WO2007114325A1 - 二重特異性抗体を精製するための抗体改変方法 - Google Patents

二重特異性抗体を精製するための抗体改変方法 Download PDF

Info

Publication number
WO2007114325A1
WO2007114325A1 PCT/JP2007/057058 JP2007057058W WO2007114325A1 WO 2007114325 A1 WO2007114325 A1 WO 2007114325A1 JP 2007057058 W JP2007057058 W JP 2007057058W WO 2007114325 A1 WO2007114325 A1 WO 2007114325A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
antibody
amino acid
variable region
heavy chain
Prior art date
Application number
PCT/JP2007/057058
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Igawa
Hiroyuki Tsunoda
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to EP07740494.5A priority Critical patent/EP2009101B1/en
Priority to ES07740494.5T priority patent/ES2654040T3/es
Priority to JP2008508649A priority patent/JP5144499B2/ja
Priority to EP17196942.1A priority patent/EP3345616A1/en
Priority to EP23150077.8A priority patent/EP4218801A3/en
Priority to US12/295,075 priority patent/US9670269B2/en
Priority to DK07740494.5T priority patent/DK2009101T3/en
Publication of WO2007114325A1 publication Critical patent/WO2007114325A1/ja
Priority to US15/490,936 priority patent/US10934344B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/248IL-6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to an antibody modification method for purifying a bispecific antibody, a method for separating the bispecific antibody, a pharmaceutical composition containing the bispecific antibody as an active ingredient, and the like. .
  • Antibodies are attracting attention as pharmaceuticals because of their high stability in blood and few side effects.
  • antigen A and antigen B bispecific antibodies that can simultaneously recognize two types of antigens
  • Non-patent Document 1 MDX-210, which is currently undergoing clinical trials, is an IgG type bispecific that expresses FcyRI and retargets monocytes, etc., to HER-2 / neu and retargets them to cancer cells. It is an antibody (Non-patent Document 2).
  • gene recombination techniques are generally used.
  • DNA encoding an antibody protein is cloned from a hybridoma, antibody-producing cells such as sensitized lymphocytes that produce antibodies, or a phage library displaying antibody genes, and put into an appropriate vector. It is a technology that integrates and introduces it into a host cell for production.
  • the production of IgG-type bispecific antibodies using genetic recombination technology involves introducing a total of four genes, the H and L chain genes that make up the two types of IgG of interest, and secreting them by coexpression. . In such expression, when wild type H chain and L chain constituent genes are expressed, the association of two types of H chains or the association of H chains and L chains occurs randomly. The ratio of bispecific antibodies is very low.
  • target bispecific antibodies only one of 10 target bispecific antibodies is produced, resulting in a decrease in production efficiency. Decreasing the production efficiency of the target antibody not only hinders purification of the target antibody, but also increases non-uniformity such as inter-lot differences, leading to increased production costs.
  • Non-Patent Document 5 uses mouse IgG2a for the A chain and rat IgG2b for the B chain, and protein A for each H chain of mouse IgG2a and rat IgG2b.
  • a method to purify A-chain and B-chain heterodimer by controlling the elution pH from protein A using the difference in affinity has been reported, but it uses mouse and rat constant regions. From the viewpoint of antigenicity, this method is difficult to apply to human medicine. In addition, this method cannot be used to separate A-chain and B-chain heterodimers consisting of H chains of the same subclass.
  • Non-Patent Document 6 describes A-chain B-chain heterodimer using hydrophobic interaction chromatography. There is a reported method for purifying the target A chain consisting of Anti-CD3 mouse IgG2a and anti_CD19 mouse Ig Gl The B chain heterodimer is not sufficiently peak-separated, and a different subclass H chain is used. Because of the fact that they are separated using the difference in hydrophobicity, it is not always possible to separate heterodimers of A chain and B chain consisting of H chains of the same subclass.
  • Non-Patent Document 7 reports a method for purifying A-chain and B-chain heterodimers using Thiophilic affinity chromatography. Use mouse IgGl and rat IgG2a, and free them in the hinge region. Since cysteine (thiol group) is used, it cannot be used to separate A-chain and B-chain heterodimers consisting of H chains of the same subclass, and free cysteine is involved in storage aggregation. It is not suitable for the development of stable pharmaceutical preparations.
  • Non-patent document 8 reports affinity chromatography using an antigen.
  • affinity chromatography using protein or peptide antigens has problems with column cost and stability, it is not common to produce pharmaceuticals using affinity chromatography.
  • affinity chromatography twice in order to purify the A chain and B chain heterodimers that bind to both antigens, it is necessary to perform affinity chromatography twice, which is expected to increase costs.
  • antibodies that recognize only the three-dimensional structure of the antigen and antibodies with the desired function with low affinity have been reported.
  • affinity chromatography using the antigen must be used. Is difficult. Therefore, purification of bispecific antibodies using affinity chromatography is not considered universal.
  • the purification of the A-chain and B-chain heterodimer of the bispecific antibody is carried out only within a limited range, and the A of the bispecific antibody consisting of the same H chain subclass' constant region sequence.
  • No method has been reported for purifying the B-chain heterodimer to a high purity acceptable for pharmaceutical use.
  • two types of antibodies constituting a bispecific antibody have the same constant region sequence, it is necessary to separate the A chain and B chain heterodimers only by the difference in the variable region sequences.
  • the sequence is very homologous between antibodies (Non-patent Document 9), and A chain and B chain heterodimers are permitted as pharmaceuticals only by variable region sequence differences. It was difficult to purify to such a high purity that was acceptable.
  • Patent Document 1 International Publication No. 96/27011
  • Non-special reference 1 Marvm JS, and Zhu Z .: “Recombmant approaches to Igu-like bis pecific antibodies”, Acta Pharmacol Sin., 2005 Jun, Vol. 26 (6), p. 649-58.
  • Non-Patent Document 2 Segal DM et al., Current Opinion in Immunology, 1999, Vol. 11, p.5
  • Non-patent document 3 Merchant AM, 6 authors, ⁇ An efficient route to human bispecific IgG.J, Nat Biotechnol., 1998 Jul, Vol. 16 (7), p.677-81.
  • Non-patent document 4 Carter P., "Bispecific human IgG by design.”, J Immunol Methods., 2001 Feb 1, Vol.248 (l-2), p.7-15.
  • Non-Patent Document 5 Lindhofer H, et al., "Preferential species-restricted heavy / light chain pairing in rat / mouse quadromas. Implications for a single-step purification of bi specific antibodies.”, J Immunol., 1995 Jul 1, Vol. L55 (l), p.219-25.
  • Non-Patent Document 6 Manzke 0, 3 other authors, “Single_step purification of bispecific monoclon al antibodies for immunotherapeutic use by hydrophobic interaction chromatography.”, J Immunol Methods., 1997 Oct 13, Vol.208 (l), p.65 -73.
  • Non-Patent Document 7 Kreutz FT, 2 other authors, ⁇ Efficient bispecific monoclonal antibody purification using gradient thiophilic affinity chromatography-'', J Chromatogr B Biomed Sci Appl., 1998 S-mark 4, Vol.714 (2), p .161- 70
  • Non-Patent Document 8 Gupta S, and Suresh M., ⁇ Affinity chromatography and co-chro matography of bispecific monoclonal antibody immunoconjugates.J, J Biochem Biophys Methods., 2002 May 31, Vol.51 (3), p. .203-16. Review.
  • Non-Patent Literature 9 Carl Branden, Introduction to Protein Structure 2nd edition, Newton Press.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a method for amino acid modification of an antibody variable region for efficiently purifying a bispecific antibody. Double It is an object of the present invention to provide a pharmaceutical composition comprising a specific antibody and a method for producing a bispecific antibody pharmaceutical composition.
  • the present invention also provides a bispecific antibody with a modified heavy chain constant region, a pharmaceutical composition comprising the modified bispecific antibody, and a method for producing the bispecific antibody pharmaceutical composition. It is in.
  • the difference in isoelectric point between the H chains of the two antibodies can be obtained by modifying the amino acids present on the surface of the antibody variable regions of the two antibodies that constitute the bispecific antibody. And introduced a method for efficiently purifying bispecific antibodies on a chromatography column using the difference in isoelectric point. Specifically, in the H chain of an antibody, a modified portion was found that can control only the isoelectric point without reducing the function (activity) of the antibody. Furthermore, the present inventors have confirmed that the bispecific antibody obtained by the method of the present invention actually retains its function.
  • the present inventors have developed a method based on amino acid substitution in the antibody variable region as a method for efficiently purifying an arbitrary bispecific antibody by using a general-purpose chromatography column. Successfully completed the present invention.
  • the present invention relates to a method for amino acid substitution in an antibody variable region for efficient purification using a chromatography column, a pharmaceutical composition comprising a modified bispecific antibody, and a dual Further, the present invention relates to a method for producing a specific antibody pharmaceutical composition, a pharmaceutical composition comprising a bispecific antibody having a modified heavy chain constant region, a modified bispecific antibody, and a bispecific antibody pharmaceutical. More specifically, the method for producing the composition, [1] A method for producing a multispecific antibody comprising a first polypeptide and a second polypeptide, comprising:
  • nucleic acid encoding the amino acid residue of the first polypeptide and the amino acid residue of the second polypeptide so that the isoelectric points of the first polypeptide and the second polypeptide are different. Modify both or either of the nucleic acids to be encoded,
  • a method for producing a multispecific antibody comprising
  • step (a) is a homomultimer of the first polypeptide, a homomultimer of the second polypeptide, and a heteromultimer force of the first and second polypeptides.
  • the multispecific antibody includes a third polypeptide including a light chain variable region, and the first polypeptide and the second polypeptide each include a multimer with the third polypeptide.
  • a method for purifying a multispecific antibody comprising a first polypeptide and a second polypeptide comprising:
  • the first polypeptide should have a different isoelectric point between the first polypeptide and the second polypeptide. Modifying the nucleic acid encoding the amino acid residue of the peptide and / or the nucleic acid encoding the amino acid residue of the second polypeptide,
  • a method for purifying a multispecific antibody comprising
  • the modification in step (a) is a homomultimer of the first polypeptide, a homomultimer of the second polypeptide, and a heteromultimer force of the first polypeptide and the second polypeptide.
  • the multispecific antibody includes a third polypeptide including a light chain variable region, and the first polypeptide and the second polypeptide each include a multimer with the third polypeptide.
  • a multispecific antibody comprising a first polypeptide and a second polypeptide
  • the first polypeptide comprises a heavy chain variable region and a Z or heavy chain constant region, and amino acid residues at positions 10, 12, 23, 39, 43, and 105 by Kabat numbering in the heavy chain variable region. Group or position 137 by EU numbering in the heavy chain constant region, At least one amino acid selected from amino acid residues at positions 196, 203, 214, 217, 233, 268, 274, 276, 297, 355, 392, 419, and 435 A multispecific antibody in which the residues are charged and the isoelectric points of the first and second polypeptides are different from each other;
  • the second polypeptide includes a heavy chain variable region and a Z or heavy chain constant region, and positions 10, 12, 23, 39, 43, and 105 by Kabat numbering in the heavy chain variable region Position by amino acid residue or EU numbering in the heavy chain constant region 1 37, 196, 203, 214, 217, 233, 268, 274, 276, 297, 355 , At least one amino acid residue selected from amino acid residues at positions 92, 419, and 435 is selected in the heavy chain variable region and the Z or heavy chain constant region contained in the first polypeptide.
  • the multispecific antibody according to [20] having a charge opposite to the charged amino acid residue or having no charge,
  • a combination of an amino acid residue having the above charge and an amino acid residue having a charge opposite to that of the amino acid residue is included in the following group (a) or (b) V:
  • the multispecific antibody includes a third polypeptide including a light chain variable region, and the first polypeptide and the second polypeptide each include a multimer with the third polypeptide.
  • composition comprising the multispecific antibody according to any one of [23] to [29] and a pharmaceutically acceptable carrier,
  • a host cell comprising the nucleic acid according to [31],
  • variable region of the first polypeptide consists of the amino acid sequence described in any of the following (al) to (a7), and the variable region of the second polypeptide includes the following (bl) to ( b3), the variable region of the third polypeptide is the following (cl) or (c2)
  • the multispecific antibody according to [25] consisting of the amino acid sequence according to:
  • variable region of the first polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 11 and the variable region of the second polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 16;
  • variable region of the first polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 12
  • variable region of the second polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 16
  • third polypeptide The multispecific antibody according to [34], wherein the variable region comprises the amino acid sequence set forth in SEQ ID NO: 18;
  • the first polypeptide and the second polypeptide contain a human IgG4 constant region, and the third polypeptide contains a human kappa constant region [34] to [36] Of multispecific antibodies.
  • FIG. 1 is a graph showing the results of evaluating the coagulation activity of a humanized bispecific antibody (humanized A69 (hA69a) / human rabbit B26 (hB26_F123e4) / humanized BBA (hAL-F123j4)).
  • a humanized bispecific antibody humanized A69 (hA69a) / human rabbit B26 (hB26_F123e4) / humanized BBA (hAL-F123j4).
  • the coagulation activity was equal to or higher than that of the chimeric bispecific antibody.
  • FIG. 5 is a diagram showing the results of cation exchange chromatography analysis using a humanized B26 antibody homodimer with a variable region modified. As a result of the analysis, peak movement was confirmed as compared with the unmodified antibody.
  • Fig. 7 Photographs showing the results of isoelectric focusing analysis using humanized A69 antibody homodimers with modified variable regions (CDRs). As a result of the analysis, band movement was confirmed as compared with the unmodified antibody.
  • FIG. 8 is a graph showing the results of evaluating the binding activity to Factor IXa, which is an antigen, using a human rabbit A69 antibody homodimer with a variable region (CDR) modified. As a result of the evaluation, it was shown that the same binding activity as that of the unmodified antibody was retained.
  • CDR variable region
  • FIG. 9 Unmodified humans prepared using humanized A69-H chain hA69a, humanized B26-H chain hB26_Fl 23e4 and humanized BBA-L chain hAL-F123j4 It is a figure which shows the result of having carried out the cation exchange chromatography analysis of the activated bispecific antibody humanization. As a result of the analysis, the two types of homodimer and bispecific antibody were not separated but eluted as a single peak.
  • FIG. 10 Human pupa prepared using hA69-PF, a humanized A69-H chain variant, hA26-PF, a humanized B26-H chain variant, and hAL_s8, a humanized BBA-L chain. It is a figure which shows the result of having performed the cation exchange chromatography analysis of bispecific PF antibody. As a result of the analysis, two types of homodimers and bispecific antibodies were separated and eluted as three peaks in the order of hA69-PF homodimer, humanized bispecific PF antibody, and hB26-PF homodimer.
  • FIG. 11 is a photograph showing results of isoelectric focusing analysis using purified humanized A69 antibody-PF homodimer and humanized B26-PF antibody homodimer, humanized bispecific PF antibody. .
  • Figure 12 This figure shows the results of evaluation of coagulation activity using purified humanized bispecific PF antibody (H chain constant region is wild type).
  • H chain constant region showed coagulation activity equivalent to that of the bispecific antibody (KiH) using the knobs-into-holes technology.
  • the bispecific antibody was purified from a culture supernatant containing 3 types of antibodies, humanized A69 antibody homodimer, humanized B26 antibody homodimer, and humanized bispecific antibody using a general-purpose column for production. The hourly chromatogram is shown.
  • FIG. 14 This figure shows the results of evaluation of coagulation activity using a humanized bispecific antibody (H chain constant region is wild type) purified using a general-purpose column for production. As a result of the evaluation, it showed a coagulation activity equivalent to that of the humanized bispecific PF antibody.
  • FIG. 15 is a photograph showing the results of analysis by isoelectric focusing using unmodified, IgG2 and IgG4 human rabbit PM-1 antibodies. As a result of the analysis, it was confirmed that the isoelectric point was changed by the modification.
  • A shows an unmodified humanized PM-1 antibody
  • B shows an IgG2 humanized PM-1 antibody
  • C shows an IgG4 humanized PM-1 antibody.
  • FIG. 16 is a photograph showing the results of isoelectric focusing analysis using unmodified, IgG2 and IgG4 human rabbit PM-1 antibody co-expressed antibodies. As a result of the analysis, it was shown that each subclass antibody was separated with a subclass hybrid antibody force of 1 difference.
  • A is an unmodified humanized PM-1 antibody / IgG2 humanized PM-1 antibody coexpressed antibody
  • B is an unmodified humanized PM-1 antibody / IgG4 humanized PM-1 antibody coexpressed antibody
  • C is human PM-1 antibody purified product (bulk) is shown.
  • FIG. 17 shows the results of cation exchange chromatography analysis using unmodified, IgG2 and IgG4 humanized PM-1 antibodies expressed alone. As a result of the analysis, peak movement was confirmed as compared with the unmodified antibody.
  • FIG. 18 shows the results of cation exchange chromatography analysis of the co-expressed antibodies of unmodified, IgG2 and IgG4 human rabbit PM-1 antibodies.
  • A is an unmodified humanized PM-1 antibody / lgG2 humanized PM-1 antibody co-expressing antibody
  • B is an unmodified humanized PM-1 antibody ZlgG4 humanized P Ml antibody co-expressed antibody is shown.
  • FIG. 19 shows the results of purifying homodimers and heterodimers by cation exchange chromatography from co-expressed unmodified humanized PM-1 antibody / IgG4 humanized PM-1 antibody.
  • the IgG4 humanized PM-1 antibody homodimer, the unmodified humanized PM_l / IgG4i humanized PM-1 hybrid antibody, and the unmodified humanized PM-1 antibody homodimer were eluted in the order of three peaks. These were collected.
  • the arrow indicates the approximate fraction range.
  • FIG. 21 Unmodified humanized PM-1 antibody homodimer purified by cation exchange chromatography, unmodified / IgG4 humanized PM-1 hybrid antibody, IgG4 humanized PM-1 antibody homodimer, etc. It is a photograph which shows the result of having conducted the analysis by electric point electrophoresis. As a result of the analysis, it was confirmed that the target subclass hybrid antibody was purified.
  • A is an unmodified humanized PM-1 antibody / IgG4 humanized PM-1 antibody co-expressing antibody
  • B is an unmodified humanized PM-1 antibody fraction
  • C is an unmodified humanized PM-l / lgG4 humanized PM-1 hybrid antibody fraction
  • D shows IgG4 humanized PM-1 antibody fraction.
  • FIG. 22 Unmodified humanized PM-1 antibody homodimer purified by cation exchange chromatography, unmodified human baboon PM-1 / IgG4 humanized PM-1 hybrid antibody, IgG4 ichthyigh PM-1 antibody homodimer It is a figure which shows the result of having evaluated HI HL-6 neutralization activity. As a result of the evaluation, all antibodies showed neutralizing activity equivalent to that of the humanized PM-1 purified antibody.
  • a and B are human gpl30 expressing BaF3 cell lines
  • C and D are human gpl30Z HL-6 receptor co-expressing BaF3 cell lines.
  • Black circle (ki) is the purified humanized PM-1 antibody (bulk)
  • white square (mouth) is the unmodified humanized PM-1 antibody
  • white triangle ( ⁇ ) is the IgG4-humanized PM-1 antibody
  • X is not yet The modified humanized PM_lZlgG4 humanized PM-1 hybrid antibody is shown.
  • the present invention provides an antibody modification method for producing a multispecific antibody.
  • the first polypeptide and the second polypeptide etc. Modifying a nucleic acid encoding the amino acid residue of the first polypeptide and / or a nucleic acid encoding the amino acid residue of the second polypeptide so that the electric points differ. is there. That is, by changing the charge of the amino acid residue of the first polypeptide and the second polypeptide, a difference in isoelectric point (pi) is introduced into the polypeptide, and multiplexing is performed using the difference in the isoelectric point.
  • Specific antibodies can be produced.
  • the production method includes the following steps (a) to (c).
  • nucleic acid encoding the amino acid residue of the first polypeptide and the amino acid residue of the second polypeptide so that the isoelectric points of the first polypeptide and the second polypeptide are different. Modify both or either of the nucleic acids to be encoded,
  • the polypeptide in the present invention usually refers to peptides and proteins having a length of about 10 amino acids or more.
  • it is usually a biological polypeptide, but is not particularly limited, and may be, for example, a polypeptide comprising an artificially designed sequence.
  • fragments of the above polypeptides are also included in the polypeptides of the present invention.
  • the difference in isoelectric points of polypeptides means that the isoelectric points of two or more polypeptides are not equal to each other by altering the surface amino acid charge. That means.
  • the difference in isoelectric point can be observed by using a technique such as isoelectric focusing.
  • the present invention provides a method for producing a multispecific antibody comprising a first polypeptide and a second polypeptide,
  • nucleic acid encoding the amino acid residue of the first polypeptide and the amino acid residue of the second polypeptide so that the isoelectric points of the first polypeptide and the second polypeptide are different. Modify both or either of the nucleic acids to be encoded,
  • the present invention also includes a method for producing a multispecific antibody including the step of purification by the above purification method.
  • the nucleic acid in the present invention is usually cloned (inserted) into an appropriate vector and introduced into a host cell.
  • the vector is not particularly limited as long as it stably retains the inserted nucleic acid.
  • E. coli is used as the host, a pBluescript vector (manufactured by Stratagene) is preferable as a cloning vector, but is commercially available.
  • a pBluescript vector manufactured by Stratagene
  • an expression vector is particularly useful.
  • the expression vector is not particularly limited as long as it is a vector that expresses the polypeptide in vitro, in E.
  • the pBEST vector Promega
  • E. coli pET vector Invitrogen
  • cultured cells If so, the pME18S_FL3 vector (GenBank Accession No. AB009864) is preferred, and the pME18S vector (Mol Cell Biol. 8: 466-472 (1988)) is preferred for organisms.
  • the DNA of the present invention can be inserted into a vector by a conventional method, for example, by using a ligase anti-J heart using a restriction enzyme site (Current protocols in Molecular Biology edit. Ausubel et al. (1987 Publish. John Wiley & Sons. Section 11.4_11.11).
  • the host cell is not particularly limited, and various host cells can be used depending on the purpose.
  • Examples of cells for expressing a polypeptide include bacterial cells (eg, Streptococcus, Staphylococcus, E. coli, Streptomyces, Bacillus subtilis), fungal cells (eg, yeast, Aspergillus), insect cells (eg, Drosophila). S2, Spodoptera SF9), animal cells (eg CHO, COS, HeLa, C127, 3T3, BHK, HEK293, Bowes melanoma cells) and plant cells can be exemplified.
  • bacterial cells eg, Streptococcus, Staphylococcus, E. coli, Streptomyces, Bacillus subtilis
  • fungal cells eg, yeast, Aspergillus
  • insect cells eg, Drosophila
  • animal cells eg CHO, COS, HeLa, C127, 3
  • Vector introduction into host cells for example, calcium phosphate precipitation, electroporation Nono 0 Noresu ⁇ and methods (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9), It can be performed by a known method such as a lipofussion method or a microphone injection method.
  • an appropriate secretion signal can be incorporated into the polypeptide of interest.
  • These signals may be endogenous to the polypeptide of interest or they may be heterologous signals.
  • the multispecific antibody (polypeptide) is recovered when the polypeptide of the present invention is secreted into the medium.
  • the polypeptide of the present invention is produced in a cell, the cell is first lysed, and then the polypeptide is recovered.
  • the present invention also relates to a composition (drug) comprising the multispecific antibody of the present invention and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition usually refers to a drug for treatment or prevention of a disease, or examination / diagnosis.
  • the pharmaceutical composition of the present invention can be formulated by methods known to those skilled in the art. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection in the form of a suspension.
  • a pharmacologically acceptable carrier or medium specifically, sterilized water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, antiseptic
  • the ability to formulate the drug by combining it in a unit dosage form that is generally required for pharmaceutical practice in combination with drugs, binders, etc.
  • the amount of active ingredient in these preparations is set so that an appropriate amount within the specified range can be obtained.
  • a sterile composition for injection can be formulated according to a usual pharmaceutical practice using a vehicle such as distilled water for injection.
  • aqueous solution for injection examples include isotonic solutions containing, for example, physiological saline, glucose and other adjuvants (for example, D-sonolebitonore, D-mannose, D-mannitol, sodium chloride).
  • a suitable solubilizing agent such as alcohol (ethanol etc.), polyalcohol (propylene glycol, polyethylene glycol etc.), nonionic surfactant (polysorbate 80 (TM), HCO-50 etc.) may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, and benzyl benzoate and / or benzyl alcohol may be used in combination as a solubilizing agent.
  • a buffer for example, phosphate buffer solution and sodium acetate buffer
  • a soothing agent for example, hydrochloric acid pro-in
  • a stabilizer for example, benzyl alcohol and phenol
  • an antioxidant for example, benzyl alcohol and phenol
  • the pharmaceutical composition of the present invention is preferably administered by parenteral administration.
  • the composition can be an injection, nasal, pulmonary, or transdermal composition.
  • it can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dosage of the pharmaceutical composition containing the antibody or the polynucleotide encoding the antibody is, for example, one time. It is possible to set the range from O.OOOlmg to lOOOmg per lkg body weight. Or, for example, the power that can be a dose of 0.001 to 100,000 mg per patient.
  • the present invention is not necessarily limited to these values.
  • the dose and administration method vary depending on the weight, age, symptoms, etc. of the patient, but those skilled in the art can set an appropriate administration dose and administration method in consideration of these conditions.
  • the multispecific antibody of the present invention can be formulated in combination with other pharmaceutical ingredients.
  • the present invention also provides a nucleic acid encoding a polypeptide constituting the multispecific antibody of the present invention. Furthermore, a vector carrying the nucleic acid is also included in the present invention.
  • the present invention provides a host cell having the nucleic acid.
  • the host cell is not particularly limited, and examples thereof include E. coli and various animal cells.
  • the host cell can be used, for example, as a production system for producing or expressing the antibody or polypeptide of the present invention.
  • Production systems for polypeptide production include in vitro and in vivo production systems. Examples of in vitro production systems include production systems that use eukaryotic cells and production systems that use prokaryotic cells.
  • Examples of eukaryotic cells that can be used as host cells include animal cells, plant cells, and fungal cells.
  • Animal cells include mammalian cells such as CH0 (J. Exp. Med. (1995) 108: 945), COS, HEK293, 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, and amphibian cells such as Examples are Xenopus oocytes (Valle et al., Nature (1981) 291: 338-340) and insect cells such as Sf9, Sf21, Tn5.
  • CHO_DG44 For the expression of the antibody of the present invention, CHO_DG44, CHO_DXllB, COS7 cells, HEK293 cells, and BHK cells are preferably used. In animal cells, CHO cells are particularly preferred for the purpose of mass expression.
  • Vectors can be introduced into host cells by methods such as calcium phosphate method, DEAE dextran method, cationic ribosome DOTAP (manufactured by Boehringer Mannheim), electoral position method, and ribofunction.
  • As plant cells, for example, cells derived from Nicotiana tabacum and Lemna minor are known as protein production systems.
  • the antibody of the present invention can be produced by the culture method.
  • Fungal cells include fermenters such as cells of the genus Saccharomyces (such as Saccharomyces cerevisiae, Saccharomyces pombe), and filamentous fungi such as the genus Aspergillus. Protein expression systems using such cells (such as Aspergillus niger) are known and can be used as a host for antibody production of the present invention.
  • prokaryotic cells there are production systems using bacterial cells.
  • a production system using Bacillus subtilis in addition to the above-mentioned E. coli is known and can be used for the production of the antibody of the present invention.
  • the host cell transformed with an expression vector containing a polynucleotide encoding the antibody of the present invention can be cultured to express the polynucleotide. That's fine.
  • the culture can be performed according to a known method. For example, when animal cells are used as hosts, for example, DMEM, MEM, RPMI1640, and IMDM can be used as a culture solution. In that case, the cells may be cultured by serum-free culture, even if serum supplements such as FBS and fetal calf serum (FCS) are used in combination.
  • the pH during culture is preferably about 6-8. Cultivation is usually performed at about 30 to 40 ° C for about 15 to 200 hours, with medium exchange, aeration, and agitation as necessary.
  • examples of the system for producing a polypeptide in vivo include a production system using animals and a production system using plants.
  • the target polynucleotide is introduced into these animals or plants, and the polypeptides are produced and collected in the animals or plants.
  • the “host” in the present invention includes these animals and plants.
  • mice When animals are used, there are production systems using mammals and insects. As mammals, goats, pigs, hidges, mice, mice, etc. can be used (Vicki Glaser, SPECTRU M Biotechnology Applications (1993)). In addition, when a mammal is used, a transgenic animal can be used.
  • the polynucleotide encoding the antibody of the present invention is prepared as a fusion gene with a gene encoding a polypeptide inherently produced in milk such as goat ⁇ -casein.
  • the polynucleotide fragment containing the fusion gene is then injected into a goat embryo, Is transplanted into a female goat.
  • the antibody of interest can be obtained from the milk produced by the transgene goat born from the goat that received the embryo or its offspring.
  • hormones may be administered to Transgene goats as appropriate (Ebert et al., Bio / Technology (1994) 12: 699-702) .
  • silkworm As an insect that produces the antibody of the present invention, for example, silkworm can be used.
  • the target antibody can be obtained from the body fluid of the silkworm by infecting the silkworm with baculowinoles containing a polynucleotide encoding the target antibody (Susumu et al., Nature (1985) 315: 592-4).
  • a plant when a plant is used for producing the antibody of the present invention, for example, tobacco can be used.
  • tobacco When using tobacco, insert a polynucleotide encoding the antibody of interest into a plant expression vector, such as pMON 530, and introduce this vector into a bacterium such as Agrobacterium tumefaciens. .
  • This bacterium can be infected with tobacco, for example Nicotiana tabacum, and the desired antibody can be obtained from the leaves of this tobacco (Ma et al "Eur. J. Immunol.
  • chromatography examples include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, and the like (Strategies for Protein Purification ana Characterizatio n: A Laboratory Course Manual.Ed Daniel R. Marshak et al. (1996) Cold Spring Har bor Laboratory Press). These chromatography can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC. Columns used for affinity mouthmatography include protein A columns and protein G columns. Examples of the column using protein A include Hyper D, POROS, Sepharose FF (Pharmacia).
  • the peptide can be optionally modified or partially removed by allowing an appropriate protein modifying enzyme to act before or after purification of the antibody.
  • an appropriate protein modifying enzyme include trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, darcosidase and the like.
  • a method for producing a multispecific antibody of the present invention comprising the steps of culturing the host cell of the present invention and recovering the polypeptide from the cell culture as described above is also a preferred embodiment of the present invention.
  • the "multispecific antibody” in the present invention is an antibody that can specifically bind to at least two different antigens.
  • a bispecific antibody capable of binding specifically to two antigens (two types) (Sometimes called specific antibodies).
  • the antigenic determinant is not necessarily different from the "different antigen” is also included in the "different antigen” of the present invention.
  • different antigenic determinants within a single molecule are also included in the different antigens of the present invention, and two antibodies that each recognize different antigenic determinants within such a single molecule are different antigens in the present invention. It is treated as an antibody that recognizes.
  • the multispecific antibody in the present invention is a molecule comprising an antibody or antibody fragment having specificity for two or more different antigens.
  • Nucleic acid modification in the above method of the present invention refers to nucleic acid so that a peak obtained by analyzing the first polypeptide and the second polypeptide by analysis using standard chromatography is obtained. Is included.
  • modifying a nucleic acid means “modifying” in the present invention. This refers to modifying a nucleic acid to correspond to an amino acid residue to be introduced. More specifically, it means that a nucleic acid encoding an original (before modification) amino acid residue is modified to a nucleic acid encoding an amino acid residue introduced by the modification.
  • nucleic acid modification can be appropriately performed by those skilled in the art using known techniques such as site-directed mutagenesis and PCR mutagenesis.
  • the modified position in the present invention is, for example, (1) an amino acid residue on the surface of a polypeptide,
  • amino acid on the surface of a polypeptide is an amino acid whose side chain can be in contact with a solvent molecule (usually a water molecule) and whose side chain does not necessarily need to be in contact with a solvent molecule. When even a part of the solvent molecule contacts, the amino acid is an amino acid on the surface.
  • a solvent molecule usually a water molecule
  • the amino acid is an amino acid on the surface.
  • a person skilled in the art can create a homologous model of a polypeptide antibody by homology modeling using commercially available software, etc., and thereby select an appropriate residue as an amino acid on the surface. Can do.
  • a person skilled in the art can appropriately select the surface amino acids in the antibody variable region by a homology model prepared by homology modeling or the like.
  • HI, H3, H5 , H8, H10, H12, H13, H15, H16, H19, H23, H25, H 26, H39, H42, H43, H44, H46, H68, H71, H72, H73, H75, H76, H81, H82b, H83, H85, H86, H105, H108, H110, and H112 can be exemplified as surface amino acids, but the present invention is not limited to these.
  • surface amino acids can be selected in the same manner using a homology model. For example, H97 is exposed on the surface of most antibodies.
  • surface amino acids can be selected by homology model.
  • amino acid residues in the variable region include amino acid residues in the heavy chain variable region (VH) or the light chain variable region (VL), but preferably the framework region (FR
  • amino acids exposed on the surface in the FR region other than CDR in the present invention are not limited to these forces, for example, H10, H12, H23, H39, H43, and H105.
  • the polypeptide that modifies the nucleic acid is preferably a homomultimer of the first polypeptide, a homomultimer of the second polypeptide, and the first polypeptide and the second polypeptide. Is a heteromultimer.
  • a homomultimer of the first polypeptide preferably a homomultimer of the second polypeptide, and the first polypeptide and the second polypeptide.
  • Is a heteromultimer for example, as described in the Examples below, humanized A69-H chain and human ⁇ BBA-L chain homodimer as the first polypeptide homomultimer, and humanized B26 as the second polypeptide homomultimer.
  • Examples of standard chromatography in the present invention include cation exchange chromatography, anion exchange chromatography, hydrophobic chromatography, hydoxy patite chromatography, hydrophobic charge interaction chromatography, and chromatofocusing. .
  • the first polypeptide and the second polypeptide preferably include a heavy chain variable region (VH).
  • the variable region includes, for example, a complementarity determining region (CDR) and a framework region (FR).
  • the number of amino acid residues subjected to modification in the method of the present invention is not particularly limited.
  • the modified amino acid sequence is preferably a human sequence so as not to increase antigenicity, but the present invention is not limited thereto.
  • mutations may be introduced at sites other than the alteration introduced so that the isoelectric point changes so that the modified FR (FR1, FR2, FR3, FR4) becomes a human sequence as each FR.
  • the desired multispecific antibody can be obtained by repeatedly evaluating the modification of the surface charge and the separation of the polypeptide. Is possible.
  • the multispecific antibody preferably contains a third polypeptide containing a light chain variable region.
  • the first polypeptide and the second polypeptide each form a multimer with the third polypeptide.
  • the first polypeptide and the second polypeptide preferably include a heavy chain constant region.
  • a region in which a pi difference occurs between the first polypeptide and the second polypeptide is more preferable.
  • Such heavy chain constant regions include the heavy chain constant regions of antibodies with pi differences, and the first and second heavy chain constant regions of IgGl, Ig G2, IgG3, and IgG4 that originally have pi differences are used.
  • a pi difference can be introduced into the second polypeptide, or only amino acids due to differences in isoelectric points between these subclasses in the heavy chain constant region in the first and second polypeptides, or those It is also possible to create a non-wild type human constant region by simultaneously modifying adjacent amino acids that do not affect the isoelectric point, and introduce a pi difference between the two constant regions. Examples of modifications for introducing a pi difference in the constant region include EU numbering of the H chain constant region, H chain 137th, 196th, 203rd, 214th, 217th, 233rd, 268th, 274 , 276, 297, 355, 392, 419, and 435. In addition, since the pi difference is generated by removing the sugar chain in the heavy chain constant region, the 297th position of the sugar chain addition site is also exemplified as a modified site for introducing the pi chain.
  • the present invention provides a method in which the first polypeptide and the second polypeptide have a heavy chain variable region compared to the method in which the first polypeptide and the second polypeptide include a heavy chain constant region.
  • the multispecific antibody comprises a third polypeptide comprising a light chain variable region, wherein the first polypeptide and the second polypeptide are each a third polypeptide and a multimer.
  • a method in combination with a method for forming the film is also included.
  • the first polypeptide in the multispecific antibody provided by the present invention contains a heavy chain variable region and / or a heavy chain constant region
  • the above-mentioned "so that the isoelectric point is different" For example, amino acid residues at positions 10, 12, 23, 39, 43 and 105 by Kabat numbering in the heavy chain variable region, or EU numbering in the heavy chain constant region. 137, 196, 203, 214, 217, 233, 233, 268, 274, 276, 297, 355, 392, 419, 435 And an embodiment in which at least one amino acid residue has a charge.
  • amino acid residues of the first polypeptide indicated by the above numbering amino acid residues other than the charged amino acid residue differ in isoelectric point between the first polypeptide and the second polypeptide. If it is, it may be the same kind of charge as the amino acid residue having the charge, or it may have no charge or the opposite charge.
  • the second polypeptide has a charge opposite to the amino acid residue having the charge of the first polypeptide or has no charge. It is characterized by that.
  • the second polypeptide includes a heavy chain variable region and a Z or heavy chain constant region, and is located at positions 10, 12, 23, 39, 43, and 105 by Kabat numbering in the heavy chain variable region.
  • At least one amino acid residue is selected from the heavy chain variable region contained in the first polypeptide and Z or A multispecific antibody that is selected in the heavy chain constant region, has a charge opposite to that of the amino acid residue that renders it charged, or has no charge.
  • amino acid residues of the second polypeptide shown in the above numbering amino acid residues other than the amino acid residue having the charge are at the isoelectric point of the first polypeptide and the second polypeptide. If there is a difference, it may be the same type of charge as the amino acid residue having the charge, or it may have no charge or the opposite charge.
  • position 137 is IgG2 or IgG4 distribution lj
  • position 196 is IgGl or IgG2 or IgG4 distribution 1J
  • position 203 is IgG2 or IgG4 distribution 1J
  • position 214 Is an IgG2 sequence
  • position 217 is an IgGl or IgG3 or IgG4 array 1J
  • position 233 is an IgGl or IgG3 or Ig G4 array
  • position 268 is an IgG4 array 1J
  • position 274 is an IgG2 or IgG3 or IgG4 array lj
  • 276 is IgGl or IgG2 or IgG4 lj
  • 355 is IgG4 lj
  • 392 is IgG3 lj
  • 4 19 is IgG4 1J
  • 435 is IgGl or IgG2 or It is desirable to apply IgG4 1J.
  • position 137 is IgGl or IgG3 sequence
  • position 196 is IgG3 arrangement lj
  • position 203 is IgGl or IgG3 arrangement lj
  • position 214 is IgGl or Ig G3 Or IgG4 distribution lj
  • position 217 is ⁇ 2 distribution 1 ''
  • position 233 is IgG2 distribution lj
  • position 268 is IgGl or IgG2 or IgG3 distribution lj
  • position 274 is IgGl distribution lj
  • position 355 is Ig G1 or IgG2 or IgG3 distribution lj
  • position 392 is IgGl or IgG2 or IgG4 distribution lj
  • position 419 is IgGl or IgG2 or IgG3 distribution lj
  • amino acids charged amino acids are known. Generally, lysine), arginine (R), and histidine (H) are known as positively charged amino acids (positively charged amino acids). A negatively charged amino acid (negatively charged amino acid) includes aspartic acid (D)
  • Gnoretamic acid (E) and the like are known.
  • the "charged amino acid residue” is preferably selected from amino acid residues included in any of the following groups (a) or (b), but is not particularly limited.
  • “having the same kind of charge” means, for example, that either an amino acid residue obtained by Kabat numbering in the heavy chain variable region or an amino acid residue obtained by EU numbering in the heavy chain constant region is a force. Les of (a) or (b), means having an amino acid residue contained in the group of Zureka 1.
  • the term "having an opposite charge” refers to, for example, an amino acid residue obtained by the Kabat numbering or EU numbering in the second polypeptide having the heavy chain variable region and the Z or heavy chain constant region. Force of at least one amino acid residue The amino acid residue at the corresponding position in the heavy chain variable region and the Z or heavy chain constant region contained in the first polypeptide, wherein ( a ) or (b) When an amino acid residue is included in one group, it means that the remaining amino acid residue has an amino acid residue included in a different group.
  • amino acid residue having the same kind of charge is the above (a) or
  • a multispecific antibody selected from amino acid residues included in any group of (b).
  • variable region of the first polypeptide has the amino acid sequence described in any of the following (al) to (a7)
  • variable region of the second polypeptide has the following (bl A multispecific antibody comprising the amino acid sequence described in any one of (1) to (b3), wherein the variable region of the third polypeptide consists of the amino acid sequence described in (cl) or (c2) below.
  • amino acid sequences are for exemplifying the amino acids to be modified in the present invention more specifically, and are not limited to the case where the variable region is these amino acids.
  • variable region of the first polypeptide is composed of the amino acid sequence set forth in SEQ ID NO: 11 and the variable region of the second polypeptide is a sequence.
  • a multispecific antibody comprising the amino acid sequence of No. 16 and the variable region of the third polypeptide comprising the amino acid sequence of SEQ ID No. 17 can be cited as another preferred embodiment.
  • variable region of the first polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 12
  • variable region of the second polypeptide consists of the amino acid sequence set forth in SEQ ID NO: 16
  • third polypeptide A multispecific antibody in which the variable region of the peptide has the amino acid sequence set forth in SEQ ID NO: 18 can be mentioned.
  • the first polypeptide and the second polypeptide include a human IgG4 constant region, and the third polypeptide includes a human ⁇ constant region. Mention may be made of multispecific antibodies.
  • the term “antibody” is used in the broadest sense. As long as the desired biological activity is exhibited, monoclonal antibodies, polyclonal antibodies, and antibody variants (chimeric antibodies, humanized antibodies, low molecular weight antibodies) Antibodies (including antibody fragments), multispecific antibodies, etc.).
  • the antibody modification method of the present invention can be preferably used when obtaining (creating) these antibodies.
  • the amino acid sequence is further modified by substitution, deletion, addition and / or insertion of an amino acid, etc., with respect to an antibody in which the charge of the amino acid residue is modified as described above. Antibodies are included.
  • Amino acid substitution, deletion, addition and / or insertion, and modification of the amino acid sequence such as humanization and chimerization can be performed by methods known to those skilled in the art.
  • the variable region and constant region of an antibody used when the antibody of the present invention is produced as a recombinant antibody are amino acid substitutions, deletions, additions and Z or insertions, chimerization, humanization, etc. Therefore, the amino acid sequence may be modified.
  • the antibody in the present invention may be an antibody derived from any animal such as a mouse antibody, a human antibody, a rat antibody, a rabbit antibody, a goat antibody, or a camel antibody.
  • a modified antibody in which an amino acid sequence is substituted such as a chimeric antibody, and a humanized antibody may be used.
  • any antibody such as a modified antibody, an antibody fragment, or a low molecular weight antibody to which various molecules are bound may be used.
  • Chimeric antibody is an antibody prepared by combining sequences derived from different animals. For example, an antibody consisting of a mouse antibody heavy and light chain variable (V) region and a human antibody heavy and light chain constant (C) region can be exemplified. The production of a chimeric antibody is known, for example, by linking DNA encoding an antibody V region with DNA encoding a human antibody C region, incorporating this into an expression vector, introducing it into a host, and producing it. Antibody can be obtained
  • Humanized antibody refers to a complementarity determining region (CDR) of an antibody derived from a mammal other than a human, for example, a mouse antibody, also called a reshaped human antibody. Implanted into antibody CDRs. Methods for identifying CDRs are known (Kabat et al, sequence or Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md .; Chothia et al., Nature (1989) 342: 877). The general gene recombination technique is also known (European Patent Application Publication No. EP 125023). No. publication, WO 96/02576 publication).
  • DNA encoding the antibody in which the CDR and a framework region (FR) of a human antibody are linked is obtained, and a humanized antibody is usually obtained. It can be produced by a system using the above expression vector. Such DNA can be synthesized by PCR using several oligonucleotides prepared as overlapping primers in both CDR and FR terminal regions (see W098 / 13388). See the description method).
  • the FR of the human antibody linked via CDR is selected such that the CDR forms a good antigen binding site.
  • FR amino acids in the variable region of the antibody may be modified so that the CDRs of the reshaped human antibody form the appropriate antigen binding site (Sato et al., Cancer Res. (1993) 53 : 851-6).
  • the amino acid residues in FR that can be modified include those that bind directly to the antigen by non-covalent bonds (Amit et al., Science (1986) 233: 747-53) and those that affect or act on the CDR structure (Chothia et al., J. Mol. Biol. (1987) 196: 901-17) and the portion related to the VH-VL interaction (EP239400 patent publication).
  • the C region of these antibodies is preferably derived from a human antibody.
  • C 1, C ⁇ 2, C ⁇ 3, C ⁇ 4 can be used for the H chain, and C K.
  • C Z can be used for the L chain.
  • the human antibody C region may be modified as necessary to improve the stability of the antibody or its production.
  • the chimeric antibody in the present invention preferably comprises a variable region of a non-human mammal-derived antibody and a constant region derived from a human antibody.
  • the humanized antibody is preferably composed of CDRs of antibodies derived from mammals other than human and FR and C regions derived from human antibodies.
  • the constant region derived from a human antibody has a unique amino acid sequence for each isotype such as IgG (IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgD, and IgE.
  • the constant region used for the humanized antibody in the present invention may be a constant region of an antibody belonging to any isotype.
  • the constant region of human IgG is used, but is not limited thereto.
  • the FR derived from a human antibody used for a humanized antibody is not particularly limited, and may be an antibody belonging to any isotype.
  • variable region and constant region of the chimeric antibody and humanized antibody in the present invention are modified by deletion, substitution, insertion and / or addition as long as the binding specificity of the original antibody is exhibited. May be.
  • Chimeric antibodies and humanized antibodies using human-derived sequences are considered to be useful when administered to humans for therapeutic purposes and the like because antigenicity in the human body is reduced.
  • An antibody fragment is a kind of low molecular weight antibody.
  • the low molecular weight antibody includes an antibody having an antibody fragment as a part of its structure.
  • the structure, production method and the like of the low molecular weight antibody in the present invention are not particularly limited as long as it has the ability to bind to an antigen.
  • Some low molecular weight antibodies have higher activity than full-length antibodies (Orita et al., Blood (2005) 105: 562-5 66).
  • the “antibody fragment” is not particularly limited as long as it is a part of a full-length antibody (for example, whole IgG, etc.). (VL) is preferably included.
  • Examples of preferred antibody fragments include, for example, Fab, F (ab ′) 2, Fab ′, Fv and the like.
  • the amino acid sequence of VH or VL in the antibody fragment may be modified by substitution, deletion, addition and / or insertion. Furthermore, as long as the antigen-binding ability is maintained, a part of VH and VL may be deleted.
  • “Fv” is the smallest antibody fragment containing a complete antigen recognition site and a binding site.
  • “Fv” is a dimer (V H-VL dimer) in which one VH and one VL are strongly bound by a non-covalent bond.
  • An antigen binding site is formed on the surface of the VH-VL dimer by three complementary region determining regions (CDRs) of each variable region.
  • CDRs complementary region determining regions
  • Six CDRs confer antigen binding sites on the antibody.
  • one variable region or half of an Fv containing only three CDRs specific to the antigen
  • have the ability. Therefore, such a molecule smaller than Fv is also included in the antibody fragment in the present invention.
  • the variable region of the antibody fragment may be humanized if it is chimeric.
  • the low molecular weight antibody preferably contains both VH and VL.
  • Examples of low molecular weight antibodies include antibody fragments such as Fab, Fab ′, F (ab ′) 2 and Fv, and scFv (single chain Fv) (Huston et al, Proc. Natl. Acad. Sci. USA (19 88) 85: 5879-83; Pluckthuri “The Pharmacology of Monoclonal Antibodies J Vol. Resenburg & Moore, Springer Verlag, New York, pp.269-315, (1994)), Diabod y (Holliger et al., Proc. Natl. Acad. Sci.
  • Antibody fragments can be obtained by treating an antibody with an enzyme, for example, a protease such as papain or pepsin (Morimoto et al "J. Biochem. Biophys. Methods (1992) 24: 107 -17; Brennan et al , Science (1985) 229: 81), and can also be produced by gene recombination based on the amino acid sequence of the antibody fragment.
  • an enzyme for example, a protease such as papain or pepsin (Morimoto et al "J. Biochem. Biophys. Methods (1992) 24: 107 -17; Brennan et al , Science (1985) 229: 81), and can also be produced by gene recombination based on the amino acid sequence of the antibody fragment.
  • a low molecular weight antibody having a structure obtained by modifying an antibody fragment can be constructed using an antibody fragment obtained by enzyme treatment or gene recombination.
  • a gene encoding the whole low molecular weight antibody can be constructed, introduced into an expression vector, and then expressed in an appropriate host cell (for example, Co et al "J. Immunol. (1994) 152). : 2968-76; Bette r and Horwitz, Methods Enzymol. (1989) 178: 476-9b; Pluckthun and Skerra, Metho ds Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652 -63; Rousseaux et al., Methods Enzymol. (1986) 121: b ⁇ 3-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7).
  • the scFv linker in the present invention is in the form of scFv. As long as it does not interfere with the development, it is not limited to such a peptide linker.
  • scFv reference can be made to Pluckthunie Pharmacology of Monoclonal Antibody, Vol. ll 3 (Rosenburg and Moore ed., Springer Verlag, NY, pp. 269-315 (1994)).
  • diabody (Db) refers to a bivalent antibody fragment constructed by gene fusion (P. Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP404, 097, W093 / 1 1 161, etc.).
  • Diabodies are dimers composed of two polypeptide chain forces, and each polypeptide chain is short enough that the light chain variable region (VL) and heavy chain variable region (VH) cannot bind to each other in the same chain. For example, it is linked by a linker of about 5 residues.
  • VL and VH encoded on the same polypeptide chain cannot form a single-chain V region fragment because the linker between them is short, a dimer forms two antigen-binding sites. Will have. At this time, if VL and VH for two different epitopes (a, b) are combined with VLa_VHb and VLb_VHa and linked together by a linker of about 5 residues, they are secreted as bispecific Db.
  • Diabody contains two molecules of scFv, and thus contains four variable regions, resulting in two antigen-binding sites. Unlike the case of scFv that does not form a dimer, when the purpose is to form diabody, the linker that connects VH and VL in each scFv molecule is usually about 5 amino acids when it is a peptide linker. Shall. However, the linker of scFv that forms diabody is not limited to such a peptide linker as long as it does not prevent scFv expression and diabody formation.
  • the “bispecific antibody” may be, for example, an antibody having a structure in which a heavy chain variable region and a light chain variable region are linked as a single chain (for example, sc (Fv) 2).
  • the multispecific antibody consisting of cFv_Fc has the first polypeptide force VH l-linker_VLl-Fc, and the second polypeptide has the structure of (scFv) 2-Fc type consisting of VH2-linker-VL2-Fc .
  • a certain domain may be an antibody-like molecule in which a single domain antibody is bound to an Fc region (Curr Opin Drug Discov Devel. 2006, 9 (2), 184-93).
  • a known sequence should be used for the gene encoding the H chain or L chain of the antibody before mutagenesis in the method of the present invention (in this specification, it may be simply referred to as "the antibody of the present invention”). It can also be obtained by methods known to those skilled in the art. For example, it can be obtained from an antibody library, or it can be obtained by cloning a gene encoding an antibody from a hybridoma producing a monoclonal antibody.
  • antibody libraries many antibody libraries are already known, and methods for preparing antibody libraries are also known, so that those skilled in the art can appropriately obtain antibody libraries. is there.
  • antibody phage libraries Clackson et al, Nature 1991, 352: 624-8, Marks et al., J. Mol. Biol. 1991, 222: 581-97, Water houses et al., Nucleic Acids Res 1993, 21: 2265-6, Griffiths et al "EMBO J. 1994, 13: 3245-60, Vaughan et al, Nature Biotechnology 1996, 14: 309-14, and Japanese translations of Japanese translation of publication No.
  • a known method such as a method using a eukaryotic cell as a library (W095 / 15393 pamphlet) or a ribosome display method.
  • a technology is also known in which a human antibody is obtained by panning using a rally, for example, the variable region of a human antibody is expressed as a single-chain antibody (scFv) on the surface of the phage by the phage display method and bound to the antigen. Select the phage to be inherited.
  • the DNA sequence encoding the variable region of a human antibody that binds to the antigen can be determined by analyzing the scFv DNA sequence that binds to the antigen.
  • a vector can be prepared and a human antibody can be obtained, and these methods are already well known, WO92 / 01 047, WO92 / 20791, WO93 / 06213, W093 / 11236, W093 / 19172, WO95 / 01438, W You can refer to 95/15388.
  • a method for obtaining a gene encoding an antibody from a hyperidoma basically uses a known technique, and uses a desired antigen or a cell expressing the desired antigen as a sensitizing antigen. It is obtained by immunizing according to the usual immunization method, fusing the obtained immune cells with known parent cells by the usual cell fusion method, and screening for monoclonal antibody producing cells (hybridoma) by the usual screening method.
  • Hypridor mR It can be obtained by synthesizing an antibody variable region (V region) cDNA from NA using reverse transcriptase and ligating it with DNA encoding the desired antibody constant region (C region).
  • the sensitized antigen for obtaining an antibody gene that codes for the H chain and L chain described above has immunogenicity. It includes both complete antigens and incomplete antigens including haptens that do not exhibit immunogenicity.
  • a full-length protein of the target protein or a partial peptide can be used.
  • substances composed of polysaccharides, nucleic acids, lipids and the like can serve as antigens, and the antigen of the antibody of the present invention is not particularly limited.
  • Antigens can be prepared by methods known to those skilled in the art, for example, according to methods using baculovirus (eg, W098 / 46777).
  • the preparation of the nobridoma can be carried out, for example, according to the method of Milstein et al. (G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3-46).
  • the immunogenicity of the antigen is low, it may be immunized by binding to an immunogenic macromolecule such as albumin.
  • a soluble antigen can be obtained by binding an antigen to other molecules as necessary.
  • a transmembrane molecule such as a receptor
  • the extracellular region of the receptor can be used as a fragment, or a cell expressing the transmembrane molecule on the cell surface can be used as an immunogen. .
  • Antibody-producing cells can be obtained by immunizing an animal with the appropriate sensitizing antigen described above.
  • antibody-producing cells can be obtained by immunizing lymphocytes capable of producing antibodies in vitro.
  • mammals to be immunized various mammals can be used, but rodents, maggots, and primates are generally used. Examples include primates such as rodents such as mice, rats, and hamsters, maggots such as magpies, power monkeys, akage monkeys, baboons, chimpanzees, and the like.
  • transgenic animals having a repertoire of human antibody genes are also known, and human antibodies can be obtained by using such animals (WO96 / 34096; Mendez et al, Nat. Genet.
  • human lymphocytes are sensitized in vitro with the desired antigen or cells expressing the desired antigen, and the sensitized lymphocytes are human myeloma cells, such as By fusing with U266, a desired human antibody having an antigen-binding activity can also be obtained (see Japanese Patent Publication No. 59878).
  • Human antibodies A desired human antibody can be obtained by immunizing a transgenic animal having the entire repertoire of genes with a desired antigen (W093 / 12227, WO92 / 03918, W094 / 02602, WO96 / 34096, W096). / 33735).
  • a sensitizing antigen is appropriately diluted and suspended in Phosphate-Buffered Saline (PBS) or physiological saline, etc., mixed with an adjuvant as necessary, and then emulsified. Performed by intraperitoneal or subcutaneous injection. Thereafter, preferably, a sensitizing antigen mixed with Freund's incomplete adjuvant is administered several times every 4 to 21 days. Confirmation of antibody production can be performed by measuring the desired antibody titer in the serum of animals by a conventional method.
  • PBS Phosphate-Buffered Saline
  • physiological saline etc.
  • a sensitizing antigen mixed with Freund's incomplete adjuvant is administered several times every 4 to 21 days. Confirmation of antibody production can be performed by measuring the desired antibody titer in the serum of animals by a conventional method.
  • Hyperidoma is prepared by fusing antibody-producing cells obtained from animals or lymphocytes immunized with a desired antigen with myeloma cells using a conventional fusion agent (eg, polyethylene glycol).
  • a conventional fusion agent eg, polyethylene glycol
  • the hybridoma cells are cultured and proliferated, and the binding specificity of the antibody produced by the hybridoma is determined by a known analysis method such as immunoprecipitation, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), etc. taking measurement.
  • the hybridoma producing the antibody having the measured specificity, affinity or activity can be subcloned by a technique such as limiting dilution.
  • a gene that encodes the selected antibody from a hyperidoma or antibody-producing cells can be probed (for example, into a sequence encoding an antibody constant region). Cloning using complementary oligonucleotides and the like. It is also possible to clone from mRNA by RT-PCR. Immunoglobulins fall into five different classes: IgA, IgD, IgE, IgG and IgM. Furthermore, these classes are divided into several subclasses (isotypes) (eg, IgG_l, IgG_2, IgG-3, and IgG_4; IgA_l and IgA_2, etc.). The H chain and L chain used for antibody production in the present invention may be derived from antibodies belonging to any of these classes and subclasses, but are not particularly limited, but IgG is particularly preferred.
  • a recombinant antibody that has been artificially modified for the purpose of reducing heteroantigenicity to humans such as a chimeric antibody or a humanized antibody
  • a chimeric antibody is an antibody consisting of the variable regions of the non-human mammal, for example, the H chain and L chain of a mouse antibody, and the constant regions of the H chain and L chain of a human antibody, and encodes the variable region of a mouse antibody.
  • the DNA to be obtained can be obtained by ligating the DNA encoding the constant region of a human antibody, incorporating it into an expression vector, introducing it into a host, and producing it.
  • a humanized antibody also called a reshaped human antibody, is a DNA sequence designed to link complementary determining regions (CDRs) of non-human mammals, such as mouse antibodies. Is synthesized by PCR from several oligonucleotides prepared to have overlapping portions at the ends.
  • the obtained DNA is obtained by ligating with DNA encoding the constant region of a human antibody, then incorporating it into an expression vector, introducing it into a host and producing it (see EP239400; WO96 / 02576).
  • the human antibody FR to be ligated via CDR is selected such that the complementarity determining region forms a good antigen-binding site. If necessary, amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site (K. Sato et al., Cancer Res. 1993, 53: 851-856).
  • modifications may be made to improve the biological properties of the antibody, such as binding to the antigen.
  • the modification in the present invention can be carried out by site-specific mutation (see, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488), PCR mutation, cassette mutation, and the like.
  • improved antibodies strange mutant biological properties of 70% or more, more preferably 80% or more, more preferably 90% or more (e.g., 95% or more, 97./ 0, 98%, 99%, etc.)
  • the amino acid sequence of the variable region of the antibody based on the amino acid sequence homology and / or similarity.
  • sequence homology and / or similarity is defined as the difference between the original antibody residue after aligning the sequence and introducing a gap as necessary so that the sequence homology takes the maximum value. It is defined as the percentage of amino acid residues that are homologous (same residues) or similar (amino acid residues that fall into the same group based on the characteristics of the side chains of common amino acids).
  • Natural amino acid residues are usually based on their side chain properties: (1) Hydrophobic: alanine, isoleucine, valine, methionine and leucine; (2) neutral hydrophilic Sex: Asparagine, gnoretamine, cysteine, threonine and serine; (3) Acidity: Aspartic acid and glutamic acid; (4) Basicity: Arginine, histidine and lysine; (5) Residues affecting chain orientation: Glycine and Proline And (6) Aromaticity: classified into tyrosine, tributophan and phenylalanine groups.
  • variable regions Usually, a total of six complementarity determining regions (hypervariable regions; CDRs) present in the variable regions of the H and L chains interact to form the antigen-binding site of an antibody.
  • CDRs complementarity determining regions
  • even one variable region is known to be capable of recognizing and binding to an antigen, although it has a lower affinity and affinity than those containing the entire binding site. Therefore, the antibody gene encoding the H chain and L chain of the present invention is not limited as long as the polypeptide encoded by the gene maintains the binding property with the desired antigen. It only needs to code the fragment containing the antigen binding site.
  • the heavy chain variable region is usually composed of three CDR regions and four FR regions.
  • amino acid residues to be used for “modification” can be appropriately selected from, for example, amino acid residues located in the CDR region or FR region.
  • modification of the amino acid residues in the CDR region may reduce the antigen-binding ability. Therefore, the amino acid residue to be used for “modification” in the present invention is not particularly limited, but is preferably selected from amino acid residues located in the FR region.
  • FR region amino acid sequence information can be obtained by the means described in the Examples below.
  • the bispecific antibody consisting of a combination of anti-Factor Xa antibody A69_VH, anti-Factor X antibody B26_VH, and hybrid light chain (BBA), which has the strongest effect on shortening the blood clotting time in Japanese Patent Application 2005-112514. Humanization was performed as follows.
  • B26-H chain variable region EMBL Accession No. AB063872 (IMGT Database)
  • Humanized antibodies were prepared by grafting the complementary antigen-determining regions (hereinafter referred to as CDRs) of each mouse antibody into the FRs of human antibodies (l)-(3).
  • A69_H chain variable region GenBank Accession No. AF062257
  • 3 synthetic oligo DNAs of about 50 bases were prepared alternately so that the terminal side could hybridize about 20 bases.
  • Synthetic oligo DNA was designed so that the 5′-terminal side was human 1J and the 3′-end side encoded mouse sequence or all bases encoded human sequence. Furthermore, it anneals to the 5 ′ end of the antibody variable region gene, anneals to the 3 ′ end of the primer with the Xhol cleavage sequence and the 3 ′ end of the antibody variable region gene, has the Sfil cleavage sequence, and the 5 ′ end sequence of the intron sequence.
  • a coding primer was made.
  • the fragment was cloned using pGEM-T Easy Vector Systems (Promega) according to the method described in the attached instructions.
  • the base sequence of each DNA fragment is determined using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) with the DNA sequencer ABI PRISM 3730x L DNA Sequencer or ABI PRISM 3700 DNA Sequencer (Applied Biosystems) according to the method described in the attached instructions. did.
  • the H chain variable region fragment insertion plasmid confirmed to be the correct humanized antibody variable region gene sequence was digested with Xhol and Sfil, and the L chain variable region fragment insertion plasmid was digested with EcoRI. Was subjected to 1% agarose gel electrophoresis. A DNA fragment of the desired size (about 400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction, and eluted with 30 ⁇ 1 of sterilized water. Thereafter, an expression vector for animal cells was prepared as follows.
  • IgG4 which is a heterozygous combination
  • an amino acid substitution to the CH3 part of IgG4 was used with reference to the knobs-into-hole technology of IgGl (Merchant AM et al., Nature Biotechnology, 1998, Vol. L6, p.677-681).
  • an amino acid substitution (-ppcpScp- ⁇ -ppc P Pcp-) was also introduced into the hinge to promote dimer formation of the H chain.
  • variable region antibody gene fragment was inserted to prepare a humanized A69 heavy chain expression vector.
  • a humanized B26 heavy chain variable region antibody gene fragment was inserted into an expression vector into which a constant region gene substituted with E356C, T366S, L368A, or Y407V was inserted into pCAGGS to prepare a humanized B26 heavy chain expression vector.
  • a plasmid pCAG-g ⁇ DNA
  • the wild type antibody L chain constant region was inserted into pCAGGS was digested with EcoRI
  • an expression vector was prepared in which the humanized BBA L chain variable region antibody gene fragment was inserted.
  • Rapid DNA Ligation Kit (Roche Diagnostics) was used and E. coli DH5 strain (Toyobo) was transformed.
  • Humanized bispecific antibodies were expressed using the following method. Expression of humanized bispecific antibody derived from human fetal kidney cancer cells was performed using the method described in Example 12 or the following method. Human embryonic kidney cancer cell-derived HEK293H strain (Invitrogen) is suspended in DMEM medium (Invitrogen) containing 10% Fetal Bovine Serurn (Invitrogen), and dished for adherent cells at a cell density of 5-6 X 10 5 cells / mL ( 10 mL to each dish with a diameter of 10 cm, CORNING) After incubating overnight in a CO incubator (37 ° C, 5% CO), aspirate and remove 1% Fetal Bovine Serum (Invitrogen) 6.9 mL of CHO-S-SFM-II (Invitrogen) medium was added.
  • DMEM medium Invitrogen
  • Fetal Bovine Serurn Invitrogen
  • Example 1 was added 2 rProtein A Sepharose T M Fast of 100 mu L in the obtained culture supernatant by the method described in Flow (Amersham Biosciences), it was mixed by inversion over 4 hours at 4 ° C. Transfer the solution to a 0.22 ⁇ m filter cup Ultrafree ( R ) -MC (Millipore), wash 3 times with 500 ⁇ L of TBS containing 0.01% Tween (R) 20, and then add 100 ⁇ l to rProtein AS-labeled harose TM resin. The antibody was eluted after suspending in 50 mM sodium acetate aqueous solution containing 0.01% Tween (R) 20 L, pH 3.3 and allowing to stand for 2 minutes. Immediately, 6.7 ⁇ L of 1.5 M Tris-HCl, pH 7.8 was added for neutralization.
  • BiacorelOOO was used, and quantification was performed using Sensor Chip CM5 (B IACORE) to which Protein A was immobilized.
  • Sensor Chip CM5 B IACORE
  • a proteinA (SIGMA) solution diluted to 50 ⁇ g / mL with 10 mM sodium acetate aqueous solution (pH 4.0, BIACORE) on an activated sensor chip is 5 ⁇ L / min.
  • concentration of culture supernatant and purified product was measured using Biacore 1000 (BIACORE).
  • HBS-EP Buffer (BIACORE) was used to fix the sensor chip and measure the concentration.
  • humanized IgG4 antibody humanized anti-TF antibody, refer to WO 99/51743
  • HBS-EP Buffer 4000 ng / mL to 2-fold series is used as the standard for concentration measurement. did.
  • the amino acid of the human antibody FR was modified with the aim of increasing the activity of the humanized bispecific antibody with reduced blood coagulation ability.
  • mutations were introduced into the humanized antibody variable region using the method described in the attached certificate for the QuikChange Site-Directed Mutagenesis Kit (Stratagene). After digesting the H chain variable region fragment insertion plasmid, which has been confirmed to be the target humanized antibody variable region gene sequence, with Xhol and Sfil, and the L chain variable region fragment insertion plasmid with EcoRI, the reaction mixture was digested with 1% agarose genome. The sample was subjected to electrophoresis.
  • a DNA fragment of the desired size (about 400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) by the method described in the attached instruction, and eluted with 30 ⁇ ⁇ of sterile water. Thereafter, an expression plasmid for animal cells was prepared by the method shown in Examples 1 and 2. Humanized bispecific antibodies were prepared by the methods shown in Examples 1-1-3, 1-4, and 1-5, and blood coagulation activity was evaluated by the method shown in Examples 1-16.
  • Humanized bispecific antibody humanized ⁇ 69 (hA6) with activity equivalent to that of chimeric bispecific antibody ( ⁇ 69 / ⁇ 26 / ⁇ ) by repeated amino acid modification of FR sequence and evaluation of blood coagulation ability 9a) / Humanized B26 (hB26-F123e4) / Humanized BBA (hAL-F123j4) was obtained (FIG. 1).
  • Each antibody variable region sequence is shown in the following SEQ ID NOs.
  • Example 2 Selection of amino acid modification site of variable region for separation of bispecific antibody
  • two types of H chain and one type of L chain Homo-dimer of humanized A69-H chain and humanized BBA-L chain, homodimer of humanized B26-H chain and human-BBA-L chain, humanized A69-H chain and human ⁇ B26-H chain
  • Three types of antibodies, human dimers of BBA-L chain are expressed.
  • the isoelectric point of the humanized A69 heavy chain variable region is lowered and the isoelectric point of the humanized B2 6 heavy chain variable region is reduced.
  • Amino acid alterations were made to produce altered antibodies at the locations selected in Example 2. Specifically, using the QuikChange Site-Directed Mutagenesis Kit (Stratagene), the humanized A69 antibody H chain variable region (hA69a, nucleotide sequence number: 1) and humanized B26 antibody H prepared by the method described in the attached instructions Chain variable region (hB26_F123e4, base sequence number : A mutation was introduced in 3). After digesting the H chain variable region fragment insertion plasmid, which was confirmed to be the target humanized antibody variable region gene sequence, with Xhol and Sfil, the reaction solution was subjected to 1% arrow gel electrophoresis.
  • a DNA fragment of the desired size (about 400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction, and eluted with 30 ⁇ 1 of sterile water.
  • the prepared DNA fragment was inserted into an expression plasmid in which constant region amino acids were substituted with reference to the knobs-into-hole technique and an expression plasmid having a wild type constant region, and expression of the heavy chain was performed.
  • a vector was prepared.
  • humanized bispecific antibodies were prepared by the methods shown in Examples 1-3, 1-4, and 15.
  • the variable region sequences of the modified humanized antibodies are shown in SEQ ID NOs described in Table 1 below.
  • a modified antibody was prepared and analyzed by isoelectric focusing.
  • hB26_Fl 23e4 An antibody composed of three types of homodimers hB26_pl9 and hB26_pl5 was prepared. Isoelectric focusing was performed as follows. Phast-Gel Dry IEF (AmerchamBioscience) gel was swollen for about 30 min with the following swelling solution using Phastsystem Cassette (AmerchamBioscience).
  • Step 3 2000 V 2.5 mA 3.5 W 15 ° C 410 Vh
  • Fig. 3 shows the results of analysis of the unmodified and modified humanized A69 antibody homodimer and humanized B26 antibody homodimer. Band movement was observed in isoelectric focusing by surface charge modification. The isoelectric point of each antibody estimated with reference to the pi marker is about 8.8 for the unmodified hA69a homodimer, while about 8.4 for the modified 11869_18, about 8.2 for the hA69_pl7, and 1188- 8 was about 8.2 and hA69_pl6 was about 8.1. By modification, it was possible to give an isoelectric point difference of about 0.7 at maximum.
  • hB26_Fl 23e4 is about 9.1 for the humanized B26 homodimer
  • modified 1 ⁇ 26-19 is about 9.3
  • hB26_pl5 is about 9.4.
  • the modified antibody prepared in Example 4 was analyzed by cation exchange chromatography by the following method, and the effect of the modification on the separation of both antibodies was evaluated.
  • the conditions for cation exchange chromatography analysis were as follows, and the retention times of the humanized A69 antibody homodimer and the humanized B26 antibody homodimer were calculated.
  • Fig. 4 shows the results of analysis of homodimers of five unmodified and modified humanized A69 antibodies
  • Fig. 5 shows the results of analysis of homodimers of three unmodified and modified humanized B26 antibodies.
  • the retention time of the unmodified humanized A69 antibody homodimer and the humanized B26 antibody homodimer is around 25 min, and it is not possible to separate both homodimers or even the desired bispecific antibody.
  • Humanized A69 antibody modified to reduce the isoelectric point of the unmodified antibody showed a peak shift compared to the unmodified antibody, and the retention time was about 22.4 min, about 21.2 min, with the number of modifications. Shortened to about 20.2 min.
  • the humanized B26 antibody that had been modified to increase the isoelectric point of the variable region also showed a peak shift compared to the unmodified antibody, and the retention time increased to about 28.4 min and about 29.4 min with the number of modifications. Natsuta.
  • the surface charge of the two antibodies changes, thereby changing the retention time. It was shown that it is possible to
  • the unmodified hA69a homodimer and the unmodified hB26_F123e4 homodimer have a difference of 0.3 in pi, but both retention times were 25. Although it was around min and could not be separated (Fig. 9), unmodified hA69a homodimer and hB26-pl9 were given a difference of 0.5 in pi, and as a result, they were separated with a difference of retention time of about 2.6 min.
  • hA69-pl8 and hB26 homodimer have a difference of 0.7 in pi, and as a result, they are separated by a difference of about 3.4 min in retention time, and hA69_pl6 and hB26_pl5 have a difference of 1.3 in pi at maximum. As a result, they were separated with a retention time of about 9.2 min. Thus, the modification made it possible for the first time to separate two homodimers.
  • hA69-N97R which is a humanized A69-H chain
  • hAL_F123j4 which is a human ⁇ B BA-L chain
  • Factor IXa which is an antigen
  • Factor IXa ⁇ Enzyme Research Laboratories
  • Coating buffer 100 mM sodium bicarbonate, pH 9.6, 0.02% sodium azide
  • Nunc-Immuno plate Nunc-Immuno 96 MicroWell plates MaxiSorp Nalge N unc International
  • diluent buffer 50 mM Tris-HCl, pH 8.1, 1% bovine serum albumin, ImM MgCl, 0.15 M NaCl, 0.05% Tween ( R) 20, 0.02% sodium azide
  • purified antibody diluted with diluent buffer was added at 100 ⁇ L / well and incubated at room temperature for 1 hour.
  • the modified portion may be a CDR that is not limited to the FR shown in Example 5.
  • hA69a which is a human baboon A69-H chain
  • hB26_F123e4 which is a humanized B26-H chain
  • hAL_F123j4 which is a human BBA-L chain (SEQ ID NO: 5) in the antibodies shown in Table 1.
  • hA69-PFL which is a modified humanized A69-H chain
  • hB26_PF which is a modified humanized B26-H chain
  • hAL_s8 which is a humanized BBA-L chain in the antibodies shown in Table 1 (sequence) No. 17) was used to prepare a humanized bispecific PF antibody.
  • Example 1-12 an expression vector having a wild-type constant region was used to construct an expression vector as shown in Example 1-12, Example 1-13, Example 1-114, and Example 1_5.
  • the antibody was prepared according to the method described above. Using the mixed solution containing these two types of homodimers and bispecific antibodies, a cation exchange chromatography analysis was carried out by the method shown in Example 5.
  • the isoelectric points of the humanized A69-PF antibody homodimer, the human ⁇ bispecific PF antibody, and the humanized B26-PF antibody homodimer are about 7.9, about 8.6, and about 9.2. Difference in isoelectric point of homodimer of human dimer PF antibody is about 0.7, and difference in isoelectric point of humanized B26-PF antibody homodimer is about 0.6. Was confirmed.
  • Bispecific PF antibody with IgG4 constant region using Knobs-into-holes technology and bispecific PF antibody with wild type constant region purified by cation exchange chromatography have the same coagulation activity. It was shown that the bispecific antibody can be purified with high purity without affecting the activity by modifying the variable region of H10, H12, H23, H39, H43, and H105 in the Examples.
  • an antibody-expressing cell line was established as follows.
  • CCACC Complementary Kozak sequence
  • hA69-KQ humanized A69-H chain antibody
  • hB26_PF human B26-H chain antibody
  • Table 1 PCR is performed using a primer having an EcoRI recognition sequence and a primer on the 3′-end base sequence having an Nhel recognition sequence, and the resulting PCR product is digested with EcoRI, Nhel (both Takara Shuzo). Similarly, EcoRI, Nhel The variable region and the constant region were ligated by inserting into pBCH4 digested with p.
  • the prepared humanized A69-H chain antibody vector was digested with EcoRI and Notl (both Takara Shuzo) and cloned into the animal cell expression vector pCXND3 that was also digested with EcoRI and Notl.
  • the prepared humanized B26-H chain antibody vector was digested with EcoRI and Notl (both Takara Shuzo) and cloned into the animal cell expression vector pCXZDl digested with EcoRI and Notl.
  • the pCXZDl vector is an expression vector obtained by replacing the neomycin resistance gene of the pCXND3 vector with a zeocin resistance gene.
  • a synthetic oligonucleotide having a Kozak sequence complementary to the 5 ′ terminal base sequence of the L chain variable region of the humanized BBA-L chain antibody (hAL-AQ, SEQ ID NO: 18) and 3 ′ having a Bsi WI site PCR was performed using a synthetic oligonucleotide complementary to the terminal nucleotide sequence, and the resulting PCR product was cloned into a pBCL vector in which the human kappa chain constant region was inserted into the pBluescriptKS + vector. The human L chain variable region and the constant region are linked by the BsiWI site. The prepared L chain gene fragment was cloned into the expression vector pUCAG.
  • This vector, pUCAG was cloned by ligating the 2.6 kbp fragment obtained by digesting pCXN (Niwa et al., Gene 1991; 108: 193-200) with the restriction enzyme BamHI into the restriction enzyme BamHI site of the pUC19 vector (Toyobo). It is the best vector.
  • the vector in which the L chain was cloned into pUCAG was digested with the restriction enzyme BamHI and cloned into the expression vector pHygDHFR_4b containing the hygromycin resistance gene.
  • the prepared three types of expression vectors were linearized with restriction enzymes and then introduced into CHO-DG44 cells to obtain antibody-expressing cell lines.
  • a stable expression cell line was prepared as follows. Genes were introduced by the electopore position method using GenePulserll (Bio-Rad). A mixture of each antibody expression vector and 0.75 mL of CHO cells (1 X 10 7 cells / mL) suspended in PBS was cooled on ice for 10 minutes, transferred to a cuvette, and then transferred to a volume of 1.5 kV and 25 ⁇ FD. A pulse was given. After a recovery period of 10 minutes at room temperature, the cells treated with the electoporation were suspended in 40 mL of CHO_S_SFMII medium (Invitrogen) containing HT supplement (Invitrogen) at a 1-fold concentration.
  • CHO_S_SFMII medium Invitrogen
  • HT supplement Invitrogen
  • a 10-fold diluted solution was prepared in the same medium, and dispensed at 100 x L / well onto a 96-well culture plate. After culturing for 24 hours in C ⁇ incubator (5% CO), Geneticin (Invitrogen) is 0.5 mg / mL, Zeocm (Invitrogen) is 0.1 mg / mL, HygromycmB (Invitrogen is 0.4 mg / mL Finally, The mixture was added and cultured for 2 weeks. Colonies of transformed cells exhibiting drug resistance were sequentially expanded and cultured in large quantities using the established high-producing cell line to obtain a culture supernatant.
  • the bispecific antibody was purified from the culture supernatant obtained in Example 8 by the following method.
  • olvent A 20 mmol / L Sodium Acetate buffer, pH6.0
  • Solvent B 20 mmol / L Sodium Acetate buffer, 1 mol / L Naul, pH 6.0 Flow rate: 5.3 mL / min (60 cm / h) only when elution 10 mL / min (113 cm / h) Gradient: 0 ⁇ 15% B Step wise 3 Column Volume (CV)
  • the humanized bispecific antibody prepared in Example 9 was evaluated for coagulation activity according to the method shown in Example 6. The evaluation results are shown in FIG. Compared with the humanized bispecific PF antibody prepared in Example 8, the humanized bispecific antibody purified in Example 9 had the same clotting activity.
  • the amino acid sequences of the variable regions are slightly different, such as hA69_PFL and hA69-KQ However, it was shown that even if the antibody was purified using a general-purpose column for production, the activity was not affected.
  • the surface charge can be changed without altering the structure or the function (activity) of the antibody by modifying the variable region of the heavy chain. It was found that a bispecific antibody and an antibody that forms two homodimers can be separated and purified. Since it was shown that the bispecific antibody can be separated and purified even in a general-purpose column for production by using this method, it is useful as a method for producing a pharmaceutical comprising a bispecific antibody.
  • PCR was performed using a thermal cycler GeneAmp PCR system 9700 (Parkin Elmer), heated at 98 ° C for 2 minutes, and then subjected to a reaction consisting of 98 ° C for 10 seconds, 60 ° C for 5 seconds, 72 ° C for 2 minutes for 30 cycles. And finally heated at 72 ° C for 10 min. After PCR, the reaction solution was subjected to 1% agarose gel electrophoresis.
  • Amplified fragments of the desired size are purified with the QIAqucick Gel Extractio Kit (QIAGEN) according to the method described in the attached instruction, eluted with 50 zL of sterile water, and then A (Adenosine) R-Taq treatment was performed to add.
  • the r_Taq treatment was performed using 10 ⁇ L of rTaq reaction solution (1 ⁇ L of 10 X rTaq reaction solution, 1 ⁇ L of 2.5 mM dNTPs, 1 ⁇ L of rTaq, and 7 ⁇ L of the above amplified fragment). The fragments were incubated at 72 ° C for 30 min.
  • the r_Taq-treated fragment was cloned into PCR2.1-TOPO vector (Invitrogen), and the nucleotide sequence was determined.
  • the base sequence of each DNA fragment is determined using BigDye Terminator 3.1 Cycle Sequencing Kit (Applied Biosystems), DNA sequencer ABI PRISM 3730xL Genetic Analyzer (Appl ied Biosystems) according to the method described in the attached manual.
  • the determined base sequence is compared with Accession No. BX640623, and bases with different translated amino acid sequences are considered to be mutations inserted during PCR amplification, and the Quick Change Site-Directed Mutagenesis Kit (Stratagene) is used. Thus, the amino acid substitution was performed, and the amino acid sequence of BX640623 was modified to the same sequence as IJ.
  • the Quick Change Site-Directed Mutagenesis Kit (St ratagene) was performed according to the method described in the attached manual.
  • the first two amino acids (AlaSer) of the human IgG2-H chain constant region become the restriction enzyme Nhel recognition sequence (GCTAGC). Mutated.
  • the nucleotide sequence and amino acid sequence of the HgG2_H chain constant region used in this study are shown in SEQ ID NO: 24 and SEQ ID NO: 25, respectively.
  • Antibody expression vectors in which the heavy chain variable region of humanized PM-1 antibody and various heavy chain constant regions of human IgG1, human IgG2, and human IgG4 were linked were prepared as follows.
  • the H chain gene fragment in which the H chain variable region and the constant region were linked was inserted into a pCAGGS vector (Niwa et al. 1991 Gene, 108: 193-199) whose expression is controlled by the chicken ⁇ -actin promoter.
  • the H chain variable region gene of the PCR-amplified human ⁇ PM-1 antibody was defined as the HgG4 constant region gene (see WO 99/51743) and Nhel at the 5 ′ end of the human IgG2-H chain gene prepared in Example 11_1.
  • Various H chain expression vectors express the H chain by linking the H chain variable region of humanized PM-1 antibody and the human H chain constant region by Nhel sequence.
  • a synthetic oligonucleotide having a Kozak sequence that is complementary to the 5 'terminal nucleotide sequence of the L chain variable region of the humanized PM-1 antibody and the 3' terminal side having the restriction enzyme BsiWI recognition sequence PCR was performed using a synthetic oligonucleotide complementary to the base sequence, and the resulting PCR product was cloned into the pB_CL vector inserted into the human kappa chain constant region force Bluescript KS + vector (TOYOBO).
  • the L chain gene fragment in which the L chain variable region and the constant region were linked was inserted into a pCAGGS vector whose expression is controlled by the chicken ⁇ -actin promoter.
  • the BsiWI sequence links the L chain variable region of the humanized PM-1 antibody and the human kappa chain constant region to express the L chain.
  • the subclass hybrid antibody is a combination of two types of humanized PM-1 antibody heavy chain expression vectors with various constant regions of human IgG1, human IgG2, and human IgG4, for expression together with humanized PM-1 antibody light chain expression vectors. This is made possible by co-expression in cells. Each antibody was expressed using the method described in Example 4-12 or the following method.
  • Human embryonic kidney cancer cell-derived HEK293H strain (Invitrogen) is suspended in DM EM medium (Invitrogen) containing 10% Fetal Bovine Serum (Invitrogen) and dished for adherent cells at a cell density of 5-6 X 10 5 cells / mL (Dilute 10 mL to each dish of 10 cm in diameter, CORNING) After incubating overnight in a CO incubator (37 ° C, 5% CO 2), aspirate the medium and CHO-S-SFM-lKl nvitrogen) 6.9 mL of medium was added. Using the plasmid DNA prepared in 11-2, each subclass antibody expression mixture and hybrid antibody expression mixture (13.8 / g in total) were prepared as follows.
  • the cells were removed by centrifugation (approximately 2000 g, 5 minutes, room temperature), and further sterilized through a 0.22 ⁇ m filter MILLEX®-GV (Millipore). The sample was stored at 4 ° C until use.
  • Example 1 1 1 1 1 To the culture supernatant obtained by the method described in 3 above, 100 ⁇ L of rProtein A Sepharose TM Fast Flow (Amersham Biosciences) was added and mixed by inverting at 4 ° C for 4 hours or more. Transfer the solution to a 0.22 ⁇ m filter cup Ultrafree ( R ) -MC (Millipore), wash 3 times with 500 ⁇ L of TBS, and then add 100 ⁇ L of 50 mM sodium acetate aqueous solution to rProtein AS-marked harose TM resin. After suspending in pH 3.0 and allowing to stand for 2 minutes, the antibody was eluted.
  • the purified antibody having the H chain constant region of HgGl is “unmodified humanized anti-PM-1 antibody”, and the antibody having the H chain constant region of HgG2 is “Ig G2 humanized anti-PM-1 antibody”.
  • An antibody having the H chain constant region of HgG4 is described below as “IgG4 human anti-P M-1 antibody”.
  • Antibody concentration (mg / mL) Absorbance X Dilution factor ⁇ 14.6 X 10
  • Isoelectric focusing was performed as follows. Phastsystem Cassette The following swelling solution with (AmerchamBioscien ce Inc.) as 30 min Phast-Gel Dry IEF ( AmerchamBioscien c e Ltd.) to swell the gel.
  • Step IV 2000 V 2.5 mA 3.5 W 15 ° C 75 Vh
  • Step 2 200 V 2.5 mA 3.5 W 15 ° C 15 Vh
  • Fig. 15 shows the results of analysis of the unmodified, IgG2-ized and IgG4-ized human rabbit PM-1 antibodies. Band movement was observed in isoelectric focusing by subclass substitution. The isoelectric point of each antibody estimated with reference to the pi marker is about 9.3 for the unmodified humanized PM-1 antibody, while that for the IgG2 humanized PM-1 antibody is about 8.9, IgG4 human PM-1 antibody was about 8.7, and substitution could give an isoelectric point difference of up to about 0.6. In this study, it was shown that the isoelectric point can be changed by substituting the constant region of the antibody subclass.
  • FIG. 16 shows the results of co-expressed antibody analysis of unmodified, IgG2 humanized PM-1 antibody and unmodified, IgG4 humanized PM-1 antibody.
  • the homodimer and heterodimer of each subclass are observed as three main bands, and the isoelectric point of each subclass hybrid antibody estimated with reference to the pi marker is the unmodified humanized ⁇ -1 /
  • the IgG2 hybridized human PM-1 hybrid antibody was 9.2 and the unmodified humanized PM-1 / IgG4 human PM-1 hybrid antibody strength was.
  • subclass hybrid antibodies can be produced by combining the expression vectors of each subclass antibody and co-expressing them, and that they are separated with a difference in isoelectric point.
  • FIG. 17 shows the analysis results of the unmodified, IgG2-ized and IgG4-modified H ⁇ PM-1 antibodies expressed alone. Retention times of unmodified humanized PM-1 antibody, IgG2 humanized PM-1 antibody, and IgG4 humanized PM-1 antibody are approximately 60.2 min, 30.5 min, and 30.3 min, respectively. Minor retention time changed. On the other hand, the retention times of IgG2-humanized PM-1 antibody and IgG4-humanized PM-1 antibody, which showed a pi difference from isoelectric focusing, were almost the same.
  • FIG. 18 shows the result of co-expressed antibody analysis of unmodified, IgG2 and unmodified, IgG4 humanized PM-1 antibodies.
  • subclass hybrid antibodies can be prepared by co-expressing expression vectors of each subclass antibody in combination, and that they can be separated by ion exchange chromatography.
  • Example 13 Separation and purification of subclass hybrid antibodies by cation exchange chromatography
  • Example 11 After concentrating the antibody solution obtained in Example 11 with Amicon-Ultra4 (Amicon), encapsulating it in EasySep (Tomy Seye), and dialyzing against 5 mM citrate buffer (pH 6.5), the buffer solution was replaced.
  • the subclass hybrid antibody was purified under the following conditions.
  • IgG4 humanized PM-1 subclass hybrid antibody and IgG4 humanized PM-1 antibody peak were collected.
  • Fig. 19 shows the chromatogram at the time of fractionation. Multiple peak fractions were mixed, concentrated with Amicon-Ultra4 (Amicon), sealed in EasySep (Tomy Se), and PBS for activity measurement and 150 mM NaCl for DSC measurement. The buffer was replaced by dialysis against 20 mM acetate buffer, pH 6.0. The result of reanalyzing the preparative peak under the same conditions as above is shown in FIG. From this, it was shown that fractionation purification is possible by subclass hybrid antibody power S ion exchange chromatography.
  • bispecific antibodies can be separated by ion exchange chromatography by linking to the heavy chain constant regions of subclasses with different pi values.
  • the pi difference between molecules can be further increased and separation and purification can be facilitated by combining with the variable region mutagenesis technique shown in Example 9. If it is difficult to introduce mutations into the heavy chain variable region, these can be converted to naturally occurring IgG subclass sequences, allowing separation and purification of bispecific antibodies by ion exchange chromatography without considering antigenicity. It becomes.
  • Example 14 Isoelectric focusing of subclass hybrid antibody preparative purified product In order to evaluate the purity of the preparative product, analysis by isoelectric focusing was performed.
  • Isoelectric focusing was performed as follows. Phast-Gel Dry IEF (AmerchamBioscience) gel was swollen for about 30 min with the following swelling solution using Phastsystem Cassette (AmerchamBioscience).
  • Step IV 2000 V 2.5 mA 3.5 W 15 ° C 75 Vh
  • Step 2 200 V 2.5 mA 3.5 W 15 ° C 15 Vh
  • Step 3 2000 V 2.5 mA 3.5 W 15 ° C 410 Vh
  • Fig. 21 shows the analysis results of the purified subclass hybrid antibody product. Ion exchange chromatography showed that it could be purified with almost no homodimers of each subclass.
  • a BaF3 cell line expressing human gpl30 was established as shown below.
  • Human gpl30-expressing BaF3 cells selected by adding RP MI1640 medium containing 100 ng / mL human interieukin-6 (R & D), 100 ng / mL human interleukin-6 soluble receptor (R & D systems) and 10% FBS A strain (hereinafter referred to as BaF3 / gpl30) was established.
  • IL-6 neutralizing activity was evaluated using BaF3 / gpl30, which shows IL-6-dependent proliferation.
  • RPMI1640 with 10% FBS to 10 ⁇ g / mL of purified unmodified humanized PM-1 antibody, unmodified / IgG4 humanized PM-1 subclass hybrid antibody and IgG4 humanized PM-1 antibody Dilute to Using this solution, a total of 7 dilutions with a common dilution ratio of 3 were prepared, and 50 / i L was dispensed into each well of a 96wel plate (CORNING).
  • the BaF3 / gpl30 was washed three times with RPMI1640 medium containing 10% F BS (HyClone), 5 x of 10 4 cells / mL become as 60 ng / mL human interleukin-6 (TORAY), 60
  • the suspension was suspended in RPMI1640 medium containing ng / mL soluble human IL-6 receptor (manufactured product) and 10% FBS, and 50 ⁇ L was mixed in each well, and then antibody samples were dispensed.
  • Human soluble IL-6 receptor was prepared by the method shown below.
  • a gene encoding amino acids 1 to 344 of human soluble IL-6 receptor (Yamasaki et al., Science 1988; 241: 825-828 (GenBank # X 12830)) was introduced into CHO cells and purified from the culture supernatant. Prepared. Add WST-8 reagent (Cell Counting Kit-8, Dojindo Laboratories Co., Ltd.) diluted 20-fold at 37 ° C and 5% CO for 72 hours, and add 20 ⁇ L / well. Immediately after that, absorbance at 450 nm (reference wavelength 620 nm) was measured using SUNRISE CLASSIC (TECAN). After culturing for 2 hours, the absorbance at 450 nm (reference wavelength: 620 nm) was measured again, and IL-6 neutralizing activity was evaluated using the change in absorbance for 2 hours as an index.
  • WST-8 reagent Cell Counting Kit-8, Dojindo Laboratories Co., Ltd.
  • pre-purified unmodified humanized PM-1 antibody, unmodified / IgG4 humanized PM-1 subclass hybrid antibody, and IgG4 humanized PM-1 antibody were human.
  • PM-1 antibody purified product (bulk) and neutralizing activity were equivalent. From the above, anti-subclass hybrid It was shown that the body does not lose its original antigen-binding ability and has a function as a neutralizing antibody.

Abstract

 二重特異性抗体を構成する2種類の抗体が、抗体可変領域の表面に存在するアミノ酸を改変することによって、2種類の抗体のH鎖の間に等電点の差異を導入し、等電点の違いを利用して、二重特異性抗体をクロマトグラフィーカラムで効率的に精製する方法を見出した。また等電点に差のある抗体の定常領域に各抗原結合部位(重鎖可変領域)を組み込み、これらを共発現させることによって、二重特異性抗体をクロマトグラフィーカラムで効率的に精製する方法を見出した。

Description

明 細 書
二重特異性抗体を精製するための抗体改変方法
技術分野
[0001] 本発明は、二重特異性抗体を精製するための抗体改変方法、該二重特異性抗体 の分離方法、および該二重特異性抗体を有効成分として含有する医薬組成物等に 関する。
背景技術
[0002] 抗体は血中での安定性が高ぐ副作用も少ないことから医薬品として注目されてい る。その中には二種類の抗原 (抗原 Aと抗原 B)を同時に認識できる二重特異性抗体 がある(非特許文献 1)。現在、臨床試験が行なわれている MDX-210は、 Fc y RIを発 現してレ、る monocyte等を HER-2/neuを発現してレ、る癌細胞に retargetingする IgG型 二重特異性抗体である(非特許文献 2)。抗体の製造は、一般的に遺伝子組み換え 技術を用いることが多レ、。具体的には、抗体の蛋白質をコードする DNAをハイブリド 一マ、抗体を産生する感作リンパ球等の抗体産生細胞、または抗体遺伝子を提示し ているファージライブラリーからクローユングし、適当なベクターに組み込み、これを 宿主細胞に導入し産生させる技術である。遺伝子組み換え技術を用いた IgG型二重 特異性抗体の製造は、 目的の二種類の IgGを構成する H鎖及び L鎖の遺伝子、合計 4種の遺伝子を細胞に導入し、共発現により分泌させる。このような発現において、野 生型の H鎖及び L鎖の構成遺伝子を発現させた場合には、 2種類の H鎖の会合や H 鎖と L鎖の会合はランダムに起こるため、 目的の二重特異性抗体の比率は極めて少 なくなる。具体的には、 目的の二重特異性抗体は 10種類中 1種類のみであり、生産 効率は低下してしまう。 目的抗体の生産効率の低下は、 目的抗体の精製の障害にな るばかりでなぐロット間差などの不均一性を増大させ、生産コストの肥大を招くことに なる。
[0003] 二重特異性抗体を開発するための効率的な二重特異性抗体作製方法として、両 H 鎖に共通する L鎖を取得するための共通 L鎖取得技術および H鎖へテロ会合化のた めの Knobs-into-holes技術が報告されている。具体的には、抗原 Aと抗原 Bを認識す る各 H鎖に対して、両抗原結合活性を維持することができる共通の L鎖をファージライ ブラリー(Phage library)等から見出し、さらに、一方の H鎖の CH3領域に存在するアミ ノ酸側鎖をより大きい側鎖(knob;突起)に置換し、もう一方の H鎖の CH3領域に存在 するアミノ酸側鎖をより小さい側鎖 (hole;空隙)に置換することにより突起が空隙内に 配置されるようにして H鎖へテロダイマーの形成を促進し、 目的の二重特異性抗体を 効率的に取得することができる (特許文献 1、非特許文献 3、非特許文献 4)。
[0004] しかしながら、 H鎖へテロダイマーのために Knobs-into-holes技術を用いた場合でも 、非特許文献 3、非特許文献 4に示されたように Knobs-into-holes技術によって目的 の A鎖 B鎖へテロダイマーの含有率を最大 95%程度まで高めることが可能だ力 残り の 5%は A鎖ホモダイマー、 B鎖ホモダイマーであり不純物となってしまう。医薬品とし て、二重特異性抗体を開発するためには、共通 L鎖 (非特許文献 3,非特許文献 4) を用いた場合に産生される 3種類の分子種 (A鎖ホモダイマー、 B鎖ホモダイマー、 A 鎖 B鎖へテロダイマー)の中から、可能な限り高純度に A鎖 B鎖へテロダイマーを精製 する必要がある。そのため残りの 5%の不純物である A鎖ホモダイマー、 B鎖ホモダイ マーを取り除き、 A鎖 B鎖へテロダイマーを医薬品として開発可能な高純度まで精製 する必要がある。共通 L鎖を用い、 Knobs-into-holes技術を用いない場合は、理論上 、 A鎖ホモダイマー、 A鎖 B鎖へテロダイマー、 B鎖ホモダイマーが 1: 2 : 1で産生され、 50%の不純物である A鎖ホモダイマー、 B鎖ホモダイマーを取り除く必要がある。
[0005] 医薬品の製造レベルのクロマトグラフィーによる分離において、 A鎖 B鎖へテロダイ マーと A鎖ホモダイマー、 B鎖ホモダイマーを分離する方法がこれまでにいくつか報 告されている。 A鎖 B鎖へテロダイマーを選択的に精製する方法として、非特許文献 5 には A鎖に mouse IgG2a、 B鎖に rat IgG2bを使用し、 mouse IgG2aと rat IgG2bの各 H 鎖に対する protein Aへのァフィ二ティーの違いを利用し、 protein Aからの溶出 pHを コントロールすることで、 A鎖 B鎖へテロダイマーを精製する方法が報告されているが 、 mouseおよび ratの定常領域を使用しているため、抗原性の観点から同方法はヒトに 対する医薬品への応用は困難である。またこの方法では同じサブクラスの H鎖からな る A鎖 B鎖へテロダイマーを分離することはできないため、利用は限定される。
[0006] 非特許文献 6には疎水相互作用クロマトグラフィーを用いた A鎖 B鎖へテロダイマー を精製する方法が報告されている力 Anti-CD3 mouse IgG2aと anti_CD19 mouse Ig Glからなる目的の A鎖 B鎖へテロダイマーが十分にピーク分離しておらず、また、異 なるサブクラスの H鎖を用い、その疎水性の違いを利用して分離していると考えられる こと力ら、同じサブクラスの H鎖からなる A鎖 B鎖へテロダイマーを必ずしも分離できる とは限らない。
[0007] 非特許文献 7には Thiophilic affinityクロマトグラフィーを用いた A鎖 B鎖へテロダイマ 一を精製する方法が報告されている力 mouse IgGlと rat IgG2aを用レ、、そのヒンジ領 域におけるフリーのシスティン (チオール基)を利用していることから、同じサブクラス の H鎖からなる A鎖 B鎖へテロダイマーの分離には利用できず、またフリーのシスティ ンは保存中のァグリゲーシヨンに関与するため、安定な医薬品製剤の開発には適さ ない。
[0008] 非特許文献 8には抗原を用いたァフィ二ティークロマトグラフィーが報告されている 。しかし、タンパク質あるいはペプチド抗原を用いたァフィ二ティークロマトグラフィー は、カラムのコストや安定性に課題があるため、ァフィ二ティークロマトグラフィーを用 いた医薬品の製造は一般的ではない。また両抗原に結合する A鎖 B鎖へテロダイマ 一の精製のためにはァフィ二ティークロマトグラフィーを 2回実施する必要があり、コス トが高くなることが予想される。また抗原の立体構造のみを認識する抗体や低ァフィ 二ティで目的の機能を有する抗体が報告されており、このような性質を持つ抗体は抗 原を利用したァフィ二ティクロマトグラフィーを使用することが困難である。従って、ァ フィニティークロマトグラフィーを用いた二重特異性抗体の精製は汎用的ではないと 考えられる。
[0009] このように二重特異性抗体の A鎖 B鎖へテロダイマー精製は限られた範囲内でしか 行われておらず、同じ H鎖サブクラス'定常領域配列からなる二重特異性抗体の A鎖 B鎖へテロダイマーを、医薬品として許容されるような高い純度まで精製する方法は 報告されていない。二重特異性抗体を構成する 2種類の抗体が同じ定常領域配列を 有する場合、可変領域配列の違いのみにより、 A鎖 B鎖へテロダイマーを分離する必 要があるが、抗体の可変領域のアミノ酸配列は抗体間で非常にホモロジ一が高く(非 特許文献 9)、可変領域配列の違いだけで A鎖 B鎖へテロダイマーを医薬品として許 容されるような高い純度まで精製することは困難であった。
[0010] 特許文献 1 :国際公開第 96/27011号
非特午文献 1: Marvm JS,および Zhu Z.: 、「Recombmant approaches to Igu-like bis pecific antibodies.」、 Acta Pharmacol Sin., 2005年 Jun、 Vol.26(6)、 p.649-58.
非特許文献 2 : Segal DMら著、 Current Opinion in Immunology, 1999年、 Vol.11, p.5
58-562.
非特許文献 3 : Merchant AM,外 6名著、「An efficient route to human bispecific IgG. J , Nat Biotechnol.、 1998年 Jul、 Vol.16(7), p.677-81.
非特許文献 4 : Carter P.著、「Bispecific human IgG by design.」、 J Immunol Methods. 、 2001年 Feb 1、 Vol.248(l- 2)、 p.7-15.
非特許文献 5 : Lindhofer H,外 3名著、「Preferential species-restricted heavy/light c hain pairing in rat/mouse quadromas. Implications for a single-step purification of bi specific antibodies.] , J Immunol.、 1995年 Jul 1、 Vol. l55(l)、 p.219-25.
非特許文献 6 : Manzke 0,外 3名著、「Single_step purification of bispecific monoclon al antibodies for immunotherapeutic use by hydrophobic interaction chromatography .」、 J Immunol Methods. , 1997年 Oct 13、 Vol.208(l)、 p.65-73.
非特許文献 7 : Kreutz FT,外 2名著、「Efficient bispecific monoclonal antibody purific ation using gradient thiophilic affinity chromatography -」、 J Chromatogr B Biomed Sc i Appl.、 1998年 S印 4、 Vol.714(2)、 p.161- 70·
非特許文献 8 : Gupta S,および Suresh M.者、 「Affinity chromatography and co-chro matography of bispecific monoclonal antibody immunoconjugates.J、 J Biochem Bioph ys Methods.、 2002年 May 31、 Vol.51(3)、 p.203-16. Review.
非特許文献 9 : Carl Branden著、 Introduction to Protein Structure 2nd edition, Newto n Press.
発明の開示
発明が解決しょうとする課題
[0011] 本発明はこのような状況に鑑みて為されたものであり、その目的は、二重特異性抗 体を効率的に精製するための抗体可変領域のアミノ酸改変の方法、改変された二重 特異性抗体からなる医薬組成物、並びに、二重特異性抗体医薬組成物の製造方法 を提供することにある。また本発明は、重鎖定常領域が改変された二重特異性抗体 、改変された二重特異性抗体からなる医薬組成物、並びに、二重特異性抗体医薬 組成物の製造方法を提供することにある。
課題を解決するための手段
[0012] 本発明者らは、 目的物の精製が従来困難であった二重特異性抗体を汎用的なクロ マトグラフィーカラムを用いることで効率的に精製できる方法として、抗体可変領域の アミノ酸置換による方法にっレ、て、鋭意研究を行った。
[0013] その結果、二重特異性抗体を構成する 2種類の抗体が抗体可変領域の表面に存 在するアミノ酸を改変することによって、 2種類の抗体の H鎖の間に等電点の差異を 導入し、等電点の違いを利用して、二重特異性抗体をクロマトグラフィーカラムで効 率的に精製する方法を見出した。具体的には、抗体の H鎖において、抗体の機能( 活性)を低下させることなぐ等電点のみを制御することが可能な改変箇所を見出し た。さらに本発明者らは、本発明の方法によって取得された二重特異性抗体が、実 際に機能を保持していることを確認した。
[0014] 上述の如く本発明者らは、任意の二重特異性抗体を汎用的なクロマトグラフィー力 ラムを用いることで効率的に精製できる方法として、抗体可変領域のアミノ酸置換に よる方法の開発に成功し、本発明を完成させた。
[0015] また本発明者らは、二重特異性抗体を構成する 2種類の H鎖の定常領域に対して、 元来等電点に差のある異なるサブクラスの定常領域をそれぞれの H鎖に用いることで 、等電点の違いを利用して、二重特異性抗体をクロマトグラフィーカラムで効率的に 精製する方法を見出した。さらに本発明者らは、本発明の方法によって取得された二 重特異性抗体が、実際に機能を保持していることも確認した。
[0016] 本発明は、クロマトグラフィーカラムを用いることで効率的に精製するための抗体可 変領域のアミノ酸置換方法、および、改変された二重特異性抗体からなる医薬組成 物、および、二重特異性抗体医薬組成物の製造方法に関し、さらに重鎖定常領域が 改変された二重特異性抗体、および、改変された二重特異性抗体からなる医薬組成 物、および、二重特異性抗体医薬組成物の製造方法に関し、より具体的には、 〔1〕 第 1のポリペプチドおよび第 2のポリペプチドを含む多重特異性抗体の製造方 法であって、
(a)第 1のポリペプチドと第 2のポリペプチドの等電点に差がつくように、第 1のポリべ プチドのアミノ酸残基をコードする核酸および第 2のポリペプチドのアミノ酸残基をコ ードする核酸の両方またはいずれか一方を改変し、
(b)宿主細胞を該核酸が発現するように培養し、
(c)宿主細胞培養物から多重特異性抗体を回収すること、
を含む多重特異性抗体の製造方法、
[2] 工程(a)の改変が、第 1のポリペプチドのホモ多量体、第 2のポリペプチドのホ モ多量体、および第 1のポリペプチドと第 2のポリペプチドのヘテロ多量体力 標準的 なクロマトグラフィーを使用した分析により分離したピークとなるように、核酸を改変す ることである〔1〕に記載の方法、
〔3〕 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖可変領域を含む〔 1〕に記載の方法、
〔4〕 前記多重特異性抗体が、軽鎖可変領域を含む第 3のポリペプチドを含み、前 記第 1のポリペプチドおよび前記第 2のポリペプチドがそれぞれ該第 3のポリペプチド と多量体を形成する〔3〕に記載の方法、
〔5〕 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖定常領域を含む〔 1〕〜〔4〕のレ、ずれか 1項に記載の方法、
〔6〕 前記第 1のポリペプチドおよび第 2のポリペプチドに含まれる重鎖定常領域が 互いに等電点の異なる重鎖定常領域である〔5〕に記載の方法、
〔7〕 前記等電点の異なる重鎖定常領域が IgGlと IgG4、又は、 IgGlと IgG2である〔6〕 に記載の方法、
〔8〕 前記多重特異性抗体が、二重特異性抗体である〔1〕に記載の方法、 〔9〕 〔1〕に記載の方法により製造される多重特異性抗体、
〔10〕 第 1のポリペプチドおよび第 2のポリペプチドを含む多重特異性抗体の精製方 法であって、
(a)第 1のポリペプチドと第 2のポリペプチドの等電点に差がつくように、第 1のポリべ プチドのアミノ酸残基をコードする核酸および第 2のポリペプチドのアミノ酸残基をコ ードする核酸の両方またはいずれか一方を改変し、
(b)宿主細胞を該核酸が発現するように培養し、
(c)宿主細胞培養物から標準的なクロマトグラフィーにより該多重特異性抗体を精製 すること、
を含む多重特異性抗体の精製方法、
〔11〕 工程(a)の改変が、第 1のポリペプチドのホモ多量体、第 2のポリペプチドのホ モ多量体、および第 1のポリペプチドと第 2のポリペプチドのヘテロ多量体力 標準的 なクロマトグラフィーを使用した分析により分離したピークとなるように、核酸を改変す ることである〔10〕に記載の方法、
[12] 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖可変領域を含む 〔10〕に記載の方法、
〔13〕 前記多重特異性抗体が、軽鎖可変領域を含む第 3のポリペプチドを含み、前 記第 1のポリペプチドおよび前記第 2のポリペプチドがそれぞれ該第 3のポリペプチド と多量体を形成する〔12〕に記載の方法、
〔14〕 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖定常領域を含む 〔10〕〜〔13〕のレ、ずれか 1項に記載の方法、
〔15〕 前記第 1のポリペプチドおよび第 2のポリペプチドに含まれる重鎖定常領域が 互いに等電点の異なる重鎖定常領域である〔14〕に記載の方法、
〔16〕 前記等電点の異なる重鎖定常領域が IgGlと IgG4、又は、 IgGlと IgG2である〔1 5〕に記載の方法、
[17] 前記多重特異性抗体が、二重特異性抗体である〔10〕に記載の方法、 〔18〕 〔10〕に記載の方法により精製する工程を含む多重特異性抗体の製造方法、 〔19〕 〔18〕に記載の方法により製造される多重特異性抗体、
[20] 第 1のポリペプチドおよび第 2のポリペプチドを含む多重特異性抗体であって
、第 1のポリペプチドが重鎖可変領域および Zまたは重鎖定常領域を含み、該重鎖 可変領域における Kabatナンバリングによる 10位、 12位、 23位、 39位、 43位および 105 位のアミノ酸残基、若しくは、該重鎖定常領域における EUナンバリングによる 137位、 196位、 203位、 214位、 217位、 233位、 268位、 274位、 276位、 297位、 355位、 392位、 419位、 435位のアミノ酸残基から選ばれる、少なくとも 1つのアミノ酸残基が電荷を有 し、第 1のポリペプチドと第 2のポリペプチドの等電点が互いに異なる多重特異性抗 体、
〔21〕 第 2のポリペプチドが重鎖可変領域および Zまたは重鎖定常領域を含み、該 重鎖可変領域における Kabatナンバリングによる 10位、 12位、 23位、 39位、 43位およ び 105位のアミノ酸残基、若しくは、該重鎖定常領域における EUナンバリングによる 1 37位、 196位、 203位、 214位、 217位、 233位、 268位、 274位、 276位、 297位、 355位、 3 92位、 419位、 435位のアミノ酸残基から選ばれる、少なくとも 1つのアミノ酸残基が、 前記第 1のポリペプチドに含まれる重鎖可変領域および Zまたは重鎖定常領域にお いて選ばれる、電荷を有するアミノ酸残基とは反対の電荷を有する、または電荷を有 しない〔20〕に記載の多重特異性抗体、
〔22〕 前記電荷を有するアミノ酸残基と当該アミノ酸残基とは反対の電荷を有するァ ミノ酸残基の組み合わせが、以下の(a)または (b) V、ずれかの群に含まれるアミノ酸 残基からそれぞれ選択される〔20〕に記載の多重特異性抗体:
(a)グルタミン酸(E)、ァスパラギン酸 (D);
(b)リジン(K)、アルギニン(R)、ヒスチジン(Η)、
〔23〕 第 1のポリペプチドと第 2ポリペプチドの等電点に差があり、第 1のポリペプチド のホモ多量体、第 2のポリペプチドのホモ多量体、および第 1のポリペプチドと第 2の ポリペプチドのヘテロ多量体力 S、標準的なクロマトグラフィーを使用した分析により分 離したピークとなり得る多重特異性抗体、
[24] 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖可変領域を含む [23]に記載の多重特異性抗体、
〔25〕 前記多重特異性抗体が、軽鎖可変領域を含む第 3のポリペプチドを含み、前 記第 1のポリペプチドおよび前記第 2のポリペプチドがそれぞれ該第 3のポリペプチド と多量体を形成する〔24〕に記載の多重特異性抗体、
〔26〕 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖定常領域を含む [23]〜〔25〕のレ、ずれか 1項に記載の多重特異性抗体、 〔27〕 前記第 1のポリペプチドおよび第 2のポリペプチドに含まれる重鎖定常領域が 互いに等電点の異なる重鎖定常領域である〔26〕に記載の多重特異性抗体、 〔28〕 前記等電点の異なる重鎖定常領域が IgGlと IgG4、又は、 IgGlと IgG2である〔2 7〕に記載の多重特異性抗体、
〔29〕 前記多重特異性抗体が、二重特異性抗体である〔23〕に記載の多重特異性 抗体、
〔30〕 〔23〕〜〔29〕のいずれ力 4項に記載の多重特異性抗体および医薬的に許容 される担体を含む組成物、
〔31〕 〔23〕〜〔29〕のいずれか 1項に記載の多重特異性抗体を構成するポリべプチ ドをコードする核酸、
[ 32] 〔31〕に記載の核酸を有する宿主細胞、
〔33〕 [ 32]に記載の宿主細胞を培養する工程、細胞培養物からポリペプチドを回 収する工程を含む〔23〕〜〔29〕のいずれか 1項に記載の多重特異性抗体の製造方 法、
〔34〕 第 1のポリペプチドの可変領域が以下の(al )〜 (a7)のいずれかに記載のアミ ノ酸配列からなり、第 2のポリペプチドの可変領域が以下の(b l )〜(b3)のいずれかに 記載のアミノ酸配列からなり、第 3のポリペプチドの可変領域が以下の(c l )または(c2
)に記載のアミノ酸配列からなる〔25〕に記載の多重特異性抗体:
(al )配列番号: 7
(a2)配列番号: 8
(a3)配列番号: 9
(a4)配列番号: 10
(a5)配列番号: 1 1
(a6)配列番号: 12
(a7)配列番号: 13
(b l )配列番号: 14
(b2)配列番号: 1 5
(b3)配列番号: 16 (cl)配列番号: 17
(c2)配列番号: 18
〔35〕 第 1のポリペプチドの可変領域が配列番号: 1 1に記載のアミノ酸配列からなり 、第 2のポリペプチドの可変領域が配列番号: 16に記載のアミノ酸配列からなり、第 3 のポリペプチドの可変領域が配列番号: 17に記載のアミノ酸配列からなる〔34〕に記 載の多重特異性抗体、
〔36〕 第 1のポリペプチドの可変領域が配列番号: 12に記載のアミノ酸配列からなり 、第 2のポリペプチドの可変領域が配列番号: 16に記載のアミノ酸配列からなり、第 3 のポリペプチドの可変領域が配列番号: 18に記載のアミノ酸配列からなる〔34〕に記 載の多重特異性抗体、
〔37〕 第 1のポリペプチドおよび第 2のポリペプチドがヒト IgG4定常領域を含み、第 3 のポリペプチドがヒト κ定常領域を含む〔34〕〜〔36〕のレ、ずれか 1項に記載の多重 特異性抗体、に関する。
図面の簡単な説明
[図 1]ヒト化二重特異性抗体(ヒト化 A69 (hA69a) /ヒトイ匕 B26 (hB26_F123e4)/ヒト化 BB A (hAL-F123j4) )の凝固活性について評価した結果を示す図である。評価の結果、 キメラ二重特異性抗体と同等以上の凝固活性を示した。
[図 2]ヒト化 A69- H鎖可変領域(hA69a)とヒト化 BBA (hAL- F123j4)およびヒト化 hB26_ H鎖可変領域(hB26_F123e4)とヒト化 BBA (hAL_F123j4)を使用して抗体モデリング を実施した結果を示す図である。表面電荷を変化させることが可能なアミノ酸につい て側鎖を強調して示した。番号については、 Kabatデータベースの配列番号(Kabat EA et al. 1991. Sequences of Proteins or immunological Interest. NIH)を採用した 園 3]未改変および可変領域を改変したヒト化 A69抗体ホモダイマーと未改変および 可変領域を改変したヒト化 B26抗体ホモダイマーを用いて等電点電気泳動による分 析を実施した結果を示す写真である。分析の結果、改変により等電点が変化してい ることが確認された。
園 4]可変領域を改変したヒト化 A69抗体ホモダイマーを用いて陽イオン交換クロマト グラフィー分析を実施した結果を示す図である。分析の結果、未改変の抗体と比較し てピークの移動が確認された。
園 5]可変領域を改変したヒト化 B26抗体ホモダイマーを用いて陽イオン交換クロマト グラフィー分析を実施した結果を示す図である。分析の結果、未改変の抗体と比較し てピークの移動が確認された。
園 6]可変領域を改変したヒト化二重特異性抗体 (H鎖定常領域に knobs-into-holes 技術を利用)を用いて凝固活性を評価した結果を示す図である。評価の結果、未改 変の抗体と同等の凝固活性を示した。
園 7]可変領域 (CDR)を改変したヒト化 A69抗体ホモダイマーを用いて等電点電気泳 動による分析を実施した結果を示す写真である。分析の結果、未改変の抗体と比較 してバンドの移動が確認された。
[図 8]可変領域(CDR)を改変したヒトイ匕 A69抗体ホモダイマーを用いて抗原である Fac tor IXaに対する結合活性を評価した結果を示す図である。評価の結果、未改変の抗 体と同等の結合活性を保持していることが示された。
[図 9]未改変抗体として、ヒト化 A69-H鎖である hA69a、ヒト化 B26-H鎖である hB26_Fl 23e4とヒト化 BBA-L鎖である hAL-F123j4を用いて作製した未改変のヒト化二重特異 性抗体ヒト化の陽イオン交換クロマトグラフィー分析を実施した結果を示す図である。 分析の結果、二種類のホモダイマーと二重特異性抗体が分離せず 1本のピークとし て溶出した。
[図 10]ヒト化 A69-H鎖の改変体である hA69-PFとヒト化 B26-H鎖の改変体である hA26 -PFとヒト化 BBA-L鎖である hAL_s8を用いて作製したヒトイ匕二重特異性 PF抗体の陽ィ オン交換クロマトグラフィー分析を実施した結果を示す図である。分析の結果、二種 類のホモダイマーと二重特異性抗体がそれぞれ分離し、 hA69-PFホモダイマー、ヒト 化二重特異性 PF抗体、 hB26-PFホモダイマーの順に 3本のピークとして溶出した。
[図 11]精製したヒト化 A69抗体- PFホモダイマーおよびヒト化 B26-PF抗体ホモダイマ 一、ヒト化二重特異性 PF抗体を用いて等電点電気泳動による分析を実施した結果を 示す写真である。分析の結果、 目的の二重特異性抗体が精製できていることが確認 された。 園 12]精製したヒト化二重特異性 PF抗体 (H鎖定常領域は野生型)を用いて凝固活 性を評価した結果を示す図である。評価の結果、 H鎖定常領域に knobs-into-holes 技術を利用した二重特異性抗体 (KiH)と同等の凝固活性を示した。
[図 13]ヒト化 A69抗体ホモダイマーおよびヒト化 B26抗体ホモダイマー、ヒト化二重特 異性抗体の 3種類の抗体が含まれる培養上清から製造用汎用カラムを用いて二重特 異性抗体を精製した時のクロマトグラムを示した。
園 14]製造用汎用カラムを用いて精製したヒト化二重特異性抗体 (H鎖定常領域は 野生型)を用いて凝固活性を評価した結果を示す図である。評価の結果、ヒト化二重 特異性 PF抗体と同等の凝固活性を示した。
[図 15]未改変、 IgG2化および IgG4化ヒトイ匕 PM-1抗体を用いて等電点電気泳動による 分析を実施した結果を示す写真である。分析の結果、改変により等電点が変化して いることが確認された。 Aは未改変ヒト化 PM-1抗体、 Bは IgG2化ヒト化 PM-1抗体、 Cは IgG4化ヒト化 PM-1抗体を示す。
[図 16]未改変、 IgG2化および IgG4化ヒトイ匕 PM-1抗体のそれぞれの共発現抗体を用 いて等電点電気泳動による分析を実施した結果を示す写真である。分析の結果、各 サブクラス抗体とサブクラスハイブリッド抗体力 1差をもって分離することが示された。
Aは未改変ヒト化 PM-1抗体/ IgG2化ヒト化 PM-1抗体共発現抗体、 Bは未改変ヒト化 P M-1抗体/ IgG4化ヒト化 PM-1抗体共発現抗体、 Cはヒト化 PM-1抗体精製品(bulk)を 示す。
[図 17]単独発現させた未改変、 IgG2化、 IgG4化ヒト化 PM-1抗体を用いて陽イオン交 換クロマトグラフィー分析を実施した結果を示す図である。分析の結果、未改変の抗 体と比較してピークの移動が確認された。
[図 18]未改変、 IgG2化および IgG4化ヒトイ匕 PM-1抗体のそれぞれの共発現抗体の陽 イオン交換クロマトグラフィー分析を実施した結果を示す図である。分析の結果、未 改変ヒト化 PM-1抗体/ IgG2化ヒト化 PM-1抗体の組み合わせ、および、未改変ヒト化 P M-1抗体/ IgG4化ヒト化 PM-1抗体の組み合わせにおレ、て、各サブクラスのホモダイマ 一、ヘテロダイマーが 3つの主ピークとして観察された。 Aは未改変ヒト化 PM-1抗体 /lgG2化ヒト化 PM-1抗体共発現抗体、 Bは未改変ヒト化 PM-1抗体 ZlgG4化ヒトイ匕 P M-l抗体共発現抗体を示す。
[図 19]未改変ヒト化 PM-1抗体/ IgG4化ヒト化 PM-1抗体を共発現させたものから陽ィ オン交換クロマトグラフィーでホモダイマー、ヘテロダイマーを精製した結果を示す図 である。この結果、 IgG4化ヒト化 PM-1抗体ホモダイマー、未改変ヒト化 PM_l/IgG4ィ匕 ヒト化 PM-1ハイブリッド抗体、未改変ヒト化 PM-1抗体ホモダイマーの順に 3本のピー クとして溶出したため、これらを分取した。矢印はおよその分画範囲を示す。
[図 20]陽イオン交換クロマトグラフィーで精製した未改変ヒト化 PM-1抗体ホモダイマ 一、未改変ヒト化 PM_l/IgG4化ヒト化 PM-1ハイブリッド抗体、 IgG4化ヒト化 PM-1抗体 ホモダイマーを用いてリクロマトグラフィーを行った結果を示す図である。この結果、 目的のサブクラスハイブリッド抗体が精製できてレ、ることが確認された。
[図 21]陽イオン交換クロマトグラフィーで精製した未改変ヒト化 PM-1抗体ホモダイマ 一、未改変/ IgG4化ヒト化 PM-1ハイブリッド抗体、 IgG4化ヒト化 PM-1抗体ホモダイマ 一を用いて等電点電気泳動による分析を実施した結果を示す写真である。分析の結 果、 目的のサブクラスハイブリッド抗体が精製できていることが確認された。 Aは未改 変ヒト化 PM-1抗体/ IgG4化ヒト化 PM-1抗体共発現抗体、 Bは未改変ヒト化 PM-1抗 体分取画分、 Cは未改変ヒト化 PM-l/lgG4化ヒト化 PM-1ハイブリット抗体分取画分、 Dは IgG4ィ匕ヒト化 PM-1抗体分取画分を示す。
[図 22]陽イオン交換クロマトグラフィーで精製した未改変ヒト化 PM-1抗体ホモダイマ 一、未改変ヒトイヒ PM-l/IgG4化ヒト化 PM-1ハイブリッド抗体、 IgG4ィヒヒトイヒ PM-1抗体 ホモダイマーを用いてヒ HL-6中和活性を評価した結果を示す図である。評価の結果 、いずれの抗体もヒト化 PM-1精製抗体と同等の中和活性を示した。 Aおよび Bはヒト g pl30発現 BaF3細胞株、 Cおよび Dはヒト gpl30Zヒ HL-6受容体共発現 BaF3細胞株を 示す。黒丸(き)はヒト化 PM-1抗体精製品(bulk)、白四角(口)は未改変ヒト化 PM-1 抗体、白三角(△)は IgG4化ヒト化 PM-1抗体、 Xは未改変ヒト化 PM_lZlgG4化ヒトイ匕 PM-1ハイブリット抗体を示す。
発明を実施するための最良の形態
まず本発明は、多重特異性抗体を製造するための抗体改変方法を提供する。本発 明の製造方法の好ましい態様としては、第 1のポリペプチドと第 2のポリペプチドの等 電点に差がつくように第 1のポリペプチドのアミノ酸残基をコードする核酸および第 2 のポリペプチドのアミノ酸残基をコードする核酸の両方またはいずれか一方を改変す ることを含む方法である。即ち、第 1のポリペプチドと第 2のポリペプチドのアミノ酸残 基の電荷を変えることによって、ポリペプチドに等電点 (pi)の差異を導入し、当該等 電点の差異を利用して多重特異性抗体を製造することができる。詳しくは以下の(a) 〜(c)の工程を含む製造方法である。
(a)第 1のポリペプチドと第 2のポリペプチドの等電点に差がつくように、第 1のポリべ プチドのアミノ酸残基をコードする核酸および第 2のポリペプチドのアミノ酸残基をコ ードする核酸の両方またはいずれか一方を改変し、
(b)宿主細胞を該核酸が発現するように培養し、
(c)宿主細胞培養物から多重特異性抗体を回収すること
[0019] 本発明におけるポリペプチドとは、通常、 10アミノ酸程度以上の長さを有するぺプ チド、およびタンパク質を指す。また、通常、生物由来のポリペプチドであるが、特に 限定されず、例えば、人工的に設計された配列からなるポリペプチドであってもよい。 また、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれ であってもよレ、。さらに、上記のポリペプチドの断片もまた、本発明のポリペプチドに 含まれる。
[0020] 本発明において「ポリペプチドの等電点に差がつく」とは、 2種以上のポリペプチド において、表面アミノ酸の電荷の改変を行うことにより、互いの等電点が等しくならな いことをいう。等電点の差は、例えば、等電点電気泳動等の手法を用いることにより 観察すること力できる。また本発明においては、当該ポリペプチドの構造や機能 (活 性)を変化させずに等電点を制御することが好ましレ、。
[0021] 即ち本発明は、第 1のポリペプチドおよび第 2のポリペプチドを含む多重特異性抗 体の製造方法であって、
(a)第 1のポリペプチドと第 2のポリペプチドの等電点の差力 S0.5以上、好ましくは 0.7 以上、更に好ましくは 0.9以上となるように、第 1のポリペプチドのアミノ酸残基をコード する核酸および第 2のポリペプチドのアミノ酸残基をコードする核酸の両方またはい ずれか一方を改変し、 (b)宿主細胞を該核酸が発現するように培養し、
(c)宿主細胞培養物から多重特異性抗体を回収すること、を含む多重特異性抗体の 製造方法を提供する。
[0022] また本発明は、多重特異性抗体を精製するための抗体改変方法を提供する。本発 明の精製方法の好ましい態様としては、第 1のポリペプチドと第 2のポリペプチドの等 電点に差がつくように第 1のポリペプチドのアミノ酸残基をコードする核酸および第 2 のポリペプチドのアミノ酸残基をコードする核酸の両方またはいずれか一方を改変す ることを含む方法である。即ち、第 1のポリペプチドと第 2のポリペプチドのアミノ酸残 基の電荷を変えることによって、ポリペプチドに等電点 (pi)の差異を導入し、当該等 電点の差異を利用して多重特異性抗体を精製することができる。詳しくは以下の(a) 〜(c)の工程を含む精製方法である。
(a)第 1のポリペプチドと第 2のポリペプチドの等電点に差がつくように、第 1のポリべ プチドのアミノ酸残基をコードする核酸および第 2のポリペプチドのアミノ酸残基をコ ードする核酸の両方またはいずれか一方を改変し、
(b)宿主細胞を該核酸が発現するように培養し、
(c)宿主細胞培養物力 標準的なクロマトグラフィーにより該多重特異性抗体を精製 すること
[0023] なお、上記精製方法により精製する工程を含む多重特異性抗体の製造方法も本発 明に含まれる。
[0024] 本発明における核酸は、通常、適当なベクターへクローニング (挿入)され、宿主細 胞へ導入される。該ベクターとしては、挿入した核酸を安定に保持するものであれば 特に制限されず、例えば宿主に大腸菌を用いるのであれば、クローニング用ベクター としては pBluescriptベクター (Stratagene社製)などが好ましいが、市販の種々のべク ターを利用することができる。本発明の多重特異性抗体 (ポリペプチド)を生産する目 的においてベクターを用いる場合には、特に発現ベクターが有用である。発現べクタ 一としては、試験管内、大腸菌内、培養細胞内、生物個体内でポリペプチドを発現す るベクターであれば特に制限されなレ、が、例えば、試験管内発現であれば pBESTベ クタ一(プロメガ社製)、大腸菌であれば pETベクター(Invitrogen社製)、培養細胞で あれば pME18S_FL3ベクター(GenBank Accession No. AB009864)、生物個体であ れば pME18Sベクター(Mol Cell Biol. 8:466-472(1988))などが好ましレヽ。ベクターへ の本発明の DNAの挿入は、常法により、例えば、制限酵素サイトを用いたリガーゼ反 J心により γ丁つこと力で、きる (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 11.4_11.11)。
[0025] 上記宿主細胞としては特に制限はなぐ 目的に応じて種々の宿主細胞が用いられ る。ポリペプチドを発現させるための細胞としては、例えば、細菌細胞(例:ストレブトコ ッカス、スタフイロコッカス、大腸菌、ストレプトミセス、枯草菌)、真菌細胞 (例:酵母、 ァスペルギルス)、昆虫細胞(例:ドロソフイラ S2、スポドプテラ SF9)、動物細胞(例: C H〇、 COS, HeLa、 C127、 3T3、 BHK、 HEK293、 Bowesメラノーマ細胞)および植物細 胞を例示することができる。宿主細胞へのベクター導入は、例えば、リン酸カルシウム 沈殿法、電気ノヽ0ノレス穿孑し法 (Current protocols in Molecular Biology edit. Ausubel e t al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9)、リポフエクシヨン法、マイク 口インジェクション法などの公知の方法で行うことが可能である。
[0026] 宿主細胞において発現したポリペプチドを小胞体の内腔に、細胞周辺腔に、また は細胞外の環境に分泌させるために、適当な分泌シグナルを目的のポリペプチドに 組み込むことができる。これらのシグナルは目的のポリペプチドに対して内因性であ つても、異種シグナルであってもよい。
[0027] 上記製造方法における多重特異性抗体 (ポリペプチド)の回収は、本発明のポリべ プチドが培地に分泌される場合は、培地を回収する。本発明のポリペプチドが細胞 内に産生される場合は、その細胞をまず溶解し、その後にポリペプチドを回収する。
[0028] 組換え細胞培養物から本発明のポリペプチドを回収し精製するには、硫酸アンモ ニゥムまたはエタノール沈殿、酸抽出、ァニオンまたはカチオン交換クロマトグラフィ 一、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、ァフィ二 ティクロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィーおよびレクチンクロマト グラフィーを含めた公知の方法を用いることができる。
[0029] また本発明は、本発明の多重特異性抗体、および医薬的に許容される担体を含む 組成物 (薬剤)に関する。 [0030] 本発明において医薬組成物とは、通常、疾患の治療もしくは予防、あるいは検査 · 診断のための薬剤を言う。
[0031] 本発明の医薬組成物は、当業者に公知の方法で製剤化することが可能である。例 えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤 の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは 媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、 安定剤、香味剤、賦形剤、べヒクル、防腐剤、結合剤などと適宜組み合わせて、一般 に認められた製薬実施に要求される単位用量形態で混和することによって製剤化す ること力 S考えられる。これら製剤における有効成分量は、指示された範囲の適当な容 量が得られるように設定する。
[0032] 注射のための無菌組成物は注射用蒸留水のようなべヒクルを用いて通常の製剤実 施に従って処方することができる。
[0033] 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬 (例えば D-ソノレビトーノレ、 D-マンノース、 D-マンニトール、塩化ナトリウム)を含む等張液が挙 げられる。適当な溶解補助剤、例えばアルコール (エタノール等)、ポリアルコール( プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソル ペート 80 (TM)、 HCO-50等)を併用してもよい。
[0034] 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル及 び/またはベンジルアルコールを併用してもよレ、。また、緩衝剤(例えば、リン酸塩緩 衝液及び酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸プロ力イン)、安定剤(例え ば、ベンジルアルコール及びフエノール)、酸化防止剤と配合してもよレ、。調製された 注射液は通常、適当なアンプルに充填する。
[0035] 本発明の医薬組成物は、好ましくは非経口投与により投与される。例えば、注射剤 型、経鼻投与剤型、経肺投与剤型、経皮投与型の組成物とすることができる。例えば 、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に 投与することができる。
投与方法は、患者の年齢、症状により適宜選択することができる。抗体または抗体 をコードするポリヌクレオチドを含有する医薬組成物の投与量は、例えば、一回につ き体重 lkgあたり O.OOOlmgから lOOOmgの範囲に設定することが可能である。または、 例えば、患者あたり 0.001〜100000mgの投与量とすることもできる力 本発明はこれら の数値に必ずしも制限されるものではない。投与量及び投与方法は、患者の体重、 年齢、症状などにより変動するが、当業者であればそれらの条件を考慮し適当な投 与量及び投与方法を設定することが可能である。
[0036] また、必要に応じ本発明の多重特異性抗体を、その他の医薬成分と組み合わせて 製剤化することもできる。
[0037] また本発明は、本発明の多重特異性抗体を構成するポリペプチドをコードする核酸 を提供する。さらに該核酸を担持するベクターもまた、本発明に含まれる。
[0038] さらに本発明は、上記核酸を有する宿主細胞を提供する。該宿主細胞は、特に制 限されず、例えば、大腸菌や種々の動物細胞などを挙げることができる。宿主細胞は 、例えば、本発明の抗体もしくはポリペプチドの製造や発現のための産生系として使 用すること力 Sできる。ポリペプチド製造のための産生系には、 in vitroおよび in vivoの 産生系がある。 in vitroの産生系としては、真核細胞を使用する産生系及び原核細胞 を使用する産生系が挙げられる。
[0039] 宿主細胞として使用できる真核細胞として、例えば、動物細胞、植物細胞、真菌細 胞が挙げられる。動物細胞としては、哺乳類細胞、例えば、 CH0 (J. Exp. Med. (1995 ) 108: 945)、 COS, HEK293、 3T3、ミエローマ、 BHK (baby hamster kidney)、 HeLa、 Vero等、両生類細胞、例えばアフリカッメガエル卵母細胞(Valle et al., Nature (1981 ) 291 : 338-340)、及び昆虫細胞、例えば、 Sf9、 Sf21、 Tn5が例示される。本発明の抗 体の発現においては、 CHO_DG44、 CHO_DXl lB、 COS7細胞、 HEK293細胞、 BHK 細胞が好適に用いられる。動物細胞において、大量発現を目的とする場合には特に CH〇細胞が好ましい。宿主細胞へのベクターの導入は、例えば、リン酸カルシウム法 、 DEAEデキストラン法、カチォニックリボソーム DOTAP (Boehringer Mannheim製)を 用いた方法、エレクト口ポレーシヨン法、リボフヱクシヨンなどの方法で行うことが可能 である。
[0040] 植物細胞としては、例えば、ニコチアナ.タパカム(Nicotiana tabacum)由来の細胞 およびゥキクサ(Lemna minor)が蛋白質生産系として知られており、この細胞をカル ス培養する方法により本発明の抗体を産生させることができる。真菌細胞としては、酵 母、例えば、サッカロミセス(Saccharomyces)属の細胞(サッカロミセス'セレビシェ(Sa ccharomyces cerevisiae)、サッカロ セス ·ホンへ (Saccharomyces pombe)等)、及び 糸状菌、例えば、ァスペルギルス(Aspergillus)属の細胞(ァスペルギルス'二ガー(As pergillus niger)等)を用いた蛋白質発現系が公知であり、本発明の抗体産生の宿主 として利用できる。
[0041] 原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、上 述の大腸菌(E. coli)に加えて、枯草菌を用いた産生系が知られており、本発明の抗 体産生に利用できる。
[0042] 本発明の宿主細胞を用いて抗体を産生する場合、本発明の抗体をコードするポリ ヌクレオチドを含む発現ベクターにより形質転換された宿主細胞の培養を行レ、、ポリ ヌクレオチドを発現させればよい。培養は、公知の方法に従って行うことができる。例 えば、動物細胞を宿主とした場合、培養液として、例えば、 DMEM、 MEM, RPMI1640 、 IMDMを使用することができる。その際、 FBS、牛胎児血清(FCS)等の血清補液を 併用しても、無血清培養により細胞を培養してもよい。培養時の pHは、約 6〜8とする のが好ましい。培養は、通常、約 30〜40°Cで約 15〜200時間行い、必要に応じて培 地の交換、通気、攪拌を加える。
[0043] —方、 in vivoでポリペプチドを産生させる系としては、例えば、動物を使用する産生 系や植物を使用する産生系が挙げられる。これらの動物又は植物に目的とするポリ ヌクレオチドを導入し、動物又は植物の体内でポリペプチドを産生させ、回収する。 本発明における「宿主」とは、これらの動物、植物を包含する。
[0044] 動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。哺乳類動物として は、ャギ、ブタ、ヒッジ、マウス、ゥシ等を用いることができる(Vicki Glaser, SPECTRU M Biotechnology Applications (1993))。また、哺乳類動物を用いる場合、トランスジヱ ニック動物を用いることができる。
[0045] 例えば、本発明の抗体をコードするポリヌクレオチドを、ャギ βカゼインのような乳汁 中に固有に産生されるポリペプチドをコードする遺伝子との融合遺伝子として調製す る。次いで、この融合遺伝子を含むポリヌクレオチド断片をャギの胚へ注入し、この胚 を雌のャギへ移植する。胚を受容したャギから生まれるトランスジエニックャギ又はそ の子孫が産生する乳汁から、 目的の抗体を得ることができる。トランスジエニックャギ から産生される抗体を含む乳汁量を増加させるために、適宜ホルモンをトランスジェ ニックャギに投与してもよい(Ebert et al., Bio/Technology (1994) 12: 699-702)。
[0046] また、本発明の抗体を産生させる昆虫としては、例えばカイコを用いることができる。
カイコを用レ、る場合、 目的の抗体をコードするポリヌクレオチドを揷入したバキュロウィ ノレスをカイコに感染させることにより、このカイコの体液から目的の抗体を得ることがで きる(Susumu et al., Nature (1985) 315: 592—4)。
[0047] さらに、植物を本発明の抗体産生に使用する場合、例えばタバコを用いることがで きる。タバコを用いる場合、 目的とする抗体をコードするポリヌクレオチドを植物発現 用ベクター、例えば pMON 530に揷入し、このベクターをァグロバタテリゥム 'ッメファ シエンス(Agrobacterium tumefaciens)のようなバクテリアに導入する。このバクテリア をタバコ、例えば、ニコチアナ 'タバカム(Nicotiana tabacum)に感染させ、本タバコの 葉より所望の抗体を得ることができる(Ma et al" Eur. J. Immunol. (1994) 24: 131-8) 。また、同様のバクテリアをゥキクサ(Lemna minor)に感染させ、クローン化した後にゥ キクサの細胞より所望の抗体を得ることができる(Cox KM et al. Nat. Biotechnol. 200 6 Dec;24(12): 1591-1597)。
[0048] このようにして得られた抗体は、宿主細胞内または細胞外 (培地、乳汁など)から単 離し、実質的に純粋で均一な抗体として精製することができる。抗体の分離、精製は 、通常のポリペプチドの精製で使用されている分離、精製方法を使用すればよぐ何 ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過 、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、 SDS-ポリアクリルアミドゲル電気泳 動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせて抗体を分離、精 製すること力 Sできる。
[0049] クロマトグラフィーとしては、例えばァフィ二ティクロマトグラフィー、イオン交換クロマ トグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロ マトグフフィ一等 げられる (Strategies for Protein Purification ana Characterizatio n: A Laboratory Course Manual. Ed Daniel R. Marshak et al.(1996) Cold Spring Har bor Laboratory Press)。これらのクロマトグラフィーは、液相クロマトグラフィー、例え ば HPLC、 FPLC等の液相クロマトグラフィーを用いて行うことができる。ァフィ二テイク 口マトグラフィ一に用いるカラムとしては、プロテイン Aカラム、プロテイン Gカラムが挙 げられる。例えば、プロテイン Aを用いたカラムとして、 Hyper D, POROS, Sepharose F. F. (Pharmacia製)等が挙げられる。
[0050] 必要に応じ、抗体の精製前又は精製後に適当なタンパク質修飾酵素を作用させる ことにより、任意に修飾を加えたり部分的にペプチドを除去することもできる。タンパク 質修飾酵素としては、例えば、トリプシン、キモトリブシン、リシルエンドぺプチダーゼ 、プロテインキナーゼ、ダルコシダーゼなどが用いられる。
[0051] 上述のように本発明の宿主細胞を培養し、該細胞培養物からポリペプチドを回収す る工程を含む、本発明の多重特異性抗体の製造方法もまた、本発明の好ましい態様 の一つである。
[0052] 本発明における「多重特異性抗体」とは、少なくとも 2種類の異なる抗原に対して特 異的に結合することができる抗体である。本発明の製造方法または精製方法によつ て得られる好ましい多重特異性抗体として、 2つの抗原に対して特異的に結合するこ とができる二重特異性抗体 (bispecific antibody;BsAb) (二種特異性抗体と呼ばれる場 合もある)を挙げることができる。
[0053] 本発明において、「異なる抗原」とは必ずしも抗原自体が異なる必要はなぐ抗原決 定基が異なる場合等も本発明の「異なる抗原」に含まれる。従って、例えば、単一分 子内の異なる抗原決定基も本発明の異なる抗原に含まれ、このような単一分子内の 異なる抗原決定基を各々認識する 2つの抗体は、本発明において異なる抗原を認識 する抗体として扱われる。
[0054] 本発明における多重特異性抗体は、 2種以上の異なる抗原に対して特異性を有す る抗体もしくは抗体断片からなる分子である。
[0055] 本発明の上記方法における「核酸の改変」とは、第 1のポリペプチドと第 2のポリべ プチドを標準的なクロマトグラフィーを使用した分析により分離したピークが得られる ように、核酸を改変することが含まれる。
[0056] 本発明の方法における、「核酸を改変する」とは、本発明における「改変」によって 導入されるアミノ酸残基に対応するように核酸を改変することを言う。より具体的には 、元(改変前)のアミノ酸残基をコードする核酸について、改変によって導入されるアミ ノ酸残基をコードする核酸へ改変することを言う。
[0057] 通常、 目的のアミノ酸残基をコードするコドンとなるように、元の核酸に対して、少な くとも 1塩基を揷入、欠失または置換するような遺伝子操作もしくは変異処理を行うこ とを意味する。即ち、元のアミノ酸残基をコードするコドンは、改変によって導入される アミノ酸残基をコードするコドンによって置換される。このような核酸の改変は、当業 者においては公知の技術、例えば、部位特異的変異誘発法、 PCR変異導入法等を 用いて、適宜実施することが可能である。
[0058] 本発明における改変位置は、例えば、(1)ポリペプチドに表面にあるアミノ酸残基、
(2)可変領域、好ましくは FR領域にあるアミノ酸残基、 (3)定常領域にあるアミノ酸残 基、を挙げること力 Sできる。
[0059] 「ポリペプチドの表面にあるアミノ酸」とは、その側鎖が溶媒分子(通常は水分子)に 接し得るアミノ酸であり、必ずしも側鎖の全てが溶媒分子に接する必要はなぐ側鎖 の一部でも溶媒分子に接する場合は、そのアミノ酸は表面にあるアミノ酸である。当 業者であれば、市販のソフトウェアを用いたホモロジ一モデリング等により、ポリぺプ チドゃ抗体のホモロジ一モデルを作製することができ、それにより適切な残基を表面 にあるアミノ酸として選択することができる。
[0060] 当業者であれば、抗体可変領域における表面アミノ酸はホモロジ一モデリング等に より作製されたホモロジ一モデルにより適宜選択することが可能である力 例えば H鎖 FR領域においては HI, H3, H5, H8, H10, H12, H13, H15, H16, H19, H23, H25, H 26, H39, H42, H43, H44, H46, H68, H71, H72, H73, H75, H76, H81, H82b, H83, H85, H86, H105, H108, H110, H112が表面アミノ酸として例示することができるが、 本発明はこれらに限定されることはない。また H鎖 CDR領域に関しては、同様にして ホモロジ一モデルにより表面アミノ酸を選択することが可能であり、例えば H97はほと んどの抗体で表面に露出している。 L鎖 FR領域においては LI, L3, L7, L8, L9, L11, L12, L16, L17, L18, L20, L22, L38, L39, L41, L42, L43, L45, L46, L49, L57, L60, L63, L65, L66, L68, L69, L70, L74, L76, L77, L79, L80, L81, L85, L100, L103, L 105, L106, L107, L108が表面アミノ酸として例示することができる力 本発明はこれら に限定されることはなレ、。また L鎖 CDR領域に関しては、同様にしてホモロジーモデ ルにより表面アミノ酸を選択することが可能である。
[0061] 本発明において可変領域にあるアミノ酸残基とは、重鎖可変領域 (VH)または軽鎖 可変領域 (VL)にあるアミノ酸残基が含まれるが、好ましくは、フレームワーク領域 (FR
)にあるアミノ酸残基である。
[0062] 本発明における CDR以外の FR領域において表面に露出するアミノ酸としては、例 えば、 H10、 H12、 H23、 H39、 H43、 H105を例示することができる力 これらに制限さ れない。
[0063] 本発明において、核酸を改変するポリペプチドは、好ましくは、第 1のポリペプチド のホモ多量体、第 2のポリペプチドのホモ多量体、および第 1のポリペプチドと第 2の ポリペプチドのヘテロ多量体である。例えば、下記実施例に記載のように、第 1のポリ ペプチドのホモ多量体としてヒト化 A69-H鎖とヒトイ匕 BBA-L鎖のホモダイマー、第 2の ポリペプチドのホモ多量体としてヒト化 B26-H鎖とヒト化 BBA-L鎖のホモダイマー、お よび第 1のポリペプチドと第 2のポリペプチドのヘテロ多量体としてヒト化 A69-H鎖およ びヒト化 B26-H鎖とヒト化 BBA-L鎖のへテロダイマーを挙げることができる力 これらに 制限されない。
[0064] 本発明における標準的なクロマトグラフィーとしては、陽イオン交換クロマトグラフィ 一、陰イオン交換クロマトグラフィー、疎水クロマトグラフィー、ハイド口キシァパタイトク 口マトグラフィー、疎水電荷相互作用クロマトグラフィー、クロマトフォーカシング等が 挙げられる。
[0065] 本発明の上記方法において、第 1のポリペプチドおよび第 2のポリペプチドは、重鎖 可変領域 (VH)を含んでいることが好ましい。該可変領域には、例えば相補性決定 領域(CDR)、フレームワーク領域(FR)が含まれてレ、てもよレ、。
[0066] 本発明の方法において改変に供されるアミノ酸残基の数は、特に制限されないが、 例えば、抗体の可変領域を改変する場合、抗原との結合活性を低下させないために 、また抗原性を上げないために、 目的のポリペプチドの分離を達成するための必要 最低限のアミノ酸残基を改変することが好ましい。 [0067] また好ましくは、抗原性を上げないために、改変後のアミノ酸配列がヒト配列である ことが好ましいが本発明はこれに限定されることはない。さらに、改変後の FR (FR1、 F R2、 FR3、 FR4)が各 FRとしてヒト配列になるように、等電点が変化するように導入した 改変以外の箇所に変異を導入してもよい。このようにして各 FRをヒト配列に置き換え る方法は非特許文献(〇no K et al., Mol Immunol. 1999 Apr;36(6):387_395.)で報告 されている。また、各 FRの等電点を変化させるために、等電点が変化する他のヒト FR に改変してもよレヽ(例えば FR3を等電点が低下する他のヒト FRと交換してもよレ、)。この ようなヒト化方法は非特許文献 (Dall'Acqua WF., Methods. 2005 May;36(l):43- 60.) で報告されている。
また、僅力、な表面電荷の改変において目的のポリペプチドの分離が達成できない 場合に、表面電荷の改変とポリペプチドの分離の評価を繰り返し行うことで、所望の 多重特異性抗体を取得することが可能である。
[0068] さらに本発明の上記方法においては、多重特異性抗体が、軽鎖可変領域を含む 第 3のポリペプチドを含んでいることが好ましい。そして、第 1のポリペプチドおよび第 2のポリペプチドがそれぞれ第 3のポリペプチドと多量体を形成していることが好まし レ、。
[0069] さらに本発明の上記方法において、第 1のポリペプチドおよび第 2のポリペプチドは 、重鎖定常領域を含んでいることが好ましい。重鎖定常領域としては、第 1のポリぺプ チドと第 2のポリペプチドに pi差が生じるものがより好ましい。そのような重鎖定常領域 としては、 pi差を有する抗体の重鎖定常領域が挙げられ、元来 piに差のある IgGl、 Ig G2、 IgG3、 IgG4の重鎖定常領域を用いて第 1と第 2のポリペプチドに pi差を導入する こともできるし、第 1と第 2のポリペプチド中の重鎖定常領域における、これらサブクラ ス間の等電点の違いに起因するアミノ酸のみ、あるいはそれらの等電点には影響し ない隣接するアミノ酸を同時に改変することにより非野生型ヒト定常領域を作製し、 2 つの定常領域に pi差を導入することもできる。定常領域に pi差を導入するための改変 箇所としては、例えば H鎖定常領域の EUナンバリングで、 H鎖 137番目、 196番目、 20 3番目、 214番目、 217番目、 233番目、 268番目、 274番目、 276番目、 297番目、 355番 目、 392番目、 419番目、 435番目が挙げられる。 また、重鎖定常領域の糖鎖を除去することにより pi差が生じることから、糖鎖付加部 位の 297番目も pi鎖を導入するための改変箇所として挙げられる。
また本発明には、上記第 1のポリペプチドおよび第 2のポリペプチドが重鎖定常領 域を含む方法に対して、上述の第 1のポリペプチドおよび第 2のポリペプチドが重鎖 可変領域を含む方法、および/または前記多重特異性抗体が軽鎖可変領域を含む 第 3のポリペプチドを含み、前記第 1のポリペプチドおよび前記第 2のポリペプチドが それぞれ該第 3のポリペプチドと多量体を形成する方法とを組み合わせた方法も含ま れる。
[0070] さらに上記方法によって製造される多重特異性抗体も本発明に含まれる。
[0071] さらに本発明によって提供される多重特異性抗体における第 1のポリペプチドが重 鎖可変領域および/または重鎖定常領域を含んでいる場合には、上記「等電点に 差がつくよう」にするために、例えば該重鎖可変領域における Kabatナンバリングによ る 10位、 12位、 23位、 39位、 43位および 105位のアミノ酸残基、若しくは、該重鎖定常 領域における EUナンバリングによる 137位、 196位、 203位、 214位、 217位、 233位、 26 8位、 274位、 276位、 297位、 355位、 392位、 419位、 435位のアミノ酸残基から選ばれ る、少なくとも 1つのアミノ酸残基が電荷を有するようにする態様を挙げることができる 。上記のナンバリングで示された第 1のポリペプチドのアミノ酸残基のうち、当該電荷 を有するアミノ酸残基以外のアミノ酸残基は、第 1のポリペプチドと第 2のポリペプチド の等電点に差がついていれば、当該電荷を有するアミノ酸残基と同種の電荷であつ ても良いし、電荷を有していなくても、反対の電荷であっても良い。
[0072] 本発明の上記多重特異性抗体は、好ましくは、第 2のポリペプチドが、第 1のポリべ プチドの電荷を有するアミノ酸残基とは反対の電荷を有する、または電荷を有しなレ、 ことを特徴とする。詳しくは、第 2のポリペプチドが重鎖可変領域および Zまたは重鎖 定常領域を含み、該重鎖可変領域における Kabatナンバリングによる 10位、 12位、 23 位、 39位、 43位および 105位のアミノ酸残基、若しくは、該重鎖定常領域における EU ナンバリングによる 137位、 196位、 203位、 214位、 217位、 233位、 268位、 274位、 276 位、 297位、 355位、 392位、 419位、 435位のアミノ酸残基力も選ばれる、少なくとも 1つ のアミノ酸残基が、前記第 1のポリペプチドに含まれる重鎖可変領域および Zまたは 重鎖定常領域において選ばれる、電荷を有するようにするアミノ酸残基とは反対の電 荷を有する、または電荷を有しなレ、、多重特異性抗体である。上記のナンバリングで 示された第 2のポリペプチドのアミノ酸残基のうち、当該電荷を有するアミノ酸残基以 外のアミノ酸残基は、第 1のポリペプチドと第 2のポリペプチドの等電点に差がついて いれば、当該電荷を有するアミノ酸残基と同種の電荷であっても良いし、電荷を有し ていなくても、反対の電荷であっても良い。
等電点を低下させるためには、例えば、 137位は IgG2または IgG4の配歹 lj、 196位は I gGlまたは IgG2または IgG4の配歹 1J、 203位は IgG2または IgG4の配歹 1J、 214位は IgG2の 配列、 217位は IgGlまたは IgG3または IgG4の配歹 1J、 233位は IgGlまたは IgG3または Ig G4の配列、 268位は IgG4の配歹 1J、 274位は IgG2または IgG3または IgG4の配歹 lj、 276位 は IgGlまたは IgG2または IgG4の配歹 lj、 355位は IgG4の配歹 lj、 392位は IgG3の配歹 lj、 4 19位は IgG4の配歹 1J、 435位は IgGlまたは IgG2または IgG4の配歹 1J、を適用することが 望ましレ、。また、等電点を上昇させるためには、例えば、 137位は IgGlまたは IgG3の 配列、 196位は IgG3の配歹 lj、 203位は IgGlまたは IgG3の配歹 lj、 214位は IgGlまたは Ig G3または IgG4の配歹 lj、 217位は 〇2の配歹1」、 233位は IgG2の配歹 lj、 268位は IgGlま たは IgG2または IgG3の配歹 lj、 274位は IgGlの配歹 lj、 276位は IgG3の配歹 lj、 355位は Ig G1または IgG2または IgG3の配歹 lj、 392位は IgGlまたは IgG2または IgG4の配歹 lj、 419 位は IgGlまたは IgG2または IgG3の配歹 lj、 435位は IgG3の配歹 lj、を適用することが望ま しい。
これらの配列の適用は、両 H鎖に十分な等電点の差が付くようであればよぐ必ずし も全ての配列を適用する必要はない。
[0073] アミノ酸の中には、電荷を帯びたアミノ酸が知られている。一般的に正の電荷を帯 びたアミノ酸(正電荷アミノ酸)としては、リジン )、アルギニン (R)、ヒスチジン (H)が知 られている。負の電荷を帯びたアミノ酸 (負電荷アミノ酸)としては、ァスパラギン酸 (D)
、グノレタミン酸 (E)等が知られている。
[0074] 上記「電荷を有するアミノ酸残基」は、好ましくは、以下の(a)または (b)いずれかの 群に含まれるアミノ酸残基から適宜選択されるが、特に制限されない。
(a)グルタミン酸 (E)、ァスパラギン酸 (D) (b)リジン(K)、アルギニン(R)、ヒスチジン(H)
[0075] 上記抗体において、「同種の電荷を有する」とは、例えば、重鎖可変領域における 上記 Kabatナンバリングによるアミノ酸残基、若しくは重鎖定常領域における上記 EU ナンバリングによるアミノ酸残基のいずれも力 上記(a)または (b)のレ、ずれか 1の群 に含まれるアミノ酸残基を有することを意味する。
[0076] また、「反対の電荷を有する」とは、例えば、重鎖可変領域および Zまたは重鎖定 常領域を有する第 2のポリペプチドにおける上記 Kabatナンバリング若しくは上記 EU ナンバリングによるアミノ酸残基のなかの少なくとも 1つのアミノ酸残基力 第 1のポリ ペプチドに含まれる重鎖可変領域および Zまたは重鎖定常領域における対応する 位置のアミノ酸残基であって、上記(a)または(b)のレ、ずれ力、 1の群に含まれるァミノ 酸残基を有する場合に、残りのアミノ酸残基が異なる群に含まれるアミノ酸残基を有 することを意味する。
[0077] 即ち本発明においては、前記同種の電荷を有するアミノ酸残基が、上記(a)または
(b)のいずれかの群に含まれるアミノ酸残基から選択される多重特異性抗体を提供 する。
[0078] なお、元の(改変前の)アミノ酸残基が既に電荷を有する場合、電荷を有さないアミ ノ酸残基となるように改変することも本発明の好ましい態様の一つである。
[0079] 本発明においては、第 1のポリペプチドと第 2のポリペプチドの等電点 (pi)に差が出 るように、アミノ酸残基が改変されることが好ましい。また、改変によって導入されるァ ミノ酸残基が複数の場合、これらアミノ酸残基の中に電荷を持たなレ、アミノ酸残基が 少数程度含まれてレ、てもよレ、。
[0080] さらに本発明は、第 1のポリペプチドの可変領域が以下の(al)〜(a7)のいずれか に記載のアミノ酸配列からなり、第 2のポリペプチドの可変領域が以下の(bl )〜(b3 )のいずれかに記載のアミノ酸配列からなり、第 3のポリペプチドの可変領域が以下の (cl)または(c2)に記載のアミノ酸配列からなる、多重特異性抗体を提供する。
(al)配列番号: 7
(a2)配列番号: 8
(a3)配列番号: 9 (a4)配列番号: 10
(a5)配列番号: 1 1
(a6)配列番号: 12
(a7)配列番号: 13
(b l)配列番号: 14
(b2)配列番号: 15
(b3)配列番号: 16
(cl)配列番号: 17
(c2)配列番号: 18
なお上記のアミノ酸配列は、本発明において改変に供するアミノ酸をより具体的に 例示するためのものであり、可変領域がこれらのアミノ酸である場合に限定されなレ、。
[0081] 上記多重特異性抗体の好ましい態様の一つとして、例えば、第 1のポリペプチドの 可変領域が配列番号: 1 1に記載のアミノ酸配列からなり、第 2のポリペプチドの可変 領域が配列番号: 16に記載のアミノ酸配列からなり、第 3のポリペプチドの可変領域 が配列番号: 17に記載のアミノ酸配列からなる多重特異性抗体を挙げることができる さらに別の好ましい態様の一つとして、例えば、第 1のポリペプチドの可変領域が配 列番号: 12に記載のアミノ酸配列からなり、第 2のポリペプチドの可変領域が配列番 号: 16に記載のアミノ酸配列からなり、第 3のポリペプチドの可変領域が配列番号: 1 8に記載のアミノ酸配列からなる多重特異性抗体を挙げることができる。
[0082] さらに上記多重特異性抗体の好ましい態様の一つとして、第 1のポリペプチドおよ び第 2のポリペプチドがヒト IgG4定常領域を含み、第 3のポリペプチドがヒト κ定常領 域を含んでいる多重特異性抗体を挙げることができる。
[0083] 本発明において、「抗体」という用語は最も広い意味で使用され、所望の生物学的 活性を示す限り、モノクローナル抗体、ポリクローナル抗体、抗体変異体 (キメラ抗体 、ヒト化抗体、低分子化抗体 (抗体断片も含む)、多重特異性抗体等)が含まれる。本 発明においては、これら抗体の取得 (作成)の際に、好適に本発明の抗体改変方法 を用いることができる。 [0084] 本発明における「抗体」には、上述のようにアミノ酸残基の電荷を改変した抗体に対 して、さらにアミノ酸の置換、欠失、付加及び/若しくは挿入等により、アミノ酸配列が 改変された抗体が含まれる。また、アミノ酸の置換、欠失、付加及び/若しくは挿入、 またはキメラ化やヒト化等により、アミノ酸配列が改変された抗体に対して、さらに、ァ ミノ酸残基の電荷が改変された抗体が含まれる。すなわち、マウス抗体をヒト化するェ 程と同時に改変してもよぐあるいは、ヒトイ匕抗体をさらに改変することであってもよい
[0085] アミノ酸の置換、欠失、付加及び/又は揷入、並びにヒト化、キメラ化などのアミノ酸 配列の改変は、当業者に公知の方法により行うことが可能である。同様に、本発明に おける抗体を組換え抗体として作製する際に利用する抗体の可変領域及び定常領 域も、アミノ酸の置換、欠失、付加及び Z若しくは揷入、またはキメラ化やヒト化等によ りそのアミノ酸配列を改変してもよい。
[0086] 本発明における抗体はマウス抗体、ヒト抗体、ラット抗体、ゥサギ抗体、ャギ抗体、ラ クダ抗体など、どのような動物由来の抗体でもよい。さらに、例えば、キメラ抗体、中で もヒト化抗体などのアミノ酸配列を置換した改変抗体でもよい。また、各種分子を結合 させた抗体修飾物、抗体断片、低分子抗体などいかなる抗体であってもよい。
[0087] 「キメラ抗体」とは、異なる動物由来の配列を組合わせて作製される抗体である。例 えば、マウス抗体の重鎖、軽鎖の可変 (V)領域とヒト抗体の重鎖、軽鎖の定常(C)領 域からなる抗体を例示することができる。キメラ抗体の作製は公知であり、例えば、抗 体 V領域をコードする DNAをヒト抗体 C領域をコードする DNAと連結し、これを発現べ クタ一に組み込んで宿主に導入し産生させることによりキメラ抗体を得ることができる
[0088] 「ヒト化抗体」とは、再構成 (reshaped)ヒト抗体とも称される、ヒト以外の哺乳動物由 来の抗体、例えばマウス抗体の相補性決定領域(CDR;complementarity determining region)をヒト抗体の CDRへ移植したものである。 CDRを同定するための方法は公知 である (Kabat et al , sequence or Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877)。また、 その一般的な遺伝子組換え手法も公知である(欧州特許出願公開番号 EP 125023 号公報、 WO 96/02576号公報参照)。そこで公知の方法により、例えば、マウス抗体 の CDRを決定し、該 CDRとヒト抗体のフレームワーク領域(framework region ; FR)とが 連結された抗体をコードする DNAを取得し、ヒト化抗体を通常の発現ベクターを用い た系により産生することができる。このような DNAは、 CDR及び FR両方の末端領域に オーバーラップする部分を有するように作製した数個のオリゴヌクレオチドをプライマ 一として用いて PCR法により合成することができる (W098/13388号公報に記載の方 法を参照)。 CDRを介して連結されるヒト抗体の FRは、 CDRが良好な抗原結合部位を 形成するように選択される。必要に応じ、再構成ヒト抗体の CDRが適切な抗原結合部 位を形成するように、抗体の可変領域における FRのアミノ酸を改変してもよい(Sato e t al., Cancer Res. (1993) 53: 851-6)。改変できる FR中のアミノ酸残基には、抗原に 直接、非共有結合により結合する部分(Amit et al., Science (1986) 233: 747-53)、 C DR構造に影響または作用する部分(Chothia et al., J. Mol. Biol. (1987) 196: 901-17 )及び VH-VL相互作用に関連する部分 (EP239400号特許公報)が含まれる。
[0089] 本発明における抗体がキメラ抗体またはヒト化抗体である場合には、これらの抗体 の C領域は,好ましくはヒト抗体由来のものが使用される。例えば H鎖では、 C y 1、 C γ 2、 C γ 3、 C γ 4を、 L鎖では C K . C Zを使用することができる。また、抗体またはそ の産生の安定性を改善するために、ヒト抗体 C領域を必要に応じ修飾してもよい。本 発明におけるキメラ抗体は、好ましくはヒト以外の哺乳動物由来抗体の可変領域とヒト 抗体由来の定常領域とからなる。一方、ヒト化抗体は、好ましくはヒト以外の哺乳動物 由来抗体の CDRと、ヒト抗体由来の FRおよび C領域とからなる。ヒト抗体由来の定常 領域は、 IgG (IgGl、 IgG2、 IgG3、 IgG4)、 IgM、 IgA、 IgD及び IgE等のアイソタイプごと に固有のアミノ酸配列を有する。本発明におけるヒト化抗体に用いられる定常領域は 、どのアイソタイプに属する抗体の定常領域であってもよい。好ましくは、ヒト IgGの定 常領域が用いられるが、これに限定されるものではない。また、ヒト化抗体に利用され るヒト抗体由来の FRも特に限定されず、どのアイソタイプに属する抗体のものであつ てもよい。
[0090] 本発明におけるキメラ抗体及びヒト化抗体の可変領域及び定常領域は、元の抗体 の結合特異性を示す限り、欠失、置換、揷入及び/または付加等により改変されてい てもよい。
[0091] ヒト由来の配列を利用したキメラ抗体及びヒト化抗体は、ヒト体内における抗原性が 低下しているため、治療目的などでヒトに投与する場合に有用と考えられる。
[0092] また、低分子化抗体は、体内動態の性質の面からも、大腸菌、植物細胞等を用い て低コストで製造できる点からも抗体として有用である。
[0093] 抗体断片は低分子化抗体の一種である。また、低分子化抗体は、抗体断片をその 構造の一部とする抗体も含む。本発明における低分子化抗体は、抗原への結合能を 有していれば特にその構造、製造法等は限定されない。低分子化抗体の中には、全 長抗体よりも高い活性を有する抗体も存在する(Orita et al., Blood(2005) 105: 562-5 66)。本明細書において、「抗体断片」とは、全長抗体 (whole antibody,例えば whole I gG等)の一部分であれば特に限定されなレ、が、重鎖可変領域 (VH)又は軽鎖可変領 域 (VL)を含んでいることが好ましい。好ましい抗体断片の例としては、例えば、 Fab, F(ab')2、 Fab'、 Fvなどを挙げることができる。抗体断片中の、 VHまたは VLのアミノ酸 配列は、置換、欠失、付加及び/又は挿入により改変されていてもよい。さらに抗原 への結合能を保持する限り、 VH及び VLの一部を欠損させてもよい。例えば、前述の 抗体断片のうち「Fv」は、完全な抗原認識部位と結合部位を含む最小の抗体断片で ある。 「Fv」は、 1つの VHおよび 1つの VLが非共有結合により強く結合したダイマー (V H-VLダイマー)である。各可変領域の 3つの相補鎖決定領域(complementarity dete rmining region ; CDR)によって、 VH-VLダイマーの表面に抗原結合部位を形成する 。 6つの CDRが抗体に抗原結合部位を付与している。し力 ながら、 1つの可変領域( または、抗原に特異的な 3つの CDRのみを含む Fvの半分)であっても、全結合部位よ りも親和性は低いが、抗原を認識し、結合する能力を有する。従って、このような Fvよ り小さい分子も本発明における抗体断片に含まれる。又、抗体断片の可変領域はキ メラ化ゃヒト化されてレ、てもよレ、。
[0094] 低分子化抗体は、 VHと VLの両方を含んでいることが好ましい。低分子化抗体の例 としては、 Fab, Fab'、 F(ab')2及び Fv等の抗体断片、並びに、抗体断片を利用して作 製され得る scFv (シングルチェイン Fv) (Huston et al, Proc. Natl. Acad. Sci. USA (19 88) 85: 5879-83; Pluckthuri「The Pharmacology of Monoclonal AntibodiesJ Vol. l l3, Resenburg及び Moore編, Springer Verlag, New York, pp.269-315, (1994))、 Diabod y (Holliger et al., Proc. Natl. Acad. Sci. USA (1993) 90: 6444-8; EP404097号; W09 3/11161号; Johnson et al., Method in Enzymology (1991) 203: 88-98; Holliger et al. , Protein Engineering (1996) 9: 299—305; Perisic et al, Structure (1994) 2: 1217—26 ; John et al, Protein Engineering (1999) 12(7): 597-604; Atwell et al, Mol. Immunol. (1996) 33: 1301-12)、 sc(Fv)2 (Hudson et al、 J Immunol. Methods (1999) 231 : 177- 89; Orita et al., Blood(2005) 105: 562-566)、 Triabody (Journal of Immunological M ethods (1999) 231 : 177-89)、及び Tandem Diabody (Cancer Research (2000) 60: 43 36-41)等を挙げることができる。
[0095] 抗体断片は、抗体を酵素、例えばパパイン、ペプシン等のプロテアーゼにより処理 して得ることができる(Morimoto et al" J. Biochem. Biophys. Methods (1992) 24: 107 -17; Brennan et al. , Science (1985) 229: 81参照)。また、該抗体断片のアミノ酸配列 を基に、遺伝子組換えにより製造することもできる。
[0096] 抗体断片を改変した構造を有する低分子化抗体は、酵素処理若しくは遺伝子組換 えにより得られた抗体断片を利用して構築することができる。又は、低分子化抗体全 体をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞 で発現させることもできる(例えば、 Co et al" J. Immunol. (1994) 152: 2968-76; Bette r and Horwitz, Methods Enzymol. (1989) 178: 476~9b; Pluckthun and Skerra, Metho ds Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121 : 652-63; Rousseaux et al., Methods Enzymol. (1986) 121 : bり《3-9; Bird and Walker, Trends Bi otechnol. (1991) 9: 132-7参照)。
[0097] また、上記「scFv」は、 2つの可変領域を、必要に応じリンカ一等を介して、結合させ た一本鎖ポリペプチドである。 scFvに含まれる 2つの可変領域は、通常、 1つの VHと 1 つの VLであるが、 2つの VH又は 2つの VLであってもよレ、。一般に scFvポリペプチドは 、 VH及び VLドメインの間にリンカ一を含み、それにより抗原結合のために必要な VH 及び VLの対部分が形成される。通常、同じ分子内で VH及び VLの間で対部分を形 成させるために、一般に、 VH及び VLを連結するリンカ一を 10アミノ酸以上の長さの ペプチドリンカ一とする。しかしながら、本発明における scFvのリンカ一は、 scFvの形 成を妨げない限り、このようなペプチドリンカ一に限定されるものではなレ、。 scFvの総 説として、 Pluckthunu i e Pharmacology of Monoclonal Antibody』Vol. l l 3(Rosenburg and Moore ed. , Springer Verlag, NY, pp.269-315 (1994》を参照することができる。
[0098] また、「ダイァボディ (diabody; Db)」は、遺伝子融合により構築された二価 (bivalent) の抗体断片を指す (P.Holliger et al., Proc.Natl.Acad. Sci.USA 90: 6444-6448 (1993) 、 EP404,097号、 W093/ 1 1 161号等)。ダイァボディは、 2本のポリペプチド鎖力 構成 されるダイマーであり、ポリペプチド鎖は各々、同じ鎖中で軽鎖可変領域 (VL)及び重 鎖可変領域 (VH)が、互いに結合できない位に短レ、、例えば、 5残基程度のリンカ一 により結合されている。同一ポリペプチド鎖上にコードされる VLと VHとは、その間のリ ンカーが短いため単鎖 V領域フラグメントを形成することが出来ず二量体を形成する ため、ダイァボディは 2つの抗原結合部位を有することとなる。このとき 2つの異なるェ ピトープ (a、 b)に対する VLと VHを VLa_VHbと VLb_VHaの組合わせで 5残基程度のリ ンカーで結んだものを同時に発現させると二重特異性 Dbとして分泌される。
[0099] Diabodyは、 2分子の scFvを含むことから、 4つの可変領域を含み、その結果、 2つの 抗原結合部位を持つこととなる。ダイマーを形成させない scFvの場合と異なり、 Diabo dyの形成を目的とする場合、通常、各 scFv分子内の VH及び VL間を結ぶリンカ一は 、ペプチドリンカ一とする場合には、 5アミノ酸前後のものとする。し力 ながら、 Diabod yを形成する scFvのリンカ一は、 scFvの発現を妨げず、 Diabodyの形成を妨げない限 り、このようなペプチドリンカ一に限定されない。
[0100] 本発明においてさらに好ましくは、多重特異性抗体として二重特異性抗体を挙げる こと力 Sできる。
なお、上記「二重特異性抗体」は、例えば、重鎖可変領域および軽鎖可変領域が 1 本鎖として連結した構造の抗体 (例えば、 sc(Fv)2)であってもよい。また重鎖可変領 域 (VH)および軽鎖可変領域 (VL)が連結した scFv (あるレ、は sc(Fv)2)を Fc領域 (CH Iド メインを欠いた定常領域)と結合した抗体様分子 (例えば、 scFv-Fc)であってもよい。 s cFv_Fcからなる多重特異性抗体は第 1のポリペプチド力 VH l-linker_VLl-Fcであり、 第 2のポリペプチドが VH2- linker-VL2- Fcからなる (scFv)2-Fc型の構造をもつ。ある レ、は single domain antibodyを Fc領域と結合させた抗体様分子であってもよい(Curr Opin Drug Discov Devel. 2006, 9(2), 184-93)。
[0101] 本発明の方法における変異導入前の抗体 (本明細書においては、単に「本発明の 抗体」と記載する場合あり)の H鎖又は L鎖をコードする遺伝子は既知の配列を用いる ことも可能であり、又、当業者に公知の方法で取得することもできる。例えば、抗体ラ イブラリーから取得することも可能であるし、モノクローナル抗体を産生するハイブリド 一マから抗体をコードする遺伝子をクローユングして取得することも可能である。
[0102] 抗体ライブラリーについては既に多くの抗体ライブラリーが公知になっており、又、 抗体ライブラリーの作製方法も公知であるので、当業者は適宜抗体ライブラリーを入 手することが可能である。例えば、抗体ファージライブラリーについては、 Clackson et al, Nature 1991, 352: 624-8, Marks et al., J. Mol. Biol. 1991, 222: 581-97、 Water houses et al. , Nucleic Acids Res. 1993, 21 : 2265—6、 Griffiths et al" EMBO J. 1994, 13: 3245-60、 Vaughan et al, Nature Biotechnology 1996, 14: 309-14、及び特表平 20— 504970号公報等の文献を参照することができる。その他、真核細胞をライブラリ 一とする方法 (W095/15393号パンフレット)やリボソーム提示法等の公知の方法を用 レ、ることが可能である。さらに、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗 体を取得する技術も知られている。例えば、ヒト抗体の可変領域を一本鎖抗体 (scFv) としてファージディスプレイ法によりファージの表面に発現させ、抗原に結合するファ ージを選択することができる。選択されたファージの遺伝子を解析すれば、抗原に結 合するヒト抗体の可変領域をコードする DNA配列を決定することができる。抗原に結 合する scFvの DNA配列が明らかになれば、当該配列を元に適当な発現ベクターを 作製し、ヒト抗体を取得することができる。これらの方法は既に周知であり、 WO92/01 047、 WO92/20791 , WO93/06213, W093/11236, W093/19172, WO95/01438, W ◦95/15388を参考にすることができる。
[0103] ハイプリドーマから抗体をコードする遺伝子を取得する方法は、基本的には公知技 術を使用し、所望の抗原または所望の抗原を発現する細胞を感作抗原として使用し て、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融 合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナ ルな抗体産生細胞 (ハイブリドーマ)をスクリーニングし、得られたハイプリドーマの mR NAから逆転写酵素を用いて抗体の可変領域 (V領域)の cDNAを合成し、これを所望 の抗体定常領域 (C領域)をコードする DNAと連結することにより得ることができる。
[0104] より具体的には、特に以下の例示に限定される訳ではないが、上記の H鎖及び L鎖 をコ一ドする抗体遺伝子を得るための感作抗原は、免疫原性を有する完全抗原と、 免疫原性を示さないハプテン等を含む不完全抗原の両方を含む。例えば、 目的タン パク質の全長タンパク質、又は部分ペプチドなどを用いることができる。その他、多糖 類、核酸、脂質等から構成される物質が抗原となり得ることが知られており、本発明の 抗体の抗原は特に限定されるものではない。抗原の調製は、当業者に公知の方法に より行うことができ、例えば、バキュロウィルスを用いた方法 (例えば、 W098/46777な ど)などに準じて行うことができる。ノ、イブリドーマの作製は、たとえば、ミルスティンら の方法 (G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3- 46)等に準じて行 うことができる。抗原の免疫原性が低い場合には、アルブミン等の免疫原性を有する 巨大分子と結合させ、免疫を行えばよい。また、必要に応じ抗原を他の分子と結合さ せることにより可溶性抗原とすることもできる。受容体のような膜貫通分子を抗原とし て用いる場合、受容体の細胞外領域部分を断片として用いたり、膜貫通分子を細胞 表面上に発現する細胞を免疫原として使用することも可能である。
[0105] 抗体産生細胞は、上述の適当な感作抗原を用いて動物を免疫化することにより得 ること力 Sできる。または、抗体を産生し得るリンパ球を in vitroで免疫化して抗体産生 細胞とすることもできる。免疫化する動物としては、各種哺乳動物を使用できるが、ゲ ッ歯目、ゥサギ目、霊長目の動物が一般的に用いられる。マウス、ラット、ハムスター 等のゲッ歯目、ゥサギ等のゥサギ目、力二クイザル、ァカゲザル、マントヒヒ、チンパン ジ一等のサル等の霊長目の動物を例示することができる。その他、ヒト抗体遺伝子の レパートリーを有するトランスジエニック動物も知られており、このような動物を使用す ることによりヒト抗体を得ることもできる (WO96/34096; Mendez et al, Nat. Genet. 199 7, 15: 146-56参照)。このようなトランスジヱニック動物の使用に代えて、例えば、ヒトリ ンパ球を in vitroで所望の抗原または所望の抗原を発現する細胞で感作し、感作リン パ球をヒトミエローマ細胞、例えば U266と融合させることにより、抗原への結合活性を 有する所望のヒト抗体を得ることもできる (特公平ト 59878号公報参照)。また、ヒト抗体 遺伝子の全てのレパートリーを有するトランスジヱニック動物を所望の抗原で免疫す ることで所望のヒト抗体を取得することができる (W093/12227、 WO92/03918、 W094 /02602、 WO96/34096、 W096/33735参照)。
[0106] 動物の免疫化は、例えば、感作抗原を Phosphate- Buffered Saline(PBS)または生理 食塩水等で適宜希釈、懸濁し、必要に応じてアジュバントを混合して乳化した後、動 物の腹腔内または皮下に注射することにより行われる。その後、好ましくは、フロイント 不完全アジュバントに混合した感作抗原を 4〜21日毎に数回投与する。抗体の産生 の確認は、動物の血清中の目的とする抗体力価を慣用の方法により測定することに より行われ得る。
[0107] ハイプリドーマは、所望の抗原で免疫化した動物またはリンパ球より得られた抗体 産生細胞を、慣用の融合剤 (例えば、ポリエチレングリコール)を使用してミエローマ細 胞と融合して作成することができる (Goding, Monoclonal Antibodies: Principles and Pr actice, Academic Press, 1986, 59-103)。必要に応じハイプリドーマ細胞を培養'増殖 し、免疫沈降、放射免疫分析 (RIA)、酵素結合免疫吸着分析 (ELISA)等の公知の分 析法により該ハイブリドーマより産生される抗体の結合特異性を測定する。その後、 必要に応じ、 目的とする特異性、親和性または活性が測定された抗体を産生するハ イブリドーマを限界希釈法等の手法によりサブクローニングすることもできる。
[0108] 続いて、選択された抗体をコードする遺伝子をハイプリドーマまたは抗体産生細胞( 感作リンパ球等)から、抗体に特異的に結合し得るプローブ (例えば、抗体定常領域 をコードする配列に相補的なオリゴヌクレオチド等)を用いてクローニングすることがで きる。また、 mRNAから RT-PCRによりクローニングすることも可能である。免疫グロブリ ンは、 IgA、 IgD、 IgE、 IgG及び IgMの 5つの異なるクラスに分類される。さらに、これらの クラスは幾つかのサブクラス (アイソタイプ) (例えば、 IgG_l、 IgG_2、 IgG-3、及び IgG_4 ;IgA_l及び IgA_2等)に分けられる。本発明において抗体の製造に使用する H鎖及び L鎖は、これらいずれのクラス及びサブクラスに属する抗体に由来するものであっても よぐ特に限定されないが、 IgGは特に好ましいものである。
[0109] ここで、 H鎖及び L鎖をコードする遺伝子を遺伝子工学的手法により改変することも 可能である。例えば、マウス抗体、ラット抗体、ゥサギ抗体、ハムスター抗体、ヒッジ抗 体、ラクダ抗体等の抗体について、ヒトに対する異種抗原性を低下させること等を目 的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ抗体、ヒト化抗体等 を適宜作製することができる。キメラ抗体は、ヒト以外の哺乳動物、例えば、マウス抗 体の H鎖、 L鎖の可変領域とヒト抗体の H鎖、 L鎖の定常領域からなる抗体であり、マウ ス抗体の可変領域をコードする DNAをヒト抗体の定常領域をコードする DNAと連結し 、これを発現ベクターに組み込んで宿主に導入し産生させることにより得ることができ る。ヒト化抗体は、再構成 (reshaped)ヒト抗体とも称され、ヒト以外の哺乳動物、たとえ ばマウス抗体の相ネ甫十生決定領域 (CDR; complementary determining region)を連結 するように設計した DNA配列を、末端部にオーバーラップする部分を有するように作 製した数個のオリゴヌクレオチドから PCR法により合成する。得られた DNAをヒト抗体 定常領域をコードする DNAと連結し、次いで発現ベクターに組み込んで、これを宿主 に導入し産生させることにより得られる (EP239400; WO96/02576参照)。 CDRを介して 連結されるヒト抗体の FRは、相補性決定領域が良好な抗原結合部位を形成するもの が選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部 位を形成するように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよ レヽ (K. Sato et al., Cancer Res. 1993, 53: 851-856)。
上述のヒト化以外に、例えば、抗原との結合性等の抗体の生物学的特性を改善す るために改変を行うことも考えられる。本発明における改変は、部位特異的突然変異 (例えば、 Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488参照)、 PCR変異、カセッ ト変異等の方法により行うことができる。一般に、生物学的特性の改善された抗体変 異体は 70%以上、より好ましくは 80%以上、さらに好ましくは 90%以上 (例えば、 95% 以上、 97。/0、 98%、 99%等)のアミノ酸配列相同性及び/または類似性を元となった抗 体の可変領域のアミノ酸配列に対して有する。本明細書において、配列の相同性及 び/または類似性は、配列相同性が最大の値を取るように必要に応じ配列を整列化 、及びギャップ導入した後、元となった抗体残基と相同 (同じ残基)または類似 (一般的 なアミノ酸の側鎖の特性に基き同じグループに分類されるアミノ酸残基)するアミノ酸 残基の割合として定義される。通常、天然のアミノ酸残基は、その側鎖の性質に基づ いて (1)疎水性:ァラニン、イソロイシン、バリン、メチォニン及びロイシン; (2)中性親水 性:ァスパラギン、グノレタミン、システィン、スレオニン及びセリン;(3)酸性:ァスパラギ ン酸及びグルタミン酸; (4)塩基性:アルギニン、ヒスチジン及びリジン; (5)鎖の配向に 影響する残基:グリシンおよびプロリン;ならびに (6)芳香族性:チロシン、トリブトファン 及びフエ二ルァラニンのグループに分類される。
[0111] 通常、 H鎖及び L鎖の可変領域中に存在する全部で 6つの相補性決定領域 (超可 変部; CDR)が相互作用し、抗体の抗原結合部位を形成している。このうち 1つの可変 領域であつても全結合部位を含むものよりは低レ、親和性となるものの、抗原を認識し 、結合する能力があることが知られている。従って、本発明の H鎖及び L鎖をコードす る抗体遺伝子は、該遺伝子によりコードされるポリペプチドが所望の抗原との結合性 を維持していればよぐ H鎖及び L鎖の各々の抗原結合部位を含む断片部分をコー ドしていればよレ、。
本発明の方法によって、上述のように、例えば、所望の、実際に活性を保持する、 二重特異性抗体を効率的に取得することができる。
[0112] 重鎖可変領域は、上述のように、通常 3つの CDR領域と 4つの FR領域によって構成 されている。本発明の好ましい態様において「改変」に供するアミノ酸残基としては、 例えば、 CDR領域あるいは FR領域に位置するアミノ酸残基の中から適宜選択するこ とができる。一般的に CDR領域のアミノ酸残基の改変は、抗原に対する結合能を低 下させる場合がある。従って、本発明において「改変」に供するアミノ酸残基としては 、特に限定されるものではないが、 FR領域に位置するアミノ酸残基の中から適宜選 択することが好ましい。
[0113] また、ヒトもしくはマウス等の生物において、抗体の可変領域の FRとして利用可能な 配列を、当業者であれば、公共のデータベース等を利用して適宜取得することがで きる。より具体的には、後述の実施例に記載の手段にて、 FR領域のアミノ酸配列情 報を取得することが可能である。
なお本明細書において引用されたすベての先行技術文献は、参照として本明細書 に組み入れられる。
実施例
[0114] 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に制限 されるものではない。
[0115] 〔実施例 1〕ハイブリッド L鎖を持つ二重特異性抗体のヒトイ匕
特願 2005-112514において血液凝固時間の短縮効果が最も高力 た抗 FactorlXa 抗体 A69_VH、抗 FactorX抗体 B26_VH、ハイブリッド L鎖 (BBA)の組み合わせから成 る二重特異性抗体にっレ、て、以下のようにヒト化を実施した。
[0116] ヒト抗体の相同性検索
Figure imgf000040_0001
Database (ftp://ftp. ebi. ac. uk/ pub/ databases/kabat/) および IMGT Database (http://imgt. cines. fr/)よりヒト抗体アミノ酸配列データを入 手し、構築したデータベースを用いてマウス A69-H鎖可変領域(アミノ酸配列:配列 番号: 19)、マウス B26- H鎖可変領域 (アミノ酸配歹 1J:配列番号: 20)、マウス BBA- L鎖 可変領域 (アミノ酸配歹 IJ :配列番号: 21)に分けてホモロジ一検索を行った。その結果 、以下に示すヒト抗体配列と高い相同性を持つことが確認されたことから、ヒト化抗体 のフレームワーク領域(以下、 FR)に使用することにした。
[0117] (1)A69-H鎖可変領域: KABATID-000064 (Kabat Database)
(Kippsら、 J Clin Invest. 1991 ; 87 : 2087-2096)
(2) B26-H鎖可変領域: EMBL Accession No. AB063872(IMGT Database)
(Unpublished data)
(3) BBA_L鎖可変領域: KABATID-024300 (Kabat Database)
(Welschofら、 J Immunol Method. 1995; 179: 203-214)
[0118] (l)-(3)のヒト抗体の FRに各マウス抗体の相補性抗原決定領域 (以下、 CDR)を移植 したヒト化抗体を作製した。
[0119] また、 NCBIより一般公開されている相同性検索 Web site (http:〃 www. ncbi. nlm. nih. gov/BLAST/)を使用して、(4)-(6)のヒト抗体に相同性の高レ、ヒト抗体の分泌シグ ナル配列を検索した。検索により得られた以下に示す分泌シグナル配列を使用した
(4) A69_H鎖可変領域: GenBank Accession No. AF062257
(5) B26- H鎖可変領域: GenBank Accession No. AAC 18248
(6) BBA_L鎖可変領域: GenBank Accession No. AAA59100 [0120] 1 2.ヒト化抗体遺伝子発現ベクターの構築
分泌シグナル配列から抗体可変領域にいたるアミノ酸配列をコードする塩基配列 において、 50 base程度の合成オリゴ DNAを 3,末端側が約 20 base程度ハイブリダィズ するように交互に 12本作製した。合成オリゴ DNAは 5'末端側にヒト配歹 1J、 3'末端側に マウス配列をコードするカ または全塩基がヒト配列をコードするように設計した。さら に、抗体可変領域遺伝子の 5 '末端にァニールし、 Xhol切断配列を有するプライマー と抗体可変領域遺伝子の 3 '末端にァニールし、 Sfil切断配列を有し且つイントロン配 列の 5 '末端配列をコードするプライマーを作製した。
[0121] 2.5 μ Μに調製した合成オリゴ DNAを各 1 μ Lで混合し、 lx TaKaRa Ex Taq Buffer, 0 .4 mM dNTPs, 0.5 units TaKaRa Ex Taq (全て宝酒造)を加え、反応液 48 μ Lになるよ うに調製した。 94°C 5分保温した後に、 94°C 2分、 55°C 2分、 72°C 2分からなる反応 を 2サイクル行レ、、各合成オリゴ DNAのアッセンブルおよび伸長反応を実施した。次 に、抗体遺伝子の 5 '末端および 3 '末端にァニールするプライマー (各 10 /i M)を 1 μ L 添加し、 94°C 30秒、 55°C 30秒、 72°C 1分力 なる反応を 35サイクル行い、 72°C 5分 反応させ、抗体可変領域遺伝子を増幅した。 PCR後、反応液全量を 1 %ァガローズゲ ル電気泳動に供した。 目的のサイズ(約 400 bp)の増幅断片を QIAquick Gel Extracti on Kit (QIAGEN)を用いて、添付説明書記載の方法で精製し、滅菌水 30 μ ΐで溶出し た。該断片を pGEM-T Easy Vector Systems (Promega)を用いて、添付説明書記載の 方法でクローニングを行った。各 DNA断片の塩基配列は、 BigDye Terminator Cycle Sequencing Kit (Applied Biosystems)を用い、 DNAシークェンサ一 ABI PRISM 3730x L DNA Sequencerまたは ABI PRISM 3700 DNA Sequencer (Applied Biosystems)にて 、添付説明書記載の方法に従い決定した。
[0122] 正しいヒト化抗体可変領域遺伝子配列であることが確認された H鎖可変領域断片 揷入プラスミドを Xholおよび Sfilで、 L鎖可変領域断片揷入プラスミドを EcoRIで消化し た後に、反応液を 1 %ァガローズゲル電気泳動に供した。 目的のサイズ (約 400 bp)の DNA断片を QIAquick Gel Extraction Kit (QIAGEN)を用いて、添付説明書記載の方 法で精製し、滅菌水 30 μ 1で溶出した。その後、以下のようにして動物細胞用発現べ クタ一を作製した。 Η鎖がヘテロな組み合わせである IgG4を優先的に発現させるため に、 IgGlの knobs-into-hole技術 (Merchant AMら、 Nature Biotechnology, 1998年、 V ol. l6、 p.677-681)を参考に IgG4の CH3部分へのアミノ酸置換体を用いた。さらに H鎖 のダイマー形成促進のためにヒンジにもアミノ酸置換(-ppcpScp-→-ppcPPcp-)を導 入した。ニヮトリ βァクチンプロモーターを有する pCAGGS (Niwaら、 Gene、 1991年、 V ol. 108、 p.193-199)に Y349C、 T366Wに置換した定常領域遺伝子を組み込んだ発 現ベクターにヒト化 A69 H鎖可変領域抗体遺伝子断片を揷入し、ヒト化 A69H鎖発現 ベクターを作製した。また、 pCAGGSに E356C、 T366S、 L368A、 Y407Vに置換した定 常領域遺伝子を組み込んだ発現ベクターにヒト化 B26 H鎖可変領域抗体遺伝子断 片を揷入し、ヒト化 B26H鎖発現ベクターを作製した。また、 pCAGGSに野生型の抗体 L鎖定常領域が揷入されたプラスミド (pCAG-g κ DNA)を EcoRIで消化し、ヒト化 BBA L 鎖可変領域抗体遺伝子断片を揷入した発現ベクターを作製した。連結反応は Rapid DNA Ligation Kit (Roche Diagnostics)を用レ、、大腸菌 DH5ひ株(東洋紡績)を形質転 換した。
1 3.ヒト化二重特異性抗体の発現
ヒト化二重特異性抗体の発現は、以下の方法を用いて行った。ヒト胎児腎癌細胞由 来ヒト化二重特異性抗体の発現は、実施例 1 2に記載した方法か以下の方法を用 レヽて行った。ヒト胎児腎癌細胞由来 HEK293H株(Invitrogen)を 10 % Fetal Bovine Ser urn (Invitrogen)を含む DMEM培地 (Invitrogen)へ懸濁し、 5〜6 X 105個 /mLの細胞 密度で接着細胞用ディッシュ(直径 10 cm, CORNING)の各ディッシュへ 10 mLずつ 蒔きこみ COインキュベーター(37°C、 5 % CO )内で一昼夜培養した後に、培地を吸 引除去し、 1 %の Fetal Bovine Serum(Invitrogen)を含む CHO-S-SFM-II (Invitrogen) 培地 6.9 mLを添カ卩した。 1― 2で調製したプラスミド DNA混合液(合計 13.8 μ g)を 1 μ g /mL Polyethylenimine (Polysciences Inc.) 20.7 μ Lと CHO-S-SFMII培地 690 μ Lと混 合して室温 10分間静置したものを各ディッシュの細胞へ投入し、 4〜5時間、 COイン キュベータ一(37。Cにて 5 % CO )内でインキュベートした。その後、 1 %の Fetal Bovine
360«11 1^ (^611)を含む。^^0-3-3?\4-11 (1 1"(¾611)培地6.9 mLを添加して、 3日間 COインキュベーター内で培養した。培養上清を回収した後、遠心分離 (約 2000 g、
5分間、室温)して細胞を除去し、さらに 0.22 μ τηフィルター MILLEX(R)-GV (Millipore) を通して滅菌した。該サンプノレは使用するまで 4°Cで保存した。
[0124] 1 4.ヒト化二重特異性抗体の精製
実施例 1 2に記載の方法で得られた培養上清に 100 μ Lの rProtein A SepharoseT M Fast Flow (Amersham Biosciences)を添加し、 4°Cで 4時間以上転倒混和した。その 溶液を 0.22 μ mのフィルターカップ Ultrafree(R)- MC (Millipore)に移し、 0.01 % Tween(R) 20を含む TBS 500 μ Lにて 3回洗浄後、 rProtein A S印 harose™樹脂に 100 μ Lの 0.0 1 % Tween(R) 20を含む 50 mM酢酸ナトリウム水溶液, pH 3.3に懸濁して 2分間静置し たのち、抗体を溶出させた。直ちに、 6.7 μ Lの 1.5 M Tris-HCl, pH 7.8を加えて中和 した。
[0125] 1一 5.ヒト化二重特異性抗体の濃度定量
以下に示すとおり、 2種類の方法で測定した。
Goat anti-human IgG (Biosource International) coating buffer!1こて丄 μ g/mLiこ誠 製し、 Nunc-Immuno plate(Nunc)に固相化した。 Diluent buffer (D.B.)にてブロッキン グ処理した後、 D.B.を用いて適当に希釈した培養上清サンプルを添加した。また、抗 体濃度算出のためのスタンダードとして、 2000 ng/mLから 3倍系列で D.B.にて 11段階 希釈したヒ HgG4 (ヒト型化抗 TF抗体、 WO 99/51743参照)を同様に添加した。 3回洗 净し 7この 、 Goat anti-human Ig , alkaline phosphatase (Biosource International) ¾r 反応させた。 5回洗浄したのち、 Sigma 104(R) phosphatase substrate (Sigma- Aldrich) を基質として発色させ、吸光度リーダー Model 3550 (Bio-Rad Laboratories)により、参 照波長 655 nmとして 405 nmの吸光度を測定した。 Microplate Manager III (Bio-Rad L aboretories)ソフトウェアを用いて、スタンダードの検量線から培養上清中のヒ HgG濃 度を算出した。
[0126] また、 BiacorelOOO(BIACORE)を使用し、 ProteinAを固定化した Sensor Chip CM5(B IACORE)を用いて定量した。具体的にはメーカーのプロトコールに従レ、、活性化した センサーチップに 10 mM酢酸ナトリウム水溶液 (pH 4.0, BIACORE)で 50 μ g/mLに希 釈した ProteinA(SIGMA)溶液を 5 μ L/分で 30分間反応させ、その後ブロッキング操作 を実施して ProteinA固定化センサーチップを作製した。このセンサーチップを用いて 、 Biacore 1000(BIACORE)を使用して培養上清および精製品の濃度を測定した。セ ンサーチップの固定および濃度測定には HBS-EP Buffer(BIACORE)を使用した。ま た、濃度測定時の標準品として 4000 ng/mLから 2倍系列で HBS-EP Bufferにて 6段 階希釈したヒト化 IgG4抗体 (ヒト型化抗 TF抗体、 WO 99/51743参照)を使用した。
[0127] 1 - 6.ヒト化二重特異性抗体の血液凝固活性評価
血友病 A血液の凝固能を二重特異性抗体が是正するか明らかにするために、 Fact or VIII欠乏血漿を用いた活性化部分トロンボプラスチン時間(APTT)に対する同抗 体の影響を検討した。様々な濃度の抗体溶液 50 μレ Factor VIII欠乏血漿(Biomeri eux) 50 μ L及び APTT試薬(Dade Behring) 50 μ Lの混合液を 37°Cで 3分間加温した。 凝固反応は 20 mMの CaCl (Dade Behring) 50 μ Lを同混合液に加えることにより開始
2
させた。 CR-A (Amelung)が接続された KClOA (Amelung)により凝固するまでの時間 を測定した。
[0128] Factor VIII欠乏血漿の凝固時間を 0 %、正常血漿の凝固時間を 100 %としたときに作 製される検量線を用いて、二重特異性抗体を添加した際の凝固時間から二重特異 性抗体の Factor VIII様活性 (%)を算出した。
[0129] 1 - 7.血液凝固活性を保持したヒト化二重特異性抗体の取得
上述した血液凝固活性評価において、血液凝固能が低下したヒト化二重特異性抗 体について、活性上昇を目指してヒト抗体 FRのアミノ酸を改変した。具体的には、 Qui kChange Site-Directed Mutagenesis Kit (Stratagene) 用レヽて、添付兑明書 載の 方法でヒト化抗体可変領域に変異を導入した。 目的のヒト化抗体可変領域遺伝子配 列であることが確認された H鎖可変領域断片挿入プラスミドを Xholおよび Sfilで、 L鎖 可変領域断片挿入プラスミドを EcoRIで消化した後に、反応液を 1 %ァガローズゲノレ 電気泳動に供した。 目的のサイズ (約 400 bp)の DNA断片を QIAquick Gel Extraction Kit (QIAGEN)を用いて、添付説明書記載の方法で精製し、滅菌水 30 μ ΐで溶出した 。その後、実施例 1一 2に示す方法で、動物細胞用発現プラスミドを作製した。実施 例 1一 3、 1 -4, 1一 5に示す方法でヒト化二重特異性抗体を調製し、実施例 1一 6に 示す方法で血液凝固活性を評価した。
[0130] FR配列のアミノ酸改変および血液凝固能の評価を繰り返すことでキメラ二重特異 性抗体 (Α69/Β26/ΒΒΑ)と同等の活性を有するヒト化二重特異性抗体(ヒト化 Α69 (hA6 9a) /ヒト化 B26 (hB26-F123e4)/ヒト化 BBA (hAL-F123j4) )を取得した(図 1)。各抗体 可変領域配列を以下の配列番号に示した。
[0131] (1)ヒト化 A69抗体 VH (hA69a) 配列番号: 1 (塩基配列)、配列番号: 2 (アミノ酸配歹 1J )
(2)ヒト化 B26抗体 VH (hB26_F123e4) 配列番号: 3 (塩基配列)、配列番号: 4 (ァミノ 酸配列)
(3)ヒト化 BBA抗体 VL (hAL-F123j4) 配列番号: 5 (塩基配列)、配列番号: 6 (ァミノ 酸配列)
[0132] 〔実施例 2〕二重特異性抗体の分離に向けた可変領域のアミノ酸改変箇所の選定 二重特異性抗体を調製する際の発現において、 2種類の H鎖と 1種類の L鎖を使用 すると、ヒト化 A69- H鎖とヒト化 BBA-L鎖のホモダイマー、ヒト化 B26-H鎖とヒトイ匕 BBA- L鎖のホモダイマー、ヒト化 A69-H鎖およびヒトイ匕 B26-H鎖とヒトイ匕 BBA-L鎖のへテロ ダイマーの 3種類の抗体が発現する。この 3種類の抗体を分離し、二重特異性抗体の み精製することを目的として、ヒト化 A69 H鎖可変領域の等電点を下降させ、ヒト化 B2 6 H鎖可変領域の等電点を上昇させるアミノ酸改変を行った。
[0133] はじめにヒト化 A69抗体とヒト化 B26抗体の可変領域表面に露出するアミノ酸残基を 確認するために、 MOEソフトウェア(Chemical Computing Group Inc. )を用いて、ホモ ロジーモデリングによりヒト化 A69抗体およびヒト化 B26抗体の抗体 Fv領域モデルを作 製した。モデルを図 2に示した。本モデルの詳細な解析により、 CDR以外の FR配列に おいては表面に露出するアミノ酸の中で、 H10、 H12、 H23、 H39、 H43、 H105 (Kabat ナンノくリング、 Kabat EA et al. 1991. Sequences of Proteins of Immunological Intere st. NIH)が、活性を低下させること無ぐ等電点を変化させることができる候補になる と考えられた。
[0134] 〔実施例 3〕ヒト化二重特異性抗体の可変領域アミノ酸の改変
実施例 2において選定された箇所について改変抗体を作製するためのアミノ酸改 変を行った。具体的には、 QuikChange Site-Directed Mutagenesis Kit (Stratagene) を用いて、添付説明書記載の方法で作製したヒト化 A69抗体 H鎖可変領域 (hA69a、 塩基配列番号: 1)およびヒト化 B26抗体 H鎖可変領域 (hB26_F123e4、塩基配列番号 : 3)に変異を導入した。 目的のヒト化抗体可変領域遺伝子配列であることが確認され た H鎖可変領域断片挿入プラスミドを Xholおよび Sfilで消化した後に、反応液を 1 %ァ ガローズゲル電気泳動に供した。 目的のサイズ(約 400 bp)の DNA断片を QIAquick G el Extraction Kit (QIAGEN)を用いて添付説明書記載の方法で精製し、滅菌水 30 μ 1 で溶出した。実施例 1 _ 2に示す方法で、調製した DNA断片を knobs-into-hole技術 を参考に定常領域アミノ酸を置換した発現プラスミドおよび野生型定常領域をもつ発 現プラスミドに揷入し、 H鎖発現ベクターを作製した。その後、実施例 1— 3、 1—4、 1 一 5に示す方法でヒト化二重特異性抗体を調製した。改変したヒト化抗体の可変領域 配列を以下の表 1に記載される配列番号に示した。
[表 1]
Figure imgf000046_0001
[0136] 〔実施例 4〕改変したヒト化抗体の等電点電気泳動による分析
可変領域のアミノ酸改変による表面電荷の変化について評価するために、改変抗 体の調製および等電点電気泳動による分析を実施した。
[0137] ヒト化 BBA- L鎖 (hAL- F123j4)発現ベクターとヒトイ匕 A69- H鎖を改変した hA69 - P18、h A69-p8、 hA69_pl7、 hA69_pl6および未改変の hA69aの各 H鎖発現ベクターを組み 合わせて同時に発現させることにより hA69a、 hA69-pl8、 hA69_p8、 hA69_pl7、 hA69 -pl6の 5種類のホモダイマーで構成される抗体を調製した。同様に、ヒト化 BBA-L鎖 発現ベクターとヒト化 B26-H鎖を改変した hB26-pl9、 hB26_pl5および未改変の hB26 -F123e4の各 H鎖発現ベクターを組み合わせて同時に発現させることにより hB26_Fl 23e4、 hB26_pl9、 hB26_pl5の 3種類のホモダイマーで構成される抗体を調製した。 等電点電気泳動は以下のとおり行った。 Phastsystem Cassette (AmerchamBioscienc e社製)を用いて以下の膨潤液で 30 minほど Phast- Gel Dry IEF (AmerchamBioscienc e社製)ゲルを膨潤させた。
[0138] 20% Glycerol 0.95 mL
ミリ Q水 0.95 mL
Bio-Lyte 7/9 (BioRad社製) 10 μ L
Bio-Lyte3/ 10 (BioRad社製) 10 μ L
Pharmalyte 8-10.5 for IEF (AmerchamBioscience社製) 80 μ L
[0139] 膨潤したゲルを用いて PhastSystem(AmerchamBioscience社製)により以下のプログ ラムで電気泳動を行った。サンプルは Step 2でゲルに添加した。 piマーカーとして、 C alibration Kit for pI(AmerchamBioscience社製) 使用した。
[0140] Ste 1 : 2000 V 2.5 mA 3.5 W 15°C 75 Vh
Step 2: 200 V 2.5 mA 3.5 W 15°C 15 Vh
Step 3: 2000 V 2.5 mA 3.5 W 15°C 410 Vh
[0141] 泳動後のゲルは 20 % TCAで固定した後、 Silver staining Kit, protein(AmerchamBi oscience社製)を用レ、、キットに添付されているプロトコールに従い銀染色を行った。 染色後、 piマーカーの既知等電点からサンプノレの等電点を算出した。
[0142] 未改変および改変したヒト化 A69抗体のホモダイマー、ヒト化 B26抗体のホモダイマ 一の分析結果を図 3に示した。表面電荷の改変により等電点電気泳動においてバン ドの移動が観察された。 piマーカーを参考に推測した各抗体の等電点は、未改変の hA69aホモダイマーが約 8.8であるのに対して、改変した11八69_ 18が約8.4、 hA69_pl 7が約 8.2、 11八69- 8が約8.2、 hA69_pl6が約 8.1であり、改変により最大約 0.7の等電 点の差を付与することができた。ヒト化 B26ホモダイマーも同様に、未改変の hB26_Fl 23e4が約 9.1であるのに対して、改変した1^26- 19が約9.3、 hB26_pl5が約 9.4であり 、改変により最大約 0.3の等電点の差を付与することができた。本検討において選択 した可変領域の H12、 H23、 H39、 H43、 H105の表面アミノ酸を電荷的に改変すること によって等電点を変化させることが可能であることが示された。
[0143] 〔実施例 5〕改変したヒト化抗体の陽イオン交換クロマトグラフィー分析
実施例 4において作製した改変抗体を用いて以下の方法で陽イオン交換クロマトグ ラフィーによる分析を行い、改変による両抗体の分離に及ぼす影響を評価した。陽ィ オン交換クロマトグラフィー分析条件は以下のとおりであり、ヒト化 A69抗体のホモダイ マー、ヒト化 B26抗体のホモダイマーの保持時間を算出した。
[0144] カラム: ProPac WCX— 10, 4 X 250 mm, (Dionex)
移動相: A: 10 mmol/L NaH PO /Na HP〇, pH 6.25
2 4 2 4
B: 10 mmol/L NaH PO /Na HP〇, 500 mmol/L NaCl, pH 6.25
2 4 2 4
流速: 1.0 mL/min
グラジェント: 10 %B(5 min)→(40 min)→60 %B→(5 min)→100 %B (5 min) 検出: 220 nm
[0145] 未改変および改変した 5種のヒト化 A69抗体のホモダイマーの分析結果を図 4に、未 改変および改変した 3種のヒト化 B26抗体のホモダイマーの分析結果を図 5に示した。 未改変ヒト化 A69抗体のホモダイマーとヒト化 B26抗体のホモダイマーの保持時間はと もに 25 min前後であり、両ホモダイマーの分離、まして目的の二重特異性抗体の分 離は出来なレ、。未改変抗体の等電点を低下させる改変を行ったヒト化 A69抗体は未 改変の抗体と比較してピークの移動が観察され、改変の数に伴い保持時間は約 22.4 min,約 21.2 min,約 20.2 minと短くなつた。可変領域の等電点を上昇させる改変を 行ったヒト化 B26抗体も未改変の抗体と比較してピークの移動が観察され、改変の数 に伴い保持時間は約 28.4 min,約 29.4 minと長くなつた。本検討において選択した可 変領域の H12、 H23、 H39、 H43、 H105の表面アミノ酸の電荷的に改変することによつ て、 2種類の抗体の表面電荷が変化し、それにより保持時間を変化させることが可能 であることが示された。
[0146] 実施例 4において測定された等電点によると、未改変の hA69aホモダイマーと未改 変の hB26_F123e4ホモダイマーは piに 0.3の差があるが両者の保持時時間はともに 25 min前後であり分離できなかったが(図 9)、未改変の hA69aホモダイマーと hB26-pl9 は piに 0.5の差が付与され、その結果両者は保持時間約 2.6minの差で分離されてお り、また hA69-pl8と hB26ホモダイマーは piに 0.7の差が付与され、その結果両者は保 持時間約 3.4minの差で分離されており、最大で hA69_pl6と hB26_pl5は piに 1.3の差 が付与され、その結果保持時間約 9.2 minの差で分離された。このように、改変により 2つのホモダイマーの分離が初めて可能になった。
[0147] 〔実施例 6〕改変したヒト化二重特異性抗体の凝固活性評価
実施例 4、実施例 5の分析により表面電荷の変化が観察されたことを受けて、改変 した 2種類のヒト化抗体 H鎖(hA69-p8、 hB26-pl5)とヒト化 L鎖 (hAL_F123j4)を発現さ せてヒト化二重特異性抗体を調製した。 H鎖発現ベクターには、ヘテロダイマーを効 率的に促進させるために、 knobs-into-holes技術を利用した IgG4定常領域が組み込 まれた発現ベクターを使用した。調製したヒト化二重特異性抗体を用いて、以下に示 す方法に従って凝固活性を評価した。
[0148] 血友病 A血液の凝固能を二重特異性抗体が是正するか明らかにするために、 Fact or VIII欠乏血漿を用いた活性化部分トロンボプラスチン時間(APTT)に対する同抗 体の影響を検討した。様々な濃度の抗体溶液 50 /i L、 Factor VIII欠乏血漿(Biomeri eux) 50 μ L及び APTT試薬(Dade Behring) 50 μ Lの混合液を 37°Cで 3分間加温した。 凝固反応は 20 mMの CaCl (Dade Behring) 50 /i Lを同混合液に加えることにより開始
2
させた。 CR-A (Amelung)が接続された KClOA (Amelung)により凝固するまでの時間 を測定した。
[0149] Factor VIII欠乏血漿の凝固時間を 0 %、正常血漿の凝固時間を 100 %としたときに作 製される検量線を用いて、二重特異性抗体を添加した際の凝固時間から二重特異 性抗体の Factor VIII様活性 (%)を算出した。
[0150] 活性評価結果を図 6に示した。可変領域を改変したヒト化二重特異性抗体は、未改 変のヒト化二重特異性抗体と同等の凝固活性を示したことから、本実施例における可 変領域の改変は抗体の活性には影響がないことが示された。
[0151] 〔実施例 7〕 CDRを改変したヒト化抗体の作製と評価
実施例 2で作製したヒト化 A69抗体のモデルを解析した結果、 H97は表面に露出す るアミノ酸であることが確認された。表 1に示した抗体においてヒト化 A69-H鎖である h A69-N97Rは CDR3に存在する 97番目のァスパラギンをアルギニンに改変した配列を 持つ。実施例 1— 2の方法に従って hA69_N97Rをもつ発現ベクターを作製し、ヒトイ匕 B BA-L鎖である hAL_F123j4とともに発現し、改変抗体を調製した。この抗体の表面電 荷の変化を評価するために、実施例 4の方法に従って等電点電気泳動を行った。図 7に示すとおり、未改変の抗体(hA69a I hAL_F123j4)の等電点は 8.9であるのに対し て、改変抗体(hA69- N97R I hAL-F123j4)は 9.1であり、 CDRのアミノ酸置換にぉレヽ ても表面電荷の変化が観察された。
[0152] また改変抗体の機能を評価するために、以下の方法で抗原である Factor IXaに対 する結合活性を評価した。 Coating buffer (100 mM sodium bicarbonate, pH 9.6, 0.02 % sodium azide)で 1 μ g/mLに布釈した Factor IXa β (Enzyme Research Labratories) を、 Nunc-Immuno plate (Nunc- Immuno 96 MicroWell plates MaxiSorp Nalge N unc International) )に 100 μ L/wellで分注後、 4°Cでー晚インキュベーションした。 Twe en(R) 20を含む PBS (-)で 3回洗浄後、 diluent buffer (50 mM Tris-HCl, pH 8.1, 1 % bov ine serum albumin, ImM MgCl , 0.15 M NaCl, 0. 05 % Tween(R) 20, 0.02 % sodium az ide)で plateを室温で 2時間 blockingした。 Bufferを除去後、 diluent bufferで希釈した精 製抗体を 100 μ L/well添加し、室温で 1時間インキュベーションした。 Plateを 3回洗浄 後、 diluent bufferで 1/4000希釈したアルカリホスファターゼ標識ャギ抗マウス IgG (BI OSOURCE)を 100 μ L/well添加し、室温で 1時間インキュベーションした。 Plateを 5回 洗浄後、発色基質(Sigma)を 100 μ L/well添加し、室温で 30分インキュベーションした 。 405 nm (対照 655 nm)における吸光度を Microplate Reader Model 3550 (Bio_Rad La boratories)で測定した。その結果、図 8に示すとおり、表面電荷を変化させるために CDRを改変した抗体は改変前の抗体と同等の結合活性を示した。このように表面電 荷を改変する際に、改変する箇所は実施例 5に示した FRのみでなぐ CDRであっても 構わないことが示された。
[0153] 〔実施例 8〕ヒト化二重特異性 PF抗体の作製と評価
未改変の抗体として、表 1に示した抗体においてヒトイヒ A69-H鎖である hA69a、ヒト 化 B26-H鎖である hB26_F123e4とヒトイ匕 BBA-L鎖である hAL_F123j4 (配列番号: 5)を 用いて、未改変のヒト化二重特異性抗体を作製した。改変抗体として、表 1に示した 抗体においてヒト化 A69-H鎖の改変体である hA69-PFLとヒト化 B26-H鎖の改変体で ある hB26_PFとヒト化 BBA-L鎖である hAL_s8 (配列番号: 17)を用いて、ヒト化二重特 異性 PF抗体を作製した。 H鎖は野生型の定常領域をもつ発現ベクターを使用して、 実施例 1一 2に示すとおりに発現ベクターを構築し、実施例 1一 3、実施例 1一 4、実 施例 1 _ 5の方法に従って抗体を調製した。この 2種類のホモダイマーと二重特異性 抗体を含む混合溶液を用いて、実施例 5に示す方法で陽イオン交換クロマトグラフィ 一分析を実施した。
[0154] 未改変のヒト化二重特異性抗体とヒト化二重特異性 PF抗体分析結果を図 9、図 10 に示した。その結果、未改変のヒト化二重特異性抗体においては、二種類のホモダイ マーと二重特異性抗体が分離せず 1本のピークとして溶出したのに対して、ヒト化二 重特異性 PF抗体は、二種類のホモダイマーと目的の二重特異性抗体がそれぞれ分 離し、 hA69-PFホモダイマー、ヒトイ匕二重特異性 PF抗体、 hB26_PFホモダイマーの 順に 3本のピークとして溶出した。陽イオン交換クロマトグラフィー分析の際に 3種類の ピークを分取することで、二種類のホモダイマーとヒト化二重特異性 PF抗体を精製し た。この画分を Amicon Ultra, MWCO 10000 (Millipore)による濃縮後、 20 mM sodium acetate, 150 mM NaCl, pH 6.0に対してー晚冷所で透析を行い、濃度測定を行った
[0155] 各抗体を精製した後に、実施例 4に示す方法に従って等電点電気泳動を行った。
図 11に示すとおり、陽イオン交換クロマトグラフィー分析を行う前の抗体は 3本のバン ドが存在するが、陽イオン交換クロマトグラフィーにより各抗体が精製できることが確 認された。ヒト化 A69-PF抗体のホモダイマー、ヒトイ匕二重特異性 PF抗体、ヒト化 B26-P F抗体のホモダイマーの等電点は約 7.9、約 8.6、約 9.2であり、ヒト化 A69-PF抗体のホ モダイマーのヒトイ匕二重特異性 PF抗体等電点の差は約 0.7であり、ヒト化 B26-PF抗体 のホモダイマーのヒト化二重特異性 PF抗体等電点の差は約 0.6であることが確認され た。
[0156] つづいて、実施例 6に示す方法に従って精製した二重特異性 PF抗体の凝固活性 を評価した。前述した knobs-into-holes技術を利用した IgG4定常領域を用いて発現 させたキメラ二重特異性抗体、可変領域を改変していない hA69a (配列番号: 2)、 hB 26-F123e4 (配列番号: 4)、 hAL-F123j'4 (配列番号: 6)から成る二重特異性抗体、精 製した二重特異性 PF抗体と同じ可変領域をもち、 knobs-into-holes技術を利用した Ig G4定常領域を用いている二重特異性抗体の 3種類の抗体と凝固活性を比較した。 評価結果を図 12に示した。 Knobs-into-holes技術を利用した IgG4定常領域をもつ二 重特異性 PF抗体と野生型定常領域をもち陽イオン交換クロマトグラフィーにより精製 した二重特異性 PF抗体の凝固活性は同等であり、本実施例の H10、 H12、 H23、 H39 、 H43、 H105の可変領域改変により活性に影響することなく高純度にて二重特異性 抗体が精製できることが示された。
[0157] 〔実施例 8〕ヒト化二重特異性抗体発現細胞株の樹立
改変したヒト化二重特異性抗体を調製するために、以下のようにして抗体発現細胞 株を樹立した。
[0158] ヒ HgG4の野生型 H鎖定常領域遺伝子を铸型にして H鎖定常領域の N末端側の 2ァ ミノ酸 (Ala-Ser)をコードする塩基配列が Nhel認識配列 (GCTAGC)になるように設計し た 5'末端側プライマーと 3'末端側にアニーリングし、かつ Notl認識部位を持つように 設計したプライマーを用いて H鎖定常領域を PCR増幅し、 pBluescriptKS+ベクター( 東洋紡)を Nhel, Notl (ともに宝酒造)で消化したベクターと連結した pBCH4(IgG4定常 領域遺伝子を含む)を作製した。表 1に示すヒト化 A69-H鎖抗体 (hA69-KQ)およびヒト ィ匕 B26-H鎖抗体 (hB26_PF)の H鎖可変領域の 5'末端側塩基配列に相補的でコザッ ク配列 (CCACC)および EcoRI認識配列を有するプライマーと Nhel認識配列を有する 3 '末端側塩基配列にプライマーを用いて PCRを行い、得られた PCR産物を EcoRI, Nh el (ともに宝酒造)で消化、同様に EcoRI, Nhelで消化した pBCH4に揷入して可変領域 と定常領域を連結した。作製したヒト化 A69-H鎖抗体ベクターを EcoRI, Notl (ともに宝 酒造)で消化し、同様に EcoRI, Notlで消化した動物細胞用発現ベクター pCXND3に クローニングした。
[0159] 本ベクター pCXND3の構築の流れにっレ、て、以下に述べる。 DHFR- Δ E-rVH-PM l-f(W〇92Zl9759参照)の抗体 H鎖遺伝子とベクターを分割するために、制限酵素 EcoRI, Smal部位で消化し、ベクター側のみ回収した後に、 EcoRI-Notl -BamHI adap tor (宝酒造)をクローニングした。このベクターを pCHOIと命名した。 pCHOIの DHFR 遺伝子発現部位を pCXN (Niwaら、 Gene 1991; 108: 193-200)の制限酵素 Hindlll部 位にクローニングしたベクターを pCXND3と命名した。また、作製したヒト化 B26-H鎖 抗体ベクターを EcoRI, Notl (ともに宝酒造)で消化し、同様に EcoRI, Notlで消化した 動物細胞用発現ベクター pCXZDlにクローニングした。 pCXZDlベクターは pCXND3 ベクターのネオマイシン耐性遺伝子をゼォシン耐性遺伝子に置き換えた発現べクタ 一である。また、ヒト化 BBA-L鎖抗体 (hAL-AQ、配列番号: 18)の L鎖可変領域の 5' 末端側塩基配列に相補的でコザック配列を有する合成オリゴヌクレオチドおよび Bsi WI部位を有する 3'末端側塩基配列に相補的な合成オリゴヌクレオチドを用いて PCR を行い、得られた PCR産物をヒト kappa鎖定常領域が pBluescriptKS+ベクターに揷入 されている pBCLベクターにクローユングした。 BsiWI部位により、ヒト L鎖可変領域と定 常領域が連結してレ、る。作製された L鎖遺伝子断片を発現ベクター pUCAGにクロー ニングした。本ベクター pUCAGは、 pCXN (Niwaら、 Gene 1991; 108: 193-200)を制限 酵素 BamHIで消化して得られる 2.6 kbpの断片を pUC19ベクター(東洋紡)の制限酵 素 BamHI部位に連結し、クローニングしたべクタ一である。 L鎖を pUCAGにクローニン グしたベクターを制限酵素 BamHIで消化し、ハイグロマイシン耐性遺伝子を含む発現 ベクター pHygDHFR_4bにクローニングした。作製した 3種類の発現ベクターを制限酵 素で直鎖上にしたのちに、 CHO-DG44細胞に遺伝子導入して抗体発現細胞株を榭 した。
安定発現細胞株の作製は次のようにして行った。 GenePulserll (Bio-Rad)を用いた エレクト口ポレーシヨン法により遺伝子導入した。各抗体発現ベクターと PBSに懸濁し た CHO細胞(1 X 107細胞/ mL)の 0.75 mLを混合したものを氷上で 10分間冷却し、キ ュベットに移した後に 1.5 kV、 25 μ FDの容量にてパルスを与えた。室温にて 10分間 の回復期間の後、エレクト口ポレーシヨン処理された細胞を、 HT supplement (Invitrog en)を 1倍濃度で含む CHO_S_SFMII培地(Invitrogen) 40 mLに懸濁した。同様の培地 で 10倍希釈液を作製し、 96ゥヱル培養用プレートに 100 x L/wellで分注した。 C〇ィ ンキュベータ一(5 % CO )で 24時間培養後、 Geneticin (Invitrogen)を 0.5 mg/mL、 Ze ocm (Invitrogen)を 0.り mg/mL、 HygromycmB (Invitrogenノを 0.4 mg/mLに る つに、 添加して 2週間培養した。薬剤耐性を示す形質転換細胞のコロニーを順次拡大培養 し、樹立した高産生細胞株を用いて大量培養を行い、培養上清を得た。
[0161] 〔実施例 9〕ヒト化二重特異性抗体の製造用汎用カラムによる分離精製
実施例 8で得られた培養上清から以下の方法で二重特異性抗体を精製した。培養 上清を平衡化バッファー(20 mmol/L Sodium Phosphate buffer, 1 mol/L NaCl)で平 渙 Ϊィ匕した rProtein A Sepharose Fast Flowカフム (Amersham Biosciences^ 50 mml.D. X 9.9 cmH. = 194.3 mL-resin)に添加し、洗浄用バッファー 1 (20 mmol/L Sodium Pho sphate buffer, 1 mol/L NaCl, pH7.0)、洗浄用バッファー 2 (50 mmol/L Sodium Aceta te buffer, pH 6.0)で洗浄した後に 100 mmol/L Acetic acidを用いて溶出した。溶出 後に直ちに 20 mmol/L Sodium Acetate buffer, pH6.0で 3倍希釈した。
[0162] 得られた精製溶液を Solvent A (20 mmol/L sodium Acetate buffer, pH 6.0)で平衡 ィ匕した製造用汎用カラムである SP TOYOPEARL 650Mカラム(東ソ一、 26 mml.D. X 2 2.3 cmH. = 118.3 mL-resin)に添加した。以下に示すような溶液および Gradientで抗 体の表面電荷の差を用いた分離を行った。
[0163] olvent A : 20 mmol/L Sodium Acetate buffer, pH6.0
Solvent B : 20 mmol/L Sodium Acetate buffer, 1 mol/L Naul, pH6.0 Flow rate : 10 mL/min (113 cm/h)溶出時のみ 5.3 mL/min (60 cm/h) Gradient : 0→15%B Step wise 3 Column Volume (CV)逾ィ夂
15→22 %B gradient 2.5 CV
22→30 %B gradient 6 CV
30→100 %B Step wise 3 CV通液
[0164] 溶出の結果、図 13に示すような 3本のピークが検出され、製造用汎用カラムを使用 した場合にも二重特異性抗体が分離精製できることが示された。
[0165] 〔実施例 10〕改変したヒト化二重特異性抗体の活性評価
実施例 9で調製したヒト化二重特異性抗体について、実施例 6に示す方法に従って 凝固活性を評価した。評価結果を図 14に示した。実施例 8で調製したヒト化二重特 異性 PF抗体と比較して実施例 9で精製したヒト化二重特異性抗体の凝固活性は同等 であった。 hA69_PFLと hA69-KQのように可変領域のアミノ酸配列が若干異なってい ても、製造用汎用カラムを使用して精製した抗体であっても活性には影響がないこと が示された。
[0166] 以上のことから、二重特異性抗体を調製する際に、 H鎖可変領域の改変により構造 や抗体の機能(活性)を変えることなく表面電荷を変化させることで、 目的のヒト化二 重特異性抗体と二種のホモダイマーを形成する抗体とを分離精製できることが見出 された。本方法を用いることで製造用汎用カラムにおいても二重特異性抗体が分離 精製可能であることが示されたことから、二重特異性抗体からなる医薬品の製造方法 として有用である。
[0167] 〔実施例 11〕サブクラスハイブリッド抗体の作成
11 - 1.ヒト IgG2抗体 H鎖定常領域遺伝子のクローニング
ヒト IgG2抗体 H鎖定常領域の遺伝子をクローニングするため、以下の操作を行った cDNA断片増幅のために 50 /i Lの反応液(各 l Lの 20 μ Μ K62プライマー(5' cac c gt etc etc age etc cac caa 3 Z酉己列番"^ ":22)、 K6<3プフィマ' ~~ (5 gtg gca etc att tac ccg gag aca 3'/配列番号: 23)、 5 μ Lの MTC Multiple Tissue cDNA Panels (periph eral leukocytes) (Clontech)、 4 μ Lの 5 X Prime STAR Buffer, 4 μしの2.5 mM dNTPs 、 1 μ Lの PrimeSTAR HS DNA Polymerase (以上 TaKaRa) )を調製し、 PCRに供した。
PCRは、サーマルサイクラ一 GeneAmp PCR system 9700 (Parkin Elmer)を用いて、 98 °Cで 2分間加熱後、 98°C 10秒、 60°C 5秒、 72°C 2 minからなる反応を 30 cycle行い、 最後に 72°Cで 10 min加熱した。 PCR後、反応液を 1%ァガローズゲル電気泳動に供し た。 目的のサイズ(約 1000 bp)の増幅断片を QIAqucick Gel Extractio Kit (QIAGEN) にて添付説明書記載の方法に従って精製し、滅菌水 50 z Lで溶出した後、増幅断片 の末端に A (Adenosine)を付加するため r-Taq処理をおこなった。 r_Taq処理は、得ら れた増幅断片を 10 μ Lの rTaq反応液(1 μ Lの 10 X rTaq反応溶液、 1 μ Lの 2.5 mM d NTPs、 1 μ Lの rTaq、 7 μ Lの上記増幅断片)を 72°Cで 30 min保温した。 r_Taq処理し た断片を PCR2.1-TOPO vector (Invitrogen)へクローニングし、塩基配列を決定した 。各 DNA断片の塩基配列は、 BigDye Terminator 3.1 Cycle Sequencing Kit (Applied Biosystems)を用レ、、 DNAシークェンサ一 ABI PRISM 3730xL Genetic Analyzer (Appl ied Biosystems)にて、添付説明書記載の方法に従い決定した。
[0168] 決定した塩基配列を Accession.No.BX640623と比較し、翻訳したアミノ酸配列が異 なっている塩基は PCR増幅時に挿入された変異と考え、 Quick Change Site-Directed Mutagenesis Kit (Stratagene)を用いてアミノ酸置換を行レ、、 BX640623のアミノ酸配 歹 IJと同じ配列になるように改変した。 Quick Change Site-Directed Mutagenesis Kit (St ratagene)は添付説明書記載の方法に従って行った。さらに、ヒ HgG2- H鎖定常領域 遺伝子と目的の可変領域遺伝子を連結するために、ヒト IgG2-H鎖定常領域の最初 の 2アミノ酸 (AlaSer)が制限酵素 Nhel認識配列(GCTAGC)になるように変異させた。 本試験に使用したヒ HgG2_H鎖定常領域の塩基配列およびアミノ酸配列を、それぞ れ配列番号: 24および配列番号: 25に示した。
[0169] 11 - 2.サブクラス置換抗体の発現ベクター構築
ヒト化 PM- 1抗体の H鎖可変領域とヒト IgGl、ヒト IgG2、ヒト IgG4の各種 H鎖定常領域 を連結した抗体発現ベクターを以下のように作製した。
非特許文献(Sato K et al, Cancer Research 1993, 53: 851-856)に示されているヒト 化抗ヒトインターロイキン 6受容体抗体 (ヒト化 PM-1抗体)の H鎖可変領域の 5'末端側 塩基配列に相補的でコザック配列を有する合成オリゴヌクレオチドおよび制限酵素 N hel認識配列を有し、 3'末端側塩基配列に相補的な合成オリゴヌクレオチドを用いて P CRを行い、得られた PCR産物をヒト IgGl-H鎖定常領域(Sato K et al, Cancer Resear ch 1993, 53: 851-856参照)が pBluescript KS+ベクター(TOYOBO)に挿入されてい る pB-CHベクターにクローニングした。 H鎖可変領域と定常領域が連結した H鎖遺伝 子断片をニヮトリ βァクチンプロモーターにより発現が制御される pCAGGSベクター( Niwa et al. 1991 Gene, 108: 193-199)に揷入した。 PCR増幅したヒトイ匕 PM-1抗体の H鎖可変領域遺伝子をヒ HgG4定常領域遺伝子 (WO 99/51743参照)および実施例 11 _ 1で作製したヒト IgG2-H鎖遺伝子の 5'末端の Nhelと連結して pCAGGSベクター に揷入した。各種 H鎖発現ベクターは、 Nhel配列によりヒト化 PM-1抗体の H鎖可変領 域とヒト H鎖定常領域が連結して H鎖を発現する。
[0170] 同様にヒト化 PM-1抗体の L鎖可変領域の 5'末端側塩基配列に相補的でコザック配 列を有する合成オリゴヌクレオチドおよび制限酵素 BsiWI認識配列を有する 3'末端側 塩基配列に相補的な合成オリゴヌクレオチドを用いて PCRを行レ、、得られた PCR産物 をヒト kappa鎖定常領域力 ¾Bluescript KS+ベクター(TOYOBO)に挿入されている pB_ CLベクターにクローニングした。 L鎖可変領域と定常領域が連結した L鎖遺伝子断片 をニヮトリ βァクチンプロモーターにより発現が制御される pCAGGSベクターに揷入し た。 BsiWI配列によりヒト化 PM-1抗体の L鎖可変領域とヒト kappa鎖定常領域が連結し て L鎖を発現する。
[0171] 11 - 3.サブクラスハイブリッド抗体の発現
サブクラスハイブリッド抗体はヒト IgGl、ヒト IgG2、ヒト IgG4の各種定常領域を有するヒ ト化 PM-1抗体 H鎖発現ベクターをそれぞれ二種類ずつ組み合わせ、ヒト化 PM-1抗 体 L鎖発現ベクターとともに発現用細胞で共発現させることにより可能となる。各抗体 の発現は、実施例 4一 2に記載した方法か以下の方法を用いて行った。ヒト胎児腎癌 細胞由来 HEK293H株(Invitrogen)を 10% Fetal Bovine Serum (Invitrogen)を含む DM EM培地 (Invitrogen)へ懸濁し、 5〜6 X 105個 /mLの細胞密度で接着細胞用ディッシ ュ(直径 10 cm, CORNING)の各ディッシュへ 10 mLずつ蒔きこみ COインキュベータ 一(37°C、 5% CO )内で一昼夜培養した後に、培地を吸引除去し、 CHO-S-SFM-lKl nvitrogen)培地 6.9 mLを添加した。 11— 2で調製したプラスミド DNAを用いて以下の ように各サブクラス抗体発現用混合液とハイブリッド抗体発現用の混合液 (合計 13.8 / g)を調製した。
(1) L鎖発現ベクター 6.9 μ g、 IgGl-H鎖発現ベクター 6.9 μ g
(2) L鎖発現ベクター 6.9 μ g、 IgG2-H鎖発現ベクター 6.9 μ g
(3) L鎖発現ベクター 6.9 μ g、 IgG4-H鎖発現ベクター 6.9 μ g
(4) L鎖発現ベクター 6.9 μ g、 IgGl-H鎖発現ベクター 3.45 μ g、 IgG2_H鎖発現べクタ 一 3·45 μ g
(5) L鎖発現ベクター 6.9 μ g、 IgG2-H鎖発現ベクター 3.45 μ g、 IgG4_H鎖発現べクタ 一 3·45 μ g
(6) L鎖発現ベクター 6.9 μ g、 IgGl-H鎖発現ベクター 3.45 μ g、 IgG4_H鎖発現べクタ 一 3·45 μ g
[0172] 混合液それぞれを 1 μ g/mL Polyethylenimine (Polysciences Inc.) 20.7 μ Lおよび C HO-S-SFMII培地 690 β Lと混合して室温 10分間静置したものを各ディッシュの細胞 へ投入し、 4〜5時間、 COインキュベーター(37°Cにて 5% CO )内でインキュベートし た。その後、 CHO-S-SFM-II (Invitrogen)培地 6.9 mLを添加して、 3日間 COインキュ ベータ一内で培養した。培養上清を回収した後、遠心分離 (約 2000 g、 5分間、室温) して細胞を除去し、さらに 0.22 μ mフィルター MILLEX(R)-GV (Millipore)を通して滅菌 した。該サンプルは使用するまで 4°Cで保存した。
[0173] 1 1 - 4.サブクラスハイブリッド抗体の精製
実施例 1 1一 3に記載の方法で得られた培養上清に 100 μ Lの rProtein A Sepharose ™ Fast Flow (Amersham Biosciences)を添加し、 4°Cで 4時間以上転倒混和した。そ の溶液を 0.22 μ mのフィルターカップ Ultrafree(R)-MC (Millipore)に移し、 TBS 500 μ L にて 3回洗浄後、 rProtein A S印 harose™樹脂に 100 μ Lの 50 mM酢酸ナトリウム水溶 液、 pH 3.0に懸濁して 2分間静置したのち、抗体を溶出させた。直ちに、 6.7 x Lの 1.5 M Tris-HCU 150 mM NaCl、 pH 8.0を加えて中和した。得られた抗体溶液は活性測 定用として PBSに、また、 DSC測定用として 150 mM NaClを含む 20 mM酢酸緩衝液、 pH 6.0に透析することで緩衝液を置換した。精製されたヒ HgGlの H鎖定常領域を有 する抗体は「未改変ヒト化抗 PM- 1抗体」、ヒ HgG2の H鎖定常領域を有する抗体は「Ig G2化ヒト化抗 PM-1抗体」、ヒ HgG4の H鎖定常領域を有する抗体は「IgG4ィ匕ヒトイ匕抗 P M- 1抗体」と以下に記載する。
[0174] 1 1 - 5.サブクラスハイブリッド抗体の濃度定量
1 1—4で得た抗体を含む溶液 2 Lを ND- 1000 Spectrophotometer (NanoDrop) ,あ るいは 50 μ Lを分光光度計 DU-600 (BECKMAN)に供し、 280 nmでの吸光度を測定 した。得られた値から以下の式を用いて抗体濃度を算出した。ブランクには PBSまた は 150 mM NaClを含む 20 mM酢酸緩衝液、 pH6.0を使用した。
[0175] 抗体濃度(mg/mL) =吸光度 X希釈倍率 ÷ 14.6 X 10
[0176] 〔実施例 1 2〕サブクラスハイブリッド抗体の分析
1 2 - 1 .サブクラスハイブリッド抗体の等電点電気泳動による分析
定常領域の置換による表面電荷の変化について評価するために、等電点電気泳 動による分析を実施した。 [0177] 等電点電気泳動は以下のとおり行った。 Phastsystem Cassette (AmerchamBioscien ce社製)を用いて以下の膨潤液で 30 minほど Phast-Gel Dry IEF (AmerchamBioscien ce社製)ゲルを膨潤させた。
[0178] 20% Glycerol 1.5 mL
Pnarmalyte 8—10.5 for IEF (AmerchamBioscience社製) 100 μ L
[0179] 膨潤したゲルを用いて PhastSystem(AmerchamBioscience社製)により以下のプログ ラムで電気泳動を行った。サンプルは St印 2でゲルに添加した。 piマーカーとして、 C alibration Kit for pi (AmerchamBioscience社製) 使用した。
[0180] Step丄: 2000 V 2.5 mA 3.5 W 15°C 75 Vh
Step 2: 200 V 2.5 mA 3.5 W 15°C 15 Vh
Step ό : 2000 V 2.5 mA 3.5 W 15°C 410 Vh
[0181] 泳動後のゲルは 20% TCAで固定した後、 Silver staining Kit, protein (AmerchamBi oscience社製)を用レ、、キットに添付されているプロトコールに従い銀染色を行った。 染色後、 piマーカーの既知等電点からサンプノレの等電点を算出した。
[0182] 未改変、 IgG2化および IgG4化ヒトイ匕 PM-1抗体の分析結果を図 15に示す。サブクラ ス置換により等電点電気泳動においてバンドの移動が観察された。 piマーカーを参 考に推測した各抗体の等電点は未改変ヒト化 PM-1抗体が約 9.3であるのに対して、 I gG2化ヒト化 PM-1抗体が約 8.9、 IgG4ィ匕ヒト化 PM-1抗体が約 8.7であり、置換により最 大約 0.6の等電点の差を付与することができた。本検討において抗体サブクラスの定 常領域を置換することによって等電点を変化させることが可能であることが示された。
[0183] 次に、未改変、 IgG2化ヒト化 PM-1抗体および未改変、 IgG4化ヒト化 PM-1抗体の共 発現抗体分析結果を図 16に示す。これより、いずれの組み合わせにおいても各サブ クラスのホモダイマー、ヘテロダイマーカ ¾つの主バンドとして観察され、 piマーカー を参考に推測した各サブクラスハイブリット抗体の等電点は、未改変ヒト化 ΡΜ-1/IgG 2化ヒト PM-1のハイブリッド抗体が 9.2、未改変ヒト化 PM-l/IgG4化ヒト PM-1のハイブリ ッド抗体力 であった。本検討にぉレ、て各サブクラス抗体の発現ベクターを組み合 わせて共発現させることで、サブクラスハイブリッド抗体を作成することが可能であり、 それらが等電点の差をもって分離することが示された。 [0184] 12- 2.サブクラスハイブリッド抗体の陽イオン交換クロマトグラフィー分析 実施例 11におレ、て作製したサブクラスハイブリッド抗体を用いて以下の方法で陽ィ オン交換クロマトグラフィーによる分析を行い、サブクラス置換が分離に及ぼす影響 を評価した。陽イオン交換クロマトグラフィー分析条件は以下のとおりであり、未改変 ヒト化 PM-1抗体、 IgG2化ヒト化 PM-1抗体、 IgG4化ヒト化 PM-1抗体、および未改変ヒト 化 PM-1抗体/ IgG2化ヒト化 PM-1抗体のハイブリッド抗体、未改変ヒト化 PM-1抗体/ Ig G4化ヒト化 PM-1抗体のハイブリッド抗体の保持時間を算出した。
[0185] カラム: ProPac WCX-10, 4 X 250 mm (Dionex)
移動相: A: 25 mmol/L MES/NaOH, pH 6.1
B: 25 mmol/L MES/NaOH, 250 mmol/L NaCl, pH 6.1
流速: 0.5 mL/min
グラジェント:25 %B(5 min)→(105 min)→67 %B→(1 min)→100 %B (5 min) 検出: 280 nm
[0186] 単独発現させた未改変、 IgG2化および IgG4化ヒ H匕 PM-1抗体の分析結果を図 17 に示す。未改変ヒト化 PM-1抗体、 IgG2化ヒト化 PM-1抗体および IgG4ィ匕ヒト化 PM-1抗 体の保持時間はそれぞれ約 60.2 min, 30.5 minおよび 30.3 minであり、サブクラス置 換によって 30分弱保持時間が変化した。一方、等電点電気泳動から pi差が認められ た IgG2化ヒト化 PM-1抗体と IgG4化ヒト化 PM-1抗体の保持時間はほぼ同じであった。 次に、未改変、 IgG2化および未改変、 IgG4化ヒト化 PM-1抗体の共発現抗体分析結 果を図 18に示した。未改変ヒトイ匕 PM-1抗体/ IgG2化ヒト化 PM-1抗体の組み合わせ、 および、未改変ヒト化 PM-1抗体/ IgG4化ヒト化 PM-1抗体の組み合わせにおいて、各 サブクラスのホモダイマー、ヘテロダイマーが 3つの主ピークとして観察された。保持 時間は未改変ヒト化?\4_1/¾〇2化ヒト?\4-1のハィブリッド抗体が約43.8 min,未改変 ヒト化 PM-l/IgG4化ヒト PM-1のハイブリッド抗体が約 45.1 minであり、それぞれのホモ ダイマーとは 10分以上の保持時間差で分離した。本検討において、各サブクラス抗 体の発現ベクターを組み合わせて共発現させることでサブクラスハイブリッド抗体を 作成することが可能であり、それらがイオン交換クロマトグラフィーをもって分離可能 であることが示された。 [0187] 〔実施例 13〕サブクラスハイブリッド抗体の陽イオン交換クロマトグラフィーによる分離 精製
実施例 11で得られた抗体溶液を Amicon-Ultra4 (Amicon)で濃縮後 EasySep (トミー 精ェ)に封入し、 5 mMクェン酸緩衝液 (pH 6.5)に対し透析することで緩衝液を置換 後、以下の条件でサブクラスハイブリッド抗体を精製した。
[0188] カラム: Poly CAT A, 4.6 X 100 mm,粒子径 3 μ m,孔径 150 nm (Poly LC)
移動相: A: 25 mmol/L MES/NaOH, pH 6.1
B: 25 mmol/L MES/NaOH, 250 mmol/L酢酸ナトリウム, pH 6.1 流速: 1.0 mL/min
グラジェント:35 %B(5 min)→(54 min)→65 %B→(1 min)→100 %B (5 min) 検出: 280 nm
[0189] 一回につき約 100 - 200 μ gを注入し、未改変ヒト化 PM-1抗体、未改変ヒト化 PM-1/
IgG4化ヒト化 PM-1サブクラスハイブリット抗体、 IgG4化ヒト化 PM-1抗体ピークを分取 した。分取時のクロマトグラムを図 19に示す。複数回のピーク分取画分をそれぞれ混 合して Amicon-Ultra4 (Amicon)で濃縮後 EasySep (トミー精ェ)に封入し、活性測定用 として PBSに、また、 DSC測定用として 150 mM NaClを含む 20 mM酢酸緩衝液、 pH 6 .0に透析することで緩衝液を置換した。分取ピークを上記同様の条件で再分析した 結果を図 20に示す。これより、サブクラスハイブリット抗体力 Sイオン交換クロマトグラフ 法で分取精製可能であることが示された。
[0190] 本技術は、共通の H鎖可変領域を持つ抗体を pi値の異なるサブクラスの定常領域 を利用して分離することが出来たことから、 pi差のない異なる H鎖可変領域であっても pi値の異なるサブクラスの H鎖定常領域と連結することにより二重特異性抗体をィォ ン交換クロマトグラフィーで分離することが可能である。また、異なる H鎖可変領域を 持つ場合、実施例 9に示した可変領域への変異導入技術と組み合わせることで更に 分子間の pi差を増大し、分離精製をより容易にすることができる。 H鎖可変領域への 変異導入が困難な場合、これらを天然に存在する IgGサブクラス配列に変換すること で、抗原性を考慮することなく二重特異性抗体のイオン交換クロマトグラフィーによる 分離精製が可能となる。 [0191] 〔実施例 14〕サブクラスハイブリッド抗体分取精製品の等電点電気泳動 分取品の純度を評価するために、等電点電気泳動による分析を実施した。
[0192] 等電点電気泳動は以下のとおり行った。 Phastsystem Cassette (AmerchamBioscien ce社製)を用いて以下の膨潤液で 30 minほど Phast- Gel Dry IEF (AmerchamBioscien ce社製)ゲルを膨潤させた。
[0193] ミリ Q水 1.5 mL
Pharmalyte 5—8 ror lEr (AmerchamBioscience社製) 50 μ L
Pharmalyte 8—10.5 for IEF (AmerchamBioscience社製) 50 μ L
[0194] 膨潤したゲルを用いて PhastSystem(AmerchamBioscience社製)により以下のプログ ラムで電気泳動を行った。サンプルは St印 2でゲルに添加した。 piマーカーとして、 C alibration Kit for pi (AmerchamBioscience社製) 使用した。
[0195] Step丄: 2000 V 2.5 mA 3.5 W 15°C 75 Vh
Step 2: 200 V 2.5 mA 3.5 W 15°C 15 Vh
Step 3: 2000 V 2.5 mA 3.5 W 15°C 410 Vh
[0196] 泳動後のゲルは 20% TCAで固定した後、 Silver staining Kit, protein (AmerchamBi oscience社製)を用レ、、キットに添付されているプロトコールに従い銀染色を行った。
[0197] サブクラスハイブリッド抗体分取精製品の分析結果を図 21に示す。イオン交換クロ マトグラフィ一により、各サブクラスのホモダイマーをほとんど含まずに精製できること が示された。
[0198] 〔実施例 15〕サブクラスハイブリッド抗体分取精製品の活性評価
15— 1.ヒト gpl30発現 BaF3細胞株、ヒト gpl30/ヒ HL-6受容体共発現 BaF3細胞株の 樹立
IL-6依存増殖性を示す細胞株を得るために、以下に示すとおり、ヒト gpl30を発現し た BaF3細胞株の樹立を行った。
全長ヒト gpl30 cDNA (Hibiら、 Cell 1990 ; 63 : 1149-1157 (GenBank # NM_002184)) を PCRにより増幅し、 pCHOI (Hirataら、 FEBS Letter 1994 ; 356 : 244- 248)の DHFR遺 伝子発現部位を除去し、 Zeodn耐性遺伝子発現部位を揷入した発現ベクター pC〇S 2Zeoにクローニングし、 pCOS2Zeo/gpl30を構築した。 [0199] 10 μ gの pCOS2Zeo/gpl30を PBSに懸濁した BaF3細胞(0.8 x 10?cells)に混合し、 G ene Pulser (Bio-Rad)を用いて 0.33 kV, 950 /i FDの容量でパルスを加えた。エレクト 口ポーレーシヨン処理により遺伝子導入した BaF3細胞を 0.2 ng/mLの mouse interleuk in-3 (P印 rotech)、 10% Fetal Bovine Serum (以下 FBS、 HyClone)を含む RPMI1640培 地(Invitrogen)で一昼夜培養し、 100 ng/mLの human interieukin-6 (R&D)、 100 ng/m Lの human interleukin-6 soluble receptor (R&D systems)および 10% FBSを含む RP MI1640培地を加えて選抜し、ヒト gpl30発現 BaF3細胞株(以下、 BaF3/gpl30)を樹立 した。
[0200] 15— 2.サブクラスハイブリッド抗体分取精製品のヒ HL-6中和活性評価
IL-6依存性増殖を示す BaF3/gpl30を用いて、以下に示すとおり、 IL-6中和活性を 評価した。精製した未改変ヒト化 PM-1抗体、未改変/ IgG4化ヒト化 PM-1サブクラスハ イブリツド抗体および IgG4化ヒト化 PM-1抗体を 10 μ g/mLになるように 10% FBSを含む RPMI1640に希釈した。この溶液を用いて希釈公比 3、合計 7系列の希釈液を調製し、 96wel卜 plate (CORNING)の各 wellに 50 /i Lずつ分注した。次に、 BaF3/gpl30を 10% F BS (HyClone)を含む RPMI1640培地で 3回洗浄した後に、 5 x 104cells/mLとなるように 60 ng/mLの human interleukin-6 (TORAY)、 60 ng/mLの可溶性ヒト IL-6受容体(自 社調製品)および 10% FBSを含む RPMI1640培地に懸濁し、各 wellに 50 μ Lずつ混合 した後、抗体サンプルを分注した。ヒト可溶性 IL-6受容体は以下に示す方法で調製 した。ヒト可溶性 IL-6受容体(Yamasakiら、 Science 1988; 241: 825-828 (GenBank # X 12830) )の 1番目から 344番目のアミノ酸をコードする遺伝子を CHO細胞に導入後に 培養上清から精製して調製した。 37°C、 5% CO条件下で、 72時間培養し、 PBSで 2倍 に希釈した WST- 8試薬(Cell Counting Kit- 8、株式会社同仁化学研究所)を 20 μ L/ wellで加え、直後に SUNRISE CLASSIC (TECAN)を用いて 450 nmの吸光度(参照波 長 620 nm)を測定した。 2時間培養した後に、再度 450 nmの吸光度(参照波長 620 n m)を測定し、 2時間の吸光度変化を指標に IL-6中和活性を評価した。
[0201] その結果、図 22に示すとおり、分取精製した未改変ヒト化 PM-1抗体、未改変/ IgG4 化ヒト化 PM-1サブクラスハイブリッド抗体、および IgG4化ヒト化 PM-1抗体はヒト化 PM- 1抗体精製品(bulk)と中和活性が同等であった。以上より、サブクラスハイブリット抗 体は本来の抗原結合能を失わず、中和抗体としての機能を有することが示された。 産業上の利用可能性
本発明の方法においては、アミノ酸の置換数が少数でよぐその構造'機能 (活性) を変化させることなく等電点を制御させることが可能であり、それにより二重特異性抗 体を汎用的なクロマトグラフィーカラムを用いることで効率的に、且つ、医薬品として 開発可能な高純度まで精製することが可能になるため、医薬品として二重特異性抗 体を開発する上で非常に有用性が高い。
本発明の方法を用いることにより、実際に活性を保持する二重特異性抗体の効率 的な取得が可能である。

Claims

請求の範囲
[1] 第 1のポリペプチドおよび第 2のポリペプチドを含む多重特異性抗体の製造方法で あって、
(a)第 1のポリペプチドと第 2のポリペプチドの等電点に差がつくように、第 1のポリべ プチドのアミノ酸残基をコードする核酸および第 2のポリペプチドのアミノ酸残基をコ ードする核酸の両方またはいずれか一方を改変し、
(b)宿主細胞を該核酸が発現するように培養し、
(c)宿主細胞培養物から多重特異性抗体を回収すること、
を含む多重特異性抗体の製造方法。
[2] 工程(a)の改変が、第 1のポリペプチドのホモ多量体、第 2のポリペプチドのホモ多 量体、および第 1のポリペプチドと第 2のポリペプチドのヘテロ多量体力 標準的なク 口マトグラフィーを使用した分析により分離したピークとなるように、核酸を改変するこ とである請求項 1に記載の方法。
[3] 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖可変領域を含む請求 項 1に記載の方法。
[4] 前記多重特異性抗体が、軽鎖可変領域を含む第 3のポリペプチドを含み、前記第
1のポリペプチドおよび前記第 2のポリペプチドがそれぞれ該第 3のポリペプチドと多 量体を形成する請求項 3に記載の方法。
[5] 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖定常領域を含む請求 項:!〜 4のいずれか 1項に記載の方法。
[6] 前記第 1のポリペプチドおよび第 2のポリペプチドに含まれる重鎖定常領域が互い に等電点の異なる重鎖定常領域である請求項 5に記載の方法。
[7] 前記等電点の異なる重鎖定常領域が IgGlと IgG4、又は、 IgGlと IgG2である請求項
6に記載の方法。
[8] 前記多重特異性抗体が、二重特異性抗体である請求項 1に記載の方法。
[9] 請求項 1に記載の方法により製造される多重特異性抗体。
[10] 第 1のポリペプチドおよび第 2のポリペプチドを含む多重特異性抗体の精製方法で あってヽ (a)第 1のポリペプチドと第 2のポリペプチドの等電点に差がつくように、第 1のポリべ プチドのアミノ酸残基をコードする核酸および第 2のポリペプチドのアミノ酸残基をコ ードする核酸の両方またはいずれか一方を改変し、
(b)宿主細胞を該核酸が発現するように培養し、
(c)宿主細胞培養物から標準的なクロマトグラフィーにより該多重特異性抗体を精製 すること、
を含む多重特異性抗体の精製方法。
[11] 工程(a)の改変が、第 1のポリペプチドのホモ多量体、第 2のポリペプチドのホモ多 量体、および第 1のポリペプチドと第 2のポリペプチドのヘテロ多量体力 標準的なク 口マトグラフィーを使用した分析により分離したピークとなるように、核酸を改変するこ とである請求項 10に記載の方法。
[12] 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖可変領域を含む請求 項 10に記載の方法。
[13] 前記多重特異性抗体が、軽鎖可変領域を含む第 3のポリペプチドを含み、前記第
1のポリペプチドおよび前記第 2のポリペプチドがそれぞれ該第 3のポリペプチドと多 量体を形成する請求項 12に記載の方法。
[14] 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖定常領域を含む請求 項 10〜: 13のいずれか 1項に記載の方法。
[15] 前記第 1のポリペプチドおよび第 2のポリペプチドに含まれる重鎖定常領域が互い に等電点の異なる重鎖定常領域である請求項 14に記載の方法。
[16] 前記等電点の異なる重鎖定常領域が IgGlと IgG4、又は、 IgGlと IgG2である請求項
15に記載の方法。
[17] 前記多重特異性抗体が、二重特異性抗体である請求項 10に記載の方法。
[18] 請求項 10に記載の方法により精製する工程を含む多重特異性抗体の製造方法。
[19] 請求項 18に記載の方法により製造される多重特異性抗体。
[20] 第 1のポリペプチドおよび第 2のポリペプチドを含む多重特異性抗体であって、第 1 のポリペプチドが重鎖可変領域および Zまたは重鎖定常領域を含み、該重鎖可変 領域における Kabatナンバリングによる 10位、 12位、 23位、 39位、 43位および 105位の アミノ酸残基、若しくは、該重鎖定常領域における EUナンバリングによる 137位、 196 位、 203位、 214位、 217位、 233位、 268位、 274位、 276位、 297位、 355位、 392位、 419 位、 435位のアミノ酸残基から選ばれる、少なくとも 1つのアミノ酸残基が電荷を有し、 第 1のポリペプチドと第 2のポリペプチドの等電点が互いに異なる多重特異性抗体。
[21] 第 2のポリペプチドが重鎖可変領域および Zまたは重鎖定常領域を含み、該重鎖 可変領域における Kabatナンバリングによる 10位、 12位、 23位、 39位、 43位および 105 位のアミノ酸残基、若しくは、該重鎖定常領域における EUナンバリングによる 137位、 196位、 203位、 214位、 217位、 233位、 268位、 274位、 276位、 297位、 355位、 392位、 419位、 435位のアミノ酸残基から選ばれる、少なくとも 1つのアミノ酸残基力 前記第 1のポリペプチドに含まれる重鎖可変領域および Zまたは重鎖定常領域ににおいて 選ばれる、電荷を有するアミノ酸残基とは反対の電荷を有する、または電荷を有しな い請求項 20に記載の多重特異性抗体。
[22] 前記電荷を有するアミノ酸残基と当該アミノ酸残基とは反対の電荷を有するアミノ酸 残基の組み合わせが、以下の(a)または (b)レ、ずれかの群に含まれるアミノ酸残基か らそれぞれ選択される請求項 20に記載の多重特異性抗体:
(a)グルタミン酸(E)、ァスパラギン酸 (D);
(b)リジン(K)、アルギニン(R)、ヒスチジン(Η)。
[23] 第 1のポリペプチドと第 2ポリペプチドの等電点に差があり、第 1のポリペプチドのホ モ多量体、第 2のポリペプチドのホモ多量体、および第 1のポリペプチドと第 2のポリ ペプチドのヘテロ多量体力 S、標準的なクロマトグラフィーを使用した分析により分離し たピークとなり得る多重特異性抗体。
[24] 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖可変領域を含む請求 項 23に記載の多重特異性抗体。
[25] 前記多重特異性抗体が、軽鎖可変領域を含む第 3のポリペプチドを含み、前記第
1のポリペプチドおよび前記第 2のポリペプチドがそれぞれ該第 3のポリペプチドと多 量体を形成する請求項 24に記載の多重特異性抗体。
[26] 前記第 1のポリペプチドおよび前記第 2のポリペプチドが重鎖定常領域を含む請求 項 23〜25のいずれか 1項に記載の多重特異性抗体。
[27] 前記第 1のポリペプチドおよび第 2のポリペプチドに含まれる重鎖定常領域が互い に等電点の異なる重鎖定常領域である請求項 26に記載の多重特異性抗体。
[28] 前記等電点の異なる重鎖定常領域が IgG lと IgG4、又は、 IgG lと IgG2である請求項
27に記載の多重特異性抗体。
[29] 前記多重特異性抗体が、二重特異性抗体である請求項 23に記載の多重特異性 饥体。
[30] 請求項 23〜29のいずれか 1項に記載の多重特異性抗体および医薬的に許容さ れる担体を含む組成物。
[31] 請求項 23〜29のいずれか 1項に記載の多重特異性抗体を構成するポリペプチド をコードする核酸。
[32] 請求項 31に記載の核酸を有する宿主細胞。
[33] 請求項 32に記載の宿主細胞を培養する工程、細胞培養物からポリペプチドを回収 する工程を含む請求項 23〜29のいずれか 1項に記載の多重特異性抗体の製造方 法。
[34] 第 1のポリペプチドの可変領域が以下の(al )〜 (a7)のいずれかに記載のアミノ酸 配列からなり、第 2のポリペプチドの可変領域が以下の(b l )〜(b3)のいずれかに記 載のアミノ酸配列からなり、第 3のポリペプチドの可変領域が以下の(c l )または(c2) に記載のアミノ酸配列からなる請求項 25に記載の多重特異性抗体:
(al )配列番号: 7
(a2)配列番号: 8
(a3)配列番号: 9
(a4)配列番号: 10
(a5)配列番号: 1 1
(a6)配列番号: 12
(a7)配列番号: 13
(b l )配列番号: 14
(b2)配列番号: 1 5
(b3)配列番号: 16 (cl)配列番号: 17
(c2)配列番号: 18
[35] 第 1のポリペプチドの可変領域が配列番号: 1 1に記載のアミノ酸配列からなり、第 2 のポリペプチドの可変領域が配列番号: 16に記載のアミノ酸配列からなり、第 3のポリ ペプチドの可変領域が配列番号: 17に記載のアミノ酸配列からなる請求項 34に記載 の多重特異性抗体。
[36] 第 1のポリペプチドの可変領域が配列番号: 12に記載のアミノ酸配列からなり、第 2 のポリペプチドの可変領域が配列番号: 16に記載のアミノ酸配列からなり、第 3のポリ ペプチドの可変領域が配列番号: 18に記載のアミノ酸配列からなる請求項 34に記載 の多重特異性抗体。
[37] 第 1のポリペプチドおよび第 2のポリペプチドがヒト IgG4定常領域を含み、第 3のポリ ペプチドがヒト κ定常領域を含む請求項 34〜36のいずれか 1項に記載の多重特異 性抗体。
PCT/JP2007/057058 2006-03-31 2007-03-30 二重特異性抗体を精製するための抗体改変方法 WO2007114325A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP07740494.5A EP2009101B1 (en) 2006-03-31 2007-03-30 Antibody modification method for purifying bispecific antibody
ES07740494.5T ES2654040T3 (es) 2006-03-31 2007-03-30 Método de modificación de anticuerpos para la purificación de anticuerpos biespecíficos
JP2008508649A JP5144499B2 (ja) 2006-03-31 2007-03-30 二重特異性抗体を精製するための抗体改変方法
EP17196942.1A EP3345616A1 (en) 2006-03-31 2007-03-30 Antibody modification method for purifying bispecific antibody
EP23150077.8A EP4218801A3 (en) 2006-03-31 2007-03-30 Antibody modification method for purifying bispecific antibody
US12/295,075 US9670269B2 (en) 2006-03-31 2007-03-30 Methods of modifying antibodies for purification of bispecific antibodies
DK07740494.5T DK2009101T3 (en) 2006-03-31 2007-03-30 Antibody modification method for purification of a bispecific antibody
US15/490,936 US10934344B2 (en) 2006-03-31 2017-04-19 Methods of modifying antibodies for purification of bispecific antibodies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006097795 2006-03-31
JP2006-097795 2006-03-31
JP2006-275804 2006-10-06
JP2006275804 2006-10-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/295,075 A-371-Of-International US9670269B2 (en) 2006-03-31 2007-03-30 Methods of modifying antibodies for purification of bispecific antibodies
US15/490,936 Division US10934344B2 (en) 2006-03-31 2017-04-19 Methods of modifying antibodies for purification of bispecific antibodies

Publications (1)

Publication Number Publication Date
WO2007114325A1 true WO2007114325A1 (ja) 2007-10-11

Family

ID=38563592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057058 WO2007114325A1 (ja) 2006-03-31 2007-03-30 二重特異性抗体を精製するための抗体改変方法

Country Status (8)

Country Link
US (2) US9670269B2 (ja)
EP (3) EP3345616A1 (ja)
JP (3) JP5144499B2 (ja)
CN (1) CN105177091A (ja)
DK (1) DK2009101T3 (ja)
ES (1) ES2654040T3 (ja)
HK (1) HK1217217A1 (ja)
WO (1) WO2007114325A1 (ja)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196541A1 (en) * 2007-09-28 2010-06-16 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
WO2010107109A1 (ja) * 2009-03-19 2010-09-23 中外製薬株式会社 抗体定常領域改変体
WO2011078332A1 (ja) * 2009-12-25 2011-06-30 中外製薬株式会社 ポリペプチド多量体を精製するためのポリペプチドの改変方法
WO2011092989A1 (ja) 2010-01-29 2011-08-04 東レ株式会社 ポリ乳酸系樹脂シート
US8062635B2 (en) 2003-10-10 2011-11-22 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody substituting for functional proteins
WO2012067176A1 (ja) 2010-11-17 2012-05-24 中外製薬株式会社 血液凝固第viii因子の機能を代替する機能を有する多重特異性抗原結合分子
WO2013002362A1 (ja) 2011-06-30 2013-01-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
WO2013065708A1 (ja) 2011-10-31 2013-05-10 中外製薬株式会社 重鎖と軽鎖の会合が制御された抗原結合分子
US8597911B2 (en) 2003-06-11 2013-12-03 Chugai Seiyaku Kabushiki Kaisha Process for producing antibodies
WO2013187495A1 (ja) 2012-06-14 2013-12-19 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
WO2014030728A1 (ja) 2012-08-24 2014-02-27 中外製薬株式会社 FcγRIIb特異的Fc領域改変体
WO2014104165A1 (ja) 2012-12-27 2014-07-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
JP2015500002A (ja) * 2011-10-10 2015-01-05 ゼンコア インコーポレイテッド 抗体を精製する方法
US20150056182A1 (en) * 2011-11-30 2015-02-26 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
WO2015046554A1 (ja) 2013-09-30 2015-04-02 中外製薬株式会社 改変されたヘルパーファージを用いて抗原結合分子を作製する方法
WO2015046467A1 (ja) 2013-09-27 2015-04-02 中外製薬株式会社 ポリペプチド異種多量体の製造方法
WO2015068847A1 (ja) 2013-11-11 2015-05-14 中外製薬株式会社 改変された抗体可変領域を含む抗原結合分子
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
EP2158315B1 (en) 2007-06-25 2016-03-23 ESBATech, an Alcon Biomedical Research Unit LLC Methods of modifying antibodies, and modified antibodies with improved functional properties
US9340615B2 (en) 2009-05-15 2016-05-17 Chugai Seiyaku Kabushiki Kaisha Anti-AXL antibody
JP2016514463A (ja) * 2013-03-15 2016-05-23 ゼンコア インコーポレイテッド ヘテロ二量体タンパク質
JP2016093175A (ja) * 2008-01-07 2016-05-26 アムジェン インコーポレイテッド 静電的ステアリング(electrostaticsteering)効果を用いた抗体Fcヘテロ二量体分子を作製するための方法
US9399680B2 (en) 2007-12-05 2016-07-26 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding anti-NR10 antibodies
WO2016164708A1 (en) 2015-04-10 2016-10-13 Adimab, Llc Methods for purifying heterodimeric multispecific antibodies from parental homodimeric antibody species
WO2017086367A1 (ja) 2015-11-18 2017-05-26 中外製薬株式会社 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法
WO2017086419A1 (ja) 2015-11-18 2017-05-26 中外製薬株式会社 液性免疫応答の増強方法
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
US9765135B2 (en) 2014-12-19 2017-09-19 Chugai Seiyaku Kabushiki Kaisha Anti-C5 antibodies
WO2017159287A1 (ja) 2016-03-14 2017-09-21 中外製薬株式会社 癌の治療に用いるための細胞傷害誘導治療剤
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
JP2018035193A (ja) * 2009-06-26 2018-03-08 リジェネロン・ファーマシューティカルズ・インコーポレ 天然の免疫グロブリン形式を有する容易に単離される二重特異性抗体
US9969800B2 (en) 2015-02-05 2018-05-15 Chugai Seiyaku Kabushiki Kaisha IL-8 antibodies
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US10000560B2 (en) 2014-12-19 2018-06-19 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
JP2018520987A (ja) * 2015-04-29 2018-08-02 インスティテュート フォー リサーチ イン バイオメディシン 多重特異性抗体によるサイトカインの非常に強力な中和およびその利用
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
WO2019065795A1 (ja) 2017-09-29 2019-04-04 中外製薬株式会社 血液凝固第viii因子(fviii)補因子機能代替活性を有する多重特異性抗原結合分子および当該分子を有効成分として含有する薬学的製剤
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
WO2019077092A1 (en) 2017-10-20 2019-04-25 F. Hoffmann-La Roche Ag METHOD FOR GENERATING MULTISPECIFIC ANTIBODIES FROM MONOSPECIFIC ANTIBODIES
WO2019088143A1 (ja) * 2017-11-01 2019-05-09 中外製薬株式会社 生物活性が低下した抗体バリアントおよびアイソフォーム
WO2019086362A1 (en) 2017-10-30 2019-05-09 F. Hoffmann-La Roche Ag Method for in vivo generation of multispecific antibodies from monospecific antibodies
WO2019131988A1 (en) 2017-12-28 2019-07-04 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
WO2019232484A1 (en) 2018-06-01 2019-12-05 Compugen Ltd Anti-pvrig/anti-tigit bispecific antibodies and methods of use
WO2019244973A1 (ja) 2018-06-20 2019-12-26 中外製薬株式会社 標的細胞に対する免疫反応を活性化する方法およびその組成物
JP2020018318A (ja) * 2013-01-14 2020-02-06 ゼンコア インコーポレイテッド 新規異種二量体タンパク質
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US10662245B2 (en) 2008-09-26 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Methods of reducing IL-6 activity for disease treatment
JP2020522573A (ja) * 2017-06-05 2020-07-30 ヤンセン バイオテツク,インコーポレーテツド 二重特異性抗体製造のための表面電荷を工学的に操作する方法
US10774148B2 (en) 2015-02-27 2020-09-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
JP2020162622A (ja) * 2020-06-25 2020-10-08 インスティテュート フォー リサーチ イン バイオメディシン 多重特異性抗体によるサイトカインの非常に強力な中和およびその利用
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
WO2020246563A1 (ja) 2019-06-05 2020-12-10 中外製薬株式会社 抗体切断部位結合分子
WO2021006328A1 (en) 2019-07-10 2021-01-14 Chugai Seiyaku Kabushiki Kaisha Claudin-6 binding molecules and uses thereof
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
WO2021131021A1 (ja) 2019-12-27 2021-07-01 中外製薬株式会社 抗ctla-4抗体およびその使用
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
US11066483B2 (en) 2010-11-30 2021-07-20 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
WO2021201202A1 (ja) * 2020-04-02 2021-10-07 中外製薬株式会社 多重特異性抗原結合分子を含む組成物における不純物分子の分析方法
WO2021201087A1 (en) 2020-03-31 2021-10-07 Chugai Seiyaku Kabushiki Kaisha Method for producing multispecific antigen-binding molecules
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11150254B2 (en) 2014-09-26 2021-10-19 Chugai Seiyaku Kabushiki Kaisha Method for measuring reactivity of FVIII
CN113795514A (zh) * 2019-05-09 2021-12-14 豪夫迈·罗氏有限公司 制备抗体的方法
US11214623B2 (en) 2014-09-26 2022-01-04 Chugai Seiyaku Kabushiki Kaisha Antibody capable of neutralizing substance having activity alternative to function of coagulation factor VIII (FVIII)
WO2022025220A1 (ja) 2020-07-31 2022-02-03 中外製薬株式会社 キメラ受容体を発現する細胞を含む医薬組成物
WO2022045276A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US11352438B2 (en) 2016-09-06 2022-06-07 Chugai Seiyaku Kabushiki Kaisha Methods of using a bispecific antibody that recognizes coagulation factor IX and/or activated coagulation factor IX and coagulation factor X and/or activated coagulation factor X
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
WO2022270612A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体の使用
WO2022270611A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003271186A1 (en) * 2003-10-14 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
DK2824183T3 (da) * 2005-04-08 2020-09-28 Chugai Pharmaceutical Co Ltd Fremgangsmåde til fremstilling af bispecifikke antistoffer
CL2009000647A1 (es) * 2008-04-04 2010-06-04 Chugai Pharmaceutical Co Ltd Composicion farmaceutica para tratar o prevenir cancer hepatico que comprende una combinacion de un agente quimioterapeutico y un anticuerpo anti-glipicano 3; agente para atenuar un efecto secundario que comprende dicho anticuerpo; metodo para tratar o prevenir un cancer hepatico de un sujeto.
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
TWI505838B (zh) 2010-01-20 2015-11-01 Chugai Pharmaceutical Co Ltd Stabilized antibody solution containing
JP5953303B2 (ja) 2010-07-29 2016-07-20 ゼンコア インコーポレイテッド 改変された等電点を有する抗体
AU2011325833C1 (en) 2010-11-05 2017-07-13 Zymeworks Bc Inc. Stable heterodimeric antibody design with mutations in the Fc domain
EP2500073A1 (en) 2011-03-17 2012-09-19 ChromaCon AG Method for identification and purification of multi-specific polypeptides
WO2013022855A1 (en) * 2011-08-05 2013-02-14 Xencor, Inc. Antibodies with modified isoelectric points and immunofiltering
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2014004586A1 (en) 2012-06-25 2014-01-03 Zymeworks Inc. Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells
CA2889951C (en) 2012-11-02 2023-04-18 Zymeworks Inc. Crystal structures of heterodimeric fc domains
WO2014082179A1 (en) 2012-11-28 2014-06-05 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
US9914785B2 (en) 2012-11-28 2018-03-13 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
EP2945969A1 (en) 2013-01-15 2015-11-25 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
EP3421495A3 (en) 2013-03-15 2019-05-15 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
MX2016006572A (es) 2013-11-27 2016-12-09 Zymeworks Inc Construcciones de union a antigenos biespecificas dirigidas a her2.
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
JOP20200096A1 (ar) 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
CN106103484B (zh) 2014-03-14 2021-08-20 诺华股份有限公司 针对lag-3的抗体分子及其用途
EP3593812A3 (en) 2014-03-15 2020-05-27 Novartis AG Treatment of cancer using chimeric antigen receptor
EP3954713A3 (en) 2014-03-28 2022-03-30 Xencor, Inc. Bispecific antibodies that bind to cd38 and cd3
EA201692476A1 (ru) 2014-05-28 2017-07-31 Займворкс Инк. Модифицированные антигенсвязывающие полипептидные конструкции и их применение
CN112481283A (zh) 2014-07-21 2021-03-12 诺华股份有限公司 使用cd33嵌合抗原受体治疗癌症
JP2017528433A (ja) 2014-07-21 2017-09-28 ノバルティス アーゲー 低い免疫増強用量のmTOR阻害剤とCARの組み合わせ
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
CN106687483B (zh) 2014-07-21 2020-12-04 诺华股份有限公司 使用人源化抗-bcma嵌合抗原受体治疗癌症
US20170209492A1 (en) 2014-07-31 2017-07-27 Novartis Ag Subset-optimized chimeric antigen receptor-containing t-cells
WO2016025880A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using gfr alpha-4 chimeric antigen receptor
MY189028A (en) 2014-08-19 2022-01-20 Novartis Ag Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment
DK3194443T3 (da) 2014-09-17 2021-09-27 Novartis Ag Målretning af cytotoksiske celler med kimære receptorer i forbindelse med adoptiv immunterapi
CU20170052A7 (es) 2014-10-14 2017-11-07 Dana Farber Cancer Inst Inc Moléculas de anticuerpo que se unen a pd-l1
CA2967426A1 (en) 2014-11-26 2016-06-02 Xencor, Inc. Heterodimeric antibodies that bind cd3 and tumor antigens
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
BR112017011166A2 (pt) 2014-11-26 2018-02-27 Xencor, Inc. anticorpos heterodiméricos que se ligam a cd3 e cd38
WO2016090034A2 (en) 2014-12-03 2016-06-09 Novartis Ag Methods for b cell preconditioning in car therapy
WO2016105450A2 (en) 2014-12-22 2016-06-30 Xencor, Inc. Trispecific antibodies
US10227411B2 (en) 2015-03-05 2019-03-12 Xencor, Inc. Modulation of T cells with bispecific antibodies and FC fusions
SI3280729T1 (sl) 2015-04-08 2022-09-30 Novartis Ag Terapije CD20, terapije CD22 in kombinacija terapij s celico, ki izraža himerni antigenski receptor CD19 (CAR)
US20180298068A1 (en) 2015-04-23 2018-10-18 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
PL3294775T3 (pl) * 2015-05-12 2021-12-13 Regeneron Pharmaceuticals, Inc. Oznaczanie czystości białka multimerycznego
EP3316902A1 (en) 2015-07-29 2018-05-09 Novartis AG Combination therapies comprising antibody molecules to tim-3
SI3317301T1 (sl) 2015-07-29 2021-10-29 Novartis Ag Kombinirane terapije, ki obsegajo molekule protitelesa na LAG-3
CA3000869A1 (en) 2015-10-08 2017-04-13 Zymeworks Inc. Antigen-binding polypeptide constructs comprising kappa and lambda light chains and uses thereof
EP3387013B1 (en) 2015-12-07 2022-06-08 Xencor, Inc. Heterodimeric antibodies that bind cd3 and psma
JP2019502695A (ja) 2015-12-17 2019-01-31 ノバルティス アーゲー PD−1に対する抗体分子とC−Met阻害剤との組合せおよびその使用
CA3007671A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
EP3851457A1 (en) 2016-01-21 2021-07-21 Novartis AG Multispecific molecules targeting cll-1
EP3423482A1 (en) 2016-03-04 2019-01-09 Novartis AG Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
WO2017165683A1 (en) 2016-03-23 2017-09-28 Novartis Ag Cell secreted minibodies and uses thereof
MX2018012615A (es) 2016-04-15 2019-05-30 Novartis Ag Composiciones y metodos para la expresion selectiva de proteinas.
US20210177896A1 (en) 2016-06-02 2021-06-17 Novartis Ag Therapeutic regimens for chimeric antigen receptor (car)- expressing cells
MX2018015592A (es) 2016-06-14 2019-04-24 Xencor Inc Anticuerpos inhibidores de puntos de control biespecificos.
CA3029328A1 (en) 2016-06-28 2018-01-04 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
JP7219376B2 (ja) 2016-07-15 2023-02-08 ノバルティス アーゲー キメラ抗原受容体をキナーゼ阻害薬と併用して使用したサイトカイン放出症候群の治療及び予防
AU2017302668B9 (en) 2016-07-28 2023-06-22 Novartis Ag Combination therapies of chimeric antigen receptors and PD-1 inhibitors
CA3032581A1 (en) 2016-08-01 2018-02-08 Novartis Ag Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule
WO2018038469A1 (ko) * 2016-08-20 2018-03-01 (주)아이벤트러스 목적하는 이중특이성 항체의 선택적 생산 확인 방법
KR101933656B1 (ko) * 2016-08-20 2018-12-28 (주) 아이벤트러스 목적하는 이중특이성 항체의 선택적 생산 확인 방법
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
AR110676A1 (es) 2016-10-07 2019-04-24 Novartis Ag Tratamiento del cáncer utilizando receptores de antígenos quiméricos
AU2017342559B2 (en) 2016-10-14 2022-03-24 Xencor, Inc. Bispecific heterodimeric fusion proteins containing IL-15/IL-15Ralpha Fc-fusion proteins and PD-1 antibody fragments
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
WO2018140725A1 (en) 2017-01-26 2018-08-02 Novartis Ag Cd28 compositions and methods for chimeric antigen receptor therapy
EP3589647A1 (en) 2017-02-28 2020-01-08 Novartis AG Shp inhibitor compositions and uses for chimeric antigen receptor therapy
JP7039175B2 (ja) 2017-03-07 2022-03-22 モレックス エルエルシー コネクタ
WO2018201056A1 (en) 2017-04-28 2018-11-01 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
JP7433910B2 (ja) 2017-06-22 2024-02-20 ノバルティス アーゲー Cd73に対する抗体分子及びその使用
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag POSOLOGICAL REGIMES FOR ANTI-TIM3 ANTIBODIES AND USES THEREOF
JP2020529832A (ja) 2017-06-30 2020-10-15 ゼンコア インコーポレイテッド IL−15/IL−15Rαおよび抗原結合ドメインを含む標的化ヘテロダイマーFc融合タンパク質
MX2020000342A (es) 2017-07-11 2020-08-17 Compass Therapeutics Llc Anticuerpos agonistas que se unen a cd137 humano y sus usos.
JP2020527572A (ja) 2017-07-20 2020-09-10 ノバルティス アーゲー 抗lag−3抗体の投薬量レジメンおよびその使用
CN113896797B (zh) * 2017-08-01 2023-05-09 Ab工作室有限公司 双特异性抗体及其用途
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
WO2019089798A1 (en) 2017-10-31 2019-05-09 Novartis Ag Anti-car compositions and methods
EP3706793A1 (en) 2017-11-08 2020-09-16 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-pd-1 sequences
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
JP2021503478A (ja) 2017-11-16 2021-02-12 ノバルティス アーゲー 組み合わせ治療
WO2019100052A2 (en) 2017-11-20 2019-05-23 Compass Therapeutics Llc Cd137 antibodies and tumor antigen-targeting antibodies and uses thereof
WO2019125732A1 (en) 2017-12-19 2019-06-27 Xencor, Inc. Engineered il-2 fc fusion proteins
US20210038659A1 (en) 2018-01-31 2021-02-11 Novartis Ag Combination therapy using a chimeric antigen receptor
AU2019247415A1 (en) 2018-04-04 2020-10-22 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
CA3097593A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof
AU2019256529A1 (en) 2018-04-18 2020-11-26 Xencor, Inc. TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and TIM-3 antigen binding domains
US20210047405A1 (en) 2018-04-27 2021-02-18 Novartis Ag Car t cell therapies with enhanced efficacy
WO2019226658A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Multispecific antigen-binding compositions and methods of use
WO2019226617A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Compositions and methods for enhancing the killing of target cells by nk cells
WO2019227003A1 (en) 2018-05-25 2019-11-28 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019241426A1 (en) 2018-06-13 2019-12-19 Novartis Ag Bcma chimeric antigen receptors and uses thereof
KR20210035173A (ko) 2018-06-19 2021-03-31 아타르가, 엘엘씨 보체 성분 5에 대한 항체분자 및 이의 용도
US20210269509A1 (en) 2018-06-22 2021-09-02 Genmab A/S Method for producing a controlled mixture of two or more different antibodies
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
JP2022503959A (ja) 2018-10-03 2022-01-12 ゼンコア インコーポレイテッド Il-12ヘテロ二量体fc-融合タンパク質
MX2021005594A (es) 2018-11-13 2021-10-22 Compass Therapeutics Llc Constructos multiespecificos de union contra moleculas de puntos de control y usos de los mismos.
AU2019402189B2 (en) 2018-12-20 2023-04-13 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
JP2022514017A (ja) 2018-12-20 2022-02-09 ノバルティス アーゲー 医薬の組み合わせ
JP2024504880A (ja) 2018-12-24 2024-02-02 サノフイ 疑似fabベースの多重特異性結合タンパク質
US10871640B2 (en) 2019-02-15 2020-12-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and systems for automated imaging of three-dimensional objects
EA202192019A1 (ru) 2019-02-15 2021-11-02 Новартис Аг Производные 3-(1-оксо-5-(пиперидин-4-ил)изоиндолин-2-ил)пиперидин-2,6-диона и пути их применения
AU2020222346B2 (en) 2019-02-15 2021-12-09 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
EP3927371A1 (en) 2019-02-22 2021-12-29 Novartis AG Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors
WO2020180726A1 (en) 2019-03-01 2020-09-10 Xencor, Inc. Heterodimeric antibodies that bind enpp3 and cd3
TW202102261A (zh) 2019-03-29 2021-01-16 美商艾特加有限責任公司 Fgf23之抗體分子及其用途
MX2021013646A (es) * 2019-05-09 2022-01-31 Merus Nv Dominios variantes para las proteínas multimerizantes y su separación.
CN114786679A (zh) 2019-10-21 2022-07-22 诺华股份有限公司 具有维奈托克和tim-3抑制剂的组合疗法
MX2022004769A (es) 2019-10-21 2022-05-16 Novartis Ag Inhibidores de tim-3 y sus usos.
EP4065158A2 (en) 2019-11-26 2022-10-05 Novartis AG Chimeric antigen receptors binding bcma and cd19 and uses thereof
WO2021123996A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
CN114980902A (zh) 2020-01-17 2022-08-30 诺华股份有限公司 用于治疗骨髓增生异常综合征或慢性粒单核细胞白血病的包含tim-3抑制剂和低甲基化药物的组合
EP4090762A1 (en) 2020-01-17 2022-11-23 Becton, Dickinson and Company Methods and compositions for single cell secretomics
EP4110377A2 (en) 2020-02-27 2023-01-04 Novartis AG Methods of making chimeric antigen receptor-expressing cells
WO2021231976A1 (en) 2020-05-14 2021-11-18 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (psma) and cd3
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
TW202216761A (zh) 2020-07-16 2022-05-01 瑞士商諾華公司 抗β細胞素抗體、其片段及多特異性結合分子
WO2022026592A2 (en) 2020-07-28 2022-02-03 Celltas Bio, Inc. Antibody molecules to coronavirus and uses thereof
CN116134027A (zh) 2020-08-03 2023-05-16 诺华股份有限公司 杂芳基取代的3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途
AU2021329378A1 (en) 2020-08-19 2023-03-23 Xencor, Inc. Anti-CD28 compositions
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
EP4240765A2 (en) 2020-11-06 2023-09-13 Novartis AG Antibody fc variants
MX2023005609A (es) 2020-11-13 2023-05-29 Novartis Ag Terapias de combinacion con celulas que expresan receptores quimericos para el antigeno (car).
JP2024505049A (ja) 2021-01-29 2024-02-02 ノバルティス アーゲー 抗cd73及び抗entpd2抗体のための投与方式並びにその使用
EP4305067A1 (en) 2021-03-09 2024-01-17 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cldn6
WO2022192586A1 (en) 2021-03-10 2022-09-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and gpc3
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
WO2023044483A2 (en) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2023092004A1 (en) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
WO2023150778A1 (en) 2022-02-07 2023-08-10 Visterra, Inc. Anti-idiotype antibody molecules and uses thereof
WO2023209568A1 (en) 2022-04-26 2023-11-02 Novartis Ag Multispecific antibodies targeting il-13 and il-18
WO2023220695A2 (en) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2024030976A2 (en) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions and methods for crossing the blood brain barrier

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992019759A1 (en) 1991-04-25 1992-11-12 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin 6 receptor
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1995015393A1 (fr) 1993-12-03 1995-06-08 Asahi Kasei Kogyo Kabushiki Kaisha Nouveau vecteur de detection d'expression
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
JPH09506001A (ja) * 1994-06-03 1997-06-17 ゲーエスエフ−フォルシュングスツェントルム フュア ウムヴェルト ウント ゲズントハイト ゲゼルシャフト ミット ベシュレンクテル ハフツング 異種二重特異性抗体の製造法
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
WO1998046777A1 (fr) 1997-04-11 1998-10-22 Centre National De La Recherche Scientifique (Cnrs) Preparation de recepteurs membranaires a partir de baculovirus extracellulaires
WO1999051743A1 (fr) 1998-04-03 1999-10-14 Chugai Seiyaku Kabushiki Kaisha Anticorps humanise contre le facteur tissulaire humain (tf) et procede de production d'anticorps humanises
JP2005112514A (ja) 2003-10-06 2005-04-28 Tadano Ltd 伸縮ブーム
WO2006106905A1 (ja) * 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法

Family Cites Families (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE370449B (ja) 1970-08-29 1974-10-14 Philips Nv
JPS5334319B2 (ja) 1971-12-28 1978-09-20
JPS5717624B2 (ja) 1974-04-17 1982-04-12
JPS59878B2 (ja) 1975-09-04 1984-01-09 松下電工株式会社 感知器
US4208479A (en) 1977-07-14 1980-06-17 Syva Company Label modified immunoassays
US4474893A (en) 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
US4444878A (en) 1981-12-21 1984-04-24 Boston Biomedical Research Institute, Inc. Bispecific antibody determinants
JPH0234615Y2 (ja) 1986-08-08 1990-09-18
JPH06104071B2 (ja) 1986-08-24 1994-12-21 財団法人化学及血清療法研究所 第▲ix▼因子コンホメ−シヨン特異性モノクロ−ナル抗体
EP0307434B2 (en) 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
US5004697A (en) 1987-08-17 1991-04-02 Univ. Of Ca Cationized antibodies for delivery through the blood-brain barrier
US5670373A (en) * 1988-01-22 1997-09-23 Kishimoto; Tadamitsu Antibody to human interleukin-6 receptor
US5322678A (en) 1988-02-17 1994-06-21 Neorx Corporation Alteration of pharmacokinetics of proteins by charge modification
US6010902A (en) 1988-04-04 2000-01-04 Bristol-Meyers Squibb Company Antibody heteroconjugates and bispecific antibodies for use in regulation of lymphocyte activity
US5126250A (en) 1988-09-28 1992-06-30 Eli Lilly And Company Method for the reduction of heterogeneity of monoclonal antibodies
IL89491A0 (en) 1988-11-17 1989-09-10 Hybritech Inc Bifunctional chimeric antibodies
JPH0341033A (ja) 1989-07-07 1991-02-21 Kyowa Hakko Kogyo Co Ltd 安定なモチリン類含有製剤
GB8916400D0 (en) 1989-07-18 1989-09-06 Dynal As Modified igg3
JP3032287B2 (ja) 1989-12-11 2000-04-10 イムノメデイツクス・インコーポレイテツド 診断薬または治療薬の抗体ターゲティング
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
TW212184B (ja) 1990-04-02 1993-09-01 Takeda Pharm Industry Co Ltd
JPH05184383A (ja) 1990-06-19 1993-07-27 Dainabotsuto Kk 二重特異性抗体
JPH05199894A (ja) 1990-08-20 1993-08-10 Takeda Chem Ind Ltd 二重特異性抗体および抗体含有薬剤
JPH05304992A (ja) 1991-06-20 1993-11-19 Takeda Chem Ind Ltd ハイブリッド・モノクローナル抗体および抗体含有薬剤
US5637481A (en) * 1993-02-01 1997-06-10 Bristol-Myers Squibb Company Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell
US6136310A (en) 1991-07-25 2000-10-24 Idec Pharmaceuticals Corporation Recombinant anti-CD4 antibodies for human therapy
US6027725A (en) 1991-11-25 2000-02-22 Enzon, Inc. Multivalent antigen-binding proteins
US5667988A (en) 1992-01-27 1997-09-16 The Scripps Research Institute Methods for producing antibody libraries using universal or randomized immunoglobulin light chains
JPH05203652A (ja) 1992-01-28 1993-08-10 Fuji Photo Film Co Ltd 抗体酵素免疫分析法
JPH05213775A (ja) 1992-02-05 1993-08-24 Otsuka Pharmaceut Co Ltd Bfa抗体
US6749853B1 (en) 1992-03-05 2004-06-15 Board Of Regents, The University Of Texas System Combined methods and compositions for coagulation and tumor treatment
US6129914A (en) 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
US5744446A (en) 1992-04-07 1998-04-28 Emory University Hybrid human/animal factor VIII
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
ZA936260B (en) 1992-09-09 1994-03-18 Smithkline Beecham Corp Novel antibodies for conferring passive immunity against infection by a pathogen in man
US5837821A (en) * 1992-11-04 1998-11-17 City Of Hope Antibody construct
JP3720353B2 (ja) 1992-12-04 2005-11-24 メディカル リサーチ カウンシル 多価および多重特異性の結合タンパク質、それらの製造および使用
ATE187494T1 (de) * 1992-12-11 1999-12-15 Dow Chemical Co Multivalente einkettige antikörper
EP0660937A1 (en) 1993-07-01 1995-07-05 Dade International Inc. Process for the preparation of factor x depleted plasma
UA40577C2 (uk) 1993-08-02 2001-08-15 Мерк Патент Гмбх Біспецифічна молекула, що використовується для лізису пухлинних клітин, спосіб її одержання, моноклональне антитіло (варіанти), фармацевтичний препарат, фармацевтичний набір (варіанти), спосіб видалення пухлинних клітин
IL107742A0 (en) 1993-11-24 1994-02-27 Yeda Res & Dev Chemically-modified binding proteins
US5945311A (en) 1994-06-03 1999-08-31 GSF--Forschungszentrumfur Umweltund Gesundheit Method for producing heterologous bi-specific antibodies
US8017121B2 (en) 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
HU220347B (hu) 1994-07-11 2001-12-28 Board Of Regents The University Of Texas System Készítmény az érrendszer specifikus koagulálásához
ATE306930T1 (de) 1994-08-12 2005-11-15 Immunomedics Inc Für b-zell-lymphom und leukämiezellen spezifische immunkonjugate und humane antikörper
US6451523B1 (en) * 1994-09-14 2002-09-17 Interneuron Pharmaceuticals, Inc. Detection of a leptin receptor variant and methods for regulating obesity
US6309636B1 (en) 1995-09-14 2001-10-30 Cancer Research Institute Of Contra Costa Recombinant peptides derived from the Mc3 anti-BA46 antibody, methods of use thereof, and methods of humanizing antibody peptides
EP2077120A3 (en) 1994-10-07 2009-07-15 Chugai Seiyaku Kabushiki Kaisha Rheumatoid arthritis remedy containing il-6 antagonist as active ingredient
CZ298790B6 (cs) 1994-10-21 2008-01-30 Kishimoto@Tadamitsu Farmaceutický prípravek pro prevenci nebo lécení kachexie
AU4289496A (en) 1994-12-02 1996-06-19 Chiron Corporation Method of promoting an immune response with a bispecific antibody
US6485943B2 (en) 1995-01-17 2002-11-26 The University Of Chicago Method for altering antibody light chain interactions
ES2152514T3 (es) * 1995-02-28 2001-02-01 Procter & Gamble Preparacion de productos de bebidas no carbonatadas que tienen una estabilidad microbiana superior.
WO1996034892A1 (en) 1995-05-03 1996-11-07 Bioenhancements Ltd. Bispecific antibodies in which the binding capability is reversibly inhibited by a photocleavable moiety
JP3946256B2 (ja) 1995-09-11 2007-07-18 協和醗酵工業株式会社 ヒトインターロイキン5受容体α鎖に対する抗体
IL125073A0 (en) 1996-01-08 1999-01-26 Genentech Inc Wsx receptor and ligands
MA24512A1 (fr) 1996-01-17 1998-12-31 Univ Vermont And State Agrienl Procede pour la preparation d'agents anticoagulants utiles dans le traitement de la thrombose
FR2745008A1 (fr) 1996-02-20 1997-08-22 Ass Pour Le Dev De La Rech En Recepteur nucleaire de glucocorticoides modifie, fragments d'adn codant pour ledit recepteur et procedes dans lesquels ils sont mis en oeuvre
US5945231A (en) * 1996-03-26 1999-08-31 California Institute Of Technology Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof
JP3032287U (ja) 1996-06-10 1996-12-17 幸喜 高橋 人 形
US20020147326A1 (en) 1996-06-14 2002-10-10 Smithkline Beecham Corporation Hexameric fusion proteins and uses therefor
CA2259163C (en) 1996-07-19 2004-07-06 Amgen Inc. Nt-3 and bdnf analogs having improved circulating life and/or absorption
JPH10165184A (ja) 1996-12-16 1998-06-23 Tosoh Corp 抗体、遺伝子及びキメラ抗体の製法
US5990286A (en) 1996-12-18 1999-11-23 Techniclone, Inc. Antibodies with reduced net positive charge
US6323000B2 (en) * 1996-12-20 2001-11-27 Clark A. Briggs Variant human α7 acetylcholine receptor subunit, and methods of production and uses thereof
ATE383430T1 (de) 1997-03-20 2008-01-15 Us Gov Health & Human Serv Rekombinante antikörper und immunkonjugate gezielt auf cd22-tragende zellen und tumoren
US6183744B1 (en) 1997-03-24 2001-02-06 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US20070059302A1 (en) * 1997-04-07 2007-03-15 Genentech, Inc. Anti-vegf antibodies
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
DE69830901T2 (de) 1997-05-02 2006-05-24 Genentech Inc., San Francisco ein verfahren zur herstellung multispezifischer antikörper die heteromultimere und gemeinsame komponenten besitzen
US20030207346A1 (en) 1997-05-02 2003-11-06 William R. Arathoon Method for making multispecific antibodies having heteromultimeric and common components
US20020062010A1 (en) 1997-05-02 2002-05-23 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
WO2001036486A2 (en) 1999-11-18 2001-05-25 Oxford Biomedica (Uk) Limited Scfv antibodies against disease associated molecules
DE19725586C2 (de) 1997-06-17 1999-06-24 Gsf Forschungszentrum Umwelt Verfahren zur Herstellung von Zellpräparaten zur Immunisierung mittels heterologer intakter bispezifischer und/oder trispezifischer Antikörper
US6368596B1 (en) * 1997-07-08 2002-04-09 Board Of Regents, The University Of Texas System Compositions and methods for homoconjugates of antibodies which induce growth arrest or apoptosis of tumor cells
US5980893A (en) 1997-07-17 1999-11-09 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
US6207805B1 (en) 1997-07-18 2001-03-27 University Of Iowa Research Foundation Prostate cell surface antigen-specific antibodies
US20020187150A1 (en) 1997-08-15 2002-12-12 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient
US6342220B1 (en) 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
RU2221809C2 (ru) 1997-10-03 2004-01-20 Тугаи Сейяку Кабусики Кайся Способ получения природного гуманизированного антитела
CA2324115C (en) 1998-03-17 2008-12-23 Chugai Seiyaku Kabushiki Kaisha A preventive or therapeutic agent for inflammatory bowel disease comprising il-6 antagonist as an active ingredient
DE19819846B4 (de) 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalente Antikörper-Konstrukte
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
US7081360B2 (en) * 1998-07-28 2006-07-25 Cadus Technologies, Inc. Expression of G protein-coupled receptors with altered ligand binding and/or coupling properties
EP1105427A2 (en) * 1998-08-17 2001-06-13 Abgenix, Inc. Generation of modified molecules with increased serum half-lives
WO2000018806A1 (de) 1998-09-25 2000-04-06 Horst Lindhofer Bispezifische und trispezifische antikörper, die spezifisch mit induzierbaren oberflächenantigenen als operationelle zielstrukturen reagieren
MXPA01005515A (es) 1998-12-01 2003-07-14 Protein Design Labs Inc Anticuerpos humanizados para gamma-interferon.
US7286585B2 (en) * 1998-12-21 2007-10-23 Finisar Corporation Low temperature grown layers with migration enhanced epitaxy adjacent to an InGaAsN(Sb) based active region
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
HUP0104865A3 (en) 1999-01-15 2004-07-28 Genentech Inc Polypeptide variants with altered effector function
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US6897044B1 (en) 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
US6972125B2 (en) 1999-02-12 2005-12-06 Genetics Institute, Llc Humanized immunoglobulin reactive with B7-2 and methods of treatment therewith
AR030019A1 (es) 1999-05-18 2003-08-13 Smithkline Beecham Corp Anticuerpos monoclonales humanos y fragmentos funcionales del mismo, un procedimiento para su produccion, composiciones farmaceuticas que los comprenden, una molecula aislada de acido nucleico, un plasmido recombinante, una celula hospedante y el uso de dichos anticuerpos para la manufactura de un m
SK782002A3 (en) * 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
AT411997B (de) 1999-09-14 2004-08-26 Baxter Ag Faktor ix/faktor ixa aktivierende antikörper und antikörper-derivate
SE9903895D0 (sv) 1999-10-28 1999-10-28 Active Biotech Ab Novel compounds
US20020028178A1 (en) 2000-07-12 2002-03-07 Nabil Hanna Treatment of B cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications
CA2390662A1 (en) 1999-12-14 2001-06-21 The Burnham Institute Bcl-g polypeptides, encoding nucleic acids and methods of use
AU2001256174A1 (en) 2000-03-01 2001-09-12 Christoph Gasche Mammalian interleukin-10 (il-10) receptor variants
TWI242043B (en) 2000-03-10 2005-10-21 Chugai Pharmaceutical Co Ltd Polypeptide inducing apoptosis
DK1265914T3 (da) 2000-03-22 2008-03-10 Curagen Corp WNT-1-relaterede polypeptider og nukleinsyrer, der koder for samme
KR20020091170A (ko) 2000-03-31 2002-12-05 아이덱 파마슈티칼즈 코포레이션 B 세포 림프종의 치료를 위한 항-사이토카인 항체 또는길항제 및 항-cd20의 조합된 사용
AU2001249835A1 (en) * 2000-04-03 2001-10-15 Oxford Glycosciences (Uk) Ltd. Diagnosis and treatment of alzheimer's disease
AU2001246934A1 (en) 2000-04-17 2001-10-30 Chugai Seiyaku Kabushiki Kaisha Agonist antibodies
JP2004511426A (ja) 2000-05-03 2004-04-15 ミュンヘン バイオテク アーゲー 活性化血管部位に関連する陽イオン性の診断薬、画像化剤、および治療薬
EP1299419A2 (en) 2000-05-24 2003-04-09 Imclone Systems, Inc. Bispecific immunoglobulin-like antigen binding proteins and method of production
WO2001097858A2 (en) 2000-06-20 2001-12-27 Idec Pharmaceuticals Corporation Cold anti-cd20 antibody/radiolabeled anti-cd22 antibody combination
JP2004502742A (ja) 2000-07-12 2004-01-29 アイデック ファーマスーティカルズ コーポレイション B細胞を消滅させる抗体及び免疫調節抗体を併用するb細胞悪性疾患の治療関連出願
AU2001271066A1 (en) 2000-07-17 2002-01-30 Chugai Seiyaku Kabushiki Kaisha Method for screening ligand having biological activity
CA2422076A1 (en) 2000-09-18 2002-03-21 Idec Pharmaceutical Corporation Combination therapy for treatment of autoimmune diseases using b cell depleting/immunoregulatory antibody combination
AU1344102A (en) 2000-10-12 2002-04-22 Genentech Inc Reduced-viscosity concentrated protein formulations
US20040242847A1 (en) * 2000-10-20 2004-12-02 Naoshi Fukushima Degraded agonist antibody
AU1091802A (en) 2000-10-20 2002-04-29 Chugai Pharmaceutical Co Ltd Degraded agonist antibody
AU2002210917B2 (en) 2000-10-20 2006-05-18 Chugai Seiyaku Kabushiki Kaisha Degraded TPO agonist antibody
US8034903B2 (en) * 2000-10-20 2011-10-11 Chugai Seiyaku Kabushiki Kaisha Degraded TPO agonist antibody
JP4889187B2 (ja) 2000-10-27 2012-03-07 中外製薬株式会社 Il−6アンタゴニストを有効成分として含有する血中mmp−3濃度低下剤
EP2341060B1 (en) * 2000-12-12 2019-02-20 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
BR0207854A (pt) 2001-03-07 2004-08-24 Merck Patent Gmbh Tecnologia de expressão para proteìnas contendo uma porção de anticorpo de isotipo hìbrido
WO2002078612A2 (en) 2001-04-02 2002-10-10 Euro-Celtique S.A. Thrombopoietin (tpo) synthebody for stimulation of platelet production
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
CN1294148C (zh) 2001-04-11 2007-01-10 中国科学院遗传与发育生物学研究所 环状单链三特异抗体
YU80903A (sh) * 2001-04-13 2006-05-25 Biogen Inc. Antitela vla-1
ATE407204T1 (de) 2001-06-22 2008-09-15 Chugai Pharmaceutical Co Ltd Zellproliferationsinhibitoren mit anti-glypican-3-antikörper
DE60237282D1 (de) * 2001-06-28 2010-09-23 Domantis Ltd Doppelspezifischer ligand und dessen verwendung
US20030049203A1 (en) 2001-08-31 2003-03-13 Elmaleh David R. Targeted nucleic acid constructs and uses related thereto
CN1604966A (zh) * 2001-10-15 2005-04-06 免疫医疗公司 直接靶定的结合蛋白
ES2326964T3 (es) 2001-10-25 2009-10-22 Genentech, Inc. Composiciones de glicoproteina.
US20030190705A1 (en) 2001-10-29 2003-10-09 Sunol Molecular Corporation Method of humanizing immune system molecules
DE10156482A1 (de) 2001-11-12 2003-05-28 Gundram Jung Bispezifisches Antikörper-Molekül
EP1573002A4 (en) * 2002-02-11 2008-07-16 Genentech Inc ANTIBODY VARIANTS WITH ACCELERATED ANTIGEN ASSOCIATED SPEEDS
US20040002587A1 (en) 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
WO2003074679A2 (en) 2002-03-01 2003-09-12 Xencor Antibody optimization
ATE512989T1 (de) 2002-04-15 2011-07-15 Chugai Pharmaceutical Co Ltd Verfahren zur herstellung von scdb-bibliotheken
AU2003235833A1 (en) 2002-04-26 2003-11-10 Chugai Seiyaku Kabushiki Kaisha Method of screening agonistic antibody
JP2004086862A (ja) 2002-05-31 2004-03-18 Celestar Lexico-Sciences Inc タンパク質相互作用情報処理装置、タンパク質相互作用情報処理方法、プログラム、および、記録媒体
EP1510943A4 (en) 2002-05-31 2007-05-09 Celestar Lexico Sciences Inc INTERACTION PREDICTION DEVICE
WO2003104425A2 (en) 2002-06-07 2003-12-18 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Novel stable anti-cd22 antibodies
AU2003256266A1 (en) 2002-06-12 2003-12-31 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
PT1517921E (pt) 2002-06-28 2006-09-29 Domantis Ltd Ligandos duplamente especificos com semi-vida no soro aumentada
ES2368733T3 (es) 2002-07-18 2011-11-21 Merus B.V. Producción recombinante de mezclas de anticuerpos.
CA2492524A1 (en) 2002-08-15 2004-02-26 Epitomics, Inc. Humanized rabbit antibodies
US20060058511A1 (en) * 2002-08-27 2006-03-16 Chugai Seiyaku Kabushiki Kaisha Method for stabilizing protein solution preparation
US20060235208A1 (en) 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
DE60324700D1 (de) * 2002-10-11 2008-12-24 Chugai Pharmaceutical Co Ltd Zelltod-induzierender wirkstoff
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
GB0224082D0 (en) * 2002-10-16 2002-11-27 Celltech R&D Ltd Biological products
SI1558648T1 (sl) 2002-10-17 2012-05-31 Genmab As Človeška monoklonalna protitelesa proti CD
PT1575517E (pt) 2002-12-24 2012-05-28 Rinat Neuroscience Corp Anticorpos anti-ngf e métodos de utilização dos mesmos
AU2003303543A1 (en) 2002-12-26 2004-07-29 Chugai Seiyaku Kabushiki Kaisha Agonist antibody against heteroreceptor
JP4477579B2 (ja) 2003-01-21 2010-06-09 中外製薬株式会社 抗体の軽鎖スクリーニング方法
CA2515081A1 (en) 2003-02-07 2004-08-19 Protein Design Labs, Inc. Amphiregulin antibodies and their use to treat cancer and psoriasis
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
JP4739954B2 (ja) 2003-03-13 2011-08-03 中外製薬株式会社 変異受容体に対するアゴニスト活性を有するリガンド
JP2004279086A (ja) * 2003-03-13 2004-10-07 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
EP1609803A4 (en) * 2003-03-31 2006-05-24 Chugai Pharmaceutical Co Ltd MODIFIED ANTIBODY AGAINST CD22 AND ITS USE
GB2400851B (en) 2003-04-25 2004-12-15 Bioinvent Int Ab Identifying binding of a polypeptide to a polypeptide target
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
CA2527694C (en) * 2003-05-30 2015-07-14 Hendricus Renerus Jacobus Mattheus Hoogenboom Fab library for the preparation of anti vegf and anti rabies virus fabs
KR20060027801A (ko) 2003-06-05 2006-03-28 제넨테크, 인크. B 세포 장애에 대한 조합 요법
JP4794301B2 (ja) * 2003-06-11 2011-10-19 中外製薬株式会社 抗体の製造方法
WO2004113387A2 (en) 2003-06-24 2004-12-29 Merck Patent Gmbh Tumour necrosis factor receptor molecules with reduced immunogenicity
US20050033029A1 (en) 2003-06-30 2005-02-10 Jin Lu Engineered anti-target immunoglobulin derived proteins, compositions, methods and uses
US7297336B2 (en) 2003-09-12 2007-11-20 Baxter International Inc. Factor IXa specific antibodies displaying factor VIIIa like activity
JP2005101105A (ja) 2003-09-22 2005-04-14 Canon Inc 位置決め装置、露光装置、デバイス製造方法
WO2005035753A1 (ja) 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha 機能蛋白質を代替する二重特異性抗体
AU2003271186A1 (en) 2003-10-14 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
CA2545603A1 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. Neonatal fc receptor (fcrn)-binding polypeptide variants, dimeric fc binding proteins and methods related thereto
WO2005063815A2 (en) 2003-11-12 2005-07-14 Biogen Idec Ma Inc. Fcϝ receptor-binding polypeptide variants and methods related thereto
EP1701979A2 (en) 2003-12-03 2006-09-20 Xencor, Inc. Optimized antibodies that target the epidermal growth factor receptor
CA2546054C (en) 2003-12-10 2014-05-13 Medarex, Inc. Interferon alpha antibodies and their uses
PL1691837T3 (pl) * 2003-12-10 2012-11-30 Squibb & Sons Llc IP-10 przeciwciała i ich zastosowanie
WO2005056605A1 (ja) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha 3量体以上の受容体を認識する改変抗体
TW200530269A (en) 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
TW200530266A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Method of reinforcing antibody activity
WO2005056602A1 (ja) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha アゴニスト活性を有する改変抗体のスクリーニング方法
AR048210A1 (es) 2003-12-19 2006-04-12 Chugai Pharmaceutical Co Ltd Un agente preventivo para la vasculitis.
WO2005062916A2 (en) 2003-12-22 2005-07-14 Centocor, Inc. Methods for generating multimeric molecules
TW200540186A (en) 2003-12-25 2005-12-16 Kirin Brewery Mutants of anti-CD40 antibody
US20050266425A1 (en) * 2003-12-31 2005-12-01 Vaccinex, Inc. Methods for producing and identifying multispecific antibodies
SV2006001990A (es) 2004-01-09 2006-01-30 Pfizer Anticuerpos contra madcam
CN1330448C (zh) * 2004-02-25 2007-08-08 苏州宝时得电动工具有限公司 往复式电动工具的往复杆平衡机构
EP2053062A1 (en) 2004-03-24 2009-04-29 Xencor, Inc. Immunoglobin variants outside the Fc region
AR048335A1 (es) 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd Agentes terapeuticos para trastornos del oido interno que contienen un antagonista de il- 6 como un ingrediente activo
WO2005112564A2 (en) 2004-04-15 2005-12-01 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Germline and sequence variants of humanized antibodies and methods of making and using them
TW200605906A (en) 2004-05-11 2006-02-16 Chugai Pharmaceutical Co Ltd Remedy for thrombopenia
US7728114B2 (en) 2004-06-03 2010-06-01 Novimmune S.A. Anti-CD3 antibodies and methods of use thereof
KR100620554B1 (ko) 2004-06-05 2006-09-06 한국생명공학연구원 Tag-72에 대한 인간화 항체
AR049390A1 (es) 2004-06-09 2006-07-26 Wyeth Corp Anticuerpos contra la interleuquina-13 humana y usos de los mismos
EP1773391A4 (en) 2004-06-25 2009-01-21 Medimmune Inc INCREASING THE PRODUCTION OF RECOMBINANT ANTIBODIES IN MAMMALIAN CELLS BY MUTAGENESIS ON THE SITE
DE102004032634A1 (de) 2004-07-06 2006-02-16 Sms Demag Ag Verfahren und Einrichtung zum Messen und Regeln der Planheit und/oder der Bandspannungen eines Edelstahlbandes oder einer Edelstahlfolie beim Kaltwalzen in einem Vielwalzengerüst, insbesondere in einem 20-Walzen-Sendizimir-Walzwerk
ATE486610T1 (de) 2004-07-09 2010-11-15 Chugai Pharmaceutical Co Ltd Anti-glypican-3-antikörper
EP1919950A1 (en) 2004-07-15 2008-05-14 Xencor, Inc. Optimized fc variants
EA012464B1 (ru) 2004-08-04 2009-10-30 Эпплайд Молекьюлар Эволюшн, Инк. Антитело против cd20 и его применение
CA2577082A1 (en) * 2004-09-02 2006-03-16 Genentech, Inc. Heteromultimeric molecules
MX2007002883A (es) 2004-09-13 2007-06-15 Macrogenics Inc Anticuerpos humanizados contra el virus de nilo occidental y usos terapeuticos y profilacticos del mismo.
EP1799718A1 (en) 2004-09-14 2007-06-27 National Institute for Biological Standards and Control (NIBSC) Vaccine
US20060074225A1 (en) 2004-09-14 2006-04-06 Xencor, Inc. Monomeric immunoglobulin Fc domains
US7563443B2 (en) 2004-09-17 2009-07-21 Domantis Limited Monovalent anti-CD40L antibody polypeptides and compositions thereof
TWI380996B (zh) 2004-09-17 2013-01-01 Hoffmann La Roche 抗ox40l抗體
US8911726B2 (en) 2004-09-22 2014-12-16 Kyowa Hakko Kirin Co., Ltd Stabilized human Igg4 antibodies
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
KR101370253B1 (ko) 2004-10-22 2014-03-05 암젠 인크 재조합 항체의 재접힘 방법
US7462697B2 (en) 2004-11-08 2008-12-09 Epitomics, Inc. Methods for antibody engineering
US7632497B2 (en) * 2004-11-10 2009-12-15 Macrogenics, Inc. Engineering Fc Antibody regions to confer effector function
JP5787461B2 (ja) 2004-12-14 2015-09-30 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 免疫グロブリンの精製方法
US8728828B2 (en) 2004-12-22 2014-05-20 Ge Healthcare Bio-Sciences Ab Purification of immunoglobulins
US20090061485A1 (en) * 2004-12-22 2009-03-05 Chugai Seiyaku Kabushiki Kaisha Method of Producing an Antibody Using a Cell in Which the Function of Fucose Transporter Is Inhibited
EP1833510A4 (en) 2004-12-27 2010-02-10 Progenics Pharmaceuticals Neva ORAL ADMINISTRATION ANTITOXIN ANTIBODIES AND METHODS OF MAKING AND USING THE SAME
ES2557325T5 (es) 2004-12-28 2023-11-15 Innate Pharma Sa Anticuerpos monoclonales contra NKG2A
WO2006076594A2 (en) * 2005-01-12 2006-07-20 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
US8716451B2 (en) 2005-01-12 2014-05-06 Kyowa Hakko Kirin Co., Ltd Stabilized human IgG2 and IgG3 antibodies
EP1871808A2 (en) 2005-03-31 2008-01-02 Xencor, Inc. Fc VARIANTS WITH OPTIMIZED PROPERTIES
TW200722518A (en) * 2005-03-31 2007-06-16 Chugai Pharmaceutical Co Ltd Sc(fv)2 structural isomers
DK2824183T3 (da) 2005-04-08 2020-09-28 Chugai Pharmaceutical Co Ltd Fremgangsmåde til fremstilling af bispecifikke antistoffer
MX2007012687A (es) 2005-04-15 2008-03-14 Genentech Inc Variantes de cadena beta de hgf.
CA2606102C (en) 2005-04-26 2014-09-30 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
EP1885755A4 (en) 2005-05-05 2009-07-29 Univ Duke TREATMENTS OF AUTOIMMUNE DISEASES BY ANTI-CD19 ANTIBODIES
JP5085322B2 (ja) * 2005-06-10 2012-11-28 中外製薬株式会社 sc(Fv)2を含有する医薬組成物
JP5068167B2 (ja) * 2005-06-10 2012-11-07 中外製薬株式会社 メグルミンを含有するタンパク質製剤の安定化剤、およびその利用
US20090028854A1 (en) * 2005-06-10 2009-01-29 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2 SITE-DIRECTED MUTANT
KR20080025174A (ko) * 2005-06-23 2008-03-19 메디뮨 인코포레이티드 응집 및 단편화 프로파일이 최적화된 항체 제제
EP1907002A2 (en) 2005-07-11 2008-04-09 Macrogenics, Inc. Methods of treating autoimmune disease using humanized anti-cd16a antibodies
SI2573114T1 (sl) 2005-08-10 2016-08-31 Macrogenics, Inc. Identifikacija in inženiring protiteles z variantnimi fc regijami in postopki za njih uporabo
ES2534760T3 (es) 2005-08-19 2015-04-28 Wyeth Llc Anticuerpos antagonistas contra GDF-8 y sus usos en el tratamiento de ELA y otros trastornos asociados con GDF-8
JP2009510102A (ja) 2005-09-29 2009-03-12 ヴァイラル ロジック システムズ テクノロジー コーポレーション 免疫調節組成物およびその使用
CA2625773C (en) 2005-10-14 2015-05-12 Fukuoka University Inhibition of interleukin-6 (il-6) receptor promotes pancreatic islet transplantation
BRPI0617664B8 (pt) 2005-10-21 2021-05-25 Chugai Pharmaceutical Co Ltd uso de um anticorpo que reconhece a il-6 para a produção de uma composição farmacêutica para tratar o enfarte do miocárdio ou suprimir a remodelagem ventricular esquerda depois do enfarte do miocárdio
WO2007060411A1 (en) 2005-11-24 2007-05-31 Ucb Pharma S.A. Anti-tnf alpha antibodies which selectively inhibit tnf alpha signalling through the p55r
EP1820513A1 (en) 2006-02-15 2007-08-22 Trion Pharma Gmbh Destruction of tumor cells expressing low to medium levels of tumor associated target antigens by trifunctional bispecific antibodies
TW200745163A (en) 2006-02-17 2007-12-16 Syntonix Pharmaceuticals Inc Peptides that block the binding of IgG to FcRn
JP4294082B2 (ja) 2006-03-23 2009-07-08 協和発酵キリン株式会社 ヒトトロンボポエチン受容体に対するアゴニスト抗体
AU2007229698B9 (en) 2006-03-24 2012-11-08 Merck Patent Gmbh Engineered heterodimeric protein domains
DK3056568T3 (da) 2006-03-31 2021-11-01 Chugai Pharmaceutical Co Ltd Fremgangsmåder til kontrollering af antistoffers blodfarmakokinetik
ES2654040T3 (es) 2006-03-31 2018-02-12 Chugai Seiyaku Kabushiki Kaisha Método de modificación de anticuerpos para la purificación de anticuerpos biespecíficos
WO2007116962A1 (ja) 2006-04-07 2007-10-18 Osaka University 筋再生促進剤
WO2007145941A2 (en) 2006-06-06 2007-12-21 Tolerrx, Inc. Administration of anti-cd3 antibodies in the treatment of autoimmune diseases
CN101500608A (zh) * 2006-06-08 2009-08-05 中外制药株式会社 炎性疾病的预防或治疗药
JP2009541275A (ja) 2006-06-22 2009-11-26 ノボ・ノルデイスク・エー/エス 二重特異性抗体の生産
US20100034194A1 (en) 2006-10-11 2010-02-11 Siemens Communications Inc. Eliminating unreachable subscribers in voice-over-ip networks
WO2008090960A1 (ja) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. ガングリオシドgm2に特異的に結合する遺伝子組換え抗体組成物
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
EP2626372B1 (en) 2007-03-29 2018-03-21 Genmab A/S Bispecific antibodies and methods for production thereof
EP2155790A1 (en) 2007-05-31 2010-02-24 Genmab A/S Method for extending the half-life of exogenous or endogenous soluble molecules
JP6071165B2 (ja) 2007-05-31 2017-02-01 ゲンマブ エー/エス 安定なIgG4抗体
CN101802011A (zh) 2007-06-29 2010-08-11 先灵公司 Mdl-1应用
EP2031064A1 (de) 2007-08-29 2009-03-04 Boehringer Ingelheim Pharma GmbH & Co. KG Verfahren zur Steigerung von Proteintitern
AU2008298904B2 (en) 2007-09-14 2014-10-16 Amgen Inc. Homogeneous antibody populations
PE20140132A1 (es) 2007-09-26 2014-02-14 Chugai Pharmaceutical Co Ltd Anticuerpo anti-receptor de il-6
CN106519025B (zh) 2007-09-26 2021-04-23 中外制药株式会社 利用cdr的氨基酸取代来改变抗体等电点的方法
CL2008002886A1 (es) 2007-09-26 2009-12-04 Chugai Pharmaceutical Co Ltd Region constante de un anticuerpo humano; anticuerpo anti-receptor de interleucina-6 (il-6) y composicion farmaceutica que la comprende.
WO2009041734A1 (ja) 2007-09-26 2009-04-02 Kyowa Hakko Kirin Co., Ltd. ヒトトロンボポエチン受容体に対するアゴニスト抗体
AU2008305851B2 (en) 2007-09-28 2014-12-18 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
JO3076B1 (ar) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap نظم العلاج المناعي المعتمد على حالة apoe
AU2008314697B2 (en) 2007-10-22 2013-08-29 Merck Serono S.A. Single IFN-beta fused to a mutated lgG Fc fragment
BRPI0821110B8 (pt) 2007-12-05 2021-05-25 Chugai Pharmaceutical Co Ltd anticorpo de neutralização de anti-nr10/il31ra, composição farmacêutica compreendendo o referido anticorpo e uso do mesmo
AU2008338313B2 (en) 2007-12-18 2014-01-16 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
US8242247B2 (en) 2007-12-21 2012-08-14 Hoffmann-La Roche Inc. Bivalent, bispecific antibodies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
PE20091174A1 (es) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd Formulacion liquida con contenido de alta concentracion de anticuerpo
PT2235064E (pt) 2008-01-07 2016-03-01 Amgen Inc Método de preparação de moléculas heterodiméricas de fc de anticorpos utilizando efeitos de indução eletrostática
CN101952454B (zh) 2008-02-08 2014-06-04 米迪缪尼有限公司 具有减弱的Fc配体亲和性的抗IFNAR1抗体
DK2274008T3 (da) 2008-03-27 2014-05-12 Zymogenetics Inc Sammensætninger og fremgangsmåder til hæmning af PDGFRBETA og VEGF-A
KR102469853B1 (ko) 2008-04-11 2022-11-22 추가이 세이야쿠 가부시키가이샤 복수 분자의 항원에 반복 결합하는 항원 결합 분자
SG190572A1 (en) 2008-04-29 2013-06-28 Abbott Lab Dual variable domain immunoglobulins and uses thereof
EP2816059A1 (en) 2008-05-01 2014-12-24 Amgen, Inc Anti-hepcidin antibodies and methods of use
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
KR20110047255A (ko) 2008-09-26 2011-05-06 로슈 글리카트 아게 이중특이적 항-egfr/항-igf-1r 항체
AR074438A1 (es) 2008-12-02 2011-01-19 Pf Medicament Proceso para la modulacion de la actividad antagonista de un anticuerpo monoclonal
WO2010064090A1 (en) 2008-12-02 2010-06-10 Pierre Fabre Medicament Process for the modulation of the antagonistic activity of a monoclonal antibody
DE202008016028U1 (de) 2008-12-04 2010-04-15 Melitta Haushaltsprodukte Gmbh & Co. Kg Behälter zur Aufbewahrung von Gegenständen
EP2389192A4 (en) 2009-01-23 2013-01-16 Biogen Idec Inc STABILIZED FC POLYPEPTIDES WITH REDUCED EFFECTOR FUNCTION AND METHOD OF USE
EP2810652A3 (en) 2009-03-05 2015-03-11 AbbVie Inc. IL-17 binding proteins
JP2010210772A (ja) 2009-03-13 2010-09-24 Dainippon Screen Mfg Co Ltd 液晶表示装置の製造方法
JP5787446B2 (ja) 2009-03-19 2015-09-30 中外製薬株式会社 抗体定常領域改変体
WO2010107110A1 (ja) 2009-03-19 2010-09-23 中外製薬株式会社 抗体定常領域改変体
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
AU2010236787A1 (en) 2009-04-01 2011-11-10 Genentech, Inc. Anti-FcRH5 antibodies and immunoconjugates and methods of use
EP2417156B1 (en) 2009-04-07 2015-02-11 Roche Glycart AG Trivalent, bispecific antibodies
CN102459346B (zh) 2009-04-27 2016-10-26 昂考梅德药品有限公司 制造异源多聚体分子的方法
AU2010265933B2 (en) 2009-06-26 2015-05-14 Regeneron Pharmaceuticals, Inc. Readily isolated bispecific antibodies with native immunoglobulin format
WO2011037158A1 (ja) 2009-09-24 2011-03-31 中外製薬株式会社 抗体定常領域改変体
RU2606264C2 (ru) 2009-12-25 2017-01-10 Чугаи Сеияку Кабушики Каиша Способ полипептидной модификации для очистки полипептидных мультимеров
SI2519543T1 (sl) 2009-12-29 2016-08-31 Emergent Product Development Seattle, Llc Beljakovine, ki se vežejo s heterodimeri in njihova uporaba
WO2011091181A1 (en) 2010-01-20 2011-07-28 Tolerx, Inc. Immunoregulation by anti-ilt5 antibodies and ilt5-binding antibody fragments
WO2011091177A1 (en) 2010-01-20 2011-07-28 Tolerx, Inc. Anti-ilt5 antibodies and ilt5-binding antibody fragments
TWI505838B (zh) 2010-01-20 2015-11-01 Chugai Pharmaceutical Co Ltd Stabilized antibody solution containing
AU2011222012C1 (en) 2010-03-02 2015-02-26 Kyowa Kirin Co., Ltd. Modified antibody composition
US10435458B2 (en) * 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
WO2011111007A2 (en) 2010-03-11 2011-09-15 Rinat Neuroscience Corporation ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING
US9162161B2 (en) 2010-03-31 2015-10-20 Jsr Corporation Filler for affinity chromatography
US9150663B2 (en) 2010-04-20 2015-10-06 Genmab A/S Heterodimeric antibody Fc-containing proteins and methods for production thereof
ES2617777T5 (es) 2010-04-23 2022-10-13 Hoffmann La Roche Producción de proteínas heteromultiméricas
US9527926B2 (en) 2010-05-14 2016-12-27 Rinat Neuroscience Corp. Heterodimeric proteins and methods for producing and purifying them
AU2011257121A1 (en) 2010-05-27 2013-01-10 Genmab A/S Monoclonal antibodies against HER2
JP5953303B2 (ja) 2010-07-29 2016-07-20 ゼンコア インコーポレイテッド 改変された等電点を有する抗体
EP2603526A1 (en) 2010-08-13 2013-06-19 Medimmune Limited Monomeric polypeptides comprising variant fc regions and methods of use
AU2011325833C1 (en) 2010-11-05 2017-07-13 Zymeworks Bc Inc. Stable heterodimeric antibody design with mutations in the Fc domain
TR201802772T4 (tr) 2010-11-17 2018-03-21 Chugai Pharmaceutical Co Ltd Kan pıhtılaşma faktörü VIII in işlevi için alternatif işleve sahip multi-spesifik antijen bağlayıcı molekül.
AR084053A1 (es) 2010-11-30 2013-04-17 Chugai Pharmaceutical Co Ltd Agente terapeutico que induce citotoxicidad
EP2699263A4 (en) 2011-04-20 2014-12-24 Liquidating Trust METHOD FOR REDUCING AN UNWANTED IMMUNE RESPONSE TO A FOREIGN-LIKE IN A HUMAN PATIENT WITH ANTI-CD4 ANTIBODIES OR CD4-BINDING FRAGMENTS THEREOF OR CD4-BINDING MOLECULES
CN104114579B (zh) 2011-10-27 2020-01-24 健玛保 异二聚体蛋白的生成
CN109134658B (zh) 2011-10-31 2022-10-14 中外制药株式会社 控制了重链与轻链的缔合的抗原结合分子
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
GB201203051D0 (en) 2012-02-22 2012-04-04 Ucb Pharma Sa Biological products
WO2013131866A1 (en) 2012-03-08 2013-09-12 F. Hoffmann-La Roche Ag Abeta antibody formulation
DK2825559T3 (da) 2012-03-13 2019-06-03 Novimmune Sa Letisolerbare bispecifikke antistoffer med nativt immunoglobulinformat
EP2832856A4 (en) 2012-03-29 2016-01-27 Chugai Pharmaceutical Co Ltd ANTI-LAMP5 ANTIBODIES AND USE THEREOF
MX360109B (es) 2012-04-20 2018-10-23 Merus Nv Metodos y medios para la produccion de moleculas de tipo ig.
WO2014028354A1 (en) 2012-08-13 2014-02-20 Regeneron Pharmaceuticals, Inc. Anti-pcsk9 antibodies with ph-dependent binding characteristics
JP6273205B2 (ja) 2012-10-05 2018-01-31 協和発酵キリン株式会社 ヘテロダイマータンパク質組成物
CA2889951C (en) 2012-11-02 2023-04-18 Zymeworks Inc. Crystal structures of heterodimeric fc domains
CN105143257B (zh) 2013-03-15 2020-10-27 艾伯维生物医疗股份有限公司 Fc变体
BR112016006197B1 (pt) 2013-09-27 2023-04-11 Chugai Seiyaku Kabushiki Kaisha Método para produzir um anticorpo biespecífico de polipeptídeos
PE20160724A1 (es) 2013-11-04 2016-08-04 Glenmark Pharmaceuticals Sa Produccion de inmunoglobulinas heterodimericas de redireccionamiento de celulas t
TW201625299A (zh) 2014-06-20 2016-07-16 Chugai Pharmaceutical Co Ltd 用於因第viii凝血因子及/或活化的第viii凝血因子的活性降低或欠缺而發病及/或進展的疾病之預防及/或治療之醫藥組成物
JP6630036B2 (ja) 2014-09-30 2020-01-15 Jsr株式会社 標的物の精製方法、及び、ミックスモード用担体
KR20170110129A (ko) 2015-02-05 2017-10-10 추가이 세이야쿠 가부시키가이샤 이온 농도 의존적 항원 결합 도메인을 포함하는 항체, Fc 영역 개변체, IL-8에 결합하는 항체, 및 그들의 사용
EP3279216A4 (en) 2015-04-01 2019-06-19 Chugai Seiyaku Kabushiki Kaisha PROCESS FOR PREPARING POLYPEPTIDE HETERO OLIGOMER
JP6698102B2 (ja) 2015-04-17 2020-05-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 凝固因子と多重特異的抗体を用いた併用療法
JP2018123055A (ja) 2015-04-24 2018-08-09 公立大学法人奈良県立医科大学 血液凝固第viii因子(fviii)の機能を代替する多重特異性抗原結合分子を含有する、血液凝固第xi因子(fxi)異常症の予防および/または治療に用いられる医薬組成物
WO2017115773A1 (ja) 2015-12-28 2017-07-06 中外製薬株式会社 Fc領域含有ポリペプチドの精製を効率化するための方法
RU2748046C2 (ru) 2016-04-28 2021-05-19 Чугаи Сейяку Кабусики Кайся Препарат, содержащий антитело
CN110461358A (zh) 2017-03-31 2019-11-15 公立大学法人奈良县立医科大学 可用于预防和/或治疗凝血因子ⅸ异常、包含代替凝血因子ⅷ的功能的多特异性抗原结合分子的药物组合物

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992019759A1 (en) 1991-04-25 1992-11-12 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin 6 receptor
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1995015393A1 (fr) 1993-12-03 1995-06-08 Asahi Kasei Kogyo Kabushiki Kaisha Nouveau vecteur de detection d'expression
JPH09506001A (ja) * 1994-06-03 1997-06-17 ゲーエスエフ−フォルシュングスツェントルム フュア ウムヴェルト ウント ゲズントハイト ゲゼルシャフト ミット ベシュレンクテル ハフツング 異種二重特異性抗体の製造法
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
WO1998046777A1 (fr) 1997-04-11 1998-10-22 Centre National De La Recherche Scientifique (Cnrs) Preparation de recepteurs membranaires a partir de baculovirus extracellulaires
WO1999051743A1 (fr) 1998-04-03 1999-10-14 Chugai Seiyaku Kabushiki Kaisha Anticorps humanise contre le facteur tissulaire humain (tf) et procede de production d'anticorps humanises
JP2005112514A (ja) 2003-10-06 2005-04-28 Tadano Ltd 伸縮ブーム
WO2006106905A1 (ja) * 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
CARTER P.: "Bispecific human IgG by design", J. IMMUNOL. METHODS, vol. 248, no. 1-2, 2001, pages 7 - 15, XP002974199 *
CLACKSON, NATURE, vol. 352, 1991, pages 624 - 8
DALL'ACQUA WF., METHODS., vol. 36, no. 1, May 2005 (2005-05-01), pages 43 - 60
G KOHLER; C. MILSTEIN, METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
GRIFFITHS ET AL., EMBO J., vol. 13, 1994, pages 3245 - 60
K. SATO ET AL., CANCER RES., vol. 53, 1993, pages 851 - 856
KREUTZ F.T. ET AL.: "Efficient bispecific monoclonal antibody purification using gradient thiophilic affinity chromatography", J. CHROMATOGR. B. BIOMED. SCI. APPL., vol. 714, no. 2, 1998, pages 161 - 170, XP004146952 *
MANZKE O. ET AL.: "Single-step purification of bispecific monoclonal antibodies for immunotherapeutic use by hydrophobic interaction chromatography", J. IMMUNOL. METHODS, vol. 208, no. 1, 1997, pages 65 - 73, XP002306760 *
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 97
MARVIN J.S. ET AL.: "Recombinant approaches to IgG-like bispecific antibodies", ACTA PHARMACOL. SIN., vol. 26, no. 6, 2005, pages 649 - 658, XP002412036 *
MERCHANT A.M. ET AL.: "An Efficient route to human bispecific IgG", NAT. BIOTECHNOL., vol. 16, no. 7, 1998, pages 677 - 681, XP002141015 *
NIWA ET AL., GENE, vol. 108, 1991, pages 193 - 200
ONO K. ET AL., MOL. IMMUNOL., vol. 36, no. 6, April 1999 (1999-04-01), pages 387 - 395
ORITA ET AL., BLOOD, vol. 105, 2005, pages 562 - 566
TARDITI L. ET AL.: "Selective high-performance liquid chromatographic purification of bispecific monoclonal antibodies", J. CHROMATOGR., vol. 599, no. 1-2, 1992, pages 13 - 20, XP002981686 *
VAUGHAN ET AL., NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 309 - 14
WATERHOUSES ET AL., NUCLEIC ACIDS RES., vol. 21, 1993, pages 2265 - 6

Cited By (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597911B2 (en) 2003-06-11 2013-12-03 Chugai Seiyaku Kabushiki Kaisha Process for producing antibodies
US8062635B2 (en) 2003-10-10 2011-11-22 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody substituting for functional proteins
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US11168344B2 (en) 2005-03-31 2021-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US10934344B2 (en) 2006-03-31 2021-03-02 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
EP2158315B1 (en) 2007-06-25 2016-03-23 ESBATech, an Alcon Biomedical Research Unit LLC Methods of modifying antibodies, and modified antibodies with improved functional properties
US11248053B2 (en) 2007-09-26 2022-02-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
EP4339294A2 (en) 2007-09-26 2024-03-20 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
US11332533B2 (en) 2007-09-26 2022-05-17 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
EP3689912A1 (en) 2007-09-26 2020-08-05 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
EP2202245B1 (en) 2007-09-26 2016-08-24 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
EP3127921A1 (en) 2007-09-26 2017-02-08 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substition in cdr
EP2196541A4 (en) * 2007-09-28 2010-11-03 Chugai Pharmaceutical Co Ltd ANTI-GLYPICAN-3 ANTIBODIES WITH IMPROVED KINETICS IN PLASMA
US8497355B2 (en) 2007-09-28 2013-07-30 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
EP2196541A1 (en) * 2007-09-28 2010-06-16 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
US9399680B2 (en) 2007-12-05 2016-07-26 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding anti-NR10 antibodies
JP2016093175A (ja) * 2008-01-07 2016-05-26 アムジェン インコーポレイテッド 静電的ステアリング(electrostaticsteering)効果を用いた抗体Fcヘテロ二量体分子を作製するための方法
US11371039B2 (en) 2008-04-11 2022-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US10472623B2 (en) 2008-04-11 2019-11-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US9890377B2 (en) 2008-04-11 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US10662245B2 (en) 2008-09-26 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Methods of reducing IL-6 activity for disease treatment
US10253091B2 (en) 2009-03-19 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
WO2010107109A1 (ja) * 2009-03-19 2010-09-23 中外製薬株式会社 抗体定常領域改変体
US10066018B2 (en) 2009-03-19 2018-09-04 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US9340615B2 (en) 2009-05-15 2016-05-17 Chugai Seiyaku Kabushiki Kaisha Anti-AXL antibody
JP2021004261A (ja) * 2009-06-26 2021-01-14 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. 天然の免疫グロブリン形式を有する容易に単離される二重特異性抗体
JP7153048B2 (ja) 2009-06-26 2022-10-13 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 天然の免疫グロブリン形式を有する容易に単離される二重特異性抗体
JP2018035193A (ja) * 2009-06-26 2018-03-08 リジェネロン・ファーマシューティカルズ・インコーポレ 天然の免疫グロブリン形式を有する容易に単離される二重特異性抗体
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
WO2011078332A1 (ja) * 2009-12-25 2011-06-30 中外製薬株式会社 ポリペプチド多量体を精製するためのポリペプチドの改変方法
KR20200038319A (ko) 2009-12-25 2020-04-10 추가이 세이야쿠 가부시키가이샤 폴리펩티드 다량체를 정제하기 위한 폴리펩티드의 개변방법
KR20180049249A (ko) 2009-12-25 2018-05-10 추가이 세이야쿠 가부시키가이샤 폴리펩티드 다량체를 정제하기 위한 폴리펩티드의 개변방법
WO2011092989A1 (ja) 2010-01-29 2011-08-04 東レ株式会社 ポリ乳酸系樹脂シート
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
EP3318633A1 (en) 2010-11-17 2018-05-09 Chugai Seiyaku Kabushiki Kaisha Multi-specific antigen-binding molecule having alternative function to function of blood coagulation factor viii
WO2012067176A1 (ja) 2010-11-17 2012-05-24 中外製薬株式会社 血液凝固第viii因子の機能を代替する機能を有する多重特異性抗原結合分子
US10450381B2 (en) 2010-11-17 2019-10-22 Chugai Seiyaku Kabushiki Kaisha Methods of treatment that include the administration of bispecific antibodies
US9334331B2 (en) 2010-11-17 2016-05-10 Chugai Seiyaku Kabushiki Kaisha Bispecific antibodies
US11066483B2 (en) 2010-11-30 2021-07-20 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US11718678B2 (en) 2011-02-25 2023-08-08 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US9890218B2 (en) 2011-06-30 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
EP4011913A1 (en) 2011-06-30 2022-06-15 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
WO2013002362A1 (ja) 2011-06-30 2013-01-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
JP7022162B2 (ja) 2011-10-10 2022-02-17 ゼンコア インコーポレイテッド 抗体を精製する方法
JP2020099337A (ja) * 2011-10-10 2020-07-02 ゼンコア インコーポレイテッド 抗体を精製する方法
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
JP2018088938A (ja) * 2011-10-10 2018-06-14 ゼンコア インコーポレイテッド 抗体を精製する方法
JP2015500002A (ja) * 2011-10-10 2015-01-05 ゼンコア インコーポレイテッド 抗体を精製する方法
JP2017212981A (ja) * 2011-10-31 2017-12-07 中外製薬株式会社 重鎖と軽鎖の会合が制御された抗原結合分子
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
JPWO2013065708A1 (ja) * 2011-10-31 2015-04-02 中外製薬株式会社 重鎖と軽鎖の会合が制御された抗原結合分子
WO2013065708A1 (ja) 2011-10-31 2013-05-10 中外製薬株式会社 重鎖と軽鎖の会合が制御された抗原結合分子
US11820793B2 (en) 2011-11-30 2023-11-21 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
US20150056182A1 (en) * 2011-11-30 2015-02-26 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
WO2013187495A1 (ja) 2012-06-14 2013-12-19 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
EP4310191A2 (en) 2012-06-14 2024-01-24 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified fc region
WO2014030728A1 (ja) 2012-08-24 2014-02-27 中外製薬株式会社 FcγRIIb特異的Fc領域改変体
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
EP3721900A1 (en) 2012-08-24 2020-10-14 Chugai Seiyaku Kabushiki Kaisha Fcgammariib-specific fc region variant
JPWO2014104165A1 (ja) * 2012-12-27 2017-01-12 中外製薬株式会社 ヘテロ二量化ポリペプチド
WO2014104165A1 (ja) 2012-12-27 2014-07-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
KR20150097786A (ko) * 2012-12-27 2015-08-26 추가이 세이야쿠 가부시키가이샤 헤테로이량화 폴리펩티드
KR102249779B1 (ko) 2012-12-27 2021-05-07 추가이 세이야쿠 가부시키가이샤 헤테로이량화 폴리펩티드
JP2018188445A (ja) * 2012-12-27 2018-11-29 中外製薬株式会社 ヘテロ二量化ポリペプチド
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
JP2020018318A (ja) * 2013-01-14 2020-02-06 ゼンコア インコーポレイテッド 新規異種二量体タンパク質
JP7025388B2 (ja) 2013-01-14 2022-02-24 ゼンコア インコーポレイテッド 新規異種二量体タンパク質
JP2020018311A (ja) * 2013-03-15 2020-02-06 ゼンコア インコーポレイテッド ヘテロ二量体タンパク質
JP7012052B2 (ja) 2013-03-15 2022-02-10 ゼンコア インコーポレイテッド ヘテロ二量体タンパク質
JP2016514463A (ja) * 2013-03-15 2016-05-23 ゼンコア インコーポレイテッド ヘテロ二量体タンパク質
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
WO2015046467A1 (ja) 2013-09-27 2015-04-02 中外製薬株式会社 ポリペプチド異種多量体の製造方法
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
WO2015046554A1 (ja) 2013-09-30 2015-04-02 中外製薬株式会社 改変されたヘルパーファージを用いて抗原結合分子を作製する方法
EP3940065A1 (en) 2013-09-30 2022-01-19 Chugai Seiyaku Kabushiki Kaisha Method for producing antigen-binding molecule using modified helper phage
JPWO2015046554A1 (ja) * 2013-09-30 2017-03-09 中外製薬株式会社 改変されたヘルパーファージを用いて抗原結合分子を作製する方法
WO2015068847A1 (ja) 2013-11-11 2015-05-14 中外製薬株式会社 改変された抗体可変領域を含む抗原結合分子
US11214623B2 (en) 2014-09-26 2022-01-04 Chugai Seiyaku Kabushiki Kaisha Antibody capable of neutralizing substance having activity alternative to function of coagulation factor VIII (FVIII)
US11150254B2 (en) 2014-09-26 2021-10-19 Chugai Seiyaku Kabushiki Kaisha Method for measuring reactivity of FVIII
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US10023630B2 (en) 2014-12-19 2018-07-17 Chugai Seiyaku Kabushiki Kaisha Methods of neutralizing C5 with anti-C5 antibodies
US10000560B2 (en) 2014-12-19 2018-06-19 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US11597760B2 (en) 2014-12-19 2023-03-07 Chugai Seiyaku Kabushiki Kaisha Method of detecting the presence of complement C5
US9765135B2 (en) 2014-12-19 2017-09-19 Chugai Seiyaku Kabushiki Kaisha Anti-C5 antibodies
US11454633B2 (en) 2014-12-19 2022-09-27 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US10738111B2 (en) 2014-12-19 2020-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US10385122B2 (en) 2014-12-19 2019-08-20 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding anti-C5 antibodies
US11180548B2 (en) 2015-02-05 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Methods of neutralizing IL-8 biological activity
US9969800B2 (en) 2015-02-05 2018-05-15 Chugai Seiyaku Kabushiki Kaisha IL-8 antibodies
US10519229B2 (en) 2015-02-05 2019-12-31 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding IL-8 antibodies
US10774148B2 (en) 2015-02-27 2020-09-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
WO2016164708A1 (en) 2015-04-10 2016-10-13 Adimab, Llc Methods for purifying heterodimeric multispecific antibodies from parental homodimeric antibody species
US10787500B2 (en) 2015-04-10 2020-09-29 Adimab, Llc Methods for purifying heterodimeric multispecific antibodies from parental homodimeric antibody species
US11261245B2 (en) 2015-04-29 2022-03-01 Institute For Research In Biomedicine Ultra-potent neutralization of GM-CSF by multispecific antibodies and uses thereof
JP2018520987A (ja) * 2015-04-29 2018-08-02 インスティテュート フォー リサーチ イン バイオメディシン 多重特異性抗体によるサイトカインの非常に強力な中和およびその利用
WO2017086419A1 (ja) 2015-11-18 2017-05-26 中外製薬株式会社 液性免疫応答の増強方法
WO2017086367A1 (ja) 2015-11-18 2017-05-26 中外製薬株式会社 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
WO2017159287A1 (ja) 2016-03-14 2017-09-21 中外製薬株式会社 癌の治療に用いるための細胞傷害誘導治療剤
US11780912B2 (en) 2016-08-05 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Composition for prophylaxis or treatment of IL-8 related diseases
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
US11352438B2 (en) 2016-09-06 2022-06-07 Chugai Seiyaku Kabushiki Kaisha Methods of using a bispecific antibody that recognizes coagulation factor IX and/or activated coagulation factor IX and coagulation factor X and/or activated coagulation factor X
US11780908B2 (en) 2016-09-16 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant FC regions, and methods of use
US10844113B2 (en) 2016-09-16 2020-11-24 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
JP7268011B2 (ja) 2017-06-05 2023-05-02 ヤンセン バイオテツク,インコーポレーテツド 二重特異性抗体製造のための表面電荷を工学的に操作する方法
JP2020522573A (ja) * 2017-06-05 2020-07-30 ヤンセン バイオテツク,インコーポレーテツド 二重特異性抗体製造のための表面電荷を工学的に操作する方法
US10759870B2 (en) 2017-09-29 2020-09-01 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecules having blood coagulation factor VIII (FVIII) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ingredient
WO2019065795A1 (ja) 2017-09-29 2019-04-04 中外製薬株式会社 血液凝固第viii因子(fviii)補因子機能代替活性を有する多重特異性抗原結合分子および当該分子を有効成分として含有する薬学的製剤
WO2019077092A1 (en) 2017-10-20 2019-04-25 F. Hoffmann-La Roche Ag METHOD FOR GENERATING MULTISPECIFIC ANTIBODIES FROM MONOSPECIFIC ANTIBODIES
WO2019086362A1 (en) 2017-10-30 2019-05-09 F. Hoffmann-La Roche Ag Method for in vivo generation of multispecific antibodies from monospecific antibodies
WO2019088143A1 (ja) * 2017-11-01 2019-05-09 中外製薬株式会社 生物活性が低下した抗体バリアントおよびアイソフォーム
JPWO2019088143A1 (ja) * 2017-11-01 2020-11-12 中外製薬株式会社 生物活性が低下した抗体バリアントおよびアイソフォーム
WO2019131988A1 (en) 2017-12-28 2019-07-04 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use
WO2019232484A1 (en) 2018-06-01 2019-12-05 Compugen Ltd Anti-pvrig/anti-tigit bispecific antibodies and methods of use
WO2019244973A1 (ja) 2018-06-20 2019-12-26 中外製薬株式会社 標的細胞に対する免疫反応を活性化する方法およびその組成物
CN113795514A (zh) * 2019-05-09 2021-12-14 豪夫迈·罗氏有限公司 制备抗体的方法
WO2020246563A1 (ja) 2019-06-05 2020-12-10 中外製薬株式会社 抗体切断部位結合分子
WO2021006328A1 (en) 2019-07-10 2021-01-14 Chugai Seiyaku Kabushiki Kaisha Claudin-6 binding molecules and uses thereof
WO2021131021A1 (ja) 2019-12-27 2021-07-01 中外製薬株式会社 抗ctla-4抗体およびその使用
WO2021201087A1 (en) 2020-03-31 2021-10-07 Chugai Seiyaku Kabushiki Kaisha Method for producing multispecific antigen-binding molecules
CN115380210A (zh) * 2020-04-02 2022-11-22 中外制药株式会社 含多特异性抗原结合分子的组合物中的杂质分子的分析方法
WO2021201202A1 (ja) * 2020-04-02 2021-10-07 中外製薬株式会社 多重特異性抗原結合分子を含む組成物における不純物分子の分析方法
JP2020162622A (ja) * 2020-06-25 2020-10-08 インスティテュート フォー リサーチ イン バイオメディシン 多重特異性抗体によるサイトカインの非常に強力な中和およびその利用
WO2022025220A1 (ja) 2020-07-31 2022-02-03 中外製薬株式会社 キメラ受容体を発現する細胞を含む医薬組成物
WO2022045276A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
WO2022270611A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体
WO2022270612A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体の使用

Also Published As

Publication number Publication date
JP6055271B2 (ja) 2016-12-27
ES2654040T3 (es) 2018-02-12
HK1217217A1 (zh) 2016-12-30
EP4218801A2 (en) 2023-08-02
US9670269B2 (en) 2017-06-06
EP3345616A1 (en) 2018-07-11
DK2009101T3 (en) 2018-01-15
JPWO2007114325A1 (ja) 2009-08-20
US20170283483A1 (en) 2017-10-05
US20090263392A1 (en) 2009-10-22
CN105177091A (zh) 2015-12-23
EP2009101B1 (en) 2017-10-25
JP6219877B2 (ja) 2017-10-25
JP2015146822A (ja) 2015-08-20
JP2013078313A (ja) 2013-05-02
JP5144499B2 (ja) 2013-02-13
EP2009101A1 (en) 2008-12-31
EP2009101A4 (en) 2009-10-21
US10934344B2 (en) 2021-03-02
EP4218801A3 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
JP6219877B2 (ja) 二重特異性抗体を精製するための抗体改変方法
JP6585106B2 (ja) 抗体の血中動態を制御する方法
KR102103093B1 (ko) 폴리펩티드 다량체를 정제하기 위한 폴리펩티드의 개변방법
WO2006106905A1 (ja) 会合制御によるポリペプチド製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020126.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508649

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8631/DELNP/2008

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2007740494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007740494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12295075

Country of ref document: US