JPWO2015122415A1 - エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法 - Google Patents

エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法 Download PDF

Info

Publication number
JPWO2015122415A1
JPWO2015122415A1 JP2015562833A JP2015562833A JPWO2015122415A1 JP WO2015122415 A1 JPWO2015122415 A1 JP WO2015122415A1 JP 2015562833 A JP2015562833 A JP 2015562833A JP 2015562833 A JP2015562833 A JP 2015562833A JP WO2015122415 A1 JPWO2015122415 A1 JP WO2015122415A1
Authority
JP
Japan
Prior art keywords
group
olefin
ethylene
conjugated polyene
polyene copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015562833A
Other languages
English (en)
Other versions
JP6774184B2 (ja
Inventor
浩司 遠藤
浩司 遠藤
真弓 檜原
真弓 檜原
松浦 貞彦
貞彦 松浦
悠介 溝渕
悠介 溝渕
山村 雄一
雄一 山村
裕司 野口
裕司 野口
雄二 石井
雄二 石井
達弥 坂井
達弥 坂井
啓介 宍戸
啓介 宍戸
市野 光太郎
光太郎 市野
清秀 猪股
清秀 猪股
文人 竹内
文人 竹内
井出 健太
健太 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JPWO2015122415A1 publication Critical patent/JPWO2015122415A1/ja
Application granted granted Critical
Publication of JP6774184B2 publication Critical patent/JP6774184B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Gasket Seals (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン・α−オレフィン・非共役ポリエン共重合体を得ることを目的とし、本発明のエチレン系重合体は、エチレンA由来の単位、炭素数4〜20のα−オレフィンB由来の単位、非共役ポリエンC由来の単位を含み、(1)〜(4)を満たすエチレン・α—オレフィン・非共役ポリエン共重合体である。(1)Aと、Bとのモル比が、40/60〜90/10であり、(2)C由来の単位の含有量が、0.1〜6.0モル%であり、(3)ML(1+4)125℃が、5〜100であり、(4)B値が1.20以上である。

Description

本発明は、エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法に関する。
エチレン・プロピレン共重合体ゴム(EPR)およびエチレン・プロピレン・ジエン共重合体ゴム(EPDM)などのエチレン・α−オレフィンゴムは、その分子構造の主鎖に不飽和結合を有しないため、汎用の共役ジエンゴムと比べ、耐熱老化性、耐候性、耐オゾン性に優れ、自動車用部品、電線用材料、電気・電子部品、建築土木資材、工業材部品等の用途に広く用いられている。
従来EPDM等のエチレン/α−オレフィン/非共役ポリエン共重合体ゴムは、一般的にチタン系触媒あるいはバナジウム系触媒と有機アルミニウム化合物の組合せからなる触媒系(いわゆるチーグラー・ナッタ触媒系)を用いて製造されてきた。この触媒系の最大の欠点はその生産性であり、重合活性が低く触媒寿命が短いが故に、0から50℃付近の低い温度での重合を余儀なくされている。このため、重合溶液の高い粘度が障害となり、重合器内のオレフィン共重合体の濃度を充分に上げることができず、生産性が著しく低いという不具合を生じている。さらには、重合活性が低いために重合終了時に共重合体中に含まれる触媒残渣の量が多く、製品要求性能を満たさない場合が多々ある。従ってこれを除去するための脱灰処理プロセスが必要となり、生産コストの面で著しく不利となっている。
一方で、配位子にビスシクロペンタジエニル基やビスインデニル基を有する架橋メタロセン化合物を含む重合触媒によるエチレン/α−オレフィン/非共役ポリエン共重合が開示されている[特開2005−344101号公報、特開平9−151205号公報、特表2000−507635号公報]。この方法では、前述のチーグラー・ナッタ触媒系に比べて得られるエチレン/α−オレフィン/非共役ポリエン共重合体の分子量が高くなるものの、高温重合を実施するには未だその分子量が不充分であった。一般に高温溶液重合においては重合溶液の粘度が低下するため、重合器内のオレフィン共重合体の濃度を高く保つことが可能となり、重合器当りの生産性が向上する。しかしながら一方で、重合温度の上昇に伴い生成するオレフィン共重合体の分子量は低下することが当該業者にとって周知である。従って、生産性の高い高温重合においても所望の高分子量のオレフィン共重合体を製造するためには、高分子量のオレフィン共重合体を生成する触媒が必要となっている。
また、通常、EPDM等のエチレン/α−オレフィン/非共役ポリエン共重合体ゴムの製品は、その使用上の要求性能により、残存する重合溶媒や未反応のオレフィンモノマーの含有量が制限されている。製造設備においては、重合後工程で加熱や減圧等の操作を行うことによりこれらの不純物を取り除くことが一般的に行われている。例えばEPDMの製造においては、沸点が高い未反応の非共役ポリエンの除去に多大な負荷を要するため、重合反応器から排出された重合溶液中で、残存する未反応非共役ポリエンの量がEPDMに比べて少ないほど生産性の向上に繋がる。すなわち、ある一定時間である一定量のEPDMを連続的に製造する場合において、該未反応非共役ポリエンの量が少ないほど加熱や減圧操作の負荷が軽減され、製造コストの低減が可能となる。また逆に、加熱や減圧操作の負荷をある一定に保った場合、該未反応非共役ポリエンの量が少ないほど製造設備の一定時間当りの生産量が増えるという効果がある。
こういった利点を得る目的で重合溶液中の未反応非共役ポリエンの量を低減する方法として、非共役ポリエンの共重合性能が高い重合触媒を使用する方法が挙げられる。このような重合触媒を使用することにより、ある所望の非共役ポリエン含有量を有するEPDMを製造する際、添加する非共役ポリエンの量を低減することが可能となり、結果として残存する未反応非共役ポリエンの量も低減されるという効果が得られる。
上記の通り、高温重合による高い生産性を実現するために高分子量のエチレン/α−オレフィン/非共役ポリエン共重合体を生成し、重合後工程での負荷軽減による生産性向上のために非共役ポリエン共重合性能が高い重合触媒が求められている。産業上ではとりわけ、これらの性能と、脱灰処理プロセスが不要となる高い重合活性とを同時に高いレベルでバランス良く実現する重合触媒が望まれている。
本出願人は、特許文献1(国際公開第2009/081792号)および特許文献2(国際公開第2009/081794号)において、特定の架橋シクロペンタジエニル−フルオレニルメタロセン化合物を含む触媒を用いたエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法を提案している。特許文献1の製造方法によれば、良好な重合活性および良好な非共役ポリエン共重合能で、高い分子量を有するエチレン/α−オレフィン/非共役ポリエン共重合体を製造することができ、特許文献2の製造方法によれば、良好な重合活性および良好な非共役ポリエン共重合能で、高い分子量を有するエチレン/α−オレフィン/非共役ポリエン共重合体を製造することができ、しかも重合温度をより高く設定することができる。
また、近年、エチレン・α−オレフィンゴムの優れた耐熱性、耐候性および柔軟性を活かしたニーズとして、透明架橋シート向けの素材開発、製品開発が盛んに行われている。
EPDMの用途としては例えば、EPDMを用いてシール用ゴム成形体を得ることが知られている(例えば、特許文献3参照)。シール用ゴム成形体であるシールパッキンは、自動車、産業機械、電子部品等様々な用途で用いられていが、自動車や産業機械等は寒冷地でも使用されるため、シールパッキンには、常温での機械強度に加えて、低温特性も要求される。
EPDMの用途としては例えば、エチレン・プロピレン・ジエン共重合体ゴム(EPDM)を、ホース形成用組成物のゴム成分として使用することが知られている(特許文献4)。ホースが使用される用途、例えば自動車等は、寒冷地での使用も想定されるため、常温での機械的物性(引張強度等)に加えて、低温でのゴム特性(ゴム弾性等)も要求される。
エチレン・プロピレン・ジエン共重合体ゴム(EPDM)の低温柔軟性、耐熱老化性を改良する方法として、α‐オレフィンとして、炭素数4〜10のα‐オレフィンを用いて、エチレンとα‐オレフィンとのランダム性に優れるエチレン・α−オレフィン・非共役ポリエン共重合体が提案されている(特許文献5:特開平9−71617号公報)。特許文献5の実施例4には、ランダム性の良否を示す指標である下記式で示されるB値が、最大で、1.12のエチレン・1−ブテン・ENB共重合体が得られたことが記載されている。
B値=[EX]/(2[E]×[X])・・・(i)
(式(i)中、[E]および[X]は、エチレン・α―オレフィン・非共役ポリエン共重合体中のエチレンおよび炭素数4〜20のα−オレフィンのモル分率をそれぞれ表し、[EX]は、エチレン・炭素数4〜20のα−オレフィンのダイアッド連鎖分率を表す。)
一方、特許文献2(国際公開パンフレットWO2009/081794)の実施例には、特定の遷移金属化合物(架橋メタロセン化合物)を用いて、ランダム性を示すB値(但し、特許文献5に記載のB値とは、幾分定義が異なる)が、1.11〜1.24のエチレン・プロピレン・ENB共重合体を得たことが開示されている。なお、特許文献2には、当該エチレン・プロピレン・ENB共重合体の機械的物性は記載されていない。
〔B値=(c+d)/[2×a×(e+f)] ‥[IV]
(式[IV]中、a、eおよびfはそれぞれ前記エチレン/α−オレフィン/非共役ポリエン共重合体中のエチレンモル分率、α−オレフィンモル分率および非共役ポリエンモル分率であり、cはエチレン−α−オレフィンダイアッドモル分率、dはエチレン−非共役ポリエンダイアッドモル分率である。)
EPDMの架橋発泡体は、自動車や電気製品等の遮音材として使用されている。例えば、EPDM、またはEPDMとEPRとの混合物を、遮音材形成用組成物のゴム成分として使用することが知られている(特許文献6〜8)。
ここで、EPDMを含む組成物を架橋および発泡させて遮音材用途の架橋発泡体を製造する際、発泡性の良好なEPDMが好ましく用いられる。しかしながら、従来用いられてきた発泡性に優れたEPDMはロール加工性が良くなく、また前記EPDMから形成された成形体は遮音性能が充分ではないという問題がある。
そこで従来は、EPDMにブチルゴムを配合して、ロール加工性を改良している。しかしながら、EPDMおよびブチルゴムはそれぞれ架橋の際の挙動が異なる。このため、EPDMおよびブチルゴムを含む組成物は、架橋および発泡の制御が難しく、得られる成形体の比重が大きくなるなどの問題がある。
国際公開第2009/081792号 国際公開第2009/081794号 国際公開第2000/59962号 特開平9−67485号公報 特開平9−71617号公報 特開2001−2866号公報 特開2001−192488号公報 特開2005−75964号公報
しかしながら、特許文献1、2に開示された製造方法等の従来のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法には、高温重合時に生成するエチレン/α−オレフィン/非共役ポリエン共重合体の分子量を高めること、非共役ポリエン共重合性能を高めること、および高い重合活性でエチレン/α−オレフィン/非共役ポリエン共重合体を製造することの3つを高いレベルで同時に実現する点でさらなる改善の余地があった。
このような従来技術における問題点に鑑みて本発明1が解決しようとする課題は、以下の課題(1)〜(3)を、高いレベルでバランス良く解決することにある。
まず課題(1)は、高分子量のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法を提供することである。上述のように、高温溶液重合は生産性の向上や生産コストの低減といった利点を有するが、同時に生成するオレフィン重合体の分子量の低下を招くため、従来の触媒を使用した製造方法では重合温度を充分に高くすることが困難であった。この不具合を解消して高温溶液重合の利点を享受するために、高温重合においても高分子量のエチレン/α−オレフィン/非共役ポリエン共重合体を製造可能な方法の出現が望まれる。
次に課題(2)は、高い非共役ポリエン共重合性能でエチレン/α−オレフィン/非共役ポリエン共重合体を製造する方法を提供することである。このような製造方法によって、ある所望の非共役ポリエン含有量のオレフィン共重合体を製造する際、添加する非共役ポリエンの量を低減することが可能となり、これにより重合溶液中の未反応非共役ポリエンの残存量が減るため、これを重合後工程で除去する際の負荷が軽減されるという利点が得られる。
次に課題(3)は、高い重合活性でエチレン/α−オレフィン/非共役ポリエン共重合体を製造する方法を提供することである。重合活性が高いことにより触媒コストが低減されるのはもちろんのこと、エチレン/α−オレフィン/非共役ポリエン共重合体中の触媒残渣が低減されるため、脱灰処理プロセスが不要となる利点が得られる。
つまり本発明1が解決しようとする課題は、上記の課題(1)、(2)および(3)を同時に高いレベルでバランス良く実現可能なエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法、すなわち高温重合時に生成する共重合体の分子量を高めること、非共役ポリエン共重合性能を高めること、および高い重合活性で共重合体を製造することの3つを同時に高いレベルでバランス良く実施可能なエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法を提供することである。このような方法により、産業上有意義な生産効率および生産コストで、加工材料として優れた性能を有するエチレン/α−オレフィン/非共役ポリエン共重合体を市場に提供することが可能となる。
本発明2の課題は、既に提案されているエチレン・α−オレフィン・非共役ポリエン共重合体に比べ、更に、低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン・α−オレフィン・非共役ポリエン共重合体を得ることにある。
従来知られている、EPDM製のシールパッキンは低温特性が充分ではなく、シリコーンゴム製のシールパッキンは、低温特性には優れるが、常温での強度が充分ではなく、切れ、裂けが起こりやすく、シール性が損なわれるといった問題があった。
本発明2−1の課題は、低温特性および機械強度(強度・伸び)を両立したシールパッキンを形成することが可能なシールパッキン用組成物および、該組成物から形成されたシールパッキンを提供することにある。
本発明2−2の課題は、エチレン・α−オレフィン・非共役ポリエン共重合体を含む組成物の未架橋時の加工性と、前記組成物を架橋して得られる成形体の遮音性能および比重等の物性とを両立することにある。
寒冷地でもホースが使用される可能性を考慮すると、低温特性および機械的物性を両立したホースが望まれる。例えば、エチレン含量が低く抑えられたEPDMを含むホース形成用組成物を用いると、得られるホースの低温特性は改善するが、引張強度が低下することが知られている。
本発明2−3の課題は、低温特性および機械的物性に優れたホースを形成することが可能なホース形成用組成物と、前記組成物から形成されたホースとを提供することにある。
本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、既に提案されているエチレン・α−オレフィン・非共役ポリエン共重合体に比べ、更に、低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れた特定を有するエチレン・α−オレフィン・非共役ポリエン共重合体を見出し、本発明2を完成するに至った。
本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、既に提案されているエチレン・α−オレフィン・非共役ポリエン共重合体に比べ、低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れた特定を有するエチレン・α−オレフィン・非共役ポリエン共重合体を用いることにより上記課題を解決できることを見出し、本発明2−1を完成するに至った。
本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、B値が異なる特定のエチレン・α−オレフィン・非共役ポリエン共重合体を含む組成物が、上記課題を解決できることを見出し、本発明2−2を完成するに至った。
本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、既に提案されているエチレン・α−オレフィン・非共役ポリエン共重合体に比べ、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン・α−オレフィン・非共役ポリエン共重合体を用いることにより上記課題を解決できることを見出し、本発明2−3を完成するに至った。
すなわち本発明2は、例えば以下の[1]〜[7]に関し、本発明2−1は、例えば以下の[8]〜[10]に関し、本発明2−2は、例えば以下の[11]〜[15]に関し、本発明2−3は、例えば以下の[16]〜[18]に関する。
また、上記の課題を解決するための本発明1は、特定のフルオレン構造を有する架橋メタロセン化合物を含むオレフィン重合用触媒による、エチレン/α−オレフィン/非共役ポリエン共重合体の製造方法である。
すなわち、本発明1は、例えば以下の[19]〜[34]に関する。
[1] エチレン[A]に由来する構造単位、炭素数4〜20のα−オレフィン[B]に由来する構造単位、および非共役ポリエン[C]に由来する構造単位を含み、下記(1)〜(4)を満たすエチレン・α―オレフィン・非共役ポリエン共重合体。
(1)エチレン[A]に由来する構造単位と、α−オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60〜90/10であり、
(2)非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1〜6.0モル%であり、
(3)125℃におけるムーニー粘度ML(1+4)125℃が、5〜100であり、
(4)下記式(i)で表されるB値が1.20以上である。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
[ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4〜20のα−オレフィン[B]、および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]−炭素数4〜20のα−オレフィン[B]ダイアッド連鎖分率を示す。]
[2] 炭素数4〜20のα−オレフィン[B]が、1−ブテンであることを特徴とする[1]に記載のエチレン・α―オレフィン・非共役ポリエン共重合体。
[3] (a)下記一般式[VII]で表される遷移金属化合物と、
(b)(b−1)有機金属化合物、
(b−2)有機アルミニウムオキシ化合物、および
(b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物と
を含むオレフィン重合触媒の存在下において、エチレン、炭素数4〜20のα-オレフィンおよび非共役ポリエンを共重合することにより得られる、[1]または[2]に記載のエチレン・α−オレフィン・非共役ポリエン共重合体。
Figure 2015122415
(式[VII]において、
Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であり、
Qはハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
jは1〜4の整数である。)
[4] [1]〜[3]のいずれか一項に記載のエチレン・α―オレフィン・非共役ポリエン共重合体を、架橋剤を用いて架橋させてなることを特徴とする架橋されたエチレン・α−オレフィン・非共役ポリエン共重合体。
[5] [1]〜[3]のいずれか一項に記載のエチレン・α―オレフィン・非共役ポリエン共重合体、または[4]に記載の架橋されたエチレン・α−オレフィン・非共役ポリエン共重合体を用いて形成された成形体。
[6] [1]〜[3]のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体を含む組成物。
[7] (a)下記一般式[VII]で表される遷移金属化合物と、
(b)(b−1)有機金属化合物、
(b−2)有機アルミニウムオキシ化合物、および
(b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物
から選ばれる少なくとも1種の化合物とを含むオレフィン重合触媒の存在下において、エチレンと炭素数4〜20のα-オレフィンと非共役ポリエンと共重合することを特徴とする、[1]〜[3]のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体を製造する方法:
Figure 2015122415
(式[VII]において、
Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であり、
Qはハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
jは1〜4の整数である。)
[8] [1]〜[3]のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体を含有するシールパッキン用組成物。
[9] [8]に記載のシールパッキン用組成物を用いて形成されたシールパッキン。
[10] 自動車用シール部品、機械用シール部品、電子・電気部品用シール部品、建築用ガスケット、または、土木建材用シール部品である、[9]に記載のシールパッキン。
[11] エチレン・α−オレフィン・非共役ポリエン共重合体(1)と、
エチレン[A']に由来する構造単位、炭素数3〜20のα−オレフィン[B']に由来する構造単位、および非共役ポリエン[C']に由来する構造単位を含み、下記(I)を満たすエチレン・α−オレフィン・非共役ポリエン共重合体(2)とを含有し、
前記エチレン・α−オレフィン・非共役ポリエン共重合体(1)が、[1]〜[3]のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体である組成物。
(I)下記式(i)で表されるB値が、1.20未満である。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
[式(i)中、[E]、[X]および[Y]は、それぞれ、エチレン[A']、炭素数3〜20のα−オレフィン[B']および非共役ポリエン[C']のモル分率を示し、[EX]はエチレン[A']−炭素数3〜20のα−オレフィン[B']ダイアッド連鎖分率を示す。]
[12] エチレン・α−オレフィン・非共役ポリエン共重合体(1)と、エチレン・α−オレフィン・非共役ポリエン共重合体(2)との質量比[(1)/(2)]が、10/90〜50/50である、[11]に記載の組成物。
[13] [11]または[12]に記載の組成物を架橋して得られる架橋体。
[14] [11]または[12]に記載の組成物を架橋および発泡して得られる架橋発泡体。
[15] [11]または[12]に記載の組成物から得られる遮音材。
[16] [1]〜[3]のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体を含有するホース形成用組成物。
[17] [16]に記載のホース形成用組成物を架橋処理して形成された層を有するホース。
[18] 自動車用、モーターバイク用、工業機械用、建設機械用または農業機械用のいずれかの用途に用いられる、[17]に記載のホース。
[19] (a)下記一般式[I]で表される遷移金属化合物、ならびに
(b)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物および(b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物
を含むオレフィン重合触媒の存在下で、エチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合することを特徴とするエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
Figure 2015122415
(式[I]において、Yは炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、
Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
1、R2、R3、R4、R5およびR6は水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、
1からR6までの隣接した置換基は互いに結合して環を形成していてもよく、
Qはハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
nは1〜4の整数であり、
jは1〜4の整数である。)
[20] 前記一般式[I]におけるnが1であることを特徴とする、[19]に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[21] 前記一般式[I]におけるR1、R2、R3およびR4が全て水素原子であることを特徴とする、[19]または[20]に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[22] 前記一般式[I]におけるYが炭素原子であることを特徴とする、[19]〜[21]のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[23] 前記一般式[I]におけるR5およびR6がアリール基および置換アリール基から選ばれる基であることを特徴とする、[19]〜[22]のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[24] 前記一般式[I]におけるR5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であることを特徴とする、[23]に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[25] 前記電子供与性置換基が、窒素含有基および酸素含有基から選ばれる基であることを特徴とする、[24]に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[26] 前記一般式[I]におけるR5およびR6が、前記窒素含有基および酸素含有基から選ばれる基を、Yとの結合に対するメタ位および/またはパラ位に含む置換フェニル基であることを特徴とする、[25]に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[27] 前記一般式[I]におけるR5およびR6が、前記電子供与性置換基としての下記一般式[II]で表される窒素含有基を含む置換フェニル基であることを特徴とする、[26]に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
Figure 2015122415
(式[II]において、R7およびR8は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよく、Nの右に描かれた線はフェニル基との結合を表す。)
[28] 前記一般式[I]におけるR5およびR6が、前記電子供与性置換基としての下記一般式[III]で表される酸素含有基を含む置換フェニル基であることを特徴とする、[26]に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
Figure 2015122415
(式[III]において、R9は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基から選ばれる原子または置換基であり、Oの右に描かれた線はフェニル基との結合を表す。)
[29] 前記一般式[I]におけるMがハフニウム原子であることを特徴とする、[19]〜[28]のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[30] 前記α−オレフィンが炭素数3〜10のα−オレフィンであることを特徴とする、[19]〜[29]のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[31] 前記α−オレフィンがプロピレンおよび1−ブテンから選ばれる少なくとも1種であることを特徴とする、[19]〜[30]のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[32] 前記非共役ポリエンが、下記一般式[IV]で表されることを特徴とする、[19]〜[31]のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
Figure 2015122415
(式[IV]において、nは0〜2の整数であり、
10、R11、R12およびR13は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
10からR13までの任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R10とR11とで、またはR12とR13とでアルキリデン基を形成していてもよく、R10とR12とが、またはR11とR13とが互いに結合して二重結合を形成していてもよく、
以下の(i)から(iv)の要件の少なくとも一つが満たされる。
(i)R10からR13の少なくとも一つは、二重結合を一つ以上有する炭化水素基である。
(ii)R10からR13までの任意の二つの置換基が互いに結合して環を形成し、該環が二重合を含んでいる。
(iii)R10とR11とで、またはR12とR13とでアルキリデン基を形成している。
(iv)R10とR12とが、またはR11とR13とが互いに結合して二重結合を形成している。)
[33] 前記非共役ポリエンが、5−エチリデン−2−ノルボルネン(ENB)または5−ビニル−2−ノルボルネン(VNB)であることを特徴とする、[19]〜[32]のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
[34] 重合温度が80℃以上であることを特徴とする、[19]〜[33]のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
本発明1に係る、特定のフルオレン構造を有する架橋メタロセン化合物を含むオレフィン重合用触媒の存在下で、エチレン、α−オレフィンおよび非共役ポリエンを共重合する方法により、以下の効果(1)〜(3)を同時に高いレベルでバランス良く実現し、これにより高い生産性かつ低コストで加工材料として優れた性能を有するエチレン/α−オレフィン/非共役ポリエン共重合体を製造することが可能となるため、産業への貢献は極めて大きくかつ秀逸である。
効果(1):高分子量のエチレン/α−オレフィン/非共役ポリエン共重合体を製造することが可能となる。これにより、高温重合においても生成するエチレン/α−オレフィン/非共役ポリエン共重合体の分子量を所望の高い値に保つことができるため、高温重合を実施することが可能となる。特に高温の溶液重合においては、生成した共重合体を含む重合溶液の粘度が低下するため、低温重合時に比べて重合器内の共重合体の濃度を上げることが可能となり、結果として重合器当りの生産性が大幅に向上する。さらには、高温重合を実施することにより、重合器の除熱コストが大幅に低減される。
効果(2):高い非共役ポリエン共重合性能でエチレン/α−オレフィン/非共役ポリエン共重合体を製造することが可能となる。これにより、ある所望の非共役ポリエン含有量のオレフィン共重合体を製造する際、添加する非共役ポリエンの量を低減することが可能となり、その結果重合溶液中の未反応非共役ポリエンの残存量が減るため、これを重合後工程で除去する際の負荷が軽減されるという利点が得られ、生産性の向上に繋がる。
効果(3):高い重合活性でエチレン/α−オレフィン/非共役ポリエン共重合体を製造することが可能となる。これにより、触媒コストが低減されるのはもちろんのこと、エチレン/α−オレフィン/非共役ポリエン共重合体中の触媒残渣が低減されるため、脱灰処理プロセスが不要となり、生産コストが低減されるという利点が得られる。
本発明2のエチレン・α−オレフィン・非共役ポリエン共重合体は、低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れるので、エチレン・α−オレフィン・非共役ポリエン共重合体を含有する組成物は、かかる特性を活かし、様々な用途に好適に用いることができる。
本発明2−1によれば、低温柔軟性等の低温特性と、引張強度等の機械的物性とに優れたシールパッキンを形成することが可能なシールパッキン用組成物と、前記組成物から形成されたシールパッキンとを提供することができる。
本発明2−2によれば、エチレン・α−オレフィン・非共役ポリエン共重合体を含む組成物の未架橋時の加工性と、前記組成物を架橋して得られる成形体の遮音性能および比重等の物性とを両立することができる。
本発明2−3によれば、低温でのゴム弾性等の低温特性と、常温での引張強度等の機械的物性とに優れたホースを形成することが可能なホース形成用組成物と、前記組成物から形成されたホースとを提供することができる。
図1は、実施例D1および比較例D1で得られた平板状スポンジの、500〜5000Hzにおける音響透過損失(dB)を示す図である。
本発明についてさらに詳細に説明する。なお、本発明1、本発明2、本発明2−1、2−2、2−3の順に以下説明する。
〔本発明1〕
本発明1のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法は、一般式[I]で表される遷移金属化合物(a)、および化合物(b)を含むオレフィン重合触媒の存在下で、エチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合することを特徴としている。
<遷移金属化合物(a)>
遷移金属化合物(a)は、一般式[I]で表される。なお、遷移金属化合物(a)は、分子内に架橋構造を有するメタロセン化合物、すなわち、架橋メタロセン化合物である。
Figure 2015122415
(式[I]において、Yは炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、
Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
1、R2、R3、R4、R5およびR6は水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、
1からR6までの隣接した置換基は互いに結合して環を形成していてもよく、
Qはハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
nは1〜4の整数であり、
jは1〜4の整数である。)
式[I]中のY、M、R1〜R6、Q、nおよびjを以下に説明する。
なお、遷移金属化合物(a)は、本発明2、2−1、2−2、2−3でも使用することが可能であるため、遷移金属化合物(a)についての説明のなかで、これらの発明についても説明することがある。
(Y、M、R1〜R6、Q、nおよびj)
Yは、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、好ましくは炭素原子である。
Mは、チタン原子、ジルコニウム原子またはハフニウム原子であり、好ましくはハフニウム原子である。
1、R2、R3、R4、R5およびR6は、水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよい。また、R1からR6までの隣接した置換基は互いに結合して環を形成していてもよく、互いに結合していなくてもよい。
ここで、炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の環状飽和炭化水素基、炭素数2〜20の鎖状不飽和炭化水素基、炭素数3〜20の環状不飽和炭化水素基が例示される。また、R1からR6までの隣接した置換基が互いに結合して環を形成する場合であれば、炭素数1〜20のアルキレン基、炭素数6〜20のアリーレン基等が例示される。
炭素数1〜20のアルキル基としては、直鎖状飽和炭化水素基であるメチル基、エチル基、n-プロピル基、アリル(allyl)基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基など、分岐状飽和炭化水素基であるイソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、t-アミル基、ネオペンチル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-ジプロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基、シクロプロピルメチル基などが例示される。アルキル基の炭素数は好ましくは1〜6である。
炭素数3〜20の環状飽和炭化水素基としては、環状飽和炭化水素基であるシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1-アダマンチル基、2-アダマンチル基など、環状飽和炭化水素基の水素原子が炭素数1〜17の炭化水素基で置き換えられた基である3-メチルシクロペンチル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、4-シクロヘキシルシクロヘキシル基、4-フェニルシクロヘキシル基などが例示される。環状飽和炭化水素基の炭素数は好ましくは5〜11である。
炭素数2〜20の鎖状不飽和炭化水素基としては、アルケニル基であるエテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-メチルエテニル基(イソプロペニル基)など、アルキニル基であるエチニル基、1-プロピニル基、2-プロピニル基(プロパルギル基)などが例示される。鎖状不飽和炭化水素基の炭素数は好ましくは2〜4である。
炭素数3〜20の環状不飽和炭化水素基としては、環状不飽和炭化水素基であるシクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基など、環状不飽和炭化水素基の水素原子が炭素数1〜15の炭化水素基で置き換えられた基である3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、4-エチルフェニル基、4-t-ブチルフェニル基、4-シクロヘキシルフェニル基、ビフェニリル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基(メシチル基)など、直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が炭素数3〜19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基であるベンジル基、クミル基などが例示される。環状不飽和炭化水素基の炭素数は好ましくは6〜10である。
炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、ジメチルメチレン基(イソプロピリデン基)、エチルメチレン基、1-メチルエチレン基、2-メチルエチレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、n-プロピレン基などが例示される。アルキレン基の炭素数は好ましくは1〜6である。
炭素数6〜20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、4,4'-ビフェニリレン基などが例示される。アリーレン基の炭素数は好ましくは6〜12である。
アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、芳香族化合物から誘導された置換基であるフェニル基、1-ナフチル基、2-ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などが例示される。アリール基としては、フェニル基または2-ナフチル基が好ましい。
前記芳香族化合物としては、芳香族炭化水素および複素環式芳香族化合物であるベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどが例示される。
置換アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、前記アリール基が有する1以上の水素原子が炭素数1〜20の炭化水素基、アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基により置換されてなる基が挙げられ、具体的には3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、3-エチルフェニル基、4-エチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、ビフェニリル基、4-(トリメチルシリル)フェニル基、4-アミノフェニル基、4-(ジメチルアミノ)フェニル基、4-(ジエチルアミノ)フェニル基、4-モルフォリニルフェニル基、4-メトキシフェニル基、4-エトキシフェニル基、4-フェノキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3-メチル-4-メトキシフェニル基、3,5-ジメチル-4-メトキシフェニル基、3-(トリフルオロメチル)フェニル基、4-(トリフルオロメチル)フェニル基、3-クロロフェニル基、4-クロロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、5-メチルナフチル基、2-(6-メチル)ピリジル基などが例示される。また、置換アリール基としては、後述する「電子供与性基含有置換アリール基」も挙げられる。
ケイ素含有基としては、炭素数1〜20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基であるトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基等のアルキルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基等のアリールシリル基、ペンタメチルジシラニル基、トリメチルシリルメチル基などが例示される。アルキルシリル基の炭素数は1〜10が好ましく、アリールシリル基の炭素数は6〜18が好ましい。
窒素含有基としては、アミノ基、ニトロ基、N-モルフォリニル基や、上述した炭素数1〜20の炭化水素基またはケイ素含有基において、=CH-構造単位が窒素原子で置き換えられた基、-CH2-構造単位が炭素数1〜20の炭化水素基が結合した窒素原子で置き換えられた基、または-CH3構造単位が炭素数1〜20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基などが例示される。窒素含有基としては、ジメチルアミノ基、N-モルフォリニル基が好ましい。
酸素含有基としては、水酸基や、上述した炭素数1〜20の炭化水素基、ケイ素含有基または窒素含有基において、-CH2-構造単位が酸素原子またはカルボニル基で置き換えられた基、または-CH3構造単位が炭素数1〜20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t-ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t-ブトキシメチル基、1-ヒドロキシエチル基、1-メトキシエチル基、1-エトキシエチル基、2-ヒドロキシエチル基、2-メトキシエチル基、2-エトキシエチル基、n-2-オキサブチレン基、n-2-オキサペンチレン基、n-3-オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基などが例示される。酸素含有基としては、メトキシ基が好ましい。
ハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素などが例示される。
ハロゲン含有基としては、上述した炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などが例示される。
Qは、ハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から、同一のまたは異なる組合せで選ばれる。
ハロゲン原子および炭素数1〜20の炭化水素基の詳細は、上述のとおりである。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1〜20の炭化水素基である場合は、該炭化水素基の炭素数は1〜7であることが好ましい。
アニオン配位子としては、メトキシ基、t-ブトキシ基、フェノキシ基などのアルコキシ基、アセテート、ベンゾエートなどのカルボキシレート基、メシレート、トシレートなどのスルホネート基などを例示することができる。
孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタンなどのエーテル化合物などを例示することができる。
nは1〜4の整数である。
jは1〜4の整数であり、好ましくは2である。
なお、式[I]に関する上記の例示は、本発明1の以下の記載においても同様に適用される。
本出願人は、種々の遷移金属化合物について鋭意検討した結果、上記一般式[I]で表される遷移金属化合物(a)において、その配位子構造に特に2,3,6,7-テトラメチルフルオレニル基を含む場合に、該遷移金属化合物(a)を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する際、高い非共役ポリエン共重合性能かつ高重合活性で高分子量のエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aを製造できることを初めて見出した。
上記一般式[I]で表される遷移金属化合物(a)に含まれる2,3,6,7-テトラメチルフルオレニル基は、2、3、6および7位に四つの置換基を有するために電子的な効果が大きく、これにより高い重合活性で、かつ高分子量のエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体A)を生成するものと推測される。一方、概して非共役ポリエンはα−オレフィンに比して嵩高くなるため、これを重合する重合触媒、特に重合活性点となるメタロセン化合物の中心金属近傍は嵩高くない方が非共役ポリエンの共重合性能向上に繋がると推測される。2,3,6,7-テトラメチルフルオレニル基に含まれる四つのメチル基は、他の炭化水素基等に比べて嵩高くないため、このことが高い非共役ポリエン共重合性能に寄与しているものと考えられる。以上より、特に2,3,6,7-テトラメチルフルオレニル基を含む上記一般式[I]で表される遷移金属化合物(a)が、生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの高い分子量と、高い非共役ポリエン共重合性能と、高い重合活性とを同時に高いレベルでバランス良く実現するものと推測される。
上記一般式[I]で表される遷移金属化合物(a)において、nは1であることが好ましい。このような遷移金属化合物(a−1)は、下記一般式[V]で表わされる。
Figure 2015122415
(式[V]において、Y、M、R1、R2、R3、R4、R5、R6、Qおよびjの定義等は上述のとおりである。)
該遷移金属化合物(a−1)は、上記一般式[I]におけるnが2〜4の整数である化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの遷移金属化合物を用いることでエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの製造コストが低減されるという利点が得られる。さらに、該遷移金属化合物(a−1)を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの高分子量化という利点も得られる。
上記一般式[I]で表される遷移金属化合物(a)および一般式[V]で表される遷移金属化合物(a−1)において、R1、R2、R3およびR4は全て水素原子であることが好ましい。
一般式[V]で表される遷移金属化合物(a−1)において、R1、R2、R3およびR4が全て水素原子である遷移金属化合物(a−2)は、下記一般式[VI]で表わされる。
Figure 2015122415
(式[VI]において、Y、M、R5、R6、Qおよびjの定義等は上述のとおりである。)
該遷移金属化合物(a−2)は、上記一般式[V]におけるR1、R2、R3およびR4のいずれか一つ以上が水素原子以外の置換基で置換された化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの遷移金属化合物を用いることでエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの製造コストが低減されるという利点が得られる。さらに、該遷移金属化合物(a−2)を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する場合、重合活性の向上および生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの高分子量化という利点も得られる。また同時に、非共役ポリエンの共重合性能の向上という利点も得られる。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、および一般式[VI]で表される遷移金属化合物(a−2)において、Yは炭素原子であることがさらに好ましい。
一般式[VI]で表される遷移金属化合物(a−2)において、Yが炭素原子である遷移金属化合物(a−3)は、下記一般式[VII]で表わされる。
Figure 2015122415
(式[VII]において、M、R5、R6、Qおよびjの定義等は上述のとおりである。)
該遷移金属化合物(a−3)は、例えば下式[VIII]のような簡便な方法で合成することが可能である。
Figure 2015122415
(式[VIII]において、M、R5、R6の定義等は上述のとおりである。)
上記式[VIII]において、R5およびR6は水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよい置換基であるが、一般式R5−C(=O)−R6で表される、このような条件を満たす種々のケトンが一般の試薬メーカーより市販されているため、該遷移金属化合物(a−3)の原料の入手が容易である。また、仮にこのようなケトンが市販されていない場合でも、例えばOlahらによる方法[Heterocycles, 40, 79 (1995)]などにより、該ケトンは容易に合成することが可能である。このように、該遷移金属化合物(a−3)は、上記一般式[V]におけるYがケイ素原子、ゲルマニウム原子およびスズ原子から選ばれる化合物に比べ製造工程が簡素かつ容易であり、製造コストがさらに低減され、ひいてはこの遷移金属化合物を用いることでエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの製造コストが低減されるという利点が得られる。さらに、該遷移金属化合物(a−3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aのさらなる高分子量化という利点も得られる。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6はアリール基および置換アリール基から選ばれる基であることが好ましい。
該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する場合、重合活性のさらなる向上および生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aのさらなる高分子量化という利点が得られる。また同時に、非共役ポリエンの共重合性能の向上という利点も得られる。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6はアリール基および置換アリール基から選ばれる同一の基であることがさらに好ましい。R5およびR6をこのように選択することにより、該遷移金属化合物の合成工程が簡素化され、さらに製造コストが低減され、ひいてはこの遷移金属化合物を用いることでエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの製造コストが低減されるという利点が得られる。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6は同一の置換アリール基であることがさらに好ましい。該遷移金属化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aのさらなる高分子量化という利点が得られる。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6は、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基(以下「電子供与性基含有置換アリール基」ともいう。)であることが好ましい。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aのさらなる高分子量化という利点が得られる。
ハメット則の置換基定数σが-0.2以下の電子供与性基は、以下のように定義および例示される。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則で求められた置換基定数にはベンゼン環のパラ位に置換した際のσpおよびメタ位に置換した際のσmがあり、これらの値は多くの一般的な文献に見出すことができる。例えば、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]には非常に広範な置換基について詳細な記載がなされている。ただし、これらの文献に記載されているσpおよびσmは、同じ置換基であっても文献によって値が僅かに異なる場合がある。本発明ではこのような状況によって生じる混乱を回避するために、記載のある限りの置換基においてはHanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された値をハメット則の置換基定数σpおよびσmと定義する。本発明においてハメット則の置換基定数σが-0.2以下の電子供与性基とは、該電子供与性基がフェニル基のパラ位(4位)に置換している場合はσpが-0.2以下の電子供与性基であり、フェニル基のメタ位(3位)に置換している場合はσmが-0.2以下の電子供与性基である。また、該電子供与性基がフェニル基のオルト位(2位)に置換している場合、またはフェニル基以外のアリール基の任意の位置に置換している場合は、σpが-0.2以下の電子供与性基である。
ハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性置換基としては、p-アミノ基(4-アミノ基)、p-ジメチルアミノ基(4-ジメチルアミノ基)、p-ジエチルアミノ基(4-ジエチルアミノ基)、m-ジエチルアミノ基(3-ジエチルアミノ基)などの窒素含有基、p-メトキシ基(4-メトキシ基)、p-エトキシ基(4-エトキシ基)などの酸素含有基、p-t-ブチル基(4-t-ブチル基)などの三級炭化水素基、p-トリメチルシロキシ基(4-トリメチルシロキシ基)などのケイ素含有基などを例示することができる。尚、本発明で定義されるハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性置換基は、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された置換基に限定されない。該文献に記載のない置換基であっても、ハメット則に基いて測定した場合の置換基定数σpまたはσmがその範囲となるであろう置換基は、本発明で定義するハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性基に含まれる。このような置換基としては、p-N-モルフォリニル基(4-N-モルフォリニル基)、m-N-モルフォリニル基(3-N-モルフォリニル基)などを例示することができる。
電子供与性基含有置換アリール基において、該電子供与性置換基が複数個置換している場合それぞれの電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外に炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基が置換していてもよく、該置換基が複数個置換している場合それぞれの置換基は同一でも異なっていてもよいが、一つの置換アリール基に含まれる該電子供与性置換基および該置換基の各々のハメット則の置換基定数σの総和は-0.15以下であることが好ましい。このような置換アリール基としては、m,p-ジメトキシフェニル基(3,4-ジメトキシフェニル基)、p-(ジメチルアミノ)-m-メトキシフェニル基(4-(ジメチルアミノ)-3-メトキシフェニル基)、p-(ジメチルアミノ)-m-メチルフェニル基(4-(ジメチルアミノ)-3-メチルフェニル基)、p-メトキシ-m-メチルフェニル基(4-メトキシ-3-メチルフェニル基)、p-メトキシ-m,m-ジメチルフェニル基(4-メトキシ-3,5-ジメチルフェニル基)などが例示される。
電子供与性基含有置換アリール基が有してもよい炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基としては、上述したこれらの原子または置換基の具体例を挙げることができる。
本出願人は、種々の遷移金属化合物について鋭意検討した結果、上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6を、特にハメット則の置換基定数σが-0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とした場合に、これらの遷移金属化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する際、生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの分子量がさらに高くなることを初めて見出した。
遷移金属化合物(a)、好ましくは遷移金属化合物(a−3)のような有機金属錯体触媒によるオレフィンの配位重合においては、触媒の中心金属上でオレフィンが繰り返し重合することにより、生成するオレフィン重合体の分子鎖が生長し(生長反応)、該オレフィン重合体の分子量が増大することが知られている。一方、連鎖移動と呼ばれる反応において、オレフィン重合体の分子鎖が触媒の中心金属から解離することにより、該分子鎖の生長反応が停止し、従って該オレフィン重合体の分子量の増大も停止することも知られている。以上より、オレフィン重合体の分子量は、それを生成する有機金属錯体触媒に固有の、生長反応の頻度と連鎖移動反応の頻度との比率によって特徴づけられる。即ち、生長反応の頻度と連鎖移動反応の頻度との比が大きいほど生成するオレフィン重合体の分子量は高くなり、逆に小さいほど分子量は低くなるという関係である。ここで、それぞれの反応の頻度はそれぞれの反応の活性化エネルギーから見積もることができ、活性化エネルギーが低い反応はその頻度が高く、逆に活性化エネルギーが高い反応はその頻度が低いと見做すことができると考えられる。一般に、オレフィン重合における生長反応の頻度は連鎖移動反応の頻度に比して充分に高い、即ち生長反応の活性化エネルギーは連鎖移動反応の活性化エネルギーに比して充分に低いことが知られている。従って、連鎖移動反応の活性化エネルギーから生長反応の活性化エネルギーを減じた値(以下、ΔEC)は正となり、この値が大きいほど連鎖移動反応の頻度に比して生長反応の頻度が大きくなり、結果生成するオレフィン重合体の分子量が高くなることが推定される。このようにして行うオレフィン重合体の分子量の推定の妥当性は、例えばLaineらの計算結果によっても裏付けられている[Organometallics, 30, 1350 (2011)]。上記一般式[VII]で表される遷移金属化合物(a−3)においては、R5およびR6を、特にハメット則の置換基定数σが-0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とした場合に、上記ΔECが増大し、該遷移金属化合物(a−3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する際に、生成するエチレン/α−オレフィン/非共役ポリエン共重合体の分子量が高くなるものと推測される。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6に含まれる電子供与性置換基は、窒素含有基および酸素含有基から選ばれる基であることがさらに好ましい。これらの置換基はハメット則におけるσが特に低く、本発明1が解決しようとする課題のうち、とりわけ(1)の解決に対して多大な効果を発揮する。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6は、上記電子供与性置換基としての窒素含有基および酸素含有基から選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、原料となる種々のベンゾフェノンが一般の試薬メーカーより市販されているため原料の入手が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの遷移金属化合物を用いることでエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの製造コストが低減されるという利点が得られる。
ここで、上記電子供与性置換基としての窒素含有基および酸素含有基から選ばれる基を含む置換フェニル基としては、o-アミノフェニル基(2-アミノフェニル基)、p-アミノフェニル基(4-アミノフェニル基)、o-(ジメチルアミノ)フェニル基(2-(ジメチルアミノ)フェニル基)、p-(ジメチルアミノ)フェニル基(4-(ジメチルアミノ)フェニル基)、o-(ジエチルアミノ)フェニル基(2-(ジエチルアミノ)フェニル基)、p-(ジエチルアミノ)フェニル基(4-(ジエチルアミノ)フェニル基)、m-(ジエチルアミノ)フェニル基(3-(ジエチルアミノ)フェニル基)、o-メトキシフェニル基(2-メトキシフェニル基)、p-メトキシフェニル基(4-メトキシフェニル基)、o-エトキシフェニル基(2-エトキシフェニル基)、p-エトキシフェニル基(4-エトキシフェニル基)、o-N-モルフォリニルフェニル基(2-N-モルフォリニルフェニル基)、p-N-モルフォリニルフェニル基(4-N-モルフォリニルフェニル基)、m-N-モルフォリニルフェニル基(3-N-モルフォリニルフェニル基)、o,p-ジメトキシフェニル基(2,4-ジメトキシフェニル基)、m,p-ジメトキシフェニル基(3,4-ジメトキシフェニル基)、p-(ジメチルアミノ)-m-メトキシフェニル基(4-(ジメチルアミノ)-3-メトキシフェニル基)、p-(ジメチルアミノ)-m-メチルフェニル基(4-(ジメチルアミノ)-3-メチルフェニル基)、p-メトキシ-m-メチルフェニル基(4-メトキシ-3-メチルフェニル基)、p-メトキシ-m,m-ジメチルフェニル基(4-メトキシ-3,5-ジメチルフェニル基)などが例示される。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6は、上記Yとの結合(例えばYが炭素原子である場合には、Yとしての炭素原子との結合)に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基および酸素含有基から選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、該基がオルト位に置換した場合に比べて合成が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの遷移金属化合物を用いることでエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aの製造コストが低減されるという利点が得られる。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6が、上記Yとの結合(例えばYが炭素原子である場合には、Yとしての炭素原子との結合)に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基を含む置換フェニル基である場合、該窒素含有基は下記一般式[II]で表される基であることがさらに好ましい。
Figure 2015122415
(式[II]において、R7およびR8は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよく、Nの右に描かれた線はフェニル基との結合を表す。)
7およびR8としての炭素数1〜20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基としては、上述したこれらの置換基の具体例を挙げることができる。
このような遷移金属化合物(a−4)は、下記一般式[IX]で表わされる。
Figure 2015122415
(式[IX]において、M、Qおよびjの定義等は上述のとおりである。R7、R8およびR10は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基であり、それぞれ同一でも異なっていてもよく、R7、R8およびR10のうちの隣接した置換基は互いに結合して環を形成していてもよく、NR78はハメット則の置換基定数σが-0.2以下の窒素含有基であり、該窒素含有基が複数個存在する場合にはそれぞれの窒素含有基は互いに同一でも異なっていてもよく、nは1〜3の整数であり、mは0〜4の整数である。)
該遷移金属化合物(a−4)は、上記一般式[II]で表されるNR78のハメット則におけるσが特に低いため、本発明1が解決しようとする課題のうち、とりわけ(1)の解決に対してさらに多大な効果を発揮する。
上記一般式[I]で表される遷移金属化合物(a)、一般式[V]で表される遷移金属化合物(a−1)、一般式[VI]で表される遷移金属化合物(a−2)、および一般式[VII]で表される遷移金属化合物(a−3)において、R5およびR6が、上記Yとの結合(例えばYが炭素原子である場合には、Yとしての炭素原子との結合)に対するメタ位および/またはパラ位に上記電子供与性置換基としての酸素含有基を含む置換フェニル基である場合、該酸素含有基は下記一般式[III]で表される基であることがさらに好ましい。
Figure 2015122415
(式[III]において、R9は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基から選ばれる原子または置換基であり、Oの右に描かれた線はフェニル基との結合を表す。)
9としての炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基としては、上述したこれらの置換基の具体例を挙げることができる。
このような遷移金属化合物(a−5)は、下記一般式[X]で表わされる。
Figure 2015122415
(式[X]において、M、Qおよびjの定義等は上述のとおりである。R9およびR10は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、R10の隣接した置換基は互いに結合して環を形成していてもよく、OR9はハメット則の置換基定数σ-0.2以下の酸素含有基であり、該酸素含有基が複数個存在する場合にはそれぞれの酸素含有基は互いに同一でも異なっていてもよく、nは1〜3の整数であり、mは0〜4の整数である。)
該遷移金属化合物(a−5)は、上記一般式[III]で表されるOR9のハメット則におけるσがさらに低いため、本発明1が解決しようとする課題のうち、とりわけ(1)の解決に対してさらに多大な効果を発揮する。
上記一般式[I]で表される遷移金属化合物(a)、上記一般式[V]で表される遷移金属化合物(a−1)、上記一般式[VI]で表される遷移金属化合物(a−2)、上記一般式[VII]で表される遷移金属化合物(a−3)、上記一般式[IX]で表される遷移金属化合物(a−4)または上記一般式[X]で表される遷移金属化合物(a−5)において、Mはハフニウム原子であることがさらに好ましい。Mがハフニウム原子である上記遷移金属化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン/α−オレフィン/非共役ポリエン共重合体や、後述のエチレン系共重合体Aのさらなる高分子量化、および非共役ポリエンの共重合性能の向上という利点が得られる。
(遷移金属化合物(a)の例示等)
このような遷移金属化合物(a)としては、
[ジメチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジエチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジ-n-ブチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジシクロペンチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジシクロヘキシルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[シクロペンチリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[シクロヘキシリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジ-1-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジ-2-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-n-ヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-シクロヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-t-ブチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-メトキシ-3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-メトキシ-3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-エトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-フェノキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス[4-(トリメチルシロキシ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス[3-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス[4-(トリメチルシリル)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(4-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス[3-(トリフルオロメチル)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス[4-(トリフルオロメチル)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[メチルフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[メチル(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[メチル(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジメチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジエチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジシクロヘキシルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジフェニルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジ(4-メチルフェニル)シリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジメチルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジフェニルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)エチレン]ハフニウムジクロリド、
[1-(η5-シクロペンタジエニル)-3-(η5-2,3,6,7-テトラメチルフルオレニル)プロピレン]ハフニウムジクロリド、
[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)-1,1,2,2-テトラメチルシリレン]ハフニウムジクロリド、
[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)フェニレン]ハフニウムジクロリド、および
これらの化合物のハフニウム原子をジルコニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物などが例示されるが、遷移金属化合物(a)はこれらの例示に限定されない。
〈遷移金属化合物の製造方法〉
上記遷移金属化合物は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。製造方法として例えば、J.Organomet.Chem.,63,509(1996)、本出願人による出願に係る公報である国際公開2006/123759号、国際公開01/27124号、特開2004−168744号公報、特開2004−175759号公報、特開2000−212194号公報等に記載の方法により製造することができる。
<化合物(b)>
本発明1のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法は、上記の架橋メタロセン化合物(a)、ならびに有機金属化合物(b−1)、有機アルミニウムオキシ化合物(b−2)および遷移金属化合物(a)と反応してイオン対を形成する化合物(b−3)から選ばれる少なくとも1種の化合物(b)を含むオレフィン重合触媒の存在下で、エチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合することを特徴としている。
有機金属化合物(b−1)として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
(b−1a)一般式 Ra mAl(ORb)npq
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である)
で表される有機アルミニウム化合物。
このような化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-ブチルアルミニウム、トリ-n-ヘキシルアルミニウム、トリ-n-オクチルアルミニウムなどのトリ-n-アルキルアルミニウム、
トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリ-t-ブチルアルミニウム、トリ-2-メチルブチルアルミニウム、トリ-3-メチルヘキシルアルミニウム、トリ-2-エチルヘキシルアルミニウムなどのトリ分岐状アルキルアルミニウム、
トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム、
トリフェニルアルミニウム、トリ(4-メチルフェニル)アルミニウムなどのトリアリールアルミニウム、
ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド、
一般式(i-C4H9)xAly(C5H10)z(式中、x、y、zは正の数であり、z≦2xである)で表されるイソプレニルアルミニウムなどのアルケニルアルミニウム、
イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド、
ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド、
エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド、
一般式Ra 2.5Al(ORb)0.5などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム、
ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのアルキルアルミニウムアリーロキシド、
ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド、
エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド、
エチルアルミニウムジクロリドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム、
ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド、
エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドおよびその他の部分的に水素化されたアルキルアルミニウム、
エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウム
などを例示することができる。また、上記一般式Ra mAl(ORb)npqで表される化合物に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、(C2H5)2AlN(C2H5)Al(C2H5)2などを挙げることができる。
(b−1b)一般式 M2AlRa 4
(式中、M2はLi、NaまたはKを示し、Raは炭素数1〜15、好ましくは1〜4の炭化水素基を示す。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
このような化合物として、LiAl(C25)4、LiAl(C715)4 などを例示することができる。
(b−1c)一般式 Rab3
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数1〜15、好ましくは1〜4の炭化水素基を示し、M3はMg、ZnまたはCdである)で表される周期律表第2族または第12族金属のジアルキル化合物。
有機アルミニウムオキシ化合物(b−2)としては、従来公知のアルミノキサンをそのまま使用することができる。具体的には、下記一般式[XI]
Figure 2015122415
および/または下記一般式[XII]
Figure 2015122415
(式中、Rは炭素数1〜10の炭化水素基、nは2以上の整数を示す)
で表わされる化合物を挙げることができ、特にRがメチル基であるメチルアルミノキサンでnが3以上、好ましくは10以上のものが利用される。これらアルミノキサン類に若干の有機アルミニウム化合物が混入していても差し支えない。本発明においてエチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとの共重合を高温で行う場合には、特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物も適用することができる。また、特開平2-167305号公報に記載されている有機アルミニウムオキシ化合物、特開平2-24701号公報、特開平3-103407号公報に記載されている二種類以上のアルキル基を有するアルミノキサンなども好適に利用できる。なお、本発明のオレフィン重合で用いられることのある「ベンゼン不溶性の有機アルミニウムオキシ化合物」とは、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であり、ベンゼンに対して不溶性または難溶性である化合物である。
アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、上記(b−1a)の有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。このうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。これらの有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いることができる。
また、有機アルミニウムオキシ化合物(b−2)として、下記一般式[XIII]で表されるような修飾メチルアルミノキサン等も挙げることができる。
Figure 2015122415
(式中、Rは炭素数1〜10の炭化水素基、mおよびnはそれぞれ独立に2以上の整数を示す)
この修飾メチルアルミノキサンはトリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製されるものである。このような化合物は一般にMMAOと呼ばれている。このようなMMAOはUS4960878公報およびUS5041584工法で挙げられている方法で調製することが出来る。また、東ソー・ファインケム社等からもトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製した、Rがイソブチル基であるものがMMAOやTMAOといった名称で市販されている。このようなMMAOは各種溶媒への溶解性および保存安定性を改良したアルミノキサンであり、具体的には上記式[XI]、[XII]で表わされる化合物のうちのベンゼンに対して不溶性または難溶性の化合物とは違い、脂肪族炭化水素や脂環族炭化水素に溶解する。
さらに、有機アルミニウムオキシ化合物(b−2)として、下記一般式[XIV]で表されるボロンを含んだ有機アルミニウムオキシ化合物も挙げることができる。
Figure 2015122415
(式中、Rcは炭素数1〜10の炭化水素基を示す。Rdは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子または炭素数1〜10の炭化水素基を示す)
遷移金属化合物(a)と反応してイオン対を形成する化合物(b−3)(以下、「イオン化イオン性化合物」または単に「イオン性化合物」と略称する場合がある。)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。ただし、前述の(b−2)有機アルミニウムオキシ化合物は含まない。
本発明1において好ましく使用されるイオン化イオン性化合物は、下記一般式[XV]で表されるホウ素化合物である。
Figure 2015122415
式中、Re+としては、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。RfからRiは、互いに同一でも異なっていてもよく、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基であり、好ましくは置換アリール基である。
上記カルベニウムカチオンとして具体的には、トリフェニルカルベニウムカチオン、トリス(4-メチルフェニル)カルベニウムカチオン、トリス(3,5-ジメチルフェニル)カルベニウムカチオンなどの三置換カルベニウムカチオンなどが挙げられる。
上記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n-プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオンなどのトリアルキル置換アンモニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン、ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
上記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリス(4-メチルフェニル)ホスホニウムカチオン、トリス(3,5-ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
e+としては、上記具体例のうち、カルベニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルベニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
本発明1において好ましく使用されるイオン化イオン性化合物のうち、カルベニウムカチオンを含む化合物として、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス[3,5-ジ-(トリフルオロメチル)フェニル]ボレート、トリス(4-メチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5-ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを例示することができる。
本発明1において好ましく使用されるイオン化イオン性化合物のうち、トリアルキル置換アンモニウムカチオンを含む化合物として、トリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n-ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(4-メチルフェニル)ボレート、トリメチルアンモニウムテトラキス(2-メチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス[4-(トリフルオロメチル)フェニル]ボレート、トリ(n-ブチル)アンモニウムテトラキス[3,5-ジ(トリフルオロメチル)フェニル]ボレート、トリ(n-ブチル)アンモニウムテトラキス(2-メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(4-メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4-メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス[4-(トリフルオロメチル)フェニル]ボレート、ジオクタデシルメチルアンモニウムテトラキス[3,5-ジ(トリフルオロメチル)フェニル]ボレート、ジオクタデシルメチルアンモニウムなどを例示することができる。
本発明1において好ましく使用されるイオン化イオン性化合物のうち、N,N-ジアルキルアニリニウムカチオンを含む化合物として、N,N-ジメチルアニリニウムテトラフェニルボレート、 N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス[3,5-ジ(トリフルオロメチル)フェニル]ボレート、N,N-ジエチルアニリニウムテトラフェニルボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、 N,N-ジエチルアニリニウムテトラキス[3,5-ジ(トリフルオロメチル)フェニル]ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラフェニルボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどを例示することができる。
本発明1において好ましく使用されるイオン化イオン性化合物のうち、ジアルキルアンモニウムカチオンを含む化合物として、ジ-n-プロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどを例示することができる。
その他、本出願人によって開示(特開2004-51676号公報)されているイオン性化合物も制限無く使用が可能である。
上記のイオン性化合物(b−3)は、1種単独で用いてもよく2種以上を混合して用いてもよい。
有機金属化合物(b−1)としては、市販品のために入手が容易なトリメチルアルミニウム、トリエチルアルミニウムおよびトリイソブチルアルミニウムが好ましい。このうち、取り扱いが容易なトリイソブチルアルミニウムが特に好ましい。
有機アルミニウムオキシ化合物(b−2)としては、市販品のために入手が容易なメチルアルミノキサン、およびトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製したMMAOが好ましい。このうち、各種溶媒への溶解性および保存安定性が改良されたMMAOが特に好ましい。
遷移金属化合物(a)と反応してイオン対を形成する化合物(b−3)としては、市販品として入手が容易であり、かつ重合活性向上への寄与が大きいことから、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートおよびN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましい。
(b−1)から(b−3)の化合物から選ばれる少なくとも1種の化合物(b)としては、重合活性が大きく向上することから、トリイソブチルアルミニウムとトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せ、およびトリイソブチルアルミニウムとN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せが特に好ましい。
<担体(C)>
本発明1では、オレフィン重合触媒の構成成分として、必要に応じて担体(C)を用いてもよい。
本発明1で用いられることのある担体(C)は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
多孔質酸化物として、具体的にはSiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2など、またはこれらを含む複合物または混合物、例えば天然または合成ゼオライト、SiO2-MgO、SiO2-Al23、SiO2-TiO2、SiO2-V25 、SiO2-Cr23、SiO2-TiO2-MgOなどを使用することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明1に好ましく用いられる担体は、粒径が0.5〜300μm、好ましくは1.0〜200μmであって、比表面積が50〜1000m2/g、好ましくは100〜700m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にある。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成してから使用される。
無機塩化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機塩化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いてもよい。
粘土は、通常粘土鉱物を主成分として構成される。また、イオン交換性層状化合物は、イオン結合などによって、構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含まれるイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α-Zr(HAsO4)2・H2O、α-Zr(HPO4)2、α-Zr(KPO4)2・3H2O、α-Ti(HPO4)2、α-Ti(HAsO4)2・H2O、α-Sn(HPO4)2・H2O、γ-Zr(HPO4)2、γ-Ti(HPO4)2、γ-Ti(NH4PO4)2・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。本発明1で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。
イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質(ゲスト化合物)を導入することをインターカレーションという。ゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al134(OH)24]7+、[Zr4(OH)14]2+、[Fe3O(OCOCH3)6]+などの金属水酸化物イオンなどが挙げられる。これらの化合物は1種単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解重縮合して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ペクトライト、テニオライトおよび合成雲母である。
担体(C)としての有機化合物としては、粒径が0.5〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素数が2〜14のα−オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
<上記オレフィン重合触媒を用いた、エチレンとα−オレフィンと非共役ポリエンとの共重合>
本発明1のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法は、上記重合触媒の存在下で、エチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合することを特徴としている。
本発明1で用いられる炭素数3以上のα−オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキサンなどの炭素数3〜20の直鎖状または分岐状のα−オレフィンを例示することができる。α−オレフィンとしては、炭素数3〜10のα−オレフィン、例えば炭素数3〜10の直鎖状または分岐状のα−オレフィンが好ましく、プロピレン、1-ブテン、1-ヘキセンおよび1-オクテンがより好ましく、プロピレン、1-ブテンがさらに好ましく、プロピレンが特に好ましい。これらのα−オレフィンは1種単独で、または2種以上組み合わせて用いることができる。またその選択については、生成する共重合体の特性上最も望ましいものとなるように選ぶことが可能である。例えば、本発明1で得られるエチレン/α−オレフィン/非共役ポリエン共重合体または当共重合体を含む混合物を加硫処理した際の物性が望ましいものとなるようにα−オレフィンの種類を選択することができる。
本発明1で用いられる非共役ポリエンとしては、非共役不飽和結合を2個以上有する化合物が制限なく使用できるが、例えば後述の非共役環状ポリエン、非共役鎖状ポリエンなどが挙げられ、1種単独で、あるいは2種以上を組み合わせて用いることが可能である。
[非共役環状ポリエン]
非共役環状ポリエンとして具体的には、例えば下記一般式[IV]で表される化合物が挙げられる。
Figure 2015122415
(式[IV]において、nは0〜2の整数であり、
10、R11、R12およびR13は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
10からR13までの任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R10とR11とで、またはR12とR13とでアルキリデン基を形成していてもよく、R10とR12とが、またはR11とR13とが互いに結合して二重結合を形成していてもよく、
以下の(i)から(iv)の要件の少なくとも一つが満たされる。
(i)R10からR13の少なくとも一つは、二重結合を一つ以上有する炭化水素基である。
(ii)R10からR13までの任意の二つの置換基が互いに結合して環を形成し、該環が二重結合を含んでいる。
(iii)R10とR11とで、またはR12とR13とでアルキリデン基を形成している。
(iv)R10とR12とが、またはR11とR13とが互いに結合して二重結合を形成している。)
上記一般式[IV]において、R10、R11、R12およびR13として挙げた、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基の具体例としては、上記一般式[I]の説明の中で挙げられたこれらの原子および置換基の具体例が挙げられる。
上記一般式[IV]において、R10、R11、R12およびR13のいずれか一つ以上が、二重結合を一つ以上有する炭化水素基である場合、該炭化水素基としてはエテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-メチルエテニル基(イソプロペニル基)、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,4-ヘキサジエニル基などが例示される。例えばR10がエテニル基(ビニル基)の場合、上記一般式[IV]の化合物は下記一般式[IV-I]で表すことができる。
Figure 2015122415
(式[IV-I]において、nは0〜2の整数であり、
11、R12およびR13は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
11からR13の任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R12とR13とでアルキリデン基を形成していてもよく、R11とR13とが互いに結合して二重結合を形成していてもよい。)
上記一般式[IV]において、R10からR13までの任意の二つの置換基が互いに結合して環を形成し、該環が二重結合を含んでいる場合、上記一般式[IV]の化合物は、例えば下記一般式[IV-II]または[IV-III]で表すことができる。
Figure 2015122415
(式[IV-II]および[IV-III]において、nは0〜2の整数であり、
11、R12およびR13は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
11からR13の任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R12とR13とでアルキリデン基を形成していてもよく、R11とR13とが互いに結合して二重結合を形成していてもよい。)
上記一般式[IV]において、R10とR11とで、またはR12とR13とでアルキリデン基を形成している場合、該アルキリデン基は通常炭素数1〜20のアルキリデン基であり、具体的な例としてはメチレン基(CH2=)、エチリデン基(CH3CH=)、プロピリデン基(CH3CH2CH=)およびイソプロピリデン基((CH3)2C=)などが挙げられる。例えば、R10とR11とでエチリデン基を形成している場合、上記一般式[IV]の化合物は下記一般式[IV-IV]で表すことができる。
Figure 2015122415
(式[IV-IV]において、nは0〜2の整数であり、
12およびR13は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
12とR13とは互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R12とR13とでアルキリデン基を形成していてもよい。)
上記一般式[IV]において、R10とR12とが、またはR11とR13とが互いに結合して二重結合を形成している場合、上記一般式[IV]の化合物は、例えば下記一般式[IV-V]で表すことができる。
Figure 2015122415
(式[IV-V]において、nは0〜2の整数であり、
11およびR13は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
11とR13とは互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよい。)
上記一般式[IV]で表される非共役環状ポリエンのうち、R10からR13の少なくとも一つが二重結合を一つ以上有する炭化水素基である化合物として、例えば5−ビニル−2−ノルボルネン(VNB)および下記の化合物などが例示される。これらのうち、5−ビニル−2−ノルボルネン(VNB)が好ましい。
Figure 2015122415
上記一般式[IV]で表される非共役環状ポリエンのうち、R10からR13までの任意の二つの置換基が互いに結合して環を形成し、該環が二重結合を含んでいる化合物として、例えばジシクロペンタジエン(DCPD)、ジメチルジシクロペンタジエンおよび下記の化合物などが例示される。これらのうち、ジシクロペンタジエン(DCPD)が好ましい。
Figure 2015122415
上記一般式[IV]で表される非共役環状ポリエンのうち、R10とR11とで、またはR12とR13とでアルキリデン基を形成している化合物として、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン(ENB)、5−イソプロピリデン−2−ノルボルネンおよび下記の化合物などが例示される。これらのうち、5−エチリデン−2−ノルボルネン(ENB)が好ましい。
Figure 2015122415
上記一般式[IV]で表される非共役環状ポリエンのうち、R10とR12とが、またはR11とR13とが互いに結合して二重結合を形成している化合物としては、下記のものが好ましい。
Figure 2015122415
上記一般式[IV]で表される非共役環状ポリエンとしては、nが0の非共役環状ポリエンが好ましく、特に上記一般式[IV]においてnが0のアルキリデン基置換非共役環状ポリエン、上記一般式[IV]においてnが0の二重結合含有環置換非共役環状ポリエン、nが0の二重結合含有炭化水素基置換非共役環状ポリエンが好ましい。具体的には、5−エチリデン−2−ノルボルネン(ENB)、ジシクロペンタジエン(DCPD)、5−ビニル−2−ノルボルネン(VNB)がより好ましい。このうち5−エチリデン−2−ノルボルネン(ENB)または5−ビニル−2−ノルボルネン(VNB)が特に好ましい。
[非共役鎖状ポリエン]
非共役鎖状ポリエンとして具体的には、例えば、1,4−ヘキサジエン、1,5−ヘプタジエン、1,6−オクタジエン、1,7−ノナジエン、1,8−デカジエン、1,12−テトラデカジエン、3−メチル−1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、4−エチル−1,4−ヘキサジエン、3,3−ジメチル−1,4−ヘキサジエン、5−メチル−1,4−ヘプタジエン、5−エチル−1,4−ヘプタジエン、5−メチル−1,5−ヘプタジエン、6−メチル−1,5−ヘプタジエン、5−エチル−1,5−ヘプタジエン、4−メチル−1,4−オクタジエン、5−メチル−1,4−オクタジエン、4−エチル−1,4−オクタジエン、5−エチル−1,4−オクタジエン、5−メチル−1,5−オクタジエン、6−メチル−1,5−オクタジエン、5−エチル−1,5−オクタジエン、6−エチル−1,5−オクタジエン、6−メチル−1,6−オクタジエン、7−メチル−1,6−オクタジエン、6−エチル−1,6−オクタジエン、6−プロピル−1,6−オクタジエン、6−ブチル−1,6−オクタジエン、7−メチル−1,6−オクタジエン、6,7−ジメチル−1,6−オクタジエン、4−メチル−1,4−ノナジエン、5−メチル−1,4−ノナジエン、4−エチル−1,4−ノナジエン、5−エチル−1,4−ノナジエン、5−メチル−1,5−ノナジエン、6−メチル−1,5−ノナジエン、5−エチル−1,5−ノナジエン、6−エチル−1,5−ノナジエン、6−メチル−1,6−ノナジエン、7−メチル−1,6−ノナジエン、6−エチル−1,6−ノナジエン、7−エチル−1,6−ノナジエン、7−メチル−1,7−ノナジエン、8−メチル−1,7−ノナジエン、7−エチル−1,7−ノナジエン、6,7−ジメチル−1,6−ノナジエン、5−メチル−1,4−デカジエン、5−エチル−1,4−デカジエン、5−メチル−1,5−デカジエン、6−メチル−1,5−デカジエン、5−エチル−1,5−デカジエン、6−エチル−1,5−デカジエン、6−メチル−1,6−デカジエン、6−エチル−1,6−デカジエン、7−メチル−1,6−デカジエン、7−エチル−1,6−デカジエン、7−メチル−1,7−デカジエン、8−メチル−1,7−デカジエン、7−エチル−1,7−デカジエン、8−エチル−1,7−デカジエン、8−メチル−1,8−デカジエン、9−メチル−1,8−デカジエン、8−エチル−1,8−デカジエン、6−メチル−1,6−ウンデカジエン、9−メチル−1,8−ウンデカジエンなどが挙げられる。
他の非共役鎖状ポリエンとしては、例えば1,7−オクタジエン、1,9−デカジエン等のα,ω−ジエン等が挙げられる。
また、他の非共役鎖状ポリエンとしては、例えば下記一般式[XVI-I]で表される非共役トリエンまたはテトラエンが挙げられる。
Figure 2015122415
(式[XVI-I]において、pおよびrは、0または1(ただしpとrとは同時に0ではない)、
qは0〜5の整数(ただしpとrの両方が1の場合qは0ではない)、
sは1〜6の整数、
14、R15、R16、R17、R18、R19およびR20はそれぞれ独立して水素原子または炭素数1〜3のアルキル基、
21は炭素数1〜3のアルキル基、
22は水素原子、炭素数1〜3のアルキル基または−(CH2)n−CR23=C(R24)R25で表される基(ここでnは1〜5の整数、R23およびR24はそれぞれ独立して水素原子または炭素数1〜3のアルキル基、R25は炭素数1〜3のアルキル基である)
である。ただしpとrの両方が1の場合、R22は水素原子または炭素数1〜3のアルキル基である。)
上記一般式[XVI-I]で示される非共役トリエンまたはテトラエンの中でも下記一般式[XVI-II]で示される非共役トリエンが好ましい。
Figure 2015122415
(式[XVI-II]において、R16、R17、R20、R21およびR22はそれぞれ独立して水素原子、メチル基またはエチル基である。ただし、R21とR22とが同時に水素原子になることはない。)
なお、上記一般式[XVI-II]で示される非共役トリエンは、上記一般式[XVI-I]で示される非共役トリエンまたはテトラエンにおいてpが0、qが0、rが1、sが2、R18およびR19が水素原子である非共役トリエンである。さらに上記一般式[XVI-II]で示される非共役トリエンの中でも、R20およびR22がどちらもメチル基である化合物好ましい。
上記一般式[XVI-I]で表される非共役トリエンまたはテトラエンとしては、具体的には下記化合物などが挙げられる(ただし、上記一般式[XVI-II]に含まれる化合物は除く)。
Figure 2015122415
Figure 2015122415
Figure 2015122415
上記一般式[XVI-II]で表される非共役トリエンとしては、具体的には下記化合物などが挙げられる。
Figure 2015122415
上記一般式[XVI-I]で表される非共役トリエンまたはテトラエンは公知の方法で製造することができ、その方法は例えば本出願人による特開平9−235327号公報、特開2001−114837号公報などに詳細に記載されている。
本発明1によれば、高分子量のエチレン/α−オレフィン/非共役ポリエン共重合体を生成可能な上記重合触媒を使用することで、エチレン/α−オレフィン/非共役ポリエン共重合体の高温重合が可能となる。すなわち、上記オレフィン重合触媒を使用することにより、高温重合時に生成するエチレン/α−オレフィン/非共役ポリエン共重合体の分子量を所望の高い値に保つことができる。溶液重合においては、生成したエチレン/α−オレフィン/非共役ポリエン共重合体を含む重合溶液の粘度が高温で低下するため、低温重合時に比べて重合器内のエチレン/α−オレフィン/非共役ポリエン共重合体の濃度を上げることが可能となり、結果として重合器当りの生産性が向上する。本発明1におけるエチレン、α−オレフィンおよび非共役ポリエンの共重合は、溶液重合、懸濁重合(スラリー重合)などの液相重合法または気相重合法のいずれにおいても実施できるが、このように、本発明1の効果を最大限享受し得るという観点からは溶液重合が特に好ましい。
上記重合触媒の各成分の使用法、添加順序は任意に選ばれる。また、触媒中の各成分の少なくとも2つ以上は予め接触されていてもよい。
遷移金属化合物(a)(以下「成分(a)」ともいう。)は、反応容積1リットル当り、通常10-9〜10-1モル、好ましくは10-8〜10-2モルになるような量で用いられる。
有機金属化合物(b−1)(以下「成分(b−1)」ともいう。)は、成分(b−1)と、成分(a)中の遷移金属原子(M)とのモル比[(b−1)/M]が通常0.01〜50000、好ましくは0.05〜10000となるような量で用いられる。
有機アルミニウムオキシ化合物(b−2)(以下「成分(b−2)」ともいう。)は、成分(b−2)中のアルミニウム原子と、成分(a)中の遷移金属原子(M)とのモル比[(b−2)/M]が、通常10〜5000、好ましくは20〜2000となるような量で用いられる。
遷移金属化合物(a)と反応してイオン対を形成する化合物(b−3)(以下「成分(b−3)」ともいう。)は、成分(b−3)と、成分(a)中の遷移金属原子(M)とのモル比[(b−3)/M]が通常1〜10000、好ましくは1〜5000となるような量で用いられる。
重合温度は通常50℃〜300℃、好ましくは80℃以上、より好ましくは80℃〜250℃、更に好ましくは100℃〜200℃である。上述の通り、本発明1においては、高温重合を行うことによって生産性の向上および生産コストの低減という利点が得られるが、重合温度が300℃を過度に超えると得られるポリマーに劣化が起こる場合があるので好ましくない。また、本発明1で製造されるエチレン/α−オレフィン/非共役ポリエン共重合体の性状の観点から、重合温度が100℃〜200℃の領域において、フィルム等多くの産業分野で好適に用いられるエチレン/α−オレフィン/非共役ポリエン共重合体を効率良く生産することが可能である。
重合圧力は、通常、常圧〜10MPaゲージ圧(MPa-G)、好ましくは常圧〜8 MPa-Gである。
重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに、重合を反応条件の異なる二つ以上の重合器で連続的に行うことも可能である。
得られるエチレン/α−オレフィン/非共役ポリエン共重合体の分子量は、重合系中の水素濃度や重合温度を変化させることによって調節することができる。さらに、使用する成分(b)の量により調節することもできる。水素を添加する場合、その量は生成するエチレン/α−オレフィン/非共役ポリエン共重合体1kgあたり0.001〜5000NL程度が適当である。
液相重合法において用いられる重合溶媒は、通常、不活性炭化水素溶媒であり、好ましくは常圧下における沸点が50℃〜200℃の飽和炭化水素である。重合溶媒としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素が挙げられ、特に好ましくは、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサンが挙げられる。重合対象であるα−オレフィン自身を重合溶媒として用いることもできる。尚、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類やエチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素も重合溶媒として使用することが出来るが、環境への負荷軽減の視点および人体健康への影響の最少化の視点からは、これらの使用は好ましくない。
本発明1の製造方法により製造されるエチレン/α−オレフィン/非共役ポリエン共重合体は、(i)エチレンから誘導される構造単位(エチレン単位)と、(ii)炭素数3以上のα−オレフィンから誘導される構造単位(α−オレフィン単位)とを、モル比[(i)/(ii)]で表して通常99/1〜1/99の範囲で含有するが、特に制限はない。
本発明1の製造方法により製造されるエチレン/α−オレフィン/非共役ポリエン共重合体のエチレンに由来する構造単位の含有量は、α―オレフィンがプロピレンである場合は通常50mol%以上、α―オレフィンの炭素数が4〜20である場合は通常40mol以上である。
また本発明1の製造方法により製造されるエチレン/α−オレフィン/非共役ポリエン共重合体の非共役ポリエン化合物に由来する構造単位は、特に制限はないが、全構造単位中、通常0.1〜49mol%、好ましくは0.2〜8mol%、さらに好ましくは0.3〜5mol%の割合の範囲にある。
本発明1の製造方法により製造される、エチレン/α−オレフィン/非共役ポリエン共重合体の135℃デカリン中で測定した極限粘度[η]は、特に制限はないが、通常0.02〜20 dl/g、好ましくは0.05〜10 dl/gの範囲にある。[η]が当該範囲内にあると、成形加工性に優れる点で好ましい。
本発明1の製造方法により製造されるエチレン/α−オレフィン/非共役ポリエン共重合体は、下記式[XVII]により算出されるB値が、B値≧1.05であることが好ましい。
B値=(c+d)/[2×a×(e+f)] ‥‥[XVII]
(式[XVII]中、a、eおよびfはそれぞれ前記エチレン/α−オレフィン/非共役ポリエン共重合体中のエチレンモル分率、α−オレフィンモル分率および非共役ポリエンモル分率であり、cはエチレン-α−オレフィンダイアッドモル分率、dはエチレン-非共役ポリエンダイアッドモル分率である。)
B値は、共重合体中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式[XVII]中のa、c、d、e、fは、13C NMRスペクトルを測定し、J. C. Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
B値≧1.05であるエチレン/α−オレフィン/非共役ポリエン共重合体は、B値<1.05であるエチレン/α−オレフィン/非共役ポリエン共重合体と比べ、モノマーの交互共重合性が強く、結果、エチレン平均連鎖長が短く、重要物性の一つである低温特性が良好である。またこのB値が大きいほど、α−オレフィン単位または非共役ポリエン単位のブロック的連鎖が短く(交互共重合性が強く)、α−オレフィン単位および非共役ポリエン単位の分布が一様であることを示している。一方、B値が小さいほど非共役ポリエン系共重合体のα−オレフィン単位および非共役ポリエン単位の分布が一様でなく(交互共重合性が弱く)、ブロック的連鎖が長い。このブロック的連鎖の長さがエチレン/α−オレフィン/非共役ポリエン共重合体の物性面における特性に影響を及ぼすことになり、例えば、B値が大きいほどブロック的連鎖が短く、良好な低温特性を示す。また、B値が1.00よりも小さいほどエチレン/α−オレフィン/非共役ポリエン共重合体のポリマー鎖中の組成分布は広く、このような共重合体は、組成分布の狭い共重合体に比べて、例えば加硫した場合には強度などの物性を充分に発現しないことがある。
本発明1の製造方法により、B値≧1.05であるエチレン/α−オレフィン/非共役ポリエン共重合体が得られるが、例えば、チタン系非メタロセン触媒を用いた場合、あるいは特表2001−522398号公報記載の幾何拘束型触媒を用いた場合、得られるエチレン/α−オレフィン/非共役ポリエン共重合体のB値は1.05未満である。
本発明1の製造方法によって得られるエチレン/α−オレフィン/非共役ポリエン共重合体のGPCにより測定された重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、通常1.0〜4.0、好ましくは1.2〜3.5、さらに好ましくは1.5〜3.2である。Mw/Mnが当該範囲内にあると、機械強度と加工性(混練、押出)のバランスの点で好ましい。
次に本発明2について説明するが、本発明2−1、2−2および2−3は、本発明2のエチレン・α−オレフィン・非共役ポリエン共重合体を含む組成物に関する発明であるため、本発明2についての説明の中で、本発明2−1、2−2および2−3についても説明することがある。
〔本発明2〕
《エチレン・α−オレフィン・非共役ポリエン共重合体》
本発明2のエチレン・α−オレフィン・非共役ポリエン共重合体は、エチレン[A]に由来する構造単位、炭素数4〜20のα−オレフィン[B]に由来する構造単位、および非共役ポリエン[C]に由来する構造単位を含み、下記(1)〜(4)を満たすエチレン・α−オレフィン・非共役ポリエン共重合体である。なお、このような特定のエチレン・α−オレフィン・非共役ポリエン共重合体を「エチレン系共重合体A」ともいう。
なお、炭素数4〜20のα−オレフィン[B]および非共役ポリエン[C]としてはそれぞれを、1種のみ用いても、2種以上用いてもよい。すなわち、本発明2のエチレン・α−オレフィン・非共役ポリエン共重合体は、エチレン[A]に由来する構造単位、少なくとも1種類の炭素数4〜20のα−オレフィン[B]に由来する構造単位、および少なくとも1種類の非共役ポリエン[C]に由来する構造単位を含む。
(1)エチレン[A]に由来する構造単位と、α−オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60〜90/10であり、
(2)非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1〜6.0モル%であり、
(3)125℃におけるムーニー粘度ML(1+4)125℃が、5〜100であり、
(4)下記式(i)で表されるB値が1.20以上である
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4〜20のα−オレフィン[B]、および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]−炭素数4〜20のα−オレフィン[B]ダイアッド連鎖分率を示す。
炭素数4〜20のα−オレフィン[B]としては、側鎖の無い直鎖の構造を有する、炭素数4の1−ブテンからはじまり、炭素数9の1−ノネンや炭素数10の1−デセンを経て、炭素数19の1−ノナデセン、炭素数20の1−エイコセン、並びに側鎖を有する4−メチル−1−ペンテン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセンなどが挙げられる。
これらのα−オレフィン[B]は単独で、または2種以上組み合わせて用いることができる。これらの中では、炭素数4〜10のα−オレフィンが好ましく、特に1−ブテン、1−ヘキセン、1−オクテンなどが好ましく、特に1−ブテンが好適である。
α‐オレフィンがプロピレンであるエチレン・プロピレン・非共役ポリエン共重合体は、低温でのゴム弾性が不充分である傾向があり、用途が限定される場合がある。一方、エチレン系共重合体Aは、炭素数4〜20のα−オレフィン[B]に由来する構造単位を有しているので、低温でのゴム弾性に優れている。また、本発明2−2の組成物(該エチレン系共重合体Aを含む組成物)から得られる成形体は、Tgが小さく、広い周波数領域で高い遮音性能を示す。
非共役ポリエン[C]としては、具体的には、1,4−ヘキサジエン、1,6−オクタジエン、2−メチル−1,5−ヘキサジエン、6−メチル−1,5−ヘプタジエン、7−メチル−1,6−オクタジエン等の鎖状非共役ジエン;シクロヘキサジエン、ジシクロペンタジエン、メチルテトラヒドロインデン、5−ビニル−2−ノルボルネン、5−エチリデン−2−ノルボルネン、5−メチレン−2−ノルボルネン、5−イソプロピリデン−2−ノルボルネン、6−クロロメチル−5−イソプロペニル−2−ノルボルネン等の環状非共役ジエン;2,3−ジイソプロピリデン−5−ノルボルネン、2−エチリデン−3−イソプロピリデン−5−ノルボルネン、2−プロペニル−2,5−ノルボルナジエン、1,3,7−オクタトリエン、1,4,9−デカトリエン、4,8−ジメチル−1,4,8−デカトリエン、4−エチリデン−8−メチル−1,7−ノナジエン等のトリエンが挙げられる。
これらの非共役ポリエン[C]は単独で、または2種以上を組み合わせて用いることができる。
これらの中でも、1,4−ヘキサジエンなどの鎖状非共役ジエン、5−エチリデン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、5−ビニル−2−ノルボルネンなどの環状非共役ジエンが好ましく、中でも環状非共役ジエンが好ましく、5−エチリデン−2−ノルボルネン、5−ビニル−2−ノルボルネンが特に好ましい。
エチレン系共重合体Aとしては、以下を挙げることができる。エチレン・1−ブテン・1,4−ヘキサジエン共重合体、エチレン・1−ペンテン・1,4−ヘキサジエン共重合体、エチレン・1−ヘキセン・1,4−ヘキサジエン共重合体、エチレン・1−へプテン・1,4−ヘキサジエン共重合体、エチレン・1−オクテン・1,4−ヘキサジエン共重合体、エチレン・1−ノネン・1,4−ヘキサジエン共重合体、エチレン・1−デセン・1,4−ヘキサジエン共重合体、エチレン・1−ブテン・1−オクテン・1,4−ヘキサジエン共重合体、エチレン・1−ブテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ペンテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ヘキセン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−へプテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−オクテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ノネン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−デセン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ブテン・1−オクテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ブテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−ペンテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−ヘキセン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−へプテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−オクテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−ノネン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−デセン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−ブテン・1−オクテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体。
エチレン系共重合体Aは、必要に応じて1種類、または2種類以上が用いられる。
エチレン系共重合体Aは、(1)エチレン[A]に由来する構造単位と、α−オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60〜90/10の範囲にある。[A]/[B]の下限としては、好ましくは45/55、より好ましくは50/50、特に好ましくは55/45である。また、[A]/[B]の上限としては、好ましくは80/20、より好ましくは75/25、さらに好ましくは70/30、特に好ましくは65/35である。
エチレン[A]に由来する構造単位と、α−オレフィン[B]に由来する構造単位とのモル比が上記範囲にあると、低温でのゴム弾性と常温での引張強度とのバランスに優れるエチレン系共重合体が得られる。
エチレン系共重合体Aは、(2)非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1〜6.0モル%の範囲ある。[C]に由来する構造単位の含有量の下限としては、好ましくは0.5モル%である。[C]に由来する構造単位の含有量の上限としては、好ましくは4.0モル%、より好ましくは3.5モル%、さらに好ましくは3.0モル%である。
なお、エチレン系共重合体Aを、本発明2−1に用いる場合には、非共役ポリエン[C]に由来する構造単位の含有量が、最も好ましくは0.5〜3.3モル%の範囲にある。
非共役ポリエン[C]に由来する構造単位の含有量が上記範囲にあると、充分な架橋性および柔軟性を有するエチレン系共重合体が得られる。
エチレン系共重合体Aは、(3)125℃におけるムーニー粘度ML(1+4)125℃が5〜100、好ましくは20〜95、特に好ましくは50〜90の範囲にある。なお、エチレン系共重合体Aを、本発明2−1に用いる場合には、ムーニー粘度ML(1+4)125℃が、好ましくは8〜95、特に好ましくは8〜80の範囲にある。なお、エチレン系共重合体Aを、本発明2−2に用いる場合には、好ましくは5〜50、特に好ましくは5〜30の範囲にある。
ムーニー粘度が上記範囲にあると、エチレン系共重合体は、加工性および流動性が良好であり、また良好な後処理品質(リボンハンドリング性)を示すと共に優れたゴム物性を有するエチレン系共重合体が得られる。
エチレン系共重合体Aは、(4)B値が1.20以上、好ましくは1.20〜1.80、特に好ましくは1.22〜1.40の範囲にある。
B値が1.20未満のエチレン系共重合体は、低温での圧縮永久ひずみが大きくなり、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン系共重合体が得られない虞がある。
B値が上記範囲にあるエチレン系共重合体Aは、共重合体を構成するモノマー単位の交互性が高く結晶性が低いため、本発明2−2に用いると得られる組成物の加工性が向上し、また得られる成形体の遮音性能が向上する。
なお、上記(4)におけるB値は、共重合体中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式(i)中の[E]、[X]、[Y]、[EX]は、13C−NMRスペクトルを測定し、J. C.Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。一方、上記(1)〜(2)における、エチレン[A]に由来する構造単位、α−オレフィン[B]に由来する構造単位および非共役ポリエン[C]に由来する構造単位のモル量は、1H−NMRスペクトルメーターによる強度測定によって求めることができる。
《エチレン・α−オレフィン・非共役ポリエン共重合体の製造方法》
前記エチレン・α−オレフィン・非共役ポリエン共重合体(エチレン系共重合体A)は、以下の製造方法で得ることができる。
具体的には、(a)下記一般式[VII]で表される遷移金属化合物(以下「架橋メタロセン化合物」ともいう)と、(b)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とを含むオレフィン重合触媒の存在下において、エチレンと炭素数4〜20のα-オレフィンと非共役ポリエンとを共重合することにより、上記共重合体は製造し得る。
Figure 2015122415
(式[VII]において、
Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であり、
Qはハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
jは1〜4の整数である。)
<架橋メタロセン化合物(a)>
架橋メタロセン化合物(a)としては、本発明1で説明した遷移金属化合物(a)における遷移金属化合物(a−3)において、R5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であるものを用いることができる。
〈架橋メタロセン化合物をエチレン・α―オレフィン・非共役ポリエン共重合体用触媒に供する際の好ましい形態〉
次に上記架橋メタロセン化合物を、エチレン・α―オレフィン・非共役ポリエン共重合体用触媒(オレフィン重合触媒)として用いる場合の好ましい形態について説明する。
架橋メタロセン化合物をオレフィン重合触媒成分として用いる場合、触媒は、(a)前記一般式[VII]で表される架橋メタロセン化合物と、(b)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)架橋メタロセン化合物(a)と反応してイオン対を形成する化合物、から選ばれる少なくとも1種の化合物と、さらに必要に応じて、(c)粒子状担体とから構成される。
以下、各成分について具体的に説明する。
〈(b−1)有機金属化合物〉
(b−1)有機金属化合物として、具体的には下記一般式[VII]〜[IX]のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
(b−1a)一般式 Ra mAl(ORbnpq ・・・[VII](式[VII]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
このような化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn−オクチルアルミニウムなどのトリアルキルアルミニウム、トリシクロアルキルアルミニウム、イソブチルアルミニウムジクロリド、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジイソブチルアルミニウムハイドライドを例示することができる。
(b−1b)一般式 M2AlRa 4 ・・・[VIII](式[VIII]中、M2はLi、NaまたはKを示し、Raは炭素数が1〜15、好ましくは1〜4の炭化水素基である。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
このような化合物として、LiAl(C254、LiAl(C7154などを例示することができる。
(b−1c)一般式 Rab3 ・・・[IX](式[IX]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数が1〜15、好ましくは1〜4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属を有するジアルキル化合物。
上記の有機金属化合物(b−1)の中では、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn−オクチルアルミニウムなどの有機アルミニウム化合物が好ましい。また、このような有機金属化合物(b−1)は、1種単独で用いてもよいし2種以上組み合わせて用いてもよい。
〈(b−2)有機アルミニウムオキシ化合物〉
(b−2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
従来公知のアルミノキサンは、例えば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。(1)吸着水を含有する化合物または結晶水を含有する塩類、例えば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(b−1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、中でも、トリメチルアルミニウム、トリイソブチルアルミニウムが特に好ましい。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。
また(b−2)有機アルミニウムオキシ化合物の一態様であるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算でベンゼン100重量%に対して通常10重量%以下、好ましくは5重量%以下、特に好ましくは2重量%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。
(b−2)有機アルミニウムオキシ化合物としては、下記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Figure 2015122415
〔式[X]中、R1は炭素数が1〜10の炭化水素基を示し、R2〜R5は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素数が1〜10の炭化水素基を示す。〕
前記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式[XI]で表されるアルキルボロン酸と、
1−B(OH)2 …[XI]
(式[XI]中、R1は前記一般式[X]におけるR1と同じ基を示す。)
有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、−80℃〜室温の温度で1分〜24時間反応させることにより製造できる。
前記一般式[XI]で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n−プロピルボロン酸、n−ブチルボロン酸、イソブチルボロン酸、n−ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5−ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5−ビス(トリフルオロメチル)フェニルボロン酸などが挙げられる。
これらの中では、メチルボロン酸、n−ブチルボロン酸、イソブチルボロン酸、3,5−ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記(b−1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。上記のような(b−2)有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合せて用いられる。
〈(b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物〉
上記遷移金属化合物(a)と反応してイオン対を形成する化合物(b−3)(以下、「イオン化イオン性化合物」という。)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、USP−5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。このようなイオン化イオン性化合物(b−3)は、1種単独でまたは2種以上組み合せて用いられる。
具体的には、ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である)で示される化合物が挙げられ、たとえばトリフルオロボロン、トリフェニルボロン、トリス(4−フルオロフェニル)ボロン、トリス(3,5−ジフルオロフェニル)ボロン、トリス(4−フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p−トリル)ボロン、トリス(o−トリル)ボロン、トリス(3,5−ジメチルフェニル)ボロンなどが挙げられる。
イオン性化合物としては、例えば下記一般式[XII]で表される化合物が挙げられる。
Figure 2015122415
(式[XII]中、R1+としては、H+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。R2〜R5は、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基または置換アリール基である。)
前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n−ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;
N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオンなどのN,N−ジアルキルアニリニウムカチオン;
ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
1+としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオンが好ましい。
またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N−ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩などを挙げることもできる。
トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリ(n−ブチル)アンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p−トリル)ホウ素、トリメチルアンモニウムテトラ(o−トリル)ホウ素、トリ(n−ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p−ジメチルフェニル)ホウ素、トリ(n−ブチル)アンモニウムテトラ(N、N−ジメチルフェニル)ホウ素、トリ(n−ブチル)アンモニウムテトラ(p−トリフルオロメチルフェニル)ホウ素、トリ(n−ブチル)アンモニウムテトラ(3、5−ジトリフルオロメチルフェニル)ホウ素、トリ(n−ブチル)アンモニウムテトラ(o−トリル)ホウ素などが挙げられる。
N,N−ジアルキルアニリニウム塩として具体的には、たとえばN,N−ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N−ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N,2,4,6−ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。
ジアルキルアンモニウム塩として具体的には、たとえばジ(1−プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。
さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N−ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式[XIII]または[XIV]で表されるホウ素化合物などを挙げることもできる。
Figure 2015122415
(式[XIII]中、Etはエチル基を示す。)
Figure 2015122415
(式[XIV]中、Etはエチル基を示す。)
ボラン化合物として具体的には、たとえばデカボラン;ビス〔トリ(n−ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n−ブチル)アンモニウム〕デカボレート、ビス〔トリ(n−ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n−ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n−ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n−ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩;トリ(n−ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n−ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
カルボラン化合物として具体的には、たとえば4−カルバノナボラン、1,3−ジカルバノナボラン、6,9−ジカルバデカボラン、ドデカハイドライド−1−フェニル−1,3−ジカルバノナボラン、ドデカハイドライド−1−メチル−1,3−ジカルバノナボラン、ウンデカハイドライド−1,3−ジメチル−1,3−ジカルバノナボラン、7,8−ジカルバウンデカボラン、2,7−ジカルバウンデカボラン、ウンデカハイドライド−7,8−ジメチル−7,8−ジカルバウンデカボラン、ドデカハイドライド−11−メチル−2,7−ジカルバウンデカボラン、トリ(n−ブチル)アンモニウム1−カルバデカボレート、トリ(n−ブチル)アンモニウム−1−カルバウンデカボレート、トリ(n−ブチル)アンモニウム−1−カルバドデカボレート、トリ(n−ブチル)アンモニウム−1−トリメチルシリル−1−カルバデカボレート、トリ(n−ブチル)アンモニウムブロモ−1−カルバドデカボレート、トリ(n−ブチル)アンモニウム−6−カルバデカボレート、トリ(n−ブチル)アンモニウム−7−カルバウンデカボレート、トリ(n−ブチル)アンモニウム−7,8−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウム−2,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムドデカハイドライド−8−メチル−7,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−8−エチル−7,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−8−ブチル―7,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−8−アリル−7,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−9−トリメチルシリル−7,8−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−4,6−ジブロモ−7−カルバウンデカボレートなどのアニオンの塩;トリ(n−ブチル)アンモニウムビス(ノナハイドライド−1,3−ジカルバノナボレート)コバルト酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)鉄酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)銅酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)金酸塩(III)、トリ(n−ブチル)アンモニウムビス(ノナハイドライド−7,8−ジメチル−7,8−ジカルバウンデカボレート)鉄酸塩(III)、トリ(n−ブチル)アンモニウムビス(ノナハイドライド−7,8−ジメチル−7,8−ジカルバウンデカボレート)クロム酸塩(III)、トリ(n−ブチル)アンモニウムビス(トリブロモオクタハイドライド−7,8−ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n−ブチル)アンモニウム〕ビス(ウンデカハイドライド−7−カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n−ブチル)アンモニウム〕ビス(ウンデカハイドライド−7−カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n−ブチル)アンモニウム〕ビス(ウンデカハイドライド−7−カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n−ブチル)アンモニウム〕ビス(ウンデカハイドライド−7−カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素および錫から選ばれる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジン酸、ゲルマノタングストバナジン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、およびこれらの酸の塩、例えば周期表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、トリフェニルエチル塩等の有機塩が使用できるが、この限りではない。
(b−3)イオン化イオン性化合物の中では、上述のイオン性化合物が好ましく、その中でもトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートがより好ましい。
(b−3)イオン化イオン性化合物は、1種単独でまたは2種以上組み合せて用いられる。
上記一般式[VII]で表される遷移金属化合物(a)を触媒とする場合、トリイソブチルアルミニウムなどの有機金属化合物(b−1)、メチルアルミノキサンなどの有機アルミニウムオキシ化合物(b−2)またはトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b−3)を併用すると、エチレン・α−オレフィン・非共役ポリエン共重合体の製造に際して非常に高い重合活性を示す。
また、上記オレフィン重合用触媒は、上記遷移金属化合物(a)と、(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(b)とともに、必要に応じて担体(c)を用いることもできる。
〈(c)担体〉
本発明2で、必要に応じて用いられる(c)担体は、無機化合物または有機化合物であって、顆粒状ないしは微粒子状の固体である。
このうち無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
多孔質酸化物として、具体的にはSiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2など、またはこれらを含む複合物または混合物を使用、例えば天然または合成ゼオライト、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgOなどを使用することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明2に好ましく用いられる担体は、粒径が10〜300μm、好ましくは20〜200μmであって、比表面積が50〜1000m2/g、好ましくは100〜700m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成して使用される。
無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。
粘土は、通常粘土鉱物を主成分として構成される。また、イオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α−Zr(HAsO42・H2O、α−Zr(HPO42、α−Zr(KPO42・3H2O、α−Ti(HPO42、α−Ti(HAsO42・H2O、α−Sn(HPO42・H2O、γ−Zr(HPO42、γ−Ti(HPO42、γ−Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。
このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3〜5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20〜30000Åの範囲について測定される。
半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオンなどが挙げられる。これらの化合物は単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
有機化合物としては、粒径が10〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどの炭素数が2〜14のα−オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
オレフィン重合用触媒は、遷移金属化合物(a)と、(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(b)と、必要に応じて用いられる担体(c)を含むこともできる。
〈エチレン・α―オレフィン・非共役ポリエン共重合体用触媒の存在下でモノマー類を重合する方法〉
エチレン、α−オレフィン、および非共役ポリエンを共重合させる際、重合触媒を構成する各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。(1)前記化合物(a)を単独で重合器に添加する方法。(2)前記化合物(a)および前記化合物(b)を任意の順序で重合器に添加する方法。(3)前記化合物(a)を前記担体(c)に担持した触媒成分、前記化合物(b)を任意の順序で重合器に添加する方法。(4)前記化合物(b)を前記担体(c)に担持した触媒成分、前記化合物(a)を任意の順序で重合器に添加する方法。(5)前記化合物(a)と前記化合物(b)とを前記担体(c)に担持した触媒成分を重合器に添加する方法。
上記(2)〜(5)の各方法においては、化合物(a)、化合物(b)、担体(c)の少なくとも2つは予め接触されていてもよい。
化合物(b)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない化合物(b)を、任意の順序で添加してもよい。この場合化合物(b)は、担体(c)に担持されている化合物(b)と同一でも異なっていてもよい。
また、上記の担体(c)に化合物(a)が担持された固体触媒成分、担体(c)に化合物(a)および化合物(b)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
エチレン・α−オレフィン・非共役ポリエン共重合体の製造方法では、上記のようなエチレン・α−オレフィン・非共役ポリエン共重合体用触媒の存在下に、エチレン、α−オレフィン、および非共役ポリエンを共重合することによりエチレン・α−オレフィン・非共役ポリエン共重合体を製造し得る。
本発明2では、溶液(溶解)重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施可能である。
液相重合法において用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が挙げられ、1種単独で、あるいは2種以上組み合わせて用いることができる。また、オレフィン自身を溶媒として用いることもできる。
上記のような共重合体用触媒を用いて、エチレンなどの重合を行うに際して、化合物(a)は、反応容積1リットル当り、通常10-12〜10-2モル、好ましくは10-10〜10-8モルになるような量で用いられる。
化合物(b−1)は、化合物(b−1)と、化合物(a)中の全遷移金属原子(M)とのモル比〔(b−1)/M〕が通常0.01〜50000、好ましくは0.05〜10000となるような量で用いられる。化合物(b−2)は、化合物(b−2)中のアルミニウム原子と、化合物(a)中の全遷移金属(M)とのモル比〔(b−2)/M〕が、通常10〜50000、好ましくは20〜10000となるような量で用いられる。化合物(b−3)は、化合物(b−3)と、化合物(a)中の遷移金属原子(M)とのモル比〔(b−3)/M〕が、通常1〜20、好ましくは1〜15となるような量で用いられる。
また、このような共重合体用触媒を用いた重合温度は、通常−50〜+200℃、好ましくは0〜200℃の範囲、より好ましくは、80〜200℃の範囲であり、用いる共重合体用触媒系の到達分子量、重合活性によるが、より高温(80℃以上)であることが生産性の観点から望ましい。
重合圧力は、通常常圧〜10MPaゲージ圧、好ましくは常圧〜5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
得られるエチレン系共重合体Aの分子量は、重合系内に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、使用する化合物(b)の量により調節することもできる。具体的には、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等が挙げられる。水素を添加する場合、その量はオレフィン1kgあたり0.001〜100NL程度が適当である。
《エチレン・α−オレフィン・非共役ポリエン共重合体を含む組成物》
本発明2のエチレン・α−オレフィン・非共役ポリエン共重合体は、一般に軟化剤、充填剤等を配合した組成物(「ゴム組成物」とも言う。)として用いられ、成形し、架橋されることにより所望の成形体を得ることができる。
これらの配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて配合される他のポリマー(エラストマー、ゴム等)の合計100重量部に対して、一般に軟化剤0.1〜200重量部、充填剤1〜300重量部である。
また、このゴム組成物には、軟化剤、充填剤、架橋剤の他、用途により、目的に応じて他の添加剤、例えば、加工助剤、活性剤、吸湿剤、さらに耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤および増粘剤等を配合することが行われる。
また、本発明2のエチレン・α-オレフィン・非共役ポリエン共重合体、あるいはそれを含むゴム組成物には、必要に応じて他のエラストマー、ゴム等を配合することもできる。
ゴム組成物として用いられる場合、ゴム組成物中のエチレン・α−オレフィン・非共役ポリエン共重合体の割合は、一般に20重量%以上、好ましくは30〜90重量%である。
本発明2に係るゴム組成物は、エチレン・α−オレフィン・非共役ポリエン共重合体と、必要に応じて配合されるその他の成分を、例えば、ミキサー、ニーダー、ロールなどの混練機を用いて所望の温度で混練することにより調製することができる。本発明2のエチレン・α−オレフィン・非共役ポリエン共重合体は、混練性に優れているので、ゴム組成物の調製を良好に行うことができる。
〈架橋剤〉
本発明2に係る架橋剤としては、有機過酸化物、フェノール樹脂、硫黄系化合物、ヒドロシリコーン系化合物、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート系化合物等の、ゴムを架橋する際に一般に使用される架橋剤が挙げられる。これらのうちでは、有機過酸化物、硫黄系化合物等の架橋剤(「加硫剤」ともいう。)が好適である。
有機過酸化物としては、ジクミルペルオキシド(DCP)、ジ−tert−ブチルペルオキシド、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p−クロロベンゾイルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、tert−ブチルペルオキシベンゾエート、ert−ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert−ブチルクミルペルオキシド等が挙げられる。
このうちでは、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル-2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル-2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート等の2官能性の有機過酸化物が好ましく、中でも、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサンが最も好ましい。
架橋剤として、有機過酸化物を用いる場合、その配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて配合される他の架橋が必要なポリマー(ゴム等)の合計100重量部に対して、一般に0.1〜20重量部、好ましくは0.2〜15重量部である、さらに好ましくは0.5〜10重量部である。有機過酸化物の配合量が上記範囲内であると、得られる成形体の表面へのブルームなく、ゴム組成物が優れた架橋特性を示すので好適である。
また、架橋剤として、有機過酸化物を用いる場合、架橋助剤を併用することが好ましい。架橋助剤として、例えば、イオウ;p−キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種(JIS規格(K−1410))、ハクスイテック(株)社製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)等の金属酸化物などが挙げられる。架橋助剤の配合量は、有機過酸化物1モルに対して、通常0.5〜10モル、好ましくは0.5〜7モル、より好ましくは1〜5モルである。
架橋剤として硫黄系化合物(加硫剤)を用いる場合、具体例としては、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレン等が挙げられる。
架橋剤として硫黄系化合物を用いる場合、その配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて配合される他の架橋が必要なポリマー(ゴム等)の合計100重量部に対して、通常は0.3〜10重量部、好ましくは0.5〜7.0重量部、さらに好ましくは0.7〜5.0重量部である。硫黄系化合物の配合量が上記範囲内であると、成形体の表面へのブルームがなく、優れた架橋特性を示す。
次に、上記架橋剤として硫黄系化合物を用いる場合には、加硫促進剤を併用することが好ましい。
前記加硫促進剤としては、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N,N'−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド、2−メルカプトベンゾチアゾール(例えば、サンセラーM(商品名;三新化学工業社製))、2−(4−モルホリノジチオ)ペンゾチアゾール(例えば、ノクセラーMDB−P(商品名;大内新興化学工業社製))、2−(2,4−ジニトロフェニル)メルカプトベンゾチアゾール、2−(2,6−ジエチル−4−モルフォリノチオ)ベンゾチアゾールおよびジベンゾチアジルジスルフィド(例えば、サンセラーDM(商品名;三新化学工業社製))などのチアゾール系加硫促進剤;ジフェニルグアニジン、トリフェニルグアニジンおよびジオルソトリルグアニジンなどのグアニジン系加硫促進剤;アセトアルデヒド・アニリン縮合物およびブチルアルデヒド・アニリン縮合物などのアルデヒドアミン系加硫促進剤;2−メルカプトイミダゾリンなどのイミダゾリン系加硫促進剤;ジエチルチオウレアおよびジブチルチオウレアなどのチオウレア系加硫促進剤;テトラメチルチウラムモノスルフィド(例えば、サンセラーTS(商品名;三新化学工業社製))、テトラメチルチウラムジスルフィド(例えば、サンセラーTT(商品名;三新化学工業社製))、テトラエチルチウラムジスルフィド(例えば、サンセラーTET(商品名;三新化学工業社製))、テトラブチルチウラムジスルフィド(例えば、サンセラーTBT(商品名;三新化学工業社製))およびジペンタメチレンチウラムテトラスルフィド(例えば、サンセラーTRA(商品名;三新化学工業社製))などのチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛(例えば、サンセラーPZ、サンセラーBZおよびサンセラーEZ(商品名;三新化学工業社製))およびジエチルジチオカルバミン酸テルルなどのジチオ酸塩系加硫促進剤;エチレンチオ尿素(例えば、サンセラーBUR(商品名;三新化学工業社製)、サンセラー22−C(商品名;三新化学工業社製))、N,N'−ジエチルチオ尿素およびN,N'−ジブチルチオ尿素などのチオウレア系加硫促進剤;ジブチルキサトゲン酸亜鉛などのザンテート系加硫促進剤;その他、亜鉛華(例えば、META−Z102(商品名;井上石灰工業社製、酸化亜鉛))などが挙げられる。
これらの加硫促進剤の配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて配合される他の架橋が必要なポリマー(ゴム等)の合計100重量部に対して、一般に0.1〜20重量部、好ましくは0.2〜15重量部、さらに好ましくは0.5〜10重量部である。この範囲内では、得られるゴム成形体の表面へのブルームなく、優れた架橋特性を示す。
〈加硫助剤〉
本発明2に係る加硫助剤は、架橋剤が硫黄系化合物である場合に用いられ、例えば、酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)などが挙げられる。
その配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて配合される架橋が必要な他のポリマー(ゴム等)の合計100重量部に対して、通常1〜20重量部である。
〈軟化剤〉
本発明2に係る軟化剤の具体例としては、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油系軟化剤;蜜ロウ、カルナウバロウ等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム等の脂肪酸またはその塩;ナフテン酸、パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート等のエステル系軟化剤;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、炭化水素系合成潤滑油、トール油、サブ(ファクチス)などが挙げられ、石油系軟化剤が好ましく、プロセスオイルが特に好ましい。
ゴム組成物中の軟化剤の配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて配合される他のポリマー(エラストマー、ゴム等)成分の合計100重量部に対して、一般に2〜100重量部、好ましくは10〜100重量部である。
〈無機充填剤〉
本発明2に係る無機充填剤の具体例としては、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどの1種類または2種類以上が使用され、これらのうちでは、「ホワイトンSB」(商品名;白石カルシウム株式会社)等の重質炭酸カルシウムが好ましい。
ゴム組成物が、無機充填剤を含有する場合には、無機充填剤の配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて配合される他のポリマー(エラストマー、ゴム等)の合計100重量部に対して、通常は2〜50重量部、好ましくは5〜50重量部である。配合量が上記範囲内であると、ゴム組成物の混練加工性が優れており、機械特性に優れた成形体を得ることができる。
〈補強剤〉
本発明2に係る補強剤の具体例としては、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、炭酸カルシウム、活性化炭酸カルシウム、微粉タルク、微分ケイ酸などがあり、配合する場合には、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて他のポリマー(エラストマー、ゴム等)の合計100重量部に対して、一般に30〜200重量部、好ましくは50〜180重量部である。
〈老化防止剤(安定剤)〉
本発明2に係る組成物に、老化防止剤(安定剤)を配合することにより、これから形成される成形体の寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
さらに、老化防止剤として、フェニルブチルアミン、N,N−ジ−2−ナフチル−p―フェニレンジアミン等の芳香族第2アミン系老化防止剤;ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシ)ヒドロシンナメート]メタン等のフェノール系老化防止剤;ビス[2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−t−ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2−メルカプトベンゾイルイミダゾール、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤等がある。
これらの老化防止剤は、1種単独であるいは2種以上の組み合わせで用いることができ、その配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体および他のポリマー(エラストマー、ゴム等)の合計100重量部に対して、通常は0.3〜10重量部、好ましくは0.5〜7.0重量部である。このような範囲内とすることにより、得られるゴム組成物から得られる成形体の表面のブルームがなく、さらに加硫阻害が発生を抑制することができる。
〈加工助剤〉
本発明2に係る加工助剤としては、一般に加工助剤としてゴムに配合されるものを広く用いることができる。
加工助剤の具体例としては、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム、エステル類などが挙げられる。これらのうち、ステアリン酸が好ましい。
加工助剤の配合量は、ゴム組成物に含まれるエチレン・α−オレフィン・非共役ポリエン共重合体およびそのエチレン系共重合体以外のポリマー(エラストマー、ゴム等)100重量部に対して、通常は10重量部以下、好ましくは8.0重量部以下である。
〈活性剤〉
活性剤の具体例としては、ジ−n−ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;クタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物などが挙げられる。
活性剤を含有する場合は、その配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体およびそれ以外のポリマー(エラストマー、ゴム等)100重量部に対して、通常は0.2〜10重量部、好ましくは0.3〜5重量部である。
〈吸湿剤〉
吸湿剤の具体例としては、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンなどが挙げられる。
吸湿剤を含有する場合は、その配合量は、エチレン・α−オレフィン・非共役ポリエン共重合体およびその他のポリマー(エラストマー、ゴム等)100重量部に対して、通常は0.5〜15重量部、好ましくは1.0〜12重量部である。
《成形体》
本発明2のエチレン・α−オレフィン・非共役ポリエン共重合体、架橋されたエチレン・α−オレフィン・非共役ポリエン共重合体、あるいはエチレン・α−オレフィン・非共役ポリエン共重合体を含む組成物から得られる成形体、たとえば、架橋成形体や架橋発泡体などは、様々の用途に用いることができる。
具体的には、タイヤ用ゴム、O−リング、工業用ロール、パッキン(例えばコンデンサーパッキン)、ガスケット、ベルト(例えば、断熱ベルト、複写機ベルト)、ホース(例えば、ウォーターホース、ブレーキリザーバーホース、ラジエターホース)、防止ゴム、スポンジ(例えば、ウェザーストリップスポンジ、断熱スポンジ、プロテクトスポンジ、微発泡スポンジ)、ケーブル(イグニッションケーブル、キャブタイヤケーブル、ハイテンションケーブル)、電線被覆材(高圧電線被覆材、低電圧電線被覆材、舶用電線被覆材)、グラスランチャネル、カラー表皮材、給紙ロール、ルーフィングシート等を例示できる。
〔本発明2−1〕
本発明2−1のシールパッキン用組成物は、本発明2で説明した特定のエチレン・α−オレフィン・非共役ポリエン共重合体(エチレン系共重合体A)を含有する。以下、エチレン系共重合体Aを含有するシールパッキン用組成物を、シールパッキン用組成物とも記す。
エチレン系共重合体Aを含む組成物から得られるシールパッキンは、低温でのゴム弾性と常温での引張強度とのバランスに優れる。このため、エチレン系共重合体Aを含有するシールパッキン用組成物は、寒冷地において使用されうる、自動車用シール部品、機械用シール部品、電子・電気部品用シール部品、建築用ガスケット、または、土木建材用シール部品等のとして好適に用いることができる。
本発明2−1のシールパッキン用組成物において、当該組成物中のエチレン系共重合体Aの含有割合は、通常20質量%以上、好ましくは20〜90質量%、より好ましくは30〜80質量%である。
《その他の成分》
本発明2−1のシールパッキン用組成物は、上述したエチレン・α−オレフィン・非共役ポリエン共重合体(エチレン系共重合体A)を含んでおり、その他の成分として架橋剤を含有することが好ましい。
本発明2−1のシールパッキン用組成物は、エチレン系共重合体A以外に他のポリマーを含有してもよい。架橋が必要な他のポリマーとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等の架橋性ゴムが挙げられる。架橋が不要な他のポリマーとしては、例えば、スチレンとブタジエンとのブロック共重合体(SBS)、ポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレン(SEBS)、ポリスチレン−ポリ(エチレン−プロピレン)−ポリスチレン(SEPS)等のスチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)、塩ビ系エラストマー(TPVC)、エステル系熱可塑性エラストマー(TPC)、アミド系熱可塑性エラストマー(TPA)、ウレタン系熱可塑性エラストマー(TPU)、その他の熱可塑性エラストマー(TPZ)等のエラストマーが挙げられる。他のポリマーは、エチレン系共重合体A100質量部に対して、通常100質量部以下、好ましくは80質量部以下の量で配合することができる。
また、本発明2−1のシールパッキン用組成物は、目的に応じて他の添加剤、例えば、架橋助剤、加硫促進剤、加硫助剤、軟化剤、補強剤、老化防止剤、無機充填剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤、発泡剤および発泡助剤から選ばれる少なくとも1種を含有してもよい。また。それぞれの添加剤は、1種単独で用いてもよく、2種以上を併用してもよい。
本発明2−1に係るシールパッキン用組成物は、エチレン系共重合体Aと、必要に応じて配合されるその他の成分とを、例えば、ミキサー、ニーダー、ロールなどの混練機を用いて所望の温度で混練することにより調製することができる。エチレン系共重合体Aは、混練性に優れているので、シールパッキン用組成物の調製を良好に行うことができる。
具体的には、ミキサー、ニーダー等の従来公知の混練機を用いて、エチレン系共重合体Aおよび必要に応じてその他の成分を所定の温度および時間、例えば80〜200℃で3〜30分混練した後、得られた混練物に必要に応じて架橋剤等の必要に応じて用いられるその他の成分を加えて、ロールを用いて所定の温度および時間、例えばロール温度30〜80℃で1〜30分間混練することにより、本発明2−1のシールパッキン用組成物を調製することができる。
〈架橋剤、架橋助剤、加硫促進剤および加硫助剤〉
架橋剤としては、有機過酸化物、フェノール樹脂、硫黄系化合物、ヒドロシリコーン系化合物、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート系化合物等の、ゴムを架橋する際に一般に使用される架橋剤が挙げられる。これらのうちでは、有機過酸化物、硫黄系化合物(以下「加硫剤」ともいう)が好適である。
有機過酸化物としては、例えば、ジクミルペルオキシド(DCP)、ジ−tert−ブチルペルオキシド、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p−クロロベンゾイルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、tert−ブチルペルオキシベンゾエート、ert−ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert−ブチルクミルペルオキシドが挙げられる。
架橋剤として、有機過酸化物を用いる場合、シールパッキン用組成物中のその配合量は、エチレン系共重合体Aおよび必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、一般に0.1〜20質量部、好ましくは0.2〜15質量部である、さらに好ましくは0.5〜10質量部である。有機過酸化物の配合量が上記範囲内であると、得られるシールパッキンの表面へのブルームなく、シールパッキン用組成物が優れた架橋特性を示すので好適である。
架橋剤として、有機過酸化物を用いる場合、架橋助剤を併用することが好ましい。架橋助剤としては、例えば、イオウ;p−キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種(JIS規格(K−1410))、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)等の金属酸化物が挙げられる。
架橋助剤を用いる場合、シールパッキン用組成物中の架橋助剤の配合量は、有機過酸化物1モルに対して、通常0.5〜10モル、好ましくは0.5〜7モル、より好ましくは1〜6モルである。
硫黄系化合物(加硫剤)としては、例えば、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレンが挙げられる。
架橋剤として硫黄系化合物を用いる場合、シールパッキン用組成物中のその配合量は、エチレン系共重合体Aおよび必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常は0.3〜10質量部、好ましくは0.5〜7.0質量部、さらに好ましくは0.7〜5.0質量部である。硫黄系化合物の配合量が上記範囲内であると、得られるシールパッキンの表面へのブルームがなく、シールパッキン用組成物が優れた架橋特性を示す。
架橋剤として硫黄系化合物を用いる場合、加硫促進剤を併用することが好ましい。
加硫促進剤としては、例えば、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N,N'−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド、2−メルカプトベンゾチアゾール(例えば、サンセラーM(商品名;三新化学工業社製))、2−(4−モルホリノジチオ)ペンゾチアゾール(例えば、ノクセラーMDB−P(商品名;大内新興化学工業社製))、2−(2,4−ジニトロフェニル)メルカプトベンゾチアゾール、2−(2,6−ジエチル−4−モルフォリノチオ)ベンゾチアゾールおよびジベンゾチアジルジスルフィド(例えば、サンセラーDM(商品名;三新化学工業社製))などのチアゾール系加硫促進剤;ジフェニルグアニジン、トリフェニルグアニジンおよびジオルソトリルグアニジンなどのグアニジン系加硫促進剤;アセトアルデヒド・アニリン縮合物およびブチルアルデヒド・アニリン縮合物などのアルデヒドアミン系加硫促進剤;2−メルカプトイミダゾリンなどのイミダゾリン系加硫促進剤;テトラメチルチウラムモノスルフィド(例えば、サンセラーTS(商品名;三新化学工業社製))、テトラメチルチウラムジスルフィド(例えば、サンセラーTT(商品名;三新化学工業社製))、テトラエチルチウラムジスルフィド(例えば、サンセラーTET(商品名;三新化学工業社製))、テトラブチルチウラムジスルフィド(例えば、サンセラーTBT(商品名;三新化学工業社製))およびジペンタメチレンチウラムテトラスルフィド(例えば、サンセラーTRA(商品名;三新化学工業社製))などのチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛(例えば、サンセラーPZ、サンセラーBZおよびサンセラーEZ(商品名;三新化学工業社製))およびジエチルジチオカルバミン酸テルルなどのジチオ酸塩系加硫促進剤;エチレンチオ尿素(例えば、サンセラーBUR(商品名;三新化学工業社製)、サンセラー22−C(商品名;三新化学工業社製))、N,N'−ジエチルチオ尿素およびN,N'−ジブチルチオ尿素などのチオウレア系加硫促進剤;ジブチルキサトゲン酸亜鉛などのザンテート系加硫促進剤が挙げられる。
加硫促進剤を用いる場合、シールパッキン用組成物中のこれらの加硫促進剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、一般に0.1〜20質量部、好ましくは0.2〜15質量部、さらに好ましくは0.5〜10質量部である。加硫促進剤の配合量が上記範囲内であると、得られるシールパッキンの表面へのブルームなく、シールパッキン用組成物が優れた架橋特性を示す。架橋剤として硫黄系化合物を用いる場合、加硫助剤を併用することができる。
加硫助剤としては、例えば、酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)が挙げられる。
加硫助剤を用いる場合、シールパッキン用組成物中の加硫助剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常1〜20質量部である。
〈軟化剤〉
軟化剤としては、例えば、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油系軟化剤;蜜ロウ、カルナウバロウ等のロウ類;ナフテン酸、パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート等のエステル系軟化剤;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、炭化水素系合成潤滑油、トール油、サブ(ファクチス)が挙げられ、これらのうちでは、石油系軟化剤が好ましく、プロセスオイルが特に好ましい。
シールパッキン用組成物が軟化剤を含有する場合には、軟化剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)成分の合計100質量部に対して、一般に2〜100質量部、好ましくは10〜100質量部である。
〈補強剤〉
補強剤としては、例えば、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、炭酸カルシウム、活性化炭酸カルシウム、微粉タルク、微分ケイ酸が挙げられる。
シールパッキン用組成物が補強剤を含有する場合には、補強剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、一般に5〜150質量部、好ましくは5〜100質量部である。
〈老化防止剤(安定剤)〉
本発明2−1のシールパッキン用組成物に、老化防止剤(安定剤)を配合することにより、これから形成されるシールパッキンの寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
老化防止剤としては、例えば、フェニルブチルアミン、N,N−ジ−2−ナフチル−p―フェニレンジアミン等の芳香族第2アミン系老化防止剤;ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシ)ヒドロシンナメート]メタン等のフェノール系老化防止剤;ビス[2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−t−ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2−メルカプトベンゾイルイミダゾール、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤等がある。
シールパッキン用組成物が老化防止剤を含有する場合には、老化防止剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常は0.3〜10質量部、好ましくは0.5〜7.0質量部である。老化防止剤の配合量が上記範囲内であると、得られるシールパッキンの表面のブルームがなく、さらに加硫阻害の発生を抑制することができる。
〈無機充填剤〉
無機充填剤としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられ、これらのうちでは、「ホワイトンSB」(商品名;白石カルシウム株式会社)等の重質炭酸カルシウムが好ましい。
シールパッキン用組成物が、無機充填剤を含有する場合には、無機充填剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常は2〜50質量部、好ましくは5〜50質量部である。無機充填剤の配合量が上記範囲内であると、シールパッキン用組成物の混練加工性が優れており、機械特性に優れたシールパッキンを得ることができる。
〈加工助剤〉
加工助剤としては、例えば、一般に加工助剤としてゴムに配合されるものを広く用いることができる。
加工助剤の具体例としては、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸等の脂肪酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸塩、エステル類などが挙げられる。これらのうちでは、ステアリン酸が好ましい。
シールパッキン用組成物が加工助剤を含有する場合には、加工助剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常10質量部以下、好ましくは8.0質量部以下である。
〈活性剤〉
活性剤としては、例えば、ジ−n−ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;クタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物が挙げられる。
シールパッキン用組成物が活性剤を含有する場合には、活性剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常は0.2〜10質量部、好ましくは0.3〜5質量部である。
〈吸湿剤〉
吸湿剤としては、例えば、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンが挙げられる。
シールパッキン用組成物が、吸湿剤を含有する場合には、吸湿剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常は0.5〜15質量部、好ましくは1.0〜12質量部である。
〈発泡剤および発泡助剤〉
本発明2−1のシールパッキン用ゴム組成物1を用いて形成されたシールパッキンは、非発泡体であってもよいし、発泡体であってもよい。シールパッキンが発泡体である場合にはシールパッキン用ゴム組成物1には発泡剤が含まれていることが好ましい。発泡剤としては、市販の発泡剤のいずれもが好適に使用される。このような発泡剤としては、例えば、重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機系発泡剤;N,N'−ジニトロソテレフタルアミド、N,N'−ジニトロソペンタメチレンテトラミン等のニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p'−オキシビス(ベンゼンスルフォニルヒドラジド)ジフェニルスルフォン−3,3'−ジスルフォニルヒドラジド等のスルフォニルヒドラジド化合物;カルシウムアジド、4,4'−ジフェニルジスルホニルアジド、パラトルエンマルホニルアジド等のアジド化合物が挙げられる。中でも、アゾ化合物、スルフォニルヒドラジド化合物、アジド化合物が好ましく用いられる。
シールパッキン用ゴム組成物1が、発泡剤を含有する場合には、発泡剤の配合量は、シールパッキン用ゴム組成物1から製造されるシールパッキンに要求される性能により適宜選択されるが、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.5〜30質量部、好ましくは1〜20質量部の割合で用いられる。
また、必要に応じて発泡剤とともに発泡助剤を併用しても差し支えない。発泡助剤の添加は、発泡剤の分解温度の調節、気泡の均一化などに効果がある。発泡助剤としては、具体的には、サリチル酸、フタル酸、ステアリン酸、シュウ酸などの有機酸、尿素およびその誘導体などが挙げられる。
シールパッキン用ゴム組成物1が、発泡助剤を含有する場合には、発泡助剤の配合量は、発泡剤100質量部に対して、通常1〜100質量部、好ましくは2〜80質量部の割合で用いられる。
[シールパッキン用組成物の物性]
本発明2−1のシールパッキン用組成物を用いることにより、常温での機械的特性および低温特性に優れるシールパッキンを形成することができる。
本発明2−1のシールパッキン用組成物を用いることにより、従来のEPDMを用いた場合と比べて、低温柔軟性に優れるシールパッキンを得ることが可能であり、シリコーンゴムを用いた場合と比べて、耐寒性に優れるシールパッキン得ることが可能である。
[シールパッキン]
本発明2−1のシールパッキンは、上述のシールパッキン用組成物から形成される。
本発明2−1のシールパッキン用組成物からシールパッキンを製造する方法としては、例えば、前記組成物1(未架橋型組成物)を、所望のシールパッキン形状に成形し、この成形と同時または成形後に、前記組成物を架橋処理する方法が挙げられる。
架橋処理する方法としては、例えば、シールパッキン用組成物として、架橋剤を含む組成物を用い、加熱することにより架橋処理する方法、シールパッキン用組成物に電子線を照射することにより架橋処理する方法が挙げられる。
すなわち、本発明2−1のシールパッキンは、シールパッキン用組成物を、押出成形機、カレンダーロール、プレス、インジェクション成形機、トランスファー成形機等の成形機を用いて、意図する形状に成形し、成形と同時に、または成形物を加硫槽内に導入して120〜270℃で1〜30分間加熱するか、あるいは電子線を照射することにより架橋することにより、調製することができる。
架橋を行う際には金型を用いてもよいし、また金型を用いないで架橋を実施してもよい。金型を用いない場合は成形、架橋工程は通常連続的に実施される。加硫槽における加熱方法としては、熱空気、ガラスビーズ流動床、UHF(極超短波電磁波)、スチーム等の手段を用いることができる。
架橋方法として架橋剤を使用せず、電子線を使用する場合は、所定の形状に成形されたシールパッキン用組成物に、通常0.1〜10MeV、好ましくは0.3〜2MeVのエネルギーを有する電子線を、吸収線量が通常0.5〜35Mrad、好ましくは0.5〜10Mradになるように照射すればよい。
本発明2−1のシールパッキンは、自動車用シール部品、機械用シール部品、電子・電気部品用シール部品、建築用ガスケット、土木建材用シール部品として、好適に利用することができる。
本発明2−1のシールパッキンの具体例としては、液圧ブレーキにおけるブレーキマスターシリンダー用カップ、ブレーキホイルシリンダー用カップ、ブレーキ液圧制御用シールパッキン、およびブレーキ用O−リング、クラッチにおけるクラッチシリンダー用カップ、コンデンサーパッキンが挙げられる。
〔本発明2−2〕
本発明2−2の組成物は、特定のエチレン・α−オレフィン・非共役ポリエン共重合体(1)および(2)を含有する。以下、これらの共重合体をそれぞれ「共重合体(1)」および「共重合体(2)」ともいう。また、モノマー[α]に由来する構造単位を「構造単位[α]」ともいう。
本発明2−2で用いられる特定のエチレン・α−オレフィン・非共役ポリエン共重合体(1)は、本発明2で説明した特定のエチレン・α−オレフィン・非共役ポリエン共重合体(エチレン系共重合体A)である。
また、特定のエチレン・α−オレフィン・非共役ポリエン共重合体(2)は、エチレン[A']に由来する構造単位、炭素数3〜20のα−オレフィン[B']に由来する構造単位、および非共役ポリエン[C']に由来する構造単位を含み、下記(I)を満たすエチレン・α−オレフィン・非共役ポリエン共重合体(2)である。
(I)下記式(i)で表されるB値が、1.20未満である。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
[式(i)中、[E]、[X]および[Y]は、それぞれ、エチレン[A']、炭素数3〜20のα−オレフィン[B']および非共役ポリエン[C']のモル分率を示し、[EX]はエチレン[A']−炭素数3〜20のα−オレフィン[B']ダイアッド連鎖分率を示す。]
共重合体(1)(エチレン系共重合体A)は、粘着性、加工性、流動性のバランスに優れる。このため、得られる組成物の粘着性能および加工性能を向上させることができる。また、共重合体(1)は、共重合体(2)と同様、エチレン・α−オレフィン・非共役ポリエン共重合体であるので、共重合体(2)に共重合体(1)を配合して架橋発泡する際の制御が行いやすい。このため、得られる成形体の比重の増大を防ぎ、かつ遮音性能を向上させることができる。
本発明2−2の組成物において、当該組成物中の共重合体(1)および(2)の合計の含有割合は、通常20質量%以上、好ましくは20〜50質量%、より好ましくは25〜40質量%である。
本発明2−2の組成物において、共重合体(1)と共重合体(2)との質量比[(1)/(2)]は、好ましくは10/90〜50/50、より好ましくは10/90〜45/55、さらに好ましくは10/90〜40/60である。質量比が前記範囲にある組成物はロール加工性および粘着性能に優れるとともに、前記組成物を架橋(好ましくはさらに発泡)することで、遮音性能および低比重性に優れた成形体を得ることができる。
《エチレン・α−オレフィン・非共役ポリエン共重合体(2)》
エチレン・α−オレフィン・非共役ポリエン共重合体(2)は、
エチレン[A']に由来する構造単位、炭素数3〜20のα−オレフィン[B']に由来する構造単位、および非共役ポリエン[C']に由来する構造単位を含む。
なお、炭素数3〜20のα−オレフィン[B']および非共役ポリエン[C']としてはそれぞれを、1種のみ用いても、2種以上用いてもよい。すなわち、エチレン・α−オレフィン・非共役ポリエン共重合体(2)は、エチレン[A']に由来する構造単位、少なくとも1種類の炭素数3〜20のα−オレフィン[B']に由来する構造単位、および少なくとも1種類の非共役ポリエン[C']に由来する構造単位を含む。
共重合体(2)は、(I)下記式(i)で表されるB値が、1.20未満であり、好ましくは0.8〜1.2、特に好ましくは0.8〜1.1の範囲にある。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
ここで[E]、[X]および[Y]は、それぞれ、エチレン[A']、炭素数3〜20のα−オレフィン[B']および非共役ポリエン[C']のモル分率を示し、[EX]はエチレン[A']−炭素数3〜20のα−オレフィン[B']ダイアッド連鎖分率を示す。
B値が上記範囲にある共重合体(2)は、B値が高く共重合体を構成するモノマー単位の交互性が高い共重合体に比べ、結晶構造を多く有すると考えられる。結晶構造を多く有する共重合体を共重合体(1)とともに用いると、得られる組成物の引張強度が高くなり、また発泡性が向上する(すなわち、低比重でも引張強度の高い成形体を得ることができる)。
エチレン[A']に由来する構造単位の含有量は、[A']、[B']および[C']の構造単位の合計を100モル%として、好ましくは44〜89モル%、より好ましくは44〜88モル%である。このモル%は、1H−NMRスペクトルメーターによる強度測定によって求めることができる。
炭素数3〜20のα−オレフィン[B']としては、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−エイコセンが挙げられる。これらのα−オレフィン[B']は単独で、または2種以上組み合わせて用いることができる。これらの中では、炭素数3〜8のα−オレフィンが好ましく、特にプロピレン、1−ブテン、1−ヘキセン、1−オクテンなどが好ましく、特にプロピレンが好適である。
炭素数3〜20のα−オレフィン[B']に由来する構造単位の含有量は、[A']、[B']および[C']の構造単位の合計を100モル%として、好ましくは10〜50モル%である。前記範囲は、架橋発泡体の柔軟性と低温における機械的特性との観点から好適である。このモル%は、1H−NMRスペクトルメーターによる強度測定によって求めることができる。
共重合体(2)は、(II)非共役ポリエン[C']に由来する構造単位として、下記式(II-1)または(II-2)で表される部分構造を分子中に1つのみ含む非共役ポリエン[C'−1]に由来する構造単位と、下記式(II-1)および(II-2)から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン[C'−2]に由来する構造単位とを含むことが好ましい。
Figure 2015122415
式(II-1)は、環状オレフィンの部分構造である。
非共役ポリエン[C'−1]としては、例えば分子両末端にビニル基(CH2=CH−)を有する脂肪族ポリエンは含まれない。非共役ポリエン[C'−1]の具体例としては、以下の脂肪族ポリエン、脂環族ポリエンが挙げられる。
脂肪族ポリエンの具体例としては、1,4−ヘキサジエン、1,5−ヘプタジエン、1,6−オクタジエン、1,7−ノナジエン、1,8−デカジエン、1,12−テトラデカジエン、3−メチル−1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、4−エチル−1,4−ヘキサジエン、3,3−ジメチル−1,4−ヘキサジエン、5−メチル−1,4−ヘプタジエン、5−エチル−1,4−ヘプタジエン、5−メチル−1,5−ヘプタジエン、6−メチル−1,5−ヘプタジエン、5−エチル−1,5−ヘプタジエン、4−メチル−1,4−オクタジエン、5−メチル−1,4−オクタジエン、4−エチル−1,4−オクタジエン、5−エチル−1,4−オクタジエン、5−メチル−1,5−オクタジエン、6−メチル−1,5−オクタジエン、5−エチル−1,5−オクタジエン、6−エチル−1,5−オクタジエン、6−メチル−1,6−オクタジエン、7−メチル−1,6−オクタジエン、6−エチル−1,6−オクタジエン、6−プロピル−1,6−オクタジエン、6−ブチル−1,6−オクタジエン、7−メチル−1,6−オクタジエン、4−メチル−1,4−ノナジエン、5−メチル−1,4−ノナジエン、4−エチル−1,4−ノナジエン、5−エチル−1,4−ノナジエン、5−メチル−1,5−ノナジエン、6−メチル−1,5−ノナジエン、5−エチル−1,5−ノナジエン、6−エチル−1,5−ノナジエン、6−メチル−1,6−ノナジエン、7−メチル−1,6−ノナジエン、6−エチル−1,6−ノナジエン、7−エチル−1,6−ノナジエン、7−メチル−1,7−ノナジエン、8−メチル−1,7−ノナジエン、7−エチル−1,7−ノナジエン、5−メチル−1,4−デカジエン、5−エチル−1,4−デカジエン、5−メチル−1,5−デカジエン、6−メチル−1,5−デカジエン、5−エチル−1,5−デカジエン、6−エチル−1,5−デカジエン、6−メチル−1,6−デカジエン、6−エチル−1,6−デカジエン、7−メチル−1,6−デカジエン、7−エチル−1,6−デカジエン、7−メチル−1,7−デカジエン、8−メチル−1,7−デカジエン、7−エチル−1,7−デカジエン、8−エチル−1,7−デカジエン、8−メチル−1,8−デカジエン、9−メチル−1,8−デカジエン、8−エチル−1,8−デカジエン、6−メチル−1,6−ウンデカジエン、9−メチル−1,8−ウンデカジエンが挙げられる。これらの脂肪族ポリエンは1種または2種以上組み合わせて用いることができる。好ましくは7−メチル−1,6−オクタジエンが用いられる。
脂環族ポリエンとしては、例えば、1個の炭素・炭素二重結合(不飽和結合)を有する脂環部分と、その脂環部分を構成する炭素原子に対し炭素・炭素二重結合により結合している鎖状部分(エチリデン、プロピリデン等)とから構成されるポリエンが挙げられる。その具体例としては、5−エチリデン−2−ノルボルネン(ENB)、5−プロピリデン−2−ノルボルネン、5−ブチリデン−2−ノルボルネンが挙げられる。これらの脂環族ポリエンは1種または2種以上組み合わせて用いることができる。特に、5−エチリデン−2−ノルボルネン(ENB)が好ましい。その他の脂環族ポリエンとしては、例えば、2−メチル−2,5−ノルボルナジエン、2−エチル−2,5−ノルボルナジエンが挙げられる。
非共役ポリエン[C'−2]としては、例えば、炭素・炭素二重結合(不飽和結合)を有する脂環部分と、その脂環部分を構成する炭素原子に結合する鎖状部分であってビニル基を含む鎖状部分とを有する脂環族ポリエン、分子両末端にビニル基を有する脂肪族ポリエンが挙げられる。
具体例としては、5−ビニル−2−ノルボルネン(VNB)、5−アリル−2−ノルボルネン等の5−アルケニル−2−ノルボルネン;2,5−ノルボルナジエン、ジシクロペンタジエン(DCPD)、ノルボルナジエン、テトラシクロ[4,4,0,12.5,17.10]デカ−3,8−ジエン等の脂環族ポリエン;1,7−オクタジエン、1,9−デカジエン等のα,ω−ジエン等の脂肪族ポリエンが挙げられる。これらは1種または2種以上組み合わせて用いることができる。これらの中でも、5−ビニル−2−ノルボルネン(VNB)、5−アルケニル−2−ノルボルネン、ジシクロペンタジエン、2,5−ノルボルナジエン、1,7−オクタジエン、1,9−デカジエンが好ましく、5−ビニル−2−ノルボルネン(VNB)が特に好ましい。
特に、非共役ポリエン[C'−1]が5−エチリデン−2−ノルボルネン(ENB)であり、非共役ポリエン[C'−2]が5−ビニル−2−ノルボルネン(VNB)であることが好ましい。
構造単位[C'−1]および構造単位[C'−2]の含有量の合計は、[A']、[B']および[C']の構造単位の合計を100モル%として、好ましくは1〜10モル%、より好ましくは2〜8モル%である。前記範囲は、架橋反応速度の制御を比較的容易に行う観点から好適である。
構造単位[C'−1]および構造単位[C'−2]の含有量のモル比([C'−1]/[C'−2])は、好ましくは75/25〜99.5/0.5であり、より好ましくは78/22〜97/3である。前記範囲は、架橋反応性と発泡反応時のガス保持性とのバランスの観点から好適である。
これらは1H−NMRスペクトルメーターによる強度測定によって求めることができる。
共重合体(2)は、(III)100℃におけるムーニー粘度ML(1+4)100℃が、20〜45であることが好ましく、より好ましくは25〜40である。ムーニー粘度が前記下限値以上であると、得られる組成物を発泡体とした際の機械的強度が優れる。ムーニー粘度が前記上限値以下であると、加工性に優れた組成物を得ることができ、また高発泡倍率を有する発泡体を得ることができる。
共重合体(2)は、(IV)下記式(IV-1)を満たすことが好ましい。
Log{η*(0.01)}/Log{η*(10)}>0.0753×{非共役ポリエン[C'−2]に由来する見かけのヨウ素価}+1.32・・・(IV-1)
式(IV-1)中、η*(0.01)は、190℃における0.01rad/secの粘度(Pa・sec)を表し、η*(10)は、190℃における10rad/secの粘度(Pa・sec)を表す。
粘弾性測定装置により、η*(0.01)およびη*(10)を測定することができる。また、NMRにより、共重合体(2)中の非共役ポリエン[C'−2]に由来する構造単位の含有率(質量%)を測定することによって、下記式より見かけのヨウ素価を具体的に算出することができる。なお、ヨウ素の分子量は253.81である。
非共役ポリエン[C'−2]に由来する見かけのヨウ素価=〔非共役ポリエン[C'−2]に由来する構造単位の含有率(質量%)〕×Y×253.81/(モノマーとしての非共役ポリエン[C'−2]の分子量)
式中、Yは、非共役ポリエン[C'−2]に由来する構造単位に含まれる炭素・炭素二重結合の数を表す。
より詳細な測定条件としては、η*(0.01)およびη*(10)は、例えば、特開2014−114379号公報の段落[0143]〜[0144]に記載された方法で測定することができ、非共役ポリエン[C'−2]に由来する見かけのヨウ素価は、例えば、特開2014−114379号公報の段落[0136]〜[0141]に記載された方法で測定することができる。
共重合体(2)が式(IV-1)を満たすと、非共役ポリエン[C'−2]含量が小さいにもかかわらず、共重合体(2)はより多くの長鎖分岐を有する。すなわち、優れた形状保持性と押出加工性と発泡性とを得るために必要な長鎖分岐を、少量の非共役ポリエン[C'−2]を共重合することによって導入でき、さらに残留非共役ポリエン[C'−2]含量が小さいために得られるゴム成形体の圧縮永久歪みに優れる。
上記(II)〜(IV)を満たす共重合体(2)は、低ムーニー粘度で均一かつ多量に長鎖分岐を有することから、当該共重合体(2)を含む組成物は、発泡性に優れる。このため、より低比重の架橋発泡体を得ることができる。
《エチレン・α−オレフィン・非共役ポリエン共重合体(2)の製造方法》
共重合体(2)を合成する際には、遷移金属化合物を用いることが好ましい。共重合体(2)の製造には、遷移金属化合物として、後述する一般式(IA)、(IIA)または(IIIA)で表される化合物(a2)((a2)遷移金属化合物)を用いることが好ましい。
共重合体(2)は、以下の製造方法で得ることができる。具体的には、(a2)遷移金属化合物と、(b)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)遷移金属化合物(a2)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とを含むオレフィン重合触媒の存在下において、エチレンと、炭素数3〜20のα−オレフィンと、非共役ポリエンとを共重合することにより、上記共重合体(2)は製造し得る。
<化合物(a2>
化合物(a2)は、下記式(IA)、(IIA)または(IIIA)で表される。
式(IA)で表される化合物について説明する。
Figure 2015122415
式(IA)中、Rは、それぞれ独立に、ヒドロカルビル、ハロヒドロカルビル、シリル、ゲルミルおよびこれらの組み合わせから選ばれる基または水素原子であり、該基が含有する水素以外の原子の数は20個以下である。
Mは、チタン、ジルコニウムまたはハフニウムである。
Yは、−O−、−S−、−NR*−または−PR*−である。R*は、水素原子、ヒドロカルビル基、ヒドロカルビルオキシ基、シリル基、ハロゲン化アルキル基またはハロゲン化アリール基であり、R*が水素でない場合には、R*は20個までの水素以外の原子を含有する。
Zは、ホウ素または14族元素を含有し、かつ、窒素、リン、硫黄または酸素を含有する2価の基であり、この2価の基が有する水素原子以外の原子の数は60個以下である。
Xは、Xが複数存在する場合にはそれぞれ独立に、原子の数が60個以下のアニオン性配位子である(ただし、π電子が非局在化した環状配位子を除く。)。
X'は、X'が複数存在する場合にはそれぞれ独立に、原子の数が20個以下の中性の連結化合物である。
pは、0、1または2である。
qは、0または1である。
ただし、pが2でqが0の場合、Mは+4の酸化状態にあり、Xはハライド、ヒドロカルビル、ヒドロカルビルオキシ、ジ(ヒドロカルビル)アミド、ジ(ヒドロカルビル)ホスフィド、ヒドロカルビルスルフィド、シリル基、これらのハロ置換誘導体、ジ(ヒドロカルビル)アミノ置換誘導体、ヒドロカルビルオキシ置換誘導体およびジ(ヒドロカルビル)ホスフィノ置換誘導体から選ばれるアニオン性配位子であり、Xの水素原子以外の原子の数は20個以下である。また、pが1でqが0の場合、Mは+3の酸化状態にあり、Xはアリル、2−(N,N'−ジメチルアミノメチル)フェニルおよび2−(N,N'−ジメチル)アミノベンジルから選ばれるアニオン性安定化配位子であるか、あるいはMが+4の酸化状態にあって、Xが2価共役ジエン誘導体でMとメタラシクロペンテンを形成する。またpが0でqが1の場合、Mは+2の酸化状態にあり、X'は1以上のヒドロカルビル基で置換されてもよい中性の共役もしくは非共役ジエンで、かつ、炭素原子を40個以下の数で含有しMとπ錯体を形成する。
式(IIA)で表される化合物について説明する。
Figure 2015122415
式(IIA)中、R1およびR2は、水素原子または炭素数1〜6のアルキル基であり、R1およびR2の少なくとも1つは水素原子ではない。
3〜R6は、それぞれ独立に、水素原子または炭素数1〜6のアルキル基である。また、R1〜R6は互いに結合して環を形成してもよい。
Mは、チタンである。
Yは、−O−、−S−、−NR*−または−PR*−である。Z*は、SiR* 2、CR* 2、SiR* 2SiR* 2、CR* 2CR* 2、CR*=CR*、CR* 2SiR* 2またはGeR* 2である。R*は、それぞれ独立に、水素原子、ヒドロカルビル基、ヒドロカルビルオキシ基、シリル基、ハロゲン化アルキル基またはハロゲン化アリール基であり、R*が水素でない場合には、R*は20個までの水素以外の原子を含有する。Z*に結合する2つのR*(R*が水素でない場合)は環を形成してもよいし、Z*に結合するR*とYに結合するR*が環を形成してもよい。
pは、0、1または2である。
qは、0または1である。
ただし、pが2の場合、qは0であり、Mは+4の酸化状態にあり、Xはそれぞれ独立にメチル基またはベンジル基である。またpが1の場合、qは0であり、Mは+3の酸化状態にあり、Xは2−(N、N'−ジメチル)アミノベンジル基であるか、あるいはqは0であり、Mは+4の酸化状態にあり、Xは1,3−ブタジエニルである。またpが0の場合、qは1であり、Mは+2の酸化状態にあり、X'は1,4−ジフェニル−1,3−ブタジエン、2,4−ヘキサジエンまたは1,3−ペンタジエンである。
式(IIIA)で表される化合物について説明する。
Figure 2015122415
式(IIIA)中、R'は、水素原子、ヒドロカルビル基、ジ(ヒドロカルビルアミノ)基、またはヒドロカルビレンアミノ基であり、前記R'が炭素原子を有する場合の炭素数は20以下である。
R''は、炭素数1〜20のヒドロカルビル基または水素原子である。
Mは、チタンである。
Yは、−O−、−S−、−NR*−、−PR*−、−NR2 *、または−PR2 *である。Z*は、−SiR* 2−、−CR* 2−、−SiR* 2SiR* 2−、−CR* 2CR* 2−、−CR*=CR*−、−CR* 2SiR* 2−、または−GeR* 2−である。R*は、複数存在する場合にはそれぞれ独立に、水素原子または、ヒドロカルビル、ヒドロカルビルオキシ、シリル、ハロゲン化アルキル、およびハロゲン化アリールからなる群から選択される少なくとも1種を含む基であり、前記R*は原子番号2〜20までの原子を含み、任意にZ*が有する2つのR*(R*が水素原子でない場合)が環を形成してもよく、Z*のR*とYのR*とが環を形成してもよい。
Xは、π電子が非局在化した環状配位子を除く、原子数60以下の一価のアニオン性配位子である。
X'は、原子数20以下の中性の連結基である。
X''は、原子数60以下の二価のアニオン性配位子である。
pは、0、1または2である。
qは、0または1である。
rは、0または1である。
pが2の場合、qおよびrは0であり、Mは+4の酸化状態(但し、Yが−NR* 2または−PR* 2である場合を除く)、またはMは+3の酸化状態(但し、Yが−NR* 2または−PR* 2である)であり、Xはハライド基、ヒドロカルビル基、ヒドロカルビルオキシ基、ジ(ヒドロカルビル)アミド基、ジ(ヒドロカルビル)ホスフィド基、ヒドロカルビルスルフィド基、およびシリル基、並びに、これらの基がハロゲン置換された基、これらの基がジ(ヒドロカルビル)アミノ置換された基、これらの基がヒドロカルビルオキシ置換された基およびこれらの基がジ(ヒドロカルビル)ホスフィノ置換された基よりなる群から選択されるアニオン性配位子であり、前記基は原子番号2〜30までの原子を含む。
rが1の場合、pおよびqは0であり、Mは+4の酸化状態であり、X''はヒドロカルバジル基、オキシヒドロカルビル基、およびヒドロカルビレンジオキシ基よりなる群から選択されるジアニオン性配位子であり、前記X''は原子番号2〜30までの原子を有する。pが1の場合、qおよびrは0であり、Mは+3の酸化状態であり、Xは、アリル、2−(N,N−ジメチルアミノ)フェニル、2−(N,N−ジメチルアミノメチル)フェニル、および2−(N,N−ジメチルアミノ)ベンジルよりなる群から選択されるアニオン性安定化配位子である。pおよびrが0の場合、qは1であり、Mは+2の酸化状態であり、X'は、任意に1以上のヒドロカルビル基で置換された、中性の共役ジエンまたは中性のジ共役ジエンであり、前記X'は炭素の原子数が40以下であり、Mとπ−π相互作用による結合を形成する。
より好ましい態様としては、式(IIIA)中、pが2であり、qおよびrが0である場合、Mは+4の酸化状態であり、Xは、各々独立に、メチル、ベンジル、またはハライドであり、pおよびqが0である場合、rは1であり、Mは+4の酸化状態であり、X''は、Mとメタラシクロペンテン環を形成する1,4−ブタジエニル基であり、pが1である場合、qおよびrは0であり、Mは+3の酸化状態であり、Xは、2−(N,N−ジメチルアミノ)ベンジルであり、pおよびrが0である場合、qは1であり、Mは+2の酸化状態であり、X'は1,4−ジフェニル−1,3−ブタジエンまたは1,3−ペンタジエンである。
式(IIIA)の中でも、下記式(IIIA')で表される化合物が特に好ましい。
Figure 2015122415
式(IIIA')中、R'は水素原子または炭素数1〜20のヒドロカルビル基であり、R''は、炭素数1〜20のヒドロカルビル基または水素原子であり、Mはチタンであり、Yは、−NR*−であり、Z*は、−SiR* 2−であり、R*は、それぞれ独立に、水素原子または、炭素数1〜20のヒドロカルビル基であり、pおよびqのうち一方は0であり、他方は1であり、pが0かつqは1である場合には、Mは+2の酸化状態であり、X'は1,4−ジフェニル−1,3−ブタジエンまたは1,3−ペンタジエンであり、pが1かつqが0である場合には、Mは+3の酸化状態であり、Xは2−(N,N−ジメチルアミノ)ベンジルである。
炭素数1〜20のヒドロカルビル基としては、例えば、メチル基、エチル基、ブチル基などの直鎖状アルキル基、t-ブチル基、ネオペンチル基などの分岐状アルキル基が挙げられる。ヒドロカルビルオキシ基としては、例えば、メチルオキシ基、エチルオキシ基、ブチルオキシ基などの直鎖状アルキルオキシ基、t-ブチルオキシ基、ネオペンチルオキシ基などの分岐状アルキルオキシ基が挙げられる。ハロゲン化アルキル基としては、例えば、前記の直鎖状アルキル基や分岐状アルキル基をクロル化、臭素化、フッ素化したものが挙げられる。ハロゲン化アリール基としては、例えば、クロル化フェニル基、クロル化ナフチル基などが挙げられる。
式(III'A)中、R''が水素原子またはメチルであることが好ましく、メチルであることがより好ましい。
上記触媒を用いて重合することによって、二重結合を有する非共役ポリエン等が高い転化率で共重合され、得られる共重合体(2)に適量の長鎖分岐を導入することができる。
特に好ましい触媒は、(t−ブチルアミド)ジメチル(η5−2−メチル−s−インダセン−1−イル)シランチタニウム(II)2,4−ヘキサジエン(IV)、(t−ブチルアミド)−ジメチル(η5−2−メチル−s−インダセン−1−イル)シラン−チタニウム(IV)ジメチル(V)、(t−ブチルアミド)−ジメチル(η5−2,3−ジメチルインデニル)シランチタニウム(II)1,4−ジフェニル−1,3−ブタジエン(VI)、(t−ブチル−アミド)−ジメチル(η5−2,3−ジメチル−s−インダセン−1−イル)シランチタニウム(IV)ジメチル(VII)、(t−ブチルアミド)−ジメチル(η5−2−メチル−s−インダセン−1−イル)シランチタニウム(II)1,3−ペンタジエン(VIII)である。その中でも、(t−ブチルアミド)−ジメチル(η5−2−メチル−s−インダセン−1−イル)シランチタニウム(II)1,3−ペンタジエン(VIII)が特に好ましい。
Figure 2015122415
特に上記式(VIII)で表される構造を有する触媒を用いると、共重合体(2)を得るための重合反応が、非共役ポリエン(例:成分[C'−1]および成分[C'−2])の共重合体性に優れ、例えばVNB末端の二重結合を効率よく取り込み、長鎖分岐を高い割合で導入することができる。また、得られる共重合体(2)の分子量分布と組成分布が狭く、非常に均一な分子構造を有する共重合体を調製することができるため、長鎖分岐の生成に伴い懸念される、ゴム成形体表面のゲル状ブツの形成が顕著に抑制される。その結果、このような共重合体を含んでなるゴム成形体は、ゲル状ブツを含まないためにその表面外観に優れ、また形状保持性に優れるため生産安定性も良好である。
(化合物(a2)の製造方法)
上記化合物(a2)は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。例えば国際公開第98/49212号に開示されている合成手法が挙げられる。
〈遷移金属化合物(a2)をエチレン・α―オレフィン・非共役ポリエン共重合体用触媒に供する際の好ましい形態〉
次に上記遷移金属化合物(a2)を、エチレン・α―オレフィン・非共役ポリエン共重合体用触媒(オレフィン重合触媒)として用いる場合の好ましい形態について説明する。
遷移金属化合物(a2)をオレフィン重合触媒成分として用いる場合、触媒は、(a2)遷移金属化合物と、(b)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)遷移金属化合物(a2)と反応してイオン対を形成する化合物、から選ばれる少なくとも1種の化合物と、さらに必要に応じて、(c)粒子状担体とから構成される。
なお、(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、(b−3)遷移金属化合物(a2)と反応してイオン対を形成する化合物、および(c)粒子状担体としては、それぞれ本発明2で説明した(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、(b−3)架橋メタロセン化合物(a)と反応してイオン対を形成する化合物、および(c)粒子状担体を用いることができる。
〈エチレン・α−オレフィン・非共役ポリエン共重合体用触媒の存在下でモノマー類を重合する方法〉
エチレン、α−オレフィンおよび非共役ポリエンを共重合させることにより、共重合体(2)を得ることができるが、その方法としては、化合物(a)を、本発明2−2で説明した遷移金属化合物(a2)に変更し。炭素数4〜20のα−オレフィン[B]を、炭素数3〜20のα−オレフィン[B’]に変更する以外は、本発明2で説明した方法と同様に行うことができる。
《その他の成分》
本発明2−2の組成物は、上述した、エチレン・α−オレフィン・非共役ポリエン共重合体(1)およびエチレン・α−オレフィン・非共役ポリエン共重合体(2)に加えて、架橋剤を含有することが好ましい。
本発明2−2の組成物は、共重合体(1)および(2)以外に、他のポリマーを含有してもよい。架橋が必要な他のポリマーとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等の架橋性ゴムが挙げられる。架橋が不要な他のポリマーとしては、例えば、スチレンとブタジエンとのブロック共重合体(SBS)、ポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレン(SEBS)、ポリスチレン−ポリ(エチレン−プロピレン)−ポリスチレン(SEPS)等のスチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)、塩ビ系エラストマー(TPVC)、エステル系熱可塑性エラストマー(TPC)、アミド系熱可塑性エラストマー(TPA)、ウレタン系熱可塑性エラストマー(TPU)、その他の熱可塑性エラストマー(TPZ)等のエラストマーが挙げられる。他のポリマーは、共重合体(1)および(2)の合計100質量部に対して、通常100質量部以下、好ましくは80質量部以下の量で配合することができる。
また、本発明2−2の組成物は、目的に応じて他の添加剤、例えば、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤、発泡剤および発泡助剤から選ばれる少なくとも1種を含有してもよい。また。それぞれの添加剤は、1種単独で用いてもよく、2種以上を併用してもよい。
〈架橋剤、架橋助剤、加硫促進剤および加硫助剤〉
架橋剤としては、有機過酸化物、フェノール樹脂、硫黄系化合物、ヒドロシリコーン系化合物、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート系化合物等の、ゴムを架橋する際に一般に使用される架橋剤が挙げられる。これらのうちでは、有機過酸化物、硫黄系化合物(以下「加硫剤」ともいう)が好適である。
有機過酸化物としては、例えば、ジクミルペルオキシド、ジ−tert−ブチルペルオキシド、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p−クロロベンゾイルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、tert−ブチルペルオキシベンゾエート、ert−ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert−ブチルクミルペルオキシドが挙げられる。
これらのうちでは、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル-2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル-2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート等の2官能性の有機過酸化物が好ましく、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサンが最も好ましい。
架橋剤として有機過酸化物を用いる場合、本発明2−2の組成物中の有機過酸化物の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.1〜20質量部、好ましくは0.2〜15質量部、さらに好ましくは0.5〜10質量部である。有機過酸化物の配合量が上記範囲内であると、得られる成形体の表面へのブルームなく、本発明2−2の組成物が優れた架橋特性を示す。
架橋剤として有機過酸化物を用いる場合、架橋助剤を併用することが好ましい。
架橋助剤としては、例えば、イオウ;p−キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)等の金属酸化物が挙げられる。
架橋助剤を用いる場合、本発明2−2の組成物中の架橋助剤の配合量は、有機過酸化物1モルに対して、通常0.5〜10モル、好ましくは0.5〜7モル、より好ましくは1〜5モルである。
硫黄系化合物(加硫剤)としては、例えば、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレンが挙げられる。
架橋剤として硫黄系化合物を用いる場合、本発明2−2の組成物中の硫黄系化合物の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.3〜10質量部、好ましくは0.5〜7.0質量部、さらに好ましくは0.7〜5.0質量部である。硫黄系化合物の配合量が上記範囲内であると、得られる成形体の表面へのブルームがなく、本発明2−2の組成物が優れた架橋特性を示す。
架橋剤として硫黄系化合物を用いる場合、加硫促進剤を併用することが好ましい。
加硫促進剤としては、例えば、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N,N'−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド、2−メルカプトベンゾチアゾール(例えば、サンセラーM(商品名;三新化学工業社製))、2−(4−モルホリノジチオ)ペンゾチアゾール(例えば、ノクセラーMDB−P(商品名;大内新興化学工業社製))、2−(2,4−ジニトロフェニル)メルカプトベンゾチアゾール、2−(2,6−ジエチル−4−モルフォリノチオ)ベンゾチアゾールおよびジベンゾチアジルジスルフィド(例えば、サンセラーDM(商品名;三新化学工業社製))などのチアゾール系加硫促進剤;ジフェニルグアニジン、トリフェニルグアニジンおよびジオルソトリルグアニジンなどのグアニジン系加硫促進剤;アセトアルデヒド・アニリン縮合物およびブチルアルデヒド・アニリン縮合物などのアルデヒドアミン系加硫促進剤;2−メルカプトイミダゾリンなどのイミダゾリン系加硫促進剤;テトラメチルチウラムモノスルフィド(例えば、サンセラーTS(商品名;三新化学工業社製))、テトラメチルチウラムジスルフィド(例えば、サンセラーTT(商品名;三新化学工業社製))、テトラエチルチウラムジスルフィド(例えば、サンセラーTET(商品名;三新化学工業社製))、テトラブチルチウラムジスルフィド(例えば、サンセラーTBT(商品名;三新化学工業社製))およびジペンタメチレンチウラムテトラスルフィド(例えば、サンセラーTRA(商品名;三新化学工業社製))などのチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛(例えば、サンセラーPZ、サンセラーBZおよびサンセラーEZ(商品名;三新化学工業社製))およびジエチルジチオカルバミン酸テルルなどのジチオ酸塩系加硫促進剤;エチレンチオ尿素(例えば、サンセラーBUR(商品名;三新化学工業社製)、サンセラー22−C(商品名;三新化学工業社製))、N,N'−ジエチルチオ尿素およびN,N'−ジブチルチオ尿素などのチオウレア系加硫促進剤;ジブチルキサトゲン酸亜鉛などのザンテート系加硫促進剤が挙げられる。
加硫促進剤を用いる場合、本発明2−2の組成物中の加硫促進剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.1〜20質量部、好ましくは0.2〜15質量部、さらに好ましくは0.5〜10質量部である。加硫促進剤の配合量が上記範囲内であると、得られる成形体の表面へのブルームなく、本発明2−2の組成物が優れた架橋特性を示す。
架橋剤として硫黄系化合物を用いる場合、加硫助剤を併用することができる。
加硫助剤としては、例えば、酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)が挙げられる。
加硫助剤を用いる場合、本発明2−2の組成物中の加硫助剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常1〜20質量部である。
〈軟化剤〉
軟化剤としては、例えば、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油系軟化剤;蜜ロウ、カルナウバロウ等のロウ類;ナフテン酸、パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート等のエステル系軟化剤;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、炭化水素系合成潤滑油、トール油、サブ(ファクチス)が挙げられ、これらのうちでは、石油系軟化剤が好ましく、プロセスオイルが特に好ましい。
本発明2−2の組成物が軟化剤を含有する場合には、軟化剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常2〜100質量部、好ましくは10〜100質量部である。
〈無機充填剤〉
無機充填剤としては、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられ、これらのうちでは、「ホワイトンSB」(商品名;白石カルシウム(株)製)等の重質炭酸カルシウムが好ましい。
本発明2−2の組成物が無機充填剤を含有する場合には、無機充填剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常2〜200質量部、好ましくは5〜200質量部である。無機充填剤の配合量が上記範囲内であると、本発明2−2の組成物の混練加工性が優れており、機械特性に優れた成形体を得ることができる。
〈補強剤〉
補強剤としては、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、炭酸カルシウム、活性化炭酸カルシウム、微粉タルク、微分ケイ酸などが挙げられる。
本発明2−2の組成物が補強剤を含有する場合には、補強剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常10〜200質量部、好ましくは20〜180質量部である。
〈老化防止剤(安定剤)〉
本発明2−2の組成物に、老化防止剤(安定剤)を配合することにより、これから形成される成形体の寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
老化防止剤としては、例えば、フェニルブチルアミン、N,N−ジ−2−ナフチル−p−フェニレンジアミン等の芳香族第2アミン系老化防止剤;ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシ)ヒドロシンナメート]メタン等のフェノール系老化防止剤;ビス[2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−t−ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2−メルカプトベンゾイルイミダゾール、2−メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤がある。
本発明2−2の組成物が老化防止剤を含有する場合には、老化防止剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.3〜10質量部、好ましくは0.5〜7.0質量部である。老化防止剤の配合量が上記範囲内であると、得られる成形体の表面のブルームがなく、さらに加硫阻害の発生を抑制することができる。
〈加工助剤〉
加工助剤としては、一般に加工助剤としてゴムに配合されるものを広く用いることができる。加工助剤としては、例えば、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸等の脂肪酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸塩、リシノール酸エステル、ステアリン酸エステル、パルチミン酸エステル、ラウリン酸エステル類等の脂肪酸エステル類、N−置換脂肪酸アミドなどの脂肪酸誘導体が挙げられる。これらのうちでは、ステアリン酸が好ましい。
本発明2−2の組成物が加工助剤を含有する場合には、加工助剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常10質量部以下、好ましくは8.0質量部以下である。
〈活性剤〉
活性剤としては、例えば、ジ−n−ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;クタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物が挙げられる。
本発明2−2の組成物が活性剤を含有する場合には、活性剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.2〜10質量部、好ましくは0.3〜5質量部である。
〈吸湿剤〉
吸湿剤としては、例えば、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンが挙げられる。
本発明2−2の組成物が吸湿剤を含有する場合には、吸湿剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.5〜15質量部、好ましくは1.0〜12質量部である。
〈発泡剤および発泡助剤〉
本発明2−2の組成物からなる成形体は、非発泡体であってもよいし、発泡体であってもよいが、発泡体であることが好ましい。発泡体形成に際して発泡剤を使用することができ、例えば、重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機系発泡剤;N,N'−ジニトロテレフタルアミド、N,N'−ジニトロソペンタメチレンテトラミン等のニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p'−オキシビス(ベンゼンスルフォニルヒドラジド)ジフェニルスルフォン−3,3'−ジスルフェニルヒドラジド等のスルフォニルヒドラジド化合物;カルシウムアジド、4,4'−ジフェニルスルホニルアジド、パラトルエンスルホニルアジド等のアジド化合物が挙げられる。
本発明2−2の組成物が発泡剤を含有する場合には、発泡剤の配合量は、架橋発泡後の発泡体の比重が通常0.01〜0.9、好ましくは0.01〜0.7、より好ましくは0.01〜0.5になるよう適宜選択される。発泡剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常5〜50質量部、好ましくは10〜40質量部である。
また、発泡剤に加えて、必要に応じて発泡助剤を用いてもよい。発泡助剤は、発泡剤の分解温度の低下、分解促進または気泡の均一化などの作用を示す。発泡助剤としては、例えば、サリチル酸、フタル酸、シュウ酸およびクエン酸などの有機酸またはその塩;尿素またはその誘導体が挙げられる。発泡助剤の配合量は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.1〜5質量部、好ましくは0.5〜4質量部である。
また、高圧ガスによる物理発泡も可能である。すなわち、例えば本発明2−2の組成物を押出する際に、押出機の途中に設けられた圧入孔から揮発性または無機ガス系発泡剤を圧入して、口金から押し出すことにより発泡体を連続的に得ることができる。物理型発泡剤の具体例としては、フロン、ブタン、ペンタン、ヘキサン、シクロヘキサン等の揮発性発泡剤、窒素、空気、水、炭酸ガス等の無機ガス系発泡剤が挙げられる。また、押出発泡に際し、炭酸カルシウム、タルク、クレー、酸化マグネシウム等の気泡核形成剤を添加してもよい。物理型発泡剤の配合割合は、共重合体(1)および(2)、ならびに必要に応じて配合される他のポリマー(エラストマー、ゴム等)の合計100質量部に対して、通常5〜60質量部、好ましくは10〜50質量部である。
[組成物の調製および物性]
本発明2−2の組成物は、共重合体(1)および(2)と、必要に応じて配合されるその他の成分とを、例えば、ミキサー、ニーダー、ロールなどの混練機を用いて所望の温度で混練することにより調製することができる。
具体的には、ミキサー、ニーダー等の従来公知の混練機を用いて、共重合体(1)および(2)と、必要に応じてその他の成分1とを、所定の温度および時間、例えば80〜200℃で3〜30分、で混練した後、得られた混練物に必要に応じてその他の成分2を加えて、ロールを用いて所定の温度および時間、例えばロール温度30〜80℃で1〜30分間、で混練することにより、本発明2−2の組成物を調製することができる。
その他の成分1としては、例えば、上述した、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤および増粘剤から選ばれる少なくとも1種が挙げられる。その他の成分2としては、例えば、架橋剤(加硫剤)と、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤、発泡剤および発泡助剤から選ばれる少なくとも1種とが挙げられる。
本発明2−2の組成物は、B値が1.20以上の特定のエチレン・α−オレフィン・非共役ポリエン共重合体(1)と、B値が1.20未満のエチレン・α−オレフィン・非共役ポリエン共重合体(2)とを含有する。
本発明2−2の組成物は、共重合体(2)とともに共重合体(1)が配合されていることから、未架橋時の加工性に優れる。本発明2−2の組成物は、100℃におけるムーニー粘度ML(1+4)100℃が、好ましくは60以下、より好ましくは5〜50である。また、本発明2−2の組成物は、最低粘度(Vm)が、好ましくは60以下、より好ましくは5〜50である。これらの物性の測定条件は、実施例に記載したとおりである。
また、ゴム成分として共重合体(2)に加えて共重合体(1)を含有する本発明2−2の組成物は、ゴム成分として共重合体(2)のみを含有する組成物に対して、粘着性能が向上している。
本発明2−2の組成物は、未架橋時の加工性および粘着性能が優れるとともに、前記組成物を架橋(好ましくはさらに発泡)することで、遮音性能が高く比重の小さい成形体を得ることができる。本発明2−2の組成物は、以上の特性を有することから、遮音材形成用途に好適に用いることができる。
[成形体]
本発明2−2の成形体は、上述の組成物から形成される。
本発明2−2の組成物から成形体を製造する方法としては、例えば、前記組成物(未架橋型組成物)を、所望の形状に成形し、この成形と同時または成形後に、前記組成物を架橋処理する方法が挙げられる。
例えば、(I)架橋剤を含む本発明2−2の組成物を用い、所望形状に成形し、および加熱処理して架橋する方法、(II)本発明2−2の組成物を、所望形状に成形し、および電子線を照射して架橋する方法が挙げられる。
上記成形では、押出成形機、カレンダーロール、プレス成形機、射出成形機、トランスファー成形機等を用いて、本発明2−2の組成物を、所望の形状に成形する。成形体の形状としては、例えば、板状が挙げられる。
本発明2−2の成形体は、(非発泡)架橋体でもよく、架橋発泡体でもよい。
上記(I)の方法では、成形と同時または成形後に、その成形体を、例えば50〜200℃で1〜120分間、加熱する。この加熱により、架橋処理を行い、または架橋処理とともに発泡処理を行う。架橋槽としては、例えば、スチーム加硫缶、熱空気加硫槽、ガラスビーズ流動床、溶融塩加硫槽、マイクロ波槽が挙げられる。これらの架橋槽は、1種単独で、または2種以上を組み合せて使用することができる。
上記(II)の方法では、成形と同時または成形後に、その成形体に対して、0.1〜10MeVのエネルギーを有する電子線を、吸収線量が通常0.5〜35Mrad、好ましくは0.5〜20Mradになるように照射する。この場合には、発泡処理は、照射の前段階または後段階で行うことになる。
上記(I)の方法では、上述した架橋剤を用い、必要に応じて架橋促進剤および/または架橋助剤も併用して行う。また、架橋発泡成形するためには、通常、組成物に発泡剤を添加し、架橋および発泡を行う。
本発明2−2の架橋発泡体は、上述の組成物から形成され、比重が好ましくは0.01〜0.9、好ましくは0.01〜0.7、より好ましくは0.01〜0.5の範囲にある。
本発明2−2の架橋体は、遮音性能に優れており、例えば非発泡架橋体の場合はTgが小さく、広い周波数領域で高い遮音性能を示すことから、また架橋発泡体の場合は音響透過損失が大きいことから、遮音材として好適である。
本発明2−2による架橋発泡体は、上述したように、優れた遮音性能および低比重性を有する。このため、前記架橋発泡体は、例えば、遮音材、断熱材、シール材、発泡体ロールとして好適に用いることができる。シール材は、例えば、建築土木、電気機器、自動車、車輌、船舶、住宅設備機器等の構造物の目地部、間隙部等に装着して用いられるシール材である。
架橋発泡体として、具体的には、ドアスポンジ用スポンジ、オープニングトリム用スポンジ、フードシール用スポンジ、トランクシール用スポンジ等のウェザーストリップ用スポンジ材;断熱スポンジ、ダムラバー等の高発泡スポンジ材が挙げられる。
〔本発明2−3〕
本発明2−3のホース形成用組成物は、本発明2で説明した特定のエチレン・α−オレフィン・非共役ポリエン共重合体(エチレン系共重合体A)を含有する。以下、エチレン系共重合体Aを含有するホース形成用組成物を、ホース形成用組成物とも記す。
エチレン系共重合体Aは、低温での圧縮永久ひずみが小さく、また低温での捻り試験の結果が良好であることから、低温での柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れる。このため、エチレン系共重合体Aを含有するホース形成用組成物は、寒冷地において使用されうる、自動車、モーターバイク、工業機械、建設機械、農業機械等の用途に好適に用いることができる。
本発明2−3のホース形成用組成物において、当該組成物中のエチレン系共重合体Aの含有割合は、通常20質量%以上、好ましくは20〜50質量%、より好ましくは25〜40質量%である。
《その他の成分》
本発明2−3のホース形成用組成物は、上述したエチレン・α−オレフィン・非共役ポリエン共重合体(エチレン系共重合体A)に加えて、架橋剤を含有することが好ましい。
本発明2−3のホース形成用組成物は、エチレン系共重合体A以外に、他のポリマーを含有してもよい。架橋が必要な他のポリマーとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等の架橋性ゴムが挙げられる。架橋が不要な他のポリマーとしては、例えば、スチレンとブタジエンとのブロック共重合体(SBS)、ポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレン(SEBS)、ポリスチレン−ポリ(エチレン−プロピレン)−ポリスチレン(SEPS)等のスチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)、塩ビ系エラストマー(TPVC)、エステル系熱可塑性エラストマー(TPC)、アミド系熱可塑性エラストマー(TPA)、ウレタン系熱可塑性エラストマー(TPU)、その他の熱可塑性エラストマー(TPZ)等のエラストマーが挙げられる。他のポリマーは、エチレン系共重合体A100質量部に対して、通常100質量部以下、好ましくは80質量部以下の量で配合することができる。
また、本発明2−3のホース形成用組成物は、目的に応じて他の添加剤、例えば、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤および発泡剤から選ばれる少なくとも1種を含有してもよい。また。それぞれの添加剤は、1種単独で用いてもよく、2種以上を併用してもよい。
本発明2−3のホース形成用組成物は、エチレン系共重合体Aと、必要に応じて配合されるその他の成分とを、例えば、ミキサー、ニーダー、ロールなどの混練機を用いて所望の温度で混練することにより調製することができる。エチレン系共重合体Aは、混練性に優れているので、ホース形成用組成物の調製を良好に行うことができる。
具体的には、ミキサー、ニーダー等の従来公知の混練機を用いて、エチレン系共重合体Aおよび必要に応じてその他の成分1を所定の温度および時間、例えば80〜200℃で3〜30分、で混練した後、得られた混練物に必要に応じて架橋剤等のその他の成分2を加えて、ロールを用いて所定の温度および時間、例えばロール温度30〜80℃で1〜30分間、で混練することにより、本発明2−3のホース形成用組成物を調製することができる。
その他の成分1としては、例えば、他のポリマー、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤および増粘剤から選ばれる少なくとも1種が挙げられる。その他の成分2としては、例えば、架橋剤(加硫剤)と、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤および発泡剤から選ばれる少なくとも1種とが挙げられる。
〈架橋剤、架橋助剤、加硫促進剤および加硫助剤〉
架橋剤としては、有機過酸化物、フェノール樹脂、硫黄系化合物、ヒドロシリコーン系化合物、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート系化合物等の、ゴムを架橋する際に一般に使用される架橋剤が挙げられる。これらのうちでは、有機過酸化物、硫黄系化合物(以下「加硫剤」ともいう)が好適である。
有機過酸化物としては、例えば、ジクミルペルオキシド、ジ−tert−ブチルペルオキシド、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p−クロロベンゾイルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、tert−ブチルペルオキシベンゾエート、ert−ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert−ブチルクミルペルオキシドが挙げられる。
これらのうちでは、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル-2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル-2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート等の2官能性の有機過酸化物が好ましく、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサンが最も好ましい。
架橋剤として有機過酸化物を用いる場合、ホース形成用組成物中の有機過酸化物の配合量は、エチレン系共重合体Aおよび必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.1〜20質量部、好ましくは0.2〜15質量部、さらに好ましくは0.5〜10質量部である。有機過酸化物の配合量が上記範囲内であると、得られるホースの表面へのブルームなく、ホース形成用組成物が優れた架橋特性を示す。
架橋剤として有機過酸化物を用いる場合、架橋助剤を併用することが好ましい。
架橋助剤としては、例えば、イオウ;p−キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)等の金属酸化物が挙げられる。
架橋助剤を用いる場合、ホース形成用組成物中の架橋助剤の配合量は、有機過酸化物1モルに対して、通常0.5〜10モル、好ましくは0.5〜7モル、より好ましくは1〜5モルである。
硫黄系化合物(加硫剤)としては、例えば、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレンが挙げられる。
架橋剤として硫黄系化合物を用いる場合、ホース形成用組成物中の硫黄系化合物の配合量は、エチレン系共重合体Aおよび必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.3〜10質量部、好ましくは0.5〜7.0質量部、さらに好ましくは0.7〜5.0質量部である。硫黄系化合物の配合量が上記範囲内であると、得られるホースの表面へのブルームがなく、ホース形成用組成物が優れた架橋特性を示す。
架橋剤として硫黄系化合物を用いる場合、加硫促進剤を併用することが好ましい。
加硫促進剤としては、例えば、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N,N'−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド、2−メルカプトベンゾチアゾール(例えば、サンセラーM(商品名;三新化学工業社製))、2−(4−モルホリノジチオ)ペンゾチアゾール(例えば、ノクセラーMDB−P(商品名;大内新興化学工業社製))、2−(2,4−ジニトロフェニル)メルカプトベンゾチアゾール、2−(2,6−ジエチル−4−モルフォリノチオ)ベンゾチアゾールおよびジベンゾチアジルジスルフィド(例えば、サンセラーDM(商品名;三新化学工業社製))などのチアゾール系加硫促進剤;ジフェニルグアニジン、トリフェニルグアニジンおよびジオルソトリルグアニジンなどのグアニジン系加硫促進剤;アセトアルデヒド・アニリン縮合物およびブチルアルデヒド・アニリン縮合物などのアルデヒドアミン系加硫促進剤;2−メルカプトイミダゾリンなどのイミダゾリン系加硫促進剤;テトラメチルチウラムモノスルフィド(例えば、サンセラーTS(商品名;三新化学工業社製))、テトラメチルチウラムジスルフィド(例えば、サンセラーTT(商品名;三新化学工業社製))、テトラエチルチウラムジスルフィド(例えば、サンセラーTET(商品名;三新化学工業社製))、テトラブチルチウラムジスルフィド(例えば、サンセラーTBT(商品名;三新化学工業社製))およびジペンタメチレンチウラムテトラスルフィド(例えば、サンセラーTRA(商品名;三新化学工業社製))などのチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛(例えば、サンセラーPZ、サンセラーBZおよびサンセラーEZ(商品名;三新化学工業社製))およびジエチルジチオカルバミン酸テルルなどのジチオ酸塩系加硫促進剤;エチレンチオ尿素(例えば、サンセラーBUR(商品名;三新化学工業社製)、サンセラー22−C(商品名;三新化学工業社製))、N,N'−ジエチルチオ尿素およびN,N'−ジブチルチオ尿素などのチオウレア系加硫促進剤;ジブチルキサトゲン酸亜鉛などのザンテート系加硫促進剤が挙げられる。
加硫促進剤を用いる場合、ホース形成用組成物中の加硫促進剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.1〜20質量部、好ましくは0.2〜15質量部、さらに好ましくは0.5〜10質量部である。加硫促進剤の配合量が上記範囲内であると、得られるホースの表面へのブルームなく、ホース形成用組成物が優れた架橋特性を示す。
架橋剤として硫黄系化合物を用いる場合、加硫助剤を併用することができる。
加硫助剤としては、例えば、酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)が挙げられる。
加硫助剤を用いる場合、ホース形成用組成物中の加硫助剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常1〜20質量部である。
〈軟化剤〉
軟化剤としては、例えば、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油系軟化剤;蜜ロウ、カルナウバロウ等のロウ類;ナフテン酸、パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート等のエステル系軟化剤;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、炭化水素系合成潤滑油、トール油、サブ(ファクチス)が挙げられ、これらのうちでは、石油系軟化剤が好ましく、プロセスオイルが特に好ましい。
ホース形成用組成物が軟化剤を含有する場合には、軟化剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常2〜100質量部、好ましくは10〜100質量部である。
〈無機充填剤〉
無機充填剤としては、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられ、これらのうちでは、「ホワイトンSB」(商品名;白石カルシウム株式会社)等の重質炭酸カルシウムが好ましい。
ホース形成用組成物が無機充填剤を含有する場合には、無機充填剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常2〜100質量部、好ましくは5〜100質量部である。無機充填剤の配合量が上記範囲内であると、ホース形成用組成物の混練加工性が優れており、機械特性に優れたホースを得ることができる。
〈補強剤〉
補強剤としては、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、炭酸カルシウム、活性化炭酸カルシウム、微粉タルク、微分ケイ酸などが挙げられる。
ホース形成用組成物が補強剤を含有する場合には、補強剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常30〜200質量部、好ましくは50〜180質量部である。
〈老化防止剤(安定剤)〉
本発明のホース形成用組成物に、老化防止剤(安定剤)を配合することにより、これから形成されるホースの寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
老化防止剤としては、例えば、フェニルブチルアミン、N,N−ジ−2−ナフチル−p−フェニレンジアミン等の芳香族第2アミン系老化防止剤;ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシ)ヒドロシンナメート]メタン等のフェノール系老化防止剤;ビス[2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−t−ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2−メルカプトベンゾイルイミダゾール、2−メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤がある。
ホース形成用組成物が老化防止剤を含有する場合には、老化防止剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.3〜10質量部、好ましくは0.5〜7.0質量部である。老化防止剤の配合量が上記範囲内であると、得られるホースの表面のブルームがなく、さらに加硫阻害の発生を抑制することができる。
〈加工助剤〉
加工助剤としては、一般に加工助剤としてゴムに配合されるものを広く用いることができる。加工助剤としては、例えば、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸等の脂肪酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸塩、リシノール酸エステル、ステアリン酸エステル、パルチミン酸エステル、ラウリン酸エステル類等の脂肪酸エステル類、N−置換脂肪酸アミドなどの脂肪酸誘導体が挙げられる。これらのうちでは、ステアリン酸が好ましい。
ホース形成用組成物が加工助剤を含有する場合には、加工助剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常10質量部以下、好ましくは8.0質量部以下である。
〈活性剤〉
活性剤としては、例えば、ジ−n−ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;クタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物が挙げられる。
ホース形成用組成物が活性剤を含有する場合には、活性剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.2〜10質量部、好ましくは0.3〜5質量部である。
〈吸湿剤〉
吸湿剤としては、例えば、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンが挙げられる。
ホース形成用組成物が吸湿剤を含有する場合には、吸湿剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.5〜15質量部、好ましくは1.0〜12質量部である。
〈発泡剤〉
本発明2−3のホース形成用ゴム組成物からなるホースは、非発泡体であってもよいし、発泡体であってもよい。発泡体形成に際して発泡剤を使用することができ、例えば、重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機系発泡剤;N,N'−ジニトロテレフタルアミド、N,N'−ジニトロソペンタメチレンテトラミン等のニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p'−オキシビス(ベンゼンスルフォニルヒドラジド)ジフェニルスルフォン−3,3'−ジスルフェニルヒドラジド等のスルフォニルヒドラジド化合物;カルシウムアジド、4,4'−ジフェニルスルホニルアジド、パラトルエンスルホニルアジド等のアジド化合物が挙げられる。
ホース形成用組成物が発泡剤を含有する場合には、発泡剤の配合量は、架橋発泡後の発泡体の比重が通常0.01〜0.9になるよう適宜選択される。発泡剤の配合量は、エチレン系共重合体Aおよび必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.5〜30質量部、好ましくは1〜20質量部である。
[ホース形成用組成物の物性]
本発明2−3のホース形成用組成物を用いることにより、常温での機械的特性および低温特性に優れるホースを形成することができる。例えば、常温での引張強度にも優れるとともに、低温での圧縮永久ひずみが小さく、また低温での捻り試験の結果が良好であるホースを得ることができる。
[ホース]
本発明2−3のホースは、上述のホース形成用組成物から形成された層を有する。本発明2−3のホースは、上述のホース形成用組成物から形成された層のみからなる1層または2層以上のホースでもよく、他の層、例えば天然ゴムからなる層、布帛層、熱可塑性樹脂層および熱硬化性樹脂層から選ばれる1層または2層以上の層、を有してもよい。
本発明2−3のホース形成用組成物からホースを製造する方法としては、例えば、前記組成物(未架橋型組成物)を、所望のホース形状に成形し、この成形と同時または成形後に、前記組成物を架橋処理する方法が挙げられる。
例えば、(I)架橋剤を含む本発明2−3のホース形成用組成物を用い、所望形状に成形し、および加熱処理して架橋する方法、(II)本発明2−3のホース形成用組成物を、所望形状に成形し、および電子線を照射して架橋する方法が挙げられる。
上記成形では、押出成形機、カレンダーロール、プレス成形機、射出成形機、トランスファー成形機等を用いて、本発明2−3のホース形成用組成物を、中空部を有するホース形状に成形する。
上記(I)の方法では、成形と同時または成形後に、その成形体を、例えば50〜200℃で1〜120分間、加熱する。この加熱により、架橋処理を行い、または架橋処理とともに発泡処理を行う。架橋槽としては、例えば、スチーム加硫缶、熱空気加硫槽、ガラスビーズ流動床、溶融塩加硫槽、マイクロ波槽が挙げられる。これらの架橋槽は、1種単独で、または2種以上を組み合せて使用することができる。
上記(II)の方法では、成形と同時または成形後に、その成形体に対して、0.1〜10MeVのエネルギーを有する電子線を、吸収線量が通常0.5〜35Mrad、好ましくは0.5〜20Mradになるように照射する。
さらに、上記のようにして得られたホースの中空部にマンドレルを挿入して加熱する、賦形処理を行ってもよい。賦形処理の後、ホースを冷却する。賦形処理では、架橋後のホースにマンドレルを挿入した後、最終賦形を行っているので、マンドレルの挿入時に表面傷や端部の潰れを防止することができ、不良品の発生を低下させて、複雑な形状のホースであっても、効率よくホースを製造することができる。
本発明2−3のホースは、自動車用、モーターバイク用、工業機械用、建設機械用、農業機械用等に用いられるホースとして、好適に利用することができる。具体的には、エンジンを冷却するためのラジエーターホース、ラジエーターオーバーフロー用ドレインホース、室内暖房用ヒーターホース、エアコンドレインホース、ワイパー送水ホース、ルーフドレインホース、プロラクトホース等の各種ホースとして、好適に利用することができる。
以下、本発明1について、実施例に基づいて本発明をさらに具体的に説明するが、本発明1はこれら実施例に限定されるものではない。
架橋メタロセン化合物およびその前駆体の構造は、1H NMRスペクトル(270 MHz、日本電子GSH-270)、FD-質量(以下FD-MS)スペクトル(日本電子SX-102A)等を測定し、決定した。
架橋メタロセン化合物の構成部分であるη5-オクタメチルオクタヒドロジベンゾフルオレニル基は1,1,4,4,7,7,10,10-オクタメチル-(5a,5b,11a,12,12a-η5)-1,2,3,4,7,8,9,10-オクタヒドロジベンゾ[b,h]フルオレニル基を表わす。従って、例えば[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドは下記式の構造を表わす。
Figure 2015122415
エチレン/α−オレフィン/非共役ポリエン共重合体の物性/性状は以下の方法で測定した。
[エチレン/プロピレン/5-エチリデン-2-ノルボルネン(ENB)共重合体のエチレン含有量、プロピレン含有量、ENB含有量]
o-ジクロロベンゼン/ベンゼン-d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、パルス幅4.7μsec(45Oパルス)測定条件下(100 MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、パルス幅5.0μsec(45Oパルス)測定条件下(125 MHz、ブルカー・バイオスピンAVANCEIIIcryo-500)にて13C NMRスペクトルを測定し、算出した。
算出した含有量(mol%)は、小数点以下第二位を四捨五入して表記した。
[エチレン/1−ブテン/5-エチリデン-2-ノルボルネン(ENB)共重合体のエチレン含有量、1−ブテン含有量、ENB含有量]
o-ジクロロベンゼン-d4を測定溶媒とし、測定温度120℃、スペクトル幅20ppm、パルス繰り返し時間7.0秒、パルス幅6.15μsec(45Oパルス)測定条件下(400 MHz、日本電子ECX400P)にて1H NMRスペクトルを測定し、算出した。
算出した含有量(mol%)は、小数点以下第二位を四捨五入して表記した。
[B値]
o-ジクロロベンゼン/ベンゼン-d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、パルス幅4.7μsec(45Oパルス)測定条件下(100 MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、パルス幅5.0μsec(45Oパルス)測定条件下(125 MHz、ブルカー・バイオスピンAVANCEIIIcryo-500)にて13C NMRスペクトルを測定し、下記一般式[XVII]に基づき算出した。
B値=(c+d)/[2×a×(e+f)] ‥[XVII]
(式[XVII]中、a、eおよびfはそれぞれ前記エチレン/α−オレフィン/非共役ポリエン共重合体中のエチレンモル分率、α−オレフィンモル分率および非共役ポリエンモル分率であり、cはエチレン-α−オレフィンダイアッドモル分率、dはエチレン-非共役ポリエンダイアッドモル分率である。)
[重量平均分子量(Mw)、数平均分子量(Mn)]
重量平均分子量(Mw)および数平均分子量(Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC 2000型を用い、以下のようにして測定した。分離カラムはTSKgel GMH6-HT:2本およびTSKgel GMH6-HTL:2本(いずれも東ソー社製)であり、カラムサイズはいずれも直径7.5mm、長さ300mmであり、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業)と酸化防止剤としてBHT(武田薬品)0.025重量%とを用い、前記移動相は1.0ml/分で移動させ、試料濃度は15mg/10mlとし、試料注入量は500μlとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×105については東ソー社製を用い、1000≦Mw≦4×105についてはプレッシャーケミカル社製を用いた。各種平均分子量は、汎用校正の手順に従い、ポリスチレン分子量換算として計算した。
[重量平均分子量と数平均分子量の比(Mw/Mn)]
上記測定法により測定したMwを、同じく上記測定法により測定したMnで除して算出した。
[極限粘度([η])]
デカリン溶媒を用いて、135℃で測定した。重合体約20 mgをデカリン15 mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5 ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として採用した。
[η]=lim(ηsp/C) (C→0)
[合成例A1]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メチルフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに脱水t-ブチルメチルエーテル 30 ml、2,3,6,7-テトラメチルフルオレン 0.725 g (3.26 mmol)を装入した。この溶液にn-ブチルリチウムのヘキサン溶液(1.63 M) 2.05 ml (3.34 mmol)を氷水浴下、5分かけて滴下した。40℃で2時間攪拌した。6,6-ビス(4-メチルフェニル)フルベン 0.893 g (3.46 mmol)を加え、還流下で15時間撹拌した。反応溶液に飽和塩化アンモニウム水溶液を装入し、有機層を分離し、水層をヘキサン 100 ml、トルエン 100 mlで抽出し、先の有機層と合わせて水、飽和塩化ナトリウム水溶液で洗浄した。硫酸マグネシウムで乾燥後、溶媒を留去した。得られた固体をヘキサンで洗浄することでビス(4-メチルフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンを肌色粉末として得た。収量は0.645 g、収率は41%であった。ビス(4-メチルフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 480 (M+)
(ii) [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、30 mlシュレンク管にビス(4-メチルフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 0.300 g (0.624mmol)、α-メチルスチレン 0.147 g (1.27mmol)、脱水シクロペンチルメチルエーテル 0.628 gを装入した。1.63 Mのn-ブチルリチウムヘキサン溶液 0.78 ml (1.3 mmol)を10分間で滴下した。70℃に昇温後、4時間攪拌した。氷/アセトン浴で冷却後、系内を5分間減圧し、窒素で常圧に戻し、四塩化ハフニウム 0.209 g (0.652mmol)を加え、室温で17時間反応させた。溶媒を留去し、得られた固体を脱水ヘキサンで洗浄した。脱水ジクロロメタン約10 mlを加え、可溶分を抽出した。得られた溶液を濃縮し、脱水ヘキサン約3 mlを加え、析出した固体を濾過によって収集し、山吹色粉末として[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドを得た。収量は0.233 g、収率は51%であった。[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.88 (s, 2H), 7.78 (dd, J = 7.9, 2.3 Hz, 2H), 7.69 (dd, J = 7.9, 2.3 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H), 6.25 (t, J = 2.8 Hz, 2H), 6.14 (s, 2H), 5.66 (t, J = 2.8 Hz, 2H), 2.49 (s, 6H), 2.34 (s, 6H), 2.05 (s, 6H)
FD-MSスペクトル: M/z 728 (M+)
[合成例A2]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
(i) 6,6-ビス(4-メトキシフェニル)フルベンの合成
窒素雰囲気下、500 ml三口フラスコにリチウムシクロペンタジエニド 8.28 g (115 mmol)および脱水THF 200 mlを加えた。氷浴で冷却しながらDMI 13.6 g (119 mmol)を添加し、室温で30分間攪拌した。その後4,4'-ジメトキシベンゾフェノン 25.3 g (105 mmol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水 100 mlを徐々に添加し、更にジクロロメタン 200 mlを加えて室温で30分間攪拌した。得られた二層の溶液を500 ml分液漏斗に移し、有機層を水 200 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700 g、ヘキサン:酢酸エチル = 4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6-ビス(4-メトキシフェニル)フルベン 9.32 g (32.1 mmol、30.7%)を得た。6,6-ビス(4-メトキシフェニル)フルベンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.28-7.23 (m, 4H), 6.92-6.87 (m, 4H), 6.59-6.57 (m, 2H), 6.30-6.28 (m, 2H), 3.84 (s, 6H)
(ii) ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに2,3,6,7-テトラメチルフルオレン 500 mg (2.25 mmol)および脱水t-ブチルメチルエーテル 40 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 1.45 ml (2.36 mmol)を徐々に添加し、室温で18時間攪拌した。6,6-ビス(4-メトキシフェニル)フルベン 591 mg (2.03 mmol)を添加した後、3日間過熱還流を行った。氷浴で冷却しながら水 50 mlを徐々に添加し、得られた溶液を300 ml分液漏斗に移した。ジクロロメタン 50 mlを加えて数回振った後水層を分離し、有機層を水 50 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 793 mg (1.55 mmol、76.0%)を得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 512 (M+)
(iii) [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 272 mg (0.531 mmol)、脱水トルエン 20 mlおよびTHF 90 ml (1.1 mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 0.68 ml (1.1 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 20 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム 164 mg (0.511 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて-20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 275 mg (0.362 mmol、70.8%)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.87 (s, 2H), 7.80-7.66 (m, 4H), 6.94-6.83 (m, 4H), 6.24 (t, J = 2.6 Hz, 2H), 6.15 (s, 2H), 5.65 (t, J = 2.6 Hz, 2H), 3.80 (s, 6H), 2.47 (s, 6H), 2.05 (s, 6H)
FD-MSスペクトル: M/z 760 (M+)
[合成例A3]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
(i) 6,6-ビス[4-(ジメチルアミノ)フェニル]フルベンの合成
窒素雰囲気下、200 ml三口フラスコにリチウムシクロペンタジエニド 3.06 g (42.4 mmol)、4,4'-ビス(ジメチルアミノ)ベンゾフェノン 10.1 g (37.5 mmol)および脱水DME 100 mlを加えた。氷浴で冷却しながらDMI 4.86 g (42.6 mmol)を添加し、その後加熱還流下で8日間攪拌した。氷浴で冷却しながら水 50 mlを徐々に添加し、更にジクロロメタン 50 mlを加えて室温で30分間攪拌した。得られた二層の溶液を300 ml分液漏斗に移し、有機層を水 100 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。ヘキサン/酢酸エチル混合溶媒(4:1)で抽出した後減圧下で溶媒を留去し、エタノール中で再結晶を行ったところ、赤褐色固体として6,6-ビス[4-(ジメチルアミノ)フェニル]フルベン 1.04 g (3.29 mmol、8.8%)が得られた。6,6-ビス[4-(ジメチルアミノ)フェニル]フルベンの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.29-7.25 (m, 4H), 6.71-6.65 (m, 4H), 6.57-6.54 (m, 2H), 6.36-6.34 (m, 2H), 3.02 (s, 12H)
FD-MSスペクトル: M/z 316 (M+)
(ii) ビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに2,3,6,7-テトラメチルフルオレン 1.50 g (6.75 mmol)および脱水シクロペンチルメチルエーテル 80 mlを添加した。-20℃で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.58 M) 4.50 ml (7.08 mmol)を徐々に添加し、室温で20時間攪拌した。この反応液を再度、-20℃に冷却後、6,6-ビス[4-(ジメチルアミノ)フェニル]フルベン 2.27 g (7.17 mmol)を添加した後、徐々に室温に戻しながら4時間攪拌した。塩化アンモニウム水溶液を添加後、水層を分離し、残留物を水で洗浄した。その後、溶媒を留去後、得られた固体をメタノールで洗浄して薄黄白色固体ビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 2.14 g (3.97 mmol、58.9%)を得た。ビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.22 (s), 7.12 (br),6.73 (br), 6.51 (br), 6.16 (br), 5.19 (s), 2.86 (s), 2.20 (s), 2.06 (s)
(iii) [ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、50 mlシュレンク管にビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 0.800 g (1.48 mmol)、脱水トルエン 10 mlおよび脱水THF 0.4 g を添加し、-20℃で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.58 M) 1.90 ml (2.97 mmol)を徐々に添加しながら攪拌した。室温に戻した後さらに45℃に加熱し4時間攪拌した後、反応溶液を室温に戻した。溶媒を留去し、得られた固体に脱水ジエチルエーテル 80 mlを添加し、-20℃に冷却後攪拌しながら、四塩化ハフニウム 0.470 g (1.47 mmol)を添加し、室温まで徐々に昇温し16時間攪拌した。その後溶媒を留去し固体を脱水ジエチルエーテルで洗浄後、脱水ジクロロメタンで抽出し、溶媒を留去し得られた固体を少量の脱水ジエチルエーテル洗浄し黄橙色固体として[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 0.520 g (0.661 mmol、44.7%)を得た。[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.85 (s, 2H), 7.67-7.60 (m, 4H), 6.72-6.69 (m, 4H), 6.23-6.21 (m, 4H), 5.66 (t, J = 2.6 Hz, 2H), 2.92 (s, 12H), 2.47 (s, 6H), 2.05 (s, 6H)
[合成例A4]
[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
(i) 3,3',4,4'-テトラメトキシベンゾフェノンの合成
300 ml三口フラスコに1,2-ジメトキシベンゼン 17.3 g (125.2 mmol)、ポリ燐酸 200 mlを添加し室温で攪拌した。さらに、3,4-ジメトキシ安息香酸 22.8 g (125.2 mmol)を添加後、100℃で加熱し、6時間攪拌した。その後、反応物を水に添加し、不溶物をろ過した。得られた固体をエタノールで洗浄し3,3',4,4'-テトラメトキシベンゾフェノン26.2 g (69%)を白色粉末として得た。3,3',4,4'-テトラメトキシベンゾフェノンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.42 (d, J = 2.0 Hz, 2H), 7.36 (dd, J = 8.2, 2.0 Hz, 2H), 6.89 (d, J = 8.2 Hz, 2H), 3.95 (s, 6H), 3.93 (s, 6H)
(ii) 6,6-ビス(3,4-ジメトキシフェニル)フルベンの合成
窒素雰囲気下、200 ml三口フラスコにシクロペンタジエンナトリウム塩 1.74 g (19.8 mmol)、と脱水THF 100 mlを装入した。氷水浴下、1,3-ジメチル-2-イミダゾリジノン 3.0 ml (27.3 mmol)と3,3',4,4'-テトラメトキシベンゾフェノン 4.65 g (15.38 mmol)を添加し、60℃の加熱還流下で3日間攪拌した。その後反応溶液に塩酸水溶液を加え有機層を分離し、酢酸エチルで抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で1回ずつ洗浄した。硫酸マグネシウムで乾燥し、溶媒を留去した。得られた固体をカラムクロマトグラフィーで精製後、6,6-ビス(3,4-ジメトキシフェニル)フルベン 3.0 g (56%)を橙色粉末として得た。6,6-ビス(3,4-ジメトキシフェニル)フルベンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 6.89-6.87 (m, 6H), 6.59 (d, J = 6.6 Hz, 2H), 6.32 (d, J = 6.6 Hz, 2H), 3.93 (s, 6H), 3.82 (s, 6H)
(iii) ビス(3,4-ジメトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに2,3,6,7-テトラメチルフルオレン 1.0 g (4.5 mmol)、脱水シクロペンチルメチルエーテル 80 mlを装入した。ドライアイスメタノール浴で-20℃まで冷却し、n-ブチルリチウム/ヘキサン溶液 (1.66 M) 2.9 ml (4.7 mmol)をゆっくりと滴下し、徐々に室温に戻しながら20時間攪拌した。その後、再度ドライアイスメタノール浴で-20℃まで冷却し、6,6-ビス(3,4-ジメトキシフェニル)フルベン 1.51 g (4.3 mmol)を加え室温で20時間攪拌した。その後反応溶液に塩化アンモニウム飽和水溶液を加え有機層を分離し、水層をジエチルエーテルで抽出した。得られた有機層をあわせて水で3回洗浄し溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、得られた固体を乾燥後、ビス(3,4-ジメトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 1.2 g (46.6%)を薄桃白色粉末として得た。ビス(3,4-ジメトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.4-8.3 (br), 7.5-7.1 (br), 7.1-6.2 (br), 5.3-5.1 (br), 4.0-3.7 (br), 3.7-3.3 (br), 3.2-3.0 (br), 3.0-2.8 (br), 2.4-2.0 (br), 1.7-1.4 (br)
(iv) [ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成 窒素雰囲気下、50 mlシュレンク管にビス(3,4-ジメトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 0.6 g (1.1 mmol)、脱水トルエン 30 ml、脱水THF 0.2 gを添加した。ドライアイスバスで冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.60 M) 1.3 ml (2.1 mmol)を徐々に添加し、室温で30分攪拌後、45℃で加熱し、4時間攪拌した。反応溶液の温度を室温に戻した後、溶媒を留去した。得られた固体に脱水ジエチルエーテル80 mlを添加し、-20℃に冷却後、四塩化ハフニウム・二ジエチルエーテル錯体 0.49 g (1.1 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌した。その後溶媒を留去し固体を脱水ジクロロメタンで抽出した。再度濃縮した後、脱水トルエンで抽出し黄色固体として[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 0.32 g (20.9%)を得た。[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.92-7.83 (m, 2H), 7.51-7.10 (m, 6H), 6.96-6.75 (m, 2H), 6.35-6.10 (m, 4H), 5.74-5.60 (m, 2H), 3.96-3.83 (m, 9H), 3.68-3.59 (m, 3H), 2.55-2.44 (m, 6H), 2.13-2.02 (m, 6H)
[合成例A5]
[ビス(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-N-モルフォリニルフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニルフルオレニル)メタンの合成
窒素雰囲気下、100 mlの三口フラスコに2,3,6,7-テトラメチルフルオレン 0.7 g(3.2 mmol)、脱水シクロペンチルメチルエーテル 100 mlを装入した。ドライアイスメタノール浴で-20℃まで冷却し、n-ブチルリチウム/ヘキサン溶液 (1.60 M) 2.1 ml (3.3 mmol)をゆっくりと滴下し、徐々に室温に戻しながら20時間攪拌した。その後、再度ドライアイスメタノール浴で-20℃まで冷却し、6,6-ビス(4-N-モルフォリニルフェニル)フルベン 1.3 g (3.2 mmol)を加え室温で4時間攪拌した。その後反応溶液に塩化アンモニウム飽和水溶液を加え有機層を分離し、水層をジエチルエーテルで抽出した。得られた有機層をあわせて水で3回洗浄し溶媒を留去した。得られた固体をメタノールで洗浄し、乾燥後、ビス(4-N-モルフォリニルフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニルフルオレニル)メタン 1.3 g (69.0%)を黄土白色粉末として得た。ビス(4-N-モルフォリニルフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニルフルオレニル)メタンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.4-7.0 (br), 6.8-6.5 (br), 6.4-6.0 (br), 5.3-5.1 (br), 4.0-3.7 (br), 3.3-3.2 (br), 3.2-2.8 (br), 2.4-2.2 (br), 2.2-1.9 (br)
(ii) [ビス(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、50 mlシュレンク管にビス(4-N-モルフォリニルフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 0.7 g (1.1 mmol)、脱水トルエン 30 ml、脱水THF 0.2 gを添加した。ドライアイスバスで冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.60 M) 1.4 ml (2.2 mmol)を徐々に添加し、室温で30分攪拌後、45℃で加熱し、4時間攪拌した。反応溶液の温度を室温に戻した後、溶媒を留去した。得られた固体に脱水ジエチルエーテル 50 mlを添加し、-20℃に冷却後、四塩化ハフニウム・二ジエチルエーテル錯体 0.52 g (1.1 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌した。その後溶媒を留去しジエチルエーテルで抽出した。再度濃縮した後、少量の脱水ジエチルエーテルで洗浄し黄色固体として[ビス(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 0.37 g(37.8%)を得た。[ビス(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.86 (s, 2H), 7.79-7.59 (m, 4H), 6.95-6.79 (m, 4H), 6.27-6.21 (m, 2H), 6.20-6.13 (m, 2H), 5.69-5.57 (m, 2H), 3.94-3.73 (m, 8H), 3.22-2.98 (m, 8H), 2.54-2.41 (m, 6H), 2.10-1.96 (m, 6H)
[比較合成例A1]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-フルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メチルフェニル)(シクロペンタジエニル)(フルオレニル)メタンの合成
窒素雰囲気下、200 ml三口フラスコにフルオレン 1.72 g (10.3 mmol)、脱水THF 30 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 6.5 ml (10.6 mmol)を徐々に添加し、3時間攪拌した。メタノール/ドライアイス浴で冷却しながら、脱水THF 50 mlに溶解させた6,6-ビス(4-メチルフェニル)フルベン 3.22 g (12.5 mmol)溶液を添加し、室温まで徐々に昇温しながら19時間攪拌した。塩酸(2 M) 100 ml、炭酸水素ナトリウム飽和水溶液100 ml(2回)、次いで塩化ナトリウム飽和水溶液100 mlで有機相を抽出、洗浄した後、無水硫酸マグネシウムで脱水し、減圧下で溶媒を留去すると、赤色固体が得られた。得られた固体をヘキサンおよびメタノールで洗浄し減圧下で乾燥することにより、黄色粉末としてビス(4-メチルフェニル)(シクロペンタジエニル)(フルオレニル)メタン 2.52 g (5.95 mmol、57.6%)を得た。ビス(4-メチルフェニル)(シクロペンタジエニル)(フルオレニル)メタンの同定はFD-MSにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 424 (M+)
(ii) [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-フルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メチルフェニル)(シクロペンタジエニル)(フルオレニル)メタン 805 mg (1.90 mmol)、脱水ジエチルエーテル 50 mlを添加した。メタノール/ドライアイス浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 2.5 ml (4.1 mmol)を徐々に添加し、室温で22時間攪拌した。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム602 mg (1.88 mmol)を添加し、室温まで徐々に昇温しながら22時間攪拌したところ、橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ジエチルエーテルで抽出した。減圧下で溶媒を留去して得られた固体に少量のジクロロメタンおよびヘキサンを加え、-20℃で放置したところ黄色固体が析出した。この固体を濾別して採取し、少量のヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-フルオレニル)]ハフニウムジクロリド 273 mg (406μmol、21.6%)を得た。[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-フルオレニル)]ハフニウムジクロリドの同定は1H NMRおよびFD-MSにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.16-8.13 (m, 2H), 7.79-7.67 (m, 4H), 7.55-7.48 (m, 2H), 7.22-7.10 (m, 4H), 7.01-6.94 (m, 2H), 6.52-6.48 (m, 2H), 6.29 (t, J = 2.7 Hz, 2H), 5.72 (t, J = 2.7 Hz, 2H), 2.33 (s, 6H)
FD-MSスペクトル: M/z 672 (M+)
[比較合成例A2]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メチルフェニル)(シクロペンタジエニル)( 2,7-ジメチルフルオレニル)メタンの合成
窒素雰囲気下、200 ml三口フラスコに2,7-ジメチルフルオレン 876 mg (4.51 mmol)、脱水THF 20 mlを添加した。メタノール/ドライアイス浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 3.0 ml (4.9 mmol)を徐々に添加し、室温で4時間攪拌した。メタノール/ドライアイス浴で冷却しながら、THF 25 mlに溶解させた6,6-ビス(4-メチルフェニル)フルベン 1.28 g (4.96 mmol)溶液を添加し、室温まで徐々に昇温しながら23時間攪拌したところ、橙色スラリーが得られた。塩化アンモニウム飽和水溶液100 ml、炭酸水素ナトリウム飽和水溶液100 ml、次いで塩化ナトリウム飽和水溶液100 mlで有機相を抽出、洗浄洗浄した後、無水硫酸マグネシウムで脱水し、減圧下で溶媒を留去すると、黄色固体が得られた。得られた固体をヘキサンおよびメタノールで洗浄し減圧下で乾燥することにより、黄色粉末としてビス(4-メチルフェニル)(シクロペンタジエニル)( 2,7-ジメチルフルオレニル)メタン 880 mg (1.94 mmol、43.1%)を得た。ビス(4-メチルフェニル)(シクロペンタジエニル)( 2,7-ジメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 453 (M+)
(ii) [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管に4,4'-ジトリル(シクロペンタジエニル)(2,7-ジメチルフルオレニル)メタン 843 mg (1.86 mmol)、脱水ジエチルエーテル 50 mlを添加した。メタノール/ドライアイス浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.59 M) 2.5 ml (4.0 mmol)を徐々に添加し、室温で24時間攪拌した。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム594 mg (1.86 mmol)を添加し、室温まで徐々に昇温しながら19時間攪拌したところ、橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、塩化メチレンで抽出した。減圧下で溶媒を留去して得られた固体に少量の塩化メチレンおよびヘキサンを加え、-20℃で放置したところ黄色固体が析出した。この固体を濾別して採取し、少量のヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリド 670 mg (957μmol、51.6%)を得た。[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.96 (d, J = 8.6 Hz, 2H), 7.76 (dd, J = 8.1 Hz, 2.4 Hz, 2H), 7.67 (dd, J = 7.8 Hz, 1.9 Hz, 2H), 7.31 (dd, J = 8.6 Hz, 1.4 Hz, 2H), 7.20 (br d, J = 7.8 Hz, 2H), 7.10 (br d, J = 7.8 Hz, 2H), 6.28 (t, J = 8.0 Hz, 2H), 6.15 (br s, 2H), 5.68 (t, J = 8.0 Hz, 2H), 2.33 (s, 6H), 2.12 (s, 6H)
FD-MSスペクトル: M/z 700 (M+)
[比較合成例A3]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
(i) [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メチルフェニル)(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)メタン 684 g (1.27 mmol)、脱水ジエチルエーテル 50 mlを添加した。メタノール/ドライアイス浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 1.7 ml (2.8 mmol)を徐々に添加し、室温で17時間攪拌した。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム 406 mg (1.27 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ジエチルエーテルで抽出した。減圧下で溶媒を留去して得られた固体に少量の塩化メチレン、その後にヘキサンを加え、-20℃で放置したところ黄色固体が析出した。この固体を濾別して採取し、少量のヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド 131 mg (167μmol、13.2%)を得た。[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.99 (d, J = 8.9 Hz, 2H), 7.80 (dd, J = 8.0 Hz, 2.2 Hz, 2H), 7.73 (dd, J = 8.0 Hz, 2.2 Hz, 2H), 7.54 (dd, J = 8.9 Hz, 1.6 Hz, 2H), 7.22 (br d, J = 8.9 Hz, 2H), 7.14 (br d, J = 8.6 Hz, 2H), 6.36 (d, J = 0.8 Hz, 2H) 6.26 (t, J = 2.7 Hz, 2H), 5.60 (t, J = 2.7 Hz, 2H), 2.32 (s, 6H), 1.03 (s, 18H)
FD-MSスペクトル: M/z 784 (M+)
[比較合成例A4]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジメチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メチルフェニル)(シクロペンタジエニル)( 3,6-ジメチルフルオレニル)メタンの合成
窒素雰囲気下、30 mlシュレンク管に脱水t-ブチルメチルエーテル20 ml、3,6-ジメチルフルオレン0.399 g (2.06 mmol)を装入した。この溶液にn-ブチルリチウムのヘキサン溶液(1.59 M、1.31 ml、2.08 mmol)を氷水浴下、10分かけて滴下した。室温で18時間撹拌した。6,6-ビス(4-メチルフェニル)フルベン0.539 g (2.08 mmol)を加え、室温で24時間攪拌した。反応溶液に飽和塩化アンモニウム水溶液を装入し、有機層を分離し、水層をヘキサン100 ml、トルエン60 mlで抽出し、先の有機層と合わせて水、飽和塩化ナトリウム水溶液で洗浄した。硫酸マグネシウムで乾燥後、、シリカゲルを通して濾過した。溶媒を留去し、得られた固体をエタノールで洗浄することでビス(4-メチルフェニル)(シクロペンタジエニル)(3,6-ジメチルフルオレニル)メタン0.741 g (1.64 mmol、80%)を得た。ビス(4-メチルフェニル)(シクロペンタジエニル)(3,6-ジメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 452 (M+)
(ii) [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、30 mlシュレンク管に配位子0.350 g (0.773 mmol)、α-メチルスチレン0.183 g (1.55 mmol)、シクロペンチルメチルエーテル0.774 g、トルエン18.0 gを装入した。1.59 Mのn-ブチルリチウムヘキサン溶液0.98 ml (1.6 mmol)を10分間で滴下した。70℃に昇温後、4時間攪拌した。氷/アセトン浴で冷却後、系内を5分間減圧し、窒素で常圧に戻し、四塩化ハフニウム0.249 g (0.776 mmol)を加え、室温で18時間反応させた。溶媒を留去し、得られた固体をヘキサンで洗浄した。ジクロロメタン約10 mlを加え、可溶分を抽出した。得られた溶液を濃縮し、ヘキサン約3 mlを加え、析出した固体を濾過によって収集し、[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジメチルフルオレニル)]ハフニウムジクロリド0.450 g (0.642 mmol、83.1%)を得た。[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.92 (t, J = 0.8 Hz, 2H), 7.76 (dd, J = 7.9, 2.3 Hz, 2H), 7.69 (dd, J = 8.1, 2.1 Hz, 2H), 7.19 (dd, J = 8.1, 1.8 Hz, 2H), 7.10 (dd, J = 8.2, 2.0 Hz, 2H), 6.83 (dd, J = 8.9, 1.6 Hz, 2H), 6.36 (d, J = 8.9 Hz, 2H), 6.26 (t, J = 2.6 Hz, 2H), 5.67 (t, J = 2.8 Hz, 2H), 2.57 (s, 6H), 2.32 (s, 6H)
FD-MSスペクトル: M/z 700 (M+)
[比較合成例A5]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メチルフェニル)(シクロペンタジエニル)(3,6-ジ-t−ブチルフルオレニル)メタンの合成
窒素雰囲気下で200 ml三口フラスコに3,6-ジ-t-ブチルフルオレン 2.50 g (8.98 mmol)および脱水THF 150 mlを添加し撹拌した。この溶液を-20℃に冷却しながら、n-ブチルリチウム/ヘキサン溶液(1.57 M) 5.9 ml (9.26 mmol)を徐々に添加し、その後室温で14時間攪拌し、得られた溶液を再度-20℃に冷却した後、6,6-ビス(4-メチルフェニル)フルベン 2.78 g (10.76 mmol)のTHF溶液を滴下した。その後室温で14時間攪拌し、その後反応溶液を飽和塩化アンモニウム水溶液でクエンチし、ジエチルエーテルで抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で1回ずつ洗浄した。硫酸マグネシウムで乾燥し、溶媒を留去した。得られた固体をメタノールで洗浄し、ビス(4-メチルフェニル)(シクロペンタジエニル)(3,6-ジ-t−ブチルフルオレニル)メタン 3.45 g (72%)を白色固体として得た。ビス(4-メチルフェニル)(シクロペンタジエニル)(3,6-ジ-t−ブチルフルオレニル)メタンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.5-6.7 (m),5.38 (s), 3.0-2.8 (br), 2.3 (br),1.3 (s)
(ii) [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、50 mlシュレンク管にビス(4-メチルフェニル)(シクロペンタジエニル)(3,6-ジ-t−ブチルフルオレニル)メタン 0.565 g (1.05 mmol)、脱水トルエン 10 ml、脱水THF 0.3 gを添加した。ドライアイスバスで冷却しながらn-ブチルリチウム/ヘキサン溶液(1.66 M) 1.3 ml (2.11 mmol)を徐々に添加し、室温で30分攪拌後、40℃で加熱し、4時間攪拌した。反応溶液を室温に戻した後、溶媒を留去した。得られた固体に脱水ジエチルエーテル 80 mlを添加し、-20℃に冷却後、四塩化ハフニウム 0.318 g (1.0 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌した。その後溶媒を留去し固体を脱水ジエチルエーテル、脱水ジクロロメタンで抽出し、溶媒を留去し得られた固体を少量の脱水ジエチルエーテル洗浄し黄色固体として[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド 0.32 g (38%)を得た。[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.05 (d, J = 1.0 Hz, 2H), 7.76-7.70 (m, 4H), 7.19-7.10 (m, 4H), 7.07 (d, J = 9.2 Hz, 2H), 6.39 (d, J = 9.2 Hz, 2H), 6.25 (t, J = 2.6 Hz, 2H), 5.67 (t, J = 2.6 Hz, 2H), 2.32 (s, 6H), 1.40 (s, 18H)
[比較合成例A6]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メチルフェニル)(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)メタンの合成
窒素雰囲気下、200 mlの三口フラスコに2,7-ジメチル-3,6-ジ-t-ブチルフルオレン 1.45 g(4.73 mmol)、脱水THF 100 mlを装入した。氷水浴下、1.66 Mのn-ブチルリチウムヘキサン溶液 3.1 ml (5.14 mmol)をゆっくりと滴下し、徐々に室温に戻しながら20時間攪拌した。その後、-20℃に冷却し、6,6-ビス(4-メチルフェニル)フルベン 1.5 g (5.8 mmol)を加え室温で2時間攪拌した。その後反応溶液を塩酸水溶液でクエンチし、ジエチルエーテルで抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で1回ずつ洗浄した。硫酸マグネシウムで乾燥し、溶媒を留去した。得られた固体をメタノールで洗浄し、ビス(4-メチルフェニル)(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)メタン 2.2 g (83%)を白色粉末として得た。ビス(4-メチルフェニル)(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)メタンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.43 (s), 7.12 (s), 6.68 (br s), 6.32 (br s), 5.22 (s), 3.73 (s), 2.97 (br s), 2.84 (br s), 2.32 (s), 1.38 (s)
(ii) [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メチルフェニル)(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)メタン 1.0 g (1.77 mmol)、脱水トルエン20 ml、脱水THF 0.5 gを添加した。ドライアイスバスで冷却しながらn-ブチルリチウム/ヘキサン溶液(1.66 M) 2.1 ml (3.54 mmol)を徐々に添加し、室温で30分攪拌後、40℃で加熱し、4時間攪拌した。反応溶液を室温に戻した後、溶媒を留去した。得られた固体に脱水ジエチルエーテル30mlを添加し、-20℃に冷却後、四塩化ハフニウム 0.59 g (1.84 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌した。その後溶液をろ別し濃縮乾固後、脱水ヘキサンで抽出した。再度濃縮乾固後少量の脱水ヘキサンおよび脱水ジエチルエーテルで洗浄し黄色固体として[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド 0.53 g (37%)を得た。[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.04 (s, 2H), 7.78-7.66 (m, 4H), 7.20-7.07 (m, 4H), 6.24 (t, J = 2.6 Hz, 2H), 6.09 (s, 2H), 5.61 (t, J = 2.6 Hz, 2H), 2.33 (s, 6H), 2.28 (s, 6H), 1.49 (s, 18H)
[比較合成例A7]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの合成
(i) [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、200 mlシュレンク管にビス(4-メチルフェニル)(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタン 3.07 g (4.76 mmol)、脱水トルエン 80 mlおよび脱水THF 0.80 ml (9.9 mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.65 M) 6.00 ml (9.90 mmol)を徐々に添加し、45℃で5時間攪拌した。減圧下で溶媒を留去し、脱水ジエチルエーテル 100 mlを添加して再び溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム 1.43 g (4.46 mmol)を添加し、室温まで徐々に昇温しながら15時間攪拌したところ、橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去し、再び少量のジクロロメタンに溶解させた。ヘキサンを加えた後、減圧下で少しずつ溶媒を留去したところ、橙色の固体が析出したのでこれを採取した。ヘキサンで洗浄した後減圧下で乾燥し、橙色固体として[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリド 3.14 g (3.51 mmol、78.7%)を得た。[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.02 (s, 2H), 7.82-7.69 (m, 4H), 7.25-7.10 (m, 4H), 6.22 (s, 2H), 6.19 (t, J = 2.6 Hz, 1H), 5.50 (t, J = 2.6 Hz, 1H), 2.32 (s, 6H), 1.7-1.5 (br m, 8H), 1.46 (s, 6H), 1.39 (s, 6H), 0.94 (s, 6H), 0.83 (s, 6H)
FD-MSスペクトル: M/z 892 (M+)
[比較合成例A8]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メトキシフェニル)(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)メタンの合成
窒素雰囲気下、200 ml三口フラスコに3,6-ジ-t-ブチルフルオレン 1.06 g (3.80 mmol)および脱水t-ブチルメチルエーテル 80 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 2.50 ml (4.08 mmol)を徐々に添加し、その後室温で4時間攪拌した。6,6-ビス(4-メトキシフェニル)フルベン 1.01 g (3.46 mmol)を添加した後、40時間加熱還流を行った。氷浴で冷却しながら水 50 mlを徐々に添加し、得られた二層の溶液を500 ml分液漏斗に移した。ジエチルエーテル 50 mlを加えて数回振った後水層を除き、有機層を水 100 mlで3回、飽和食塩水 100 mlで1回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙色固体を得た。ジエチルエーテルで洗浄した後ジクロロメタンで抽出し、減圧下で溶媒を留去した。得られた固体を少量のジクロロメタンに溶解させ、この溶液を少量のシリカゲルに流通させた。減圧下で溶媒を留去し、淡黄色固体としてビス(4-メトキシフェニル)(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)メタン 698 mg (1.23 mmol、35.4%)を得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 568 (M+)
(ii) [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)メタン 651 mg (1.14 mmol)および脱水ジエチルエーテル 40 mlを順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 1.50 ml (2.45 mmol)を徐々に添加し、室温で24時間攪拌した。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム334 mg (1.04 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌した。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去し、黄色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド 740 mg (907μmol、86.9%)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.06 (d, J = 1.3 Hz, 2H), 7.80-7.69 (m, 4H), 7.10-7.06 (m, 2H), 6.93-6.86 (m, 4H), 6.41 (d, J = 9.2 Hz, 2H), 6.26 (t, J = 2.6 Hz, 2H), 5.67 (t, J = 2.6 Hz, 2H), 3.80 (s, 6H), 1.41 (s, 18H)
FD-MSスペクトル: M/z 816 (M+)
[比較合成例A9]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに2,7-ジメチル-3,6-ジ-t-ブチルフルオレン 1.2 g(3.92 mmol)、脱水シクロペンチルメチルエーテル 40 mlを装入した。氷水浴下、1.66 Mのn-ブチルリチウムヘキサン溶液 2.5 ml (4.11 mmol)をゆっくりと滴下し、徐々に室温に戻しながら20時間攪拌した。その後、氷水浴下にし、6,6-ビス(4-メトキシフェニル)フルベン 1.25 g (4.31 mmol)を加え室温で4時間攪拌した。その後反応溶液を塩酸水溶液でクエンチし、ジエチルエーテルで抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で1回ずつ洗浄した。硫酸マグネシウムで乾燥し、溶媒を留去した。得られた固体をヘキサンで洗浄し、ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)メタン 1.7 g (74%)を白色粉末として得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)メタンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.43 (s), 7.12 (s), 6.68 (br s), 6.32 (br s), 5.22 (s), 3.73 (s), 2.97 (br s), 2.84 (br s), 2.32 (s), 1.38 (s)
(ii) [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)メタン 0.8 g (1.22 mmol)、脱水トルエン 20 ml、脱水THF 0.5 gを添加した。ドライアイスバスで冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.66 M) 1.7 ml (2.75 mmol)を徐々に添加し、室温で30分攪拌後、40℃で加熱し、4時間攪拌した。反応溶液を室温に戻した後、溶媒を留去した。得られた固体に脱水ジエチルエーテル 30 mlを添加し、-20℃に冷却後、四塩化ハフニウム 0.41 g (1.28 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌した。その後溶媒を留去し固体を脱水ヘキサンで洗浄後、脱水ジエチルエーテルおよび脱水ジクロロメタンで抽出した。ジクロロメタン溶液を再度濃縮した後、脱水ジエチルエーテルで洗浄し黄色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド 0.70 g (79.1%)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.05 (s, 2H), 7.80-7.66 (m, 4H), 6.96-6.84 (m, 4H), 6.25 (t, J = 2.8 Hz, 2H), 6.12 (s, 2H), 5.61 (t, J = 2.8 Hz, 2H), 3.80 (s, 6H), 2.29 (s, 6H), 1.49 (s, 18H)
[比較合成例A10]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの合成
(i) ビス(4-メトキシフェニル)(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタンの合成
窒素雰囲気下、200 ml三口フラスコにオクタメチルオクタヒドロジベンゾフルオレン 1.33 g (3.45 mmol)および脱水t-ブチルメチルエーテル 100 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 2.30 ml (3.75 mmol)を徐々に添加し、室温で4時間攪拌した。6,6-ビス(4-メトキシフェニル)フルベン 0.909 g (3.13 mmol)を添加した後、40時間過熱還流を行った。氷浴で冷却しながら水 50 mlおよびジエチルエーテル 50 mlを徐々に添加し、得られた溶液を500 ml分液漏斗に移した。数回振った後水層を分離し、有機層を水 100 mlで3回、飽和食塩水 100 mlで1回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。シリカゲルクロマトグラフ(150 g、ヘキサン:酢酸エチル = 19:1)による分離を行い、無色の溶液を得た。減圧下で溶媒を留去し、淡黄色固体としてビス(4-メトキシフェニル)(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタン 2.06 g (3.04 mmol、97.3%)を得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 676 (M+)
(ii) [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタン 1.06 g (1.57 mmol)、脱水トルエン 40 mlおよび脱水THF 270 ・l (3.33mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.64 M) 2.00 ml (3.28 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 40 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム・二ジエチルエーテル錯体 718 mg (1.53 mmol)を添加し、室温まで徐々に昇温しながら17時間攪拌したところ、橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体をトルエンに溶解し、ヘキサンを添加した後減圧下で少しずつ溶媒を留去したところ橙色固体が析出した。この固体を濾別して採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、橙色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリド 984 mg (1.06 mmol、69.4%)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.02 (s, 2H), 7.83-7.69 (m, 4H), 6.98-6.85 (m, 4H), 6.27 (s, 2H), 6.20 (t, J = 2.6 Hz, 1H), 5.50 (t, J = 2.6 Hz, 1H), 3.79 (s, 6H), 1.7-1.5 (br m, 8H), 1.46 (s, 6H), 1.40 (s, 6H), 0.98 (s, 6H), 0.86 (s, 6H)
FD-MSスペクトル: M/z 924 (M+)
[比較合成例A11]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
(i) ビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに3,6-ジ-t-ブチルフルオレン 867 mg (3.12 mmol)および脱水t-ブチルメチルエーテル 50 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.59 M) 2.10 ml (3.34 mmol)を徐々に添加し、その後室温で19時間攪拌した。6,6-ビス[4-(ジメチルアミノ)フェニル]フルベン 988 mg (3.12 mmol)を添加した後、2日間加熱還流を行った。氷浴で冷却しながら水 50 mlを徐々に添加し、得られた二層の溶液を300 ml分液漏斗に移した。ジエチルエーテル 100 mlを加えて数回振った後水層を除き、有機層を水 50 mlで3回、飽和食塩水 50 mlで1回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して褐色固体を得た。ヘキサン中で再結晶を行い、白色固体としてビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)メタン 1.07 g (1.81 mmol、58.0%)を得た。ビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 594 (M+)
(ii) [ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)メタン 501 mg (841μmol)、脱水トルエン 30 mlおよび脱水THF 0.14 ml (1.7 mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.59 M) 1.10 ml (1.75 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 30 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム235 mg (735μmol)を添加し、室温まで徐々に昇温しながら16時間攪拌した。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して濃縮し、少量のヘキサンを添加した後、-20℃で再結晶を行った。析出した固体を少量のヘキサンで洗浄し、減圧下で乾燥して黄色固体として[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド 459 mg (545μmol、74.2%)を得た。[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.04 (d, J = 1.3 Hz, 2H), 7.70-7.60 (m, 4H), 7.08-7.04 (m, 2H), 6.72-6.69 (m, 4H), 6.52-6.48 (m, 2H), 6.24 (t, J = 2.6 Hz, 2H), 5.68 (t, J = 2.6 Hz, 2H), 2.93 (s, 12H), 1.40 (s, 18H)
FD-MSスペクトル: M/z 842 (M+)
[比較合成例A12]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの合成
(i) ビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタンの合成
窒素雰囲気下、500 ml三口フラスコにオクタメチルオクタヒドロジベンゾフルオレン 3.69 g (9.53 mmol)および脱水シクロペンチルメチルエーテル 250 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.65 M) 6.10 ml (10.1 mmol)を徐々に添加し、その後室温で24時間攪拌した。6,6-ビス[4-(ジメチルアミノ)フェニル]フルベン 3.00 g (9.48 mmol)を添加した後、6日間加熱還流を行った。氷浴で冷却しながら水 200 mlを徐々に添加し、得られた二層の溶液を1 l分液漏斗に移した。ジエチルエーテル 200 mlを加えて数回振った後水層を除き、有機層を水 200 mlで3回、飽和食塩水 200 mlで1回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。アセトン中で再結晶を行い、淡黄色固体としてビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタン 4.63 g (6.58 mmol、69.4%)を得た。ビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
FD-MSスペクトル: M/z 702 (M+)
(ii) [ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、200 mlシュレンク管にビス[4-(ジメチルアミノ)フェニル](シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)メタン 3.08 g (4.39 mmol)、脱水トルエン 80 mlおよび脱水THF 0.74 ml (9.1 mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.65 M) 5.50 ml (9.08 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 80 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム1.37 g (4.27 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去し、少量のトルエンを加えてスラリーとした。ヘキサンを添加した後減圧下で少しずつ溶媒を留去し、橙色固体を採取した。この固体をヘキサンで洗浄し、減圧下で乾燥することにより、橙色固体として[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリド 2.49 g (2.62 mmol、61.4%)を得た。[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 8.00 (s, 2H), 7.74-7.61 (m, 4H), 6.80-6.69 (m, 4H), 6.35 (s, 2H), 6.18 (t, J = 2.6 Hz, 2H), 5.52 (t, J = 2.6 Hz, 2H), 2.90 (s, 12H), 1.7-1.5 (br m, 8H), 1.46 (s, 6H), 1.39 (s, 6H), 0.99 (s, 6H), 0.86 (s, 6H)
FD-MSスペクトル: M/z 950 (M+)
[実施例A1]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量71.1 mol%、プロピレン含有量26.3 mol%、ENB含有量2.6 mol%、Mw = 1,860,000、Mn = 578,000、Mw/Mn = 3.22のエチレン/プロピレン/ENB共重合体4.77 gを得た。
[実施例A2]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量72.4 mol%、プロピレン含有量24.9 mol%、ENB含有量2.7 mol%、Mw = 1,820,000、Mn = 599,000、Mw/Mn = 3.04のエチレン/プロピレン/ENB共重合体5.22 gを得た。
[比較例A1]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-フルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量66.1 mol%、プロピレン含有量31.4 mol%、ENB含有量2.4 mol%、Mw = 1,130,000、Mn = 404,000、Mw/Mn = 2.80のエチレン/プロピレン/ENB共重合体1.57 gを得た。
[比較例A2]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量69.1 mol%、プロピレン含有量28.4 mol%、ENB含有量2.5 mol%、Mw = 1,600,000、Mn = 549,000、Mw/Mn = 2.91のエチレン/プロピレン/ENB共重合体2.60 gを得た。
[比較例A3]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0010 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.25 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量67.2 mol%、プロピレン含有量30.8 mol%、ENB含有量2.0 mol%、Mw = 977,000、Mn = 389,000、Mw/Mn = 2.51のエチレン/プロピレン/ENB共重合体2.15 gを得た。
[比較例A4]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジメチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量67.8 mol%、プロピレン含有量29.3 mol%、ENB含有量2.9 mol%、Mw = 1,280,000、Mn = 485,000、Mw/Mn = 2.64のエチレン/プロピレン/ENB共重合体1.58 gを得た。
[比較例A5]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量68.6 mol%、プロピレン含有量29.2 mol%、ENB含有量2.2 mol%、Mw = 1,600,000、Mn = 481,000、Mw/Mn = 3.33のエチレン/プロピレン/ENB共重合体1.90 gを得た。
[比較例A6]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量70.6 mol%、プロピレン含有量27.1 mol%、ENB含有量2.3 mol%、Mw = 2,170,000、Mn = 683,000、Mw/Mn = 3.18のエチレン/プロピレン/ENB共重合体3.65 gを得た。
[比較例A7]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量65.0 mol%、プロピレン含有量33.1 mol%、ENB含有量1.9 mol%、Mw = 1,600,000、Mn = 501,000、Mw/Mn = 3.19のエチレン/プロピレン/ENB共重合体0.89 gを得た。
[比較例A8]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0010 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.25 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量71.7 mol%、プロピレン含有量25.9 mol%、ENB含有量2.3 mol%、Mw = 2,080,000、Mn = 641,000、Mw/Mn = 3.24のエチレン/プロピレン/ENB共重合体2.59 gを得た。
[比較例A9]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積1 lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン470 ml、ENB 4.0 mlを25℃で装入し、エチレン供給速度100 l/hで10分間液相及び気相を飽和させ、密閉した後80℃に維持した。プロピレンを分圧で0.20 MPa分装入し、その後、0.80 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.1 mlを圧入し、次いで、0.0015 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドのトルエン溶液0.1 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.375 ml圧入し、15分間重合反応を行った。重合反応中、温度は80℃を維持、圧力はエチレン加圧により0.80 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量69.1 mol%、プロピレン含有量28.9 mol%、ENB含有量2.9 mol%、Mw = 2,550,000、Mn = 709,000、Mw/Mn = 3.60のエチレン/プロピレン/ENB共重合体1.30 gを得た。
[実施例A3]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.3 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.3 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量73.3 mol%、プロピレン含有量23.6 mol%、ENB含有量3.2 mol%、[η] = 4.40 dl/gのエチレン/プロピレン/ENB共重合体6.03 gを得た。
[実施例A4]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.2 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.2 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量73.6 mol%、プロピレン含有量23.3 mol%、ENB含有量3.1 mol%、[η] = 4.78 dl/gのエチレン/プロピレン/ENB共重合体4.31 gを得た。
[実施例A5]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの [ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.2 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.2 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量74.5 mol%、プロピレン含有量22.5 mol%、ENB含有量3.0 mol%、[η] = 4.82 dl/gのエチレン/プロピレン/ENB共重合体8.67 gを得た。
[実施例A6]
[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.2 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.2 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量72.3 mol%、プロピレン含有量24.0 mol%、ENB含有量3.7 mol%、[η] = 5.03 dl/gのエチレン/プロピレン/ENB共重合体2.76 gを得た。
[実施例A7]
[ビス(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.4 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.4 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量78.2 mol%、プロピレン含有量18.2 mol%、ENB含有量3.6 mol%、[η] = 6.21 dl/gのエチレン/プロピレン/ENB共重合体13.64 gを得た。
[比較例A10]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.4 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.4 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量70.6 mol%、プロピレン含有量26.5 mol%、ENB含有量2.9 mol%、[η] = 3.84 dl/gのエチレン/プロピレン/ENB共重合体5.56 gを得た。
[比較例A11]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.25 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.25 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量70.2 mol%、プロピレン含有量27.1 mol%、ENB含有量2.6 mol%、[η] = 4.14 dl/gのエチレン/プロピレン/ENB共重合体1.47 gを得た。
[比較例A12]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.3 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.3 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量72.6 mol%、プロピレン含有量24.6 mol%、ENB含有量2.8 mol%、[η] = 5.22 dl/gのエチレン/プロピレン/ENB共重合体1.95 gを得た。
[比較例A13]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドのトルエン溶液0.6 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.6 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量66.1 mol%、プロピレン含有量31.7 mol%、ENB含有量2.2 mol%、[η] = 3.63 dl/gのエチレン/プロピレン/ENB共重合体3.84 gを得た。
[比較例A14]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.6 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.6 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量71.3 mol%、プロピレン含有量26.3 mol%、ENB含有量2.5 mol%、[η] = 4.35 dl/gのエチレン/プロピレン/ENB共重合体5.25 gを得た。
[比較例A15]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.55 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドのトルエン溶液1.5 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を1.5 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量68.7 mol%、プロピレン含有量29.3 mol%、ENB含有量2.0 mol%、[η] = 3.83 dl/gのエチレン/プロピレン/ENB共重合体13.14 gを得た。
[実施例A8]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 10.0 mlを25℃で装入し、密閉した後120℃に維持した。プロピレンを分圧で0.45 MPa分装入し、水素 400 mlを装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.15 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.15 ml圧入し、15分間重合反応を行った。重合反応中、温度は120℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量79.0 mol%、プロピレン含有量17.9 mol%、ENB含有量3.1 mol%、[η] = 2.58 dl/gのエチレン/プロピレン/ENB共重合体6.21 gを得た。
[実施例A9]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.15 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.15 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量73.0 mol%、プロピレン含有量24.4 mol%、ENB含有量2.7 mol%、[η] = 9.88 dl/gのエチレン/プロピレン/ENB共重合体6.21 gを得た。
[実施例A10]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.25 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.25 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量74.7 mol%、プロピレン含有量22.5 mol%、ENB含有量2.8 mol%、[η] = 10.0 dl/gのエチレン/プロピレン/ENB共重合体16.83 gを得た。
[比較例A16]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.3 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.3 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量70.0 mol%、プロピレン含有量27.6 mol%、ENB含有量2.4 mol%、[η] = 8.06 dl/gのエチレン/プロピレン/ENB共重合体8.98 gを得た。
[比較例A17]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.3 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.3 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量69.8 mol%、プロピレン含有量27.9 mol%、ENB含有量2.3 mol%、[η] = 8.51 dl/gのエチレン/プロピレン/ENB共重合体4.91 gを得た。
[比較例A18]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.2 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.2 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量73.0 mol%、プロピレン含有量24.7 mol%、ENB含有量2.3 mol%、[η] = 10.8 dl/gのエチレン/プロピレン/ENB共重合体2.72 gを得た。
[比較例A19]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドのトルエン溶液0.6 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.6 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量66.9 mol%、プロピレン含有量31.3 mol%、ENB含有量1.8 mol%、[η] = 9.48 dl/gのエチレン/プロピレン/ENB共重合体5.45 gを得た。
[比較例A20]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.6 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.6 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量71.4 mol%、プロピレン含有量26.4 mol%、ENB含有量2.3 mol%、[η] = 8.50 dl/gのエチレン/プロピレン/ENB共重合体12.79 gを得た。
[比較例A21]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリドのトルエン溶液1.0 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を1.0 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量70.0 mol%、プロピレン含有量28.0 mol%、ENB含有量1.9 mol%、[η] = 10.2 dl/gのエチレン/プロピレン/ENB共重合体14.37 gを得た。
[実施例A11]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/プロピレン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、活性アルミナにより不純物を除去したn-ヘプタン940 ml、ENB 12.0 mlを25℃で装入し、密閉した後95℃に維持した。プロピレンを分圧で0.45 MPa分装入し、水素400 mlを装入し、その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.15 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.15 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/プロピレン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量73.2 mol%、プロピレン含有量24.2 mol%、ENB含有量2.7 mol%、[η] = 3.31 dl/gのエチレン/プロピレン/ENB共重合体13.75 gを得た。
[実施例A12]
[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/1−ブテン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、n-ヘキサン(関東化学株式会社製、ヘキサン(脱水))750 ml、ENB 10.0 ml、1−ブテン 350 mlを25℃で装入し、密閉した後95℃に維持した。その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.2 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.2 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/1−ブテン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量62.0 mol%、1−ブテン含有量36.6 mol%、ENB含有量1.5 mol%、[η] = 7.60 dl/gのエチレン/1−ブテン/ENB共重合体5.91 gを得た。
[実施例A13]
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドによるエチレン/1−ブテン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、n-ヘキサン(関東化学株式会社製、ヘキサン(脱水))750 ml、1−ブテン 350 ml、ENB 10.0 mlを25℃で装入し、密閉した後95℃に維持した。その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチル-フルオレニル)]ハフニウムジクロリドのトルエン溶液0.22 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.22 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/1−ブテン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量63.3 mol%、1−ブテン含有量35.2 mol%、ENB含有量1.5 mol%、[η] = 8.26 dl/gのエチレン/1−ブテン/ENB共重合体7.58 gを得た。
[実施例A14]
[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドによるエチレン/1−ブテン/ENB共重合
充分に窒素置換した内容積2lのステンレス(SUS)製オートクレーブに、n-ヘキサン(関東化学株式会社製、ヘキサン(脱水))750 ml、1−ブテン 350 ml、ENB 10.0 mlを25℃で装入し、密閉した後95℃に維持した。その後、1.60 MPa-Gまでエチレンにより昇圧した。先ず、1 Mのトリイソブチルアルミニウムのトルエン溶液0.3 mlを圧入し、次いで、0.001 Mの[ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドのトルエン溶液0.2 mlを圧入した。続いて、0.004 Mのトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液を0.2 ml圧入し、15分間重合反応を行った。重合反応中、温度は95℃を維持、圧力はエチレン加圧により1.60 MPa-Gを維持した。重合反応開始15分後、2 mlのメタノールを窒素により圧入し、重合反応を停止した。
得られた重合溶液は濃塩酸5 mlを含んだ1 lのメタノール/アセトン混合溶液(1/1[vol/vol%])中に混合し、その後1時間室温にて攪拌し脱灰した。析出したエチレン/1−ブテン/ENB共重合体は、濾取し、これを130℃、-600 mmH gの条件で10時間乾燥し、エチレン含有量64.4 mol%、1−ブテン含有量34.1 mol%、ENB含有量1.5 mol%、[η] = 8.41 dl/gのエチレン/1−ブテン/ENB共重合体10.11 gを得た。
実施例A1、2、比較例A1〜9を表1、実施例A3〜11、比較例A10〜21を表2、実施例A12〜14を表3にまとめる。
Figure 2015122415
Figure 2015122415
注1)成分(A)として以下の架橋メタロセン化合物を使用した。
i : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
ii : [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
iii : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-フルオレニル)]ハフニウムジクロリド
iv : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリド
v : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド
vi : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジメチルフルオレニル)]ハフニウムジクロリド
vii : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド
viii : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド
ix : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリド
x : [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド
xi : [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリド
注2)成分(B−1)として以下の有機金属化合物を使用した。
a : トリイソブチルアルミニウム
注3)成分(B−3)として以下の架橋メタロセン化合物(A)と反応してイオン対を形成する化合物を使用した。
b : トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート
注4)小数点以下第二位を四捨五入して表記した。
注5)小数点以下第二位を四捨五入して表記した。
Figure 2015122415
Figure 2015122415
注1)成分(A)として以下の架橋メタロセン化合物を使用した。
i : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
ii : [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
iv : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチルフルオレニル)]ハフニウムジクロリド
x : [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド
xi : [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリド
xii : [ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
xiii : [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド
xiv : [ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-3,6-ジ-t-ブチルフルオレニル)]ハフニウムジクロリド
xv : [ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-オクタメチルオクタヒドロジベンゾフルオレニル)]ハフニウムジクロリド
xvi : [ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
xvii : [ビス(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド注2)成分(B−1)として以下の有機金属化合物を使用した。
a : トリイソブチルアルミニウム
注3)成分(B−3)として以下の架橋メタロセン化合物(A)と反応してイオン対を形成する化合物を使用した。
b : トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート
注4)小数点以下第二位を四捨五入して表記した。
Figure 2015122415
Figure 2015122415
注1)成分(A)として以下の架橋メタロセン化合物を使用した。
i : [ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
ii : [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
xii : [ビス[4-(ジメチルアミノ)フェニル]メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド
注2)成分(B−1)として以下の有機金属化合物を使用した。
a : トリイソブチルアルミニウム
注3)成分(B−3)として以下の架橋メタロセン化合物(A)と反応してイオン対を形成する化合物を使用した。
b : トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート
注4)小数点以下第二位を四捨五入して表記した。
以下、本発明2について、実施例に基づいて本発明をさらに具体的に説明するが、本発明2はこれら実施例に限定されるものではない。
なお、実施例B及び比較例Bにおける各特性の評価方法は次の通りである。
《エチレン系共重合体の物性》
〔エチレン[A]に由来する構造単位、およびα−オレフィン[B]に由来する構造単位のモル量〕
1H−NMRスペクトルメーターによる強度測定によって求めた。
〔非共役ポリエン[C]に由来する構造単位のモル量〕
1H−NMRスペクトルメーターによる強度測定によって求めた。
〔ムーニー粘度〕ムーニー粘度(ML1+4 (125℃)は、ムーニー粘度計(島津製作所社製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
〔B値〕
o−ジクロロベンゼン−d4/ベンゼン−d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、13C−NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき算出した。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4〜20のα−オレフィン[B]、および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]−炭素数4〜20のα−オレフィン[B]ダイアッド連鎖分率を示す。
《エチレン系共重合体組成物および成形体の物性》
〔エチレン系共重合体組成物の調整〕
本発明のエチレン系共重合体を含む組成物における加硫する前の組成物は、MIXTRON BB MIXER(神戸製鋼所社製、BB−2型、容積1.7L、ローター2WH)を用いて、エチレン系共重合体100重量部に対して、加硫助剤として酸化亜鉛「酸化亜鉛2種」(商品名;ハクスイテック株式会社製)、加工助剤としてステアリン酸、補強剤としてカーボンブラック「旭#60G」(商品名;旭カーボン株式会社製)、軟化剤としてパラフィン系プロセスオイル「ダイアナプロセスオイルPS−430」(商品名;出光興産株式会社製)を表4に記載の配合量で配合した後混練した。混練条件は、ローター回転数が40rpm、フローティングウェイト圧力が3kg/cm2、混練時間が5分間で行い、混練排出温度は144℃であった。
次いで、上記配合物が温度40℃となったことを確認した後、6インチロールを用いて上記配合物に加硫促進剤として、2−メルカプトベンゾチアゾール「サンセラーM」(商品名;三新化学工業株式会社製)、テトラメチルチウラムジスルフィド「サンセラーTT」(商品名;三新化学工業株式会社製)、および、ジペンタメチレンチウラムテトラスルフィド「サンセラーTRA」(商品名;三新化学工業株式会社製)を、架橋剤(加硫剤)としてイオウを表4に記載の配合量で添加して混練した。
混練条件は、ロール温度を前ロール/後ロール=50℃/50℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を3mmとして混練時間8分間で分出しした。
次に、この配合物からプレス成形機を用いて160℃で20分間加硫を行って、厚み2mmのシートを調製した。また。圧縮永久歪試験用のゴムブロックは、160℃で25分間加硫して調製した。未加硫物及び得られた加硫物について、未加硫物性、引張り試験、硬さ試験、圧縮永久歪試験を以下方法により行った。
〔硬度試験(Durometer−A)〕
加硫された成形体の平らな部分を重ねて12mmとし、JIS K6253に従い硬度(JIS−A)を測定した。
〔引張り試験〕
加硫された成形体をJIS K6251に従い、測定温度23℃、引張速度500mm/分の条件で引張試験を行い、破断時強度(TB)および破断伸び(EB)を測定した。
〔圧縮永久歪試験〕
圧縮永久歪(CS)測定用試験片は、厚さ12.7mm、直径29mmの直円柱形の試験片を、160℃で25分間加硫して得た。得られた試験片をJIS K6262(1997)に従って、−40℃×22時間処理後の圧縮永久歪を測定した。
〔遷移金属化合物の合成〕
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド(触媒−a1)の合成
(i)6,6-ビス(4-メトキシフェニル)フルベンの合成
窒素雰囲気下、500 ml三口フラスコにリチウムシクロペンタジエニド8.28 g(115mmol)および脱水THF200 mlを加えた。氷浴で冷却しながらDMI13.6 g (119 mmol)を添加し、室温で30分間攪拌した。その後4,4'-ジメトキシベンゾフェノン 25.3 g (105 mmol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水 100 mlを徐々に添加し、更にジクロロメタン 200 mlを加えて室温で30分間攪拌した。得られた二層の溶液を500 ml分液漏斗に移し、有機層を水 200 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700 g、ヘキサン:酢酸エチル = 4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6-ビス(4-メトキシフェニル)フルベン 9.32 g (32.1 mmol、30.7%)を得た。6,6-ビス(4-メトキシフェニル)フルベンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.28-7.23 (m, 4H), 6.92-6.87 (m, 4H), 6.59-6.57 (m, 2H), 6.30-6.28 (m, 2H), 3.84 (s, 6H)
(ii)ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに2,3,6,7-テトラメチルフルオレン 500 mg (2.25 mmol)および脱水t-ブチルメチルエーテル 40 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 1.45 ml (2.36 mmol)を徐々に添加し、室温で18時間攪拌した。6,6-ビス(4-メトキシフェニル)フルベン 591 mg (2.03 mmol)を添加した後、3日間加熱還流を行った。氷浴で冷却しながら水 50 mlを徐々に添加し、得られた溶液を300 ml分液漏斗に移した。ジクロロメタン 50 mlを加えて数回振った後水層を分離し、有機層を水 50 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 793 mg (1.55 mmol、76.0%)を得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。FD-MSスペクトル: M/z 512 (M+)
(iii)[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 272 mg (0.531 mmol)、脱水トルエン 20 mlおよびTHF90μl(1.1mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 0.68 ml (1.1 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 20 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム 164 mg (0.511 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて-20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 275 mg (0.362 mmol、70.8%)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.87 (s, 2H), 7.80-7.66 (m, 4H), 6.94-6.83 (m, 4H), 6.24 (t, J = 2.6 Hz, 2H), 6.15 (s, 2H), 5.65 (t, J = 2.6 Hz, 2H), 3.80 (s, 6H), 2.47 (s, 6H), 2.05 (s, 6H)FD-MSスペクトル: M/z 760 (M+)
〔実施例B1〕
〈エチレン系共重合体の製造〉
攪拌翼を備えた容積300Lの重合器を用いて連続的に、エチレン、α−オレフィン(B)として1−ブテン、非共役ポリエン(C)として5−エチリデン−2−ノルボルネン(ENB)からなる三元共重合体の重合反応を95℃にて行った。
重合溶媒としてはヘキサン(フィード量:31.9L/h)を用いて、連続的に、エチレンフィード量が3.1Kg/h、1−ブテンフィード量が13Kg/h、ENBフィード量が520g/hおよび水素フィード量が0.5NL/hとなるように、重合器に連続供給した。
重合圧力を1.6MPa、重合温度を95℃に保ちながら主触媒として、前記(触媒−a1)を用いて、フィード量0.042mmol/hとなるよう連続的に供給した。また、共触媒として(C65)3CB(C65)4をフィード量0.21mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TIBA)をフィード量5mmol/hとなるように、それぞれ連続的に供給した。
このようにして、エチレン、1−ブテンおよびENBからなるエチレン・1−ブテン・ENB共重合体が、12.9重量%の溶液状態で得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・α−オレフィン・非共役ポリエン共重合体ゴムを溶媒から分離した後、80℃で一昼夜減圧乾燥した。
以上の操作によって、エチレン、ブテン、ENBから形成されるエチレン・1−ブテン・ENB共重合体(EBDM−1)が毎時4.8Kgの速度で得られた。
得られたEBDM−1の物性を前記記載の方法で測定した。結果を表5に示す。
〈エチレン系共重合体組成物の調整〉
表5に記載の配合量で、前記記載の方法で、配合物を得た後、加硫してシートを得た。得られたシートの物性を前記記載の方法で測定した。結果を表5に示す。
〔実施例B2、3〕
実施例B1の重合条件を表4に記載の条件に替えて夫々エチレン・1−ブテン・ENB共重合体(EBDM−2、EBDM−3)を得た後、表5に記載の配合量で配合物を得た後、加硫してシートを得た。得られたシートの物性を前記記載の方法で測定した。結果を表5に示す。
〔比較例B1〜3〕
実施例B1で用いた主触媒である触媒−a1に替え、(t−ブチルアミド)ジメチル(η5−2−メチル−s−インダセン−1−イル)シランチタニウム(II)1,3−ペンタジエン(触媒−2)に替え、且つ、重合条件を表4に記載の条件に替えて、夫々エチレン・1−ブテン・ENB共重合体(EBDM−4〜EBDM−5)を得た後、表5に記載の配合量で配合物を得た後、加硫してシートを得た。得られたシートの物性を前記記載の方法で測定した。結果を表5に示す。
Figure 2015122415
Figure 2015122415
以下、本発明2−1について、実施例に基づいて本発明をさらに具体的に説明するが、本発明2−1はこれら実施例に限定されるものではない。
以下の実施例C等の記載において、特に言及しない限り「部」は「質量部」を示す。
《エチレン・α−オレフィン・非共役ポリエン共重合体》
〔各構造単位のモル量〕
エチレン・α−オレフィン・非共役ポリエン共重合体のエチレン[A]に由来する構造単位、α−オレフィン[B]に由来する構造単位および非共役ポリエン[C]に由来する構造単位のモル量は、1H−NMRスペクトルメーターによる強度測定によって求めた。
〔ムーニー粘度〕
エチレン・α−オレフィン・非共役ポリエン共重合体のムーニー粘度ML(1+4)125℃は、ムーニー粘度計(島津製作所社製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
〔B値〕
o−ジクロロベンゼン−d4/ベンゼン−d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、エチレン・α−オレフィン・非共役ポリエン共重合体の13C−NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき、B値を算出した。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4〜20のα−オレフィン[B]および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]−炭素数4〜20のα−オレフィン[B]ダイアッド連鎖分率を示す。
〔極限粘度〕
エチレン・α−オレフィン・非共役ポリエン共重合体の極限粘度[η]は、デカリン溶媒を用いて、135℃で測定した値である。
具体的には、エチレン・α−オレフィン・非共役ポリエン共重合体約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた(下式参照)。
[η]=lim(ηsp/C) (C→0)」
〔遷移金属化合物の合成〕
[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリド(触媒−a1)の合成
(i)6,6−ビス(4−メトキシフェニル)フルベンの合成
窒素雰囲気下、500ml三口フラスコにリチウムシクロペンタジエニド8.28g(115mmol)および脱水THF(テトラヒドロフラン)200mlを加えた。氷浴で冷却しながらDMI(1,3−ジメチル−2−イミダゾリジノン)13.6g(119mmol)を添加し、室温で30分間攪拌した。その後4,4'−ジメトキシベンゾフェノン25.3g(105mol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水100mlを徐々に添加し、更にジクロロメタン200mlを加えて室温で30分間攪拌した。得られた二層の溶液を500ml分液漏斗に移し、有機層を水200mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700g、ヘキサン:酢酸エチル=4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6−ビス(4−メトキシフェニル)フルベン9.32g(32.1mmol、30.7%)を得た。6,6−ビス(4−メトキシフェニル)フルベンの同定は1H−NMRスペクトルにて行った。以下にその測定値を示す。1H−NMRスペクトル(270MHz,CDCl3):δ/ppm 7.28−7.23(m,4H),6.92−6.87(m,4H),6.59−6.57(m,2H),6.30−6.28(m,2H),3.84(s,6H)
(ii)ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100ml三口フラスコに2,3,6,7−テトラメチルフルオレン500mg(2.25mmol)および脱水t−ブチルメチルエーテル40mlを添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.63M)1.45ml(2.36mmol)を徐々に添加し、室温で18時間攪拌した。6,6−ビス(4−メトキシフェニル)フルベン591mg(2.03mmol)を添加した後、3日間加熱還流を行った。氷浴で冷却しながら水50mlを徐々に添加し、得られた溶液を300ml分液漏斗に移した。ジクロロメタン50mlを加えて数回振った後水層を分離し、有機層を水50mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタン793mg(1.55mmol、76.0%)を得た。ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタンの同定はFD−MSスペクトルにて行った。以下にその測定値を示す。FD−MSスペクトル:M/z512(M+
(iii)[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100mlシュレンク管にビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタン272mg(0.531mmol)、脱水トルエン20mlおよびTHF90μl(1.1mmol)を順次添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.63M)0.68ml(1.1mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル20mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム164mg(0.511mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて−20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として
[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリド275mg(0.362mmol、70.8%)を得た。[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H−NMRスペクトルおよびFD−MSスペクトルにて行った。以下にその測定値を示す。
1H−NMRスペクトル(270MHz,CDCl3):δ/ppm 7.87(s,2H),7.80−7.66(m,4H),6.94−6.83(m,4H),6.24(t,J=2.6Hz,2H),6.15(s,2H),5.65(t,J=2.6Hz,2H),3.80(s,6H),2.47(s,6H),2.05(s,6H)
FD−MSスペクトル:M/z 760(M+
〔合成例C1〕
攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、1−ブテン、5−エチリデン−2−ノルボルネン(ENB)の重合反応を95℃にて行った。
重合溶媒としてはヘキサン(フィード量:31L/h)を用いて、連続的に、エチレンフィード量が3.8Kg/h、1−ブテンフィード量が7Kg/h、ENBフィード量が390g/hおよび水素フィード量が3NL/hとなるように、重合器に連続供給した。
重合圧力を1.6MPaG、重合温度を95℃に保ちながら、主触媒として、前記触媒−a1を用いて、フィード量0.020mmol/hとなるよう、重合器に連続的に供給した。また、共触媒として(C65)3CB(C65)4 (CB−3)をフィード量0.100mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TiBA)をフィード量10mmol/hとなるように、それぞれ重合器に連続的に供給した。
このようにして、エチレン、1−ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体を14質量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・1−ブテン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
以上の操作によって、エチレン、ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体(EBDM−1)が、毎時4.5Kgの速度で得られた。
得られたEBDM−1の物性を前記記載の方法で測定した。結果を表6に示す。
〔合成例C2〜6〕
重合条件を表6に記載したとおりに変更したこと以外は合成例C1と同様にして、合成例C2のエチレン・1−ブテン・ENB共重合体(EBDM−2)、合成例C3のエチレン・1−ブテン・ENB共重合体(EBDM−3)、合成例C4のエチレン・1−ブテン・ENB共重合体(EBDM−4)、合成例C5のエチレン・1−ブテン・ENB共重合体(EBDM−5)、合成例C6のエチレン・1−ブテン・ENB共重合体(EBDM−6)を得た。結果を表6に示す。
Figure 2015122415
[実施例C1]
《シールパッキン用組成物》
MIXTRON BB MIXER(神戸製鋼所社製、BB−2型、容積1.7L、ローター2WH)を用いて、100部の合成例C1で得られたEBDM−1に対して、架橋助剤として酸化亜鉛(ZnO#1・酸化亜鉛2種(JIS規格(K−1410))、ハクスイテック(株)製)を5部、加工助剤としてステアリン酸を1部、補強剤としてカーボンブラック「旭#60G」(商品名;旭カーボン(株)製)を40部、老化防止剤として、サンダントMB(2−メルカプトベンゾイミダゾール、三新化学工業(株)製)を2部、老化防止剤としてイルガノックス1010(ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシ)ヒドロシンナメート]メタン、 BASF製)を1部の配合量で配合した後混練し、配合物1を得た。
混練条件は、ローター回転数が40rpm、フローティングウェイト圧力が3kg/cm2、混練時間が5分間で行い、混練排出温度は144℃であった。
次いで、配合物1が温度40℃となったことを確認した後、6インチロールを用いて、配合物1に、架橋剤(加硫剤)としてカヤクミルD−40C(ジクミルペルオキシド40質量%、化薬アクゾ製)を6.8部の配合量で添加して混練し、配合物2(シールパッキン用組成物)を得た。
混練条件は、ロール温度を前ロール/後ロール=50℃/50℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を3mmとして、混練時間8分間で分出しし、配合物2を得た。
〔未加硫物性試験1:ムーニー粘度〕
配合物2のムーニー粘度ML(1+4)100℃を、ムーニー粘度計(島津製作所社製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
〔未加硫物性試験2:加硫特性評価〕
加硫測定装置:MDR2000(ALPHA TECHNOLOGIES 社製)を用いて、配合物2の加硫誘導時間(TS1)、加硫速度を(TC90)を以下のとおり測定した。
一定温度および一定のせん断速度の条件下で得られるトルク変化を測定した。
最小トルク値からトルク1point(1dNm)上がるまでの時間を加硫誘導時間(TS1;分)とした。
トルクの最大値(S'Max)とトルクの最小値(S'Min)との差の90%のトルクに達成するまでの時間を、TC90(min)とした。測定条件は、温度180℃、時間15分とした。このTC90が小さいほど、加硫速度が速いことを示す。
《加硫物(架橋物)の評価》
配合物2に、プレス成形機を用いて180℃で10分間架橋を行って、厚み2mmのシート(加硫物)を調製した。
得られたシートについて、下記方法により硬度試験、引張り試験、架橋密度の算出、耐熱老化性試験、ゲーマン捻り試験、T−R試験、低温柔軟性試験、貯蔵弾性率試験を行った。
配合物2に、円柱状の金型がセットされたプレス成形機を用いて180℃で13分間加硫して、厚さ12.7mm、直径29mmの直円柱形の試験片を作成し、圧縮永久歪(CS)試験用試験片(加硫物)を得た。
得られた圧縮永久歪(CS)試験用試験片を用いて、下記方法により、圧縮永久歪みを評価した。
結果を表8に示す。
〔硬度試験:硬度(Durometer−A)〕
シートの硬度を、JIS K7312(1996)の「熱硬化性ポリウレタンエラストマー成形物の物理試験方法」の7項の「硬さ試験」の記載およびJIS K6253(2006)「加硫ゴム及び熱可塑性ゴム−硬さの求め方」の6項の「デュロメーター硬さ試験」の試験タイプAの記載に準拠して測定した。
〔引張り試験:モジュラス、引張破断点応力、引張破断点伸び〕
シートのモジュラス、引張破断点応力、引張破断点伸びを以下の方法で測定した。
シートを打抜いてJIS K 6251(1993年)に記載されている3号形ダンベル試験片を調製し、この試験片を用いてJIS K6251第3項に規定される方法に従い、測定温度25℃、引張速度500mm/分の条件で引張り試験を行ない、伸び率が25%であるときの引張応力(25%モジュラス(M25))、伸び率が50%であるときの引張応力(50%モジュラス(M50))、伸び率が100%であるときの引張応力(100%モジュラス(M100))、伸び率が200%であるときの引張応力(200%モジュラス(M200))、引張破断点応力(TB)および引張破断点伸び(EB)を測定した。
〔架橋密度の算出〕
シートの架橋密度νは下記の平衡膨潤を利用したFlory−Rehnerの式(a)から算出した。
式(a)中のVRは架橋した2mmシートを37℃×72hの条件でトルエン抽出して求めた。
Figure 2015122415
〔耐熱老化性試験〕
シートを、JIS K 6257に従い、150℃で168h保持する熱老化試験を行った。熱老化試験後のシートの硬度、引張破断点応力、引張破断点伸びを、前記[硬度(Durometer−A)]の項目、前記[モジュラス、引張破断点応力、引張破断点伸び]の項目と同様の方法で測定した。
熱老化試験前後の硬度の差より、AH(Duro−A)を求め、熱老化試験前後の引張破断点応力(TB)および引張破断点伸び(EB)から、熱老化試験前の値に対する試験後の変化率をそれぞれ、Ac(TB)、Ac(EB)として求めた。
〔ゲーマン捻り試験(低温捻り試験)〕
低温捻り試験は、JIS K6261(1993)に従って、ゲーマン捻り試験機を用いて、シートのT2(℃)、T5(℃)およびT10(℃)を測定した。これらの温度は、加硫ゴムの低温柔軟性の指標となる。例えばT2が低いほど、低温柔軟性は良好である。
〔T−R試験(低温弾性回復試験)〕
JIS K6261に従い、シートにT−R試験(低温弾性回復試験)を行い、耐寒性を測定した。
該試験では、伸長させたシートを凍結させ、温度を連続的に上昇させることによって伸長されていたシートの回復性を測定する。(昇温により試験片の長さが10%、30%、50%、70%収縮(回復)する時の温度を、それぞれTR10、TR30、TR50、TR70と表示する。)TR10(単位:℃)が低いほど、耐寒性に優れると判断できる。
〔低温柔軟性試験:tanδ−Tg(低温柔軟性)〕
シートから、幅10mm、厚さ2mm、長さ30mmの短冊状のサンプルを調製した。
このサンプルを用いて、レオメトリック社製のRDS−IIにより、歪み0.5%、周波数1Hzの条件で粘弾性の温度分散(−70℃から25℃)を測定した。tanδ−Tg(℃)はtanδの温度依存性曲線からピーク温度を読み取ることにより導出した。
〔貯蔵弾性率試験:貯蔵弾性率(‐40℃)〕
シートについて、レオメトリック社製RDS−IIを用いて、幅10mm、長さ38mm間でのトーションモード(ねじり)で、昇温速度2℃/minで−100℃〜100℃まで10Hzにて測定し、−40℃での貯蔵弾性率G'(Pa)の値を求めた。
〔圧縮永久歪み〕
圧縮永久歪(CS)測定用試験片について、JIS K6262(1997)に従って、125℃×72時間処理後、0℃、−40℃または−50℃×22時間処理後の圧縮永久歪を測定した。
[実施例C2〜10]
EBDMの種類およびカーボンブラック「旭#60G」の量を、表7に記載したとおりに変更した以外は、実施例C1と同様に行い、実施例C2〜10それぞれについて、配合物1、配合物2を得た。
実施例C1と同様にしてシートの作成を行い、硬度試験、引張り試験、架橋密度の算出、耐熱老化性試験、ゲーマン捻り試験、T−R試験、低温柔軟性試験、貯蔵弾性率試験を行った。また、実施例C1と同様に圧縮永久歪(CS)試験用試験片を作成し、圧縮永久歪みを測定した。結果を表8に示す。
各実施例CにおけるEBDMの種類およびカーボンブラック「旭#60G」の量を表7に示す。
Figure 2015122415
[比較例C1、2]
EBDM−1を、EPDM 14030(比較例C1)、EP331(比較例C2)に変更した以外は、実施例C1と同様に行い、比較例C1、2それぞれについて、配合物1、配合物2を得た。
実施例C1と同様にしてシートの作成を行い、硬度試験、引張り試験、架橋密度の算出、耐熱老化性試験、ゲーマン捻り試験、T−R試験、低温柔軟性試験、貯蔵弾性率試験を行った。また、実施例C1と同様に圧縮永久歪(CS)試験用試験片を作成し、圧縮永久歪みを測定した。結果を表9に示す。
EPDM 14030は、三井化学(株)製、ムーニー粘度(ML(1+4)125℃)=17、ムーニー粘度(ML(1+4)100℃)=26、エチレン含量=51質量%、ENB含量=8.1質量%、のエチレン・プロピレン・ENB共重合体である。
EP331は、JSR(株)製、ムーニー粘度(ML(1+4)125℃)=23、ムーニー粘度(ML(1+4)100℃)=35、エチレン含量=47%、ENB含量=11.3%、油展量=0(PHR)、のエチレン・プロピレン・ENB共重合体である。
[比較例C3〜6]
シリコーンゴムコンパウンドは、シリコーンゴム100質量部と、2,5−ジメチル−2,5−ビス(ターシャリーブチルパーオキシ)ヘキサン約25%含有灰白色ペースト(信越化学工業製)2質量部とを、(ロール温度を前ロール/後ロール=30℃/30℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を3mmとして、混練時間8分間で分出し、シリコーンゴムコンパウンド(配合物)を得た。得られた配合物について、実施例C1と同様にしてムーニー粘度、加硫特性評価を行った。
この配合物を、プレス成形機を用いて180℃で10分間架橋を行って、厚み2mmのシート(加硫物)を調製し、得られたシートについて、実施例C1と同様にして硬度試験、引張り試験、耐熱老化性試験、ゲーマン捻り試験、T−R試験、低温柔軟性試験、貯蔵弾性率試験を行った。
また、円柱状の金型がセットされたプレス成形機を用いて180℃で13分間加硫して、厚さ12.7mm、直径29mmの直円柱形の試験片を作成し、圧縮永久歪(CS)試験用試験片(加硫物)を得て、実施例C1と同様にして圧縮永久歪みを測定した。
なお、シリコーンゴムとしては、KE−941−U(密度(23℃)1.11g/cm3)(比較例C3)、KE−951−U(密度(23℃)1.14g/cm3)(比較例C4)、KE−971−U(密度(23℃)1.30g/cm3)(比較例C5)、KE−981−U(密度(23℃)1.42g/cm3)(比較例C6)(全て信越化学工業(株)製)を用いた。
結果を表9に示す。
Figure 2015122415
Figure 2015122415
実施例Cと、EPDMを用いた比較例C(比較例C1、2)とを比較すると、硬度が近い実施例C1と比較例C1、2とでは、ゲーマン捻り試験におけるT2(℃)、T5(℃)およびT10(℃)が、実施例C1で得られたシートの方が低く、低温柔軟性に優れることがわかり、T−R試験の結果(特にTR10の結果)より、実施例C1で得られたシートの方が耐寒性に優れることがわかる。
また、実施例Cと、シリコーンゴムコンパウンドを用いた比較例C(比較例C3〜6)とを比較すると、硬度が近い実施例Cと、比較例Cとでは、T−R試験の結果(特にTR10の結果)より、実施例Cで得られたシートの方が耐寒性に優れることがわかり、TB、EBも良好な傾向があることがわかる。
以下、本発明2−2について、実施例に基づいて本発明をさらに具体的に説明するが、本発明2−2はこれら実施例に限定されるものではない。
以下の実施例D等の記載において、特に言及しない限り「部」は「質量部」を示す。
《エチレン・α−オレフィン・非共役ポリエン共重合体(1),(2)》
〔各構造単位のモル量〕
共重合体(1)および(2)について、エチレンに由来する構造単位、α−オレフィンに由来する構造単位および非共役ポリエンに由来する構造単位のモル量は、1H−NMRスペクトルメーターによる強度測定によって求めた。
〔ムーニー粘度〕
ムーニー粘度ML(1+4)125℃およびムーニー粘度ML(1+4)100℃は、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
〔B値〕
o−ジクロロベンゼン−d4/ベンゼン−d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、13C−NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき、B値を算出した。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
上記共重合体(1)の場合は、[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4〜20のα−オレフィン[B]および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]−炭素数4〜20のα−オレフィン[B]ダイアッド連鎖分率を示し;上記共重合体(2)の場合は、[E]、[X]および[Y]は、それぞれ、エチレン[A']、炭素数3〜20のα−オレフィン[B']および非共役ポリエン[C']のモル分率を示し、[EX]はエチレン[A']−炭素数3〜20のα−オレフィン[B']ダイアッド連鎖分率を示す。
〔遷移金属化合物の合成〕
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド(触媒−a1)の合成
(i)6,6-ビス(4-メトキシフェニル)フルベンの合成
窒素雰囲気下、500 ml三口フラスコにリチウムシクロペンタジエニド8.28 g(115mmol)および脱水THF(テトラヒドロフラン)200 mlを加えた。氷浴で冷却しながらDMI(1,3−ジメチル−2−イミダゾリジノン)13.6 g (119 mmol)を添加し、室温で30分間攪拌した。その後4,4'-ジメトキシベンゾフェノン 25.3 g (105 mol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水 100 mlを徐々に添加し、更にジクロロメタン 200 mlを加えて室温で30分間攪拌した。得られた二層の溶液を500 ml分液漏斗に移し、有機層を水 200 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700 g、ヘキサン:酢酸エチル = 4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6-ビス(4-メトキシフェニル)フルベン9.32 g (32.1 mmol、30.7%)を得た。6,6-ビス(4-メトキシフェニル)フルベンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.28-7.23 (m, 4H), 6.92-6.87 (m, 4H), 6.59-6.57 (m, 2H), 6.30-6.28 (m, 2H), 3.84 (s, 6H)
(ii)ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに2,3,6,7-テトラメチルフルオレン 500 mg (2.25 mmol)および脱水t-ブチルメチルエーテル 40 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液(1.63 M) 1.45 ml (2.36 mmol)を徐々に添加し、室温で18時間攪拌した。6,6-ビス(4-メトキシフェニル)フルベン 591 mg (2.03 mmol)を添加した後、3日間加熱還流を行った。氷浴で冷却しながら水 50 mlを徐々に添加し、得られた溶液を300 ml分液漏斗に移した。ジクロロメタン 50 mlを加えて数回振った後水層を分離し、有機層を水 50 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 793 mg (1.55 mmol、76.0%)を得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。FD-MSスペクトル: M/z 512 (M+)
(iii)[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 272 mg (0.531 mmol)、脱水トルエン 20 mlおよびTHF90μl (1.1 mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液(1.63 M) 0.68 ml (1.1 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 20 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム 164 mg (0.511 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて-20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 275 mg (0.362 mmol、70.8%)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.87 (s, 2H), 7.80-7.66 (m, 4H), 6.94-6.83 (m, 4H), 6.24 (t, J = 2.6 Hz, 2H), 6.15 (s, 2H), 5.65 (t, J = 2.6 Hz, 2H), 3.80 (s, 6H), 2.47 (s, 6H), 2.05 (s, 6H)FD-MSスペクトル: M/z 760 (M+)
〔合成例D1〕
攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、1−ブテン、5−エチリデン−2−ノルボルネン(ENB)の重合反応を95℃にて行った。
重合溶媒としてはヘキサン(フィード量:27L/h)を用いて、連続的に、エチレンフィード量が3.5kg/h、1−ブテンフィード量が13kg/h、ENBフィード量が1100g/hおよび水素フィード量が4NL/hとなるように、重合器に連続供給した。
重合圧力を1.6MPaG、重合温度を95℃に保ちながら、主触媒として、前記触媒−a1を用いて、フィード量0.088mmol/hとなるよう、重合器に連続的に供給した。また、共触媒として(C65)3CB(C65)4(CB−3)をフィード量0.440mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TIBA)をフィード量10mmol/hとなるように、それぞれ重合器に連続的に供給した。
このようにして、エチレン、1−ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体を19質量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・1−ブテン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
以上の操作によって、エチレン、ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体(EBDM−1)が、毎時6.7kgの速度で得られた。
得られたEBDM−1の物性を前記記載の方法で測定した。結果を表10に示す。
Figure 2015122415
[実施例D1]
MIXTRON BB MIXER(神戸製鋼所社製、BB−2型、容積1.7L、ローター2WH)を用いて、合成例D1で得られたエチレン・1−ブテン・ENB共重合体(EBDM−1)20部と「三井EPT 8030M」(三井化学(株)製)80部とからなるゴム成分100部に対して、加硫助剤として酸化亜鉛「META−Z102」(商品名;井上石灰工業(株)製)を8部、加工助剤としてステアリン酸を2部、活性剤としてポリエチレングリコール「PEG#4000」(商品名;ライオン(株)製)を1部、補強剤としてSRF級カーボンブラック「旭50G」(商品名;旭カーボン(株)製)を30部、無機充填剤として重質炭酸カルシウム「ホワイトンSB」(商品名;白石カルシウム(株)製)を150部、軟化剤としてパラフィン系オイル「ダイアナプロセスオイルPS−430」(商品名;出光興産(株)製)を50部の量で配合した後に混練し、配合物1を得た。
混練条件は、ローター回転数が40rpm、フローティングウェイト圧力が3kg/cm2、混練時間が5分間で行い、混練排出温度は144℃であった。
<非発泡架橋体>
配合物1が温度40℃となったことを確認した後、6インチロールを用いて、配合物1に、加硫促進剤として「サンセラーM」を1.5部、「サンセラーBZ」を1.5部、「サンセラーPZ」を1.5部、「サンセラーBUR」を1.5部(以上、商品名;三新化学工業(株)製)、架橋剤(加硫剤)としてイオウを1.5部を混練して、配合物2を得た。
混練条件は、ロール温度を前ロール/後ロール=50℃/50℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を3mmとして、混練時間8分間で分出しし、配合物2を得た。
得られた配合物2に、プレス成形機を用いて180℃で5分間加硫を行って、2mmtの非発泡架橋シートを得た。
<架橋発泡体>
配合物1が温度40℃となったことを確認した後、14インチロールを用いて、配合物1に、加硫促進剤として「サンセラーM」を1.5部、「サンセラーBZ」を1.5部、「サンセラーPZ」を1.5部、「サンセラーBUR」を1.5部(以上、商品名;三新化学工業(株)製)、架橋剤(加硫剤)としてイオウを1.5部、発泡剤としてアゾジカルボンアミドを35部、発泡助剤として尿素を1部の配合量で添加して混練し、配合物3を得た。
混練条件は、ロール温度を前ロール/後ロール=80℃/80℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を3mmとして、混練時間10分間で分出しし、配合物3を得た。
得られた配合物3を、平板ダイス(縦4mm、横20mm)を装着した60φmm押出機を用いて、ダイス温度80℃、シリンダー温度70℃の条件で押出し、平板状に成形した。得られた成形体を成形と同時に熱風加硫装置(HAV)内に導入し、180℃の温度で8分間加熱することで、加硫および発泡を行い、平板状スポンジを得た。
[実施例D2、比較例D1〜2]
ゴム成分を表11に記載したとおりに変更したこと以外は実施例D1と同様にして、実施例D2および比較例D1〜2それぞれについて、配合物1〜配合物3を得た。実施例D1と同様にして2mmtの非発泡架橋シート、平板状スポンジを作成し、各種評価を行った。
なお、ゴム成分として使用した製品の詳細は以下のとおりである。
EPT 8030M:三井化学(株)製「三井EPT 8030M」(商品名)、EPDM、エチレン含量=47%、ジエン含量=9.5%、ムーニー粘度ML(1+4)100℃=32、油展量=0(PHR)
EPT 8030MのB値は、1.0であった。
BUTYL 268:JSR(株)製「JSR BUTYL 268」(商品名)、ブチルゴム、比重:0.92g/cm3、不飽和度:1.5mol%、ムーニー粘度ML(1+8)125℃=51
上記製品の物性値は、B値を除き、カタログ値である。
[配合物1の物性]
〔ムーニー粘度〕
ムーニー粘度ML(1+4)100℃は、配合物1を用いて、ムーニー粘度計((株)島津製作所社SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
〔プローブタック試験〕
プローブタックは、JIS Z3284に準拠しRHESCA社製 TAC-IIを用いて測定した。条件は温度50℃、Immersion speed:120mm/min、Preload:600gf、Test speed:120mm/min、Press time:60sとした。
[2mmtの非発泡架橋シートの物性]
〔硬度試験(ショアーA)〕
ショアーA硬度は、JIS K6253に準拠して、2mmtの非発泡架橋シートを用いて測定した。A型測定器を用い、押針接触後直ちに目盛りを読み取った。
〔低温柔軟性試験:Tg(低温柔軟性)〕
2mmtの非発泡架橋シートから、幅10mm、厚さ2mm、長さ30mmの短冊状のサンプルを調製した。このサンプルを用いて、TA Instruments社製のARESにより、歪み0.5%、周波数1Hzの条件で粘弾性の温度分散(−70℃から25℃)を測定した。Tg(℃)はtanδの温度依存性曲線からピーク温度を読み取ることにより導出した。また、25℃におけるtanδを測定した。
[配合物3の物性]
〔最低粘度(Vm)およびスコーチ時間(min)〕
未加硫組成物の物性試験は、JIS K6300に準拠して行った。具体的には、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、実施例D・比較例Dで得られた配合物3の110℃におけるムーニー粘度の変化を測定し、測定開始から最低粘度(Vm)を求め、さらにその最低粘度(Vm)より5ポイント上昇するまでの時間を求め、これをスコーチ時間(t5、min)とした。
[架橋発泡体(平板状スポンジ)の物性]
〔比重〕
平板状スポンジをシート状に切断後、20mm×20mmの試験片を打ち抜き、表面の汚れをアルコールで拭き取った。この試験片を25℃雰囲気下で自動比重計(東洋精機製作所製:M−1型)に取り付け、空気中および純水中の質量の差から比重測定を行った。
〔音響透過損失〕
平板状スポンジから29mmφ×11mm厚みの試験片を打ち抜き、内径29mmφの4206−T型音響管(Bruel&Kjaer製)および測定用ソフト(PULSE Material Testing Type7758、Bruel&Kjaer製)を用いて垂直入射透過損失を測定し、500〜5000Hzにおける音響透過損失を求めた。結果を図1に示す。
Figure 2015122415
EPT 8030Mを配合した比較例D1に対して、EPT 8030MとともにBUTYL 268を配合した比較例D2では、ムーニー粘度は小さいが、比重が大きくなっている。これに対して、EPT 8030MおよびEBDM−1を配合した実施例Dでは、ムーニー粘度および最低粘度が小さいことからロール加工性に優れ、音響透過損失が大きいことから遮音性能に優れ、また比重も小さい。したがって、実施例Dは、加工性、遮音性能および比重のバランスに優れている。
以下、本発明2−3について、実施例に基づいて本発明をさらに具体的に説明するが、本発明2−3はこれら実施例に限定されるものではない。
以下の実施例E等の記載において、特に言及しない限り「部」は「質量部」を示す。
《エチレン・α−オレフィン・非共役ポリエン共重合体》
〔各構造単位のモル量〕
エチレン[A]に由来する構造単位、α−オレフィン[B]に由来する構造単位および非共役ポリエン[C]に由来する構造単位のモル量は、1H−NMRスペクトルメーターによる強度測定によって求めた。
〔ムーニー粘度〕
ムーニー粘度ML(1+4)125℃は、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
〔B値〕
o−ジクロロベンゼン−d4/ベンゼン−d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、13C−NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき、B値を算出した。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4〜20のα−オレフィン[B]および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]−炭素数4〜20のα−オレフィン[B]ダイアッド連鎖分率を示す。
〔遷移金属化合物の合成〕
[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド(触媒−a1)の合成
(i)6,6-ビス(4-メトキシフェニル)フルベンの合成
窒素雰囲気下、500 ml三口フラスコにリチウムシクロペンタジエニド8.28 g(115mmol)および脱水THF(テトラヒドロフラン)200 mlを加えた。氷浴で冷却しながらDMI(1,3−ジメチル−2−イミダゾリジノン)13.6 g (119 mmol)を添加し、室温で30分間攪拌した。その後4,4'-ジメトキシベンゾフェノン 25.3 g (105 mol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水 100 mlを徐々に添加し、更にジクロロメタン 200 mlを加えて室温で30分間攪拌した。得られた二層の溶液を500 ml分液漏斗に移し、有機層を水 200 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700 g、ヘキサン:酢酸エチル = 4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6-ビス(4-メトキシフェニル)フルベン9.32 g (32.1 mmol、30.7%)を得た。6,6-ビス(4-メトキシフェニル)フルベンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.28-7.23 (m, 4H), 6.92-6.87 (m, 4H), 6.59-6.57 (m, 2H), 6.30-6.28 (m, 2H), 3.84 (s, 6H)
(ii)ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100 ml三口フラスコに2,3,6,7-テトラメチルフルオレン 500 mg (2.25 mmol)および脱水t-ブチルメチルエーテル 40 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液(1.63 M) 1.45 ml (2.36 mmol)を徐々に添加し、室温で18時間攪拌した。6,6-ビス(4-メトキシフェニル)フルベン 591 mg (2.03 mmol)を添加した後、3日間加熱還流を行った。氷浴で冷却しながら水 50 mlを徐々に添加し、得られた溶液を300 ml分液漏斗に移した。ジクロロメタン 50 mlを加えて数回振った後水層を分離し、有機層を水 50 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 793 mg (1.55 mmol、76.0%)を得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。FD-MSスペクトル: M/z 512 (M+)
(iii)[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 272 mg (0.531 mmol)、脱水トルエン 20 mlおよびTHF90μl (1.1 mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液(1.63 M) 0.68 ml (1.1 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 20 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム 164 mg (0.511 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて-20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 275 mg (0.362 mmol、70.8%)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.87 (s, 2H), 7.80-7.66 (m, 4H), 6.94-6.83 (m, 4H), 6.24 (t, J = 2.6 Hz, 2H), 6.15 (s, 2H), 5.65 (t, J = 2.6 Hz, 2H), 3.80 (s, 6H), 2.47 (s, 6H), 2.05 (s, 6H)FD-MSスペクトル: M/z 760 (M+)
〔合成例E1〕
攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、1−ブテン、5−エチリデン−2−ノルボルネン(ENB)の重合反応を95℃にて行った。
重合溶媒としてはヘキサン(フィード量:32L/h)を用いて、連続的に、エチレンフィード量が3.2kg/h、1−ブテンフィード量が12kg/h、ENBフィード量が520g/hおよび水素フィード量が0NL/hとなるように、重合器に連続供給した。
重合圧力を1.6MPaG、重合温度を95℃に保ちながら、主触媒として、前記触媒−a1を用いて、フィード量0.030mmol/hとなるよう、重合器に連続的に供給した。また、共触媒として(C65)3CB(C65)4(CB−3)をフィード量0.15mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TIBA)をフィード量10mmol/hとなるように、それぞれ重合器に連続的に供給した。
このようにして、エチレン、1−ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体を15質量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・1−ブテン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
以上の操作によって、エチレン、1−ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体(EBDM−1)が、毎時5.4kgの速度で得られた。
得られたEBDM−1の物性を前記記載の方法で測定した。結果を表12に示す。
〔合成例E2、3〕
重合条件を表12に記載したとおりに変更したこと以外は合成例E1と同様にして、合成例E2のエチレン・1−ブテン・ENB共重合体(EBDM−2)、合成例E3のエチレン・1−ブテン・ENB共重合体(EBDM−3)を得た。
Figure 2015122415
《ホース形成用組成物》
[実施例E1]
MIXTRON BB MIXER(神戸製鋼所社製、BB−2型、容積1.7L、ローター2WH)を用いて、合成例E1で得られたエチレン・1−ブテン・ENB共重合体(EBDM−1)100部に対して、加硫助剤として酸化亜鉛「META−Z102」(商品名;井上石灰工業(株)製)を5部、加工助剤としてステアリン酸を2部、活性剤としてポリエチレングリコール「PEG#4000」(商品名;ライオン(株)製)を1部、加工助剤としてN−置換脂肪酸アミドと脂肪酸カルシウムとの混合物「ストラクトールWB16」(商品名;エスアンドエス・ジャパン(株)製)を2部、補強剤としてカーボンブラック「旭#60G」(商品名;旭カーボン(株)製)を90部、無機充填剤として「ディキシークレー」(商品名;R.T.Vanderbilt製)を80部、軟化剤としてパラフィン系プロセスオイル「ダイアナプロセスオイルPW−380」(商品名;出光興産(株)製)を58部の配合量で配合した後に混練し、配合物1を得た。
混練条件は、ローター回転数が40rpm、フローティングウェイト圧力が3kg/cm2、混練時間が5分間で行い、混練排出温度は144℃であった。
次いで、配合物1が温度40℃となったことを確認した後、6インチロールを用いて、配合物1に、加硫促進剤としてジブチルジチオカルバミン酸亜鉛「サンセラーBZ」を1.8部、テトラメチルチウラムジスルフィド「サンセラーTT」を0.5部、およびエチレンチオ尿素「サンセラー22−C」を0.5部(以上、商品名;三新化学工業(株)製)の配合量で、架橋剤(加硫剤)としてモルフォリンジスルフィド「サンフェルR」(商品名;三新化学工業(株)製)を1.5部、イオウを0.5部の配合量で添加して混練し、配合物2を得た。
混練条件は、ロール温度を前ロール/後ロール=50℃/50℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を3mmとして、混練時間8分間で分出しし、配合物2を得た。
配合物1を、3mm厚金型(剥離用シート:ルミラー(登録商標))を用いて150℃で3分間プレス成形し、さらに2mm厚金型(剥離用シート:テフロン(登録商標))を用いて50℃で120分間プレス成形することで、厚さ2mmの未加硫ゴムシートを得た。また、配合物2に、プレス成形機を用いて170℃で15分間加硫を行って、厚さ2mmの加硫ゴムシートを得た。また、配合物2から、円柱状金型を用いて、厚さ12.7mm、直径29mmの直円柱形の試験片を作成し、170℃で20分間加硫して、圧縮永久歪(CS)試験用試験片を得た。未加硫物および得られた加硫物について、未加硫物性試験、硬度試験、引張試験、電気特性試験、低温捻り試験、圧縮永久歪試験を以下の方法により行った。
[実施例E2〜4、比較例E1〜6]
配合組成を表13に記載したとおりに変更したこと以外は実施例E1と同様にして、実施例E2〜4および比較例E1〜6それぞれについて、配合物1〜配合物2を得た。実施例E1と同様にしてシート、試験片を作成し、各種評価を行った。
なお、比較例Eで用いたゴムの詳細は以下のとおりである。
3090EM:三井化学(株)製、EPDM、エチレン含量=48%、ジエン含量=5.2%、ムーニー粘度ML(1+4)125℃=59、油展量=10(PHR)
3062EM:三井化学(株)製、EPDM、エチレン含量=65%、ジエン含量=4.5、ムーニー粘度ML(1+4)125℃=43、油展量=20(PHR)
3110M:三井化学(株)製、EPDM、エチレン含量=56%、ジエン含量=5.0、ムーニー粘度ML(1+4)125℃=78、油展量=0(PHR)
EP27:JSR(株)製、EPDM、エチレン含量=54.5%、ENB含量=4%、ムーニー粘度ML(1+4)125℃=70、油展量=0(PHR)
EP96:JSR(株)製、EPDM、エチレン含量=66%、ENB含量=5.8%、ムーニー粘度ML(1+4)125℃=61、油展量=50(PHR)
Es552:住友化学(株)製、エスプレンEPDM、エチレン含量=55%、ジエン含量=4.0%、ムーニー粘度ML(1+4)125℃=85、油展量=0(PHR)
上記製品の物性値はカタログ値である。
〔未加硫物性試験1:最低粘度(Vm)およびスコーチ時間(min)〕
未加硫組成物の物性試験は、JIS K6300に準拠して行った。具体的には、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、実施例E・比較例Eで得られた配合物2の125℃におけるムーニー粘度の変化を測定し、測定開始から最低粘度(Vm)を求め、さらにその最低粘度Vmより5ポイントまたは35ポイント上昇するまでの時間を求め、これをスコーチ時間(t5、min)およびスコーチ時間(t35、min)とした。
〔未加硫物性試験2:加硫特性評価〕
実施例E・比較例Eで得られた配合物2を用いて、加硫測定装置:MDR2000(ALPHA TECHNOLOGIES社製)により、加硫速度(TC90)を以下のとおり測定した。
一定の温度および一定のせん断速度の条件下で得られるトルク変化を測定した。トルクの最大値(S'Max)とトルクの最小値(S'Min)との差の90%のトルクに達成するまでの時間を、TC90(min)とした。測定条件は、温度170℃、時間20分とした。このTC90が小さいほど、加硫速度が速いことを示す。
〔未加硫物性試験3:グリーン強度(GS;23℃)
実施例E・比較例Eで得られた厚さ2mmの未加硫ゴムシートについて、JIS K6251に従い、測定温度23℃、引張速度500mm/分の条件で引張試験を行い、破断時強度(TB)および破断伸び(EB)を測定した。
〔硬度試験(Durometer−A)〕
実施例E・比較例Eで得られた厚さ2mmの加硫ゴムシートの平らな部分を重ねて厚さ12mmのシートとし、JIS K6253に従い、硬度(JIS−A)を測定した。
〔引張試験〕
実施例E・比較例Eで得られた厚さ2mmの加硫ゴムシートについて、JIS K6251に従い、測定温度23℃、引張速度500mm/分の条件で引張試験を行い、伸び率が25%であるときの引張応力(25%モジュラス(M25))、伸び率が50%であるときの引張応力(50%モジュラス(M50))、伸び率が100%であるときの引張応力(100%モジュラス(M100))、伸び率が200%であるときの引張応力(200%モジュラス(M200))、伸び率が300%であるときの引張応力(300%モジュラス(M300))、破断時強度(TB)および破断伸び(EB)を測定した。
〔電気特性試験)〕
実施例E・比較例Eで得られた厚さ2mmの加硫ゴムシートについて、ASTM D 257に準拠して、体積抵抗率を評価した。
<低温捻り試験(ゲーマン捻り試験)>
低温捻り試験は、JIS K6261(1993)に従って、ゲーマン捻り試験機を用いて、実施例E・比較例Eで得られた厚さ2mmの加硫ゴムシートについて、T2(℃)、T5(℃)およびT10(℃)を測定した。これらの温度は、加硫ゴムの低温での柔軟性の指標となる。例えばT2が低いほど、低温での柔軟性は良好である。
〔圧縮永久歪試験〕
圧縮永久歪(CS)測定用試験片について、JIS K6262(1997)に従って、125℃、70℃または−25℃×22時間処理後の圧縮永久歪を測定した。
Figure 2015122415
表13に記載した結果から、比較例Eに比べて実施例Eは、低温でのゲーマン捻り試験の結果(T2,T5,T10)が小さく、また低温での圧縮永久ひずみ(−25℃×22h)も小さいことから、耐寒性(低温特性)に優れるとともに、耐寒性(低温特性)と、常温での機械的物性(伸び物性、引張強度等)とのバランスにも優れる。以上の特性を有することから、実施例Eの上記組成物を用いて、低温特性と機械的物性とのバランスに優れたホースを製造することができる。

Claims (34)

  1. エチレン[A]に由来する構造単位、炭素数4〜20のα−オレフィン[B]に由来する構造単位、および非共役ポリエン[C]に由来する構造単位を含み、下記(1)〜(4)を満たすエチレン・α―オレフィン・非共役ポリエン共重合体。
    (1)エチレン[A]に由来する構造単位と、α−オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60〜90/10であり、
    (2)非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1〜6.0モル%であり、
    (3)125℃におけるムーニー粘度ML(1+4)125℃が、5〜100であり、
    (4)下記式(i)で表されるB値が1.20以上である。
    B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
    [ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4〜20のα−オレフィン[B]、および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]−炭素数4〜20のα−オレフィン[B]ダイアッド連鎖分率を示す。]
  2. 炭素数4〜20のα−オレフィン[B]が、1−ブテンであることを特徴とする請求項1に記載のエチレン・α―オレフィン・非共役ポリエン共重合体。
  3. (a)下記一般式[VII]で表される遷移金属化合物と、
    (b)(b−1)有機金属化合物、
    (b−2)有機アルミニウムオキシ化合物、および
    (b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物と
    を含むオレフィン重合触媒の存在下において、エチレン、炭素数4〜20のα-オレフィンおよび非共役ポリエンを共重合することにより得られる、請求項1または2に記載のエチレン・α−オレフィン・非共役ポリエン共重合体。
    Figure 2015122415
    (式[VII]において、
    Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
    5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であり、
    Qはハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
    jは1〜4の整数である。)
  4. 請求項1〜3のいずれか一項に記載のエチレン・α―オレフィン・非共役ポリエン共重合体を、架橋剤を用いて架橋させてなることを特徴とする架橋されたエチレン・α−オレフィン・非共役ポリエン共重合体。
  5. 請求項1〜3のいずれか一項に記載のエチレン・α―オレフィン・非共役ポリエン共重合体、または請求項4に記載の架橋されたエチレン・α−オレフィン・非共役ポリエン共重合体を用いて形成された成形体。
  6. 請求項1〜3のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体を含む組成物。
  7. (a)下記一般式[VII]で表される遷移金属化合物と、
    (b)(b−1)有機金属化合物、
    (b−2)有機アルミニウムオキシ化合物、および
    (b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物
    から選ばれる少なくとも1種の化合物とを含むオレフィン重合触媒の存在下において、エチレンと炭素数4〜20のα-オレフィンと非共役ポリエンとを共重合することを特徴とする、請求項1〜3のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体を製造する方法:
    Figure 2015122415
    (式[VII]において、
    Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
    5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であり、
    Qはハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
    jは1〜4の整数である。)
  8. 請求項1〜3のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体を含有するシールパッキン用組成物。
  9. 請求項8に記載のシールパッキン用組成物を用いて形成されたシールパッキン。
  10. 自動車用シール部品、機械用シール部品、電子・電気部品用シール部品、建築用ガスケット、または、土木建材用シール部品である、請求項9に記載のシールパッキン。
  11. エチレン・α−オレフィン・非共役ポリエン共重合体(1)と、
    エチレン[A']に由来する構造単位、炭素数3〜20のα−オレフィン[B']に由来する構造単位、および非共役ポリエン[C']に由来する構造単位を含み、下記(I)を満たすエチレン・α−オレフィン・非共役ポリエン共重合体(2)とを含有し、
    前記エチレン・α−オレフィン・非共役ポリエン共重合体(1)が、請求項1〜3のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体である組成物。
    (I)下記式(i)で表されるB値が、1.20未満である。
    B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
    [式(i)中、[E]、[X]および[Y]は、それぞれ、エチレン[A']、炭素数3〜20のα−オレフィン[B']および非共役ポリエン[C']のモル分率を示し、[EX]はエチレン[A']−炭素数3〜20のα−オレフィン[B']ダイアッド連鎖分率を示す。]
  12. エチレン・α−オレフィン・非共役ポリエン共重合体(1)と、エチレン・α−オレフィン・非共役ポリエン共重合体(2)との質量比[(1)/(2)]が、10/90〜50/50である、請求項11に記載の組成物。
  13. 請求項11または12に記載の組成物を架橋して得られる架橋体。
  14. 請求項11または12に記載の組成物を架橋および発泡して得られる架橋発泡体。
  15. 請求項11または12に記載の組成物から得られる遮音材。
  16. 請求項1〜3のいずれか一項に記載のエチレン・α−オレフィン・非共役ポリエン共重合体を含有するホース形成用組成物。
  17. 請求項16に記載のホース形成用組成物を架橋処理して形成された層を有するホース。
  18. 自動車用、モーターバイク用、工業機械用、建設機械用または農業機械用のいずれかの用途に用いられる、請求項17に記載のホース。
  19. (a)下記一般式[I]で表される遷移金属化合物、ならびに
    (b)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物および(b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物
    を含むオレフィン重合触媒の存在下で、エチレンと炭素数が3以上のα−オレフィンと非共役ポリエンとを共重合することを特徴とするエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
    Figure 2015122415
    (式[I]において、Yは炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、
    Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
    1、R2、R3、R4、R5およびR6は水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、
    1からR6までの隣接した置換基は互いに結合して環を形成していてもよく、
    Qはハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
    nは1〜4の整数であり、
    jは1〜4の整数である。)
  20. 前記一般式[I]におけるnが1であることを特徴とする、請求項19に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  21. 前記一般式[I]におけるR1、R2、R3およびR4が全て水素原子であることを特徴とする、請求項19または20に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  22. 前記一般式[I]におけるYが炭素原子であることを特徴とする、請求項19〜21のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  23. 前記一般式[I]におけるR5およびR6がアリール基および置換アリール基から選ばれる基であることを特徴とする、請求項19〜22のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  24. 前記一般式[I]におけるR5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であることを特徴とする、請求項23に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  25. 前記電子供与性置換基が、窒素含有基および酸素含有基から選ばれる基であることを特徴とする、請求項24に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  26. 前記一般式[I]におけるR5およびR6が、前記窒素含有基および酸素含有基から選ばれる基を、Yとの結合に対するメタ位および/またはパラ位に含む置換フェニル基であることを特徴とする、請求項25に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  27. 前記一般式[I]におけるR5およびR6が、前記電子供与性置換基としての下記一般式[II]で表される窒素含有基を含む置換フェニル基であることを特徴とする、請求項26に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
    Figure 2015122415
    (式[II]において、R7およびR8は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよく、Nの右に描かれた線はフェニル基との結合を表す。)
  28. 前記一般式[I]におけるR5およびR6が、前記電子供与性置換基としての下記一般式[III]で表される酸素含有基を含む置換フェニル基であることを特徴とする、請求項26に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
    Figure 2015122415
    (式[III]において、R9は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基から選ばれる原子または置換基であり、Oの右に描かれた線はフェニル基との結合を表す。)
  29. 前記一般式[I]におけるMがハフニウム原子であることを特徴とする、請求項19〜28のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  30. 前記α−オレフィンが炭素数3〜10のα−オレフィンであることを特徴とする、請求項19〜29のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  31. 前記α−オレフィンがプロピレンおよび1−ブテンから選ばれる少なくとも1種であることを特徴とする、請求項19〜30のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  32. 前記非共役ポリエンが、下記一般式[IV]で表されることを特徴とする、請求項19〜31のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
    Figure 2015122415
    (式[IV]において、nは0〜2の整数であり、
    10、R11、R12およびR13は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
    10からR13までの任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R10とR11とで、またはR12とR13とでアルキリデン基を形成していてもよく、R10とR12とが、またはR11とR13とが互いに結合して二重結合を形成していてもよく、
    以下の(i)から(iv)の要件の少なくとも一つが満たされる。
    (i)R10からR13の少なくとも一つは、二重結合を一つ以上有する炭化水素基である。
    (ii)R10からR13までの任意の二つの置換基が互いに結合して環を形成し、該環が二重合を含んでいる。
    (iii)R10とR11とで、またはR12とR13とでアルキリデン基を形成している。
    (iv)R10とR12とが、またはR11とR13とが互いに結合して二重結合を形成している。)
  33. 前記非共役ポリエンが、5−エチリデン−2−ノルボルネン(ENB)または5−ビニル−2−ノルボルネン(VNB)であることを特徴とする、請求項19〜32のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
  34. 重合温度が80℃以上であることを特徴とする、請求項19〜33のいずれか一項に記載のエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法。
JP2015562833A 2014-02-13 2015-02-10 エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法 Active JP6774184B2 (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2014025159 2014-02-13
JP2014025159 2014-02-13
JP2014181206 2014-09-05
JP2014181206 2014-09-05
JP2014245083 2014-12-03
JP2014245085 2014-12-03
JP2014245084 2014-12-03
JP2014245083 2014-12-03
JP2014245085 2014-12-03
JP2014245084 2014-12-03
PCT/JP2015/053706 WO2015122415A1 (ja) 2014-02-13 2015-02-10 エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法

Publications (2)

Publication Number Publication Date
JPWO2015122415A1 true JPWO2015122415A1 (ja) 2017-03-30
JP6774184B2 JP6774184B2 (ja) 2020-10-21

Family

ID=53800158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015562833A Active JP6774184B2 (ja) 2014-02-13 2015-02-10 エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法

Country Status (8)

Country Link
US (3) US10919997B2 (ja)
EP (2) EP3106480B1 (ja)
JP (1) JP6774184B2 (ja)
KR (1) KR101862960B1 (ja)
CN (2) CN109824809B (ja)
BR (1) BR112016016900B8 (ja)
TW (2) TWI640546B (ja)
WO (1) WO2015122415A1 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280293B2 (en) 2015-03-20 2019-05-07 Mitsui Chemicals, Inc. Thermoplastic elastomer composition and method for producing same
JP6439039B2 (ja) * 2015-03-20 2018-12-19 三井化学株式会社 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途
JP6507074B2 (ja) * 2015-10-08 2019-04-24 三井化学株式会社 タイヤ騒音低減用の架橋発泡体、ならびに空気入りタイヤ
JP6709641B2 (ja) * 2015-10-15 2020-06-17 三井化学株式会社 シールパッキン
WO2017150612A1 (ja) * 2016-03-04 2017-09-08 三井化学株式会社 積層体およびその用途
JPWO2017170190A1 (ja) * 2016-03-28 2019-02-07 Nok株式会社 ゴム組成物およびそれを用いたゴム成形品
EP3409742B1 (en) * 2016-03-28 2024-05-01 Nok Corporation Rubber composition and high-pressure hydrogen instrument seal component using same
JP6681247B2 (ja) * 2016-03-31 2020-04-15 住友理工株式会社 燃料電池用シール部材
JP6848325B2 (ja) * 2016-10-18 2021-03-24 横浜ゴム株式会社 ホース用ゴム組成物及びホース
US20180105679A1 (en) 2016-10-19 2018-04-19 Veyance Technologies, Inc. Severely Hydrotreated Naphthenic Distillate Containing Rubber Compositions
JP2018127550A (ja) * 2017-02-09 2018-08-16 三井化学株式会社 組成物および架橋体
MX2019009838A (es) * 2017-02-20 2019-10-04 Mitsui Chemicals Inc Laminado.
MX2019009837A (es) * 2017-02-20 2019-10-04 Mitsui Chemicals Inc Laminado.
JP2018141040A (ja) * 2017-02-27 2018-09-13 三井化学株式会社 Oa機器ロール用共重合体組成物
JP6859153B2 (ja) * 2017-03-27 2021-04-14 三井化学株式会社 パッキン用エチレン共重合体組成物及びパッキン用途
WO2018181106A1 (ja) * 2017-03-27 2018-10-04 三井化学株式会社 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
US11028192B2 (en) * 2017-03-27 2021-06-08 Exxonmobil Chemical Patents Inc. Solution process to make ethylene copolymers
CN110799585A (zh) * 2017-06-28 2020-02-14 Nok株式会社 橡胶组合物及燃料电池隔板用密封材料
EP3672811A1 (en) * 2017-08-24 2020-07-01 Dow Global Technologies LLC Ethylene/c5-c10 alpha-olefin/ polyene interpolymers
JP6983048B2 (ja) * 2017-12-05 2021-12-17 株式会社ブリヂストン 共重合体、ゴム組成物、樹脂組成物、タイヤ及び樹脂製品
JP6985916B2 (ja) * 2017-12-15 2021-12-22 三井化学株式会社 エチレン・α−オレフィン・非共役ポリエン共重合体組成物およびその用途
WO2019132450A1 (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 메탈로센 담지 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
KR102343937B1 (ko) * 2017-12-26 2021-12-27 주식회사 엘지화학 메탈로센 담지 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
KR102480534B1 (ko) * 2018-03-14 2022-12-22 미쓰이 가가쿠 가부시키가이샤 적층체 및 그의 용도
WO2019188338A1 (ja) * 2018-03-28 2019-10-03 Nok株式会社 ゴム組成物
WO2019188339A1 (ja) * 2018-03-28 2019-10-03 Nok株式会社 ゴム組成物およびそれを用いた混練機表面への粘着性の低減方法
WO2019220932A1 (ja) * 2018-05-16 2019-11-21 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
WO2019230699A1 (ja) * 2018-05-29 2019-12-05 Nok株式会社 エチレン-プロピレン-非共役ポリエン共重合体を含有するゴム組成物
JP7256579B2 (ja) * 2019-01-18 2023-04-12 三井化学株式会社 制振材用共重合体組成物および当該共重合体組成物からなる制振材
US20220153967A1 (en) * 2019-03-20 2022-05-19 Zeon Corporation Sealant and sealant composition for electrochemical device
JP7500233B2 (ja) 2020-03-10 2024-06-17 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体組成物およびその用途
JP7481884B2 (ja) 2020-03-31 2024-05-13 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体組成物およびその用途
JP7471130B2 (ja) 2020-04-02 2024-04-19 三井化学株式会社 エチレン系共重合体組成物およびその用途
JP7403374B2 (ja) 2020-04-02 2023-12-22 三井化学株式会社 エチレン系共重合体組成物およびその用途
JP7471129B2 (ja) 2020-04-02 2024-04-19 三井化学株式会社 エチレン系共重合体組成物およびその用途
JP7458859B2 (ja) 2020-04-03 2024-04-01 三井化学株式会社 伝動ベルト用組成物およびその用途伝動ベルト
JP7458861B2 (ja) 2020-04-03 2024-04-01 三井化学株式会社 伝動ベルト用組成物およびその用途伝動ベルト
JP7458860B2 (ja) 2020-04-03 2024-04-01 三井化学株式会社 伝動ベルト用組成物およびその用途伝動ベルト
CN111925624A (zh) * 2020-08-11 2020-11-13 株洲时代新材料科技股份有限公司 一种耐高低温柔软隔音材料及其制备方法
JP7499660B2 (ja) 2020-09-15 2024-06-14 横浜ゴム株式会社 スタッドレスタイヤ用ゴム組成物およびそれを用いたスタッドレスタイヤ
EP4253393A1 (en) * 2020-11-25 2023-10-04 Hanwha Solutions Corporation Transition metal compound, catalyst comprising same, and method for preparing same
WO2023182473A1 (ja) * 2022-03-24 2023-09-28 三井化学株式会社 エチレン・α-オレフィン・5-ビニル-2-ノルボルネン共重合体、当該共重合体を含む組成物、および、架橋体
CN115637053B (zh) * 2022-09-02 2023-09-15 四川东方雨虹建筑材料有限公司 一种sbs改性沥青快速制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081794A1 (ja) * 2007-12-21 2009-07-02 Mitsui Chemicals, Inc. エチレン/α-オレフィン/非共役ポリエン共重合体の製造方法
WO2009081792A1 (ja) * 2007-12-21 2009-07-02 Mitsui Chemicals, Inc. エチレン/α-オレフィン/非共役ポリエン共重合体の製造方法
JP2011001497A (ja) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc ゴム組成物およびその用途
JP2012207086A (ja) * 2011-03-29 2012-10-25 Mitsui Chemicals Inc エチレン系共重合体、共重合体組成物およびゴム成形品

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL276385A1 (en) 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
JPH0224701A (ja) 1988-07-13 1990-01-26 Sekisui Chem Co Ltd 電気機器の駆動制御装置
US5155080A (en) 1988-07-15 1992-10-13 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
KR930002411B1 (ko) 1988-09-14 1993-03-30 미쓰이세끼유 가가꾸고오교오 가부시끼가이샤 벤젠불용성 유기알루미늄 옥시화합물 및 그 제조방법
JP2741893B2 (ja) 1988-09-14 1998-04-22 三井化学株式会社 ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法
JP2693517B2 (ja) 1988-09-14 1997-12-24 三井石油化学工業株式会社 ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
JPH03103407A (ja) 1989-09-18 1991-04-30 Idemitsu Kosan Co Ltd オレフィン系重合体の製造法
ES2087145T3 (es) 1989-10-10 1996-07-16 Fina Technology Catalizadores metalocenos con acidos de lewis y alkilo-aluminios.
DK0426637T4 (da) 1989-10-30 2002-01-14 Fina Technology Fremgangsmåde til fremstilling af metallocenkatalysatorer til polymerisation af olefiner
US5387568A (en) 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
DE69026679T3 (de) 1989-10-30 2005-10-06 Fina Technology, Inc., Houston Addition von Alkylaluminium zum Verbessern eines Metallocenkatalysators
JP2545006B2 (ja) 1990-07-03 1996-10-16 ザ ダウ ケミカル カンパニー 付加重合触媒
JPH09151205A (ja) 1994-10-03 1997-06-10 Sumitomo Chem Co Ltd 共重合体ゴムの製造方法
JP3483176B2 (ja) 1994-12-20 2004-01-06 三井化学株式会社 エチレン・α−オレフィン・非共役ポリエンランダム共重合体および該共重合体の用途
TW383313B (en) 1994-12-20 2000-03-01 Mitsui Petrochemical Ind Preparation of ethylene-alpha-olefin-nonconjugate polyene random copolymers, the copolymers obtaining which, and the use of the copolymers
JP2005344101A (ja) 1995-06-28 2005-12-15 Mitsui Chemicals Inc ゴム組成物およびその用途
JP3487677B2 (ja) * 1995-06-29 2004-01-19 三井化学株式会社 結晶性ポリオレフィン樹脂組成物
MY114719A (en) 1995-06-29 2002-12-31 Mitsui Chemicals Inc Olefin thermoplastic elastomer compositions
JP3344183B2 (ja) 1995-08-30 2002-11-11 豊田合成株式会社 エチレンプロピレンゴム配合物及びこれを用いたホース
TW331569B (en) 1995-12-29 1998-05-11 Mitsui Petroleum Chemicals Ind Unsaturated copolymer based on olefin and production and use
JP3640116B2 (ja) 1995-12-29 2005-04-20 三井化学株式会社 不飽和性オレフィン系共重合体、製造方法および用途
US6225426B1 (en) 1996-04-10 2001-05-01 Uniroyal Chemical Company, Inc. Process for producing polyolefin elastomer employing a metallocene catalyst
TW434291B (en) * 1996-05-28 2001-05-16 Mitsui Chemicals Inc Ethylene random copolymer, process for its preparation and rubber composition
EP0981556A1 (en) 1997-04-30 2000-03-01 The Dow Chemical Company Ethylene/alpha-olefin/diene interpolymers and their preparation
JP2000212194A (ja) 1999-01-25 2000-08-02 Mitsui Chemicals Inc メタロセン化合物、オレフィン重合用触媒およびオレフィンの重合方法
EP1088836B1 (en) 1999-04-02 2012-11-21 Mitsui Chemicals, Inc. Ethylene/alpha-olefin/unconjugated polyene copolymer rubber, rubber composition for sealing, molded rubber for sealing, and process for producing the molded rubber part
JP2001002866A (ja) 1999-06-18 2001-01-09 Mitsui Chemicals Inc 遮音スポンジ用ゴム組成物及び加硫発泡成形体
JP4817482B2 (ja) 1999-08-10 2011-11-16 三井化学株式会社 非共役環状ポリエン系共重合体および用途
KR100632821B1 (ko) 1999-08-10 2006-10-16 미쓰이 가가쿠 가부시키가이샤 비공역 환상폴리엔계 공중합체, 고무 조성물 및 용도
JP4554133B2 (ja) 1999-10-08 2010-09-29 三井化学株式会社 メタロセン化合物、メタロセン化合物の製造方法、オレフィン重合触媒、ポリオレフィンの製造方法およびポリオレフィン
JP2001192488A (ja) 2000-01-12 2001-07-17 Sumitomo Chem Co Ltd ゴム発泡体及びシール材
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
JP4367686B2 (ja) 2002-11-22 2009-11-18 三井化学株式会社 オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
EP2465879B1 (en) 2002-09-27 2019-04-24 Mitsui Chemicals, Inc. Bridged metallocene compound for olefin polymerization and method of polymerizing olefin using the same
JP2004149673A (ja) 2002-10-30 2004-05-27 Mitsui Chemicals Inc エチレン系ワックスの製造方法
JP4367688B2 (ja) 2002-11-28 2009-11-18 三井化学株式会社 オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
EP1586591A4 (en) * 2003-01-23 2006-06-14 Mitsui Chemicals Inc PROCESS FOR PRODUCING NON-CONJUGATED ETHYLENE / α-OLEFIN / POLYENE COPOLYMER AND NON-CONJUGATED ETHYLENE / α-OLEFIN / POLYENE COPOLYMER THUS OBTAINED
US7452946B2 (en) 2003-05-20 2008-11-18 Mitsui Chemicals, Inc. Ethylene polymer
JP4254434B2 (ja) 2003-09-02 2009-04-15 東ソー株式会社 発泡体成形用エチレン・α−オレフィン・非共役ジエン共重合ゴム組成物及びそれよりなる過酸化物架橋発泡体
EP2275451B1 (en) 2005-05-18 2016-10-19 Mitsui Chemicals, Inc. Method for producing propylene-based copolymer
CN101180305A (zh) * 2005-05-25 2008-05-14 三井化学株式会社 过渡金属化合物、烯烃聚合用催化剂和烯烃类聚合物的制造方法
JP4861691B2 (ja) 2005-12-01 2012-01-25 三井化学株式会社 注入スポンジ用ゴム組成物、及びスポンジゴム製品
JP5114941B2 (ja) 2006-12-21 2013-01-09 住友化学株式会社 オレフィン系熱可塑性エラストマーの製造方法
ATE519813T1 (de) 2006-12-21 2011-08-15 Sumitomo Chemical Co Verfahren zur herstellung von olefinischem thermoplastischem elastomer
JP5357635B2 (ja) 2009-06-19 2013-12-04 三井化学株式会社 ゴム組成物およびその用途
JP5871812B2 (ja) * 2010-11-17 2016-03-01 三井化学東セロ株式会社 太陽電池封止材およびそれを用いた太陽電池モジュール
JP5846752B2 (ja) * 2011-03-31 2016-01-20 三井化学株式会社 エチレン系共重合体、架橋されたエチレン系共重合体、およびその成形体
JP6091871B2 (ja) 2012-12-10 2017-03-08 三井化学株式会社 エチレン・α−オレフィン・非共役ポリエン共重合体組成物、並びに、この組成物から得られる架橋発泡体およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081794A1 (ja) * 2007-12-21 2009-07-02 Mitsui Chemicals, Inc. エチレン/α-オレフィン/非共役ポリエン共重合体の製造方法
WO2009081792A1 (ja) * 2007-12-21 2009-07-02 Mitsui Chemicals, Inc. エチレン/α-オレフィン/非共役ポリエン共重合体の製造方法
JP2011001497A (ja) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc ゴム組成物およびその用途
JP2012207086A (ja) * 2011-03-29 2012-10-25 Mitsui Chemicals Inc エチレン系共重合体、共重合体組成物およびゴム成形品

Also Published As

Publication number Publication date
EP3106480A1 (en) 2016-12-21
EP3106480A4 (en) 2017-08-23
TWI668240B (zh) 2019-08-11
US20160347894A1 (en) 2016-12-01
CN109824809B (zh) 2022-06-28
BR112016016900B1 (pt) 2022-04-19
TW201908349A (zh) 2019-03-01
EP3106480B1 (en) 2022-04-06
CN105980420B (zh) 2019-03-08
TW201536817A (zh) 2015-10-01
US20210122860A1 (en) 2021-04-29
WO2015122415A1 (ja) 2015-08-20
KR20160103042A (ko) 2016-08-31
US11760819B2 (en) 2023-09-19
US20210122861A1 (en) 2021-04-29
US10919997B2 (en) 2021-02-16
CN105980420A (zh) 2016-09-28
CN109824809A (zh) 2019-05-31
BR112016016900A2 (ja) 2017-08-08
KR101862960B1 (ko) 2018-05-31
BR112016016900B8 (pt) 2022-05-17
TWI640546B (zh) 2018-11-11
US11613595B2 (en) 2023-03-28
EP4043500A1 (en) 2022-08-17
JP6774184B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
JP6774184B2 (ja) エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法
JP6439039B2 (ja) 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途
JP5717342B2 (ja) 共重合体ゴム、ゴム組成物およびゴム成形体
JP5357635B2 (ja) ゴム組成物およびその用途
WO2001038410A1 (fr) Caoutchouc de polymere d'ethylene, procede de production correspondant et utilisation
JP5204727B2 (ja) ゴム組成物およびその用途
JPWO2019180802A1 (ja) エチレン・α−オレフィン・非共役ポリエン共重合体、その製造方法および用途
JP6859153B2 (ja) パッキン用エチレン共重合体組成物及びパッキン用途
JP6709641B2 (ja) シールパッキン
JP6859032B2 (ja) 防振ゴム用組成物およびその用途
JP6426513B2 (ja) ゴム組成物
JP6971038B2 (ja) 燃料電池シール材用組成物、燃料電池用シール材および燃料電池
JP2018127550A (ja) 組成物および架橋体
JP2023020524A (ja) 燃料電池ガスケット用エチレン共重合体組成物、当該組成物からなる燃料電池用ガスケット
JP7141931B2 (ja) エチレン系共重合体組成物およびホース製品
BR122021017211B1 (pt) Composição compreendendo copolímero de etileno-alfa-olefina-polieno não conjugado, material reticulado, espuma reticulada, material de isolamento acústico e método para a fabricação do referido copolímero
JP2022088268A (ja) 制振材用共重合体組成物およびその用途
JP2023149103A (ja) エチレン系共重合体組成物およびホース製品
JP2000297119A (ja) 不飽和性オレフィン系共重合体および成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250