WO2004106234A1 - Process for producing monolayer carbon nanotube with uniform diameter - Google Patents

Process for producing monolayer carbon nanotube with uniform diameter Download PDF

Info

Publication number
WO2004106234A1
WO2004106234A1 PCT/JP2004/001348 JP2004001348W WO2004106234A1 WO 2004106234 A1 WO2004106234 A1 WO 2004106234A1 JP 2004001348 W JP2004001348 W JP 2004001348W WO 2004106234 A1 WO2004106234 A1 WO 2004106234A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
carbon nanotubes
walled carbon
producing
producing single
Prior art date
Application number
PCT/JP2004/001348
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeo Maruyama
Yuhei Miyauchi
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Priority to JP2005506448A priority Critical patent/JP4642658B2/en
Priority to US10/543,509 priority patent/US20060093545A1/en
Publication of WO2004106234A1 publication Critical patent/WO2004106234A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Definitions

  • the present invention relates to a method for producing single-walled carbon nanotubes (hereinafter referred to as SWNTs) by sublimating fullerenes.
  • the present invention relates to a method for manufacturing a SWNT in which the diameter of the SWNT is controlled by a len. book
  • Carbon nanotubes are carbon clusters whose cross-sectional diameter is 100 nm or less, with a tubular graph ensheet.
  • CNTs Carbon nanotubes
  • SWNTs exhibit various properties between semiconductors and metals due to their chirality. Therefore, control the chirality at the time of production or use chirality in the separation and purification process. If this can be controlled, it is expected that industrial utility will be very high.
  • SWNT has a tubular structure of graph ensheet, so if the diameter of SWNT can be strictly controlled, it is close to controlling chirality without directly controlling chirality. On the other hand, by narrowing the range of the diameter of the SWNT, the width of the chirality that can be substantially taken is narrowed.
  • SWNT small size nanoparticles
  • CVD chemical vapor deposition
  • CCVD catalytic chemical vapor deposition
  • SWNT diameter control To control the diameter distribution by adjusting the manufacturing conditions, such as changing the inert gas type and pressure, or by heat-treating the SWNT mixture to extract only SWNTs near a specific diameter.
  • Japanese Patent Application Laid-Open No. 2000-203819 discloses a method for producing a mixture of linear single-walled or multi-walled carbon nanotubes in a plasma of a carbon material containing one C ⁇ C one or one. ing. It is stated that this method can control the length of CNT.
  • Japanese Patent Application Laid-Open No. 2001-058805 discloses that a mixture of the same or different fullerene molecules and a transition metal element or an alloy thereof are mixed to form CNT at 500 ° C. or more under reduced pressure under an inert gas atmosphere.
  • the theme is to produce easily and in high yield by the method.
  • Japanese Patent Application Laid-Open No. 2001-089117 discloses that when a CNT is produced by a laser ablation method, a laser-irradiated target includes a five-membered ring bond of carbon such as fullerene and a catalyst is mixed with the target. There is no description about controlling the SWNT diameter because it generates SWNT at a low temperature.
  • Japanese Patent Application Laid-Open No. 2002-029717 discloses a method for producing a carbon material in which at least one of fullerene or CNT is mixed with amorphous carbon and heat-treated to convert the amorphous carbon into fullerene or CNT. There is a statement that a CNT of a certain length can be obtained, but there is no mention of the diameter.
  • Zhang and Iijima is, C 6.
  • a mixture of 5 at% of Ni and Co in powder is used as a laser irradiation target in the laser-oven method, and when graphite is used, the temperature of the electric furnace (oven) must be set to about 850 ° C to make the SWNT Although it was not possible to produce, it was shown that even though the furnace temperature was 400 ° C, it was trace and amorphous, but could be produced (Y. Zhang, S. Iijima: Appl. Phys. Lett. 75 (1999), 3087). In this case, the fullerene structure at the angle It is believed that the debris has been destroyed and that the debris that has not been completely disintegrated by the laser is responsible for the synthesis of SWNT.
  • any carbon material is considered to be a raw material for SWNT, and as a result, it is difficult to say that SWNT is synthesized from fullerene.
  • the temperature of the oven is set to 400 ° C in order to prevent the sublimation of fullerene.
  • the amount of SWNT is too small to judge how large the diameter is from the Raman spectrum, but it is thought that it is almost the same as when using graphite material.
  • An object of the present invention is to produce a SWNT having a controlled diameter by a CCVD method. Disclosure of the invention
  • the present invention relates to a method for producing SWNTs by a CCVD method, in which fullerenes are used as a raw material, sublimated therefrom, and brought into contact with a heated catalyst to synthesize SWNTs. This is a method of manufacturing SWNT that controls the diameter of SWNT.
  • one or more fullerenes C 2n (n is an integer of n ⁇ 18, for example, C 60 , C 70 , C 76 , C ( Table 82, etc.)
  • n-> 02plJss9 JodB.
  • the vapor pressure of fullerene C 60 can be calculated by the following equation.
  • Table 2 shows the results of calculating the vapor pressure of fullerene C 6 Q using the above formula.
  • the sublimated fullerene gas is sent downstream of the reactor using the vapor pressure as a driving force, and is brought into contact with a transition metal catalyst supported on a porous substance or an inorganic oxide thin film heated to a vaporization temperature or higher.
  • SWNT is generated from fullerene by contact with the catalyst. After a predetermined time from the start of the reaction, the reactor is cooled and SWNT is taken out.
  • fullerene is decomposed on the surface of the catalyst particles and precipitates on the surface as transition-state carbon atoms or molecules.
  • the resulting structure has a structure and can be deposited as single-walled carbon nanotubes. This is because the chirality of the deposited carbon nanotube is considered to be determined by the direction and position of the five-membered ring of the fullerene molecule. Therefore, a part of the fullerene molecules cannot be left on the catalyst particle surface in the form as it is.
  • single-walled carbon nanotubes with uniform chirality can be produced.
  • the carbon nanotubes produced by the method of the present invention inherit the regularity of the molecular structure of fullerene, so that the diameter distribution can be narrowed.
  • single-walled carbon nanotubes are generated on a substrate having catalyst particles having a uniform particle diameter. Since the size of the catalyst particles is a factor in determining the diameter of the single-walled carbon nanotubes precipitated from the catalyst particles, the distribution of the diameter of the single-walled carbon nanotubes precipitated from the catalyst particles is further improved by adjusting the size of the catalyst particles. Can be narrow.
  • FIG. 1 is a diagram schematically illustrating a SWNT generation apparatus according to a first embodiment.
  • FIG. 2 is a transmission electron micrograph of SWNT generated in Example 1.
  • FIG. 3 is a Raman spectrum diagram of the SWNT produced in Example 1.
  • FIG. 4 is a diagram schematically illustrating a SWNT generation apparatus according to a second embodiment.
  • FIG. 5 is a Raman spectrum diagram of the SWNT generated in Example 2.
  • FIG. 6 is a diagram schematically illustrating a SWNT generation apparatus according to a third embodiment.
  • FIG. 7 is a diagram illustrating a change in a temperature rise curve and a vapor pressure of fullerene in Example 3.
  • FIG. 8 is a transmission electron micrograph of SWNT produced in Example 3.
  • FIG. 9 is a transmission electron micrograph of the SWNTs produced in Example 3.
  • FIG. 10 is a Raman spectroscopy diagram of SWNT generated in Example 3.
  • FIG. 11 is a Raman spectrum diagram of the SWNTs generated in Example 4.
  • FIG. 12 is a Raman spectrum diagram of the SWNTs generated in Examples 3 and 4 and the SWNT generated in Comparative Example 1.
  • FIG. 1 is a schematic diagram showing one example of a reactor for carrying out the present invention.
  • one or more fullerenes C 2n (where n is an integer of n ⁇ 18) or one or more types of fullerenes C 2n in a reactor in a vacuum state of 0.5 Torr or less, preferably in a vacuum state of 0.05 Torr or less.
  • the chemically modified fullerene is sublimated above the sublimation temperature of the fullerene.
  • the evaporating section of fullerenes is placed in a fusion cell or a small diameter pipe. Due to the large flow resistance between the reaction tube and the outside, the pressure inside the tube is approximately the fullerene vapor pressure at the set temperature.
  • the sublimated fullerene gas is guided using a flow straightening tube and is caused to touch a downstream catalyst.
  • the method of controlling the flow of fullerene gas in Fig. 1 is to place the fullerene to be immersed on the closed side in a quartz tube sealed on one side, turn the open end to the vacuum device side, and convert the heated fullerene to fullerene vapor.
  • the pressure is made to flow as a driving force.
  • Control of the pressure of the fullerene gas is performed at the heating temperature, but control of this temperature is important. If the back pressure of the reactor is 0.05 Torr, the vapor pressure of fullerene must be at least 0.05 Torr similar to the back pressure, and heating at 660 ° C is required. On the other hand, if the back pressure is 0.5 Torr, heating at 760 ° C is necessary to make the vapor pressure 0.5 Torr.
  • the temperature is 700 ° C or more, C 6 . It is thought that the decomposition of the fullerene proceeds, and there is an upper limit to the temperature at which the fullerene is heated.
  • Fullerene transferred from the evaporator collides with the transition metal catalyst and becomes an initial nucleus of the single-walled carbon nanotube while preserving a part of its molecular structure, whereby the single-walled carbon nanotube grows from the metal catalyst. If the initial nucleus is formed, the growth of SWNTs will be relatively fast. For this reason, the rate of temperature rise from the start of fullerene evaporation is important.
  • the catalyst is heated to the high temperature required for nucleation of fullerenes into SWNTs. Preferably it is 750 ° (: to 900 ° C.
  • a porous substance or an oxide of an inorganic substance is applied or produced on a substrate capable of withstanding the operating temperature, and one or more types of metal fine particles are supported on the substrate.
  • the sublimated fullerene is passed over the substrate.
  • the transition metal is preferably any one of Fe, Co, Mo, Ni, Rh, Pd, and Pt, or a mixture thereof. More preferably, they are Fe, Co, and Mo.
  • the porous substance is not particularly limited as long as it can support the above-mentioned metal fine particles and does not change at the reaction temperature in the apparatus, but a metal oxide or other inorganic porous body is preferable.
  • porous bodies such as zeolite, magnesia, alumina, silica and mesoporous silica are more preferable, and Y-type zeolite is particularly preferable.
  • a thin film of an inorganic oxide can also be preferably used, and a silicon oxide film is particularly preferable.
  • a substrate on which these porous materials are placed or a substrate on which an inorganic oxide film is formed Plate) is placed parallel to the flow direction of the fullerene gas flow. Alternatively, a plate processed into a shape along the inner wall of the reaction tube is preferable.
  • the cooling method is to stop heating the reaction tube, cool the reaction tube quickly by blowing air at room temperature from outside with a fan, and take out the plate after reaching room temperature to obtain SWNT on the plate.
  • a fullerene was placed in a quartz tube (reaction tube) with an inner diameter of 4.5 mm and a length of 200 mm sealed in a 26 mm inner diameter quartz tube (reaction tube) placed in a heating furnace. those packed in sealed side C 60 5 0 Omg, placed by Uni fullerene part at the center of the first heating furnace.
  • a quartz plate uniformly coated with Y-type zeolite particles (particle diameter: 0.3 to 1 m) carrying Fe / Co catalyst particles (particle diameter:! Placed in parallel.
  • the inside of the reaction tube was evacuated to a pressure of 0.5 Torr or less using a single-hole pump.
  • the first heating furnace is 20 cm long and the second heating furnace is 30 cm long.
  • the first heating furnace is shifted along the 20 cm quartz tube in the direction opposite to the second heating furnace, and while the fullerene is not heated, the first heating furnace is set to 8 while flowing argon at about 35 OTorr and about 20 Osccm.
  • the temperature of the second heating furnace was raised to 900 ° C. at 50 ° C. After the temperature was raised, the argon was stopped and the pressure was again reduced to 0.5 Torr or less. After that, the first heating furnace is returned to the specified temperature and heating of the fullerene is started. After the operation was continued for 10 minutes under the above conditions, the heating was stopped, and the reactor was cooled by blowing air at room temperature with a fan. After cooling, the quartz plate coated with zeolite was taken out to obtain SWNT.
  • TEM transmission electron microscope
  • Example 2 The estimated diameter is shown from the figure, and it can be seen that it is about 1 Ml.
  • Example 2 The estimated diameter is shown from the figure, and it can be seen that it is about 1 Ml.
  • Figure 4 shows a schematic diagram of the equipment used.
  • Example 2 The operation was performed in the same manner as in Example 1, except that the back pressure was set to 0.05 ⁇ 0 ⁇ and the quartz plate coated with zeolite was formed in a semi-cylindrical shape along the inner wall of the reaction tube.
  • the diameter of the quartz tube enclosing the fullerene was the same as that of Example 1, but the length was set to 100 mm.
  • the temperature of the first heating furnace was set to 680 ° (:, and the temperature of the second heating furnace was set to 825 ° C.
  • Fig. 5 shows the Raman spectrum of the generated SWNT.
  • Figure 6 shows a schematic diagram of the equipment used.
  • thermocouple was attached to a quartz tube in which fullerene was sealed, and the temperature raising condition of fullerene was measured.
  • Figure 7 shows the change in temperature of the quartz tube filled with fullerene and the change in vapor pressure of fullerene from the start of the experiment.
  • FIGS. 8 and 9 show TEM photographs of the generated SWNTs, and FIG. 10 shows a Raman spectroscopy spectrum.
  • Example 4 The same procedure was performed as in Example 3, but using fullerene C 6 as a raw material. Fullerene C 7 Q was used in place of.
  • Fig. 11 shows the Raman spectrum spectrum of the generated SWNT.
  • Figure 12 shows a Raman spectrum diagram of SWNT generated from alcohol by CCVD.
  • the SWNT obtained by the present invention can be widely used for FED displays, fuel cells, electron microscopes, ultra-high strength materials, electrically conductive composite materials, and the like.

Abstract

A process for producing monolayer carbon nanotubes on a substrate having provided thereon a multiplicity of fine particles composed of at least one type of catalyst metal in a reactor held vacuumized, which process comprises subliming at least one type of fullerene C2n (n is an integer satisfying the relationship n ≥ 18) at given temperature or higher so as to form fullerene gas with its partial pressure controlled and transporting the fullerene gas onto the substrate having been heated to the sublimation temperature of the fullerene or higher so that the fullerene gas is brought into contact with the fine particles of catalyst metal to thereby produce monolayer carbon nanotubes. Preferably, the degree of vacuum is 0.5 Torr or below and the sublimation temperature 700°C or below; the substrate has a thin film of porous substance or inorganic oxide; and fine particles of transition metal catalyst with a diameter of 0.5 to 10 nm are provided on the thin film.

Description

直径のそろった単層カーボンナノチューブの製造方法 Method for producing single-walled carbon nanotubes with uniform diameter
技術分野 Technical field
本発明は、 フラーレンを昇華させて単層力一ボンナノチューブ (以下 SWNT という) を製造する方法に関し、 特に用いるフラーレンあるいは化学修飾フラー 明  The present invention relates to a method for producing single-walled carbon nanotubes (hereinafter referred to as SWNTs) by sublimating fullerenes.
レンによって SWNTの直径を制御する SWNTの製造方法に関する。 書 The present invention relates to a method for manufacturing a SWNT in which the diameter of the SWNT is controlled by a len. book
背景技術 Background art
力一ボンナノチューブ (以下 CNTという) はグラフエンシートが筒状になつ ている、 断面の直径が 100 nm以下の炭素クラスタ一である。 特にダラフェン シートが一層の単層カーボンナノチューブは電気的あるいは化学的特性が特異で あることからナノ構造材料として有用であることが数々報告されている。 特に、 SWNTはそのカイラリティ一 (Chirality) によって半導体から金属の間の様 々な性質を示すことが理論計算より判明しているので、 製造時にカイラリティー の制御をするか、 分離精製工程でカイラリティ一を制御できれば、 産業上の有用 性が非常に高いことが期待される。  Carbon nanotubes (hereinafter referred to as CNTs) are carbon clusters whose cross-sectional diameter is 100 nm or less, with a tubular graph ensheet. In particular, it has been reported that single-walled carbon nanotubes with a single dalafen sheet are useful as nanostructured materials because of their unique electrical or chemical properties. In particular, it has been found from theoretical calculations that SWNTs exhibit various properties between semiconductors and metals due to their chirality. Therefore, control the chirality at the time of production or use chirality in the separation and purification process. If this can be controlled, it is expected that industrial utility will be very high.
これらの試みは、 学術上数々報告されているが、 産業上実施可能な例は報告さ れていない。 一方、 SWNTはグラフエンシートを筒状にした構造を持っため、 SWNTの直径を厳密に制御できれば、 カイラリティ一を直接制御するのでなく てもカイラリティーの制御をすることに近いことになる。 一方、 SWNTの直径 の範囲を狭めることにより、 実質的にとりうるカイラリティ一の幅が狭まる。  Many of these attempts have been reported scientifically, but no industrially viable examples have been reported. On the other hand, SWNT has a tubular structure of graph ensheet, so if the diameter of SWNT can be strictly controlled, it is close to controlling chirality without directly controlling chirality. On the other hand, by narrowing the range of the diameter of the SWNT, the width of the chirality that can be substantially taken is narrowed.
SWNTの製造方法としては、 アーク放電法、 レーザ一アブレ一シヨン法、 高 周波プラズマ法、 化学熱分解法 (化学気相蒸着 (CVD) 法、 触媒化学蒸着 (C CVD) 法) が知られているが、 SWNTの直径制御については触媒ゃ炉の温度 を変える、 不活性ガスの種類や圧力を変えるなど製造条件を調整することによつ て直径分布を制御することや、 S WNT混合物を熱処理することによって特定の 直径付近の SWNTだけを取り出そうとする学術的試みがあるものの、 確実な分 離にはいたっていない。 Known methods for producing SWNT include arc discharge, laser ablation, high-frequency plasma, and chemical pyrolysis (chemical vapor deposition (CVD), catalytic chemical vapor deposition (CCVD)). However, for SWNT diameter control, To control the diameter distribution by adjusting the manufacturing conditions, such as changing the inert gas type and pressure, or by heat-treating the SWNT mixture to extract only SWNTs near a specific diameter. Despite academic efforts, no reliable separation has been achieved.
特開 2000— 203819では、 直線状の単層または多層カーボンナノチュ ーブの混合物を、 一 C≡C一または一 —を含んだ炭素材料プラズマ中で反 応させることによって製造する方法を開示している。 この方法は CNTの長さを 制御できると記載されている。  Japanese Patent Application Laid-Open No. 2000-203819 discloses a method for producing a mixture of linear single-walled or multi-walled carbon nanotubes in a plasma of a carbon material containing one C≡C one or one. ing. It is stated that this method can control the length of CNT.
特開 2001— 058805は、 同種又は異種のフラーレン分子の混合体と遷 移金属元素またはその合金を混合して、 不活性ガス雰囲気下の減圧状態で、 50 0 °C以上で C NTを生成させる方法で簡易に、 高収率で製造することを主題とし ている。  Japanese Patent Application Laid-Open No. 2001-058805 discloses that a mixture of the same or different fullerene molecules and a transition metal element or an alloy thereof are mixed to form CNT at 500 ° C. or more under reduced pressure under an inert gas atmosphere. The theme is to produce easily and in high yield by the method.
特開 2001— 089117は、 レーザ一アブレ一ション法で CNTを製造す る際、 レーザ一照射ターゲットにフラーレン等の炭素の五員環結合を含ませ、 さ らにターゲットに触媒を混合することによって低い温度で SWNT生成させると いうもので S WN Tの径の制御については記載がなレ 。  Japanese Patent Application Laid-Open No. 2001-089117 discloses that when a CNT is produced by a laser ablation method, a laser-irradiated target includes a five-membered ring bond of carbon such as fullerene and a catalyst is mixed with the target. There is no description about controlling the SWNT diameter because it generates SWNT at a low temperature.
特開 2002— 029717は、 フラーレンあるいは CNTの少なくとも 1つ と非晶質炭素と混合して、 加熱処理して非晶質炭素をフラーレンまたは CNTに 変える炭素材料の製造方法を開示している。 ある長さの C N Tが得られるとの記 載はあるが径については記載がない。  Japanese Patent Application Laid-Open No. 2002-029717 discloses a method for producing a carbon material in which at least one of fullerene or CNT is mixed with amorphous carbon and heat-treated to convert the amorphous carbon into fullerene or CNT. There is a statement that a CNT of a certain length can be obtained, but there is no mention of the diameter.
また、 Zhangと Iijimaは、 C 6。粉末に 5 at%の Ni と Coを混ぜたものをレー ザ一オーブン法のレーザー照射ターゲットとして用いて、 グラフアイト 用いた 場合には電気炉 (オーブン) の温度を 850°C程度にしないと SWNTが生成で きないのに対して、 電気炉温度 400°Cでも微量かつアモルファスまみれである が、 生成できることを示した (Y.Zhang, S. Iijima: Appl. Phys. Lett. 75 (1999), 3087) 。 この場合には、 レーザー照射によって折角のフラ一レン構造は 破壊されていると考えられ、 S WN Tの合成に役立っているのはレーザーで完全 にバラバラとなっていない破片であると考えられている。 レーザー蒸発をさせて しまえば、 およそどんな炭素材料であつても S WN Tの原料となると考えられ、 結果として、 フラーレンからの SWNTの合成方法とは言い難い。 ちなみに、 ォ —ブン温度を 400°Cとしているのは、 フラーレンが昇華してしまうのを防ぐた めである。 SWNTの量が少なすぎてラマンスぺクトルから直径がどの程度にな つているのかの判断は難しいが、 おおよそグラフアイト材料を用いた場合と変わ らないと考えられている。 Moreover, Zhang and Iijima is, C 6. A mixture of 5 at% of Ni and Co in powder is used as a laser irradiation target in the laser-oven method, and when graphite is used, the temperature of the electric furnace (oven) must be set to about 850 ° C to make the SWNT Although it was not possible to produce, it was shown that even though the furnace temperature was 400 ° C, it was trace and amorphous, but could be produced (Y. Zhang, S. Iijima: Appl. Phys. Lett. 75 (1999), 3087). In this case, the fullerene structure at the angle It is believed that the debris has been destroyed and that the debris that has not been completely disintegrated by the laser is responsible for the synthesis of SWNT. After laser evaporation, almost any carbon material is considered to be a raw material for SWNT, and as a result, it is difficult to say that SWNT is synthesized from fullerene. By the way, the temperature of the oven is set to 400 ° C in order to prevent the sublimation of fullerene. The amount of SWNT is too small to judge how large the diameter is from the Raman spectrum, but it is thought that it is almost the same as when using graphite material.
また、 Champbell らは、 C CVD法でのナノチューブ生成を試みているが、 生 成できたのは多層のナノチューブであった (L.P.Biro, R.Ehlich, R. Tellgmann, A. Gromov, N. Kra ez, M. Tsc aplyguine, M.M.Pohl, E. Zsoldos, - Z. Vertesy, Z.E.Horvath and E.E.B. Chambell : Chem. Phys. Lett. 306 (1999), 155、 0. A. erushev, R. E.Morjan, D. I. Ostrovski i, M. Sveningsson, M. Jonsson, Champbell et al. Attempted to produce nanotubes using the CCVD method, but could produce multi-walled nanotubes (LPBiro, R. Ehlich, R. Tellgmann, A. Gromov, N. Kra). ez, M. Tsc aplyguine, MMPohl, E. Zsoldos,-Z. Vertesy, ZE Horvath and EEB Chambell: Chem. Phys. Lett. 306 (1999), 155, 0. A. erushev, REMorjan, DI Ostrovski i , M. Sveningsson, M. Jonsson,
F. Roh匪 nd and E.E.B. Champbell: P ysica B 323 (2002), 51、 O.A. erushev, S.Dittmar, R. E.Morj n, F.Roh腿 nd and E. E. B. Ca即 bel 1 : J. Appl. Phys.F. Roh nd and E.E.B.Champbell: Pysica B 323 (2002), 51, O.A.erushev, S. Dittmar, R.E.Morjn, F.Roh Thigh nd and E.E.B.
93(2003), 4185) 。 93 (2003), 4185).
フラーレンと触媒金属の多層薄膜を用いたナノチューブ合成も試みられ、 多層 のナノチューブともいえる構造が作られている (E.Czerwosz, P.Dluzewski, Attempts have also been made to synthesize nanotubes using multi-layer thin films of fullerenes and catalytic metals, and structures have been created that can be called multi-layer nanotubes (E. Czerwosz, P. Dluzewski,
G. Dmowska, R. owakowski, E. Starnawska and H. Wronka: Appl. Surf. Sci. 141 (1999), 350、 E.Czerwosz, P.Dluzewski: Diamond Related Mater. 9(2000),G. Dmowska, R. owakowski, E. Starnawska and H. Wronka: Appl. Surf.Sci. 141 (1999), 350, E. Czerwosz, P. Dluzewski: Diamond Related Mater. 9 (2000),
901) 。 その後、 C6。と Ni の多層膜を用いた場合に SWNTの単結晶ができる との衝撃的な論文が I BMの Gimzewskiらのグループによって Scienceに発表さ れた (R. R.Schlittler, J.W.Seo, J. K. Gimzewski, C. Durkan, M. S.M. Saifullah and M.E. Wei land: Science 292 (2001), 1136) 。 ただし、 その後に、 この論文の 証拠となった T EM像が、 モリブデンの酸化物の像であることが明らかとなり ( M.F. C isholm, Y.Wang, A. R.Lupini, G.Eres, A. A.Puretzky, B.Brinson, A. V. Melechko, D. B. Geohegan, H. Cui, M. P. Johnson, S. J.Pennycook, D.H.Lowndes, S. Arepalli, C.Kittrell, S. Sivaram, M.Kim, G. Lavin, J.Kono, R. Hauge and R.E.Smalley: Science 300 (2003), 1236b) 、 I BMのグループで もこれを認める発表を行っている (M.E. Wei land, C. Durkan, M. S. M. Saiful lah, J.W.Seo, R. R.Schlittler and J.K. Gimzewski : Science 300 (2003), 1236c) 。 フラーレンが、 SWNTの内部に並んだピーポッド (Peapod) を高温で熱処理 することで DWNTになることが知られており (B.W. Smith, M. Mont ioux and D.E.Luzzi: Chem. Phys. Lett. 315 (1999), 31) 、 この場合も内部のフラーレン が SWNTに変形したと考えられる。 中にできるナノチューブが SWNTであつ たとしても、 それを取り出すのは困難であることと、 最大でも元々あった SWN Tと同じだけしか生成できないことからフラーレンからの SWNTの生成技術と はなり得ない。 901). Then, C 6. A shocking paper on the formation of SWNT single crystals when a multilayer film of Ni and Ni was used was published in Science by the group of Gimzewski et al. Of IBM (RRSchlittler, JWSeo, JK Gimzewski, C. Durkan, MSM Saifullah and ME Wei land: Science 292 (2001), 1136). However, it was later revealed that the TEM image that was the evidence in this paper was an image of molybdenum oxide (MF Cisholm, Y. Wang, ARLupini, G. Eres, AAPuretzky, B. Brinson, AV Melechko, DB Geohegan, H. Cui, MP Johnson, SJPennycook, DHLowndes, S. Arepalli, C. Kittrell, S. Sivaram, M. Kim, G. Lavin, J. Kono, R. Hauge and RESmalley: Science 300 ( 2003), 1236b), and the IBM group has also made presentations recognizing this (ME Weiland, C. Durkan, MSM Saiful lah, JWSeo, RRSchlittler and JK Gimzewski: Science 300 (2003), 1236c). It is known that fullerenes become DWNT by heat treating Peapods arranged inside SWNTs at high temperature (BW Smith, M. Mont ioux and DELuzzi: Chem. Phys. Lett. 315 (1999) In this case, it is considered that the fullerene inside was transformed into SWNT. Even if the nanotubes formed inside are SWNTs, it is difficult to extract them, and since they can produce only the same amount as the original SWNTs at the maximum, it can not be a technology for producing SWNTs from fullerenes .
本発明は、 C C V D法により直径の制御された S WN Tを製造することを目的 とする。 発明の開示  An object of the present invention is to produce a SWNT having a controlled diameter by a CCVD method. Disclosure of the invention
本発明は、 CCVD法によって SWNTを製造する方法において、 フラーレン類 を原料に、 これを昇華させ、 加熱した触媒に接触させて SWNTを合成するもの で、 使用するフラーレンあるいは化学修飾されたフラーレンによって生成する S WNTの直径を制御する SWNTの製造方法である。 The present invention relates to a method for producing SWNTs by a CCVD method, in which fullerenes are used as a raw material, sublimated therefrom, and brought into contact with a heated catalyst to synthesize SWNTs. This is a method of manufacturing SWNT that controls the diameter of SWNT.
上述した通り、 従来のフラーレン原料を用いた公知技術におけるカーボンナノ チューブの生成においては、 多層カーボンナノチューブをフラ一レンから生成す るために、 フラーレン気体の分圧の制御が不可欠であると考え、 本発明の想到に 至った。  As described above, in the production of carbon nanotubes using conventional fullerene raw materials in the known technology, it is considered that control of the partial pressure of fullerene gas is indispensable in order to produce multi-walled carbon nanotubes from fullerene. The present invention has been reached.
まず、 0. 5 Torr 以下の真空にした反応装置の中で、 1種類または 1種類以 上のフラーレン C2n (nは n≥18なる整数、 例として C60、 C70、 C76、 C 82表など) あるいは化学修飾フラーレンを、 そのフラーレンの昇華温度以上で昇 華させる (1)n->」」02plJss9 JodB。 First, one or more fullerenes C 2n (n is an integer of n≥18, for example, C 60 , C 70 , C 76 , C ( Table 82, etc.) Alternatively, sublimate chemically modified fullerenes above the sublimation temperature of the fullerenes. (1) n-> ”” 02plJss9 JodB.
フラーレンの蒸気圧については、 パンカジャバリ (Pankajavalli) 、 Thermochimica Acta, 316 (1998), 101-108 の表 3に従来の実験データがまとめ られて報告されており、 表 1に示す。  For the fullerene vapor pressure, Table 3 of Pankajavalli, Thermochimica Acta, 316 (1998), 101-108 summarizes and reports conventional experimental data.
これを参照して、 従来の実験の平均を用いると、 例えば, フラーレン C60の 蒸気圧は、 以下の式で計算できる。 Referring to this, using the average of the conventional experiments, for example, the vapor pressure of fullerene C 60 can be calculated by the following equation.
p (Torr)=7.5X108X10_95OO/T(K) p (Torr) = 7.5X10 8 X10 _95OO / T (K)
一例として、 フラーレン C 6 Qの蒸気圧を上記の式で計算した結果を表 2に示 す。 As an example, Table 2 shows the results of calculating the vapor pressure of fullerene C 6 Q using the above formula.
表 2 Table 2
6 0蒸気圧 60 vapor pressure
皿度 (。し) 温度 (K) (Torr)  Temperature (K) (Torr)
400 673 5. 743E-06  400 673 5.743E-06
450 723 5. 437E-05  450 723 5. 437E-05
500 773 3. 848E-04  500 773 3.848E-04
550 823 2. 147E-03  550 823 2.147E-03
600 873 9. 841E-03  600 873 9. 841E-03
650 923 3. 824E-02  650 923 3.824E-02
700 973 1. 293E-01  700 973 1.293E-01
750 1023 3. 878E-01  750 1023 3. 878E-01
800 1073 1. 050E+00  800 1073 1. 050E + 00
この昇華したフラーレン気体を、 その蒸気圧を駆動力として反応装置下流に送 り、 気化温度以上に加熱された多孔質物質または無機物の酸化物の薄膜上に担持 させた遷移金属触媒に接触させる。 触媒と接触することによってフラーレンから SWN Tが生成する。 反応開始から所定の時間後、 反応装置を冷却し S WN Tを 取り出す。 The sublimated fullerene gas is sent downstream of the reactor using the vapor pressure as a driving force, and is brought into contact with a transition metal catalyst supported on a porous substance or an inorganic oxide thin film heated to a vaporization temperature or higher. SWNT is generated from fullerene by contact with the catalyst. After a predetermined time from the start of the reaction, the reactor is cooled and SWNT is taken out.
フラーレン気体の分圧 (すなわちフラ一レンの供給速度) が適当であれば、 触 媒粒子表面でフラ一レンが分解して遷移状態のカーボン原子または分子として表 面に析出した後、 規則性を持った構造が形成され、 単層カーボンナノチューブと して析出することができる。 これは、 フラーレン分子の 5員環の向きと位置によ つて析出するカーボンナノチューブのカイラリティが決まると考えられるためで ある。 従って、 フラーレン分子の一部をそのままの形態で触媒粒子表面に残すこ とができる本方法では、 カイラリティが揃った単層力一ボンナノチューブを生成, することができる。 また、 本発明の方法で生成されるカーボンナノチューブは、 フラーレンの分子構造の規則性を引き継いでいるため、 その直径分布を狭くする ことができる。 If the partial pressure of the fullerene gas (that is, the feed rate of fullerene) is appropriate, fullerene is decomposed on the surface of the catalyst particles and precipitates on the surface as transition-state carbon atoms or molecules. The resulting structure has a structure and can be deposited as single-walled carbon nanotubes. This is because the chirality of the deposited carbon nanotube is considered to be determined by the direction and position of the five-membered ring of the fullerene molecule. Therefore, a part of the fullerene molecules cannot be left on the catalyst particle surface in the form as it is. According to the present method, single-walled carbon nanotubes with uniform chirality can be produced. In addition, the carbon nanotubes produced by the method of the present invention inherit the regularity of the molecular structure of fullerene, so that the diameter distribution can be narrowed.
ただし、 フラーレン気体の分圧を高く (供給速度が速く) する生成条件は、 単 層カーボンナノチューブの生成には適切な条件とはなりえない。 これは、 角虫媒粒 子表面に遷移状態のカーボンの量が多くなり、 規則性を持ったシートが複数枚重 なった多層カーボンナノチューブのような構造が形成されるためである。 さらに 、 カーボン原子の配列が規則性を有する前に固体として析出するため、 非晶質力 —ボンが析出するためである。  However, the conditions under which the partial pressure of the fullerene gas is increased (the supply rate is increased) cannot be appropriate for the production of single-walled carbon nanotubes. This is because the amount of transition state carbon increases on the surface of the hornworm medium particles, and a structure like a multi-walled carbon nanotube in which a plurality of sheets having regularity are stacked is formed. In addition, since the carbon atoms are deposited as a solid before the arrangement of the carbon atoms has regularity, the amorphous carbon is deposited.
なお、 本発明の方法では、 粒子径の揃った触媒粒子を有する基板上に単層力一 ボンナノチューブの生成を行うようにしている。 触媒粒子の大きさは、 そこから 析出する単層カーボンナノチューブの直径を決める要因であるため、 触媒粒子の 大きさを揃えることにより、 そこから析出する単層力一ボンナノチューブの直径 の分布をさらに狭くすることができる。 図面の簡単な説明  In the method of the present invention, single-walled carbon nanotubes are generated on a substrate having catalyst particles having a uniform particle diameter. Since the size of the catalyst particles is a factor in determining the diameter of the single-walled carbon nanotubes precipitated from the catalyst particles, the distribution of the diameter of the single-walled carbon nanotubes precipitated from the catalyst particles is further improved by adjusting the size of the catalyst particles. Can be narrow. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1の S WN Tの生成装置の概略を示す図である。  FIG. 1 is a diagram schematically illustrating a SWNT generation apparatus according to a first embodiment.
図 2は、 実施例 1で生成した S WN Tの透過型電子顕微鏡写真である。  FIG. 2 is a transmission electron micrograph of SWNT generated in Example 1.
図 3は、 実施例 1で生成した S WNTのラマン分光スペクトル図である。  FIG. 3 is a Raman spectrum diagram of the SWNT produced in Example 1.
図 4は、 実施例 2の S WN Tの生成装置の概略を示す図である。  FIG. 4 is a diagram schematically illustrating a SWNT generation apparatus according to a second embodiment.
図 5は、 実施例 2で生成した S WNTのラマン分光スぺクトル図である。  FIG. 5 is a Raman spectrum diagram of the SWNT generated in Example 2.
図 6は、 実施例 3の S WN Tの生成装置の概略を示す図である。  FIG. 6 is a diagram schematically illustrating a SWNT generation apparatus according to a third embodiment.
図 7は、 実施例 3におけるフラーレンの昇温曲線と蒸気圧の変化を示す図であ る。  FIG. 7 is a diagram illustrating a change in a temperature rise curve and a vapor pressure of fullerene in Example 3.
図 8は、 実施例 3で生成した S WN Tの透過型電子顕微鏡写真である。 図 9は、 実施例 3で生成した SWNTの透過型電子顕微鏡写真である。 FIG. 8 is a transmission electron micrograph of SWNT produced in Example 3. FIG. 9 is a transmission electron micrograph of the SWNTs produced in Example 3.
図 10は、 実施例 3で生成した SWNTのラマン分光スペクトル図である。 図 11は、 実施例 4で生成した SWNTのラマン分光スペクトル図である。 図 12は、 実施例 3及び 4で生成した SWNTと比較例 1で生成した SWNT のラマン分光スペクトル図である。 発明を実施するための最良の形態  FIG. 10 is a Raman spectroscopy diagram of SWNT generated in Example 3. FIG. 11 is a Raman spectrum diagram of the SWNTs generated in Example 4. FIG. 12 is a Raman spectrum diagram of the SWNTs generated in Examples 3 and 4 and the SWNT generated in Comparative Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明を実施するための反応装置の 1例を示す概略図である。  FIG. 1 is a schematic diagram showing one example of a reactor for carrying out the present invention.
本発明の方法では、 0. 5Torr 以下の真空、 好ましくは 0. 05Torr 以下の 真空状態にした反応装置の中で、 1種類または 1種類以上のフラーレン C2n (n は n≥18なる整数) あるいは化学修飾フラーレンを、 そのフラーレンの昇華温 度以上で昇華させる。 フラーレン類の蒸発部は、 エフユージョンセルか小径の石 英管に置く。 外部の反応管との間に大きな流動抵抗があるため、 その内部の圧力 は、 おおよそ設定温度におけるフラーレンの蒸気圧になる。 In the method of the present invention, one or more fullerenes C 2n (where n is an integer of n≥18) or one or more types of fullerenes C 2n in a reactor in a vacuum state of 0.5 Torr or less, preferably in a vacuum state of 0.05 Torr or less. The chemically modified fullerene is sublimated above the sublimation temperature of the fullerene. The evaporating section of fullerenes is placed in a fusion cell or a small diameter pipe. Due to the large flow resistance between the reaction tube and the outside, the pressure inside the tube is approximately the fullerene vapor pressure at the set temperature.
この昇華させたフラーレン気体を整流管を用いてガイドして後流の触媒にふれ させる。 図 1でフラーレン気体の流れを制御する方法は、 片側を封じた石英管内 の閉塞側に気ィ匕させるフラーレンを置き、 真空装置側に開放端を向けて、 加熱気 化させたフラーレンをフラーレン蒸気圧を駆動力として流動させる。  The sublimated fullerene gas is guided using a flow straightening tube and is caused to touch a downstream catalyst. The method of controlling the flow of fullerene gas in Fig. 1 is to place the fullerene to be immersed on the closed side in a quartz tube sealed on one side, turn the open end to the vacuum device side, and convert the heated fullerene to fullerene vapor. The pressure is made to flow as a driving force.
フラーレン気体の圧力の制御はその加熱温度で行うが、 この温度の制御が重要 である。 反応装置背圧が 0. 05Torr であれば、 フラーレンの蒸気圧として最 低でも背圧と同様の 0. 05Torr は必要となり、 660 °Cでの加熱が必要とな る。 一方、 背圧が 0. 5Torr であると、 蒸気圧を 0. 5Torr とするには 760 °Cでの加熱が必要となる。  Control of the pressure of the fullerene gas is performed at the heating temperature, but control of this temperature is important. If the back pressure of the reactor is 0.05 Torr, the vapor pressure of fullerene must be at least 0.05 Torr similar to the back pressure, and heating at 660 ° C is required. On the other hand, if the back pressure is 0.5 Torr, heating at 760 ° C is necessary to make the vapor pressure 0.5 Torr.
C6。のきわめて純粋な固体を、 純粋な A r中で 10分間加熱した場合、 95 9 °C以上で熱分解が開始され、 977°C以上では、 ほぼ完全に熱分解するとの報 告がある (M.R.Stetzer et al. Thermal Stability of C60, Phys. Rev. B. Vol55 (1997), ppl27-131) 。 一方、 わずかな溶媒や C7。などの他のフラーレン 、 酸素などが存在した場合には、 上記の場合よりもかなり低い温度で熱分解が進 むと考えられ、 比較的高純度の原料を用いても、 以下の文献に示されるように 7 1 8°Cで既に熱分解が進んでいると報告されている (Y. Piacente et al. J. Phys. Chem. Vol99(1995), ppl4052-14057) 。 C 6. It has been reported that, when a very pure solid of is heated in pure Ar for 10 minutes, thermal decomposition starts at 959 ° C or higher, and almost complete at 977 ° C or higher (MRStetzer et al. Thermal Stability of C 60 , Phys. Rev. B. Vol55 (1997), ppl27-131). On the other hand, slight solvent and C 7. In the presence of other fullerenes, oxygen, etc., thermal decomposition is considered to proceed at a much lower temperature than the above case, and even if relatively high-purity raw materials are used, as shown in the following document It has been reported that thermal decomposition has already progressed at 718 ° C (Y. Piacente et al. J. Phys. Chem. Vol 99 (1995), ppl4052-14057).
従って、 700°C以上とすると C6。の分解が進むと考えられ、 フラーレンを 加熱する温度には上限があり、 背圧を下げ昇華温度を低くすることが好ましい。 蒸発部から移動したフラーレンが遷移金属触媒に衝突して、 その分子構造の一 部を保存したまま、 単層カーボンナノチューブの初期核になることによって, 金 属触媒から単層カーボンナノチューブが成長する。 初期核ができればその後の S WNTの成長は比較的早いと考えられる。 このため、 フラーレン蒸発開始からの 温度上昇の速度が重要となる。 触媒はフラーレンから SWNTへの核生成に必要 な高温に加熱する。 好ましくは 750° (:〜 900°Cである。 Therefore, if the temperature is 700 ° C or more, C 6 . It is thought that the decomposition of the fullerene proceeds, and there is an upper limit to the temperature at which the fullerene is heated. Fullerene transferred from the evaporator collides with the transition metal catalyst and becomes an initial nucleus of the single-walled carbon nanotube while preserving a part of its molecular structure, whereby the single-walled carbon nanotube grows from the metal catalyst. If the initial nucleus is formed, the growth of SWNTs will be relatively fast. For this reason, the rate of temperature rise from the start of fullerene evaporation is important. The catalyst is heated to the high temperature required for nucleation of fullerenes into SWNTs. Preferably it is 750 ° (: to 900 ° C.
操作温度に耐え得る基板上に、 多孔質物質または無機物の酸化物を塗布または 製 Ji奠させた上に 1種以上の金属微粒子を担持させる。 上記の昇華したフラーレン をこの基板上を通過させる。  A porous substance or an oxide of an inorganic substance is applied or produced on a substrate capable of withstanding the operating temperature, and one or more types of metal fine particles are supported on the substrate. The sublimated fullerene is passed over the substrate.
遷移金属は Fe、 Co、 Mo、 Ni、 Rh、 Pd、 Pt のいずれか単体、 または、 その混合 物が好ましい。 より好ましくは Fe、 Co、 Moである。 金属粒子の径は小さいほど よく、 0. 1 m以下が好ましく、 10籠以下がより好ましく、 さらには 3醒 以下であるものがより一層好ましい。  The transition metal is preferably any one of Fe, Co, Mo, Ni, Rh, Pd, and Pt, or a mixture thereof. More preferably, they are Fe, Co, and Mo. The smaller the diameter of the metal particles, the better, preferably 0.1 m or less, more preferably 10 baskets or less, and even more preferably 3 wakes or less.
多孔質物質は、 上記金属微粒子を担持でき、 かつ装置内の反応温度で変化を起 こさないものであれば材質に限定はないが、 金属酸化物またはその他の無機物の 多孔質体が好ましい。 中でも、 ゼォライト、 マグネシア、 アルミナ、 シリカ、 メ ソポーラスシリカ等の多孔体がより好ましく、 特に Y型ゼォライトが好ましい。 無機物の酸化物の薄膜も好ましく使用でき、 特にシリコン酸化膜が好ましい。 これらの多孔質を載せた基板または無機物の酸化膜を形成させた基板 (以下基 板という) はフラ一レンガス流の流れ方向に対し平行に置く。 もしくは、 反応管 内壁に沿つた形に加工した板が好ましい。 The porous substance is not particularly limited as long as it can support the above-mentioned metal fine particles and does not change at the reaction temperature in the apparatus, but a metal oxide or other inorganic porous body is preferable. Among them, porous bodies such as zeolite, magnesia, alumina, silica and mesoporous silica are more preferable, and Y-type zeolite is particularly preferable. A thin film of an inorganic oxide can also be preferably used, and a silicon oxide film is particularly preferable. A substrate on which these porous materials are placed or a substrate on which an inorganic oxide film is formed Plate) is placed parallel to the flow direction of the fullerene gas flow. Alternatively, a plate processed into a shape along the inner wall of the reaction tube is preferable.
生成反応開始後、 所定時間経過後にこの基板を冷却する。 冷却の方法は、 反応 管の加熱を停止して、 外からファンにて室温の空気を当てて反応管を速やかに冷 却し、 室温到達後に該板を取り出すと板上に SWNTを得る。  After a predetermined time has elapsed after the start of the production reaction, the substrate is cooled. The cooling method is to stop heating the reaction tube, cool the reaction tube quickly by blowing air at room temperature from outside with a fan, and take out the plate after reaching room temperature to obtain SWNT on the plate.
この製造方法によると、 直径のそろった SWNTを得ることが可能である。 実施例  According to this manufacturing method, it is possible to obtain SWNTs having a uniform diameter. Example
以下、 実施例により本発明を更に詳しく説明する。 本発明は下記の実施例に限 定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
実施例 1 Example 1
図 1 に示すように、 加熱炉の中に置かれた内径 26mm の石英管 (反応管)の中 に、 内径 4. 5腿、 長さ 2 0 0讓の片側を封止した石英管にフラーレン C605 0 Omg を封止側に詰めたものを、 フラーレン部分が第一加熱炉の中央に来るよ うに設置する。 第二加熱炉内に、 Fe/Co触媒微粒子 (粒径:!〜 2腿) を担持した Y型ゼオライト粒子 (粒径 0. 3〜1 m) を均一に塗りつけた石英板を流れ方 向に平行に置いた。 反応管内を口一タリーポンプで、 0. 5Torr 以下の真空に した。 第一加熱炉は長さ 2 0 cm, 第二加熱炉は長さ 3 0 cmである。 第一加熱炉 を 2 0 cm石英管に沿って第二加熱炉の反対方向にずらし、 フラーレンを加熱し ない状態で、 アルゴンを 3 5 OTorr、 2 0 Osccm程度で流しながら第一加熱炉 を 8 50°C、 第二加熱炉を 9 0 0°Cに昇温した。 昇温後にアルゴンを止めて再び 0. 5Torr 以下の真空にした。 その後, 第一加熱炉を所定に戻してフラーレン の加熱を開始する。 上記条件で 1 0分操作を続けた後、 加熱を停止し、 ファンで 室温の空気を当てて反応炉を冷却した。 冷却後、 ゼォライトを塗布した石英板を 取り出し、 SWNTを得た。 As shown in Fig. 1, a fullerene was placed in a quartz tube (reaction tube) with an inner diameter of 4.5 mm and a length of 200 mm sealed in a 26 mm inner diameter quartz tube (reaction tube) placed in a heating furnace. those packed in sealed side C 60 5 0 Omg, placed by Uni fullerene part at the center of the first heating furnace. In the second heating furnace, a quartz plate uniformly coated with Y-type zeolite particles (particle diameter: 0.3 to 1 m) carrying Fe / Co catalyst particles (particle diameter:! Placed in parallel. The inside of the reaction tube was evacuated to a pressure of 0.5 Torr or less using a single-hole pump. The first heating furnace is 20 cm long and the second heating furnace is 30 cm long. The first heating furnace is shifted along the 20 cm quartz tube in the direction opposite to the second heating furnace, and while the fullerene is not heated, the first heating furnace is set to 8 while flowing argon at about 35 OTorr and about 20 Osccm. The temperature of the second heating furnace was raised to 900 ° C. at 50 ° C. After the temperature was raised, the argon was stopped and the pressure was again reduced to 0.5 Torr or less. After that, the first heating furnace is returned to the specified temperature and heating of the fullerene is started. After the operation was continued for 10 minutes under the above conditions, the heating was stopped, and the reactor was cooled by blowing air at room temperature with a fan. After cooling, the quartz plate coated with zeolite was taken out to obtain SWNT.
生成した試料をトルエン中で超音波処理して、 フラーレンを溶解、 除去した後 に、 透視型電子顕微鏡 (TEM) で観察し、 ラマンスぺクトルで分析した。 図 2に TEM写真、 図 3にラマン分光スペクトルを示す。 After the generated sample was subjected to ultrasonic treatment in toluene to dissolve and remove fullerene, the sample was observed with a transmission electron microscope (TEM) and analyzed with a Raman spectrum. Fig. 2 shows a TEM photograph, and Fig. 3 shows a Raman spectrum.
図 2から副生物がなく、 径がそろつた SWNTが生成していることが分かる。 図 3ではグラフアイト由来のピーク (Ι δ θ ΟαιΓ1) と SWNTに特徴的な 150〜30 Ocm— 1付近のピークがみられる。 また、 図には SWNTの直径と ラマンシフトとの関係 (Jorio et al. Phys. Rev. Lett. Vol86 (2001), plll8) d (nm) = 248Zソ (cm—1) From Fig. 2, it can be seen that SWNTs without any by-products and having a uniform diameter were produced. Peak characteristic from 150 to 30 Ocm- around 1 to SWNT is seen as in FIG. 3 graphite-derived peak (Ι δ θ ΟαιΓ 1). The figure also shows the relationship between the SWNT diameter and Raman shift (Jorio et al. Phys. Rev. Lett. Vol86 (2001), plll8) d (nm) = 248Z (cm— 1 )
から見積もつた直径が示されてあり、 ほぼ 1 Ml程度であることが分かる。 実施例 2 The estimated diameter is shown from the figure, and it can be seen that it is about 1 Ml. Example 2
図 4に使用した装置の概略図を示す。  Figure 4 shows a schematic diagram of the equipment used.
実施例 1と同様に実施したが、 背圧を 0. 05Τ0ΓΓ にし、 ゼォライトを塗布 した石英板は反応管内壁に沿った形の半円筒型にしたものを使用した。 フラ一レ ンを封入した石英管は、 直径は実施例 1と同じであるが、 長さを 100薩 とし た。 また、 第一加熱炉の温度を 680° (:、 第二加熱炉の温度を 825°Cとした。 図 5に、 生成した SWNTのラマン分光スペクトルを示す。 実施例 3  The operation was performed in the same manner as in Example 1, except that the back pressure was set to 0.05Τ0ΓΓ and the quartz plate coated with zeolite was formed in a semi-cylindrical shape along the inner wall of the reaction tube. The diameter of the quartz tube enclosing the fullerene was the same as that of Example 1, but the length was set to 100 mm. In addition, the temperature of the first heating furnace was set to 680 ° (:, and the temperature of the second heating furnace was set to 825 ° C. Fig. 5 shows the Raman spectrum of the generated SWNT.
図 6に使用した装置の概略図を示す。  Figure 6 shows a schematic diagram of the equipment used.
実施例 2と同様に実施したが、 フラーレンを封入した石英管に熱電対を取り付 け、 フラーレンの昇温条件を測定した。  The procedure was performed in the same manner as in Example 2, except that a thermocouple was attached to a quartz tube in which fullerene was sealed, and the temperature raising condition of fullerene was measured.
図 7に実験開始からのフラーレンを封入した石英管の温度変化とフラ一レンの 蒸気圧の変化を示す。  Figure 7 shows the change in temperature of the quartz tube filled with fullerene and the change in vapor pressure of fullerene from the start of the experiment.
図 8、 9には、 生成した SWNTの TEM写真、 図 10にラマン分光スぺクト ルを示す。 実施例 4 実施例 3と同様に実施したが、 原料としてフラーレン C6。に変えてフラーレ ン C 7 Qを用いた。 FIGS. 8 and 9 show TEM photographs of the generated SWNTs, and FIG. 10 shows a Raman spectroscopy spectrum. Example 4 The same procedure was performed as in Example 3, but using fullerene C 6 as a raw material. Fullerene C 7 Q was used in place of.
生成した SWNTのラマン分光スぺクトルを図 11に示す。  Fig. 11 shows the Raman spectrum spectrum of the generated SWNT.
C 6。の場合と同様の S WN Tが出来ているのが分かる。 比較例 1 C 6. It can be seen that the same SWNT as in the case of is made. Comparative Example 1
図 12にアルコールから CCVD法によって生成した SWNTのラマン分光ス ぺクトル図を示す。  Figure 12 shows a Raman spectrum diagram of SWNT generated from alcohol by CCVD.
アルコールからの SWNTと実施例 3 (C60) および実施例 4 (C70) で生 成した SWNTとの直径分布の比較をラマン分光スぺクトルにより示す。 アルコ ールからの SWNTでは、 ピークの数が多く、 明らかにフラーレンから生成した SWNTの直径分布は狭くなつている。 産業上の利用可能性 A comparison of the diameter distribution of SWNTs from alcohol with the SWNTs produced in Example 3 (C 60 ) and Example 4 (C 70 ) is shown by Raman spectroscopy. SWNTs from alcohol have a large number of peaks, and the diameter distribution of SWNTs generated from fullerenes is clearly narrow. Industrial applicability
本発明で得られる SWNTは、 FEDディスプレイ、 燃料電池、 電子顕微鏡、 超高強度材料、 電気伝導性複合材料等に広く利用することができる。  The SWNT obtained by the present invention can be widely used for FED displays, fuel cells, electron microscopes, ultra-high strength materials, electrically conductive composite materials, and the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 真空に保持された反応装置内で、 少なくとも 1種類の触媒金属からなる多数 の微粒子が形成された基板上で単層力一ボンナノチューブを製造する方法であつ て、 少なくとも 1 種類のフラ一レン C 2 n ( nは n≥1 8なる整数) を所定の温 度以上で昇華させて、 分圧が制御されたフラーレン気体を生成し、 このフラーレ ン気体を前記フラーレンの昇華温度以上に加熱された前記基板上に輸送し、 前記 フラーレン気体を前記触媒金属微粒子に接触させて単層カーボンナノチューブを 生成することを特徵とする単層力一ボンナノチューブの製造方法。 1. A method for producing single-walled carbon nanotubes on a substrate on which a large number of fine particles of at least one type of catalytic metal are formed in a reactor kept in a vacuum, comprising: The C 2 n (n is an integer of n ≥ 18) is sublimated at a predetermined temperature or higher to generate a fullerene gas with a controlled partial pressure, and the fullerene gas is heated to a temperature equal to or higher than the sublimation temperature of the fullerene And transferring the fullerene gas to the catalyst metal fine particles to produce single-walled carbon nanotubes.
2 . 前記反応装置内の圧力が、 0 . 5 Τ0ΓΓ 以下であることを特徴とする請求の 範囲 1項に記載の単層カーボンナノチューブの製造方法。 2. The method for producing single-walled carbon nanotubes according to claim 1, wherein the pressure in the reactor is 0.5 00ΓΓ or less.
3 . 前記反応装置内の圧力が、 0 . 0 5 Torr 以下であることを特徴とする請求 の範囲 2項に記載の単層カーボンナノチューブの製造方法。  3. The method for producing single-walled carbon nanotubes according to claim 2, wherein the pressure in the reactor is 0.05 Torr or less.
4 . 前記所定の温度が、 7 0 0 °C以下であることを特徴とする請求の範囲 1ない し 3項のいずれかに記載の単層カーボンナノチューブの製造方法。  4. The method for producing single-walled carbon nanotubes according to any one of claims 1 to 3, wherein the predetermined temperature is 700 ° C. or lower.
5 . 前記フラ一レンは、 化学修飾フラーレンを含むことを特徴とする請求の範囲 1ないし 4項のいずれかに記載の単層カーボンナノチューブの製造方法。  5. The method for producing single-walled carbon nanotubes according to claim 1, wherein the fullerene contains a chemically modified fullerene.
6 . 前記触媒金属は、 元素の周期律表の 5 A族、 6 A族および 8族に属する遷移 金属であることを特徴とする請求の範囲 1ないし 5項のいずれかに記載の単層力 一ボンナノチューブの製造方法。  6. The monolayer force according to any one of claims 1 to 5, wherein the catalyst metal is a transition metal belonging to Group 5A, 6A or 8 of the periodic table of the elements. A method for producing a carbon nanotube.
7 . 前記遷移金属が、 Fe、 Co、 Mo、 Ni、 Rh、 Pd、 Pt のいずれか一種の単体また は一種以上の混合物であることを特徴とする請求の範囲 6項に記載の単層カーボ ンナノチューブの製造方法。 . 7. The single-layer carbohydrate according to claim 6, wherein the transition metal is one or a mixture of one or more of Fe, Co, Mo, Ni, Rh, Pd, and Pt. Method for producing carbon nanotubes. .
8 . 前記基板は、 多孔質物質あるいは無機酸化物の少なくとも一方からなる薄膜 を有し、 前記微粒子は、 該薄膜上に形成されていることを特徴とする請求の範囲8. The substrate according to claim 1, wherein the substrate has a thin film made of at least one of a porous substance and an inorganic oxide, and the fine particles are formed on the thin film.
1ないし 7項のいずれかに記載の単層カーボンナノチューブの製造方法。 8. The method for producing a single-walled carbon nanotube according to any one of items 1 to 7.
9. 前記多孔質物質が、 無機多孔質であることを特徴とする請求の範囲 8項に記 載の単層カーボンナノチューブの製造方法。 9. The method for producing single-walled carbon nanotubes according to claim 8, wherein the porous substance is inorganic porous.
1 0 . 前記無機多孔質が、 ゼォライトであることを特徴とする請求の範囲 9項に 記載の単層カーボンナノチューブの製造方法。  10. The method for producing single-walled carbon nanotubes according to claim 9, wherein the inorganic porous material is zeolite.
1 1 . 前記ゼォライトが、 Y型であることを特徴とする請求の範囲 1 0項に記載 の単層カーボンナノチューブの製造方法。  11. The method for producing single-walled carbon nanotubes according to claim 10, wherein the zeolite is a Y-type.
1 2 . 前記無機物の酸化物薄膜が; シリコン酸化膜であることを特徴とする請求 の範囲 6項に記載の単層カーボンナノチューブの製造方法。  12. The method for producing single-walled carbon nanotubes according to claim 6, wherein the inorganic oxide thin film is a silicon oxide film.
1 3 . 前記微粒子の粒子径が、 0 . 5〜 1 0 nm であることを特徴とする請求の 範囲 1ないし 1 2のいずれかに記載の単層カーボンナノチューブの製造方法。  13. The method for producing single-walled carbon nanotubes according to any one of claims 1 to 12, wherein the fine particles have a particle diameter of 0.5 to 10 nm.
PCT/JP2004/001348 2003-02-07 2004-02-09 Process for producing monolayer carbon nanotube with uniform diameter WO2004106234A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005506448A JP4642658B2 (en) 2003-02-07 2004-02-09 Method for producing single-walled carbon nanotubes with uniform diameter
US10/543,509 US20060093545A1 (en) 2003-02-07 2004-02-09 Process for producing monolayer carbon nanotube with uniform diameter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003031508 2003-02-07
JP2003-031508 2003-02-07

Publications (1)

Publication Number Publication Date
WO2004106234A1 true WO2004106234A1 (en) 2004-12-09

Family

ID=33487025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001348 WO2004106234A1 (en) 2003-02-07 2004-02-09 Process for producing monolayer carbon nanotube with uniform diameter

Country Status (3)

Country Link
US (1) US20060093545A1 (en)
JP (1) JP4642658B2 (en)
WO (1) WO2004106234A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088829A1 (en) * 2006-01-31 2007-08-09 Japan Science And Technology Agency Carbon nanohorn-carried material and method for synthesis of carbon nanotube
JP2007197306A (en) * 2006-01-27 2007-08-09 Sony Corp Manufacturing method of single-wall carbon nanotube, single-wall carbon nanotube, and manufacturing method of electronic element
JP2007331989A (en) * 2006-06-16 2007-12-27 Univ Meijo Method for manufacturing carbon nanotube
WO2008057620A3 (en) * 2006-03-29 2008-06-26 Hyperion Catalysis Int Method for preparing single walled carbon nanotubes from a metal layer
WO2008060654A3 (en) * 2006-03-29 2008-07-10 Hyperion Catalysis Int Method for preparing uniform single walled carbon nanotubes
JP2009280450A (en) * 2008-05-23 2009-12-03 Nagoya Institute Of Technology Production method and production apparatus for carbon nanotube
US7947247B2 (en) 2005-03-29 2011-05-24 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
JP2011173739A (en) * 2010-02-23 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing carbon nanotube
JP5150772B2 (en) * 2010-02-04 2013-02-27 独立行政法人科学技術振興機構 Method for producing selectively chemically modified carbon nanotubes
US8529862B2 (en) 2005-03-29 2013-09-10 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
JP2018177562A (en) * 2017-04-06 2018-11-15 アイシン精機株式会社 Production method of carbon nanotube composite

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122622A1 (en) * 2002-04-23 2007-05-31 Freedman Philip D Electronic module with thermal dissipating surface
US8591858B2 (en) * 2008-05-01 2013-11-26 Honda Motor Co., Ltd. Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes
US9174847B2 (en) * 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
US9440855B2 (en) * 2012-02-13 2016-09-13 Osaka University High purity carbon nanotube, process for preparing the same and transparent conductive film using the same
FR3027155B1 (en) * 2014-10-08 2018-01-12 Ecole Polytechnique METHOD FOR MANUFACTURING AN ELECTRONIC DEVICE, PARTICULARLY BASED ON CARBON NANOTUBES
KR102109233B1 (en) 2017-09-18 2020-05-12 주식회사 엘지화학 Method for manufacturing cnt fiber having improved tensile strength

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1190987A1 (en) * 2000-09-22 2002-03-27 Iljin Nanotech Co., Ltd. Method of synthesizing carbon nanotubes and apparatus used for the same
WO2002038496A1 (en) * 2000-11-13 2002-05-16 International Business Machines Corporation Crystals comprising single-walled carbon nanotubes
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030124717A1 (en) * 2001-11-26 2003-07-03 Yuji Awano Method of manufacturing carbon cylindrical structures and biopolymer detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1190987A1 (en) * 2000-09-22 2002-03-27 Iljin Nanotech Co., Ltd. Method of synthesizing carbon nanotubes and apparatus used for the same
WO2002038496A1 (en) * 2000-11-13 2002-05-16 International Business Machines Corporation Crystals comprising single-walled carbon nanotubes
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BANDOW S. ET AL: "Raman scattering study of double-wall carbon nanotubes derived from the chains of fullrenes in single-wall carbon nanotubes", CHEMICAL PHYSICS LETTERS, vol. 337, 2001, pages 48 - 54, XP002979131 *
CZERWOSZ E. ET AL: "From fullerenes to carbon nanotubes by Ni catalysis", DIAMOND AND RELATED MATERIALS, vol. 9, 2000, pages 901 - 905, XP004199887 *
KATAURA H. ET AL: "Diameter control of singel-walled carbon nanotubes", CARBON, vol. 38, 2000, pages 1691 - 1697, XP004215863 *
MARUYAMA S. ET AL: "Synthesis of singel-walled carbon nanotubes with narrow diameter-distribution from fullerene", CHEMICAL PHYSICS LETTERS, vol. 375, 10 July 2003 (2003-07-10), pages 553 - 559, XP002979132 *
MIYAUCHI Y. ET AL: "Catalytic CVD Generation of High-Purity SWNTs with a Narrow Diameter Distribution", ABSTRACTS: THE 24TH FULLERENE-NANOTUBES GENERAL SYMPOSIUM, 8 January 2003 (2003-01-08), pages 24, XP002979130 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947247B2 (en) 2005-03-29 2011-05-24 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
US8529862B2 (en) 2005-03-29 2013-09-10 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
JP2007197306A (en) * 2006-01-27 2007-08-09 Sony Corp Manufacturing method of single-wall carbon nanotube, single-wall carbon nanotube, and manufacturing method of electronic element
US8835006B2 (en) 2006-01-31 2014-09-16 Nec Corporation Carbon nanohorn carried material and process for producing carbon nanotube
JP5106123B2 (en) * 2006-01-31 2012-12-26 独立行政法人科学技術振興機構 Synthesis method of carbon nanohorn carrier and carbon nanotube
WO2007088829A1 (en) * 2006-01-31 2007-08-09 Japan Science And Technology Agency Carbon nanohorn-carried material and method for synthesis of carbon nanotube
US7951351B2 (en) 2006-03-29 2011-05-31 Hyperion Catalysis International, Inc. Method for preparing uniform single walled carbon nanotubes
EP2001795A2 (en) * 2006-03-29 2008-12-17 Hyperion Catalysis International, Inc. Method for preparing uniform single walled carbon nanotubes
EP2001795A4 (en) * 2006-03-29 2012-06-27 Hyperion Catalysis Int Method for preparing uniform single walled carbon nanotubes
WO2008060654A3 (en) * 2006-03-29 2008-07-10 Hyperion Catalysis Int Method for preparing uniform single walled carbon nanotubes
WO2008057620A3 (en) * 2006-03-29 2008-06-26 Hyperion Catalysis Int Method for preparing single walled carbon nanotubes from a metal layer
JP2007331989A (en) * 2006-06-16 2007-12-27 Univ Meijo Method for manufacturing carbon nanotube
JP2009280450A (en) * 2008-05-23 2009-12-03 Nagoya Institute Of Technology Production method and production apparatus for carbon nanotube
JP5150772B2 (en) * 2010-02-04 2013-02-27 独立行政法人科学技術振興機構 Method for producing selectively chemically modified carbon nanotubes
US8940937B2 (en) 2010-02-04 2015-01-27 Japan Science And Technology Agency Method for producing selectively functionalized carbon nanotubes
JP2011173739A (en) * 2010-02-23 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing carbon nanotube
JP2018177562A (en) * 2017-04-06 2018-11-15 アイシン精機株式会社 Production method of carbon nanotube composite
JP7024202B2 (en) 2017-04-06 2022-02-24 株式会社アイシン Method for manufacturing carbon nanotube complex

Also Published As

Publication number Publication date
JP4642658B2 (en) 2011-03-02
US20060093545A1 (en) 2006-05-04
JPWO2004106234A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4621896B2 (en) Single-walled carbon nanotube and method for producing the same
Mubarak et al. An overview on methods for the production of carbon nanotubes
WO2004106234A1 (en) Process for producing monolayer carbon nanotube with uniform diameter
US20070020168A1 (en) Synthesis of long and well-aligned carbon nanotubes
WO2007061143A1 (en) Double-walled carbon nanotube, aligned double-walled carbon nanotube bulk structure, and process for production of the carbon nanotube or the bulk structure
US8617650B2 (en) Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon
JP5574257B2 (en) Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same
WO2009151659A2 (en) Cvd-grown graphite nanoribbons
Yoon et al. Growth control of single and multi-walled carbon nanotubes by thin film catalyst
JP2017019718A (en) Manufacturing method of carbon nano-tube
JP3913583B2 (en) Method for producing carbon nanotube
Saheed et al. Effect of different catalyst deposition technique on aligned multiwalled carbon nanotubes grown by thermal chemical vapor deposition
Shaijumon et al. Synthesis of multi-walled carbon nanotubes in high yield using Mm based AB2 alloy hydride catalysts and the effect of purification on their hydrogen adsorption properties
JP2004269987A (en) Method of producing metal nanowire
JP2005001938A (en) Method of manufacturing carbon nanotube
Maruyama Carbon nanotube growth mechanisms
JP2012140268A (en) Determination method of substrate for producing carbon nanotube, and production method of carbon nanotube
JP2004331477A (en) Manufacturing method of monolayer carbon nanotube and its unit
Ismael Mechanical properties of nanotubes
Hofmeister et al. Carbon nanotube growth from Cu–Co alloys for field emission applications
Meysami et al. Ultra-stiff large-area carpets of carbon nanotubes
Zhao et al. A temperature window for ethanol chemical vapor deposition of a carbon nanotube array catalyzed by Co particles
JP2005001936A (en) Method of manufacturing carbon nanotube
JP2005001937A (en) Method of manufacturing carbon nanotube
Zhou et al. Nanocarbon Growth Methods and Device Integration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005506448

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006093545

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10543509

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10543509

Country of ref document: US