JP3826642B2 - 内燃機関の排気昇温装置 - Google Patents

内燃機関の排気昇温装置 Download PDF

Info

Publication number
JP3826642B2
JP3826642B2 JP31733899A JP31733899A JP3826642B2 JP 3826642 B2 JP3826642 B2 JP 3826642B2 JP 31733899 A JP31733899 A JP 31733899A JP 31733899 A JP31733899 A JP 31733899A JP 3826642 B2 JP3826642 B2 JP 3826642B2
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
combustion engine
fuel
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31733899A
Other languages
English (en)
Other versions
JP2001132436A (ja
Inventor
俊祐 利岡
信也 広田
孝充 浅沼
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31733899A priority Critical patent/JP3826642B2/ja
Priority to US09/695,977 priority patent/US6634167B1/en
Priority to DE10055098A priority patent/DE10055098B4/de
Publication of JP2001132436A publication Critical patent/JP2001132436A/ja
Application granted granted Critical
Publication of JP3826642B2 publication Critical patent/JP3826642B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等に搭載される内燃機関から排出される排気の温度を昇温させる技術に関し、特に排気中に含まれる未燃燃料成分を低減すべく排気の温度を昇温させる技術に関する。
【0002】
【従来の技術】
近年、自動車等に搭載される内燃機関では、排気中に含まれる有害ガス成分を十分に浄化した上で大気中に放出することが要求されている。このような要求に対し、内燃機関の排気通路に排気浄化触媒を設け、その排気浄化触媒によって排気中に含まれる有害ガス成分を浄化する技術が提案されている。
【0003】
排気浄化触媒としては、例えば、三元触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒、酸化触媒、もしくは、これらの排気浄化触媒を適宜組み合わせてなる排気浄化触媒など、多種多様の排気浄化触媒が開発されている。
【0004】
上記した排気浄化触媒は、一様にして所定温度以上で活性して排気中の有害ガス成分を浄化可能となるため、内燃機関が冷間始動された場合のように排気浄化触媒の温度が所定温度未満となるような場合には排気中の有害ガス成分を十分に浄化することができない。
【0005】
特に、内燃機関が冷間始動された場合は、筒内の温度が低く混合気の燃焼が不安定となりやすいため、比較的多量の未燃燃料成分が排出されるが、その際に排気浄化触媒が未活性状態にあると比較的多量の未燃燃料成分が浄化されずに大気中に放出されることになる。
【0006】
従って、内燃機関が冷間始動される場合には、大気中に放出される未燃燃料成分量を抑制しつつ、排気浄化触媒の早期活性化を図ることが重要となる。このような要求に対し、従来では、特開平8−74568号公報に記載されたような内燃機関の二次エア供給装置が提案されている。
【0007】
上記した内燃機関の二次エア供給装置は、内燃機関が冷間始動された場合のように排気浄化触媒が未活性状態にあるときは、内燃機関の排気通路に二次空気を供給することによって排気空燃比をリーンとし、排気中に含まれる一酸化炭素(CO)や炭化水素(HC)を酸化及び浄化させるとともに、一酸化炭素(CO)や炭化水素(HC)の酸化反応時に発生する熱を利用して排気浄化触媒の早期活性化を図ろうとするものである。
【0008】
【発明が解決しようとする課題】
ところで、内燃機関が冷間始動された場合は、排気通路内の雰囲気温度が低いため、単に排気中に二次空気を供給して排気空燃比をリーン空燃比とするだけでは、一酸化炭素(CO)や炭化水素(HC)を十分に酸化及び浄化することは困難である。更に、一酸化炭素(CO)や炭化水素(HC)の酸化反応が十分に行われないと、酸化反応時に発生する熱量が少なくなり、排気浄化触媒の早期活性化を図ることも困難となる。
【0009】
本発明は、上記したような種々の問題点に鑑みてなされたものであり、排気中に含まれる未燃燃料成分を浄化しつつ排気を昇温させる排気昇温装置において、未燃燃料成分の浄化と排気の昇温とを効率的に行える技術を提供することにより、冷間時における排気エミッションの悪化を抑制することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記した課題を解決するために以下のような手段を採用した。すなわち、本発明に係る内燃機関の排気昇温装置は、
内燃機関に接続された排気通路と、
前記排気通路に設けられ、前記排気通路を流れる排気の流量を調節する排気絞り弁と、
排気中に含まれる未燃燃料成分量を低減すべきときに、前記排気絞り弁をほぼ全閉に制御する弁制御手段と、
前記弁制御手段によって排気絞り弁がほぼ全閉に制御されたときに、前記排気通路における上流の部位へ二次空気を供給する二次空気供給手段と、
前記弁制御手段によって排気絞り弁がほぼ全閉に制御されたときに、前記内燃機関を理論空燃比もしくは燃料過剰空燃比で運転させる機関空燃比制御手段と、を備えることを特徴とする。
【0011】
このように構成された内燃機関の排気昇温装置では、排気中に含まれる未燃燃料成分を低減させる必要が生じた場合は、排気絞り弁がほぼ全閉に制御され、内燃機関が理論空燃比もしくは燃料過剰空燃比で運転され、更に排気通路における上流の部位に二次空気が供給される。
【0012】
この場合、排気絞り弁がほぼ全閉状態となるため、内燃機関から排気絞り弁に至る排気通路内の圧力が高められるとともに、前記排気通路における排気の流速が低下することになる。
【0013】
前記排気通路内の圧力が高まると、それに応じて前記排気通路内の雰囲気温度が上昇するため、内燃機関から排出された排気の温度低下が抑制される。一方、排気通路内おける排気の流速が低下すると、内燃機関から排出された排気が比較的長期にわたって内燃機関の直下流の排気通路内に滞留することになる。
【0014】
この結果、内燃機関の直下流には、高温状態の排気が長期にわたって滞留することになるため、そのような状況下で排気中に二次空気が供給されると、排気中の未燃燃料成分と二次空気中の酸素とが長期にわたって高温下に曝され、未燃燃料成分と酸素との反応が促進される。未燃燃料成分と酸素との反応が活発になると、反応時に発生する熱量が増加し、排気の温度が更に上昇することになる。
【0015】
一方、排気絞り弁が全閉に制御されたことによって高められた排気圧力は、背圧として内燃機関に作用することになるが、その際に内燃機関が理論空燃比もしくは燃料過剰空燃比で運転されるため、内燃機関の運転状態が不安定になることがない。
【0016】
本発明に係る内燃機関の排気昇温装置において、排気中の未燃燃料成分を低減すべき場合としては、内燃機関が冷間始動後の暖機運転状態にある場合のように、内燃機関から比較的多量の未燃燃料成分が排出される場合を例示することができる。
【0017】
また、本発明に係る内燃機関の排気昇温装置において、内燃機関が筒内に直接燃料を噴射する燃料噴射手段を具備し成層燃焼運転と均質燃焼運転とを切り替え可能な筒内噴射型内燃機関である場合は、機関空燃比制御手段は、未燃燃料成分量を低減すべく排気絞り弁がほぼ全閉に制御されたときに、内燃機関を理論空燃比もしくは燃料過剰空燃比で均質燃焼運転させてもよい。
【0018】
ここで、排気絞り弁がほぼ全閉状態に制御されたときに、内燃機関を均質燃料運転させるのは、排気絞り弁がほぼ全閉状態に制御された場合は内燃機関に作用する背圧が上昇するため、その際に内燃機関が成層燃焼運転状態にあると、内燃機関の燃焼状態が不安定になることが想定されるからである。
【0019】
また、上記の場合、未燃燃料成分量を低減すべく排気絞り弁がほぼ全閉に制御されるときには、燃料噴射手段による主たる燃料の噴射によって噴射された燃料の燃焼直後に燃料噴射手段から副次的に燃料を噴射させてもよい。排気絞り弁がほぼ全閉状態に制御されたときに、燃料噴射手段から副次的に燃料(副燃料)が噴射されると、主燃料の燃え残りである未燃燃料成分と副燃料が高温下で長期にわたって燃焼することとなり、排気中の未燃燃料成分量が確実に低減され
【0020】
【発明の実施の形態】
以下、本発明に係る内燃機関の排気昇温装置の具体的な実施態様について図面に基づいて説明する。
【0021】
<実施の形態1>
先ず、本発明に係る内燃機関の排気昇温装置の第1の実施態様について図1〜図3に基づいて説明する。
【0022】
図1は、第1の実施の形態にかかる排気昇温装置を適用する内燃機関とその吸排気系の概略構成を示す図である。
図1に示す内燃機関1は、酸素過剰状態の混合気を燃焼可能な希薄燃焼式内燃機関であり、4つの気筒21を有する水冷式の4サイクルガソリンエンジンである。
【0023】
前記内燃機関1には、各気筒21の燃焼室に臨むよう点火栓25が取り付けられている。前記内燃機関1には、吸気枝管33と排気枝管45とが接続されている。
【0024】
前記吸気枝管33の各枝管は、内燃機関1の図示しない吸気ポートを介して各気筒21の燃焼室と連通している。前記吸気枝管33は、サージタンク34に接続され、サージタンク34は、吸気管35を介してエアクリーナボックス36に接続されている。
【0025】
前記吸気枝管33の各枝管には、各気筒21の吸気ポートに向けて燃料を噴射する燃料噴射弁11が取り付けられている。各燃料噴射弁11は、燃料分配管10と連通しており、燃料分配管10は、図示しない燃料ポンプと連通している。
【0026】
前記吸気管35には、該吸気管35内を流れる新気の流量を調節するスロットル弁39が設けられている。このスロットル弁39には、ステッパモータ等からなり、印加電流の大きさに応じて該スロットル弁39を開閉駆動するスロットル用アクチュエータ40と、該スロットル弁39の開度に対応した電気信号を出力するスロットルポジションセンサ41とが取り付けられている。
【0027】
前記スロットル弁39には、アクセルペダル42に連動して回転するアクセルレバー(図示せず)が併設され、このアクセルレバーには、アクセルレバーの回転位置(アクセルペダル42の踏み込み量)に対応した電気信号を出力するアクセルポジションセンサ43が取り付けられている。
【0028】
前記吸気管35において前記スロットル弁39より上流の部位には、該吸気管35内を流れる新気の質量(吸入空気質量)に対応した電気信号を出力するエアフローメータ44が取り付けられる。
【0029】
一方、前記排気枝管45の各枝管は、内燃機関1の図示しない排気ポートを介して各気筒21の燃焼室と連通している。内燃機関1には、その噴孔が各気筒の排気ポートに望むよう二次空気噴射ノズル53が取り付けられている。前記二次空気噴射ノズル53は、図示しないエアポンプと接続され、該エアポンプから供給される二次空気を排気ポート内へ噴射するものである。
【0030】
前記排気枝管45は、排気浄化触媒46に接続され、排気浄化触媒46は、排気管47に接続されて、更に排気管47は、下流にて図示しないマフラーと接続されている。
【0031】
前記排気浄化触媒46は、例えば、該排気浄化触媒46に流入する排気の空燃比がリーンであるときは排気中の窒素酸化物(NOx)を吸収し、該排気浄化触媒46に流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸収していた窒素酸化物(NOx)を放出しつつ窒素(N2)に還元する吸蔵還元型NOx触媒である(以下、排気浄化触媒46を吸蔵還元型NOx触媒46と記す)。
【0032】
前記吸蔵還元型NOx触媒46は、上流側の端部が開放され且つ下流側の端部が閉塞された流路と、上流側の端部が閉塞され且つ下流側の端部が開放された流路とがハニカム状をなすよう交互に配置された担体と、各流路の壁面に担持されたNOx吸収剤とから構成されている。
【0033】
前記担体は、例えば、多孔質のセラミックで構成されている。前記NOx吸収剤としては、カリウム(K)、ナトリウム(Na)、リチウム(Li)、あるいはセシウム(Cs)等のアルカリ金属と、バリウム(Ba)やカルシウム(Ca)等のアルカリ土類と、ランタン(La)やイットリウム(Y)等の希土類とから選択された少なくとも1つと、白金(Pt)等の貴金属類とから成るものを例示することができるが、本実施の形態では、BaとPtとからなるNOx吸収剤を例に挙げて説明する。
【0034】
このように構成された吸蔵還元型NOx触媒46では、該吸蔵還元型NOx触媒46に流入する排気の空燃比がリーンとなり、排気中の酸素濃度が高まると、排気中の酸素(O2)がNOx吸収剤のPt表面にO2-あるいはO2-として付着し、次いで排気中の一酸化窒素(NO)がPtの表面上でO2-あるいはO2-と反応して二酸化窒素(NO2)となる。
【0035】
前記二酸化窒素(NO2)は、Ptの表面で酸化されつつ酸化バリウム(BaO)と結合して硝酸イオン(NO3-)を形成する。このように、排気中の窒素酸化物(NOx)は、NO3-としてNOx吸収剤に吸収される。
【0036】
上記したようなNOxの吸収作用は、吸蔵還元型NOx触媒46に流入する排気の空燃比がリーンであり、且つNOx吸収剤のNOx吸収能力が飽和しない限り継続される。
【0037】
一方、吸蔵還元型NOx触媒46では、該吸蔵還元型NOx触媒46に流入する排気中の酸素濃度が低下すると、NOx吸収剤における二酸化窒素(NO2)生成量が減少し、酸化バリウム(BaO)と結合していたNO3-が逆に二酸化窒素(NO2)となってNOx吸収剤から離脱する。
【0038】
すなわち、吸蔵還元型NOx触媒46に流入する排気の酸素濃度が低下すると、NO3-の形でNOx吸収剤に吸収されていた窒素酸化物(NOx)は、二酸化窒素(NO2)となってNOx吸収剤から放出されることになる。
【0039】
NOx吸収剤から放出された窒素酸化物(NOx)は、排気中に含まれる還元成分(例えば、NOx吸収剤のPt上の酸素O2-あるいは酸素O2-と反応して部分酸化したHCやCO等の活性種)と反応して窒素(N2)等に還元及び浄化される。
【0040】
ここで図1に戻り、前記排気枝管45には、吸蔵還元型NOx触媒46に流入する排気の空燃比に対応した電気信号を出力する空燃比センサ48が取り付けられている。
【0041】
前記空燃比センサ48は、例えば、ジルコニア(ZrO2)を筒状に焼成した固体電解質部と、この固体電解質部の外面を覆う外側白金電極と、前記固体電解質部の内面を覆う内側白金電極とから形成され、前記電極間に電圧が印加された場合に、酸素イオンの移動に伴って排気ガス中の酸素濃度(理論空燃比よりもリッチ側のときは未燃ガス成分の濃度)に比例した値の電圧を出力するセンサである。
【0042】
前記排気管47において吸蔵還元型NOx触媒46より下流の部位には、該排気管47内を流れる排気の流量を絞る排気絞り弁49が設けられている。この排気絞り弁49には、ステッパモータ等からなり、印加電力の大きさに応じて該排気絞り弁49を開閉駆動する排気絞り用アクチュエータ50が取り付けられている。
【0043】
一方、内燃機関1には、図示しないクランクシャフトの端部に取り付けられたタイミングロータと、内燃機関1のシリンダブロックに取り付けられた電磁ピックアップとから構成され、前記クランクシャフトが所定角度(例えば、30度)回転する都度、パルス信号を出力するクランクポジションセンサ51が取り付けられている。
【0044】
前記内燃機関1には、該内燃機関1のシリンダブロック及びシリンダヘッドに形成されたウォータジャケット内を流れる冷却水の温度に対応した電気信号を出力する水温センサ52が取り付けられている。
【0045】
このように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニット(ECU:Electronic Control Unit)20が併設されている。ECU20には、スロットルポジションセンサ41、エアフローメータ44、空燃比センサ48、クランクポジションセンサ51、水温センサ52等の各種センサが電気配線を介して接続され、各センサの出力信号値がECU20に入力されるようになっている。
【0046】
ECU20には、燃料噴射弁11、点火栓25、排気絞り用アクチュエータ50、二次空気噴射ノズル53等が電気配線を介して接続され、ECU20が燃料噴射弁11、点火栓25、排気絞り用アクチュエータ50、二次空気噴射ノズル53等を電気的に制御することが可能となっている。
【0047】
ここで、ECU20は、図2に示すように、双方性バス200によって相互に接続された、CPU201と、ROM202と、RAM203と、バックアップRAM204と、入力ポート205と、出力ポート206とを備えるとともに、前記入力ポート205に接続されたA/Dコンバータ(A/D)207を備えている。
【0048】
前記入力ポート205は、クランクポジションセンサ51のようにデジタル信号形式の信号を出力するセンサの出力信号を入力し、それらの出力信号をCPU201やRAM203へ送信する。
【0049】
前記入力ポート205は、スロットルポジションセンサ41、アクセルポジションセンサ43、エアフローメータ44、空燃比センサ48、水温センサ52等のように、アナログ信号形式の信号を出力するセンサの出力信号をA/D207を介して入力し、それらの出力信号をCPU201やRAM203へ送信する。
【0050】
前記出力ポート206は、燃料噴射弁11、点火栓25、スロットル用アクチュエータ40、排気絞り用アクチュエータ50、二次空気噴射ノズル53等と電気配線を介して接続され、CPU201から出力される制御信号を、前記した燃料噴射弁11、点火栓25、スロットル用アクチュエータ40、排気絞り用アクチュエータ50、あるいは二次空気噴射ノズル53等へ送信する。
【0051】
前記ROM202は、燃料噴射弁11から噴射すべき燃料噴射量を決定するための燃料噴射量制御ルーチン、燃料噴射弁11から燃料を噴射すべき時期を決定するための燃料噴射時期制御ルーチン、燃料噴射量の空燃比フィードバック制御を行うための空燃比フィードバック制御ルーチン、点火栓25の点火時期を決定するための点火時期制御ルーチン、スロットル弁39の開度を制御するためのスロットル制御ルーチン、吸蔵還元型NOx触媒46に吸収された窒素酸化物(NOx)を浄化するためのNOx浄化制御ルーチン等の各種アプリケーションプログラムに加え、排気の温度を上昇させるための排気昇温制御ルーチンを記憶している。 前記ROM202は、上記したアプリケーションプログラムに加え、各種の制御マップを記憶している。前記制御マップは、例えば、内燃機関1の運転状態と燃料噴射量との関係を示す燃料噴射量制御マップ、内燃機関1の運転状態と燃料噴射時期との関係を示す燃料噴射時期制御マップ、内燃機関1の運転状態と点火時期との関係を示す点火時期制御マップ、内燃機関1の運転状態とスロットル弁39との関係を示すスロットル開度制御マップ、内燃機関1の運転状態と吸蔵還元型NOx触媒46に吸収された窒素酸化物(NOx)量との関係を示すNOx吸収量制御マップ等である。
【0052】
前記RAM203は、各センサからの出力信号やCPU201の演算結果等を格納する。前記演算結果は、例えば、クランクポジションセンサ51の出力信号に基づいて算出される機関回転数である。これらのデータは、クランクポジションセンサ51が信号を出力する都度、最新のデータに書き換えられる。
【0053】
前記バックアップRAM204は、内燃機関1の運転停止後もデータを記憶可能な不揮発性のメモリである。
前記CPU201は、前記ROM202に記憶されたアプリケーションプログラムに従って動作して、燃料噴射制御、点火制御、スロットル制御、NOx浄化制御等を実行するとともに、本発明の要旨となる排気昇温制御を実行する。
【0054】
その際、CPU201は、クランクポジションセンサ51、アクセルポジションセンサ43、あるいはエアフローメータ44等の出力信号値をパラメータとして内燃機関100の運転状態を判別し、判別された運転状態に応じて各種の制御を実行する。
【0055】
例えば、CPU201は、内燃機関1の運転状態が低・中負荷運転領域にあると判定した場合は、酸素過剰状態の混合気(リーン空燃比の混合気)によって内燃機関1を運転(希薄燃焼運転)させるべく燃料噴射量を制御する。
【0056】
CPU201は、内燃機関1の運転状態が高負荷運転領域にあると判定した場合は、理論空燃比の混合気もしくは燃料過剰状態の混合気(リッチ空燃比の混合気)によって内燃機関1を運転(ストイキ運転もしくはリッチ運転)させるべく燃料噴射量を制御する。
【0057】
尚、内燃機関1が希薄燃焼運転されている場合は、内燃機関1から排出される排気の空燃比がリーン雰囲気となるため、排気中に含まれる窒素酸化物(NOx)が吸蔵還元型NOx触媒46に吸蔵されることになるが、内燃機関1の希薄燃焼運転が長期間継続されると、吸蔵還元型NOx触媒46の窒素酸化物(NOx)吸蔵能力が飽和し、排気中の窒素酸化物(NOx)が吸蔵還元型NOx触媒46にて除去もしくは浄化されずに大気中に放出される虞がある。
【0058】
これに対し、CPU201は、内燃機関100が希薄燃焼運転されている場合は、比較的に短い周期でスパイク的(短時間)に内燃機関1がストイキ運転またはリッチ運転されるよう燃料噴射量を制御することにより、吸蔵還元型NOx触媒46に吸蔵された窒素酸化物(NOx)を短周期的に放出及び浄化する、NOx浄化制御を実行する。
【0059】
すなわち、CPU201は、NOx浄化制御において、排気空燃比(この実施の形態では混合気の空燃比)が比較的に短い周期で「リーン」と「スパイク的な理論空燃比またはリッチ空燃比」を交互に繰り返されるよう内燃機関100の運転状態を制御する、いわゆる、リーン・リッチスパイク制御を実行する。
【0060】
次に、CPU201は、内燃機関1の排気に含まれる未燃燃料成分(未燃HC)を低減すべき時期に、排気昇温制御を実行する。ここで、排気中に含まれる未燃HCを低減すべき時期としては、内燃機関1が冷間始動後の暖機運転状態にある場合のように、内燃機関1から比較的多量の未燃HCが排出され、且つ、吸蔵還元型NOx触媒46が未活性状態にある場合を例示することができる。
【0061】
排気昇温制御では、CPU201は、先ず吸蔵還元型NOx触媒46が活性状態にあるか否かを判別する。吸蔵還元型NOx触媒46の活性状態を判定する方法としては、吸蔵還元型NOx触媒46の触媒床温を検出する温度センサを該吸蔵還元型NOx触媒46に取り付け、その温度センサの出力信号値が所定の活性温度以上にあるときに吸蔵還元型NOx触媒46が活性状態にあると判定する方法、もしくは、内燃機関1の運転履歴等から吸蔵還元型NOx触媒46の触媒床温を推定し、その推定値が所定の活性温度以上にあるときに吸蔵還元型NOx触媒46が活性状態にあると判定する方法等を例示することができる。
【0062】
CPU201は、吸蔵還元型NOx触媒46が未活性状態にあると判定した場合は、吸蔵還元型NOx触媒46の早期活性化を図るべく排気昇温処理を実行し、吸蔵還元型NOx触媒46が活性状態にあると判定した場合は、排気昇温処理を実行しないものとする。
【0063】
排気昇温処理では、CPU201は、内燃機関1をストイキ運転もしくはリッチ運転させるべく燃料噴射量を制御するとともに、二次空気噴射ノズル53を作動させて内燃機関1の排気ポートへ二次空気を供給する。
【0064】
この場合、二次空気噴射ノズル53から噴射される二次空気は、内燃機関1の燃焼室から排気ポートへ排出された排気中に供給されることになる。その際、排気ポートは、燃焼室の直下流に位置するため、排気ポート内の排気は比較的高温の状態にある。このような高温状態の排気中に二次空気が供給されると、排気中に残存する未燃HCが二次空気中の酸素と反応して浄化されるとともに、未燃HCと酸素とが反応する際に発生する熱(反応熱)によって排気の温度が高められることになる。
【0065】
未燃HCと酸素との反応熱によって昇温した排気は、排気ポートから排気枝管45を介して吸蔵還元型NOx触媒46に流入し、排気の熱が吸蔵還元型NOx触媒46に伝達されることになる。
【0066】
ところで、内燃機関1の燃焼室内で燃焼した既燃ガスが排気ポートへ排出される際には、既燃ガスの圧力が大幅に低下し、それに応じて既燃ガスの温度が大幅に低下するため、既燃ガス中に残存する未燃HCと二次空気中の酸素とを効果的に反応させることが困難となる。
【0067】
更に、内燃機関1が冷間始動後の暖機運転状態にある場合は、内燃機関1の燃焼室から吸蔵還元型NOx触媒46に至る排気経路(この場合は、排気ポート及び排気枝管45)の温度が低いため、排気の熱が排気ポートや排気枝管46に不用意に伝達され、吸蔵還元型NOx触媒46に到達した時点における排気の温度が低くなる虞がある。
【0068】
そこで、本実施の形態に係る排気昇温制御では、CPU201は、内燃機関1をストイキ運転もしくはリッチ運転させるとともに、二次空気噴射ノズル53を作動させた上で、排気絞り弁49を略全閉状態とすべく排気絞り用アクチュエータ50を制御するようにした。
【0069】
排気絞り弁49が略全閉状態にされると、内燃機関1の燃焼室から排気絞り弁49に至る排気経路(この場合は、排気ポート、排気枝管45、吸蔵還元型NOx触媒46、及び、排気管47において排気絞り弁49より上流の部位)内の圧力が上昇するとともに、それに応じて前記排気通路内の雰囲気温度が上昇することになる。
【0070】
このように燃焼室から排気絞り弁49に至る排気経路内の圧力及び雰囲気温度が上昇すると、燃焼室内の既燃ガスが排気ポートへ排出された際に、該既燃ガスの温度低下が抑制される。また、排気絞り弁49がほぼ全閉状態にされると、排気ポートから排気絞り弁49に至る排気通路内における排気の流速が低下することになる。
【0071】
この結果、内燃機関1の燃焼室から排出された排気は、燃焼室から排気絞り弁49に至る排気経路において、高温状態で長期にわたって滞留することになり、その間に排気中に含まれる未燃HCが酸化される。
【0072】
尚、排気昇温制御における排気絞り弁49の開度は、排気絞り弁49の作動によって生じる背圧が内燃機関1の燃焼状態を悪化させない開度とすることが好ましく、内燃機関1の運転状態に応じた最適な開度を予め実験的に求めておくようにしてもよい。
【0073】
以下、本実施の形態に係る排気昇温装置の作用及び効果について述べる。
CPU201は、排気昇温制御を実現するにあたり、図3に示すような排気昇温制御ルーチンを実行する。このルーチンは、ROM202に予め記憶されているルーチンであり、内燃機関1の始動完了をトリガにして実行されるルーチンである。
【0074】
排気昇温制御ルーチンでは、CPU201は、先ずS301において、吸蔵還元型NOx触媒46が既に活性状態にあるか否かを判別する。
前記S301において吸蔵還元型NOx触媒46が未だ活性状態にないと判定した場合は、CPU201は、S302へ進み、排気中の未燃HCを低減し、且つ、排気の温度を昇温させるべく、排気昇温処理の実行を開始する。
【0075】
具体的には、CPU201は、排気昇温処理において、内燃機関1をリッチ燃焼運転もしくはストイキ燃焼運転させるべく燃料噴射量を制御し、内燃機関1の排気ポート内へ二次空気を供給すべく二次空気噴射ノズル53を制御し、排気絞り弁49を全閉状態とすべく排気絞り用アクチュエータ50を制御する。
【0076】
この場合、内燃機関1の燃焼室から排気絞り弁49に至る排気経路内の圧力及び雰囲気温度が高くなるとともに、前記排気通路内における排気の流速が低下するため、内燃機関1の燃焼室から排出された排気と二次空気噴射ノズル53から噴射された二次空気とは、前記排気経路内に高温状態で滞留することになる。
【0077】
この結果、排気中に残存する未燃HCと二次空気中の酸素とが長期にわたって高温に曝されることになり、未燃HCと酸素との反応が促進されて未燃HCが浄化されるとともに、未燃HCと酸素とが反応する際に発生する熱によって排気の温度が確実に昇温することになる。排気の温度が上昇すると、該排気の熱が吸蔵還元型NOx触媒46に伝達され、吸蔵還元型NOx触媒46が早期に活性することになる。
【0078】
更に、本実施の形態では、吸蔵還元型NOx触媒46は、排気絞り弁49より上流に配置されるため、高温の排気に長期にわたって曝されることになり、その結果、吸蔵還元型NOx触媒46の昇温性が一層高められる。
【0079】
ここで、図3に戻り、前記したS302の処理を実行し終えたCPU201は、前述したS301の処理に戻り、吸蔵還元型NOx触媒46が活性したか否かを判別する。
【0080】
その際、CPU201は、吸蔵還元型NOx触媒46が未だ活性していないと判定するとS302の排気昇温処理を継続して実行する。一方、吸蔵還元型NOx触媒が活性したと判定した場合は、CPU201は、S303へ進んで排気昇温処理の実行を終了し、本ルーチンの実行を終了する。
【0081】
このようにCPU201が排気昇温制御ルーチンを実行することにより、本発明に係る弁制御手段、機関空燃比制御手段、及び、二次空気供給手段が実現される。
【0082】
従って、本実施の形態に係る排気昇温装置によれば、内燃機関1が冷間始動後の暖機運転状態にある場合のように、内燃機関1から比較的多量の未燃HCが排出され、且つ、吸蔵還元型NOx触媒46が未活性状態にあるときに、排気中の未燃HCを確実に低減するとともに、吸蔵還元型NOx触媒46の早期活性化を図ることが可能となる。
【0083】
<実施の形態2>
次に、本発明に係る内燃機関の排気昇温装置の第2の実施態様について図4〜図6に基づいて説明する。ここでは、前述の第1の実施の形態と同一の構成要素については同一の符号を付している。
【0084】
図4は、第2の実施の形態に係る排気昇温装置を適用する内燃機関の概略構成を示す図である。図4に示す内燃機関100は、複数の気筒21を備えるとともに、各気筒21内に直接燃料を噴射する燃料噴射弁32を具備した4サイクルの筒内噴射式内燃機関である。
【0085】
前記内燃機関100は、複数の気筒21及び冷却水路1cが形成されたシリンダブロック1bと、このシリンダブロック1bの上部に固定されたシリンダヘッド1aとを備えている。
【0086】
前記シリンダブロック1bには、機関出力軸であるクランクシャフト23が回転自在に支持され、このクランクシャフト23は、各気筒21内に摺動自在に装填されたピストン22と連結されている。
【0087】
前記ピストン22の上方には、ピストン22の頂面とシリンダヘッド1aの壁面とに囲まれた燃焼室24が形成されている。前記シリンダヘッド1aには、燃焼室24に臨むよう点火栓25が取り付けられ、この点火栓25には、該点火栓25に駆動電流を印加するためのイグナイタ25aが接続されている。
【0088】
前記シリンダヘッド1aには、2つの吸気ポート26の開口端と2つの排気ポート27の開口端とが燃焼室24に臨むよう形成されるとともに、その噴孔が燃焼室24に臨むよう燃料噴射弁32が取り付けられている。
【0089】
前記シリンダヘッド1aには、その噴孔が排気ポート27に望むよう二次空気噴射ノズル53が取り付けられている。この二次空気噴射ノズル53は、図示しないエアポンプと接続され、該エアポンプから供給される二次空気を前記排気ポート27内へ供給するものである。
【0090】
前記吸気ポート26の各開口端は、シリンダヘッド1aに進退自在に支持された吸気弁28によって開閉されるようになっており、これら吸気弁28は、シリンダヘッド1aに回転自在に支持されたインテーク側カムシャフト30によって進退駆動されるようになっている。
【0091】
前記排気ポート27の各開口端は、シリンダヘッド1aに進退自在に支持された排気弁29により開閉されるようになっており、これら排気弁29は、シリンダヘッド1aに回転自在に支持されたエキゾースト側カムシャフト31により進退駆動されるようになっている。
【0092】
前記インテーク側カムシャフト30及び前記エキゾースト側カムシャフト31は、図示しないタイミングベルトを介してクランクシャフト23と連結され、クランクシャフト23の回転トルクがタイミングベルトを介してインテーク側カムシャフト30及びエキゾースト側カムシャフト31へ伝達されるようになっている。
【0093】
各気筒21に連通する2つの吸気ポート26のうちの一方の吸気ポート26は、シリンダヘッド1a外壁に形成された開口端から燃焼室24に臨む開口端へ向かって直線状に形成された流路を有するストレートポートで構成され、他方の吸気ポート26は、シリンダヘッド1a外壁の開口端から燃焼室24の開口端へ向かって、気筒21の軸方向と垂直な面において旋回するよう形成された流路を有するヘリカルポートで構成されている。
【0094】
前記した各吸気ポート26は、シリンダヘッド1aに取り付けられた吸気枝管33の各枝管と連通している。
前記吸気枝管33において、各気筒21に対応した2つの吸気ポート26のうちのストレートポートと連通する枝管には、その枝管内の流量を調節するスワールコントロールバルブ37が設けられている。
【0095】
前記スワールコントロールバルブ37には、ステッパモータ等からなり、印加電流の大きさに応じてスワールコントロールバルブ37を開閉駆動するSCV用アクチュエータ37aと、スワールコントロールバルブ37の開度に対応した電気信号を出力するSCVポジションセンサ37bとが取り付けられている。
【0096】
前記吸気枝管33は、吸気の脈動を抑制するためのサージタンク34に接続されている。サージタンク34には、吸気管35が接続され、吸気管35は、吸気中の塵や埃等を取り除くためのエアクリーナ36と接続されている。
【0097】
前記吸気管35には、該吸気管35内を流れる新気の流量を調節するスロットル弁39が設けられている。前記スロットル弁39には、ステッパモータ等からなり、印加電流の大きさに応じて該スロットル弁39を開閉駆動するスロットル用アクチュエータ40と、該スロットル弁39の開度に対応した電気信号を出力するスロットルポジションセンサ41とが取り付けられている。
【0098】
前記スロットル弁39には、アクセルペダル42に連動して回転するアクセルレバー(図示せず)が併設され、このアクセルレバーには、アクセルレバーの回転位置(アクセルペダル42の踏み込み量)に対応した電気信号を出力するアクセルポジションセンサ43が取り付けられている。
【0099】
前記スロットル弁39より上流の吸気管35には、吸気管35内を流れる新気の質量(吸入空気質量)に対応した電気信号を出力するエアフローメータ44が取り付けられる。
【0100】
一方、前記内燃機関100の各排気ポート27は、前記シリンダヘッド1aに取り付けられた排気枝管45の各枝管と連通している。前記排気枝管45は、吸蔵還元型NOx触媒46を介して排気管47に接続され、排気管47は、下流にて図示しないマフラーと接続されている。
【0101】
前記排気枝管45には、該排気枝管45内を流れる排気の空燃比に対応した電気信号を出力する空燃比センサ48が取り付けられている。
前記排気管47の途中には、該排気管47内を流れる排気の流量を調節する排気絞り弁49が設けられている。前記排気絞り弁49には、ステッパモータ等からなり、印加電流の大きさに応じて該排気絞り弁49を開閉駆動する排気絞り用アクチュエータ50が取り付けられている。
【0102】
また、内燃機関100は、クランクシャフト23の端部に取り付けられたタイミングロータ51aとタイミングロータ51a近傍のシリンダブロック1bに取り付けられた電磁ピックアップ51bとからなるクランクポジションセンサ51と、内燃機関100の内部に形成された冷却水路1cを流れる冷却水の温度を検出すべくシリンダブロック1bに取り付けられた水温センサ52とを備えている。
【0103】
このように構成された内燃機関100には、該内燃機関100の運転状態を制御するための電子制御ユニット(Electronic Control Unit:ECU、以下ECUと称する)20が併設されている。
【0104】
前記ECU20には、SCVポジションセンサ37b、スロットルポジションセンサ41、アクセルポジションセンサ43、エアフローメータ44、空燃比センサ48、クランクポジションセンサ51、及び水温センサ52等の各種センサが電気配線を介して接続され、各センサの出力信号が前記ECU20に入力されるようになっている。
【0105】
前記ECU20には、イグナイタ25a、燃料噴射弁32、SCV用アクチュエータ37a、スロットル用アクチュエータ40、排気絞り用アクチュエータ50、二次空気噴射ノズル53等が電気配線を介して接続され、ECU20が各種センサの出力信号値をパラメータとしてイグナイタ25a、燃料噴射弁32、SCV用アクチュエータ37a、スロットル用アクチュエータ40、排気絞り用アクチュエータ50、二次空気噴射ノズル53を制御することが可能になっている。
【0106】
ここで、ECU20は、図5に示すように、双方向性バス200によって相互に接続されたCPU201とROM202とRAM203とバックアップRAM204と入力ポート205と出力ポート206とを備えるとともに、前記入力ポート205に接続されたA/Dコンバータ(A/D)207を備えている。
【0107】
前記入力ポート205は、クランクポジションセンサ51のようにデジタル信号形式の信号を出力するセンサの出力信号を入力し、それらの出力信号をCPU201あるいはRAM203へ送信する。
【0108】
前記入力ポート205は、SCVポジションセンサ37b、スロットルポジションセンサ41、アクセルポジションセンサ43、エアフローメータ44、空燃比センサ48、水温センサ52のようにアナログ信号形式の信号を出力するセンサの出力信号をA/D207を介して入力し、それらの出力信号をCPU201やRAM203へ送信する。
【0109】
前記出力ポート206は、前記CPU201から出力される制御信号をイグナイタ25a、燃料噴射弁32、SCV用アクチュエータ37a、スロットル用アクチュエータ40、排気絞り用アクチュエータ50、あるいは二次空気噴射ノズル53へ送信する。
【0110】
前記ROM202は、燃料噴射量を決定するための燃料噴射量制御ルーチン、燃料噴射時期を決定するための燃料噴射時期制御ルーチン、点火時期を決定するための点火時期制御ルーチン、スワールコントロールバルブ(SCV)37の開度を制御するためのSCV制御ルーチン、スロットル弁39の開度を制御するためのスロットル制御ルーチン、吸蔵還元型NOx触媒46に吸収された窒素酸化物(NOx)を浄化するためのNOx浄化制御ルーチン等のアプリケーションプログラムに加え、排気中に含まれる未燃燃料成分(未燃HC)量を低減するための排気昇温制御ルーチンを記憶している。
【0111】
前記ROM202は、前記したアプリケーションプログラムに加え、各種の制御マップを記憶している。前記した制御マップは、例えば、内燃機関100の運転状態と燃料噴射量との関係を示す燃料噴射量制御マップ、内燃機関100の運転状態と燃料噴射時期との関係を示す燃料噴射時期制御マップ、内燃機関100の運転状態と点火時期との関係を示す点火時期制御マップ、内燃機関100の運転状態とスワールコントロールバルブ(SCV)37の開度との関係を示すSCV開度制御マップ、内燃機関100の運転状態とスロットル弁39との関係を示すスロットル開度制御マップ、内燃機関100の運転状態と吸蔵還元型NOx触媒46に吸収された窒素酸化物(NOx)量との関係を示すNOx吸収量制御マップ等である。
【0112】
前記RAM203は、各センサの出力信号やCPU201の演算結果等を記憶する。前記演算結果は、例えば、クランクポジションセンサ51の出力信号に基づいて算出される機関回転数等である。前記RAM203に記憶される各種のデータは、クランクポジションセンサ51が信号を出力する度に最新のデータに書き換えられる。
【0113】
前記バックアップRAM45は、内燃機関100の運転停止後もデータを保持する不揮発性のメモリである。
前記CPU201は、前記ROM202に記憶されたアプリケーションプログラムに従って動作して、燃料噴射制御、点火制御、SCV制御、スロットル制御、NOx浄化制御、排気昇温制御等を実行する。
【0114】
その際、CPU201は、クランクポジションセンサ51、アクセルポジションセンサ43、あるいはエアフローメータ44等の出力信号値をパラメータとして内燃機関100の運転状態を判別し、判別された運転状態に応じて各種の制御を実行する。
【0115】
例えば、CPU201は、内燃機関100の運転状態が低負荷運転領域にあると判定した場合は、酸素過剰状態の混合気(リーン混合気)による成層燃焼を実現すべく、SCV用アクチュエータ37aへ制御信号を送信してスワールコントロールバルブ37の開度を小さくし、スロットル用アクチュエータ40へ制御信号を送信してスロットル弁39を実質的に全開状態とし、さらに各気筒21の圧縮行程時に燃料噴射弁32に駆動電流を印加して圧縮行程噴射を行う。
【0116】
この場合、各気筒21の燃焼室24には、吸気行程時に主としてスワールポート7bからの新気が導入され、強い旋回流(スワール流)が発生する。続く圧縮行程では、燃料噴射弁32から噴射された燃料がスワール流に従って燃焼室24内を旋回し、所定の時期に点火栓25近傍へ移動する。このとき、燃焼室24内は、点火栓25の近傍が可燃混合気層となり、且つその他の領域が空気層となる、いわゆる成層状態となる。
【0117】
CPU201は、各気筒21の燃焼室24内が成層状態となった時点で、イグナイタ25aを駆動して点火栓25から火花を発生させる。この結果、燃焼室24内の混合気(可燃混合気層と空気層とを含む)は、点火栓25近傍の可燃混合気層を着火源として燃焼する。
【0118】
尚、成層燃焼運転時における燃料噴射量は、アクセル開度と機関回転数とをパラメータとして決定される。すなわち、ECU20は、アクセルポジションセンサ43の出力信号値(アクセル開度)と機関回転数と燃料噴射量との関係を示すマップを用いて燃料噴射量(燃料噴射時間)を決定する。
【0119】
CPU201は、内燃機関100の運転状態が中負荷運転領域にあると判定した場合は、リーン混合気(成層燃焼時より酸素濃度が低い混合気)による均質リーン燃焼を実現すべく、SCV用アクチュエータ37aへ制御信号を送信してスワールコントロールバルブ37の開度を小さくし、さらに各気筒21の吸気行程時に燃料噴射弁32に駆動電流を印加して吸気行程噴射を行う。
【0120】
この場合、各気筒21の燃焼室24内の略全域にわたって、新気と燃料とが均質に混じり合ったリーン混合気が形成され、均質リーン燃焼が実現される。
CPU201は、内燃機関100の運転状態が高負荷運転領域にあると判定した場合は、理論空燃比近傍の混合気による均質燃焼を実現すべく、SCV用アクチュエータ37aへ制御信号を送信してスワールコントロールバルブ37を全開状態とし、スロットル弁39がアクセルペダル42の踏み込み量(アクセルポジションセンサ43の出力信号値)に対応した開度となるようスロットル用アクチュエータ40へ制御信号を送信し、さらに各気筒21の吸気行程時に燃料噴射弁32に駆動電流を印加して吸気行程噴射を行う。
【0121】
この場合、各気筒21の燃焼室24内の略全域にわたって、新気と燃料とが均質に混じり合った理論空燃比の混合気が形成され、均質燃焼が実現される。
尚、CPU201は、成層燃焼制御から均質燃焼制御へ移行する際、あるいは均質燃焼制御から成層燃焼制御へ移行する際に、内燃機関100のトルク変動を防止すべく各気筒21の圧縮行程時と吸気行程時との二回に分けて燃料噴射弁32に駆動電流を印加するようにしてもよい。
【0122】
この場合、各気筒21の燃焼室24内には、点火栓25の近傍に可燃混合気層が形成されるとともに、その他の領域にリーン混合気層が形成され、いわゆる弱成層燃焼が実現される。
【0123】
尚、内燃機関100の運転状態がアイドル運転領域にある場合は、CPU201は、実際の機関回転数を目標アイドル回転数に収束させるために必要な吸入空気量を確保すべくスロットル弁39の開度を制御する、いわゆるアイドルスピードコントロール(ISC)のフィードバック制御を行う。
【0124】
次に、内燃機関100が成層燃焼運転状態、均質リーン燃焼運転状態、もしくは弱成層燃焼運転状態にあるとき、言い換えれば内燃機関100が希薄燃焼運転状態にあるときは、排気の空燃比がリーンとなるため、排気中に含まれる窒素酸化物(NOx)が吸蔵還元型NOx触媒46に吸蔵されることになるが、内燃機関100の希薄燃焼運転が長期間継続されると、吸蔵還元型NOx触媒46の窒素酸化物(NOx)吸蔵能力が飽和し、排気中の窒素酸化物(NOx)が吸蔵還元型NOx触媒46にて除去もしくは浄化されずに大気中に放出される虞がある。
【0125】
そこで、本実施の形態では、CPU201は、内燃機関100の運転状態が希薄燃焼運転状態にある場合は、比較的に短い周期で排気の空燃比をリッチとすべくリッチスパイク制御を実行することにより、吸蔵還元型NOx触媒46に吸蔵された窒素酸化物(NOx)を短周期的に放出及び還元させるNOx浄化制御を実行する。
【0126】
ここで、リッチスパイク制御では、CPU201は、例えば、内燃機関100の各気筒21の膨張行程時もしくは排気行程時に燃料噴射弁32から副次的に燃料を噴射させる副噴射制御を行って排気の空燃比を一時的に理論空燃比(又はリッチ空燃比)とするようにしてもよく、あるいは内燃機関1の運転状態を一時的に均質燃焼運転に切り替えて排気の空燃比を一時的に理論空燃比(又はリッチ空燃比)とするようにしてもよい。
【0127】
次に、CPU201は、内燃機関1の排気に含まれる未燃燃料成分(未燃HC)を低減すべき時期に、排気昇温制御を実行する。ここで、排気中に含まれる未燃HCを低減すべき時期としては、内燃機関1が冷間始動後の暖機運転状態にある場合のように、内燃機関1から比較的多量の未燃HCが排出され、且つ、吸蔵還元型NOx触媒46が未活性状態にある場合を例示することができる。
【0128】
排気昇温制御では、CPU201は、先ず吸蔵還元型NOx触媒46が活性状態にあるか否かを判別する。CPU201は、吸蔵還元型NOx触媒46が未活性状態にあると判定した場合に吸蔵還元型NOx触媒46の早期活性化を図るべく排気昇温処理を実行し、吸蔵還元型NOx触媒46が活性状態にあると判定した場合は排気昇温処理を実行しないものとする。
【0129】
排気昇温処理では、CPU201は、内燃機関1の運転状態を理論空燃比又はリッチ空燃比の混合気による均質燃焼運転とすべく、燃料噴射弁32、SCV用アクチュエータ37a、スロットル用アクチュエータ40、及びイグナイタ25aを制御し、排気絞り弁49を略全閉状態とすべく排気絞り用アクチュエータ50を制御する。
【0130】
排気絞り弁49が略全閉状態にされると、内燃機関1の燃焼室24から排気絞り弁49に至る排気経路(排気ポート27、排気枝管45、吸蔵還元型NOx触媒46、及び、排気管47において排気絞り弁49より上流に位置する部位)内の圧力が上昇するとともに、それに応じて前記排気通路内の雰囲気温度が高められることになる。
【0131】
このように燃焼室24から排気絞り弁49に至る排気経路内の圧力及び雰囲気温度が上昇すると、燃焼室24内の既燃ガスが排気ポート27へ排出された際に、該既燃ガスの温度低下が抑制される。また、排気絞り弁49が略全閉状態にされると、排気ポートから排気絞り弁49に至る排気通路内における排気の流速が低下することになる。
【0132】
この結果、燃焼室24から排出された排気は、燃焼室24から排気絞り弁49に至る排気経路において、高温状態で長期にわたって滞留することになり、その間に排気中に含まれる未燃HCが酸化される。
【0133】
ところで、排気絞り弁49が略全閉状態にされた場合であっても、燃焼室24から排気ポート27へ排出された時点における排気の温度が過剰に低い場合や、燃焼室24から排出される排気に含まれる未燃HC量が過剰に多い場合は、未燃HCの酸化反応が十分に行われなくなる虞がある。
【0134】
そこで、本実施の形態に係る排気昇温制御では、CPU201は、排気絞り弁49を略全閉状態に制御する場合に、機関出力に寄与する主たる燃料(主燃料)の噴射に加えて、主燃料噴射後の所定の時期(例えば、各気筒21の膨張行程時であって主燃料の燃焼直後)に副次的に燃料を噴射させるべく燃料噴射弁32を制御するようにしている。
【0135】
この場合、燃焼室24内では、主燃料の燃え残りである未燃HCが副燃料を着火源として燃焼せしめられることになる。その際、副燃料の噴射は、主燃料が燃焼した直後の高温下で行われるため、副燃料がほぼ完全燃焼することとなり、副燃料の噴射に起因した未燃HCの発生量は極わずかとなる。
【0136】
上記したように副燃料が燃焼室24内で燃焼せしめられると、主燃料の燃焼熱に加えて、副燃料の燃焼熱と未燃HCの燃焼熱とが発生することになり、燃焼室24内の既燃ガスの温度が一層高くなる。
【0137】
この結果、燃焼室24から排気ポート27へ排出される際に、排気の温度が十分に高くなるとともに、排気中に残存する未燃HC量が少なくなる。排気中に残存した未燃HCは、燃焼室24から排気絞り弁49に至る排気経路において長期にわたって高温下に曝されるため、その間に未燃HCの略全てが酸化されるようになる。
【0138】
更に、本実施の形態では、排気浄化触媒46が排気絞り弁49より上流の排気通路に配置されるため、上記したように排気温度が高められると、排気浄化触媒46が高温の排気に長期間曝され、排気浄化触媒46の活性化が促進される。
【0139】
一方、燃焼室24から排気絞り弁49に至る排気経路において、排気中に残存する未燃HCを酸化させるためには、排気中に十分な量の酸素が必要となる。これに対し、内燃機関100を成層燃焼運転させることによって排気中の酸素濃度を高める方法が考えらえるが、排気絞り弁49を略全閉状態にした状態では内燃機関1に作用する背圧が大きくなるため、その際に内燃機関100が成層燃焼運転されると内燃機関100の運転状態が不安定になることが想定される。
【0140】
そこで、本実施の形態では、CPU201は、排気昇温制御を実行する際に、内燃機関1を理論空燃比もしくはリッチ空燃比の混合気による均質燃焼運転させるとともに、二次空気噴射ノズル53を作動させて排気中の酸素濃度を高めるようにしている。
【0141】
この場合、内燃機関1が均質燃焼運転されるため、排気絞り弁49が略全閉状態に制御されても内燃機関1の運転状態が不安定となり難い。更に、二次空気噴射ノズル53から排気ポート27へ二次空気が供給されるため、排気中に残存する未燃HCを酸化させる際に必要となる酸素を確保することが可能となる。
【0142】
以下、本実施の形態に係る排気昇温装置の作用及び効果について述べる。
CPU201は、排気昇温制御を実行するにあたり、図6に示すような排気昇温制御ルーチンを実行する。この排気昇温制御ルーチンは、予めROM202に記憶されたルーチンであり、内燃機関100の始動完了をトリガにして実行されるルーチンである。
【0143】
排気昇温制御ルーチンでは、CPU201は、先ずS601において、吸蔵還元型NOx触媒46が既に活性状態にあるか否かを判別する。
前記S601において吸蔵還元型NOx触媒46が未だ活性状態にないと判定した場合は、CPU201は、S602へ進み、排気中の未燃HCを低減し、且つ、排気の温度を昇温させるべく、排気昇温処理の実行を開始する。
【0144】
具体的には、CPU201は、排気昇温処理において、内燃機関1の運転状態を理論空燃比もしくはリッチ空燃比の混合気による均質燃焼運転に切り換え、内燃機関1の排気ポート内へ二次空気を供給すべく二次空気噴射ノズル53を制御し、各気筒21の膨張行程時に副燃料を噴射させるべく燃料噴射弁32を制御し、排気絞り弁49を略全閉状態とすべく排気絞り用アクチュエータ50を制御する。
【0145】
この場合、各気筒21の膨張行程時に燃料噴射弁32から噴射された副燃料によって燃焼室24内から排気ポート27へ排出される時点における排気の温度が高められるとともに排気中に残存する未燃HCが低減される。
【0146】
更に、排気絞り弁49が略全閉状態に制御されることにより、燃焼室24から排気絞り弁49に至る排気経路内の圧力及び雰囲気温度が上昇するとともに、前記排気通路内の排気の流速が低下する。
【0147】
この結果、各気筒21の燃焼室24から排気ポート27へ排出された時点における排気の温度低下が抑制され、前記排気経路内には高温状態の排気と二次空気とが長期にわたって滞留することになるため、排気中に残存する比較的少量の未燃HCと二次空気中の酸素との反応が促進され、排気中に含まれる未燃HC量が大幅に減少する。
【0148】
また、未燃HCと酸素との反応が活発になると、未燃HCと酸素とが反応する際に発生する熱量が増加するため、排気の温度が一層高められる。排気の温度が高くなると、排気から吸蔵還元型NOx触媒46へ伝達される熱量が増加し、吸蔵還元型NOx触媒46の昇温が促進される。
【0149】
また、排気絞り弁49が全閉状態に制御されることによって、内燃機関100に作用する背圧が高くなるが、内燃機関100の運転状態が理論空燃比又はリッチ空燃比の混合気による均質燃焼運転とされるため、内燃機関100の運転状態が不安定になることがない。
【0150】
ここで、図6に戻り、前記したS602の処理を実行し終えたCPU201は、前述したS601の処理に戻り、吸蔵還元型NOx触媒46が活性したか否かを判別する。
【0151】
その際、CPU201は、吸蔵還元型NOx触媒46が未だ活性していないと判定するとS602の排気昇温処理を継続して実行する。一方、吸蔵還元型NOx触媒が活性したと判定した場合は、CPU201は、S603へ進んで排気昇温処理の実行を終了し、本ルーチンの実行を終了する。
【0152】
このようにCPU201が排気昇温制御ルーチンを実行することにより、内燃機関100が冷間始動された場合にように、内燃機関100から比較的多量の未燃HCが排出され易く、且つ、吸蔵還元型NOx触媒46が未活性状態にある場合に、排気中の未燃HCを大幅に低減することができるとともに、吸蔵還元型NOx触媒46の早期活性化を図ることが可能となる。
【0153】
【発明の効果】
本発明に係る内燃機関の排気昇温装置では、排気中に含まれる未燃燃料成分を低減させる必要が生じた場合に、排気絞り弁がほぼ全閉に制御され、内燃機関が理論空燃比もしくは燃料過剰空燃比で運転され、更に排気通路における上流の部位に二次空気が供給されるため、内燃機関から排気絞り弁に至る排気通路において排気を長期にわたって高温状態で滞留させることが可能となり、排気中に含まれる未燃燃料成分を確実に酸化させるとともに、その際に発生する熱によって排気の温度を高めることが可能となる。
【0154】
従って、本発明に係る内燃機関の排気昇温装置によれば、排気中に含まれる未燃燃料成分を低減させる必要がある場合に、排気中の未燃燃料成分を確実に低減させつつ排気の温度を高めることが可能となる。
【図面の簡単な説明】
【図1】 第1の実施の形態に係る排気昇温装置を適用する内燃機関の概略構成を示す図
【図2】 第1の実施の形態に係るECUの内部構成を示す図
【図3】 第1の実施の形態に係る排気昇温制御ルーチンを示すフローチャート図
【図4】 第2の実施の形態に係る排気昇温装置を適用する内燃機関の概略構成を示す図
【図5】 第2の実施の形態に係るECUの内部構成を示す図
【図6】 第2の実施の形態に係る排気昇温制御ルーチンを示すフローチャート図
【符号の説明】
1・・・・内燃機関
20・・・ECU
21・・・気筒
24・・・燃焼室
27・・・排気ポート
29・・・排気弁
32・・・燃料噴射弁
45・・・排気枝管
46・・・排気浄化触媒
47・・・排気管
49・・・排気絞り弁
50・・・アクチュエータ
53・・・二次空気噴射ノズル
201・・CPU
202・・ROM

Claims (1)

  1. 筒内に直接燃料を噴射する燃料噴射手段を具備し、成層燃焼運転と均質燃焼運転とを切り替え可能な筒内噴射型内燃機関に接続された排気通路と、
    前記排気通路に設けられ、前記排気通路を流れる排気の流量を調節する排気絞り弁と、
    排気中に含まれる未燃燃料成分量を低減すべきときに、前記排気絞り弁をほぼ全閉に制御する弁制御手段と、
    前記弁制御手段によって前記排気絞り弁がほぼ全閉に制御されるときに、前記内燃機関を理論空燃比もしくは燃料過剰空燃比で均質燃焼運転させる機関空燃比制御手段と、
    前記弁制御手段によって前記排気絞り弁がほぼ全閉に制御されるときに、前記排気通路における上流の部位へ二次空気を供給する二次空気供給手段と、を備え
    前記弁制御手段によって前記排気絞り弁がほぼ全閉に制御されるときに、前記燃料噴射手段による主たる燃料の噴射によって噴射された燃料の燃焼直後に前記燃料噴射手段から副次的に燃料を噴射させることを特徴とする内燃機関の排気昇温装置。
JP31733899A 1999-11-08 1999-11-08 内燃機関の排気昇温装置 Expired - Lifetime JP3826642B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31733899A JP3826642B2 (ja) 1999-11-08 1999-11-08 内燃機関の排気昇温装置
US09/695,977 US6634167B1 (en) 1999-11-08 2000-10-26 Exhaust temperature raising apparatus and method for internal combustion engine
DE10055098A DE10055098B4 (de) 1999-11-08 2000-11-07 Abgastemperaturerhöhungsgerät und Verfahren für eine Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31733899A JP3826642B2 (ja) 1999-11-08 1999-11-08 内燃機関の排気昇温装置

Publications (2)

Publication Number Publication Date
JP2001132436A JP2001132436A (ja) 2001-05-15
JP3826642B2 true JP3826642B2 (ja) 2006-09-27

Family

ID=18087112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31733899A Expired - Lifetime JP3826642B2 (ja) 1999-11-08 1999-11-08 内燃機関の排気昇温装置

Country Status (3)

Country Link
US (1) US6634167B1 (ja)
JP (1) JP3826642B2 (ja)
DE (1) DE10055098B4 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963931A1 (de) * 1999-12-31 2001-07-12 Bosch Gmbh Robert Verfahren zum Warmlaufen einer Brennkraftmaschine
DE60210054T2 (de) 2001-01-29 2007-04-12 Mitsubishi Jidosha Kogyo K.K. Abgasemission-steuervorrichtung eines innenverbrennungsmotors
US6875355B2 (en) * 2001-03-20 2005-04-05 Mcgrath Michael B. Denitrification system for nitrified wastewater or nitrified water
EP1550797A3 (de) * 2002-12-07 2006-05-31 Mann+Hummel Gmbh Verfahren und Vorrichtung zur Regelung eines Sekundärluftstroms bei einer Verbrennungsmaschine
FR2872217A1 (fr) * 2004-06-24 2005-12-30 Faurecia Sys Echappement Groupe de propulsion a organe de purification catalytique
JP4325704B2 (ja) * 2007-06-06 2009-09-02 トヨタ自動車株式会社 内燃機関の排気浄化システム
WO2009023793A1 (en) * 2007-08-14 2009-02-19 Plasmadrive, Inc. Barometric pressure regulator circuit
JP2009108775A (ja) * 2007-10-30 2009-05-21 Toyota Motor Corp 内燃機関排気絞り弁開度制御装置
DE602008001660D1 (de) * 2008-01-29 2010-08-12 Honda Motor Co Ltd Steuersystem für einen Verbrennungsmotor
JP5528958B2 (ja) * 2010-09-08 2014-06-25 本田技研工業株式会社 汎用エンジンの制御装置
US9239016B2 (en) * 2012-09-10 2016-01-19 Ford Global Technologies, Llc Catalyst heating with exhaust back-pressure
US10578038B2 (en) * 2014-06-23 2020-03-03 Ford Global Technologies, Llc Method and system for secondary air injection coordination with exhaust back pressure valve
DE102016123375A1 (de) * 2016-12-02 2018-06-07 Volkswagen Aktiengesellschaft Brennkraftmaschine mit einem Zylinderkopf sowie mit einem Sekundärluftsystem
US10287945B2 (en) * 2017-01-26 2019-05-14 Cummins, Inc. Increase aftertreatment temperature during light load operation
CN109653886A (zh) * 2018-12-05 2019-04-19 汽解放汽车有限公司 一种发动机排气升温装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406515A (en) * 1964-01-02 1968-10-22 Texaco Inc Internal combustion engine system for exhaust emissions control
US3247665A (en) * 1964-04-02 1966-04-26 Texaco Inc Catalytic muffler construction for exhaust emission control in an internal combustion engine system
JPS4980414A (ja) 1972-12-08 1974-08-02
JPS54145813A (en) * 1978-05-04 1979-11-14 Toyota Motor Corp Control device of exhaust flow in internal combustion engine
JPS5865923A (ja) * 1981-10-15 1983-04-19 Toyota Motor Corp デイ−ゼルエンジンの排気微粒子浄化装置
DE3144706A1 (de) * 1981-11-11 1982-12-30 Daimler-Benz Ag, 7000 Stuttgart Einrichtung zur steuerung der zusatzluft in eine abgasleitung einer brennkraftmaschine
JPS58162713A (ja) * 1982-03-24 1983-09-27 Toyota Motor Corp デイ−ゼルエンジンの排気微粒子浄化装置
IT1211803B (it) * 1987-09-25 1989-11-03 Castellammare Di Stabia Napoli Condotto di scarico per motori acombustione interna dotato di dispositivo di alloggiamento di filtri per l'abbattimento delle particelle solide sospese e degli idrocarburi incombusti nel gas di scarico
JPH03271515A (ja) 1990-03-21 1991-12-03 Mazda Motor Corp ディーゼルエンジンの排気微粒子浄化装置
JPH04111540A (ja) 1990-08-30 1992-04-13 Matsushita Electric Ind Co Ltd ダブルスーパチューナ
JPH0544436A (ja) 1991-08-09 1993-02-23 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH06108884A (ja) 1992-09-25 1994-04-19 Mazda Motor Corp エンジンの吸気制御装置
JPH0874568A (ja) 1994-09-07 1996-03-19 Mitsubishi Motors Corp 内燃機関の二次エア供給方法とその装置
JPH08100638A (ja) 1994-09-29 1996-04-16 Fuji Heavy Ind Ltd 筒内噴射エンジンの触媒活性化制御装置
JP3052777B2 (ja) 1995-04-27 2000-06-19 三菱自動車工業株式会社 筒内噴射型内燃機関
JP3671455B2 (ja) 1995-04-28 2005-07-13 株式会社デンソー 内燃機関の排気浄化装置
JP3230438B2 (ja) * 1996-06-10 2001-11-19 トヨタ自動車株式会社 ハイブリッド型車両の触媒温度制御装置
JPH10131792A (ja) 1996-10-31 1998-05-19 Yamaha Motor Co Ltd 内燃エンジンの希薄燃焼制御方法
JP3257430B2 (ja) 1997-01-29 2002-02-18 三菱自動車工業株式会社 排気昇温装置
JP3656354B2 (ja) * 1997-02-26 2005-06-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19715921A1 (de) * 1997-04-16 1998-10-22 Schatz Thermo Gastech Gmbh Verfahren und Vorrichtung zur Schadstoffminderung
JP3799758B2 (ja) * 1997-08-05 2006-07-19 トヨタ自動車株式会社 内燃機関の触媒再生装置
JP3264226B2 (ja) * 1997-08-25 2002-03-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19755871C2 (de) 1997-12-16 1999-11-11 Siemens Ag Verfahren zum Aufheizen eines Abgaskatalysators für eine Brennkraftmaschine mittels Sekundärluft
JP3277881B2 (ja) 1998-04-06 2002-04-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6192672B1 (en) * 1999-08-02 2001-02-27 Ford Global Technologies, Inc. Engine control method with multiple emission control devices

Also Published As

Publication number Publication date
JP2001132436A (ja) 2001-05-15
DE10055098B4 (de) 2006-12-07
DE10055098A1 (de) 2001-06-13
US6634167B1 (en) 2003-10-21

Similar Documents

Publication Publication Date Title
JP3599012B2 (ja) 内燃機関の排気浄化装置
JP3826642B2 (ja) 内燃機関の排気昇温装置
KR100497829B1 (ko) 내연기관의 배기정화장치
JPWO2006001495A1 (ja) 内燃機関の排気浄化装置
JP3932642B2 (ja) 希薄燃焼内燃機関の排気浄化装置
JP4107137B2 (ja) 内燃機関の排気浄化装置
JP3912001B2 (ja) 内燃機関の排気浄化装置
JP3596378B2 (ja) 内燃機関の排気昇温装置
JP2006348904A (ja) 内燃機関の排気浄化装置
JP4155065B2 (ja) 内燃機関の排気浄化装置
JP3613660B2 (ja) 内燃機関の排気浄化装置
JP3570318B2 (ja) 内燃機関の排気浄化装置
JP4304789B2 (ja) 内燃機関の排気浄化装置
JP2001227335A (ja) 内燃機関の排気浄化装置
JP4001045B2 (ja) 内燃機関の排気浄化装置
JP4265123B2 (ja) 内燃機関の排気浄化装置
JP3591403B2 (ja) 内燃機関の触媒昇温装置
JP2003049681A (ja) 内燃機関の排気浄化装置
JP4325078B2 (ja) 可変動弁機構を有する内燃機関
JP2001115829A (ja) 内燃機関の排気浄化装置
JP4265125B2 (ja) 内燃機関の排気浄化装置
JP3386008B2 (ja) 内燃機関の排気浄化装置
JP2004232555A (ja) 内燃機関の排気浄化システム
JP3536749B2 (ja) 内燃機関の排気浄化装置
JP4289389B2 (ja) 希薄燃焼内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R151 Written notification of patent or utility model registration

Ref document number: 3826642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

EXPY Cancellation because of completion of term