fe_{x}Mg_{2-x}SiO_{4}, Olivino), carbonato de hierro (II) (FeCO_{3}, Ankerita, Siderita); fosfato de níquel (II) (Ni_{3}(PO_{4})_{2}*8H_{2}O), metafosfato de titanio (III) (Ti(P_{3}O_{9})), Ca_{2}Fe(PO_{4})_{2}*4H_{2}O, (Anapaita), y MgFe(PO_{4})F, (Wagnerita).
8. Tinta de acuerdo con cualquiera de las reivindicaciones 1 a 3, caracterizada porque el material que absorbe en el infrarrojo es un átomo o ion de elemento de transición que absorbe en el IR unido a un componente del aglutinante polimérico de la tinta.
9. Tinta de acuerdo con la reivindicación 8, caracterizada porque el aglutinante polimérico de la tinta contiene sitios de unión específica para iones de elementos de transición, preferiblemente para Cu^{2+}, y/o para Fe^{2+}.
10. Tinta de acuerdo con la reivindicación 9, caracterizada porque dichos sitios de unión son grupos fosfato que se reticulan en un esqueleto principal polimérico, o se injertan sobre el mismo.
11. Tinta de acuerdo con cualquiera de las reivindicaciones 1 a 3, caracterizada porque el material que absorbe en el infrarrojo es un complejo que absorbe en el IR entre un átomo o ion de un elemento de transición y un sitio de unión contenido en el polímero, preferiblemente un complejo orgánico tioruea-cobre (II) disuelto en el aglutinante.
12. Tinta de acuerdo con una de las reivindicaciones precedentes, caracterizada porque el material que absorbe en el IR tienen un valor de claridad por reflectancia difusa (L*) CIE (1976) mayor de 70, preferiblemente mayor de 80, según se mide en el polvo puro.
13. Tinta de acuerdo con una de las reivindicaciones precedentes, caracterizada porque el material que absorbe en el IR contiene átomos o iones de elementos de transición que absorben en el IR en una concentración del 10% o más, preferiblemente del 20% o más, y aún más preferiblemente 40% o más, en peso.
14. Tinta de acuerdo con una de las reivindicaciones precedentes caracterizada porque comprende material que absorbe en el IR en una concentración en el varían dentro del rango entre 5% y 70%, preferiblemente entre 10% y 50%, aún más preferiblemente entre 20% y 50%, en peso de la tinta.
\newpage
15. Tinta de acuerdo con la reivindicación 14, caracterizada porque comprende un absorbente IR adicional, donde dicho absorbente IR adicional es un compuesto orgánico.
16. Tinta de acuerdo con la reivindicación 15, caracterizada porque dicho absorbente IR adicional muestra un pico de absorción IR más estrecho que el material que absorbe en el IR a base de metal de transición.
17. Proceso para hacer una tinta para impresión con plancha de acero grabada de acuerdo con cualquiera de las reivindicaciones 1 a 16, caracterizado porque comprende el paso de:
incorporar un material que absorbe en el infrarrojo que comprende un compuesto de un elemento de transición, cuya absorción en el infrarrojo es consecuencia de transiciones electrónicas dentro de la capa d de dichos átomos o iones de elementos de transición, en un aglutinante orgánico polimérico, junto con materiales adicionales opcionales.
18. Uso de una tinta para el proceso de impresión con plancha de acero grabada de acuerdo con cualquiera de las reivindicaciones 1 a 16 caracterizado porque es para imprimir un documento de seguridad, como por ejemplo un papel moneda, un pasaporte, un cheque, un vale, una tarjeta de identidad o de transacción, una estampilla, una estampilla de impuesto.
19. Documento de seguridad, como por ejemplo un papel moneda, un pasaporte, un cheque, un vale, una tarjeta de identidad o de transacción, una estampilla, una estampilla de impuesto, caracterizado porque lleva una tinta que absorbe en el IR de acuerdo con una de las reivindicaciones precedentes.
20. Documento de seguridad de acuerdo con la reivindicación 19, caracterizado porque tiene por lo menos dos tintas que absorben en el IR de acuerdo con una de las reivindicaciones precedentes, donde dicha tinta que absorbe en el IR difiere en su niveles de absorción IR.
21. Documento de seguridad de acuerdo con la reivindicación 19, caracterizado porque lleva una tinta que absorbe en el IR que se usa para imprimir utilizando una placa de huecograbado con zonas de chapa grabadas con diferente profundidad, por ejemplo para dar como resultado zonas impresas con diferentes niveles de absorción IR.
22. Documento de seguridad de acuerdo con una de las reivindicaciones 19 a 21, caracterizado porque tiene por lo menos una tinta que absorbe en el IR adicional que contiene un absorbente IR orgánico.
23. Proceso para hacer un documento de seguridad de acuerdo con cualquiera de las reivindicaciones 19 a 21, caracterizado porque comprende el paso de aplicar una tinta que absorbe en el IR de acuerdo con una de las reivindicaciones 1 a 16 sobre dicho documento de seguridad por medio de un proceso de impresión con plancha de acero grabada.
ES05111295T 2005-11-25 2005-11-25 Tinta para huecograbado que absorbe en el infrarrojo Active ES2321008T5 (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05111295A EP1790701B2 (en) 2005-11-25 2005-11-25 IR-absorbing intaglio ink

Publications (2)

Publication Number Publication Date
ES2321008T3 true ES2321008T3 (es) 2009-06-01
ES2321008T5 ES2321008T5 (es) 2012-06-01

Family

ID=35457739

Family Applications (1)

Application Number Title Priority Date Filing Date
ES05111295T Active ES2321008T5 (es) 2005-11-25 2005-11-25 Tinta para huecograbado que absorbe en el infrarrojo

Country Status (32)

Country Link
US (2) US8080307B2 (es)
EP (1) EP1790701B2 (es)
JP (2) JP5442996B2 (es)
KR (1) KR101411063B1 (es)
CN (2) CN101316906A (es)
AP (1) AP2468A (es)
AR (1) AR058235A1 (es)
AT (1) ATE420144T1 (es)
AU (1) AU2006316553B2 (es)
BR (1) BRPI0619027B1 (es)
CA (1) CA2629933C (es)
CY (1) CY1108954T1 (es)
DE (1) DE602005012286D1 (es)
DK (1) DK1790701T4 (es)
EA (1) EA013482B1 (es)
EG (1) EG25550A (es)
ES (1) ES2321008T5 (es)
HK (1) HK1199653A1 (es)
HR (1) HRP20090172T4 (es)
IL (1) IL191393A (es)
MA (1) MA30054B1 (es)
MY (1) MY143588A (es)
NO (1) NO340142B1 (es)
NZ (1) NZ568420A (es)
PL (1) PL1790701T5 (es)
PT (1) PT1790701E (es)
RS (1) RS50766B2 (es)
SI (1) SI1790701T2 (es)
TN (1) TNSN08224A1 (es)
UA (1) UA95261C2 (es)
WO (1) WO2007060133A1 (es)
ZA (1) ZA200804365B (es)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522817A (zh) * 2006-10-16 2009-09-02 西尔弗布鲁克研究股份有限公司 适合用于胶版墨的酞菁染料
EP2162501A4 (en) 2007-06-19 2013-09-04 Spectra Systems Corp NEAR INFRARED INK-BASED SECURITY INFRARED DEVICE
EP2014729A1 (en) 2007-07-09 2009-01-14 Sicpa Holding S.A. Vanadium-drier intaglio ink
MX2010000814A (es) * 2007-07-20 2010-03-01 Sicpa Holding Sa Tintas para impresion intaglio.
TWI444445B (zh) 2008-06-23 2014-07-11 Sicpa Holding Sa 包含樹枝狀聚合物之凹版印刷墨水
DE102008049595A1 (de) 2008-09-30 2010-04-01 Merck Patent Gmbh Infrarotabsorbierende Druckfarben
DE102008050924A1 (de) * 2008-10-10 2010-04-15 Merck Patent Gmbh Pigmente
DE202009018488U1 (de) 2009-01-24 2011-12-22 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrarotstrahlung abschirmendes, für sichtbares Licht transparentes Laminat mit einem für Infrarotstrahlung durchlässigen optischen Fenster
DE102009019622A1 (de) 2009-01-24 2010-11-04 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrarotstrahlung abschirmendes, für sichtbares Licht transparentes Laminat mit einem für Infrarotstrahlung durchlässigen optischen Fenster, Verfahren zu seiner Herstellung und seiner Verwendung
DE102009006062A1 (de) 2009-01-24 2010-07-29 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrarotstrahlung abschirmendes, für sichtbares Licht transparentes Laminat mit einem für Infrarotstrahlung durchlässigen optischen Fenster, Verfahren zu seiner Herstellung und seiner Verwendung
TWI478990B (zh) * 2009-04-09 2015-04-01 Sicpa Holding Sa 明亮之磁性凹刻印刷油墨
DE202009018503U1 (de) 2009-04-30 2011-11-16 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrarotstrahlung abschirmendes, für sichtbares Licht transparentes Laminat mit einem für Infrarotstrahlung durchlässigen optischen Fenster
US9749607B2 (en) 2009-07-16 2017-08-29 Digimarc Corporation Coordinated illumination and image signal capture for enhanced signal detection
WO2011040578A1 (ja) * 2009-09-30 2011-04-07 旭硝子株式会社 近赤外線吸収粒子、その製造方法、分散液およびその物品
WO2011071052A1 (ja) * 2009-12-07 2011-06-16 旭硝子株式会社 光学部材、近赤外線カットフィルタ、固体撮像素子、撮像装置用レンズ、およびそれらを用いた撮像・表示装置
MX2013002672A (es) 2010-09-17 2013-06-13 Sicpa Holding Sa Caja a prueba de manipulacion indebida.
EP2643416B1 (en) 2010-11-24 2019-08-07 Basf Se The use of aryl or heteroaryl substituted dithiolene metal complexes as ir absorbers
EP2663551B1 (en) 2011-01-13 2015-06-17 Basf Se New fluorescent compounds
WO2012152584A1 (en) 2011-05-06 2012-11-15 Basf Se Chromophores with perfluoroalkyl substituents
MX354358B (es) * 2011-05-25 2018-02-28 Tetra Laval Holdings & Finance Absorbedores mejorados del infrarrojo proximo.
EP2764034B1 (en) 2011-10-04 2023-08-30 CLAP Co., Ltd. Polymers based on benzodiones
DE102012002296A1 (de) 2012-02-07 2013-08-08 Giesecke & Devrient Gmbh Verfahren zum Herstellen eines Datenträgers und daraus erhältlicher Datenträger
AR090178A1 (es) * 2012-03-23 2014-10-22 Sicpa Holding Sa Metodo de impresion con tinta calcografica de secado por oxidacion y tintas calcograficas curables por uv-vis
KR20140141678A (ko) 2012-03-27 2014-12-10 시크파 홀딩 에스에이 코딩 레벨이 높은 다층 플레이크
DE102012008927A1 (de) 2012-04-30 2013-10-31 Giesecke & Devrient Gmbh Verfahren zum Herstellen eines Datenträgers und daraus erhältlicher Datenträger
DK2697072T3 (en) 2012-06-11 2015-04-20 Sicpa Holding Sa PROCESS FOR THE PRESSURE OF tactile SECURITY FEATURES
US9748487B2 (en) 2012-11-07 2017-08-29 Basf Se Polymers based on naphthodiones
US9724957B2 (en) 2012-11-09 2017-08-08 Sicpa Holding Sa Irreversibly magnetically induced images or patterns
CA2886487C (en) * 2012-12-07 2020-05-12 Sicpa Holding Sa Oxidatively drying ink compositions
WO2014095682A1 (en) 2012-12-20 2014-06-26 Sicpa Holding Sa Chiral liquid crystal polymer layer or pattern comprising randomly distributed craters therein
DE102013100662B4 (de) 2013-01-23 2018-09-20 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Markierungszusammensetzung, deren Verwendung und diese enthaltende Gegenstände
KR102177340B1 (ko) * 2013-02-14 2020-11-11 시크파 홀딩 에스에이 다중특성 요판 특징을 인쇄하는 방법
KR20150097681A (ko) * 2013-02-19 2015-08-26 후지필름 가부시키가이샤 근적외선 흡수성 조성물, 근적외선 차단 필터와 그 제조 방법, 및 카메라 모듈과 그 제조 방법
JP2014214040A (ja) * 2013-04-24 2014-11-17 国立大学法人京都大学 フッ素含有マグネシウム化合物
DE102013007998A1 (de) 2013-05-08 2014-11-13 Giesecke & Devrient Gmbh Wertdokumentsubstrat, Wertdokument und Verfahren zum Herstellen eines Wertdokuments
CN104231747B (zh) * 2013-06-07 2017-02-08 上海造币有限公司 移印油墨及安全制品
EP3013906B1 (en) 2013-06-24 2020-03-25 Basf Se Polymers based on fused diketopyrrolopyrroles
TW201502257A (zh) 2013-07-10 2015-01-16 Sicpa Holding Sa 包括可印碼與手性液晶聚合物層的標記
EP2864220B1 (en) 2013-08-12 2017-06-14 Sicpa Holding Sa Packaging for smoking products having a marking thereon
CN106519801B (zh) * 2013-09-17 2019-10-11 比亚迪股份有限公司 油墨组合物以及表面选择性金属化方法
US10424038B2 (en) 2015-03-20 2019-09-24 Digimarc Corporation Signal encoding outside of guard band region surrounding text characters, including varying encoding strength
US9635378B2 (en) 2015-03-20 2017-04-25 Digimarc Corporation Sparse modulation for robust signaling and synchronization
TW201601928A (zh) 2014-03-31 2016-01-16 西克帕控股有限公司 包含對掌性液晶聚合物與發光物質的標記
WO2015169701A1 (en) 2014-05-05 2015-11-12 Basf Se Ga-naphthalocyanine chromophores with short chain alkoxy axial substituents
KR101698159B1 (ko) 2014-08-04 2017-01-19 주식회사 엘지화학 도전성 패턴 형성용 조성물 및 도전성 패턴을 갖는 수지 구조체
TW201619917A (zh) 2014-09-09 2016-06-01 西克帕控股有限公司 具有相互關聯的特徵的鈔票
KR101698524B1 (ko) 2014-09-17 2017-01-20 주식회사 엘지화학 도전성 패턴 형성용 조성물 및 도전성 패턴을 갖는 수지 구조체
CA2968298C (en) 2015-01-30 2023-08-15 Sicpa Holding Sa Simultaneous authentication of a security article and identification of the security article user
CA2968297C (en) 2015-01-30 2023-07-25 Sicpa Holding Sa Simultaneous authentication of a security article and identification of the security article user
EP3067216B1 (en) 2015-03-10 2019-01-16 Basf Se Chromophoric compositions
US10783601B1 (en) 2015-03-20 2020-09-22 Digimarc Corporation Digital watermarking and signal encoding with activable compositions
US9754341B2 (en) 2015-03-20 2017-09-05 Digimarc Corporation Digital watermarking and data hiding with narrow-band absorption materials
UA123007C2 (uk) 2015-04-10 2021-02-03 Сікпа Холдінг Са Мобільний портативний пристрій для аутентифікації захищеного виробу та спосіб роботи портативного пристрою для аутентифікації
CN107709471A (zh) 2015-06-02 2018-02-16 巴斯夫欧洲公司 萘酞菁衍生物
CN107533815A (zh) 2015-07-01 2018-01-02 锡克拜控股有限公司 邮票
KR20180132163A (ko) * 2015-07-09 2018-12-11 니혼 이타가라스 가부시키가이샤 적외선 컷 필터, 촬상 장치, 및 적외선 컷 필터의 제조 방법
US10065441B2 (en) 2015-09-01 2018-09-04 Digimarc Corporation Counterfeiting detection using machine readable indicia
DE102016201709A1 (de) 2016-02-04 2017-08-10 Bundesdruckerei Gmbh Wert- oder Sicherheitsprodukt, Verfahren zum Herstellen eines Vorproduktes und Verifikationsverfahren
KR101717907B1 (ko) 2016-03-29 2017-04-04 부성폴리콤 주식회사 근적외선 흡수의 백색물질과 그 제조방법
FR3057881B1 (fr) 2016-10-20 2020-06-12 Oberthur Fiduciaire Sas Substrat de securite
CN109891267A (zh) 2016-10-28 2019-06-14 Ppg工业俄亥俄公司 用于增加近红外检测距离的涂层
DK3551468T3 (da) * 2016-12-09 2021-01-11 Sicpa Holding Sa Lavenergi hærdnings forskydnings- og bogtryksblæk og udskrivningsproces
CN110049876B (zh) * 2016-12-09 2021-06-15 锡克拜控股有限公司 低能量固化性平版印刷墨兼凸版印刷墨及印刷方法
FR3060352B1 (fr) * 2016-12-21 2020-11-06 Oreal Composes phosphates comme anti-infrarouge
CN108624119A (zh) * 2017-03-24 2018-10-09 卡西欧计算机株式会社 墨水、印刷装置、印刷方法以及造形物的制造方法
JP6763413B2 (ja) * 2017-03-24 2020-09-30 カシオ計算機株式会社 インク、印刷装置、印刷方法及び造形物の製造方法
DE102017106911A1 (de) * 2017-03-30 2018-10-04 Chemische Fabrik Budenheim Kg Verwendung von kristallwasserfreien Fe(II)-Verbindungen als Strahlungsabsorber
DE102017106912A1 (de) 2017-03-30 2018-10-04 Chemische Fabrik Budenheim Kg Verfahren zur Herstellung von Fe(II)P / Fe(II)MetP-Verbindungen
DE102017106913A1 (de) 2017-03-30 2018-10-04 Chemische Fabrik Budenheim Kg Verfahren zur Herstellung von elektrisch leitenden Strukturen auf einem Trägermaterial
DE102017004496A1 (de) 2017-05-11 2018-11-15 Giesecke+Devrient Currency Technology Gmbh Stichtiefdruckfarbe, Druckverfahren und Druckerzeugnis
CN110869451B (zh) 2017-06-26 2022-06-17 锡克拜控股有限公司 安全特征的印刷
CN111094251A (zh) 2017-09-21 2020-05-01 巴斯夫欧洲公司 二硫醇烯镍配合物的晶型
US11062108B2 (en) 2017-11-07 2021-07-13 Digimarc Corporation Generating and reading optical codes with variable density to adapt for visual quality and reliability
US10896307B2 (en) 2017-11-07 2021-01-19 Digimarc Corporation Generating and reading optical codes with variable density to adapt for visual quality and reliability
US10872392B2 (en) 2017-11-07 2020-12-22 Digimarc Corporation Generating artistic designs encoded with robust, machine-readable data
JP2019167418A (ja) * 2018-03-22 2019-10-03 カシオ計算機株式会社 インク、熱膨張性シート及び造形物の製造方法
JP6835030B2 (ja) 2018-04-27 2021-02-24 カシオ計算機株式会社 熱膨張性シート、熱膨張性シートの製造方法及び造形物の製造方法
PL3794083T3 (pl) * 2018-05-15 2022-12-19 Sicpa Holding Sa Rozpoznawalne maszynowo cechy zabezpieczające
KR102550479B1 (ko) * 2018-09-06 2023-07-03 한국조폐공사 요판 인쇄용 위변조 방지 잉크 조성물
AU2019351575A1 (en) * 2018-09-25 2021-05-13 Ccl Secure Pty Ltd Security documents and security devices comprising infrared-absorbent compositions
US11461607B2 (en) 2018-11-13 2022-10-04 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern
US11561329B2 (en) 2019-01-07 2023-01-24 Ppg Industries Ohio, Inc. Near infrared control coating, articles formed therefrom, and methods of making the same
EP3924429A1 (en) 2019-02-12 2021-12-22 Basf Se Ir absorbing naphthalocyanine and phthalocyanine chromophores
IT201900005354A1 (it) 2019-04-08 2020-10-08 Epta Inks S P A Inchiostro di sicurezza anticontraffazione assorbente le radiazioni nella parte dello spettro elettromagnetico da 700nm a 1100nm
US11589703B1 (en) 2019-05-08 2023-02-28 Microtrace, LLC. Spectral signature systems that use encoded image data and encoded spectral signature data
TWI829917B (zh) * 2019-05-28 2024-01-21 瑞士商西克帕控股有限公司 安全性墨水以及機器可讀式安全性特徵
JP7164852B2 (ja) * 2019-07-08 2022-11-02 独立行政法人 国立印刷局 酸化重合型凹版インキ組成物
TW202111022A (zh) 2019-07-30 2021-03-16 瑞士商西克帕控股有限公司 輻射可固化之凹版墨水
EP4017922A1 (en) 2019-08-23 2022-06-29 Basf Se New crystal form of an organic fluorescent compound
DE102019007418A1 (de) 2019-10-24 2021-04-29 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement und Wertdokument mit visuell und maschinell prüfbaren Sicherheitsmerkmalen, die in räumlicher Beziehung zueinander stehen
DE102019007417A1 (de) 2019-10-24 2021-04-29 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit maschinenlesbarem IR-Code
RU2719317C1 (ru) * 2019-11-26 2020-04-17 Общество с ограниченной ответственностью "Инновационная компания "ЯЛОС" Способ нанесения термоплавких составов
TW202128639A (zh) 2019-12-18 2021-08-01 瑞士商西克帕控股有限公司 Uv-led自由基可固化膠印墨水及印刷製程
EP3858946A1 (en) 2020-01-29 2021-08-04 Basf Se New rylene dicarboximides
CA3173581A1 (en) 2020-03-05 2021-09-10 Sicpa Holding Sa Uv-vis radiation curable security inks
AU2021298104A1 (en) 2020-06-26 2023-02-23 Basf Se Naphthalocyanine and phthalocyanine particles
DE102020004091A1 (de) 2020-07-07 2022-01-13 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement
WO2022013081A1 (en) 2020-07-16 2022-01-20 Basf Se Dithiolene metal complexes
US20230298044A1 (en) 2020-08-19 2023-09-21 Microtrace, Llc Strategies and systems that use spectral signatures and a remote authentication authority to authenticate physical items and linked documents
DE102021000892A1 (de) 2021-02-19 2022-08-25 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit bei IR-Beleuchtung transparenten Druckfarben und einem maschinenlesbaren Merkmal
WO2022226538A1 (en) * 2021-04-23 2022-10-27 Crane & Co., Inc. System and method for precision inking of micro-optic recesses
CN117836149A (zh) 2021-08-19 2024-04-05 锡克拜控股有限公司 用于生产展现一个以上的标记的安全特征的方法
WO2023025694A1 (en) 2021-08-24 2023-03-02 Basf Se Novel perylene-based nir emitters
WO2023105029A1 (en) 2021-12-09 2023-06-15 Basf Se Terrylene diimide and quaterrylene diimide colorants
EP3988320A1 (en) 2021-12-20 2022-04-27 Sicpa Holding SA Security marking, corresponding engraved intaglio printing plate, and methods and devices for producing, encoding/decoding and authenticating said security marking
DE102022000101A1 (de) 2022-01-12 2023-07-13 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement
WO2023241950A1 (en) 2022-06-13 2023-12-21 Basf Se Mixtures of compounds having improved solubility for use as markers
WO2024008632A1 (en) * 2022-07-06 2024-01-11 Sicpa Holding Sa Intaglio printing processes for producing security features made of oxidative drying intaglio inks
WO2024041944A1 (en) 2022-08-22 2024-02-29 Basf Se Novel anthraquinone-based nir absorbers

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2265437A (en) 1940-05-31 1941-12-09 Burton T Bush Inc Perfume material
US3550033A (en) 1968-06-11 1970-12-22 Westinghouse Electric Corp Chromium-doped gdalo3 high energy storage laser material
US3705043A (en) 1970-12-07 1972-12-05 Dick Co Ab Infrared absorptive jet printing ink composition
US3748165A (en) 1972-01-26 1973-07-24 Int Nickel Co Nickel cobalt aluminate pigments
US3870528A (en) 1973-12-17 1975-03-11 Ibm Infrared and visible dual dye jet printer ink
US4244741A (en) 1979-03-16 1981-01-13 United States Postal Service Infrared absorber
JPS55142045A (en) 1979-04-20 1980-11-06 Mitsubishi Rayon Co Ltd Methacrylic resin material having excellent solar radiation absorptivity, and its preparation
US5800861A (en) 1985-08-15 1998-09-01 The Sherwin-Williams Company High solid infrared absorbing compositions
US4869532A (en) 1986-10-07 1989-09-26 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Prints and production method thereof
EP0340163B1 (en) 1988-04-27 1992-12-30 Sicpa Holding S.A. Security document printing ink
US4966628A (en) 1988-04-27 1990-10-30 Sicpa Holding Sa Security document printing ink
US5236633A (en) 1988-06-13 1993-08-17 Jujo Paper Co., Ltd. Plate and sheet comprising near infrared absorbing composition
JPH0781127B2 (ja) 1988-07-22 1995-08-30 日本製紙株式会社 近赤外線吸収剤用組成物並に近赤外線吸収材料及びそれらを含有した成形体
ATE128478T1 (de) 1989-12-07 1995-10-15 Sicpa Holding Sa Hochreaktive druckfarben.
JP3109149B2 (ja) 1990-09-27 2000-11-13 住友電気工業株式会社 化合物半導体結晶成長方法
DE4031469C1 (es) 1990-10-05 1992-02-06 Schott Glaswerke, 6500 Mainz, De
JP2624056B2 (ja) 1991-09-30 1997-06-25 凸版印刷株式会社 赤外線吸収性印刷インキ及び秘密情報印刷物
JPH05193291A (ja) 1992-01-16 1993-08-03 Hitachi Maxell Ltd 赤外光吸収マ−ク印刷物
JPH05279078A (ja) 1992-02-07 1993-10-26 Asahi Glass Co Ltd 近赤外線吸収材料
US5466755A (en) * 1992-08-20 1995-11-14 Kureha, Kagaku Kogyo Kabushiki Kaisha Optical filter
JP2792358B2 (ja) 1992-09-28 1998-09-03 凸版印刷株式会社 赤外線吸収性印刷インキ
JPH06207161A (ja) 1993-01-12 1994-07-26 Asahi Glass Co Ltd 改良された近赤外線吸収材料及びそれを使用したインク
JPH06210987A (ja) 1993-01-19 1994-08-02 Canon Inc 非可視化情報記録媒体、非可視化情報検出装置並びに記録剤
JP3603315B2 (ja) 1993-02-19 2004-12-22 日本製紙株式会社 近赤外線吸収剤およびそれを含有した熱線遮蔽材
JP3326859B2 (ja) * 1993-04-02 2002-09-24 凸版印刷株式会社 不可視情報記録媒体及びそれを取り扱う情報記録方法
DE4318983A1 (de) * 1993-06-08 1994-12-15 Basf Ag Naphthalocyanine
US5367005A (en) 1993-10-29 1994-11-22 Sun Chemical Corporation Heatset security ink
US5684069A (en) * 1994-01-12 1997-11-04 Pitney Bowes Inc. Composition for invisible ink responsive to infrared light
JP3798038B2 (ja) 1994-11-22 2006-07-19 大日本印刷株式会社 赤外線吸収材料
JP3527329B2 (ja) 1994-12-02 2004-05-17 大日本印刷株式会社 赤外線吸収材料及びその製造方法
AU717158B2 (en) 1995-06-13 2000-03-16 Sun Chemical Corporation Intaglio printing ink
JP3731831B2 (ja) 1995-07-21 2006-01-05 大日本印刷株式会社 赤外線吸収パターン印刷物
JP3962102B2 (ja) 1995-07-21 2007-08-22 大日本印刷株式会社 赤外線吸収パターン形成用インキおよび赤外線吸収パターン層を有する印刷物
JP4026865B2 (ja) 1995-09-11 2007-12-26 大日本印刷株式会社 赤外線吸収材料の製造方法
JP3835842B2 (ja) 1995-10-11 2006-10-18 大日本印刷株式会社 赤外線吸収材料、赤外線吸収インキおよび不可視パターン
JPH1060409A (ja) 1996-08-13 1998-03-03 Dainippon Printing Co Ltd 赤外線吸収材料、それを用いたインキ及び印刷物
JPH1088107A (ja) 1996-09-13 1998-04-07 Shin Etsu Chem Co Ltd 赤外線吸収材料とその製造方法およびインク
DE19653423A1 (de) * 1996-12-20 1998-06-25 Giesecke & Devrient Gmbh Druckfarbe
DE19726136A1 (de) 1997-06-19 1998-12-24 Merck Patent Gmbh Lasermarkierbare Kunststoffe
EP1388565A1 (en) 1997-08-26 2004-02-11 Kureha Kagaku Kogyo Kabushiki Kaisha Near infrared ray-absorbing synthetic resin composition
EP1260563B2 (en) * 2001-05-21 2011-05-25 Sicpa Holding Sa UV curing intaglio ink
DE10149463A1 (de) 2001-10-08 2003-04-24 Giesecke & Devrient Gmbh Gedruckte, maschinenlesbare Codierung, Dokument mit einer solchen Codierung und Verfahren zur Herstellung der Codierung und des Dokumentes
EP1308485A1 (en) * 2001-10-31 2003-05-07 Sicpa Holding S.A. Ink set with an IR-taggant
US7192897B2 (en) * 2002-07-05 2007-03-20 Hoya Corporation Near-infrared light-absorbing glass, near-infrared light-absorbing element, near-infrared light-absorbing filter, and method of manufacturing near-infrared light-absorbing formed glass article, and copper-containing glass
FR2843644B1 (fr) 2002-08-19 2004-11-19 Banque De France Document securise par une matiere opaque aux infrarouges
EP1403333A1 (en) * 2002-09-24 2004-03-31 Sicpa Holding S.A. Method and ink sets for marking and authenticating articles
US6710197B1 (en) * 2002-11-12 2004-03-23 Chung-Shan Institute Of Science And Technology Method for the preparation of copper (meth) acryloyloxyethyl phosphate coordination complex
CN1690135A (zh) 2004-04-20 2005-11-02 上海印钞厂 一种具有高吸收性浅色的红外吸收粉体的防伪油墨

Also Published As

Publication number Publication date
AR058235A1 (es) 2008-01-23
KR101411063B1 (ko) 2014-07-07
PL1790701T3 (pl) 2009-06-30
AP2468A (en) 2012-09-17
MY143588A (en) 2011-05-31
HK1199653A1 (en) 2015-07-10
EP1790701B2 (en) 2012-02-01
SI1790701T1 (sl) 2009-06-30
EP1790701A1 (en) 2007-05-30
NO20082611L (no) 2008-08-20
ES2321008T5 (es) 2012-06-01
AU2006316553A1 (en) 2007-05-31
CY1108954T1 (el) 2014-07-02
US8362130B2 (en) 2013-01-29
JP2009517490A (ja) 2009-04-30
BRPI0619027B1 (pt) 2016-11-22
CA2629933C (en) 2013-10-22
CN104151923A (zh) 2014-11-19
IL191393A (en) 2014-08-31
MA30054B1 (fr) 2008-12-01
RS50766B2 (sr) 2018-01-31
NO340142B1 (no) 2017-03-13
DK1790701T3 (da) 2009-04-06
CN101316906A (zh) 2008-12-03
JP5442996B2 (ja) 2014-03-19
DE602005012286D1 (de) 2009-02-26
UA95261C2 (ru) 2011-07-25
ZA200804365B (en) 2009-04-29
AP2008004483A0 (en) 2008-06-30
BRPI0619027A2 (pt) 2011-09-20
DK1790701T4 (da) 2012-04-02
AU2006316553B2 (en) 2011-11-03
WO2007060133A1 (en) 2007-05-31
US8080307B2 (en) 2011-12-20
PT1790701E (pt) 2009-03-05
EA200801422A1 (ru) 2008-10-30
HRP20090172T1 (en) 2009-05-31
SI1790701T2 (sl) 2012-05-31
EA013482B1 (ru) 2010-04-30
PL1790701T5 (pl) 2012-05-31
HRP20090172T4 (hr) 2012-04-30
KR20080079252A (ko) 2008-08-29
TNSN08224A1 (en) 2009-10-30
US20080241492A1 (en) 2008-10-02
CA2629933A1 (en) 2007-05-31
EP1790701B1 (en) 2009-01-07
ATE420144T1 (de) 2009-01-15
US20120065313A1 (en) 2012-03-15
RS50766B (sr) 2010-08-31
NZ568420A (en) 2012-01-12
EG25550A (en) 2012-02-15
JP2013253248A (ja) 2013-12-19

Similar Documents

Publication Publication Date Title
ES2321008T3 (es) Tinta para huecograbado que absorbe en el infrarrojo.
ES2726306T3 (es) Procesos para la producción de capas de efectos ópticos
US9358578B2 (en) Printing
CN105143363B (zh) 印刷多特性凹版特征的方法
US4451521A (en) Security paper with authenticity features in the form of substances luminescing only in the invisible region of the optical spectrum and process for testing the same
ES2261784T3 (es) Conjunto de tintas, articulo impreso, metodo de impresion y utilizacion de un colorante.
ES2659024T3 (es) Hilos y bandas de seguridad magnéticos ópticamente variables
JP2011507982A5 (es)
KR101925661B1 (ko) 감열 소거성 잉크에 의한 위조를 방지하는 보안 문서용 잉크 코팅
TW201229051A (en) Composite marking based on chiral liquid crystal precursors
CN110049875A (zh) 低能量固化性平版印刷墨兼凸版印刷墨及印刷方法
JP2014502376A (ja) キラル液晶ポリマーのカラーシフト特性の簡易制御
JPH0952479A (ja) 情報担持シートとこれに用いられるインキ及び転写シート
EP3774378B1 (en) Security ink system
JP2000011131A (ja) 偽造防止システム
JP2018522257A (ja) 郵便切手