CN1431716A - 半导体装置及半导体装置的制造方法 - Google Patents

半导体装置及半导体装置的制造方法 Download PDF

Info

Publication number
CN1431716A
CN1431716A CN03101048A CN03101048A CN1431716A CN 1431716 A CN1431716 A CN 1431716A CN 03101048 A CN03101048 A CN 03101048A CN 03101048 A CN03101048 A CN 03101048A CN 1431716 A CN1431716 A CN 1431716A
Authority
CN
China
Prior art keywords
mentioned
metallic element
semiconductor device
silicon
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN03101048A
Other languages
English (en)
Inventor
江口和弘
犬宫诚治
綱岛祥隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1431716A publication Critical patent/CN1431716A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28229Making the insulator by deposition of a layer, e.g. metal, metal compound or poysilicon, followed by transformation thereof into an insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

提供一种半导体装置及其制造方法,可以提高其特性和可靠性。该半导体装置,包括:半导体衬底;在该半导体衬底上形成的,包含含有金属元素的硅氧化膜的栅绝缘膜;以及在上述栅绝缘膜上形成的电极。上述含有金属元素的硅氧化膜具有下表面附近的第一区、上表面附近的第二区、以及第一区和第二区之间的第三区;上述硅氧化膜中含有的金属元素在厚度方向上的浓度分布在上述第三区中有最大点。

Description

半导体装置及半导体装置的制造方法
技术领域
本发明涉及半导体装置及半导体装置的制造方法,尤其涉及半导体装置中采用的绝缘膜。
背景技术
随着MOSFET的微细化,要求栅绝缘膜的薄膜化。现在使用的硅氧化膜和硅氮氧化膜,通过增加直隧道电流,可达到约2nm的薄膜化的极限。
已提出含有金属的硅氧化膜(也称作金属硅酸盐膜或硅酸盐膜)在栅绝缘膜中的应用。该金属硅酸盐膜的介电率比硅氧化膜高,且结晶化温度较高,所以与多晶硅(多晶SiGe)栅电极工艺的整合性高。
为了抑制来自栅电极的硼扩散,提出了含氮的氮氧化金属硅膜(日本特开平2000-49349)。但是,不能得到具有良好的界面特性的氮氧化金属硅膜。另外,由于金属氮化物是导电的,泄露电流多,电荷捕获密度也高。而且,在栅电极界面上形成金属硅化物,损害绝缘特性。
作为金属硅酸盐膜的形成方法,有采用有机硅烷的CVD(化学汽相淀积)法。有机硅烷中可以使用四乙基原硅酸盐(Si(OC2H5)4∶TEOS)。由于TEOS的分解温度高,采用热CVD法时必须是700℃以上的温度。另外,由于在较低的温度下形成膜,可采用与TEOS同时使用臭氧(O3)的方法,或等离子体CVD法。
但是,使用臭氧或等离子体时,会在膜形成气氛中生成氧根或氧离子等的氧的活性种。由于活性的氧反应性高,会产生使基底氧化的问题。而使用等离子体时,会产生因等离子体损伤导致基底被损伤的问题。
作为与金属硅酸盐膜的形成方法有关的公知技术,有以下的情况。
在日本特开平5-239650号公报中,公开了在以硅氧烷为源气体的CVD法中,添加钛族元素的醇盐或烷基胺化合物的方法。但是,由于使用了臭氧或等离子体,基本上是使用氧的活性种的方法。
日本特开6-160657号公报也是使用臭氧的方法,是使用氧的活性种的方法。
在日本特开平11-111715号公报中公开了向源气体添加通过使具有烷氧基的化合物热分解生成的生成物的方法。但是,没有记载与硅源和金属源混合有关的内容。
在日本特开平5-226608号公报中公开了作为金属硅酸盐膜中含有的金属,使用钛的内容。但是,存在含有钛的金属硅酸盐膜难以得到良好的特性,难以在半导体装置上适用的问题。
发明内容
如上所述,现在存在不能得到具有优良特性的金属硅酸盐膜的问题,和对基底有恶劣影响的问题。因此,难以得到特性和可靠性优良的半导体装置。
本发明正是鉴于上述现有的问题而提出的,目的在于在具有含有金属元素的硅氧化膜的半导体装置中提高其特性和可靠性。
根据本发明的半导体装置,包括:
半导体衬底;
在上述半导体衬底上形成的,包含含有金属元素的硅氧化膜的栅绝缘膜;以及
在上述栅绝缘膜上形成的电极,
上述含有金属元素的硅氧化膜具有下表面附近的第一区、上表面附近的第二区、以及第一区和第二区之间的第三区;
上述硅氧化膜中含有的金属元素在厚度方向上的浓度分布,在上述第三区中有最大点。
根据本发明的半导体装置的制造方法,包括下列步骤:
在半导体衬底上形成含有金属元素的非晶态硅膜的步骤,该非晶态硅膜具有下表面附近的第一区、上表面附近的第二区、以及第一区和第二区之间的第三区,且金属元素在厚度方向上的浓度分布在第一区或第三区中有最大点;以及
使上述含有金属元素的非晶态硅膜氧化,形成含有上述金属元素的硅氧化膜的步骤。
根据本发明的半导体装置的制造方法,包括下列步骤:
向保持衬底的容器供给含有硅的有机化合物,和含有选自Zr、Hf、Al和La的金属元素的有机化合物的步骤;以及
用氧的活性种通过热CVD,在上述衬底上形成含有上述金属元素的硅氧化膜的步骤。
根据本发明的半导体装置的制造方法,包括通过CVD在半导体衬底上形成含金属元素的硅氧化膜的步骤,其特征在于还包括:
向保持半导体衬底的容器开始供给含有硅的有机化合物的步骤;
在开始供给上述含有硅的有机化合物之后,开始向上述容器供给含有金属元素的有机化合物的步骤;以及
增加向上述容器供给的上述含有金属元素的有机化合物的供给量的步骤。
附图说明
图1是示意性地展示根据本发明的实施方式1的金属硅酸盐膜中的金属元素在膜厚方向上的浓度分布的图;
图2是示意性地展示根据本发明的实施方式1的金属硅酸盐膜中的金属元素和氮在膜厚方向上的浓度分布的图;
图3是展示根据本发明的实施方式1的半导体装置的制造方法的剖面图;
图4是展示根据本发明的实施方式2的CVD装置的结构的图;
图5是展示根据本发明的实施方式2的金属硅酸盐膜的成膜速度与衬底温度的关系的图;
图6是展示根据本发明的实施方式2的比较例的金属硅酸盐膜的成膜速度与衬底温度的关系的图;
图7展示根据本发明的实施方式2的、HTB和TEOS的流量变化时的金属硅酸盐膜的测量结果的图;
图8是展示根据本发明的实施方式2的半导体装置的结构的剖面图;
图9是展示根据本发明的实施方式2的界面位错密度的减少效果的图;
图10是展示根据本发明的实施方式3的气体供给***的图。
具体实施方式
下面,参照附图说明本发明的实施方式。(实施方式1)
下面,参照附图说明本发明的实施方式1。
图1是在根据实施方式1的MIS(MOS)型场效应晶体管中,作为栅绝缘膜使用的金属硅酸盐膜(含硅的硅氧化膜)中的金属元素在膜厚度方向上的浓度分布的示意图。在此,作为金属元素使用Zr(锆),但也可以向硅氧化膜添加比硅氧化膜介电率高的元素如Hf(铪)、Al(铝)、La(镧)等,可得到与Zr的场合同样的效果。
如图1所示,在金属硅酸盐膜的中央附近Zr的浓度最大。另外,浓度峰不必一定在金属硅酸盐膜的中央,也可以是在靠近金属硅酸盐膜下表面的区域(金属硅酸盐膜与硅衬底的界面附近的区域)、和靠近金属硅酸盐膜上表面的区域(金属硅酸盐膜与栅电极的界面附近的区域)夹着的区域(内部区域)。
通过这样构成,可以得到特性和可靠性优良的MIS型场效应晶体管。即,在半导体衬底侧的界面上,界面的固定电荷密度低,可抑制沟道迁移率的降低。另外,栅电极侧的界面上,作为栅电极使用多晶Si或多晶SiGe时,可抑制界面处的硅化物反应,可防止可靠性的降低。
图2展示了对上述构成,进而在栅电极侧导入氮(N)时,Zr和N的浓度分布的示意图。如图2所示,栅电极侧的界面附近N浓度最大。
这样地,由于在金属硅酸盐膜的上表面侧有陡峭的N浓度的峰,作为栅电极使用多晶Si或多晶SiGe时,可有效地抑制作为掺杂剂使用的硼等杂质向栅绝缘膜中甚至向半导体衬底扩散。另外,由于抑制了Zr与氮的反应,可以抑制泄露电流的增加和可靠性的下降。而且,由于在上表面侧存在氮,可以抑制衬底侧界面附近的固定电荷密度的增加,可以抑制沟道迁移率的降低。
另外,金属硅酸盐膜中含有的金属元素,不必一定是一种,也可以含有Zr、Hf、Al及La中的两种以上元素,
下面,参照图3(a)~3(e)说明本实施方式的制造方法。
首先,如图3(a)所示,准备常用的设置了元件分离区(图中未示出)的半导体衬底11。
然后,如图3(b)所示,在半导体衬底11的表面上堆积约2nm的含有Zr的非晶态硅膜12。该非晶态硅膜12可通过例如使用ZrCl4、SiH4和H2的LPVCD法形成。典型的成膜条件为500℃、0.5乇。控制ZrCl4和SiH4的流量比,可以使含有Zr的非晶态硅膜12中的Zr浓度的峰在膜厚方向的中央附近。
非晶态硅膜12也可以通过采用Zr靶和Si靶的溅射法堆积形成,此时,控制Zr靶和Si靶的功率比,可以使Zr浓度的峰在膜厚方向的中央附近。
另外,Zr浓度的峰不必一定在非晶态硅膜12的中央,也可以是夹在非晶态硅膜12的下表面附近的区域与上面附近的区域之间的区域(内部区域)。另外,Zr浓度的峰也可以在非晶态硅膜12的下表面附近的区域中。
然后,如图3(C)所示,使衬底温度为400℃,用O2等离子体氧化法使含有Zr的非晶态硅膜12氧化形成Zr硅酸盐膜(含有Zr的硅氧化膜)13。Zr硅酸盐膜13反映非晶态硅膜12的Zr浓度分布,具有图1所示的Zr浓度分布。在此,通过使用可以在较低温度下氧化的等离子体氧化法,可以抑制氧化时的结晶化,防止与结晶化伴随的表面不光洁。
另外,在Zr的浓度峰位于非晶态硅膜12的下表面附近的区域的场合下也是,由于在上述氧化步骤中半导体衬底11的表面区域被氧化,Zr的浓度峰位于Zr硅酸盐膜13的内部。
然后,如图3(d)所示,使晶片温度为400℃,用N2等离子体氮化法使Zr硅酸盐膜13的表面氮化,形成表面被氮化的Zr硅酸盐膜14。该表面被氮化的Zr硅酸盐膜14成为图2所示的氮浓度分布。
然后,如图3(e)所示,用LPCVD法堆积约150nm的作为栅电极的多晶SiGe膜(也可以是多晶Si膜)15。在此,在堆积多晶SiGe膜15之前,进行例如900℃、10秒的退火,使导入的氮稳定化。
之后,经过光刻步骤,栅电极蚀刻步骤,离子注入步骤,活性化退火步骤等,形成MIS型场效应晶体管(图中未示出)。最后,经过布线步骤,完成半导体装置(图中未示出)。
如上所述,根据本实施方式,通过使金属硅酸盐膜中的金属元素的浓度分布最优化,可获得良好的界面特性,同时抑制栅电极界面的反应。另外,通过氮的浓度分布最优化,可以抑制金属硅酸盐膜中的捕获物的增加,同时可以抑制来自栅电极的杂质的扩散。因此,可以实现高性能且可靠性高的半导体装置。
另外,通过用Zr、Hf、Al或La作为金属元素,可以增加金属硅酸盐膜的有效介电率。因此,可以用物理上膜厚厚的金属硅酸盐膜作为栅绝缘膜,可以实现高性能且可靠性高的半导体装置。
另外,根据本实施方式,通过金属和硅的二元堆积形成非晶态硅膜,可以使组成的控制变得容易,可以以低成本制造高性能的半导体装置。另外,抑制了部分的金属氧化物结晶的形成,可以实现特性偏差小的半导体装置。而且,通过与金属元素独立地导入氮,可以容易地实现最优的膜组成。
另外,通过使用金属源和硅源的CVD法形成非晶态硅膜,在例如局部有凹凸的半导体表面上也可以均匀地形成膜,可以实现可靠性高的半导体装置。另外,通过在金属源中使用金属元素的卤化物,硅源中使用硅的氢化物,可以在确保极薄膜的控制性的较低温度下形成膜,可以提高生产率。
另外,通过用O2等离子体氧化等,用活性的氧化种对非晶态硅膜氧化,可以抑制金属硅酸盐膜的多晶化。而且,通过用等离子体氮化金属硅酸盐膜的表面,可以在低温下向金属硅酸盐膜导入具有陡峭的浓度分布的氮。(实施方式2)
下面,参照附图说明本发明的实施方式2。本实施方式中,不用氧的活性种,而是通过热CVD法形成金属硅酸盐膜,气体源中使用含硅的有机化合物和含金属元素(Zr、Hf、Al或La)的有机化合物。(实施方式2-A)
本实施方式是用四乙基原硅酸盐膜(Si(OC2H5)4∶TEOS)和四叔丁氧基锆(Zr(Ot-C4H9)4∶ZTB),通过热CVD法堆积金属硅酸盐膜的例子。
图4是本实施方式中使用的LPCVD装置的一例。下面,参照图4说明制造方法。
首先,准备8英寸硅衬底,利用用纯水稀释后的氢氟酸,除去在硅衬底表面上形成的自然氧化膜。在稀氢氟酸处理后,把硅衬底103搬送到在反应容器101内设置的隔板104上。并用真空泵从反应容器101中排气。
反应容器101内的压力到达10-2乇以下后,把借助于质流控制器124、125把流量设定到300sccm的Ar气导入反应容器内。然后,通过与压力计108连动的压力调整阀106把反应容器101内的压力控制到10乇。反应容器101内的压力稳定后,用衬底加热器105开始加热衬底103。用与隔板104相接地配置的热电偶和温度调节器(图中未示出)  把衬底103的温度控制到595℃。
衬底温度稳定后,用质流控制器123把氧气流量控制到200SCCM,通过阀143,不通过反应容器101,流通氧气(O2)。另外,用质流控制器121和122分别把氩气控制到100Sum,向原料容器111和112流入氩气,开始原料的发泡。这些气体也可以通过阀141和142,不通过反应容器101流动。
分别向原料容器111内填充TEOS,向原料容器112内填充ZTB。原料容器111和112都控制到70℃。另外,用压力计151、152和压力调整阀131、132把原料容器111和112内的压力分别调整到100乇。在这样的条件下,推定TEOS的流量为56sccm、ZTB的流量为1.6sccm。
由于原料的温度为70℃,比室温高,把向反应容器101输送原料气体的配管和阀收存在烘箱内加热到200℃左右,防止凝结。另外,喷射头102也用油加热到200℃左右,防止喷射头内的原料凝结。至此为开始成膜的前阶段。
通过同时把阀141、142和143切换成阀144、145和146,通过喷射头向反应容器101内导入预先流入的氧气和原料气体,开始形成膜。成膜时间为10分钟。
10分钟后,通过把阀144、145和146切换成阀141、142和143,停止向反应容器内供应TEOS、ZTB和氧气。停止供气后,立即停止向衬底加热器105的通电,使衬底103冷却。衬底温度降到200℃后从反应容器101中取出衬底103。
用椭圆计测量这样形成的薄膜的厚度,发现形成了237nm厚的Zr硅酸盐膜。另外,在衬底温度为550℃、570℃时进行同样的膜形成。除衬底温度变化以外,与上述条件相同。结果,550℃下为191nm,570℃下为176nm。图5展示了把这些数据变换成成膜速度后的情况。
为了比较,只用TEOS进行膜的形成。形成膜的顺序与上述完全相同,但不进行ZTB的供给。衬底温度为570℃和590℃。结果,衬底温度为570℃时膜厚为0.7nm,在590℃时为0.9nm。图6展示了把这些数据变换成成膜速度后的情况。
另外,只用ZTB在595℃下形成膜的结果为,成膜速度0.1nm/分钟以下。
由上述这些结果可知,仅在同时供给TEOS和ETB这两者时,成膜速度增加。
如上所述,通过同时供给占TEOS流量(供给量)的1/10以下的ZTB,与只用TEOS的场合相比,可以得到100倍以上的成膜速度,可以以实用的成膜速度形成金属硅酸盐膜。
另外,即使不用对下层衬底造成不良影响的等离子体或臭氧等的化学上活跃的氧,也可以在600℃以下的较低温度下用热CVD法形成金属硅酸盐膜。这是因为ZTB促进TEOS的分解反应。
用荧光X射线测量分析Zr硅酸盐膜中含有的Zr原子数对Zr原子数和Si原子数的和的比率。上述比率用Zr/(Zr+Si)表示。结果,同时供给ZTB和TEOS进行膜的形成的试料为Zr/(Zr+Si)=12~30%。另外,已确认通过控制ZTB和TEOS的流量,可以把Zr/(Zr+Si)控制在5~30%的范围内。
如果Zr/(Zr+Si)太大,得到的Zr硅酸盐膜的介电率高。换言之,通过控制Zr和Si的比率,可以控制Zr硅酸盐膜的介电率。这一点在应用到半导体装置上时很重要。即,在层间绝缘膜和间隔膜的介电率小为优选的场合,调整ZTB和TEOS的供给量使Zr/(Zr+Si)减小。另一方面,在诸如栅绝缘膜之类的介电率大为优选的场合,调整ZTB和TEOS的供给量使Zr/(Zr+Si)增大。(实施方式2-B)
本实施方式是用TEOS和四叔丁氧基铪(Hf(Ot-C4H9)4∶HTB),通过热CVD法堆积金属硅酸盐膜的例子。本实施方式与上述实施方式2-A一样,使用图4所示的LPVCD装置。
首先,准备8英寸硅衬底,利用用纯水稀释后的氢氟酸,除去在硅衬底表面上形成的自然氧化膜。在稀氢氟酸处理后,把硅衬底103搬送到在反应容器101内设置的隔板104上。并用真空泵对反应容器101中排气。
反应容器101内的压力到达10-2乇以下后,把借助于质流控制器124、125把流量设定到300sccm的Ar气导入反应容器内。然后,通过与压力计108连动的压力调整阀106把反应容器101内的压力控制到10乇。反应容器101内的压力稳定后,用衬底加热器105开始加热衬底103。用与隔板104相接地配置的热电偶和温度调节器(图中未示出)把衬底103的温度控制到595℃。
衬底温度稳定后,用质流控制器123把氧气流量控制到200sccm,通过阀143,不通过反应容器101流通氧气(O2)。另外,用质流控制器121和122分别把氩气控制到100sccm,向原料容器111和112流入氩气,开始原料的发泡。这些气体也可以分别通过阀141和142,不通过反应容器101流动。
分别向原料容器111内填充TEOS,向原料容器112内填充HTB。反料容器111和112分别控制到40℃和45℃。另外,用压力计151、152和压力调整阀131、132把原料容器111和112内的压力分别调整到100乇。在这样的条件下,推定TEOS的流量为12sccm、HTB的流量为0.31sccm。
由于原料的温度比室温高,把向反应容器101输送原料气体的配管和阀收存在烘箱内加热到200℃左右,防止凝结。另外,喷射头102也用油加热到200℃左右,防止喷射头内的原料凝结。至此为开始成膜的前阶段。
通过同时把阀141、142和143切换成阀144、145和146,通过喷射头向反应容器101内导入预先流入的氧气和原料气体,开始形成膜。成膜时间为10分钟。
10分钟后,通过把阀144、145和146切换成阀141、142和143,停止向反应容器内供应TEOS、HTB和氧气。停止供气后,立即停止向衬底加热器105的通电,使衬底103冷却。衬底温度降到200℃后从反应容器103中取出衬底103。
用椭圆计测量这样形成的薄膜的厚度,发现形成了40nm厚的Hf硅酸盐膜。
为了比较,只用TEOS进行膜的形成。形成膜的顺序与上述完全相同,但不进行HTB的供给。膜厚为0nm。认为没形成金属硅酸盐膜。
另外,只用HTB在570℃下形成膜的结果为,成膜速度0.1nm/分钟以下。
由上述这些结果可知,仅在同时供给TEOS和HTB这两者时,成膜速度增加。
如上所述,通过同时供给占TEOS流量(供给量)的1/10以下的HTB,与只用TEOS的场合相比,可以大幅度增加成膜速度,可以以实用的成膜速度形成金属硅酸盐膜。
另外,即使不用对下层衬底造成不良影响的等离子体或臭氧等的化学上活跃的氧,也可以在600℃以下的较低温度下用热CVD法形成金属硅酸盐膜。这是因为HTB促进TEOS的分解反应。
用荧光X射线测量分析Hf硅酸盐膜中含有的Hf原子数对Hf原子数和Si原子数的和的比率。上述比率用Hf/(Hf+Si)表示。结果,同时供给HTB和TEOS进行膜的形成的试料为Hf/(Hf+Si)=23%。另外,已确认通过控制HTB和TEOS的流量,可以把Hf/(Hf+Si)控制在5~30%的范围内。
如果Hf/(Hf+Si)太大,得到的Hf硅酸盐膜的介电率高。换言之,通过控制Hf和Si的比率,可以控制Hf硅酸盐膜的介电率。这一点在应用到半导体装置上时很重要。即,在层间绝缘膜和间隔膜的介电率小为优选的场合,调整HTB和TEOS的供给量使Hf/(Hf+Si)减小。另一方面,在诸如栅绝缘膜之类的介电率大为优选的场合,调整HTB和TEOS的供给量使Hf/(Hf+Si)增大。
图7示出本实施方式中进行成膜的结果,衬底温度都是570℃,反应室内的压力为1乇,成膜时间为10分钟。(实施方式2-C)
本实施方式涉及具有用实施方式2-B的方法形成的金属硅酸盐膜的MOS电容器。
如图8所示,在n型硅衬底21上用实施方式2-B的方法形成4nm厚的金属硅酸盐膜22。通过改变成膜时间进行膜厚的控制。形成的金属硅酸盐膜22用荧光X射线测量确认,Hf/(Hf+Si)为10%。而且,在金属硅酸盐膜22上形成铂电极23。铂电极23通过遮蔽掩模用溅射法形成。
通过电容-电压法(C-V法)对由此制作的MOS电容器测量界面位错密度。结果,硅的带隙中形成的界面位错密度的最低值为2×1011cm-2eV-1
为了比较,通过采用TEOS和氧的等离子体CVD法形成金属硅酸盐膜22。使衬底温度为400℃,采用13.56MHz的RF等离子体。膜厚为4nm。电极23上采用通过溅射形成的铂。这样形成的MOS电容器的界面位错密度的测定结果为1×1013cm-2eV-1
作为另一比较例,通过采用TEOS-O3的热CVD法形成金属硅酸盐膜22,制作与前面相同的MOS电容器。用热壁型CVD装置在常压、400℃下形成金属硅酸盐膜22。膜厚为4nm。上部电极23是铂。用该MOS电容器测得的结果为界面位错密度5×1012cm-2eV-1
图9汇总了上述各测量结果。
用等离子体CVD法形成金属硅酸盐膜时,界面位错密度高,因为在形成金属硅酸盐膜时等离子体会对硅衬底表面造成损伤。用使用TEOS-O3的热CVD法形成金属硅酸盐膜时,界面位错密度高,因为O3的化学反应性强,硅衬底表面不能维持良好的状态。
与此不同,由于本实施方式中不使用氧的活性种,可以形成缺陷少的氧化膜/硅表面。结果,得到低的界面位错密度。
如上所述,根据本实施方式,通过硅源和金属源的相互作用,促进源气体的分解。因此,即使在600℃以下的低温下,不用氧的活性种,也可以用热CVD法形成良好质量的金属硅酸盐膜。而且,由于不用氧的活性种,可以在金属硅酸盐膜和半导体衬底之间的界面上得到优良的界面特性。
另外,作为金属元素,除了上述Zr和Hf以外,还可以用Al或La。通过使用这些金属元素,可以增加金属硅酸盐膜的有效介电率。因此,可以用物理上膜厚厚的金属硅酸盐膜作为栅绝缘膜,可以实现高性能且可靠性高的半导体装置。另外,金属硅酸盐膜中含有的金属元素,不必一定是一种,也可以含有Zr、Hf、Al及La中的两种以上元素,可以得到同样的效果。
另外,作为硅源,可使用含有硅的有机化合物;作为金属源,可使用含有Zr、Hf、Al及La中的至少一种金属元素的有机化合物。
更具体地,作为含有硅的有机化合物,可优选使用TEOS等硅的烷氧基化合物。而含有金属元素的有机化合物可优选使用由(M(Ot-C4H9)4,其中M为Zr、Hf、Al及La)等的金属元素的烷氧基化合物。这些化合物的蒸气压高,所以CVD的控制性高。结果,可以形成膜厚均匀和组成控制性优良的金属硅酸盐膜。
另外,如果向反应容器供给的金属源的流量(供给量)比硅源的流量(供给量)的1/10大,则难以得到金属硅酸盐膜的成膜速度增大效果。但在1/10以下可以使成膜速度大幅度增加。
另外,若金属硅酸盐膜中含有的金属元素的原子数为NM、硅的原子数为NSi,优选地,
0<NM/(NM+NSi)<0.5。因为若金属元素的比率太高,则金属硅酸盐膜热不稳定,尤其是比率在0.5以上时,这种倾加更加显著。(实施方式3)
下面,参照附图说明本发明的实施方式3。本实施方式涉及使金属硅酸盐膜中含有的金属元素(Zr、Hf、Al或La)具有浓度分布的方法。
图10展示了用例如实施方式2说明的CVD装置形成金属硅酸盐膜时的气体供给***。在此,硅源用TEOS,金属源用ZTB(或HTB)。另外,基本的成膜条件等与实施方式2相同,在此省略说明。
首先,开始向收存硅衬底的反应容器内供给TEOS。TEOS的供给稳定后,开始ZTB的供给,慢慢地增加ZTB的供给量。之后,保持ZTB的供给量恒定,经过预定时间后,慢慢地减少ZTB的供给量。然后,停止ZTB的供给,并停止TEOS的供给。这样地,在硅衬底上形成金属硅酸盐膜。而且,用氮等离子体使金属硅酸盐膜的表面氮化。
这样地得到的金属硅酸盐膜中,金属元素和氮的浓度分布成为如实施方式1所示的图2那样。因此,通过削减图3(a)~图3(e)中说明的步骤,可以得到具有与实施方式1所述的相同的效果的半导体装置。
另外,硅源和金属源除了TEOS和ZTB之外,也可以同样地适用实施方式2中详述的情况。因此,与例如实施方式2同样地,通过采用不用氧的活性种的热CVD法,可以得到具有与实施方式2所述的相同的效果的半导体装置。
如上所述,根据本实施方式,可以使金属硅酸盐膜中的金属元素和氮的浓度分布最佳化,可以实现高性能且可靠性高的半导体装置。另外,通过采用使用氧的活性种的热CVD法可以实现更高性能且可靠性高的半导体装置。
以上说明了本发明的实施方式,但本发明不限于上述实施方式,在不脱离其主要的构思的前提下可以进行种种变更。而且,上述各实施方式中包含了各个阶段的发明,可以通过公开的构成要件适当组合而得到各种发明。例如,即使从公开的构成要件中删除某一构成要件,只要能得到预定的效果,就可以作为一个发明抽出来。
根据本发明,可以提高具有含有金属元素的硅氧化膜的半导体装置的特性和可靠性。

Claims (23)

1.一种半导体装置,包括:
半导体衬底;
在上述半导体衬底上形成的,包含含有金属元素的硅氧化膜的栅绝缘膜;以及
在上述栅绝缘膜上形成的电极,
上述含有金属元素的硅氧化膜具有下表面附近的第一区、上表面附近的第二区、以及第一区和第二区之间的第三区;
上述硅氧化膜中含有的金属元素在厚度方向上的浓度分布,在上述第三区中有最大点。
2.如权利要求1所述的半导体装置,其特征在于:
上述硅氧化膜还含有氮;
上述硅氧化膜中含有的氮在厚度方向上的浓度分布在上述第二区中有最大点。
3.如权利要求1所述的半导体装置,其特征在于:
上述硅氧化膜中含有的金属元素从Zr、Hf、Al和La中选择。
4.如权利要求1所述的半导体装置,其特征在于:
上述硅氧化膜还含有其它的金属元素;
上述其它的金属元素从Zr、Hf、Al和La中选择。
5.一种半导体装置的制造方法,包括下列步骤:
在半导体衬底上形成含有金属元素的非晶态硅膜的步骤,该非晶态硅膜具有下表面附近的第一区、上表面附近的第二区、以及第一区和第二区之间的第三区,且金属元素在厚度方向上的浓度分布在第一区或第三区中有最大点;以及
使上述含有金属元素的非晶态硅膜氧化,形成含有上述金属元素的硅氧化膜的步骤。
6.如权利要求5所述的半导体装置的制造方法,其特征在于:还包括使上述硅氧化膜的表面氮化的步骤。
7.如权利要求5所述的半导体装置的制造方法,其特征在于:上述非晶态硅膜采用金属源和硅源通过CVD形成。
8.如权利要求7所述的半导体装置的制造方法,其特征在于:上述金属源是上述金属元素的卤化物,上述硅源是硅的氢化物。
9.如权利要求5所述的半导体装置的制造方法,其特征在于:上述非晶态硅膜用活性的氧化种进行氧化。
10.如权利要求6所述的半导体装置的制造方法,其特征在于:用等离子体氮化上述硅氧化膜的表面。
11.一种半导体装置的制造方法,包括下列步骤:
向保持衬底的容器供给含有硅的有机化合物,和含有选自Zr、Hf、Al和La的金属元素的有机化合物的步骤;以及
用氧的活性种通过热CVD,在上述衬底上形成含有上述金属元素的硅氧化膜的步骤。
12.如权利要求11所述的半导体装置的制造方法,其特征在于:还向上述容器供给氧气,
13.如权利要求11所述的半导体装置的制造方法,其特征在于:上述含有金属元素的硅氧化膜是栅绝缘膜。
14.如权利要求11所述的半导体装置的制造方法,其特征在于:上述含有金属元素的有机化合物还含有其它的金属元素,上述其它的金属元素从Zr、Hf、Al和La中选择。
15.如权利要求11所述的半导体装置的制造方法,其特征在于:向上述容器供给的上述含有金属元素的有机化合物的供给量为向上述容器供给的上述含有硅的有机化合物的供给量的1/10以下。
16.如权利要求11所述的半导体装置,其特征在于:设上述硅氧化膜中含有的金属元素的原子数为NM,硅的原子数为NSi则O<NM/NSi<0.5。
17.一种半导体装置的制造方法,包括通过CVD在半导体衬底上形成含金属元素的硅氧化膜的步骤,其特征在于还包括:
向保持半导体衬底的容器开始供给含有硅的有机化合物的步骤;
在开始供给上述含有硅的有机化合物之后,开始向上述容器供给含有金属元素的有机化合物的步骤;以及
增加向上述容器供给的上述含有金属元素的有机化合物的供给量的步骤。
18.如权利要求17所述的半导体装置的制造方法,其特征在于,还包括:
增加上述含有金属元素的有机化合物的供给量之后,减少向上述容器供给的上述含有金属元素的有机化合物的供给量的步骤;
停止向上述容器供给上述含有金属元素的有机化合物的步骤;以及
在停止供给上述含有金属元素的有机化合物之后,停止向上述容器供给上述含有硅的有机化合物的步骤。
19.如权利要求18所述的半导体装置的制造方法,其特征在于,还包括:使停止供给上述含有硅的有机化合物之后得到的上述含有为的硅氧化膜的表面氮化的步骤。
20.如权利要求11或17所述的半导体装置的制造方法,其特征在于:上述含有硅的有机化合物是硅的烷氧化物。
21.如权利要求20所述的半导体装置的制造方法,其特征在于:上述硅的烷氧化物是四乙氧基原硅酸盐膜。
22.如权利要求11或17所述的半导体装置的制造方法,其特征在于:上述含有金属元素的有机化合物是上述金属元素的烷氧化物。
23.如权利要求22所述的半导体装置的制造方法,其特征在于:上述金属元素的烷氧化物是叔丁氧基化合物。
CN03101048A 2002-01-08 2003-01-08 半导体装置及半导体装置的制造方法 Pending CN1431716A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP001546/2002 2002-01-08
JP2002001546A JP4102072B2 (ja) 2002-01-08 2002-01-08 半導体装置

Publications (1)

Publication Number Publication Date
CN1431716A true CN1431716A (zh) 2003-07-23

Family

ID=19190630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03101048A Pending CN1431716A (zh) 2002-01-08 2003-01-08 半导体装置及半导体装置的制造方法

Country Status (5)

Country Link
US (4) US6844234B2 (zh)
JP (1) JP4102072B2 (zh)
KR (2) KR100502381B1 (zh)
CN (1) CN1431716A (zh)
TW (1) TW589660B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944482B (zh) * 2007-12-27 2012-11-14 佳能株式会社 形成介电膜的方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4239015B2 (ja) 2002-07-16 2009-03-18 日本電気株式会社 半導体装置の製造方法
JP2004193150A (ja) * 2002-12-06 2004-07-08 Toshiba Corp 半導体装置および半導体装置の製造方法
JP4112404B2 (ja) * 2003-03-13 2008-07-02 株式会社東芝 半導体装置の製造方法
AU2003221382A1 (en) * 2003-03-13 2004-09-30 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US20040237889A1 (en) * 2003-05-28 2004-12-02 Winbond Electronics Corporation Chemical gas deposition process and dry etching process and apparatus of same
JP2005079223A (ja) 2003-08-29 2005-03-24 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP3790242B2 (ja) * 2003-09-26 2006-06-28 株式会社東芝 半導体装置及びその製造方法
JP4059183B2 (ja) 2003-10-07 2008-03-12 ソニー株式会社 絶縁体薄膜の製造方法
KR20060109904A (ko) 2003-10-15 2006-10-23 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 전자 공학적, 광학적, 자기적, 반도체 및 생물 공학적용도의 지지체로서의 다기능성 생체 재료
JP4629325B2 (ja) * 2003-10-17 2011-02-09 東京エレクトロン株式会社 トランジスタの製造方法
TW200526804A (en) * 2003-10-30 2005-08-16 Tokyo Electron Ltd Method of manufacturing semiconductor device, film-forming apparatus, and storage medium
JP2005191482A (ja) * 2003-12-26 2005-07-14 Semiconductor Leading Edge Technologies Inc 半導体装置及びその製造方法
US7695763B2 (en) * 2004-01-28 2010-04-13 Tokyo Electron Limited Method for cleaning process chamber of substrate processing apparatus, substrate processing apparatus, and method for processing substrate
JP4542807B2 (ja) * 2004-03-31 2010-09-15 東京エレクトロン株式会社 成膜方法および成膜装置、ならびにゲート絶縁膜の形成方法
GB0412790D0 (en) * 2004-06-08 2004-07-14 Epichem Ltd Precursors for deposition of silicon nitride,silicon oxynitride and metal silicon oxynitrides
JP4550507B2 (ja) * 2004-07-26 2010-09-22 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP4563113B2 (ja) * 2004-08-26 2010-10-13 株式会社日立国際電気 シリコン酸化膜の形成方法、半導体デバイスの製造方法および基板処理装置
JP4564310B2 (ja) * 2004-09-01 2010-10-20 株式会社日立国際電気 半導体装置の製造方法
JP4028538B2 (ja) * 2004-09-10 2007-12-26 株式会社東芝 半導体装置の製造方法およびその製造装置
US7563727B2 (en) * 2004-11-08 2009-07-21 Intel Corporation Low-k dielectric layer formed from aluminosilicate precursors
KR100648632B1 (ko) 2005-01-25 2006-11-23 삼성전자주식회사 높은 유전율을 갖는 유전체 구조물의 제조 방법 및 이를 포함하는 반도체 소자의 제조 방법
US7501352B2 (en) * 2005-03-30 2009-03-10 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer
US20060228898A1 (en) * 2005-03-30 2006-10-12 Cory Wajda Method and system for forming a high-k dielectric layer
US7517814B2 (en) * 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
JP4689324B2 (ja) * 2005-04-04 2011-05-25 東京エレクトロン株式会社 成膜装置、成膜方法および記録媒体
JP2006310601A (ja) * 2005-04-28 2006-11-09 Toshiba Corp 半導体装置およびその製造方法
KR100608453B1 (ko) * 2005-04-30 2006-08-02 주식회사 아이피에스 HfSiN 박막증착방법
US20070065593A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Multi-source method and system for forming an oxide layer
US20070066084A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Method and system for forming a layer with controllable spstial variation
WO2007040057A1 (ja) 2005-10-04 2007-04-12 Nec Corporation 半導体装置
US8053849B2 (en) * 2005-11-09 2011-11-08 Advanced Micro Devices, Inc. Replacement metal gate transistors with reduced gate oxide leakage
JP4413858B2 (ja) 2005-12-13 2010-02-10 株式会社東芝 乱数検定回路
JP2007235093A (ja) * 2006-01-31 2007-09-13 Toshiba Corp 半導体装置の製造方法
US8148275B2 (en) * 2007-12-27 2012-04-03 Canon Kabushiki Kaisha Method for forming dielectric films
JP5286052B2 (ja) 2008-11-28 2013-09-11 株式会社東芝 半導体装置及びその製造方法
KR101584100B1 (ko) 2009-10-29 2016-01-13 삼성전자주식회사 금속 실리케이트 막의 형성 방법 및 이를 이용한 반도체 소자의 형성 방법
JP6142300B2 (ja) * 2013-12-02 2017-06-07 株式会社Joled 薄膜トランジスタの製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US64970A (en) * 1867-05-21 graham
US23120A (en) * 1859-03-01 Washing-machine
US500113A (en) * 1893-06-27 harrison
US3796182A (en) * 1971-12-16 1974-03-12 Applied Materials Tech Susceptor structure for chemical vapor deposition reactor
JPS5661165A (en) 1979-10-24 1981-05-26 Fujitsu Ltd Control of threshold voltage of transistor
US5000113A (en) * 1986-12-19 1991-03-19 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
US4854263B1 (en) * 1987-08-14 1997-06-17 Applied Materials Inc Inlet manifold and methods for increasing gas dissociation and for PECVD of dielectric films
US6444137B1 (en) * 1990-07-31 2002-09-03 Applied Materials, Inc. Method for processing substrates using gaseous silicon scavenger
JPH04221822A (ja) * 1990-12-21 1992-08-12 Kazuo Tsubouchi 堆積膜形成法
JPH05226608A (ja) 1992-02-10 1993-09-03 Matsushita Electric Ind Co Ltd 薄膜高誘電率体およびその製造方法
JPH05239650A (ja) 1992-02-27 1993-09-17 Kojundo Chem Lab Co Ltd シリコン酸化膜の製造法
JP2900732B2 (ja) 1992-11-24 1999-06-02 三菱電機株式会社 光導波路の製造方法
KR100291971B1 (ko) * 1993-10-26 2001-10-24 야마자끼 순페이 기판처리장치및방법과박막반도체디바이스제조방법
US6159854A (en) * 1994-08-22 2000-12-12 Fujitsu Limited Process of growing conductive layer from gas phase
KR100272259B1 (ko) * 1996-10-23 2000-12-01 김영환 반도체소자의실리사이드막의형성방법
JPH10308361A (ja) 1997-05-07 1998-11-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP3406811B2 (ja) 1997-09-17 2003-05-19 株式会社東芝 半導体装置及びその製造方法
JPH11135774A (ja) 1997-07-24 1999-05-21 Texas Instr Inc <Ti> 高誘電率シリケート・ゲート誘電体
US6451686B1 (en) * 1997-09-04 2002-09-17 Applied Materials, Inc. Control of semiconductor device isolation properties through incorporation of fluorine in peteos films
JPH11111715A (ja) 1997-10-03 1999-04-23 Hitachi Ltd 半導体集積回路装置の製造方法
US6146938A (en) * 1998-06-29 2000-11-14 Kabushiki Kaisha Toshiba Method of fabricating semiconductor device
JP2000049349A (ja) 1998-07-15 2000-02-18 Texas Instr Inc <Ti> 集積回路に電界効果デバイスを製造する方法
US6291283B1 (en) * 1998-11-09 2001-09-18 Texas Instruments Incorporated Method to form silicates as high dielectric constant materials
JP3415496B2 (ja) 1999-07-07 2003-06-09 Necエレクトロニクス株式会社 半導体装置及びその製造方法
US6399208B1 (en) * 1999-10-07 2002-06-04 Advanced Technology Materials Inc. Source reagent composition and method for chemical vapor deposition formation or ZR/HF silicate gate dielectric thin films
AU2001234468A1 (en) * 2000-01-19 2001-07-31 North Carolina State University Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors and methods of fabricating same
JP2001257344A (ja) * 2000-03-10 2001-09-21 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2001291865A (ja) 2000-04-10 2001-10-19 Sharp Corp 絶縁ゲート型トランジスタ及びその製造方法
KR100721503B1 (ko) 2000-06-08 2007-05-23 에이에스엠지니텍코리아 주식회사 박막 형성 방법
JP3687651B2 (ja) 2000-06-08 2005-08-24 ジニテック インク. 薄膜形成方法
JP2002076336A (ja) * 2000-09-01 2002-03-15 Mitsubishi Electric Corp 半導体装置およびsoi基板
US6486080B2 (en) * 2000-11-30 2002-11-26 Chartered Semiconductor Manufacturing Ltd. Method to form zirconium oxide and hafnium oxide for high dielectric constant materials
US6844604B2 (en) * 2001-02-02 2005-01-18 Samsung Electronics Co., Ltd. Dielectric layer for semiconductor device and method of manufacturing the same
US6566147B2 (en) * 2001-02-02 2003-05-20 Micron Technology, Inc. Method for controlling deposition of dielectric films
US7005392B2 (en) * 2001-03-30 2006-02-28 Advanced Technology Materials, Inc. Source reagent compositions for CVD formation of gate dielectric thin films using amide precursors and method of using same
US6642131B2 (en) * 2001-06-21 2003-11-04 Matsushita Electric Industrial Co., Ltd. Method of forming a silicon-containing metal-oxide gate dielectric by depositing a high dielectric constant film on a silicon substrate and diffusing silicon from the substrate into the high dielectric constant film
US20030013241A1 (en) * 2001-07-16 2003-01-16 Motorola, Inc. Structure and method for fabricating vertical fet semiconductor structures and devices
JP4120938B2 (ja) 2001-08-23 2008-07-16 日本電気株式会社 高誘電率絶縁膜を有する半導体装置とその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944482B (zh) * 2007-12-27 2012-11-14 佳能株式会社 形成介电膜的方法

Also Published As

Publication number Publication date
TW589660B (en) 2004-06-01
US20080242115A1 (en) 2008-10-02
JP2003204061A (ja) 2003-07-18
JP4102072B2 (ja) 2008-06-18
US20060244083A1 (en) 2006-11-02
US6844234B2 (en) 2005-01-18
US20050006674A1 (en) 2005-01-13
KR20050011003A (ko) 2005-01-28
KR100512824B1 (ko) 2005-09-07
US7282774B2 (en) 2007-10-16
KR100502381B1 (ko) 2005-07-19
US7858536B2 (en) 2010-12-28
KR20030060804A (ko) 2003-07-16
US7101775B2 (en) 2006-09-05
US20030127640A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
CN1431716A (zh) 半导体装置及半导体装置的制造方法
US7202166B2 (en) Surface preparation prior to deposition on germanium
US7498270B2 (en) Method of forming a silicon oxynitride film with tensile stress
JP4281082B2 (ja) 堆積前の表面調整方法
CN1459126A (zh) 形成介电薄膜的方法
CN1663051A (zh) 半导体器件及其制造方法
CN1926668A (zh) 在高介电常数的介电材料上的硅的氮氧化物层的形成
WO2002065525A1 (en) Integration of high k gate dielectric
CN1669153A (zh) 半导体器件及其制造方法和制造设备
CN1784773A (zh) 原子层沉积的电介质层
CN1873927A (zh) 等离子体处理方法
JP2003218108A (ja) M−SiONゲート誘電体のCVDデポジション
CN1930668A (zh) 绝缘膜的改性方法
CN1427454A (zh) 半导体元件的制造方法
CN1820373A (zh) 栅极绝缘膜的形成方法、存储介质、计算机程序
CN1967787A (zh) 基底绝缘膜的形成方法
WO2005096358A1 (en) A silicon germanium surface layer for high-k dielectric integ ration
CN1819117A (zh) 半导体器件及其制造方法
EP1610394A1 (en) Semiconductor device, process for producing the same and process for producing metal compound thin film
CN1511349A (zh) 半导体装置及其制造方法
CN1434883A (zh) 消除自动掺杂和背面晕圈的外延硅晶片
CN1165073C (zh) 半导体装置的制造方法
JP4224044B2 (ja) 半導体装置の製造方法
CN101043049A (zh) 叠层布线和利用该叠层布线的半导体器件及其制造方法
CN1679151A (zh) 半导体装置和半导体装置的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication