JP2002255519A - Production method for monolayer carbon nanotube and removal method of zeolite. - Google Patents

Production method for monolayer carbon nanotube and removal method of zeolite.

Info

Publication number
JP2002255519A
JP2002255519A JP2001394105A JP2001394105A JP2002255519A JP 2002255519 A JP2002255519 A JP 2002255519A JP 2001394105 A JP2001394105 A JP 2001394105A JP 2001394105 A JP2001394105 A JP 2001394105A JP 2002255519 A JP2002255519 A JP 2002255519A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
walled carbon
porous carrier
producing
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001394105A
Other languages
Japanese (ja)
Other versions
JP3743628B2 (en
Inventor
Atsuhito Okamoto
篤人 岡本
Hisanori Shinohara
久典 篠原
Tomohisa Kawakubo
智壽 川窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Toyota Central R&D Labs Inc
Original Assignee
Nagoya University NUC
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000400198 external-priority
Application filed by Nagoya University NUC, Toyota Central R&D Labs Inc filed Critical Nagoya University NUC
Priority to JP2001394105A priority Critical patent/JP3743628B2/en
Publication of JP2002255519A publication Critical patent/JP2002255519A/en
Application granted granted Critical
Publication of JP3743628B2 publication Critical patent/JP3743628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the problem such that a synthetic method for a nanotube such as a laser deposition method and an arc discharge method is unsuitable for mass synthesis and caused much impurities such as an amorphous carbon, or the like, and at the same time, to improve the problem such that the catalyst metal stability in a synthetic temperature, the structure control of the catalyst particles and the particle size control at heating are subjects to be improved in thermal cracking method. SOLUTION: This invention provides a production method for a monolayer carbon nanotube which is characterized by gas phase-synthesizing the monolayer carbon nanotube by the thermal cracking of a hydrocarbon gas, by delivering the hydrocarbon gas together with a carrier gas onto a base substance which is obtained by dispersing and supporting catalyst particles to a heat resistant porous support.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノチュ
ーブの製造方法に関する。特に本発明は、単層のカーボ
ンナノチューブを製造する方法およびゼオライトの除去
方法に関する。
[0001] The present invention relates to a method for producing carbon nanotubes. In particular, the present invention relates to a method for producing single-walled carbon nanotubes and a method for removing zeolite.

【0002】[0002]

【従来の技術】炭素原子が筒状に並び、直径がナノメー
トル単位の構造を有するカーボンナノチューブは、導電
性、電子放出能、ガス吸蔵特性などに優れた炭素系高機
能材料として非常に注目されている。カーボンナノチュ
ーブの製造方法としては、黒鉛等のアーク放電を用いる
アーク放電法や、加熱した黒鉛にレーザを照射するレー
ザ蒸発法などがある。
2. Description of the Related Art Carbon nanotubes having a structure in which carbon atoms are arranged in a cylindrical shape and the diameter is in the order of nanometers are attracting much attention as carbon-based high-performance materials having excellent conductivity, electron emission ability, gas storage properties, and the like. ing. Examples of the method for producing carbon nanotubes include an arc discharge method using an arc discharge of graphite or the like, and a laser evaporation method of irradiating a heated graphite with a laser.

【0003】また、触媒を用いて炭化水素ガスを熱分解
することによりカーボンナノチューブを製造する熱分解
法(CVD法)も考案されている。熱分解法には、基体(S
i基体やアルミナ粉末)上に触媒を塗布する方法と、触
媒を気相中に浮遊させる方法の2種類の方法が知られて
いる。熱分解法に関しては、下記のような文献がある。
Further, a thermal decomposition method (CVD method) for producing carbon nanotubes by thermally decomposing a hydrocarbon gas using a catalyst has also been devised. For the pyrolysis method, the substrate (S
Two methods are known: a method of coating a catalyst on an i-substrate or alumina powder) and a method of suspending the catalyst in a gas phase. There are the following documents regarding the pyrolysis method.

【0004】H.Daiらは、Chem. Phys. Lett. 260 (199
6) 471において、微粒子(fumed)アルミナ粉末上にMo
化合物微粒子を担持してできた粉末を石英ボードに配置
して、1200℃で一酸化炭素ガスを1200sccm流して1時間
保持することによって単層チューブを得たことを報告し
ている。
H. Dai et al., Chem. Phys. Lett. 260 (199)
6) At 471, Mo on a fumed alumina powder
This report reports that a single-layer tube was obtained by placing a powder carrying compound fine particles on a quartz board and flowing carbon monoxide gas at 1200 sccm at 1200 sccm for 1 hour.

【0005】A.M.Casselらは、J. Phys. Chem. B 103
(1999) 6484において、アルミナ/シリカのハイブリッ
ドサポート材料上にFe/Mo微粒子を担持してできた粉末
を石英ボードに配置して、900℃でメタンガスを6000cm
/min流して2-45分間保持することによって単層チュー
ブを得たことを報告している。
AMCassel et al., J. Phys. Chem. B 103
(1999) In 6484, a powder obtained by supporting Fe / Mo fine particles on an alumina / silica hybrid support material was placed on a quartz board, and methane gas was supplied at 900 ° C and 6000 cm.
It is reported that a monolayer tube was obtained by flowing at 3 / min and holding for 2-45 minutes.

【0006】J.-F. Colomerらは、Chem. Phys. Lett. 3
17 (2000) 83において、酸化マグネシウム粉末上にCo、
Ni、Feもしくはその混合(Co/Fe)微粒子を担持してでき
た粉末を石英ボードに配置して、1000℃でメタン/水素
混合ガスを75ml/min/300ml/min流して10分間保持するこ
とによって単層チューブを得たことを報告している。
[0006] J.-F. Colomer et al., Chem. Phys. Lett.
17 (2000) 83, Co on magnesium oxide powder,
Place the powder made of Ni, Fe or mixed (Co / Fe) fine particles on a quartz board, and flow methane / hydrogen mixed gas at 1000 ° C at 75ml / min / 300ml / min for 10 minutes. Reported that a single-layer tube was obtained.

【0007】特許第3044280号には、多孔性無機
担体と該担体に担持された金属触媒上において、熱分解
促進剤の存在下で炭化水素を熱分解することで、合成温
度を低温化(400-1000℃)して、カーボンナノチューブ
(ただし、単層、多層は限定されていない)を合成でき
ることが開示されている。
[0007] Japanese Patent No. 3044280 discloses that a synthesis temperature is lowered by lowering the synthesis temperature by heat cracking hydrocarbons on a porous inorganic carrier and a metal catalyst supported on the carrier in the presence of a thermal decomposition accelerator. (-1000 ° C.) to synthesize carbon nanotubes (however, single-wall and multi-wall are not limited).

【0008】特開平11−11917号公報には、アル
ミニウムの陽極酸化処理によってできた細孔(直径:5-
200nm)の底部に、触媒となるFe、CoおよびNiからなる
少なくとも一種の金属を形成して、プラズマCVD法によ
ってカーボンナノチューブ(単層、多層は限定されてい
ない)を合成できることが開示されている。
Japanese Patent Application Laid-Open No. 11-11917 discloses pores (diameter: 5-mm) formed by anodizing aluminum.
It is disclosed that carbon nanotubes (single-layer and multi-layer are not limited) can be synthesized by a plasma CVD method by forming at least one metal consisting of Fe, Co and Ni as a catalyst at the bottom of 200 nm). .

【0009】[0009]

【発明が解決しようとする課題】レーザ蒸着法およびア
ーク放電法は、大量合成に不向きであること、アモルフ
ァスカーボン等の不純物が多いことなどの課題を有して
いた。また、レーザ蒸着法で合成される単層カーボンナ
ノチューブの直径は、触媒金属の種類と組み合わせにも
よるが、1.2nm程度のものが多かった。
The laser vapor deposition method and the arc discharge method have problems such as being unsuitable for mass synthesis and having a large amount of impurities such as amorphous carbon. In addition, the diameter of single-walled carbon nanotubes synthesized by the laser deposition method is often about 1.2 nm, depending on the type and combination of the catalyst metal.

【0010】一方、熱分解法では、合成温度における触
媒金属の安定性、および触媒微粒子の構造制御、加熱時
の粒径制御が課題であった。すなわち、室温から合成温
度への昇温過程で触媒微粒子が凝集してしまい、それを
核として成長する単層チューブの合成が妨げられ、多層
チューブが合成されていた。
[0010] On the other hand, in the pyrolysis method, there were problems of stability of the catalyst metal at the synthesis temperature, control of the structure of the catalyst fine particles, and control of the particle size during heating. That is, the catalyst fine particles aggregate during the process of raising the temperature from room temperature to the synthesis temperature, which hinders the synthesis of a single-layer tube growing with the nucleus as a nucleus, and a multi-layer tube has been synthesized.

【0011】そこで本発明は、上記の課題を解決するこ
とのできる単層カーボンナノチューブの製造方法を提供
することを目的とする。この目的は特許請求の範囲にお
ける独立項に記載の特徴の組み合わせにより達成され
る。また従属項は本発明の更なる有利な具体例を規定す
る。
Therefore, an object of the present invention is to provide a method for producing single-walled carbon nanotubes that can solve the above-mentioned problems. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous embodiments of the present invention.

【0012】[0012]

【課題を解決するための手段】本発明によれば、耐熱性
の多孔性担体に触媒微粒子を分散担持させた基体上に炭
化水素ガスをキャリアガスとともに送り、炭化水素ガス
の熱分解を利用して、単層カーボンナノチューブを気相
合成することを特徴とする単層カーボンナノチューブの
製造方法が提供される。
According to the present invention, a hydrocarbon gas is sent together with a carrier gas onto a substrate in which catalyst fine particles are dispersed and supported on a heat-resistant porous carrier, and the thermal decomposition of the hydrocarbon gas is utilized. Thus, there is provided a method for producing single-walled carbon nanotubes, which comprises synthesizing single-walled carbon nanotubes in a gas phase.

【0013】これによって、室温、またはプレベーキン
グで多孔性担体の細孔に分散担持された触媒が合成温度
においても安定に存在できるため、触媒の直径に応じた
細い単層チューブを合成することができる。
[0013] With this, the catalyst dispersed and supported in the pores of the porous carrier at room temperature or at prebaking can be stably present even at the synthesis temperature, so that it is possible to synthesize a thin single-layer tube corresponding to the diameter of the catalyst. it can.

【0014】上記の単層カーボンナノチューブの製造方
法において、多孔性担体の細孔径は3nm以下であっても
よい。また、多孔性担体はゼオライト、シリカ多孔体、
または少なくとも1つの細孔を有する酸化物中空殻構造
体であってもよい。ここで、シリカ多孔体は、たとえ
ば、MCM、FSMなどである。また、酸化物中空殻構造体
は、たとえば酸化アルミニウムからなる中空殻構造体で
ある。
In the above method for producing single-walled carbon nanotubes, the pore diameter of the porous carrier may be 3 nm or less. The porous carrier is zeolite, silica porous material,
Alternatively, it may be an oxide hollow shell structure having at least one pore. Here, the porous silica material is, for example, MCM, FSM, or the like. The oxide hollow shell structure is, for example, a hollow shell structure made of aluminum oxide.

【0015】上記の単層カーボンナノチューブの製造方
法において、ゼオライトは耐熱性を有していてもよい。
また、ゼオライトは、SiOおよびAlOを含み、SiO
/AlOのモル比が5以上であってもよい。また、
望ましくは、ゼオライトは、SiOおよびAlOを含
み、SiO/AlOのモル比が10以上であってもよ
い。
In the method for producing single-walled carbon nanotubes, the zeolite may have heat resistance.
Further, the zeolite may include SiO 2 and Al 2 O 3, SiO
The molar ratio of 2 / Al 2 O 3 may be 5 or more. Also,
Desirably, the zeolite includes SiO 2 and Al 2 O 3 , and the molar ratio of SiO 2 / Al 2 O 3 may be 10 or more.

【0016】上記の単層カーボンナノチューブの製造方
法において、触媒微粒子は、多孔性担体の細孔表面に担
持されているか、多孔性担体の細孔内に埋め込まれてい
るかの両方、またはいずれか一方であってもよい。触媒
微粒子の多孔性担体の細孔表面への担持、および/また
は、多孔性担体の細孔内への埋め込みは、触媒微粒子と
多孔性担体とを含む溶液を攪拌した後、熱処理すること
によって行われてもよい。この場合、触媒微粒子と多孔
性担体とを含む溶液の攪拌は、超音波振動によって行わ
れてもよい。また、触媒微粒子の多孔性担体の細孔表面
への担持、および/または、多孔性担体の細孔内への埋
め込みは、触媒微粒子と多孔性担体とを超臨界流体中に
含ませた後、熱処理することによって行なわれてもよ
い。
In the above method for producing single-walled carbon nanotubes, the catalyst fine particles are supported on the surface of the pores of the porous carrier, or embedded in the pores of the porous carrier, or both. It may be. The catalyst fine particles are supported on the surface of the pores of the porous carrier and / or embedded in the pores of the porous carrier by stirring a solution containing the catalyst fine particles and the porous carrier and then performing a heat treatment. May be. In this case, the stirring of the solution containing the catalyst fine particles and the porous carrier may be performed by ultrasonic vibration. In addition, the catalyst particles are supported on the surface of the pores of the porous carrier and / or embedded in the pores of the porous carrier, after the catalyst particles and the porous carrier are contained in the supercritical fluid, The heat treatment may be performed.

【0017】上記の単層カーボンナノチューブの製造方
法において、炭化水素ガスの熱分解による単層カーボン
ナノチューブの合成温度は、800℃以上であってもよ
い。
In the above method for producing single-walled carbon nanotubes, the temperature for synthesizing single-walled carbon nanotubes by thermal decomposition of hydrocarbon gas may be 800 ° C. or higher.

【0018】上記の単層カーボンナノチューブの製造方
法において、多孔性担体は、触媒微粒子の含有量が0.1
−20wt%の範囲内であってもよい。また、望ましくは、
多孔性担体は、触媒微粒子の含有量が0.2−5wt%の範囲
内であってもよい。
In the above method for producing single-walled carbon nanotubes, the porous carrier has a catalyst fine particle content of 0.1%.
It may be in the range of −20 wt%. Also, preferably,
The porous carrier may have a content of catalyst fine particles in the range of 0.2-5 wt%.

【0019】上記の単層カーボンナノチューブの製造方
法において、キャリアガスおよび炭化水素ガスの流量
は、x,yで規定される範囲(例えば、反応管の容積が600
0mlの場合、キャリアガスの流量が150ml/min、炭化水素
ガスの流量が10ml/minのとき、x=1/40 min-1,y=1/600 m
in-1である)であり、キャリアガスおよび炭化水素ガス
が前記基体上に送られて、熱分解される時間が約30分間
であってもよい。また、上記炭化水素ガスはアセチレン
であってもよい。
In the above-mentioned method for producing single-walled carbon nanotubes, the flow rates of the carrier gas and the hydrocarbon gas are in the ranges defined by x and y (for example, when the volume of the reaction tube is 600
In the case of 0 ml, when the flow rate of the carrier gas is 150 ml / min and the flow rate of the hydrocarbon gas is 10 ml / min, x = 1/40 min −1 , y = 1/600 m
in -1 ) and the carrier gas and the hydrocarbon gas may be sent over the substrate and pyrolyzed for about 30 minutes. Further, the hydrocarbon gas may be acetylene.

【0020】また、別の発明は、カーボンナノチューブ
の気相合成に用いられる耐熱性多孔性担体の除去方法で
あって、前記カーボンナノチューブの気相合成後に、雰
囲気圧を1Torr、より望ましくは0.01Torr以下、かつ熱
処理温度を1400℃以上、より望ましくは2000℃以上にす
る。
Another aspect of the present invention is a method for removing a heat-resistant porous carrier used for vapor-phase synthesis of carbon nanotubes. Hereinafter, the heat treatment temperature is set to 1400 ° C. or more, more preferably 2000 ° C. or more.

【0021】これによれば、酸に対して安定な耐熱性多
孔性担体を適切に除去することができる。
According to this, the heat-resistant porous carrier stable against acid can be appropriately removed.

【0022】[発明の作用および効果]本発明において
は、触媒微粒子が多孔性担体の細孔に均一に分散され、
しかも高温においても該多孔性担体の細孔に安定に保持
されるため、細孔径に準じた直径の単層カーボンを効率
的に製造することができる。さらに、本発明の製造方法
は、連続運転が可能であるので、カーボンナノチューブ
を大量に合成することができる。
[Action and Effect of the Invention] In the present invention, the catalyst fine particles are uniformly dispersed in the pores of the porous carrier.
In addition, since the porous carrier is stably retained even at high temperature by the pores of the porous carrier, single-wall carbon having a diameter corresponding to the pore diameter can be efficiently produced. Further, since the production method of the present invention can be operated continuously, a large amount of carbon nanotubes can be synthesized.

【0023】このように、本発明により直径の揃った単
層カーボンナノチューブを効率的に高純度にて製造する
ことができるため、本発明によって合成された単層カー
ボンナノチューブは、水素吸蔵材料、Li電池の電極材
料、電子放出素子材料、電気二重層キャパシター材料、
SPM(Scanning Probe Microscope)の探針等として好適
に利用することが可能である。
As described above, since single-walled carbon nanotubes having a uniform diameter can be efficiently produced with high purity according to the present invention, the single-walled carbon nanotubes synthesized according to the present invention are made of a hydrogen storage material, Li Battery electrode materials, electron-emitting device materials, electric double layer capacitor materials,
It can be suitably used as a probe of an SPM (Scanning Probe Microscope).

【0024】[0024]

【発明の実施の形態】[実施形態1]図1は、本発明の
実施形態1に係わる単層ナノチューブ(SWNT)合成装置
の概略模式図である。合成装置は、加熱ヒーターと断熱
材からなる電気炉1、石英管2、ガス導入・排気系(図
示せず)、および触媒/サポート材料を載せるための石
英ボート3を備える。さらに図示されていないが、成長
温度制御系、真空制御系、ガス流量計などが設置されて
いる。
[First Embodiment] FIG. 1 is a schematic diagram of a single-walled nanotube (SWNT) synthesizing apparatus according to a first embodiment of the present invention. The synthesis apparatus includes an electric furnace 1 including a heater and a heat insulating material, a quartz tube 2, a gas introduction / exhaust system (not shown), and a quartz boat 3 for mounting a catalyst / support material. Although not shown, a growth temperature control system, a vacuum control system, a gas flow meter, and the like are provided.

【0025】この装置を用いたカーボンナノチューブの
合成は以下のような手順で行われる。予め作製した触媒
/サポート材料粉末を石英ボートに載せ、電気炉1(石
英管2)中央に配置する。石英管2を密閉して、排気系
より所定の圧力(例えば、約10−5Torr以上)まで減圧
し、その後、所望の雰囲気圧力となるように不活性なガ
ス(Ar、N等)によるガス置換と圧力調整をガス導入
流量と排気量制御によって行う。なお、プレベーキン
グ、非酸化雰囲気(たとえばAr、H、Nまたはそれら
の混合ガス等)下で、例えば合成温度以下である600℃
に加熱し、30分保持する。引き続き、合成温度への昇温
を行い、合成温度に達した時点で、たとえば数分−数時
間キャリアガス(たとえばAr、H、Nまたはそれらの
混合ガス等)と炭化水素ガスを適当な流量比で流しなが
ら保持することで、カーボンナノチューブを高純度にて
合成することができる。
The synthesis of carbon nanotubes using this apparatus is performed according to the following procedure. The catalyst / support material powder prepared in advance is placed on a quartz boat and placed in the center of the electric furnace 1 (quartz tube 2). The quartz tube 2 is sealed, and the pressure is reduced to a predetermined pressure (for example, about 10 −5 Torr or more) from an exhaust system, and then an inert gas (Ar, N 2, or the like) is used to obtain a desired atmospheric pressure. The gas replacement and the pressure adjustment are performed by controlling the gas introduction flow rate and the displacement. In a pre-baking, non-oxidizing atmosphere (for example, Ar, H 2 , N 2, or a mixed gas thereof), for example, 600 ° C. which is lower than the synthesis temperature
And hold for 30 minutes. Subsequently, the temperature is raised to the synthesis temperature. When the temperature reaches the synthesis temperature, for example, a carrier gas (for example, Ar, H 2 , N 2, or a mixed gas thereof) and a hydrocarbon gas are mixed for several minutes to several hours. The carbon nanotubes can be synthesized with high purity by maintaining the flow while maintaining the flow ratio.

【0026】なお、上記手法で多層カーボンナノチュー
ブが合成可能なことは、K. Mukhopadhyayらが、Chem. P
hys. Lett. 303 (1999) 117に記載されている。K. Mukh
opadhyayらは、600、700℃での合成例を紹介している。
本発明者らは、サポート材料、触媒、合成温度等を鋭意
検討し、『単層』カーボンナノチューブを炭化水素ガス
の熱分解(CVD)法で合成するには、800℃以上の高温が
必要なことを突き止め、それに必要な各種成長条件を押
さえるに至った。
It should be noted that K. Mukhopadhyay et al. Reported in Chem. P.
hys. Lett. 303 (1999) 117. K. Mukh
opadhyay et al. present synthesis examples at 600 and 700 ° C.
The present inventors have intensively studied support materials, catalysts, synthesis temperatures, and the like. In order to synthesize “single-walled” carbon nanotubes by hydrocarbon gas pyrolysis (CVD), a high temperature of 800 ° C. or more is required. As a result, they came to hold down the necessary growth conditions.

【0027】上記構成は、単層ナノチューブ合成温度に
おいて熱的に安定に存在する多孔性担体を用いて、単層
ナノチューブを合成することを特徴としている。これに
よって、室温、またはプレベーキングで多孔性担体の細
孔に分散担持された触媒が合成温度においても安定に存
在できるため、触媒の直径に応じた細い単層チューブを
合成することができる。
The above structure is characterized in that a single-walled nanotube is synthesized using a porous carrier which is thermally stable at a single-walled nanotube synthesis temperature. As a result, the catalyst dispersed and supported in the pores of the porous carrier at room temperature or in prebaking can be stably present even at the synthesis temperature, so that a thin single-layer tube corresponding to the diameter of the catalyst can be synthesized.

【0028】なお、サポート材料としては、細孔径が3n
m以下の多孔性担体が好適である。多孔性担体の好適な
具体例は、耐熱性のゼオライト、シリカ多孔体(FSM:Fol
dedSheets Mesoporous Material)、中空殻構造を有する
酸化アルミニウムなどである。これらの多孔性担体を使
用することで、これにより、多層チューブや炭素不純物
が混入することなく、高純度で単層チューブを合成する
ことが可能となる。
The support material has a pore diameter of 3n.
m or less porous carriers are preferred. Preferred specific examples of the porous carrier include heat-resistant zeolites and porous silica (FSM: Fol
dedSheets Mesoporous Material) and aluminum oxide having a hollow shell structure. By using these porous carriers, it becomes possible to synthesize a single-layer tube with high purity without mixing a multi-layer tube or carbon impurities.

【0029】耐熱性のゼオライトとしては、SiO/Al
O比が5以上、好適には、10以上のものが使用され
る。また、用いられるゼオライトが粉末の場合、その平
均粒子径は0.1−100μmである。特に5−10μmのものが
好適に使用される。
As the heat resistant zeolite, SiO 2 / Al
2 O 3 ratio of 5 or more, preferably, used is of 10 or more. When the zeolite used is a powder, the average particle size is 0.1-100 μm. Particularly, those having a thickness of 5 to 10 μm are preferably used.

【0030】中空殻構造を有する酸化アルミニウムとし
ては、特に、エマルジョン燃焼法で得られるような、少
なくとも1つの細孔を有する担体が好適に用いられる。
As the aluminum oxide having a hollow shell structure, in particular, a carrier having at least one pore, such as that obtained by an emulsion combustion method, is suitably used.

【0031】なお、多孔性担体としては、この他に、従
来公知のアルミナ、シリカ、マグネシア、ジルコニア、
チタニア、およびそれらのハイブリッド材料を使用する
ことができる。
As the porous carrier, other than the above, conventionally known alumina, silica, magnesia, zirconia,
Titania, and their hybrid materials can be used.

【0032】また、触媒としては、主に酢酸塩等の錯体
である触媒金属化合物が挙げられるが、これに限定され
るものではなく、既に公知の金属塩や金属触媒を用いて
も同様な効果が得られる。また触媒として、Fe、Co等の
単元系触媒、Fe/Co、Ni/Co、Mo/Co、Ni/Fe等の二元系触
媒、または、Fe/Ni/Coの三元系触媒を用いることができ
る。なお、それぞれの触媒の担持量は、担体に対して、
0.1−20wt%が好ましく、より好ましくは、1−10wt%程度
である。これより少ないと単層チューブの収率が落ち、
またこれ以上だと、多層チューブ及び炭素不純物の生成
を催促させる恐れがある。
Examples of the catalyst include a catalytic metal compound which is mainly a complex such as an acetate salt. However, the present invention is not limited to this. Similar effects can be obtained by using a known metal salt or metal catalyst. Is obtained. Further, as the catalyst, use a unitary catalyst such as Fe and Co, a binary catalyst such as Fe / Co, Ni / Co, Mo / Co, and Ni / Fe, or a ternary catalyst such as Fe / Ni / Co. Can be. In addition, the amount of each catalyst carried, with respect to the carrier,
It is preferably 0.1-20 wt%, more preferably about 1-10 wt%. If it is less than this, the yield of the single-layer tube decreases,
If it is more than this, there is a possibility that the production of the multilayer tube and carbon impurities may be promoted.

【0033】触媒は、触媒微粒子の形で、多孔性担体の
細孔表面/内部に担持されていることが望ましい。これ
によって、細孔径に準じた直径の単層チューブを再現性
よく、しかも効率的に製造することが可能となる。触媒
微粒子を、多孔性担体の細孔表面/内部に担持する方法
としては、記触媒微粒子と多孔性担体とを含む溶液を攪
拌(溶液の攪拌には、超音波振動を用いてもよい)した
後、熱処理する方法がある。具体的には、触媒を、80℃
以上で乾燥させた多孔性担体と一緒に純水、または/お
よび有機溶媒に入れて攪拌含浸させ、乾燥させた後に、
微細粉末化して触媒に供せられる。ここで述べた方法と
は別に、たとえば水晶基板や珪素基板表面に多孔性担体
薄膜(たとえばゼオライト薄膜)を直接成膜し、純水、
または/および有機溶媒中に触媒を分散させた溶液を、
例えばスピナー塗布して、その後、80℃以上で乾燥させ
た基板を触媒に供することも可能である。
The catalyst is desirably supported on the pore surface / inside of the porous carrier in the form of catalyst fine particles. This makes it possible to produce a single-layer tube having a diameter corresponding to the pore diameter with good reproducibility and efficiently. As a method for supporting the catalyst fine particles on the surface / inside of the pores of the porous carrier, a solution containing the catalyst fine particles and the porous carrier was stirred (ultrasonic vibration may be used for stirring the solution). Then, there is a method of performing a heat treatment. Specifically, the catalyst was heated to 80 ° C.
After being impregnated with pure water or / and an organic solvent together with the porous carrier dried as described above, and then dried,
It is finely pulverized and provided to the catalyst. Apart from the method described here, for example, a porous carrier thin film (for example, a zeolite thin film) is directly formed on the surface of a quartz substrate or a silicon substrate, and pure water,
Or / and a solution in which the catalyst is dispersed in an organic solvent,
For example, it is also possible to provide a catalyst with a substrate which has been spin-coated and then dried at 80 ° C. or higher.

【0034】また、触媒微粒子を、多孔性担体の細孔表
面/内部に担持する方法としては、触媒微粒子と多孔性
担体とを超臨界流体中に含ませた後、熱処理する方法な
どがある。超臨界流体は、臨界温度及び臨界圧力を越え
た温度、圧力下で、ガスの密度が急激に上昇して気体と
も液体ともつかぬ流体状態となっているものを指す。応
用例としては,コーヒーやたばこから、カフェイン、ニ
コチンを除去するなどの超臨界抽出を挙げることができ
る。また超臨界流体は、液体と同等の溶解能力と、気体
に近い高拡散性、低粘性を有する物質であり、さらに表
面張力の欠如はミクロンオーダーより小さい微細孔内ま
で容易に反応前駆体を運搬する役目を果たす。具体的に
は、金属アセテートなどの金属錯体(反応前駆体)を、
二酸化酸素などの超臨界流体中に溶解した。溶解度は温
度、圧力、エントレーナー(添加物)により調整可能で
ある。上記超臨界流体としては、例えば、二酸化炭素以
外に、メタン、エタン、エチレン、プロパン、ブタン、
メタノール、エタノール、アセトンなどがある。またエ
ントレーナーとしては、キシレン、トルエンなどを挙げ
ることが出来る。超臨界二酸化酸素を利用する場合、臨
界点(臨界温度:31.0℃、臨界圧力:72.9気圧)以上の
条件、例えば、35−300℃、75−350気圧にて、上記金属
錯体を孔の中に浸透させる。その後、常温常圧に戻し
て、超臨界流体をガス化して除去したのち、真空中、あ
るいは、Ar、Nなどの非酸化雰囲気中において100−60
0℃程度の温度で熱処理を行うことで、金属触媒が多孔
体に担持することができる。
As a method for supporting the catalyst fine particles on the surface / inside of the pores of the porous carrier, there is a method in which the catalyst fine particles and the porous carrier are contained in a supercritical fluid and then heat-treated. The supercritical fluid refers to a fluid in which the density of a gas sharply increases at a temperature and pressure exceeding a critical temperature and a critical pressure, and the gas is in a state of being incompatible with a gas or a liquid. Examples of applications include supercritical extraction, such as removing caffeine and nicotine from coffee and tobacco. Supercritical fluids are substances that have the same dissolving capacity as liquids, high diffusivity and low viscosity similar to gases, and lack of surface tension easily transports reaction precursors into micropores smaller than the micron order. Play a role. Specifically, a metal complex such as metal acetate (a reaction precursor) is
Dissolved in supercritical fluids such as oxygen dioxide. Solubility can be adjusted by temperature, pressure and entrainer (additive). As the supercritical fluid, for example, in addition to carbon dioxide, methane, ethane, ethylene, propane, butane,
Methanol, ethanol, acetone and the like. Examples of the entrainer include xylene and toluene. In the case of using supercritical oxygen dioxide, the above metal complex is put in the pore under the condition of a critical point (critical temperature: 31.0 ° C, critical pressure: 72.9 atm) or more, for example, 35-300 ° C, 75-350 atm. Let penetrate. Then, returning to normal temperature and normal pressure, after the supercritical fluid is removed by gasification, in a vacuum, or, Ar, in a non-oxidizing atmosphere such as N 2 100-60
By performing the heat treatment at a temperature of about 0 ° C., the metal catalyst can be supported on the porous body.

【0035】合成に用いる炭化水素ガスの好適な例は、
アセチレンである。アセチレンを用いることで、高純度
で単層チューブを合成することが可能となる。なお、炭
化水素ガスとしては、この他、公知のメタン、エチレ
ン、一酸化炭素、ベンゼンなどを使用することができ
る。
A preferred example of the hydrocarbon gas used in the synthesis is
It is acetylene. By using acetylene, it is possible to synthesize a single-layer tube with high purity. In addition, as the hydrocarbon gas, well-known methane, ethylene, carbon monoxide, benzene, and the like can be used.

【0036】以上説明した、本発明の単層カーボンナノ
チューブの製造方法を用いると、直径が比較的細い(1.
2nm以下)カーボンナノチューブを得ることができる。
得られたカーボンナノチューブは、直径が小さいことか
ら、電子放出素子のエミッタ材料等として好適に使用で
きる。
When the method for producing single-walled carbon nanotubes of the present invention described above is used, the diameter is relatively small (1.
(2 nm or less) Carbon nanotubes can be obtained.
Since the obtained carbon nanotube has a small diameter, it can be suitably used as an emitter material or the like of an electron-emitting device.

【0037】以下に実施形態2〜6として、より具体的
な作成手順と得られたカーボンナノチューブの特性につ
いて説明する。
Hereinafter, as Embodiments 2 to 6, more specific preparation procedures and characteristics of the obtained carbon nanotubes will be described.

【0038】[実施形態2]耐熱性Y型ゼオライト粉末
(東ソー製;HSZ-390HUA,SiO2/Al2O3モル比:200)に、
触媒金属化合物(Iron(II) Acetate、Cobalt(II) Aceta
te Tetratydrate)を用いて、Fe/Co触媒をゼオライト細
孔に担持した。触媒の含有量は、それぞれ2.5wt%で実施
した。その後、石英ボートに触媒粉末を配置し、プレベ
ーキングを600℃、30分、Ar雰囲気1気圧(Ar流量:120m
l/min)にて行った。その後、合成温度3水準(800℃、8
50℃、900℃)にて昇温し、Ar/CH雰囲気1気圧(Ar/C
H流量:150ml/min/10ml/min)で30分熱処理を行っ
た。熱処理後、合成物を透過電子顕微鏡(TEM)で観察
したところ、全ての合成温度条件で、単層チューブのバ
ンドル(束)が観察された。一例として900℃での合成
の結果を図2に示す。それらが単層チューブのバンドル
であることを明確に示す写真を図3に示した。写真に
は、バンドルの断面構造が明確に現れている。なお、合
成温度が上がるほど、単層チューブの収率が増加した。
こうして得られたカーボンナノチューブの水素吸蔵特性
を評価した結果、5-10wt%の水素吸蔵能を有することが
判明した。
[0038] [Embodiment 2] heat resistance Y-type zeolite powder (Tosoh; HSZ-390HUA, SiO 2 / Al 2 O 3 molar ratio: 200), the
Catalytic metal compounds (Iron (II) Acetate, Cobalt (II) Aceta
te Tetratydrate) to support the Fe / Co catalyst on the zeolite pores. The content of the catalyst was 2.5 wt%. After that, the catalyst powder was placed in a quartz boat, pre-baking was performed at 600 ° C. for 30 minutes, and an Ar atmosphere of 1 atm (Ar flow rate: 120 m
l / min). After that, three levels of synthesis temperature (800 ℃, 8
The temperature was raised at 50 ° C and 900 ° C, and the atmosphere was Ar / C 2 H 2 atmosphere 1 atm (Ar / C
( H 2 flow rate: 150 ml / min / 10 ml / min) for 30 minutes. After the heat treatment, the composite was observed with a transmission electron microscope (TEM). As a result, a bundle of single-layer tubes was observed under all the synthesis temperature conditions. As an example, the result of the synthesis at 900 ° C. is shown in FIG. A photograph showing clearly that they are a bundle of single-walled tubes is shown in FIG. The photograph clearly shows the cross-sectional structure of the bundle. In addition, the yield of the single-layer tube increased as the synthesis temperature increased.
As a result of evaluating the hydrogen storage properties of the carbon nanotubes thus obtained, it was found that the carbon nanotubes had a hydrogen storage capacity of 5 to 10% by weight.

【0039】[実施形態3]耐熱性Y型ゼオライト粉末
(東ソー製;HSZ-390HUA、SiO/AlOモル比:20
0)に、触媒金属化合物(Iron(II) Acetate、Cobalt(I
I) Acetate Tetratydrate)を用いて、Fe/Co触媒をゼオ
ライト細孔に担持した。触媒の含有量は、それぞれ0.5w
t%で実施した。その後、石英ボートに触媒粉末を配置
し、プレベーキングを600℃、30分、Ar雰囲気1気圧(Ar
流量:120ml/min)にて行った。その後、合成温度3水準
(800℃、850℃、900℃)にて昇温し、Ar/CH雰囲気
1気圧(Ar/CH流量:150ml/min/10ml/min)で30分熱処
理を行った。熱処理後、合成物を透過電子顕微鏡(TE
M)で観察したところ、全ての合成温度条件で、単層チ
ューブのバンドル(束)が観察された。一例として900
℃での合成の結果を図4に示す。単層チューブのバンド
ルのみが生成し、多層チューブはほとんど観察されなか
った。
Embodiment 3 Heat-resistant Y-type zeolite powder (manufactured by Tosoh; HSZ-390HUA, SiO 2 / Al 2 O 3 molar ratio: 20)
0), catalytic metal compounds (Iron (II) Acetate, Cobalt (I
I) Acetate Tetratydrate) was used to support the Fe / Co catalyst on the zeolite pores. The catalyst content is 0.5w each
Performed at t%. After that, the catalyst powder was placed in a quartz boat, pre-baking was performed at 600 ° C. for 30 minutes, and an atmosphere of Ar at 1 atm (Ar
Flow rate: 120 ml / min). Then, the temperature was raised at three levels of synthesis temperature (800 ° C, 850 ° C, 900 ° C), and the atmosphere was Ar / C 2 H 2.
Heat treatment was performed at 1 atm (Ar / C 2 H 2 flow rate: 150 ml / min / 10 ml / min) for 30 minutes. After the heat treatment, the composite was examined with a transmission electron microscope (TE
When observed in M), a bundle of single-layer tubes was observed under all synthesis temperature conditions. 900 as an example
The results of the synthesis at ° C. are shown in FIG. Only single-walled tube bundles were formed, and few multi-layered tubes were observed.

【0040】なお、触媒の含有量を下げることで単層・
多層両チューブを合わせた収率は下がるが、そのうち単
層チューブが得られる収率は増加した。図5は、触媒の
含有量に対する単層チューブの収率依存性を示すグラフ
である。触媒の含有量は0.1−20wt%の範囲が好ましく、
特に、触媒の含有量は0.2−5wt%の範囲がより好まし
い。触媒の含有量が0.2−5wt%の範囲のとき、単層チュ
ーブの収率がより高くなった。こうして得られたカーボ
ンナノチューブの水素吸蔵特性を評価した結果、5-10wt
%の水素吸蔵能を有することが判明した。
By reducing the content of the catalyst, a single layer
Although the combined yield of both multi-layer tubes decreased, the yield of obtaining single-layer tubes increased. FIG. 5 is a graph showing the yield dependency of the single-layer tube with respect to the content of the catalyst. The content of the catalyst is preferably in the range of 0.1-20 wt%,
In particular, the content of the catalyst is more preferably in the range of 0.2-5 wt%. When the catalyst content was in the range of 0.2-5 wt%, the yield of the single-walled tube was higher. As a result of evaluating the hydrogen storage properties of the carbon nanotubes thus obtained, 5-10 wt.
% Of hydrogen storage capacity.

【0041】[実施形態4]耐熱性Y型ゼオライト粉末
(東ソー製;HSZ-390HUA、SiO/AlOモル比:20
0)に、触媒金属化合物(Iron(II) Acetate、Cobalt(I
I) Acetate Tetratydrate)を用いて、Fe/Co触媒をゼオ
ライト細孔に担持した。触媒の含有量は、それぞれ0.5w
t%で実施した。その後、石英ボートに触媒粉末を配置
し、プレベーキングを600℃、30分、Ar雰囲気1気圧(Ar
流量:120ml/min)にて行った。その後、合成温度2水準
(600℃,900℃)にて昇温し、Ar/CH雰囲気1気圧(A
r/CH 流量:150ml/min/10ml/min)で熱処理時間(10
分,30分,60分)を変えて収率を計測した。
[Embodiment 4] Heat-resistant Y-type zeolite powder
(Tosoh; HSZ-390HUA, SiO2/ Al2O3Molar ratio: 20
0), catalytic metal compounds (Iron (II) Acetate, Cobalt (I
I) Acetate Tetratydrate)
Loaded in light pores. The catalyst content is 0.5w each
Performed at t%. After that, place the catalyst powder in the quartz boat
Pre-baking at 600 ° C for 30 minutes, 1 atmosphere of Ar atmosphere (Ar
Flow rate: 120 ml / min). After that, two levels of synthesis temperature
(600 ° C, 900 ° C), Ar / C2H2Atmosphere 1 atm (A
r / C2H 2Flow rate: 150ml / min / 10ml / min) and heat treatment time (10
Minutes, 30 minutes and 60 minutes).

【0042】図6は、熱処理時間(合成時間)と収率
(ゼオライト粉末(触媒を含む)の仕込み重量に対する
合成物重量(前記合成物重量を除く)の重量比)の関係
(合成温度600℃,900℃)を示すグラフである。また、
図7は、熱処理時間(合成時間)と相対収量(各合成時
間における収量を合成時間60分における収量を基準とし
て数値化)の関係(合成温度600℃,900℃)を示すグラ
フである。このように、たとえば、合成温度900℃で
は、合成時間30分で相対収量は95%以上であり、合成時
間が約30分で合成がほぼ完了していることがわかる。
FIG. 6 shows the relationship between the heat treatment time (synthesis time) and the yield (weight ratio of the weight of the synthesized product (excluding the weight of the synthesized product) to the charged weight of the zeolite powder (including the catalyst)) (synthesis temperature: 600 ° C.). , 900 ° C). Also,
FIG. 7 is a graph showing the relationship (synthesis temperature 600 ° C., 900 ° C.) between the heat treatment time (synthesis time) and the relative yield (the yield at each synthesis time is quantified based on the yield at the synthesis time 60 minutes). Thus, for example, at a synthesis temperature of 900 ° C., the relative yield is 95% or more in a synthesis time of 30 minutes, and it can be seen that the synthesis is almost completed in a synthesis time of about 30 minutes.

【0043】[実施形態5]FSM粉末(発明者により作
製:細孔径2-3nm)にFe/Co触媒を担持した。触媒の含有
量は、それぞれ2.5wt%で実施した。その後、石英ボート
に触媒粉末を配置し、プレペーキングを600℃、30分、A
r雰囲気1気圧(ArまたはN流量:120ml/min)にて行っ
た。その後、合成温度3水準(800℃、850℃、900℃)に
昇温し、Ar/C H雰囲気1気圧(Ar/CH流量:150ml
/min/10ml/min)で30分熱処理を行った。熱処理後、合
成物を透過電子顕微鏡(TEM)で観察したところ、全て
の合成温度条件で、単層チューブのバンドル(束)が観
察された。一例として900℃での合成の結果を図8に示
す。こうして得られたカーボンナノチューブの水素吸蔵
特性を評価した結果、5-10wt%の水素吸蔵能を有するこ
とが判明した。
[Embodiment 5] FSM powder (made by the inventor)
Manufacture: Fe / Co catalyst was supported on the pore diameter of 2-3 nm). Catalyst content
The amounts were each 2.5 wt%. Then the quartz boat
And pre-paking at 600 ° C for 30 minutes, A
r Atmosphere 1 atm (Ar or N2Flow rate: 120ml / min)
Was. After that, the synthesis temperature reached three levels (800 ° C, 850 ° C, 900 ° C)
Raise the temperature, Ar / C 2H2Atmosphere 1 atm (Ar / C2H2Flow rate: 150ml
/ min / 10ml / min) for 30 minutes. After heat treatment,
When the product was observed with a transmission electron microscope (TEM),
The single-layer tube bundle can be observed at
I was guessed. Figure 8 shows the results of the synthesis at 900 ° C as an example.
You. Hydrogen storage of carbon nanotubes thus obtained
As a result of the evaluation of the characteristics, it has a hydrogen storage capacity of 5-10 wt%.
It turned out.

【0044】[実施形態6]中空殻構造酸化アルミニウ
ム粉末(発明者により作製:細孔径2-3nm)にFe/Co触媒
を担持した。触媒の含有量は、それぞれ2.5wt%で実施し
た。その後、石英ボートに触媒粉末を配置し、プレベー
キングを600℃、30分、Ar雰囲気1気圧(ArまたはN
量:120ml/min)にて行った。その後、合成温度3水準(8
00℃、850℃、900℃)にて昇温して、30分、Ar/CH
雰囲気1気圧(Ar/CH流量:150ml/min/10ml/min)で
熱処理を行った。熱処理後、合成物を透過電子顕微鏡
(TEM)で観察したところ、全ての合成温度条件で、単
層チューブのバンドル(束)が観察された。こうして得
られたカーボンナノチューブの水素吸蔵特性を評価した
結果、5-10wt%の水素吸蔵能を有することが判明した。
[Embodiment 6] An aluminum oxide powder having a hollow shell structure (prepared by the inventor: pore diameter 2-3 nm) supported an Fe / Co catalyst. The content of the catalyst was 2.5 wt%. After that, the catalyst powder was placed in a quartz boat, and prebaking was performed at 600 ° C. for 30 minutes at 1 atmosphere of Ar atmosphere (Ar or N 2 flow rate: 120 ml / min). Then, the synthesis temperature 3 levels (8
(00 ° C, 850 ° C, 900 ° C), 30 minutes, Ar / C 2 H 2
The heat treatment was performed in an atmosphere of 1 atm (Ar / C 2 H 2 flow rate: 150 ml / min / 10 ml / min). After the heat treatment, the composite was observed with a transmission electron microscope (TEM). As a result, a bundle of single-layer tubes was observed under all the synthesis temperature conditions. As a result of evaluating the hydrogen storage properties of the carbon nanotubes thus obtained, it was found that the carbon nanotubes had a hydrogen storage capacity of 5 to 10 wt%.

【0045】以上、本発明の単層カーボンナノチューブ
の製造方法に従ってカーボンナノチューブを作成した例
を説明した。次に、本発明の効果を検証するための比較
例を示す。
As described above, an example in which carbon nanotubes are produced according to the method for producing single-walled carbon nanotubes of the present invention has been described. Next, a comparative example for verifying the effect of the present invention will be described.

【0046】[比較例1]耐熱性Y型ゼオライト粉末
(東ソー製;HSZ-390HUA)に、触媒金属化合物(Iron(I
I) Acetate,Cobalt(II) Acetate Tetrahydrate)を用い
て、Fe/Co触媒を該ゼオライト細孔に担持した。触媒の
含有量は、それぞれ20wt%で実施した。その後、石英ボ
ードに触媒粉末を配置し、プレベーキングを600℃,30
分,Ar雰囲気1気圧(Ar流量:120ml/min)にて行った。
その後、合成温度3水準(800℃,850℃,900℃)にて昇
温して、30分,Ar/C2H2雰囲気1気圧(Ar/C2H2流量:150
ml/min/10ml/min)で熱処理を行なった。熱処理後、合
成物を透過電子顕微鏡(TEM)で観察したところ、全て
の合成温度条件で、主に多層チューブのバンドルが観察
された。一例として、900℃での合成の結果を図9に示
した。この写真から多層チューブが生成している様子が
わかる。別視野の観察から僅かであるが単層チューブも
観察された。含有量を上げることで単層・多層両チュー
ブを合わせた収率は上がるが、そのうち単層チューブが
得られる収率は減少した。単層チューブの収率依存性は
同様に図6に示したとおりである。
Comparative Example 1 A heat-resistant Y-type zeolite powder (manufactured by Tosoh; HSZ-390HUA) was mixed with a catalytic metal compound (Iron (I
I) Acetate, Cobalt (II) Acetate Tetrahydrate) was used to support the Fe / Co catalyst on the pores of the zeolite. The content of the catalyst was 20 wt%. Then, the catalyst powder was placed on a quartz board and pre-baked at 600 ° C for 30 minutes.
The process was performed at 1 atmosphere of Ar atmosphere (Ar flow rate: 120 ml / min).
Thereafter, synthesis temperature 3 levels (800 ℃, 850 ℃, 900 ℃) was heated at 30 minutes, Ar / C 2 H 2 atmosphere 1 atm (Ar / C 2 H 2 flow rate: 150
(ml / min / 10ml / min). After the heat treatment, the composite was observed with a transmission electron microscope (TEM). As a result, a bundle of multilayer tubes was mainly observed under all the synthesis temperature conditions. As an example, the result of the synthesis at 900 ° C. is shown in FIG. From this photograph, it can be seen that a multilayer tube is being formed. A single layer tube was observed, albeit slightly, from the observation of another visual field. Increasing the content increased the combined yield of both single-walled and multi-walled tubes, but decreased the yield of single-walled tubes. The yield dependence of the single-layer tube is also as shown in FIG.

【0047】[比較例2]多孔性担体としてY型ゼオラ
イト粉末(東ソー製:HSZ-320NAA)を用い、Y型ゼオラ
イト粉末にFe/Co触媒を担持した。その後、石英ボート
に触媒粉末を配置し、プレベーキングを600℃、30分、A
r雰囲気1気圧(ArまたはN流量:120ml/min)にて行っ
た。その後、合成温度3水準:600℃、700℃、900℃に昇
温して、30分、Ar/CH雰囲気1気圧(Ar/CH流量:
100ml/min/15ml/min)で熱処理を行った。熱処理後、合
成物を透過電子顕微鏡(TEM)で観察したところ、全て
の合成温度条件で、多層チューブが観察された。一例と
して700℃での合成の結果を図10に示す。この場合、9
00℃でも単層カーボンナノチューブは確認されなかっ
た。なお、多層チューブの収率、結晶性は、温度が低い
ほど良い傾向を示した。このように、単層カーボンナノ
チューブを得るためには、本発明の構成要件である耐熱
性の高い多孔性担体を用いることが重要であることが明
らかである。
Comparative Example 2 A Y / zeolite powder (HSZ-320NAA manufactured by Tosoh Corporation) was used as a porous carrier, and a Fe / Co catalyst was supported on the Y-type zeolite powder. After that, place the catalyst powder in a quartz boat and pre-bake at 600 ° C for 30 minutes, A
r Atmosphere 1 atm (Ar or N 2 flow rate: 120 ml / min) was performed on. Thereafter, synthesis temperature three levels: 600 ° C., 700 ° C., the temperature was raised to 900 ° C., 30 min, Ar / C 2 H 2 atmosphere 1 atm (Ar / C 2 H 2 flow rate:
The heat treatment was performed at 100 ml / min / 15 ml / min). After the heat treatment, the composite was observed with a transmission electron microscope (TEM). As a result, a multilayer tube was observed under all the synthesis temperature conditions. As an example, the result of the synthesis at 700 ° C. is shown in FIG. In this case, 9
Even at 00 ° C., no single-walled carbon nanotube was confirmed. The yield and crystallinity of the multilayer tube tended to be better as the temperature was lower. Thus, in order to obtain single-walled carbon nanotubes, it is apparent that it is important to use a porous carrier having high heat resistance, which is a constituent feature of the present invention.

【0048】次に、カーボンナノチューブ合成に用いた
耐熱性ゼオライトの除去を可能とする実施形態を説明す
る。
Next, an embodiment will be described in which the heat-resistant zeolite used for the synthesis of carbon nanotubes can be removed.

【0049】[実施形態7]耐熱性多孔性担体として耐
熱性ゼオライトを用いた場合には、単層チューブ合成ま
たは多層チューブ合成いずれのケースであっても、合成
後の耐熱性ゼオライト粉末は、雰囲気圧0.01Torr,2000
℃で熱処理することにより除去された。図11は、熱処
理による耐熱性ゼオライトの除去を行った後のカーボン
ナノチューブの透過型電子顕微鏡(TEM)像である。カ
ーボンナノチューブだけが撮像され、耐熱性ゼオライト
が除去されていることが分かる。耐熱性ゼオライト粉末
は、酸に対して安定であり、酸による除去は困難である
が、上記熱処理により除去が可能である。
[Embodiment 7] When a heat-resistant zeolite is used as the heat-resistant porous carrier, the heat-resistant zeolite powder after the synthesis is used in any of the cases of single-layer tube synthesis and multilayer tube synthesis. Pressure 0.01 Torr, 2000
Removed by heat treatment at ℃. FIG. 11 is a transmission electron microscope (TEM) image of carbon nanotubes after heat-resistant zeolite has been removed by heat treatment. It can be seen that only the carbon nanotube was imaged and the heat-resistant zeolite was removed. The heat-resistant zeolite powder is stable to acids and is difficult to remove with an acid, but can be removed by the above heat treatment.

【0050】[0050]

【発明の効果】上記説明から明らかなように、本発明に
よれば、単層カーボンを効率的に製造することができ
る。
As is apparent from the above description, according to the present invention, single-wall carbon can be efficiently produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1に係わる単層ナノチュー
ブ(SWNT)合成装置の概略模式図である。
FIG. 1 is a schematic diagram of a single-walled nanotube (SWNT) synthesizing apparatus according to Embodiment 1 of the present invention.

【図2】 本発明の実施形態2の製造方法によって合成
された単層カーボンナノチューブのバンドル(束)の透
過型電子顕微鏡(TEM)像を示す図である。
FIG. 2 is a diagram illustrating a transmission electron microscope (TEM) image of a bundle of single-walled carbon nanotubes synthesized by the manufacturing method according to the second embodiment of the present invention.

【図3】 本発明の実施形態2の製造方法によって合成
された単層カーボンナノチューブの透過型電子顕微鏡
(TEM)像を示す図である。
FIG. 3 is a view showing a transmission electron microscope (TEM) image of a single-walled carbon nanotube synthesized by a manufacturing method according to a second embodiment of the present invention.

【図4】 本発明の実施形態3の製造方法によって合成
された単層カーボンナノチューブの透過型電子顕微鏡
(TEM)像を示す図である。
FIG. 4 is a diagram showing a transmission electron microscope (TEM) image of a single-walled carbon nanotube synthesized by a manufacturing method according to a third embodiment of the present invention.

【図5】 触媒の含有量に対する単層チューブの収率依
存性を示すグラフである。
FIG. 5 is a graph showing the yield dependency of a single-layer tube with respect to the content of a catalyst.

【図6】 熱処理時間と収率の関係(合成温度600℃,9
00℃)を示すグラフである。
Fig. 6 Relationship between heat treatment time and yield (synthesis temperature 600 ° C, 9
FIG.

【図7】 熱処理時間と相対収量の関係(合成温度600
℃,900℃)を示すグラフである。
FIG. 7: Relationship between heat treatment time and relative yield (synthesis temperature 600
And 900 ° C.).

【図8】 本発明の実施形態5の製造方法によって合成
された単層カーボンナノチューブの透過型電子顕微鏡
(TEM)像を示す図である。
FIG. 8 is a diagram showing a transmission electron microscope (TEM) image of a single-walled carbon nanotube synthesized by the manufacturing method according to the fifth embodiment of the present invention.

【図9】 比較例1の製造方法によって合成されたカー
ボンナノチューブの透過型電子顕微鏡(TEM)像を示す
図である。
FIG. 9 is a view showing a transmission electron microscope (TEM) image of a carbon nanotube synthesized by the production method of Comparative Example 1.

【図10】 比較例2の製造方法によって合成されたカ
ーボンナノチューブの透過型電子顕微鏡(TEM)像を示
す図である。
FIG. 10 is a view showing a transmission electron microscope (TEM) image of a carbon nanotube synthesized by the production method of Comparative Example 2.

【図11】 熱処理による耐熱性ゼオライトの除去を行
った後のカーボンナノチューブの透過型電子顕微鏡(TE
M)像である。
FIG. 11 is a transmission electron microscope (TE) of carbon nanotubes after heat-resistant zeolite has been removed by heat treatment.
M) It is an image.

【符号の説明】[Explanation of symbols]

1 電気炉、2 石英管、3 石英ボート。 1 electric furnace, 2 quartz tube, 3 quartz boat.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 久典 愛知県名古屋市天白区植田本町3丁目917 (72)発明者 川窪 智壽 愛知県名古屋市昭和区川名本町2−9−2 メゾン・ド・ソヌール207号 Fターム(参考) 4G046 CA02 CB03 CC06 CC08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisanori Shinohara 3-917 Uedahonmachi, Tempaku-ku, Nagoya City, Aichi Prefecture (72) Inventor Tomohisa Kawakubo 2-9-2 Kawanahonmachi, Showa-ku, Nagoya-shi, Aichi Maison de. Sonur 207 F-term (reference) 4G046 CA02 CB03 CC06 CC08

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性の多孔性担体に触媒微粒子を分散
担持させた基体上に炭化水素ガスをキャリアガスととも
に送り、前記炭化水素ガスの熱分解を利用して、単層カ
ーボンナノチューブを気相合成することを特徴とする単
層カーボンナノチューブの製造方法。
A hydrocarbon gas is sent together with a carrier gas onto a substrate in which catalyst fine particles are dispersed and supported on a heat-resistant porous carrier, and the single-walled carbon nanotubes are vaporized by utilizing the thermal decomposition of the hydrocarbon gas. A method for producing single-walled carbon nanotubes, comprising synthesizing.
【請求項2】 前記多孔性担体の細孔径が3nm以下であ
ることを特徴とする請求項1に記載の単層カーボンナノ
チューブの製造方法。
2. The method for producing single-walled carbon nanotubes according to claim 1, wherein the porous carrier has a pore diameter of 3 nm or less.
【請求項3】 前記多孔性担体が、ゼオライト、シリカ
多孔体、または少なくとも1つの細孔を有する酸化物中
空殻構造体のいずれかであることを特徴とする請求項1
に記載の単層カーボンナノチューブの製造方法。
3. The porous carrier is any one of zeolite, porous silica, and an oxide hollow shell structure having at least one pore.
3. The method for producing a single-walled carbon nanotube according to item 1.
【請求項4】 前記ゼオライトは耐熱性を有することを
特徴とする請求項3に記載の単層カーボンナノチューブ
の製造方法。
4. The method according to claim 3, wherein the zeolite has heat resistance.
【請求項5】 前記ゼオライトは、SiOおよびAlO
を含み、 SiO/AlOのモル比が5以上であることを特徴とす
る請求項4に記載の単層カーボンナノチューブの製造方
法。
5. The zeolite is composed of SiO 2 and Al 2 O 3
5. The method for producing single-walled carbon nanotubes according to claim 4, wherein the molar ratio of SiO 2 / Al 2 O 3 is 5 or more.
【請求項6】 前記ゼオライトは、SiOおよびAlO
を含み、 SiO/AlOのモル比が10以上であることを特徴と
する請求項4に記載の単層カーボンナノチューブの製造
方法。
6. The zeolite is composed of SiO 2 and Al 2 O 3
Wherein the manufacturing method of the single-walled carbon nanotube according to claim 4, wherein the molar ratio of SiO 2 / Al 2 O 3 is 10 or more.
【請求項7】 前記触媒微粒子が、前記多孔性担体の細
孔表面に担持されていること、および/または、前記多
孔性担体の細孔内に埋め込まれていることを特徴とする
請求項1乃至6のいずれかに記載の単層カーボンナノチ
ューブの製造方法。
7. The method according to claim 1, wherein the catalyst particles are supported on the surface of the pores of the porous carrier and / or embedded in the pores of the porous carrier. 7. The method for producing a single-walled carbon nanotube according to any one of items 1 to 6.
【請求項8】 前記触媒微粒子と前記多孔性担体とを含
む溶液を攪拌した後、熱処理することによって、前記触
媒微粒子が、前記多孔性担体の細孔表面に担持されてい
ること、および/または、前記多孔性担体の細孔内に埋
め込まれていることを特徴とする請求項7に記載の単層
カーボンナノチューブの製造方法。
8. Stirring a solution containing the catalyst fine particles and the porous carrier, followed by heat treatment, so that the catalyst fine particles are supported on the pore surfaces of the porous carrier, and / or The method for producing single-walled carbon nanotubes according to claim 7, wherein the single-walled carbon nanotubes are embedded in pores of the porous carrier.
【請求項9】 前記溶液は、超音波振動によって攪拌さ
れることを特徴とする請求項8に記載の単層カーボンナ
ノチューブの製造方法。
9. The method according to claim 8, wherein the solution is stirred by ultrasonic vibration.
【請求項10】 前記触媒微粒子と前記多孔性担体とを
超臨界流体中に含ませた後、熱処理することによって、
前記触媒微粒子が、前記多孔性担体の細孔表面に担持さ
れていること、および/または、前記多孔性担体の細孔
内に埋め込まれていることを特徴とする請求項7に記載
の単層カーボンナノチューブの製造方法。
10. After the catalyst fine particles and the porous carrier are contained in a supercritical fluid, heat treatment is performed.
The monolayer according to claim 7, wherein the catalyst fine particles are supported on the surface of the pores of the porous carrier, and / or embedded in the pores of the porous carrier. A method for producing carbon nanotubes.
【請求項11】 前記炭化水素ガスの熱分解による単層
カーボンナノチューブの合成温度が、800℃以上である
ことを特徴とする請求項1乃至10のいずれかに記載の
単層カーボンナノチューブの製造方法。
11. The method for producing single-walled carbon nanotubes according to claim 1, wherein a synthesis temperature of the single-walled carbon nanotubes by thermal decomposition of the hydrocarbon gas is 800 ° C. or higher. .
【請求項12】 前記多孔性担体は、前記触媒微粒子の
含有量が0.1−20wt%の範囲内であることを特徴とする請
求項1乃至11のいずれかに記載の単層カーボンナノチ
ューブの製造方法。
12. The method for producing a single-walled carbon nanotube according to claim 1, wherein the content of the catalyst fine particles in the porous carrier is in a range of 0.1 to 20% by weight. .
【請求項13】 前記多孔性担体は、前記触媒微粒子の
含有量が0.2−5wt%の範囲内であることを特徴とする請
求項1乃至12のいずれかに記載の単層カーボンナノチ
ューブの製造方法。
13. The method for producing a single-walled carbon nanotube according to claim 1, wherein the content of the catalyst fine particles in the porous carrier is in a range of 0.2 to 5% by weight. .
【請求項14】 前記単層カーボンナノチューブを製造
する合成反応管の容積はV ml、前記キャリアガスおよび
炭化水素ガスの流量はそれぞれ、x×V ml/min,Y×Bml/m
inであり、前記x min-1, y min-1の範囲が、1/100≦x≦
1, 1/1000≦y≦1/5であることを特徴とする請求項1乃
至13のいずれかに記載の単層カーボンナノチューブの
製造方法。
14. The volume of the synthesis reaction tube for producing the single-walled carbon nanotubes is V ml, and the flow rates of the carrier gas and the hydrocarbon gas are x × V ml / min and Y × Bml / m, respectively.
in, the range of the x min -1 and y min -1 is 1/100 ≦ x ≦
14. The method for producing single-walled carbon nanotubes according to claim 1, wherein 1, 1/1000 ≦ y ≦ 1/5.
【請求項15】 前記キャリアガスおよび前記炭化水素
ガスの流量は、請求項14記載の範囲であり、 前記炭化水素ガスおよびキャリアガスが前記基体上に送
られて、熱分解される時間が約30分間であることを特徴
とする請求項14に記載の単層カーボンナノチューブの
製造方法。
15. The flow rate of the carrier gas and the hydrocarbon gas is within the range according to claim 14, wherein the hydrocarbon gas and the carrier gas are sent onto the substrate and thermally decomposed for about 30 minutes. The method for producing single-walled carbon nanotubes according to claim 14, wherein the heating time is minutes.
【請求項16】 前記炭化水素ガスがアセチレンである
ことを特徴とする請求項1乃至15のいずれかに記載の
単層カーボンナノチューブの製造方法。
16. The method for producing a single-walled carbon nanotube according to claim 1, wherein the hydrocarbon gas is acetylene.
【請求項17】 請求項1乃至16のいずれかの方法に
より製造された直径1.2nm以下の単層カーボンナノチュ
ーブ。
17. A single-walled carbon nanotube having a diameter of not more than 1.2 nm produced by the method according to claim 1. Description:
【請求項18】 カーボンナノチューブの気相合成に用
いられる耐熱性多孔性担体の除去方法であって、前記カ
ーボンナノチューブの気相合成後に、雰囲気圧を1Tor
r、より望ましくは0.01Torr以下、かつ熱処理温度を140
0℃以上、より望ましくは2000℃以上にすることを特徴
とするカーボンナノチューブ合成用耐熱性多孔性担体の
除去方法。
18. A method for removing a heat-resistant porous carrier used for gas-phase synthesis of carbon nanotubes, wherein the atmosphere pressure is reduced to 1 Torr after the gas-phase synthesis of carbon nanotubes.
r, more preferably 0.01 Torr or less, and a heat treatment temperature of 140
A method for removing a heat-resistant porous carrier for synthesizing carbon nanotubes, which is carried out at a temperature of 0 ° C. or more, more preferably 2000 ° C. or more.
JP2001394105A 2000-12-28 2001-12-26 Method for producing single-walled carbon nanotube Expired - Fee Related JP3743628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394105A JP3743628B2 (en) 2000-12-28 2001-12-26 Method for producing single-walled carbon nanotube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000400198 2000-12-28
JP2000-400198 2000-12-28
JP2001394105A JP3743628B2 (en) 2000-12-28 2001-12-26 Method for producing single-walled carbon nanotube

Publications (2)

Publication Number Publication Date
JP2002255519A true JP2002255519A (en) 2002-09-11
JP3743628B2 JP3743628B2 (en) 2006-02-08

Family

ID=26607003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394105A Expired - Fee Related JP3743628B2 (en) 2000-12-28 2001-12-26 Method for producing single-walled carbon nanotube

Country Status (1)

Country Link
JP (1) JP3743628B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045843A1 (en) * 2001-11-28 2003-06-05 National University Corporation Of Nagoya University Method for preparing hollow nanofiber, hollow nanofiber and catalyst composition for preparing hollow nanofiber
WO2004048262A1 (en) * 2002-11-26 2004-06-10 Honda Motor Co., Ltd. Method for synthesis of carbon nanotubes
WO2004060801A1 (en) * 2003-01-06 2004-07-22 Japan Science And Technology Agency Method of selecting structure of carbon nanotube through photoirradiation
WO2004106234A1 (en) * 2003-02-07 2004-12-09 Bussan Nanotech Research Institute Inc. Process for producing monolayer carbon nanotube with uniform diameter
WO2004105940A1 (en) * 2003-05-29 2004-12-09 Japan Science And Technology Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil
JP2004352512A (en) * 2003-05-27 2004-12-16 Univ Nagoya Method for producing carbon nanotube, and carbon nanotube-containing composition
JP2005068000A (en) * 2003-08-05 2005-03-17 Toray Ind Inc Method and apparatus for gas phase reaction
JP2005154200A (en) * 2003-11-26 2005-06-16 Teijin Ltd Method for producing carbon nanotube
JP2005538026A (en) * 2002-09-12 2005-12-15 スネクマ・プロピュルシオン・ソリド Three-dimensional fiber structure of refractory fiber, method for preparing the same, and application to heat-resistant structural composite material
JP2006188378A (en) * 2005-01-05 2006-07-20 National Institute Of Advanced Industrial & Technology Method for producing isolated carbon nanotube
WO2006082829A1 (en) * 2005-02-02 2006-08-10 Otsuka Chemical Co., Ltd. Carbon nanotube-loaded inorganic particle
JP2006231107A (en) * 2005-02-22 2006-09-07 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing nanocarbon material, catalyst fine particles, manufacturing method of catalyst for manufacturing nanocarbon material
EP1709213A2 (en) * 2004-01-15 2006-10-11 Nanocomp Technologies, Inc. Systems and methods for synthesis of extended length nanostructures
JP2006298713A (en) * 2005-04-22 2006-11-02 Univ Nagoya Method for manufacturing three-layer carbon nanotube and composition containing three-layer carbon nanotube
WO2007004652A1 (en) * 2005-07-05 2007-01-11 National University Corporation NARA Institute of Science and Technology Method for producing carbon nanotube dispersion liquid
WO2007007594A1 (en) * 2005-07-11 2007-01-18 National University Corporation NARA Institute of Science and Technology Process for preparation of aqueous solution containing carbon nanotube
JP2007126318A (en) * 2005-11-02 2007-05-24 Denso Corp Method for producing carbon nanotube
KR100757099B1 (en) 2006-01-26 2007-09-10 일진나노텍 주식회사 Method of preparing a carbon nanotube having high dispersibility
US7357983B2 (en) 2001-12-18 2008-04-15 Yale University Controlled growth of single-wall carbon nanotubes
JP2008512343A (en) * 2004-09-09 2008-04-24 本田技研工業株式会社 Synthesis of carbon single-walled nanotubes with narrow diameter distribution
US7485279B2 (en) 2001-12-18 2009-02-03 Yale University Growth of nanostructures with controlled diameter
US7531892B2 (en) 2003-12-11 2009-05-12 Yale University Superconducting boron nanostructures
US7531158B2 (en) 2003-03-20 2009-05-12 Cheol Jin Lee Vapor phase synthesis of double-walled carbon nanotubes
WO2009116261A1 (en) * 2008-03-17 2009-09-24 大塚化学株式会社 Method for manufacturing carbon nanotube
US7658971B2 (en) 2004-06-08 2010-02-09 Sumitomo Electric Industries, Ltd. Method of producing carbon nanostructure
WO2010038793A1 (en) 2008-09-30 2010-04-08 凸版印刷株式会社 Nano-carbon material composite substrate and method for manufacturing same
US7785558B2 (en) 2004-04-23 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing carbon nanostructure
US8088488B2 (en) 2002-11-26 2012-01-03 Honda Giken Kogyo Kabushiki Kaisha Method for synthesis of metal nanoparticles
US8088485B2 (en) 2002-11-26 2012-01-03 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
US8163263B2 (en) 2006-01-30 2012-04-24 Honda Motor Co., Ltd. Catalyst for the growth of carbon single-walled nanotubes
JP2012111690A (en) * 2004-11-17 2012-06-14 Honda Motor Co Ltd Method for producing carbon nanotube
US8592338B2 (en) 2004-02-27 2013-11-26 Sumitomo Electric Industries, Ltd. Catalyst structure and method of manufacturing carbon nanotube using the same
US8840724B2 (en) * 2002-11-01 2014-09-23 Honda Motor Co., Ltd. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
WO2014202740A1 (en) * 2013-06-19 2014-12-24 Katholieke Universiteit Leuven Systems and methods for synthesis of carbon nanotubes

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045843A1 (en) * 2001-11-28 2003-06-05 National University Corporation Of Nagoya University Method for preparing hollow nanofiber, hollow nanofiber and catalyst composition for preparing hollow nanofiber
US7485279B2 (en) 2001-12-18 2009-02-03 Yale University Growth of nanostructures with controlled diameter
US7357983B2 (en) 2001-12-18 2008-04-15 Yale University Controlled growth of single-wall carbon nanotubes
JP2005538026A (en) * 2002-09-12 2005-12-15 スネクマ・プロピュルシオン・ソリド Three-dimensional fiber structure of refractory fiber, method for preparing the same, and application to heat-resistant structural composite material
JP4708790B2 (en) * 2002-09-12 2011-06-22 スネクマ・プロピュルシオン・ソリド Three-dimensional fiber structure of refractory fiber, method for preparing the same, and application to heat-resistant structural composite material
US8840724B2 (en) * 2002-11-01 2014-09-23 Honda Motor Co., Ltd. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
US8088485B2 (en) 2002-11-26 2012-01-03 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
US8088488B2 (en) 2002-11-26 2012-01-03 Honda Giken Kogyo Kabushiki Kaisha Method for synthesis of metal nanoparticles
JP2006507207A (en) * 2002-11-26 2006-03-02 本田技研工業株式会社 Methods for the synthesis of carbon nanotubes
US7214361B2 (en) 2002-11-26 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for synthesis of carbon nanotubes
WO2004048262A1 (en) * 2002-11-26 2004-06-10 Honda Motor Co., Ltd. Method for synthesis of carbon nanotubes
US7803346B2 (en) 2003-01-06 2010-09-28 Japan Science And Technology Agency Method of selecting structure of carbon nanotube through photoirradiation
CN1330565C (en) * 2003-01-06 2007-08-08 独立行政法人科学技术振兴机构 Method of selecting structure of carbon nanotube through photoirradiation
WO2004060801A1 (en) * 2003-01-06 2004-07-22 Japan Science And Technology Agency Method of selecting structure of carbon nanotube through photoirradiation
JPWO2004106234A1 (en) * 2003-02-07 2006-07-20 株式会社物産ナノテク研究所 Method for producing single-walled carbon nanotubes with uniform diameter
JP4642658B2 (en) * 2003-02-07 2011-03-02 茂夫 丸山 Method for producing single-walled carbon nanotubes with uniform diameter
WO2004106234A1 (en) * 2003-02-07 2004-12-09 Bussan Nanotech Research Institute Inc. Process for producing monolayer carbon nanotube with uniform diameter
US7531158B2 (en) 2003-03-20 2009-05-12 Cheol Jin Lee Vapor phase synthesis of double-walled carbon nanotubes
JP4632285B2 (en) * 2003-05-27 2011-02-16 国立大学法人名古屋大学 Carbon nanotube production method and carbon nanotube-containing composition
JP2004352512A (en) * 2003-05-27 2004-12-16 Univ Nagoya Method for producing carbon nanotube, and carbon nanotube-containing composition
EP2062642A1 (en) 2003-05-29 2009-05-27 Japan Science and Technology Agency Catalyst for synthesizing carbon nanocoils, synthesising method of the same and synthesizing method of carbon nanocoils
JP4958138B2 (en) * 2003-05-29 2012-06-20 公立大学法人大阪府立大学 Catalyst for carbon nanocoil production
WO2004105940A1 (en) * 2003-05-29 2004-12-09 Japan Science And Technology Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil
JPWO2004105940A1 (en) * 2003-05-29 2006-07-20 独立行政法人科学技術振興機構 Catalyst for producing carbon nanocoil, method for producing the same, method for producing carbon nanocoil, and carbon nanocoil
US7829494B2 (en) 2003-05-29 2010-11-09 Japan Science And Technology Agency Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
JP2005068000A (en) * 2003-08-05 2005-03-17 Toray Ind Inc Method and apparatus for gas phase reaction
JP2005154200A (en) * 2003-11-26 2005-06-16 Teijin Ltd Method for producing carbon nanotube
JP4567319B2 (en) * 2003-11-26 2010-10-20 帝人株式会社 Method for producing carbon nanotube
US7884450B2 (en) 2003-12-11 2011-02-08 Yale University Growth of boron nanostructures with controlled diameter
US7531892B2 (en) 2003-12-11 2009-05-12 Yale University Superconducting boron nanostructures
EP1709213A2 (en) * 2004-01-15 2006-10-11 Nanocomp Technologies, Inc. Systems and methods for synthesis of extended length nanostructures
EP1709213A4 (en) * 2004-01-15 2012-09-05 Nanocomp Technologies Inc Systems and methods for synthesis of extended length nanostructures
US8592338B2 (en) 2004-02-27 2013-11-26 Sumitomo Electric Industries, Ltd. Catalyst structure and method of manufacturing carbon nanotube using the same
US7785558B2 (en) 2004-04-23 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing carbon nanostructure
US7658971B2 (en) 2004-06-08 2010-02-09 Sumitomo Electric Industries, Ltd. Method of producing carbon nanostructure
USRE44069E1 (en) 2004-06-08 2013-03-12 Sumitomo Electric Industries, Ltd. Method of producing carbon nanostructure
JP2012167011A (en) * 2004-09-09 2012-09-06 Honda Motor Co Ltd Synthesis of carbon single-walled nanotubes by chemical vapor deposition process
JP2008512343A (en) * 2004-09-09 2008-04-24 本田技研工業株式会社 Synthesis of carbon single-walled nanotubes with narrow diameter distribution
US10384943B2 (en) 2004-09-09 2019-08-20 Honda Motor Co., Ltd. Synthesis of small and narrow diameter distributed carbon single walled nanotubes
JP2012111690A (en) * 2004-11-17 2012-06-14 Honda Motor Co Ltd Method for producing carbon nanotube
JP4633475B2 (en) * 2005-01-05 2011-02-16 独立行政法人産業技術総合研究所 Method for producing isolated carbon nanotube
JP2006188378A (en) * 2005-01-05 2006-07-20 National Institute Of Advanced Industrial & Technology Method for producing isolated carbon nanotube
JPWO2006082829A1 (en) * 2005-02-02 2008-08-07 大塚化学株式会社 Carbon nanotube-supported inorganic particles
WO2006082829A1 (en) * 2005-02-02 2006-08-10 Otsuka Chemical Co., Ltd. Carbon nanotube-loaded inorganic particle
JP2006231107A (en) * 2005-02-22 2006-09-07 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing nanocarbon material, catalyst fine particles, manufacturing method of catalyst for manufacturing nanocarbon material
JP2006298713A (en) * 2005-04-22 2006-11-02 Univ Nagoya Method for manufacturing three-layer carbon nanotube and composition containing three-layer carbon nanotube
JP5109129B2 (en) * 2005-07-05 2012-12-26 国立大学法人 奈良先端科学技術大学院大学 Method for producing carbon nanotube dispersion
WO2007004652A1 (en) * 2005-07-05 2007-01-11 National University Corporation NARA Institute of Science and Technology Method for producing carbon nanotube dispersion liquid
WO2007007594A1 (en) * 2005-07-11 2007-01-18 National University Corporation NARA Institute of Science and Technology Process for preparation of aqueous solution containing carbon nanotube
JP2007126318A (en) * 2005-11-02 2007-05-24 Denso Corp Method for producing carbon nanotube
JP4736721B2 (en) * 2005-11-02 2011-07-27 株式会社デンソー Method for producing carbon nanotube
KR100757099B1 (en) 2006-01-26 2007-09-10 일진나노텍 주식회사 Method of preparing a carbon nanotube having high dispersibility
US8163263B2 (en) 2006-01-30 2012-04-24 Honda Motor Co., Ltd. Catalyst for the growth of carbon single-walled nanotubes
WO2009116261A1 (en) * 2008-03-17 2009-09-24 大塚化学株式会社 Method for manufacturing carbon nanotube
JP5347139B2 (en) * 2008-03-17 2013-11-20 大塚化学株式会社 Method for producing carbon nanotube
WO2010038793A1 (en) 2008-09-30 2010-04-08 凸版印刷株式会社 Nano-carbon material composite substrate and method for manufacturing same
US8741419B2 (en) 2008-09-30 2014-06-03 Toppan Printing Co., Ltd. Nanocarbon material-composite substrate and manufacturing method thereof
WO2014202740A1 (en) * 2013-06-19 2014-12-24 Katholieke Universiteit Leuven Systems and methods for synthesis of carbon nanotubes

Also Published As

Publication number Publication date
JP3743628B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP3743628B2 (en) Method for producing single-walled carbon nanotube
JP5102633B2 (en) Method for growing long carbon single-walled nanotubes
JP3963893B2 (en) Method for producing single-walled carbon nanotube
JP3912583B2 (en) Method for producing oriented carbon nanotube film
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
JP5065898B2 (en) Synthesis of carbon single-walled nanotubes with narrow diameter distribution
JP2017222565A (en) Synthesis of high-quality carbon single-layer nanotube
US20090136413A1 (en) Method for enhanced synthesis of carbon nanostructures
US20070020167A1 (en) Method of preparing catalyst for manufacturing carbon nanotubes
Choi et al. Growth mechanism of vertically aligned carbon nanotubes on silicon substrates
JP2009538262A (en) Method for producing uniform single-walled nanotubes
JP2005263564A (en) Method for manufacturing carbon nanotube
JP2007268319A (en) Catalyst for synthesizing carbon nano-tube and its manufacturing method, catalyst dispersion and manufacturing method for carbon nanotube
US20170157590A1 (en) New class of tunable gas storage and sensor materials
JP6202359B2 (en) Method for producing carbon nanotube
JP2008169092A (en) Carbon nanotube production method
Maruyama et al. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations
JP4632285B2 (en) Carbon nanotube production method and carbon nanotube-containing composition
JP4696598B2 (en) carbon nanotube
JP2009119414A (en) Substrate for cnt (carbon nanotube) growth and method of manufacturing cnt
JP6338219B2 (en) Method for producing carbon nanotube
JP2003238130A (en) Method of manufacturing carbon nanotube and catalytic composition
Ganji Hill model for the base growths and tip growths of doped and undoped carbon nanotubes
Lopez et al. Dependence of the single walled carbon nanotube length with growth temperature and catalyst density by chemical vapor deposition
WO2003082737A1 (en) Process for producing carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040506

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees