WO2007007594A1 - Process for preparation of aqueous solution containing carbon nanotube - Google Patents

Process for preparation of aqueous solution containing carbon nanotube Download PDF

Info

Publication number
WO2007007594A1
WO2007007594A1 PCT/JP2006/313324 JP2006313324W WO2007007594A1 WO 2007007594 A1 WO2007007594 A1 WO 2007007594A1 JP 2006313324 W JP2006313324 W JP 2006313324W WO 2007007594 A1 WO2007007594 A1 WO 2007007594A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
carbon nanotubes
aqueous solution
hard
carbon nanotube
Prior art date
Application number
PCT/JP2006/313324
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Ikeda
Jun-Ichi Kikuchi
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Priority to JP2007524585A priority Critical patent/JP5050207B2/en
Publication of WO2007007594A1 publication Critical patent/WO2007007594A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing an aqueous solution containing carbon nanotubes, and more particularly to a method for producing an aqueous solution containing carbon nanotubes stably from bundle-like carbon nanotubes. Furthermore, the present invention relates to a member produced using an aqueous solution containing a carbon nanotube obtained by the method of the present invention.
  • a carbon nanotube is one of carbon allotropes having a structure in which a graphite sheet having a hexagonal network of carbon atoms arranged in a cylindrical shape, and has an order of nanometer in diameter.
  • Two types of carbon nanotubes are known: single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs).
  • SWNTs single-walled carbon nanotubes
  • MWNTs multi-walled carbon nanotubes
  • Single-walled force Single-bonn nanotubes are a single graphite sheet wound in a cylindrical shape, whereas multi-walled carbon nanotubes are concentric circles of graphite sheets that overlap in multiple layers at approximately equal intervals. It is a thing.
  • Such carbon nanotubes are expected to be applied in various fields because of their unique functions due to their unique structure.
  • single-walled carbon nanotubes are considered to be suitable for applications such as gas storage materials such as hydrogen or electrode members because of their relatively large specific surface area.
  • single-walled carbon nanotubes produced by a conventional production method are not always convenient for various applications.
  • the single-walled carbon nanotubes are not stably dispersed in time with respect to the aqueous solvent, and the single-walled carbon nanotubes aggregate over time. / It will settle.
  • a precipitate of carbon nanotubes can be seen in 2 to 3 days at the longest. Therefore, it is difficult to treat such a mixture containing single-walled carbon nanotubes with poor stability as a solution, and as a result, the response of single-walled carbon nanotubes.
  • the range of use is inevitably limited.
  • Non-Patent Document 1 Jie Liu, Andrew G. Rin zler, 13 others, "Fullerene Pipes", Science May 22, 1998, No. 280, pl253—1256
  • Non-Patent Document 2 Ikeda, Ikeda, A., Hayashi, K., Koishi, Konishi, T., Kikuchi, J. “Chemical” Communiqué “Chemi. Commun. 2004", pl334— 1335
  • the present invention provides:
  • This method of the present invention is characterized in that the carbon nanotube bundle is at least partially dissociated by subjecting it to a vibration operation, and a nucleotide having a purine ring as a solubilizer. Is used and has characteristics in terms of points.
  • an aqueous solution stably containing about 1. OX 10 — 2 wt% to about 15 X 10 — 2 wt% carbon nanotubes is provided.
  • a member comprising a base material having a carbon nanotube film on the surface.
  • the carbon nanotube film of the member is characterized in that it is a film formed by applying a force-bonbon nanotube aqueous solution obtained by the production method of the present invention to the surface of the substrate and then drying it.
  • an aqueous solution containing carbon nanotubes stably can be obtained. Therefore, in the aqueous solution, the carbon nanotubes are dispersed stably in time in the aqueous medium, and the long-term stability is excellent. Therefore, it is possible to handle such a liquid as a solution (which is the basis for the “aqueous solution” in this specification).
  • such an aqueous solution stably containing carbon nanotubes includes at least the carbon nanotubes from which the bundles are dissociated, so that the specific surface area of the carbon nanotubes is increased as compared with the case where the carbon nanotubes are bundled.
  • the gas occlusion amount increases as compared with the case of using bundle-like carbon nanotubes, and approaches the theoretical value.
  • the carbon nanotubes in which the bundles are dissociated have a larger contact area with the electrode surface than the bundled ones, the members manufactured using the aqueous solution obtained by the method of the present invention are used as the electrodes. What has been obtained becomes highly efficient, and the efficiency is closer to the theoretical value.
  • the “theoretical value” here means that all of the carbon nanotubes contained in such a member are dissociated bundles! /, Based on the assumption that the hydrogen storage amount in the ideal state or Refers to electrode efficiency.
  • FIG. 1 schematically shows a method for producing an aqueous solution containing carbon nanotubes of the present invention. Shown in
  • FIG. 2 shows an aqueous solution containing carbon nanotubes obtained according to the method of the present invention.
  • Figure 3 shows the visible ultraviolet absorption spectra of liquids containing carbon nanotubes obtained using seven types of substances (GMP, ADP, ATP, AMP, R5P, CMP, and UMP) as solubilizers. Show.
  • FIG. 4 shows a Raman spectrum of an aqueous solution (that is, a solution containing a solubilizer and SWNT) obtained by the production method of the present invention.
  • FIG. 5 schematically shows the container and the hard sphere (center cut), and shows the length L in the longitudinal direction and the length S in the short direction of the hollow portion in the container, and the diameter R of the hard sphere.
  • FIG. 6 is a TEM photograph showing single-walled carbon nanotubes contained in an aqueous carbon nanotube solution obtained by the production method of the present invention.
  • Figure 6 (a) uses GMP
  • Figure 6 (b) uses ADP
  • Figure 6 (c) uses ATP as a solubilizer!
  • carbon nanotubes are, for example, arc discharge methods, laser evaporation methods, laser ablation methods, and CVD methods. (Or bundled carbon nanotubes manufactured by conventional methods such as chemical vapor deposition and chemical vapor deposition). A bundle of single-walled carbon nanotubes is preferred, but a bundle of multi-walled carbon nanotubes does not work.
  • Such “carbon nanotubes” are preferably used in a dry state (that is, a cotton-like form having voids inside), for example, carbon nanotubes that are generally sold on the market. Come on!
  • carbon nanotubes can be used without being subjected to purification treatment and lyophilization when used in the method of the present invention. This is advantageous. In other words, when using commercially available carbon nanotubes, the carbon nanotubes are sonicated in an acidic solution and then neutralized and diluted with water. Does not require lyophilization later
  • the method of the present invention intends that the carbon nanotubes can be used without being subjected to purification treatment and lyophilization.
  • step (i) after the carbon nanotube is provided in the container together with the solubilizer and the hard ball, the hard ball is vibrated with respect to the container. More specifically, the carbon nanotube, the soluble glaze agent, and the hard sphere are provided to the hollow part of the container body (hereinafter also referred to as “container hollow part”), and then the hard sphere is vibrated with respect to the container. .
  • container hollow part the hollow part of the container body
  • “vibrating the hard sphere with respect to the container” substantially refers to a state in which the collision between the hard sphere and the wall of the hollow portion of the container is repeated over time.
  • “vibrating the hard ball with respect to the container” means not only a mode in which the container itself is reciprocated and the hard ball contained therein is reciprocated, but also the hard ball is externally applied with the container itself fixed. A mode of reciprocal movement is also included.
  • “vibration” as used in this specification substantially means an operation in which a mechanical impact is directly applied to the carbon nanotubes by directly applying a mechanical impact to the carbon nanotubes! /, It was noted that!
  • the reciprocating direction is the long direction of the container hollow part, so that the longitudinal direction of the container hollow part is the horizontal direction.
  • the direction of vibration may be changed as appropriate according to the shape of the Z or the hollow part of the container or the manner in which the container is installed on the vibrator, for example, the reciprocating direction may change over time. .
  • a hard sphere made of a magnetic material or a container made of a non-magnetic material is used, and a magnetic force is applied to the hard sphere from the outside of the container.
  • a mode in which the hard ball is reciprocated in the container is conceivable.
  • “vibration” generally means a phenomenon of reciprocating around a certain point, and “vibration” used in this specification is not necessarily limited to a mode in which the container reciprocates only in a certain direction.
  • the collision between the hard sphere and the wall of the hollow portion of the container is repeated over time (i.e., mechanical impact is directly applied to the carbon nanotubes and mechanical shearing force is applied to the carbon nanotubes). If it acts on the container), it does not matter if the container is in rotational and Z or rocking motion.
  • the gantry on which the container is installed also rotates as the container rotates, and the rotation direction of the container changes with time (for example, “reverse”), and the rotation direction of the gantry also changes.
  • the container is preferably one that changes independently with time.
  • the "container” used in step (i) generally comprises a container main body and a lid, and preferably contains carbon nanotubes, solubilizers and hard spheres provided in the container hollow portion in an ambient atmosphere.
  • This is a container that is sealed off from and sealed.
  • the container is preferably formed mainly of a hard material force such as stainless steel, but an impact caused by being subjected to vibration treatment, for example, a hard sphere reciprocating in the hollow part of the container has a hollow wall surface (that is, a container). Any kind of material force may be formed as long as it can withstand the impact caused by the collision with the inner hollow portion wall).
  • a gasket may be sandwiched between the contact surface between the container main body and the lid, and the container main body and the lid may be tightened with a clip or holder from the outside.
  • the container hollow portion has, for example, a cylindrical shape, and while being subjected to vibration treatment, the hard ball reciprocates in the longitudinal direction of the hollow portion from one end portion of the cylindrical hollow portion to the other end portion. It preferably has a shape and size that can be formed. As long as the hard sphere moves and reciprocates substantially in the hollow portion of the container, the hollow portion of the container may be in the shape and size of deviation.
  • the end of the container hollow part in the longitudinal direction that is, the top and bottom of the cylindrical container hollow part
  • the following description will be made on the assumption that the shape of the hollow portion of the container is a cylindrical shape having a hemispherical top and bottom.
  • the hard sphere reciprocates in the hollow portion of the container. It is preferable to reciprocate the container at a frequency such that the solubilizer is mixed and a frequency such that the carbon nanotubes are crushed between the z or reciprocating hard sphere and the hollow wall surface.
  • the term “pulverization” used in this specification substantially means the phenomenon of “dissociating the bundle of carbon nanotubes” rather than the phenomenon of “pulverizing”. Please note that. If the frequency is 5 s _1 or less, the vibration time may be very long.On the other hand, if the frequency is 120 s _ 1 or more, the carbon nanotubes cause a chemical reaction and the solubility of the carbon nanotubes decreases. There is a possibility that.
  • frequency is 5 ⁇ 120S _1, preferably more preferably 10 ⁇ 60s " ⁇ a frequency 20 ⁇ 50s _ 1.
  • the container rotation speed is preferably 5 to 120 times / s, more preferably 10 to 60 times / s, more preferably vibration. It can be several 20-50 times Zs.
  • the vibration time is preferably about 1 minute to 5 hours, more preferably about 1.5 minutes to 3 hours, and still more preferably about 2 minutes to 2 hours. This is because if the vibration time is too short, the solubility of the carbon nanotubes decreases, and if the vibration time is too long, the carbon nanotubes react with each other and the solubility of the carbon nanotubes decreases.
  • the vibration time may vary depending on vibration conditions such as frequency or amplitude. In addition to the preferable frequency and vibration time as described above, it is preferable to consider a suitable amplitude.
  • the hard spheres reciprocate in the hollow part of the container, and as a result, the carbon nanotubes move between the Z and the hard spheres that reciprocate and the wall of the hollow part. It is preferable to vibrate the hard sphere with respect to the container with such an amplitude as to be crushed.
  • the ratio (W: L) of the container hollow portion length L in the direction is preferably 1: 1 to 50: 1, more preferably b b b
  • amplitude refers to the length from the center point to the maximum displacement point when the container to be reciprocated is displaced to the maximum with reference to the center point of the reciprocation.
  • the container hollow part is cylindrical, it is preferable to reciprocate the container in the longitudinal direction of the container hollow part. Therefore, in that case, “the length L of the container hollow portion in the direction of reciprocating the container” is
  • LOOmm amplitude preferably 10 to 80 mm amplitude, more preferably 20 to 50 mm amplitude.
  • the container is reciprocated in the longitudinal direction of the hollow part.
  • the hard sphere provided in the container in step (i) preferably has a spherical shape
  • it may have a shape suitable for the hard sphere to reciprocate in the hollow portion while the hard sphere vibrates with respect to the container.
  • the shape may be shifted.
  • the hard sphere is a sphere having a diameter of 2 to: LO mm, preferably a diameter of 4 to 6 mm, more preferably a diameter of 5 mm.
  • the hard sphere vibrates with respect to the container, the hard sphere reciprocates in the container hollow portion, and as a result, the hardness that the carbon nanotubes are preferably crushed between the hard ball and the wall surface of the container hollow portion. It is preferable that the hard sphere and the wall surface of the container hollow part have.
  • the hardness of the hard sphere and the hardness of the wall of the hollow portion of the container are less than 4 Mohs hardness, it may cause deformation of the hard sphere and a decrease in mixing efficiency (decrease in mixing efficiency of carbon nanotube and solubilizer). There is sex. Therefore, the hardness of the hard sphere is preferably a Mohs strength of 4 to 9.5, more preferably a Mohs strength of 5 to 9.5, and still more preferably a Mohs hardness of 6 to 9.5.
  • Examples of the material of the hard sphere may include at least one material selected from the group consisting of agate, slenless, alumina, zirconia, tungsten carbide, chromium steel, and Teflon (registered trademark).
  • examples of the material for the wall surface of the hollow portion of the container include at least one material selected from the group force consisting of agate, slenless, alumina, zircoure, tungsten carbide, chromium steel, and Teflon (registered trademark). be able to.
  • the number of hard spheres provided in the container is 1-6, preferably 1-4, more preferably 2.
  • the hard sphere vibrates with respect to the container, the hard sphere reciprocates in the hollow portion of the container, and as a result, preferably the number suitable for mixing the carbon nanotube and the solubilizer and Z or reciprocate. Any number may be used as long as the carbon nanotubes are pulverized between the hard sphere and the wall surface of the hollow portion of the container. In addition, when two or more hard balls are provided in a container, the carbon nanotubes are crushed even between the reciprocating hard balls.
  • the hard sphere is small (i.e., when the container is hollow, the length in the longitudinal direction, L force), the hard sphere is small
  • the collision energy may be small and mixing may not be possible (mixing of carbon nanotubes and solubilizer). If L is large), the amplitude will inevitably increase and negative
  • the energy when the hard sphere collides with the wall surface of the hollow portion of the container becomes small, and mixing may be insufficient. Therefore, the diameter R of the hard sphere and the longitudinal length L of the hollow portion of the container
  • the ratio of a b (R: L) is preferably 1: 1.5 ⁇ 1: 100, more preferably 1: 2.0 to 1:75, a b
  • the diameter R of the hard sphere and the hollow part of the container is 1: 2.5 to 1:50 (see FIG. 5).
  • the diameter R of the hard sphere and the hollow part of the container is 1: 2.5 to 1:50 (see FIG. 5).
  • R: S) is preferably 1: 1.1-1: 30, more preferably 1: 1.2-1: 20, even more preferred a b
  • diameter R here refers to hard balls
  • the shape of the hard sphere is not particularly limited, and may be a shape other than a sphere.
  • the hard sphere has an equivalent diameter corresponding to the above-mentioned “diameter”. It is preferable.
  • the “equivalent diameter” means a diameter assumed when the shape of a non-spherical hard sphere is changed to a spherical shape without changing the volume.
  • a preferable relationship between the total volume of the hard spheres and the volume of the container hollow portion is as follows. For example, if the number of hard spheres is 1 to 6, the total volume of hard spheres with respect to the container hollow volume V
  • the "solubilizing agent" used in step (i) refers to the inside of a container together with carbon nanotubes and hard spheres in step (i) in order to obtain an aqueous solution containing carbon nanotubes stably in step (ii).
  • it is a substance that stably disperses carbon nanotubes in a solvent such as water.
  • the solubilizer provided in the container is preferably a water-soluble compound, for example, a nucleotide having a purine ring.
  • nucleotide having a purine ring examples include adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), and guanosine phosphate (GDP). And guanosine monophosphate (GMP).
  • ATP, ADP, AMP, GTP, GDP or GMP may be in the form of salt or hydrate.
  • ATP, ADP, AMP, GTP, GDP, or GMP may be in a form containing not only a monomer but also a polymer such as a dimer or a trimer.
  • their derivatives may be used in place of ATP, ADP, AMP, GTP, GDP or GMP.
  • the "solubilizing agent" used in step (i) is not limited to "nucleotide having a purine ring” and has a wide conjugated system and has a stronger ⁇ - ⁇ interaction.
  • ⁇ -based compounds are also preferable.
  • the ⁇ -based compound for example, porphyrin and its derivatives may be used.
  • 1,10,15,20 tetrakis (1-methyl 4 pyridi-o) porphyrin, tetra ( ⁇ -toluenesulfonate)
  • the “toluenesulfonate” moiety may be another cation such as ⁇ , C1-), 5, 10, 15, 20-tetrakis (4 trimethylamine-phenol) porphyrin, tetra ( ⁇ (Toluene sulfonate), 5, 10, 15, 20-tetrakis (4 sulfonate phenol) porphyrins and their metal complexes (metals include zinc, iron, magnesium, conoleto, nickel, copper, ruthenium, etc.) Can be mentioned.
  • the “solubilizing agent” used in step (i) may be pyrene and derivatives thereof, such as 1-pyrenepetitic acid, 1-pyrenemethylamine hydrochloride, 1-pyrenecarboxyl. Rick Acid and 1-Pyrenesulfonate Acid be able to.
  • the “solubilizing agent” used in the step (i) may be anthracene and its derivatives, and examples thereof include 9 anthracene carboxylic acid and 9 anthracene methanol.
  • the mass ratio of the solubilizer and the carbon nanotube provided in the container is, for example, about 1: 1 to about 5000: 1, preferably about 1: 1 when the soluble agent is 0.67 mmol.
  • the aqueous solution containing the carbon nanotubes stably in the step (ii) is converted into a mixture containing carbon nanotubes after being subjected to vibration treatment, more specifically carbon nanotubes after being subjected to vibration treatment. It can be obtained by adding water.
  • the aqueous solution thus comprises added water, carbon nanotubes, and solubilizer components.
  • step (ii) if necessary, after adding water, a precipitate is obtained from the resulting mixture (the precipitate substantially comprises carbon nanotubes that are soluble in water and have strong strength). An operation of removing the may be additionally performed.
  • the water added in step (ii) is generally composed mainly of water, and is, for example, purified water such as ultrapure water or tap water.
  • stable means that the carbon nanotubes are stably dispersed in an aqueous medium over time, and for at least 1 week, preferably at least 2 weeks, more preferably at least 3 weeks. Aggregation of carbon nanotubes Indicates that no Z precipitation occurs. Therefore, it will be understood that in such an aqueous solution, the carbon nanotubes are considered to be dissolved in the aqueous solution.
  • the aqueous solution obtained according to the method of the present invention is shown in FIG.
  • the four aqueous solutions shown in this figure use GMP (guanosine monophosphate), AMP (adenosine monophosphate), ADP (adenosine diphosphate) and ATP (adenosine triphosphate) as solubilizers, respectively. It was obtained by this. As shown in the figure, the obtained aqueous solution has a black transparent appearance. This indicates that the carbon nanotubes are stably dispersed in the obtained aqueous solution, and it can be confirmed that nucleotides having a purine ring are preferable as the solubilizer of the present invention.
  • GMP guanosine monophosphate
  • AMP adenosine monophosphate
  • ADP adenosine diphosphate
  • ATP adenosine triphosphate
  • the aqueous solution obtained using a nucleotide having a purine ring contains at least the force of dissociating the bundle.
  • the specific surface area of the carbon nanotube is increased. Therefore, a member having a carbon nanotube film having a larger specific surface area can be produced from such an aqueous solution, and the member can be used as, for example, a gas storage product or an electrode.
  • a gas storage product can be used to store hydrogen gas fuel in, for example, cars and ships.
  • a specific example of the electrode for example, a negative electrode such as a lithium secondary battery can be considered.
  • the above-described member of the present invention comprises a carbon nanotube film formed by applying a base material and an aqueous solution containing the carbon nanotube produced by the method of the present invention to the surface of the base material and then drying.
  • the base material may be made of a shifted shape or material as long as it is a substrate or a support plate suitable for a gas storage product or an electrode, for example.
  • the carbon nanotubes in which the bundles are dissociated at least partially exist in the aqueous medium almost uniformly.
  • the carbon nanotube film obtained by applying the aqueous solution to the substrate surface and drying can contain carbon nanotubes almost uniformly. Therefore, in such a carbon nanotube film, the specific surface area of the carbon nanotubes is large, and a gas storage product having a large gas storage amount or a highly efficient electrode force S is brought about.
  • the aqueous solution obtained by the method of the present invention is subjected to a filtration treatment with a conventional membrane filter. Take out only the carbon nanotubes contained in the aqueous solution, and use the removed carbon nanotubes as field emission display (FED) emitters, photoelectric conversion elements, composite materials (plastic, rubber, resin, etc.) It is used for materials such as cosmetics).
  • FED field emission display
  • FIG. 1 schematically shows a method for producing an aqueous solution containing carbon nanotubes of the present invention.
  • a method for producing an aqueous solution containing carbon nanotubes of the present invention will be described over time.
  • carbon nanotubes 1 (preferably carbon nanotubes in a dry state) are prepared. To do.
  • the carbon nanotube 1 together with the solubilizer and the two hard spheres 2 is provided in the container body hollow portion of the container 3, and the container 3 is sealed by covering the container body.
  • the hard sphere reciprocates in the hollow portion of the container, and as a result, preferably the frequency and amplitude such that the carbon nanotubes and the soluble additive are mixed, and the carbon between the Z or reciprocating hard sphere and the hollow wall surface.
  • the container 3 is reciprocated in the longitudinal direction of the hollow portion with such a frequency and amplitude that the nanotubes are crushed.
  • the carbon nanotubes taken out from the container 3 are diluted with water, whereby the aqueous solution 4 stably containing the carbon nanotubes is obtained.
  • the carbon nanotube before the carbon nanotube is subjected to a vibration operation, it may be prepared by previously mixing the soluble additive and the carbon nanotube. Further, as another preferred embodiment of the present invention, after adding a solubilizer to the carbon nanotubes, the carbon nanotubes may be subjected to drying under reduced pressure before being subjected to vibration.
  • a first aspect is a method for producing an aqueous solution containing carbon nanotubes
  • the hard ball is vibrated with respect to the container by reciprocating the container in a certain direction.
  • a hard ball is vibrated with respect to the container. And a method characterized in that the bundle of carbon nanotubes is at least partially dissociated in the container.
  • the solubilizer is adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate. (GTP), guanosine diphosphate (GDP), guanosine monophosphate (GMP), a salt thereof, and a group power consisting of the hydrate power thereof.
  • a method comprising at least one or more selected nucleotides.
  • a method of frequency is characterized 20 ⁇ 50S _1 der Rukoto.
  • Seventh aspect The method according to any one of the first to sixth aspects, wherein the time for which the hard sphere is vibrated with respect to the container is 2 minutes to 2 hours.
  • the number of hard spheres is 1 to 6, and the ratio of the total volume of the hard spheres to the volume of the hollow portion of the container is 0.5 to 10%.
  • Tenth aspect The member according to the ninth aspect, wherein the member is used as a gas storage product.
  • JP 2005-28560 A DISCLOSURE OF THE INVENTION
  • This invention is a method for producing aqueous carbon nanotubes.
  • the disclosed invention is manufactured by sonication and centrifugation, and is hard as in the present invention.
  • a process that is essentially different from the vibration crushing process in which the container provided with the sphere is reciprocated is used.
  • oligonucleotides it only refers to general oligonucleotides, and not only specific examples of oligonucleotides but also suitable chemical structures of oligonucleotides. No mention is made at all. Therefore, it was noted in Japanese Patent Application Laid-Open No. 2005-28560 that teaching and suggestion should be made regarding nucleotides containing purine rings according to the present invention.
  • the production method of the present invention was carried out using various nucleotides as solubilizers.
  • the following operating procedure will be explained using GMP as a solubilizer as an example.
  • FIG. 3 shows a visible ultraviolet absorption spectrum of the liquid containing the obtained carbon nanotube.
  • the carbon nanotube concentration (mg / 1000 mg) in Table 1 means the mass (mg) of single-walled carbon nanotubes contained per lOOOmg of aqueous solution obtained.
  • the concentration of carbon nanotubes is determined from the absorbance (A) at a wavelength of 500 nm in the visible absorption spectrum when a 1 mm cell is used, and the CNT extinction coefficient ( ⁇
  • ⁇ -NMR spectrum measurement was performed. The results are shown in Table 2.
  • the “aqueous solution containing single-walled carbon nanotubes” used for the measurement was prepared in the same manner as described above (note that 3 mg and 15 mg of single-walled carbon nanotubes and soot were used, respectively).
  • JEOL type NM-LA600 was used as an analytical instrument.
  • the H-8 and H-2 protons of the purine ring have a relatively large magnetic field. It can be seen that there is a field shift. This is thought to be due to the shielding effect of the ⁇ -conjugated ring current of the single-walled carbon nanotube, indicating that the adenine site interacts with the sidewall of the single-walled carbon nanotube.
  • the protons ⁇ -1 ', 3-3' and ⁇ -4 'in the sugar moiety show a low magnetic field shift or a slight high magnetic field shift. This indicates that the sugar moiety is not significantly involved in the single-walled carbon nanotube surface. Based on the above results, the interaction between single-walled carbon nanotubes and ⁇ is considered to be due to the ⁇ - ⁇ interaction or hydrophobic interaction between single-walled carbon nanotubes and base sites.
  • Radial breathing mode 150 ⁇ 300Cm _1 corresponds to the semiconductor monolayer force one carbon nanotube
  • radial breathing mode 230 ⁇ 300cm _ 1 is a metal Therefore, it is considered that both the semiconductor single-walled carbon nanotube and the metal single-walled carbon nanotube are dissolved.
  • FIGS. 6 (a) to (c) show TEM photographs of single-walled carbon nanotubes (SWNT) contained in the carbon nanotube aqueous solution obtained by the production method of the present invention.
  • Figures 6 (a) to (c) are TEM photographs when different solubilizers are used.
  • Figure 6 (a) shows GMP
  • Figure 6 (b) shows ADP
  • Figure 6 (c) shows ATP. Used as a solubilizer. From the powerful TEM photographs, it can be understood that the aqueous solution obtained by the production method of the present invention contains single-walled carbon nanotubes from which the bundle is dissociated (particularly, see FIGS. 6 (b) and (c)).
  • the effect of the vibration treatment performed by the production method of the present invention is only to dissociate the carbon nanotube bundles, if not completely. It can be understood that the bundle has at least an effect of destroying the structure of the carbon nanotube itself, because the bundle is thin and the bundle is at least dissociated.
  • a carbon nanotube aqueous solution (sample A) was produced by the production method of the present invention using ATP and GMP as solubilizers, respectively.
  • ATP ATP
  • GMP solubilizer
  • Sample B was prepared using ATP and GMP, respectively, as in the production method of the present invention described above. Method of operation 'Experimental conditions are as follows.
  • sample A obtained by the production method of the present invention contains carbon nanotubes
  • sample B contains carbon nanotubes!
  • the aqueous solution obtained by the method of the present invention can be used for the production of gas storage products (for example, hydrogen storage media for storing hydrogen gas fuel in cars or ships) or electrodes (anode used for lithium secondary batteries). It can also be used in the manufacture of field emission display emitters, photoelectric conversion elements or cosmetics.
  • gas storage products for example, hydrogen storage media for storing hydrogen gas fuel in cars or ships
  • electrodes anode used for lithium secondary batteries
  • It can also be used in the manufacture of field emission display emitters, photoelectric conversion elements or cosmetics.

Abstract

A process for producing an aqueous solution containing a carbon nanotube, comprising the steps of providing the carbon nanotube, a nucleotide having a purine ring as a solubilizing agent and a hard ball in a container, applying a vibration to the container at a vibration frequency of 5 to 120 s-1 to cause the vibration of the hard ball, and adding water to the carbon nanotube given after the vibration to give an aqueous solution containing the carbon nanotube.

Description

明 細 書  Specification
力一ボンナノチューブを含む水溶液の製造方法  Method for producing an aqueous solution containing bonbon nanotubes
技術分野  Technical field
[0001] 本発明は、カーボンナノチューブを含む水溶液の製造方法に関し、より詳細には、 バンドル状のカーボンナノチューブから、カーボンナノチューブを安定的に含む水溶 液を製造する方法に関する。更に、本発明は、本発明の方法で得られるカーボンナ ノチューブを含む水溶液を用 、て製造される部材に関する。  The present invention relates to a method for producing an aqueous solution containing carbon nanotubes, and more particularly to a method for producing an aqueous solution containing carbon nanotubes stably from bundle-like carbon nanotubes. Furthermore, the present invention relates to a member produced using an aqueous solution containing a carbon nanotube obtained by the method of the present invention.
背景技術  Background art
[0002] カーボンナノチューブは、六角網目状の炭素原子配列のグラフアイトシートが円筒 状に巻かれた構造を有する炭素同素体の 1つであり、その直径がナノメートルのォー ダーを有している。生成されるカーボンナノチューブは、単層カーボンナノチューブ( SWNTs: single—walled carbon nanotubes)および多層カーボンナノチューブ (MWNTs: multiwalled carbon nanotubes)の 2種類が知られている。単層力 一ボンナノチューブは、グラフアイトシートが一枚だけ円筒状に巻かれたものであるの に対して、多層カーボンナノチューブは、グラフアイトシートが同心円状に略等間隔に 何重にも重なったものである。このようなカーボンナノチューブは、そのユニークな構 造に起因して特異な機能を有することから、種々の分野での応用が期待されている。 特に単層カーボンナノチューブは、その比表面積が比較的大きいことから、例えば、 水素等などのガスの吸蔵材または電極部材等の用途に適するものと考えられている  [0002] A carbon nanotube is one of carbon allotropes having a structure in which a graphite sheet having a hexagonal network of carbon atoms arranged in a cylindrical shape, and has an order of nanometer in diameter. . Two types of carbon nanotubes are known: single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). Single-walled force Single-bonn nanotubes are a single graphite sheet wound in a cylindrical shape, whereas multi-walled carbon nanotubes are concentric circles of graphite sheets that overlap in multiple layers at approximately equal intervals. It is a thing. Such carbon nanotubes are expected to be applied in various fields because of their unique functions due to their unique structure. In particular, single-walled carbon nanotubes are considered to be suitable for applications such as gas storage materials such as hydrogen or electrode members because of their relatively large specific surface area.
[0003] し力しながら、常套の製法で製造された単層カーボンナノチューブは、種々の用途 に必ずしも好都合とは言えない。例えば、単層カーボンナノチューブと水媒体とから 成る混合物では、水溶媒に対して単層カーボンナノチューブが時間的に安定して分 散しておらず、時間の経過に伴って単層カーボンナノチューブが凝集/沈殿してし まう。例えば、かかる混合物では、長くとも 2〜3日でカーボンナノチューブの沈殿物 が見られる。それゆえ、そのような安定性に乏しい単層カーボンナノチューブを含む 混合物を溶液として扱うことが困難であり、その結果、単層カーボンナノチューブの応 用範囲が必然的に制限されてしまう。 [0003] However, single-walled carbon nanotubes produced by a conventional production method are not always convenient for various applications. For example, in a mixture of single-walled carbon nanotubes and an aqueous medium, the single-walled carbon nanotubes are not stably dispersed in time with respect to the aqueous solvent, and the single-walled carbon nanotubes aggregate over time. / It will settle. For example, in such a mixture, a precipitate of carbon nanotubes can be seen in 2 to 3 days at the longest. Therefore, it is difficult to treat such a mixture containing single-walled carbon nanotubes with poor stability as a solution, and as a result, the response of single-walled carbon nanotubes. The range of use is inevitably limited.
[0004] また、上述のような単層カーボンナノチューブを含む混合物では、単層カーボンナ ノチューブは水中で自己会合により数本〜数百本程度が束になった状態で存在す るので、単層カーボンナノチューブの比表面積が理論値と比べて相当に減少してし まう。それゆえ、このようなバンドル状の単層カーボンナノチューブを含む混合物から 製造されるガス吸蔵材では、理論値よりもガス吸蔵量が少なくなる。また、こうしたバン ドル状の単層カーボンナノチューブを含む混合物を用いて製造した電極は、カーボ ンナノチューブと電極との接触面積が小さくなるので、理論値と比べて電極効率が低 くなる。  [0004] Further, in a mixture containing single-walled carbon nanotubes as described above, single-walled carbon nanotubes exist in a bundle of several to several hundreds due to self-association in water. The specific surface area of carbon nanotubes will be considerably reduced compared to the theoretical value. Therefore, in the gas storage material manufactured from such a mixture containing bundle-like single-walled carbon nanotubes, the gas storage amount is smaller than the theoretical value. In addition, an electrode manufactured using such a mixture containing a bundle-like single-walled carbon nanotube has a lower contact efficiency between the carbon nanotube and the electrode, and therefore the electrode efficiency is lower than the theoretical value.
[0005] 非特許文献 1:ジ一'リウ (Jie Liu)、アンドリュ一'ジ一'リンズラー(Andrew G. Rin zler)、外 13名、 「フラーレン'パイプス(Fullerene Pipes)」、サイエンス (Science) 、 1998年 5月 22日、第 280号、 pl253— 1256  [0005] Non-Patent Document 1: Jie Liu, Andrew G. Rin zler, 13 others, "Fullerene Pipes", Science May 22, 1998, No. 280, pl253—1256
非特許文献 2 :ィケダ 'アツシ(Ikeda, A. )、ハヤシ'ケンタロウ(Hayashi, K. )、コ- シ 'トシフミ(Konishi, T. )、キクチ'ジユンイチ(Kikuchi, J. )「ケミカル'コミュニケ一 シヨンズ(Chemi. Commun. ) 2004」、 pl334— 1335  Non-Patent Document 2: Ikeda, Ikeda, A., Hayashi, K., Koishi, Konishi, T., Kikuchi, J. “Chemical” Communiqué "Chemi. Commun. 2004", pl334— 1335
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 従って、本発明の課題は、カーボンナノチューブを安定的に含む水溶液の製造方 法を提供することである。また、本発明の課題は、そのような本発明の方法で得られ るカーボンナノチューブを含む水溶液力も製造される部材を提供することである。 課題を解決するための手段 [0006] Therefore, an object of the present invention is to provide a method for producing an aqueous solution containing carbon nanotubes stably. Another object of the present invention is to provide a member that can produce an aqueous solution containing carbon nanotubes obtained by the method of the present invention. Means for solving the problem
[0007] 上記課題を解決するため、本発明は、 In order to solve the above problems, the present invention provides:
カーボンナノチューブを含む水溶液を製造する方法であって、  A method for producing an aqueous solution containing carbon nanotubes,
(i)カーボンナノチューブ、可溶化剤としてプリン環を有するヌクレオチド、および硬 球を容器内に供した後、 5〜120s_1の振動数で容器に対して硬球を相対的に振動 させること、ならびに (i) carbon nanotubes, after being subjected nucleotides having a purine ring as the solubilizing agent, and hard balls into a container, thereby relatively vibrating the hard balls to the container at a frequency of 5~120S _1, and
(ii)振動処理に付された後のカーボンナノチューブに水を加えて、カーボンナノチ ユーブを含む水溶液を得ること を含んで成る方法を提供する。 (ii) To obtain an aqueous solution containing carbon nanotubes by adding water to the carbon nanotubes subjected to vibration treatment. A method comprising the steps of:
[0008] この本発明の方法は、振動操作に付すことによって、カーボンナノチューブのバン ドルを少なくとも部分的に解離させる点で特徴を有しているだけでなぐ可溶化剤とし てプリン環を有するヌクレオチドが用いられて 、る点でも特徴を有して 、る。  [0008] This method of the present invention is characterized in that the carbon nanotube bundle is at least partially dissociated by subjecting it to a vibration operation, and a nucleotide having a purine ring as a solubilizer. Is used and has characteristics in terms of points.
[0009] 本発明の方法を実施することによって、約 1. O X 10_2重量%〜約 15 X 10_2重量 %のカーボンナノチューブを安定的に含む水溶液が提供される。 [0009] By carrying out the method of the present invention, an aqueous solution stably containing about 1. OX 10 — 2 wt% to about 15 X 10 — 2 wt% carbon nanotubes is provided.
[0010] また、本発明では、カーボンナノチューブ膜を表面に有する基材カも成る部材が提 供される。その部材のカーボンナノチューブ膜は、本発明の製造方法で得られる力 一ボンナノチューブ水溶液を、基材の表面に塗布した後、乾燥させること〖こよって形 成された膜であることを特徴として 、る。  [0010] In the present invention, there is also provided a member comprising a base material having a carbon nanotube film on the surface. The carbon nanotube film of the member is characterized in that it is a film formed by applying a force-bonbon nanotube aqueous solution obtained by the production method of the present invention to the surface of the substrate and then drying it. The
発明の効果  The invention's effect
[0011] 本発明の方法では、カーボンナノチューブを安定的に含む水溶液を得ることができ る。それゆえ、その水溶液では、カーボンナノチューブが水性媒体中で時間的に安 定して分散しており、長期的な安定性が優れている。従って、そのような液を溶液とし て扱うことが可能となる (本明細書で「水溶液」と呼ぶ根拠となっている)。また、そのよ うなカーボンナノチューブを安定的に含む水溶液は、バンドルが解離したカーボンナ ノチューブを少なくとも含んで成るので、カーボンナノチューブが束となっている場合 よりもカーボンナノチューブの比表面積が増加する。従って、そのような水溶液を用 いて製造される部材をガス吸蔵品として用いると、バンドル状のカーボンナノチュー ブを用いる場合よりもガス吸蔵量が増加し、より理論値に近づくことになる。また、バン ドル状のものに比べて、バンドルが解離したカーボンナノチューブの方が電極表面と の接触面積が増加するので、本発明の方法で得られる水溶液を用いて製造された 部材を電極として用いたものは高効率となり、その効率がより理論値に近づくことにな る。なお、ここでいう「理論値」とは、かかる部材に含まれるカーボンナノチューブの全 てがバンドルの解離したものであると!/、う仮定に基づ 、た理想状態の水素吸蔵量ま たは電極効率をいう。  [0011] In the method of the present invention, an aqueous solution containing carbon nanotubes stably can be obtained. Therefore, in the aqueous solution, the carbon nanotubes are dispersed stably in time in the aqueous medium, and the long-term stability is excellent. Therefore, it is possible to handle such a liquid as a solution (which is the basis for the “aqueous solution” in this specification). In addition, such an aqueous solution stably containing carbon nanotubes includes at least the carbon nanotubes from which the bundles are dissociated, so that the specific surface area of the carbon nanotubes is increased as compared with the case where the carbon nanotubes are bundled. Therefore, when a member manufactured using such an aqueous solution is used as a gas occlusion product, the gas occlusion amount increases as compared with the case of using bundle-like carbon nanotubes, and approaches the theoretical value. In addition, since the carbon nanotubes in which the bundles are dissociated have a larger contact area with the electrode surface than the bundled ones, the members manufactured using the aqueous solution obtained by the method of the present invention are used as the electrodes. What has been obtained becomes highly efficient, and the efficiency is closer to the theoretical value. Note that the “theoretical value” here means that all of the carbon nanotubes contained in such a member are dissociated bundles! /, Based on the assumption that the hydrogen storage amount in the ideal state or Refers to electrode efficiency.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、本発明のカーボンナノチューブを含む水溶液を製造する方法を模式的 に示す。 FIG. 1 schematically shows a method for producing an aqueous solution containing carbon nanotubes of the present invention. Shown in
[図 2]図 2は、本発明の方法に従って得られたカーボンナノチューブを含む水溶液を 示す。  FIG. 2 shows an aqueous solution containing carbon nanotubes obtained according to the method of the present invention.
[図 3]図 3は、可溶化剤として 7種類(GMP、 ADP、 ATP、 AMP、 R5P、 CMPおよび UMP)の物質を用いた場合に得られたカーボンナノチューブを含む液体の可視 紫外吸収スペクトルを示す。  [Figure 3] Figure 3 shows the visible ultraviolet absorption spectra of liquids containing carbon nanotubes obtained using seven types of substances (GMP, ADP, ATP, AMP, R5P, CMP, and UMP) as solubilizers. Show.
[図 4]図 4は、本発明の製造方法で得られた水溶液 (即ち、可溶化剤および SWNTを 含む溶液)の Ramanスペクトルを示す。  FIG. 4 shows a Raman spectrum of an aqueous solution (that is, a solution containing a solubilizer and SWNT) obtained by the production method of the present invention.
[図 5]図 5は、容器および硬球(中央切断図)を模式的に示しており、容器内の中空部 の長手方向長さ Lおよび短手方向長さ Sを示すと共に、硬球の直径 Rを模式的に  [FIG. 5] FIG. 5 schematically shows the container and the hard sphere (center cut), and shows the length L in the longitudinal direction and the length S in the short direction of the hollow portion in the container, and the diameter R of the hard sphere. Schematically
b b a  b b a
示している。  Show.
[図 6]図 6は、本発明の製造方法で得られたカーボンナノチューブ水溶液に含まれる 単層カーボンナノチューブを示した TEM写真である。図 6 (a)は GMP、図 6 (b)は A DP、図 6 (c)は ATPを可溶化剤として用いて!/、る。  FIG. 6 is a TEM photograph showing single-walled carbon nanotubes contained in an aqueous carbon nanotube solution obtained by the production method of the present invention. Figure 6 (a) uses GMP, Figure 6 (b) uses ADP, and Figure 6 (c) uses ATP as a solubilizer!
符号の説明  Explanation of symbols
[0013] 1…カーボンナノチューブ、 2· ··硬球、 3· ··容器、 4…カーボンナノチューブを含む 水溶液、 5…容器内の中空部。  [0013] 1 ... carbon nanotube, 2 ... hard sphere, 3 ... container, 4 ... aqueous solution containing carbon nanotube, 5 ... hollow portion in the container.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下にて、本発明のカーボンナノチューブを含む水溶液の製造方法を説明する。 [0014] Hereinafter, a method for producing an aqueous solution containing carbon nanotubes of the present invention will be described.
[0015] 本発明にお 、て「カーボンナノチューブ (具体的には工程 (i)で用いられ得るカーボ ンナノチューブ)」とは、例えばアーク放電法、レーザー蒸発法、レーザーアブレーシ ヨン法および CVD法(または化学気相成長法、 Chemical Vapor Deposition)な どの常套の製法で製造された束 (バンドル)状のカーボンナノチューブを意味する。 束状の単層カーボンナノチューブが好ま U、ものの、束状の多層カーボンナノチュー ブであっても力まわない。なお、このような「カーボンナノチューブ」は、乾燥状態 (即 ち、内部に空隙を有するような綿状形態)で用いることが好ましぐ例えば、一般的に 巿販されて ヽるカーボンナノチューブであってよ!ヽ。巿販のカーボンナノチューブは 、本発明の方法に用いるに際して、精製処理および凍結乾燥に付すことなく用いるこ とができるので有利である。つまり、巿販のカーボンナノチューブを用いる場合では、 カーボンナノチューブを酸性溶液中で超音波処理した後、中和させて水で希釈する t 、う精製処理を必要としな!、だけでなく、精製処理後に凍結乾燥処理を必要としなIn the present invention, “carbon nanotubes (specifically, carbon nanotubes that can be used in step (i)”) are, for example, arc discharge methods, laser evaporation methods, laser ablation methods, and CVD methods. (Or bundled carbon nanotubes manufactured by conventional methods such as chemical vapor deposition and chemical vapor deposition). A bundle of single-walled carbon nanotubes is preferred, but a bundle of multi-walled carbon nanotubes does not work. Such “carbon nanotubes” are preferably used in a dry state (that is, a cotton-like form having voids inside), for example, carbon nanotubes that are generally sold on the market. Come on! Commercially available carbon nanotubes can be used without being subjected to purification treatment and lyophilization when used in the method of the present invention. This is advantageous. In other words, when using commercially available carbon nanotubes, the carbon nanotubes are sonicated in an acidic solution and then neutralized and diluted with water. Does not require lyophilization later
Vヽ (「精製処理」および「凍結乾燥」につ!ヽては、非特許文献 1および非特許文献 2を 参照のこと)。このため、本発明の方法では、カーボンナノチューブを、精製処理およ び凍結乾燥に付すことなく用いることができることを意図している。 V ヽ (Refer to Non-Patent Document 1 and Non-Patent Document 2 for “Purification” and “Freeze drying”). For this reason, the method of the present invention intends that the carbon nanotubes can be used without being subjected to purification treatment and lyophilization.
[0016] 工程 (i)では、カーボンナノチューブを可溶化剤および硬球と共に容器内に供した 後、容器に対して硬球を振動させる。より具体的には、カーボンナノチューブと可溶 ィ匕剤と硬球とを容器本体の中空部 (以後、「容器中空部」ともいう)に供して蓋をした 後、容器に対して硬球を振動させる。ここで本明細書にいう「容器に対して硬球を振 動させる」とは、硬球と容器中空部の壁面との衝突が経時的に繰り返して行われる態 様を実質的に指している。従って、「容器に対して硬球を振動させる」は、容器自体を 往復運動させて、その中に含まれる硬球を往復運動させる態様のみならず、容器自 体を固定させた状態で硬球を外部力 往復運動させる態様をも含んでいる。つまり、 本明細書で用いる「振動」は、カーボンナノチューブに機械的な衝撃を直接的に与え てカーボンナノチューブに対して機械的な剪断力を直接作用させる操作を実質的に 意味して!/、ることに留意された!、。 [0016] In the step (i), after the carbon nanotube is provided in the container together with the solubilizer and the hard ball, the hard ball is vibrated with respect to the container. More specifically, the carbon nanotube, the soluble glaze agent, and the hard sphere are provided to the hollow part of the container body (hereinafter also referred to as “container hollow part”), and then the hard sphere is vibrated with respect to the container. . As used herein, “vibrating the hard sphere with respect to the container” substantially refers to a state in which the collision between the hard sphere and the wall of the hollow portion of the container is repeated over time. Therefore, “vibrating the hard ball with respect to the container” means not only a mode in which the container itself is reciprocated and the hard ball contained therein is reciprocated, but also the hard ball is externally applied with the container itself fixed. A mode of reciprocal movement is also included. In other words, “vibration” as used in this specification substantially means an operation in which a mechanical impact is directly applied to the carbon nanotubes by directly applying a mechanical impact to the carbon nanotubes! /, It was noted that!
容器を往復運動させる態様の場合、その往復運動させる方向は、容器中空部の長 手方向であることが一般的に好ましぐその容器中空部の長手方向が水平方向とな るように容器を振動機に設置する場合には、その水平方向にて容器を左右に往復す るように運動させることが好ましい。ただし、硬球と容器中空部の壁面との衝突が繰り 返して行われるのであれば、容器自体の振動方向には特に制限はなぐ容器および In the case of the embodiment in which the container is reciprocated, it is generally preferable that the reciprocating direction is the long direction of the container hollow part, so that the longitudinal direction of the container hollow part is the horizontal direction. When installing on a vibrator, it is preferable to move the container to reciprocate left and right in the horizontal direction. However, if the collision between the hard ball and the wall surface of the hollow portion of the container is repeated, there is no particular restriction on the vibration direction of the container itself.
Zもしくは容器中空部の形態または容器の振動機への設置の仕方等に応じて振動 させる方向を適宜変更してもよぐ例えば、往復運動する方向が経時的に変化するも のであってもよい。 The direction of vibration may be changed as appropriate according to the shape of the Z or the hollow part of the container or the manner in which the container is installed on the vibrator, for example, the reciprocating direction may change over time. .
[0017] 容器自体を固定させた状態で硬球を往復運動させる態様の例としては、磁性材料 から成る硬球、非磁性材料から成る容器を用い、容器の外部から硬球に対して磁力 を作用させて硬球を容器内で往復運動させる態様が考えられる。 [0018] 尚、「振動」は、ある点を中心に往復運動する現象を一般に意味するところ、本明細 書で用いる「振動」とは、容器がある方向にのみ往復運動する態様に必ずしも限定さ れる必要はなぐ硬球と容器中空部の壁面との衝突が経時的に繰り返して行われる のであれば (つまり、カーボンナノチューブに機械的な衝撃を直接的に与えて機械的 な剪断力がカーボンナノチューブに対して作用するのであれば)、容器が回転運動 および Zまたは揺動運動する態様であっても力まわない。容器が回転運動する場合 、容器が回転するだけでなぐ例えば容器が設置される架台自体も回転し、容器の回 転方向が時間的に変化 (例えば「反転」)すると共に、架台の回転方向も容器とは独 立に時間的に変化するものであることが好ましい。 [0017] As an example of a mode in which the hard sphere reciprocates with the container itself fixed, a hard sphere made of a magnetic material or a container made of a non-magnetic material is used, and a magnetic force is applied to the hard sphere from the outside of the container. A mode in which the hard ball is reciprocated in the container is conceivable. Note that “vibration” generally means a phenomenon of reciprocating around a certain point, and “vibration” used in this specification is not necessarily limited to a mode in which the container reciprocates only in a certain direction. If the collision between the hard sphere and the wall of the hollow portion of the container is repeated over time (i.e., mechanical impact is directly applied to the carbon nanotubes and mechanical shearing force is applied to the carbon nanotubes). If it acts on the container), it does not matter if the container is in rotational and Z or rocking motion. When the container rotates, for example, the gantry on which the container is installed also rotates as the container rotates, and the rotation direction of the container changes with time (for example, “reverse”), and the rotation direction of the gantry also changes. The container is preferably one that changes independently with time.
[0019] 工程 (i)で用いる「容器」は、容器本体と蓋とを一般的に有して成り、好ましくは、容 器中空部に供されるカーボンナノチューブ、可溶化剤および硬球を外界雰囲気から 遮断して密閉する容器である。容器は、好ましくは、ステンレス等の硬い材料力も主と して形成されるが、振動処理に付されることにより生じる衝撃、例えば、容器中空部で 往復運動する硬球が中空部壁面 (即ち、容器内の中空部壁部)と衝突することで生じ る衝撃に耐え得るものであれば、いずれの種類の材料力も形成してもよい。なお一般 的に、容器は、振動処理に付される間で密閉状態を維持するものが好ましい。従って 、適当な密閉が供されるように、容器本体と蓋との間の接触面にガスケットを挟み込 み、容器本体と蓋とを外部カゝらクリップまたはホルダーで締め付けてもよ ヽ。  [0019] The "container" used in step (i) generally comprises a container main body and a lid, and preferably contains carbon nanotubes, solubilizers and hard spheres provided in the container hollow portion in an ambient atmosphere. This is a container that is sealed off from and sealed. The container is preferably formed mainly of a hard material force such as stainless steel, but an impact caused by being subjected to vibration treatment, for example, a hard sphere reciprocating in the hollow part of the container has a hollow wall surface (that is, a container). Any kind of material force may be formed as long as it can withstand the impact caused by the collision with the inner hollow portion wall). In general, it is preferable that the container maintain a sealed state while being subjected to vibration treatment. Therefore, in order to provide an appropriate seal, a gasket may be sandwiched between the contact surface between the container main body and the lid, and the container main body and the lid may be tightened with a clip or holder from the outside.
[0020] 容器中空部は、例えば円筒形状を有し、振動処理に付される間、その円筒形中空 部の一方の端部から他方の端部へと硬球が中空部の長手方向に往復運動できる形 状およびサイズを有していることが好ましい。し力しながら、硬球が容器中空部内を実 質的に往復して運動するような形状およびサイズであれば、容器中空部は 、ずれの 形状およびサイズであってもよ 、。例えば容器中空部の長手方向における端部(即 ち、円筒形状の容器中空部ではその頂部および底部)は平面状に形成されているこ とは必ずしも必要でなぐ半球形状に形成されていてもよい。以下の記載では、容器 中空部の形状が、半球形状の頂部および底部を有した円筒形状であることを前提と して説明を行う。 [0020] The container hollow portion has, for example, a cylindrical shape, and while being subjected to vibration treatment, the hard ball reciprocates in the longitudinal direction of the hollow portion from one end portion of the cylindrical hollow portion to the other end portion. It preferably has a shape and size that can be formed. As long as the hard sphere moves and reciprocates substantially in the hollow portion of the container, the hollow portion of the container may be in the shape and size of deviation. For example, the end of the container hollow part in the longitudinal direction (that is, the top and bottom of the cylindrical container hollow part) may be formed in a hemispherical shape that is not necessarily required to be flat. . The following description will be made on the assumption that the shape of the hollow portion of the container is a cylindrical shape having a hemispherical top and bottom.
[0021] 容器中空部で硬球が往復運動し、その結果、好ましくはカーボンナノチューブと可 溶化剤とが混ざるような振動数および zまたは往復運動する硬球と中空部壁面との 間でカーボンナノチューブが粉砕されるような振動数で容器を往復運動させることが 好ましい。ここで、本明細書で用いる「粉砕」という用語は、粉状に砕く現象'作用を意 味しているのではなぐあくまでもカーボンナノチューブのバンドルを解離させる現象' 作用を実質的に意味していることに留意されたい。振動数が 5s_1以下であると、振動 時間が非常に長くなつてしまう可能性がある一方、振動数 120s_1以上となると、カー ボンナノチューブ同士が化学反応を起こしてカーボンナノチューブの溶解度が低下 してしまう可能性がある。従って、振動数は、 5〜120s_1であり、好ましくは 10〜60s "\より好ましくは振動数 20〜50s_ 1である。容器を回転運動に付すことによって、硬 球を容器に対して振動させる場合には、容器を往復運動させる場合と同様に解して 、容器の回転数は、好ましくは 5〜120回/ sであり、より好ましくは 10〜60回/ s、よ り好ましくは振動数 20〜50回 Zsとなり得る。 [0021] The hard sphere reciprocates in the hollow portion of the container. It is preferable to reciprocate the container at a frequency such that the solubilizer is mixed and a frequency such that the carbon nanotubes are crushed between the z or reciprocating hard sphere and the hollow wall surface. Here, the term “pulverization” used in this specification substantially means the phenomenon of “dissociating the bundle of carbon nanotubes” rather than the phenomenon of “pulverizing”. Please note that. If the frequency is 5 s _1 or less, the vibration time may be very long.On the other hand, if the frequency is 120 s _ 1 or more, the carbon nanotubes cause a chemical reaction and the solubility of the carbon nanotubes decreases. There is a possibility that. Therefore, frequency is 5~120S _1, preferably more preferably 10~60s "\ a frequency 20~50s _ 1. By subjecting the container to rotation movements, vibrations hard balls to the container In the case of making the container reciprocating, the container rotation speed is preferably 5 to 120 times / s, more preferably 10 to 60 times / s, more preferably vibration. It can be several 20-50 times Zs.
振動時間は、好ましくは 1分〜 5時間、より好ましくは 1. 5分〜 3時間、更に好ましく は 2分〜 2時間程度である。振動時間が短すぎるとカーボンナノチューブの溶解度が 低下し、また、振動時間が長すぎるとカーボンナノチューブ同士が反応しカーボンナ ノチューブの溶解度が低下するからである。但し、振動時間は、振動数または振幅等 の振動条件に応じて変わり得る可能性があることを留意されたい。上述したような好 適な振動数および振動時間に加えて、好適な振幅も考慮することが好ましい。具体 的には、容器中空部で硬球が往復運動し、その結果、カーボンナノチューブと可溶 ィ匕剤とが混ざるような振幅および Zまたは往復運動する硬球と中空部壁面との間で カーボンナノチューブが粉砕されるような振幅でもって容器に対して硬球を振動させ ることが好ましい。容器を一定方向に往復運動させることによって、容器に対して硬 球を振動させる場合、容器を往復運動させる際の振幅 Wと容器を往復運動させる方 b  The vibration time is preferably about 1 minute to 5 hours, more preferably about 1.5 minutes to 3 hours, and still more preferably about 2 minutes to 2 hours. This is because if the vibration time is too short, the solubility of the carbon nanotubes decreases, and if the vibration time is too long, the carbon nanotubes react with each other and the solubility of the carbon nanotubes decreases. However, it should be noted that the vibration time may vary depending on vibration conditions such as frequency or amplitude. In addition to the preferable frequency and vibration time as described above, it is preferable to consider a suitable amplitude. Specifically, the hard spheres reciprocate in the hollow part of the container, and as a result, the carbon nanotubes move between the Z and the hard spheres that reciprocate and the wall of the hollow part. It is preferable to vibrate the hard sphere with respect to the container with such an amplitude as to be crushed. When a hard ball is vibrated with respect to the container by reciprocating the container in a certain direction, the amplitude W when reciprocating the container and the method of reciprocating the container b
向の容器中空部長さ Lとの比 (W: L )は、好ましくは 1 : 1〜50 : 1であり、より好ましく b b b The ratio (W: L) of the container hollow portion length L in the direction is preferably 1: 1 to 50: 1, more preferably b b b
は 1 : 1. 2〜20 : 1、更に好ましくは 1 : 1. 3〜15 : 1である。なお、ここでいう「振幅」と は、往復運動に付される容器が往復運動の中心点を基準にして最大に変位した場 合において、その中心点から最大変位点までの長さをいう。また、容器中空部が円柱 形状である場合では容器中空部の長手方向に容器を往復運動させることが好ましい ので、その場合には「容器を往復運動させる方向の容器中空部長さ L」は、容器中 Is 1: 1. 2 to 20: 1, more preferably 1: 1. 3 to 15: 1. The term “amplitude” used herein refers to the length from the center point to the maximum displacement point when the container to be reciprocated is displaced to the maximum with reference to the center point of the reciprocation. Further, when the container hollow part is cylindrical, it is preferable to reciprocate the container in the longitudinal direction of the container hollow part. Therefore, in that case, “the length L of the container hollow portion in the direction of reciprocating the container” is
b  b
空部の長手方向長さを実質的に意味している(図 5参照)。  It essentially means the length of the void in the longitudinal direction (see Figure 5).
例えば横断面直径 20mm、長手方向長さ 65mmの容器 (その中空部の胴体部分 の横断面直径 12mm、中空部の長手方向長さ 50mm)を用いる場合を例にとると、 振幅が小さすぎると、容器中空部内でカーボンナノチューブと可溶化剤とを効率よく 混合できない一方、振幅が大きすぎると、硬球が容器中空部の壁面 (例えば、円筒 形状の容器中空部の頂部または底部における壁面)に衝突した後も容器自体が動き 続けることになり、時間的にもエネルギー的にも損失が大きいので、 5〜: LOOmmの振 幅、好ましくは 10〜80mmの振幅、より好ましくは 20〜50mmの振幅でもって中空 部長手方向に容器を往復運動させる。  For example, in the case of using a container having a cross-sectional diameter of 20 mm and a longitudinal length of 65 mm (a cross-sectional diameter of 12 mm of the hollow body part and a longitudinal length of the hollow part of 50 mm), if the amplitude is too small, While carbon nanotubes and solubilizers cannot be mixed efficiently in the hollow portion of the container, if the amplitude is too large, the hard sphere collides with the wall surface of the container hollow portion (for example, the wall surface at the top or bottom of the cylindrical container hollow portion). Since the container itself will continue to move afterwards, the loss will be large both in terms of time and energy, so 5 to: LOOmm amplitude, preferably 10 to 80 mm amplitude, more preferably 20 to 50 mm amplitude. The container is reciprocated in the longitudinal direction of the hollow part.
[0023] 工程 (i)にて容器内に供される硬球は好ましくは球形を有するものの、容器に対し て硬球が振動する間、硬球が中空部にて往復運動するのに適した形状であれば 、 ずれの形状であってもかまわない。例えば横断面直径 12mm、長手方向長さ 50mm の容器中空部サイズの場合、硬球は、直径 2〜: LOmm、好ましくは直径 4〜6mm、よ り好ましくは直径 5mmのサイズを有する球体である。また、容器に対して硬球が振動 する間、容器中空部にて硬球が往復運動し、その結果、好ましくは当該硬球と容器 中空部の壁面との間でカーボンナノチューブが粉砕されるような硬さを硬球および容 器中空部の壁面が有することが好ましい。例えば、硬球の硬さおよび容器中空部の 壁面の硬さがモース硬度 4以下であると、硬球の変形および混合効率の低下 (カー ボンナノチューブと可溶化剤との混合効率の低下)を引き起こす可能性がある。従つ て、硬球の硬さは、好ましくはモース強度 4〜9. 5であり、より好ましくはモース強度 5 〜9. 5、更に好ましくはモース硬度 6〜9. 5である。  [0023] Although the hard sphere provided in the container in step (i) preferably has a spherical shape, it may have a shape suitable for the hard sphere to reciprocate in the hollow portion while the hard sphere vibrates with respect to the container. In this case, the shape may be shifted. For example, in the case of a container hollow portion size having a cross-sectional diameter of 12 mm and a longitudinal length of 50 mm, the hard sphere is a sphere having a diameter of 2 to: LO mm, preferably a diameter of 4 to 6 mm, more preferably a diameter of 5 mm. Further, while the hard sphere vibrates with respect to the container, the hard sphere reciprocates in the container hollow portion, and as a result, the hardness that the carbon nanotubes are preferably crushed between the hard ball and the wall surface of the container hollow portion. It is preferable that the hard sphere and the wall surface of the container hollow part have. For example, if the hardness of the hard sphere and the hardness of the wall of the hollow portion of the container are less than 4 Mohs hardness, it may cause deformation of the hard sphere and a decrease in mixing efficiency (decrease in mixing efficiency of carbon nanotube and solubilizer). There is sex. Therefore, the hardness of the hard sphere is preferably a Mohs strength of 4 to 9.5, more preferably a Mohs strength of 5 to 9.5, and still more preferably a Mohs hardness of 6 to 9.5.
[0024] 硬球の材質としては、メノウ、スレンレス、アルミナ、ジルコユア、タングステンカーバ イド、クロム鋼およびテフロン (登録商標)から成る群から選択される少なくとも 1種以 上の材料を挙げることができる。同様に、容器中空部の壁面の材質としては、例えば 、メノウ、スレンレス、アルミナ、ジルコユア、タングステンカーバイド、クロム鋼およびテ フロン (登録商標)から成る群力 選択される少なくとも 1種以上の材料を挙げることが できる。容器に供される硬球の数は、 1〜6個、好ましくは 1〜4個、より好ましくは 2個 であるものの、容器に対して硬球が振動する間、容器中空部にて硬球が往復運動し 、その結果、好ましくはカーボンナノチューブと可溶化剤とが混ざるのに適した個数 および Zまたは往復運動する硬球と容器中空部の壁面との間でカーボンナノチュー ブが粉砕されるのに適した個数であれば、いずれの個数を用いてもかまわない。な お、 2個以上の硬球が容器に供される場合は、往復運動する硬球間でもカーボンナ ノチューブが粉砕されることになる。 [0024] Examples of the material of the hard sphere may include at least one material selected from the group consisting of agate, slenless, alumina, zirconia, tungsten carbide, chromium steel, and Teflon (registered trademark). Similarly, examples of the material for the wall surface of the hollow portion of the container include at least one material selected from the group force consisting of agate, slenless, alumina, zircoure, tungsten carbide, chromium steel, and Teflon (registered trademark). be able to. The number of hard spheres provided in the container is 1-6, preferably 1-4, more preferably 2. However, while the hard sphere vibrates with respect to the container, the hard sphere reciprocates in the hollow portion of the container, and as a result, preferably the number suitable for mixing the carbon nanotube and the solubilizer and Z or reciprocate. Any number may be used as long as the carbon nanotubes are pulverized between the hard sphere and the wall surface of the hollow portion of the container. In addition, when two or more hard balls are provided in a container, the carbon nanotubes are crushed even between the reciprocating hard balls.
[0025] 硬球と容器中空部との関係について具体的に説明すると次のようになる。まず、硬 球が容器中空部で往復運動する必要がある点を考慮した場合、容器中空部の長手 方向長さ Lに対して硬球の直径 Rが小さすぎると、次の点で不都合である。つまり、 [0025] The relationship between the hard sphere and the container hollow portion will be specifically described as follows. First, considering the point that the hard sphere needs to reciprocate in the hollow portion of the container, if the diameter R of the hard sphere is too small with respect to the length L in the longitudinal direction of the hollow portion of the container, the following points are inconvenient. That means
b a  b a
容器が小さい場合 (即ち、容器中空部の長手方向長さ L力 、さい場合)、硬球が小さ  When the container is small (i.e., when the container is hollow, the length in the longitudinal direction, L force), the hard sphere is small
b  b
くなつてしま 、、衝突エネルギーが小さくなるためにうまく混合 (カーボンナノチューブ と可溶化剤との混合)できない可能性があり、逆に容器が大きい場合 (即ち、容器中 空部の長手方向長さ Lが大きい場合)には必然的に振幅が大きくなり振動機への負  If the container is too large (i.e., the length of the container in the longitudinal direction), the collision energy may be small and mixing may not be possible (mixing of carbon nanotubes and solubilizer). If L is large), the amplitude will inevitably increase and negative
b  b
担および消費エネルギーが大きくなる可能性がある点で不都合である。一方、容器 中空部の長手方向長さ Lに対して硬球の直径 Rが大きすぎると、ストロークが短くな  This is disadvantageous in that the burden and energy consumption may increase. On the other hand, if the diameter R of the hard sphere is too large relative to the length L in the longitudinal direction of the hollow portion of the container, the stroke becomes short.
b a  b a
るために硬球が容器中空部の壁面と衝突した際のエネルギーが小さくなり混合が不 充分となる可能性がある。従って、硬球の直径 Rと容器中空部の長手方向長さ Lと  Therefore, the energy when the hard sphere collides with the wall surface of the hollow portion of the container becomes small, and mixing may be insufficient. Therefore, the diameter R of the hard sphere and the longitudinal length L of the hollow portion of the container
a b の比(R: L )は、好ましくは 1 : 1· 5〜1: 100であり、より好ましくは 1 : 2. 0〜1 : 75、 a b  The ratio of a b (R: L) is preferably 1: 1.5 · 1: 100, more preferably 1: 2.0 to 1:75, a b
更に好ましくは 1 : 2. 5〜1: 50である(図 5参照)。また、硬球の直径 Rと容器中空部  More preferably, it is 1: 2.5 to 1:50 (see FIG. 5). In addition, the diameter R of the hard sphere and the hollow part of the container
a  a
の短手方向長さ S (=円筒形状の容器中空部の胴体部分の横断面直径 S )との比(  Ratio to the length S in the short direction (= cross-sectional diameter S of the body of the hollow part of the cylindrical container)
b b  b b
R: S )は、好ましくは 1 : 1. 1〜1 : 30であり、より好ましくは 1 : 1. 2〜1 : 20、更に好ま a b  R: S) is preferably 1: 1.1-1: 30, more preferably 1: 1.2-1: 20, even more preferred a b
しくは 1 : 1· 3〜1 : 15である(同様に図 5参照)。尚、ここでいう「直径 R」とは、硬球の  Or 1: 1 · 3 to 1:15 (see also Fig. 5). In addition, “diameter R” here refers to hard balls
a  a
形状が球形である場合を指している。し力しながら、硬球の形状は特に限定されず、 球形以外の形状であってもよいので、その場合には、硬球が上記の「直径」に相当す るような相当直径を有して 、ることが好まし 、。この「相当直径」とは、非球形の硬球の 体積を変えずにその形状を球形にした場合に想定される直径を意味している。  It indicates the case where the shape is spherical. However, the shape of the hard sphere is not particularly limited, and may be a shape other than a sphere. In that case, the hard sphere has an equivalent diameter corresponding to the above-mentioned “diameter”. It is preferable. The “equivalent diameter” means a diameter assumed when the shape of a non-spherical hard sphere is changed to a spherical shape without changing the volume.
[0026] また、硬球の総体積と容器中空部の体積との好ましい関係については次のようにな る。例えば硬球の個数が 1〜6個の場合、容器中空部体積 Vに対する硬球の総体積 [0026] Further, a preferable relationship between the total volume of the hard spheres and the volume of the container hollow portion is as follows. For example, if the number of hard spheres is 1 to 6, the total volume of hard spheres with respect to the container hollow volume V
a Vの割合(=V /V X 100 (%) )は、好ましくは 0. 2〜40%、より好ましくは 0. 3〜2 b b a a The ratio of V (= V / VX 100 (%)) is preferably 0.2 to 40%, more preferably 0.3 to 2 bba.
0%、更に好ましくは 0. 5〜10%である。これにより、硬球と容器中空部の壁面との衝 突が増加してカーボンナノチューブがより粉砕されるような効果力もたらされ得る。  It is 0%, more preferably 0.5 to 10%. As a result, the impact between the hard sphere and the wall surface of the hollow portion of the container is increased, and an effect can be brought about such that the carbon nanotubes are more pulverized.
[0027] 工程 (i)に用いられる「可溶化剤」とは、工程 (ii)でカーボンナノチューブを安定的 に含む水溶液を得るために、工程 (i)にてカーボンナノチューブおよび硬球と共に容 器内に供される物質であり、好ましくは、水等の溶媒に対してカーボンナノチューブを 安定的に分散させる物質である。従って、容器内に供される可溶化剤は、水溶性ィ匕 合物であることが好ましぐ例えば、プリン環を有するヌクレオチドである。「プリン環を 有するヌクレオチド」としては、例えば、アデノシン三リン酸 (ATP)、アデノシン二リン 酸 (ADP)、アデノシン一リン酸 (AMP)、グアノシン三リン酸(GTP)、グアノシンニリ ン酸 (GDP)、およびグアノシン一リン酸 (GMP)等が具体的に挙げられる。なお、 A TP、 ADP、 AMP、 GTP、 GDPまたは GMPは、塩の形態または水和物の形態であ つてもかまわない。また、 ATP、 ADP、 AMP、 GTP、 GDPまたは GMPは、単量体 のみならず、二量体または三量体等の重合体を含む形態であっても力まわない。更 には、 ATP、 ADP、 AMP、 GTP、 GDPまたは GMPの代わりに、それらの誘導体を 用いてもかまわない。 [0027] The "solubilizing agent" used in step (i) refers to the inside of a container together with carbon nanotubes and hard spheres in step (i) in order to obtain an aqueous solution containing carbon nanotubes stably in step (ii). Preferably, it is a substance that stably disperses carbon nanotubes in a solvent such as water. Accordingly, the solubilizer provided in the container is preferably a water-soluble compound, for example, a nucleotide having a purine ring. Examples of the “nucleotide having a purine ring” include adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), and guanosine phosphate (GDP). And guanosine monophosphate (GMP). ATP, ADP, AMP, GTP, GDP or GMP may be in the form of salt or hydrate. In addition, ATP, ADP, AMP, GTP, GDP, or GMP may be in a form containing not only a monomer but also a polymer such as a dimer or a trimer. In addition, their derivatives may be used in place of ATP, ADP, AMP, GTP, GDP or GMP.
[0028] なお、「プリン環を有するヌクレオチド」に限らず、工程 (i)に用いられる「可溶化剤」 としては、広い共役系を有しており、より強い π— π相互作用を有する水溶性の π系 化合物も好ましい。 π系化合物としては、例えば、ポルフィリンおよびその誘導体であ つてよく、例えば、 5,10,15, 20 テトラキス(1—メチル 4 ピリジ -ォ)ポルフィリン 、テトラ(ρ—トルエンスルフォネート)(「ρ—トルエンスルフォネート」の部分は、他のァ ユオン、例えば Γ、 C1—であってもよい)、 5, 10, 15, 20—テトラキス(4 トリメチルァ ンモ-ォフエ-ル)ポルフィリン、テトラ(ρ トルエンスルフォネート)、 5, 10, 15, 20 ーテトラキス(4 スルホナートフエ-ル)ポルフィリン、およびそれらの金属錯体 (金属 としては、亜鉛、鉄、マグネシウム、コノ レト、ニッケル、銅、ルチウム等)を挙げること ができる。また、工程 (i)に用いられる「可溶化剤」は、ピレンおよびその誘導体であつ てもよく、例えば、 1—ピレンプチリックアシッド、 1—ピレンメチルァミンハイド口クロライ ド、 1—ピレンカルボキシリックアシッド、および 1—ピレンスルホニックアシッドを挙げる ことができる。更に、工程 (i)に用いられる「可溶化剤」は、アントラセンおよびその誘 導体であってもよぐ例えば、 9 アントラセンカルボキシリックアシッドおよび 9 アン トラセンメタノール等を挙げることができる。 [0028] It should be noted that the "solubilizing agent" used in step (i) is not limited to "nucleotide having a purine ring" and has a wide conjugated system and has a stronger π-π interaction. Π-based compounds are also preferable. As the π-based compound, for example, porphyrin and its derivatives may be used. For example, 5,10,15,20 tetrakis (1-methyl 4 pyridi-o) porphyrin, tetra (ρ-toluenesulfonate) (“ρ The “toluenesulfonate” moiety may be another cation such as Γ, C1-), 5, 10, 15, 20-tetrakis (4 trimethylamine-phenol) porphyrin, tetra (ρ (Toluene sulfonate), 5, 10, 15, 20-tetrakis (4 sulfonate phenol) porphyrins and their metal complexes (metals include zinc, iron, magnesium, conoleto, nickel, copper, ruthenium, etc.) Can be mentioned. Further, the “solubilizing agent” used in step (i) may be pyrene and derivatives thereof, such as 1-pyrenepetitic acid, 1-pyrenemethylamine hydrochloride, 1-pyrenecarboxyl. Rick Acid and 1-Pyrenesulfonate Acid be able to. Furthermore, the “solubilizing agent” used in the step (i) may be anthracene and its derivatives, and examples thereof include 9 anthracene carboxylic acid and 9 anthracene methanol.
[0029] 容器内に供される可溶化剤とカーボンナノチューブとの質量比は、例えば可溶ィ匕 剤が 0. 67mmolの場合、約 1: 1〜約 5000 : 1、好ましくは約 1: 1〜約 2500 : 1、より 好ましくは約 1: 1〜約 2000: 1である。  [0029] The mass ratio of the solubilizer and the carbon nanotube provided in the container is, for example, about 1: 1 to about 5000: 1, preferably about 1: 1 when the soluble agent is 0.67 mmol. To about 2500: 1, more preferably about 1: 1 to about 2000: 1.
[0030] 工程 (ii)のカーボンナノチューブを安定的に含む水溶液は、振動処理に付された 後のカーボンナノチューブ、より詳細には振動処理に付された後のカーボンナノチュ ーブを含む混合物に水が加えられることによって得ることができる。従って、この水溶 液は、加えられる水、カーボンナノチューブおよび可溶化剤成分を含んで成る。なお 、工程 (ii)では、水を加えた後に必要に応じて、得られる混合物から沈殿物(当該沈 殿物は水に可溶ィ匕しな力つたカーボンナノチューブを実質的に含んで成る)を除去 する操作を付加的に行ってもよい。工程 (ii)で加えられる水は、一般的に水を主成分 とし、例えば、超純水等の精製水、または水道水等である。また、必要に応じて他の 成分、例えばアルコール等を含んでいてもよい。なお、ここでいう「安定的」とは、時間 的にカーボンナノチューブが水媒体中で安定して分散することをいい、少なくとも 1週 間、好ましくは少なくとも 2週間、より好ましくは少なくとも 3週間は、カーボンナノチュ ーブの凝集 Z沈殿が生じないことをいう。従って、このような水溶液では、カーボンナ ノチューブが水溶液中に溶解して ヽるものと考えられることが理解されよう。参考まで に、本発明の方法に従って得られた水溶液を図 2に示す。この図に示す 4種類の水 溶液は、可溶化剤として GMP (グアノシン一リン酸)、 AMP (アデノシン一リン酸)、 A DP (アデノシン二リン酸)および ATP (アデノシン三リン酸)をそれぞれ用いることによ つて得られたものである。図示されるように、得られた水溶液は黒色透明な外観を有 している。これは、得られた水溶液中ではカーボンナノチューブが安定して分散して いることを示しており、プリン環を有するヌクレオチドが本発明の可溶化剤として好ま しいことを確認できる。  [0030] The aqueous solution containing the carbon nanotubes stably in the step (ii) is converted into a mixture containing carbon nanotubes after being subjected to vibration treatment, more specifically carbon nanotubes after being subjected to vibration treatment. It can be obtained by adding water. The aqueous solution thus comprises added water, carbon nanotubes, and solubilizer components. In step (ii), if necessary, after adding water, a precipitate is obtained from the resulting mixture (the precipitate substantially comprises carbon nanotubes that are soluble in water and have strong strength). An operation of removing the may be additionally performed. The water added in step (ii) is generally composed mainly of water, and is, for example, purified water such as ultrapure water or tap water. Further, it may contain other components such as alcohol as required. As used herein, “stable” means that the carbon nanotubes are stably dispersed in an aqueous medium over time, and for at least 1 week, preferably at least 2 weeks, more preferably at least 3 weeks. Aggregation of carbon nanotubes Indicates that no Z precipitation occurs. Therefore, it will be understood that in such an aqueous solution, the carbon nanotubes are considered to be dissolved in the aqueous solution. For reference, the aqueous solution obtained according to the method of the present invention is shown in FIG. The four aqueous solutions shown in this figure use GMP (guanosine monophosphate), AMP (adenosine monophosphate), ADP (adenosine diphosphate) and ATP (adenosine triphosphate) as solubilizers, respectively. It was obtained by this. As shown in the figure, the obtained aqueous solution has a black transparent appearance. This indicates that the carbon nanotubes are stably dispersed in the obtained aqueous solution, and it can be confirmed that nucleotides having a purine ring are preferable as the solubilizer of the present invention.
[0031] プリン環を有するヌクレオチド等を用いて得られた水溶液は、バンドルが解離した力 一ボンナノチューブを少なくとも含んでいるため、バンドルが解離される度合いに比 例してカーボンナノチューブの比表面積が増すものと考えられる。従って、かかる水 溶液から、比表面積のより大きいカーボンナノチューブ膜を有する部材を製造するこ とができ、その部材を例えばガス吸蔵品または電極等として用いることができる。なお 、かかるガス吸蔵品は、例えば、車、船舶等の水素ガス燃料を保存するのに用いるこ とができる。また、電極の具体例としては、例えばリチウム二次電池などの負極等が 考えられる。 [0031] The aqueous solution obtained using a nucleotide having a purine ring contains at least the force of dissociating the bundle. For example, it is considered that the specific surface area of the carbon nanotube is increased. Therefore, a member having a carbon nanotube film having a larger specific surface area can be produced from such an aqueous solution, and the member can be used as, for example, a gas storage product or an electrode. Such a gas storage product can be used to store hydrogen gas fuel in, for example, cars and ships. As a specific example of the electrode, for example, a negative electrode such as a lithium secondary battery can be considered.
[0032] 上述の本発明の部材は、基材、および本発明の方法で製造されるカーボンナノチ ユーブを含む水溶液を当該基材表面に塗布した後で乾燥させることにより形成される カーボンナノチューブ膜を有して成る。基材は、例えばガス吸蔵品または電極等に対 して適当な基板または支持板等であれば、 、ずれの形状または材料から成るもので あってよい。本発明の方法で製造されるカーボンナノチューブを含む水溶液では、少 なくとも部分的にバンドルの解離したカーボンナノチューブがほぼ均一に水媒体中に 存在する。その結果、その水溶液を基材表面に塗布して乾燥することにより得られる カーボンナノチューブ膜は、カーボンナノチューブをほぼ一様に含んだものとなり得 る。それゆえ、そのようなカーボンナノチューブ膜では、カーボンナノチューブの比表 面積が大きいものとなり、ガス吸蔵量の多いガス吸蔵品または高効率な電極力 Sもたら されること〖こなる。  [0032] The above-described member of the present invention comprises a carbon nanotube film formed by applying a base material and an aqueous solution containing the carbon nanotube produced by the method of the present invention to the surface of the base material and then drying. Have. The base material may be made of a shifted shape or material as long as it is a substrate or a support plate suitable for a gas storage product or an electrode, for example. In the aqueous solution containing carbon nanotubes produced by the method of the present invention, the carbon nanotubes in which the bundles are dissociated at least partially exist in the aqueous medium almost uniformly. As a result, the carbon nanotube film obtained by applying the aqueous solution to the substrate surface and drying can contain carbon nanotubes almost uniformly. Therefore, in such a carbon nanotube film, the specific surface area of the carbon nanotubes is large, and a gas storage product having a large gas storage amount or a highly efficient electrode force S is brought about.
[0033] なお、本発明の方法で得られる水溶液を上述のようにガス吸蔵品または電極などの 部材を形成するのに用いる他、常套のメンブランフィルターで水溶液を濾別処理に 付すことによって、その水溶液中に含まれるカーボンナノチューブのみを単独に取り 出し、その取り出されたカーボンナノチューブを、電界放出ディスプレイ (FED : Field Emission Display)用ェミッタ一、光電変換素子、複合材料(プラスティック、ゴム もしくは榭脂等を補強するために混ぜられる材料)または化粧品等の用途に用いるこ とちでさる。  [0033] In addition to using the aqueous solution obtained by the method of the present invention to form a member such as a gas storage product or an electrode as described above, the aqueous solution is subjected to a filtration treatment with a conventional membrane filter. Take out only the carbon nanotubes contained in the aqueous solution, and use the removed carbon nanotubes as field emission display (FED) emitters, photoelectric conversion elements, composite materials (plastic, rubber, resin, etc.) It is used for materials such as cosmetics).
[0034] 図 1には、本発明のカーボンナノチューブを含む水溶液の製造方法を模式的に示 している。以下にて、図 1を参照して、本発明のカーボンナノチューブを含む水溶液 の製造方法を経時的に説明する。  FIG. 1 schematically shows a method for producing an aqueous solution containing carbon nanotubes of the present invention. Hereinafter, with reference to FIG. 1, a method for producing an aqueous solution containing carbon nanotubes of the present invention will be described over time.
[0035] まず、カーボンナノチューブ 1 (好ましくは乾燥状態のカーボンナノチューブ)を用意 する。次に、可溶化剤および 2個の硬球 2と共にカーボンナノチューブ 1を容器 3の容 器本体中空部に供し、容器本体に蓋をすることによって容器 3を密閉する。そして、 容器中空部で硬球が往復運動し、その結果、好ましくはカーボンナノチューブと可溶 ィ匕剤とが混ざるような振動数および振幅ならびに Zまたは往復運動する硬球と中空 部壁面との間でカーボンナノチューブが粉砕されるような振動数および振幅でもって 当該容器 3を中空部長手方向に往復運動させる。そして、適当な時間、容器 3を往復 運動させた後、容器 3から取り出したカーボンナノチューブを水により希釈することに よって、カーボンナノチューブを安定的に含む水溶液 4が得られる。 [0035] First, carbon nanotubes 1 (preferably carbon nanotubes in a dry state) are prepared. To do. Next, the carbon nanotube 1 together with the solubilizer and the two hard spheres 2 is provided in the container body hollow portion of the container 3, and the container 3 is sealed by covering the container body. Then, the hard sphere reciprocates in the hollow portion of the container, and as a result, preferably the frequency and amplitude such that the carbon nanotubes and the soluble additive are mixed, and the carbon between the Z or reciprocating hard sphere and the hollow wall surface. The container 3 is reciprocated in the longitudinal direction of the hollow portion with such a frequency and amplitude that the nanotubes are crushed. Then, after the container 3 is reciprocated for an appropriate time, the carbon nanotubes taken out from the container 3 are diluted with water, whereby the aqueous solution 4 stably containing the carbon nanotubes is obtained.
[0036] 本発明の好適な態様として、カーボンナノチューブを振動操作に付す前に、可溶 ィ匕剤とカーボンナノチューブとを予め混ぜることによって調製してもよい。また、本発 明の別の好適な態様として、カーボンナノチューブに対して可溶化剤を加えた後、か つ、カーボンナノチューブを振動に付す前に、カーボンナノチューブを減圧乾燥に付 してちよい。 [0036] As a preferred embodiment of the present invention, before the carbon nanotube is subjected to a vibration operation, it may be prepared by previously mixing the soluble additive and the carbon nanotube. Further, as another preferred embodiment of the present invention, after adding a solubilizer to the carbon nanotubes, the carbon nanotubes may be subjected to drying under reduced pressure before being subjected to vibration.
[0037] 以上、本発明の実施形態について説明してきた力 本発明はこれに限定されず、 種々の改変がなされ得ることは当業者には容易に理解されよう。ちなみに、上述した 本発明は、次の態様を包含することに留意されたい:  [0037] As described above, the power described in the embodiment of the present invention is not limited thereto, and it will be easily understood by those skilled in the art that various modifications can be made. Incidentally, it should be noted that the present invention described above includes the following aspects:
[0038] 第 1の態様: カーボンナノチューブを含む水溶液を製造する方法であって、 [0038] A first aspect is a method for producing an aqueous solution containing carbon nanotubes,
カーボンナノチューブ、可溶化剤としてプリン環を有するヌクレオチド、および硬球 を容器内に供した後、 5〜120s_1の振動数で容器に対して硬球を振動させて、カー ボンナノチューブを振動処理に付すこと、ならびに Nucleotides having a purine ring carbon nanotubes, as solubilizer, and was subjected to the vessel hard balls, by vibrating the hard balls to the container at a frequency of 5~120S _1, subjecting the car carbon nanotubes vibration treatment And
振動処理に付された後のカーボンナノチューブに水を加えて、カーボンナノチュー ブを含む水溶液を得ること  Add water to the carbon nanotubes that have been subjected to vibration treatment to obtain an aqueous solution containing carbon nanotubes.
を含んで成る方法。  Comprising a method.
第 2の態様: 上記第 1の態様において、容器を一定方向に往復運動させることに よって、容器に対して硬球を振動させており、  Second aspect: In the first aspect, the hard ball is vibrated with respect to the container by reciprocating the container in a certain direction.
容器を往復運動させる際の振幅 Wと容器を往復運動させる方向の容器中空部長  Amplitude W when reciprocating container and length of container hollow in direction to reciprocate container
b  b
さしとの比 (W: L )が 1 : 1. 3〜15 : 1であることを特徴とする方法。  A method characterized in that the ratio (W: L) to the forehead is from 1: 1.3 to 15: 1.
b b b  b b b
第 3の態様: 上記第 1または第 2の態様において、容器に対して硬球を振動させて 、容器内でカーボンナノチューブのバンドルを少なくとも部分的に解離させることを特 徴とする方法。 Third aspect: In the first or second aspect, a hard ball is vibrated with respect to the container. And a method characterized in that the bundle of carbon nanotubes is at least partially dissociated in the container.
第 4の態様: 上記第 1〜3の態様のいずれかにおいて、可溶化剤が、アデノシン三 リン酸 (ATP)、アデノシン二リン酸 (ADP)、アデノシン一リン酸 (AMP)、グアノシン 三リン酸(GTP)、グアノシン二リン酸(GDP)、グアノシン一リン酸(GMP)、それらの 塩およびそれらの水和物力 成る群力 選択される少なくとも 1種以上のヌクレオチド であることを特徴とする方法。  Fourth aspect: In any one of the first to third aspects, the solubilizer is adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate. (GTP), guanosine diphosphate (GDP), guanosine monophosphate (GMP), a salt thereof, and a group power consisting of the hydrate power thereof. A method comprising at least one or more selected nucleotides.
第 5の態様: 上記第 1〜4の態様のいずれかにおいて、カーボンナノチューブが、 単層カーボンナノチューブを少なくとも含んで成ることを特徴とする方法。  Fifth aspect: The method according to any one of the first to fourth aspects, wherein the carbon nanotubes comprise at least single-walled carbon nanotubes.
第 6の態様: 上記第 1〜5の態様のいずれかにおいて、振動数が 20〜50s_1であ ることを特徴とする方法。 Sixth aspect: In any one of the first to fifth aspect, a method of frequency is characterized 20~50S _1 der Rukoto.
第 7の態様: 上記第 1〜6の態様のいずれかにおいて、容器に対して硬球を振動 させる時間が、 2分〜 2時間であることを特徴とする方法。  Seventh aspect: The method according to any one of the first to sixth aspects, wherein the time for which the hard sphere is vibrated with respect to the container is 2 minutes to 2 hours.
第 8の態様: 上記第 1〜7の態様のいずれかにおいて、硬球の個数が 1〜6個であ つて、容器中空部の体積に対する硬球の総体積の割合が 0. 5〜10%であることを 特徴とする方法。  Eighth aspect: In any one of the first to seventh aspects, the number of hard spheres is 1 to 6, and the ratio of the total volume of the hard spheres to the volume of the hollow portion of the container is 0.5 to 10%. A method characterized by that.
第 9の態様: カーボンナノチューブ膜を表面に有する基材力 成る部材であって、 カーボンナノチューブ膜が、上記第 1〜8の態様のいずれかの方法で得られるカー ボンナノチューブを含む水溶液を、基材の表面に塗布した後、乾燥させること〖こよつ て形成される膜であることを特徴とする部材。  Ninth aspect: A member having a substrate strength having a carbon nanotube film on the surface, wherein the carbon nanotube film is an aqueous solution containing carbon nanotubes obtained by the method of any one of the first to eighth aspects. A member characterized in that it is a film formed by applying it to the surface of a material and then drying it.
第 10の態様: 上記第 9の態様において、ガス吸蔵品として用いられることを特徴と する部材。  Tenth aspect: The member according to the ninth aspect, wherein the member is used as a gas storage product.
第 11の態様: 上記第 9の態様において、電極として用いられることを特徴とする部 材。  Eleventh aspect: The member according to the ninth aspect, wherein the member is used as an electrode.
尚、本発明の技術的思想とは本質的に異なるものである力 念のため、特開 2005 28560【こつ!ヽて付言しておく。特開 2005— 28560【こ開示されて!ヽる発明 ίま、水 溶液カーボンナノチューブの製造方法である。し力しながら、その開示されている発 明は、あくまでも超音波処理および遠心分離処理で製造しており、本発明のような硬 球が供された容器を往復運動させる振動粉砕処理とは本質的に異なる処理を用い ている。また、開示されている発明ではオリゴヌクレオチドが用いられているものの、あ くまでも一般的なオリゴヌクレオチドに関してしか言及しておらず、具体的なオリゴヌク レオチドの例はおろか、好適なオリゴヌクレオチドの化学構造などにっ 、ては一切言 及されていない。従って、特開 2005— 28560では、本発明に係るプリン環を含んだ ヌクレオチドに関しては教示も示唆もされて ヽな 、ことに留意された 、。 It should be noted that because of the idea that is fundamentally different from the technical idea of the present invention, Japanese Patent Application Laid-Open No. 2005 28560 [Katsu! [Patent Document 1] JP 2005-28560 A DISCLOSURE OF THE INVENTION This invention is a method for producing aqueous carbon nanotubes. However, the disclosed invention is manufactured by sonication and centrifugation, and is hard as in the present invention. A process that is essentially different from the vibration crushing process in which the container provided with the sphere is reciprocated is used. Although the disclosed invention uses oligonucleotides, it only refers to general oligonucleotides, and not only specific examples of oligonucleotides but also suitable chemical structures of oligonucleotides. No mention is made at all. Therefore, it was noted in Japanese Patent Application Laid-Open No. 2005-28560 that teaching and suggestion should be made regarding nucleotides containing purine rings according to the present invention.
実施例  Example
[0040] [ヌクレオチドの塩基の種類を変化させた比較試験]  [0040] [Comparative test with different nucleotide base types]
可溶化剤として種々のヌクレオチドを用いて、本発明の製造方法を実施した。以下 の操作手順は、可溶剤として GMPを用いた場合を例にとって説明する。  The production method of the present invention was carried out using various nucleotides as solubilizers. The following operating procedure will be explained using GMP as a solubilizer as an example.
[0041] (操作手順) [0041] (Operation procedure)
(1) 0. 3mgの単層カーボンナノチューブ (Carbon Nanotechnologies Incorp orated製)、 272mg (0. 67mmol)の可溶化剤および 2個のメノウボール(球直径 5 mm)を 20mmの横断面直径、 65mmの長手方向長さを有する円筒形状の密閉容 器(当該容器に形成されている円筒形中空部:胴体部分の横断面直径 12mm、長手 方向長さ 50mm)に仕込んだ。  (1) 0.3 mg of single-walled carbon nanotubes (Carbon Nanotechnologies Incorporated), 272 mg (0.67 mmol) of solubilizer and 2 agate balls (sphere diameter 5 mm), 20 mm cross-sectional diameter, 65 mm A cylindrical sealed container having a length in the longitudinal direction (cylindrical hollow portion formed in the container: a cross-sectional diameter of the body portion of 12 mm, a length in the longitudinal direction of 50 mm) was charged.
(2)振動機(レッチ (Retsch)製、 MM200)において、密閉容器中空部の長手方 向をほぼ水平にした状態で、約 30mmの振幅、約 30s_1の振動数で当該密閉容器 を水平方向に往復運動させた。 (2) In the vibrator (Retsch, MM200), with the longitudinal direction of the hollow part of the closed container being almost horizontal, the closed container is moved horizontally with an amplitude of about 30 mm and a frequency of about 30 s _1. Was reciprocated.
(3)約 20分間密閉容器を往復運動させた後、密閉容器の中空部力も黒色粉末を 取り出した。  (3) After reciprocating the sealed container for about 20 minutes, the black powder was also taken out of the hollow part of the sealed container.
(4)得られた約 272. 3mgの黒色粉末に約 lOOOmgの重水をカ卩えることによって、 単層カーボンナノチューブを安定的に含む水溶液を得た (溶けきらなかった単層力 一ボンナノチューブの沈殿物は、遠心分離 (8000rpm, 10分、約 25°C (室温))によ り水溶液から除去した)。  (4) By adding about lOOOmg of heavy water to the obtained about 272.3 mg of black powder, an aqueous solution containing a stable single-walled carbon nanotube was obtained. The precipitate was removed from the aqueous solution by centrifugation (8000 rpm, 10 minutes, approximately 25 ° C (room temperature)).
(5)得られた水溶液は、少なくとも 3週間までは単層カーボンナノチューブが凝集 Z 沈殿しな力つた。  (5) The obtained aqueous solution was strong enough that the single-walled carbon nanotubes did not aggregate and precipitate for up to 3 weeks.
[0042] 同様の操作を、種々の可溶化剤(全て 0. 67mmol)で実施し、得られた液体の力 一ボンナノチューブ濃度を求めた。その結果を図 3および以下の表 1に示す。図 3は 、得られたカーボンナノチューブを含む液体の可視 紫外吸収スペクトルを示す。表 1のカーボンナノチューブ濃度(mg/1000mg)とは、得られた水溶液 lOOOmg当た りに含まれる単層カーボンナノチューブの質量 (mg)を意味する。カーボンナノチュ ーブ濃度は、 1mmセルを用いたときの可視吸収スペクトルにおける 500nmの波長 の吸光度 (A )から、以下の式のように水溶液中における CNTの吸光係数( ε [0042] The same procedure was carried out with various solubilizers (all 0.667 mmol), and the liquid force obtained The single-bonn nanotube concentration was determined. The results are shown in Fig. 3 and Table 1 below. FIG. 3 shows a visible ultraviolet absorption spectrum of the liquid containing the obtained carbon nanotube. The carbon nanotube concentration (mg / 1000 mg) in Table 1 means the mass (mg) of single-walled carbon nanotubes contained per lOOOmg of aqueous solution obtained. The concentration of carbon nanotubes is determined from the absorbance (A) at a wavelength of 500 nm in the visible absorption spectrum when a 1 mm cell is used, and the CNT extinction coefficient (ε
500 500 500 500
=2.86 X 104cm2/g)を用いることによって得たものである: = 2.86 X 10 4 cm 2 / g):
[0043] [数 1] [0043] [Equation 1]
CNT濃度 (m g/ l O O Om g) =AS0 [一] Z ( ί 5 。 。 [ c m2 / g] X O . 1 [c m] X 1 [g/c m3 ] 1 0" 3 [-]) CNT concentration (mg / l OO Omg) = A S. 0 [One] Z (ί 5. [Cm 2 / g] XO. 1 [cm] X 1 [g / cm 3 ] 1 0 " 3 [-])
[0044] [表 1] [0044] [Table 1]
[0045] (結果)  [0045] (Result)
表 1を参照すると、可溶化剤として GMP、 AMP、 ADPおよび ATPを用いた場合、 単層カーボンナノチューブが水溶化されるのに対して、可溶化剤として CMPおよび UMPを用いた場合では全く水溶化されないことが分かった。これは、 GMP、 AMP、 ADPおよび ATP力 プリン環の塩基部位を有しているために、 CMPおよび UMPの 塩基部位のピリミジン環に比べて広い共役系を有し、より強い π— π相互作用で単 層カーボンナノチューブの表面を被覆できる力 であると考えられる。また、 R5Pを用 いた場合でも、単層カーボンナノチューブは全く水溶化されなかったことから、本発 明の製造方法に用いられる可溶化剤としては、塩基としてプリン環を有するヌクレオ チドが好ま 、ことが分力つた。 [0046] [ H— NMRスペクトル測定] Referring to Table 1, when GMP, AMP, ADP and ATP are used as a solubilizer, single-walled carbon nanotubes are water-soluble, whereas when CMP and UMP are used as solubilizers, they are completely water-soluble. It turned out that it was not converted. This is because GMP, AMP, ADP and ATP have a purine ring base site, so it has a wider conjugated system than the pyrimidine ring at the base site of CMP and UMP, and a stronger π-π interaction. This is considered to be the force that can cover the surface of single-walled carbon nanotubes. In addition, even when R5P was used, single-walled carbon nanotubes were not water-solubilized at all. Therefore, as a solubilizer used in the production method of the present invention, a nucleotide having a purine ring as a base is preferable. However, it was divided. [0046] [H-NMR spectrum measurement]
ATPと単層カーボンナノチューブ(SWNT)との相互作用を確認するために、 'Η- NMRスペクトル測定を実施した。結果を表 2に示す。測定に用いた「単層カーボンナ ノチューブを含む水溶液」は、上述の操作と同様の操作で調製した (なお、単層カー ボンナノチューブおよび ΑΤΡは、それぞれ 3mgおよび 15mg用いた)。また、 H—N MRスペクトル測定に際しては、 日本電子製の型 NM— LA600を分析機器として 用いた。  In order to confirm the interaction between ATP and single-walled carbon nanotubes (SWNT), Η-NMR spectrum measurement was performed. The results are shown in Table 2. The “aqueous solution containing single-walled carbon nanotubes” used for the measurement was prepared in the same manner as described above (note that 3 mg and 15 mg of single-walled carbon nanotubes and soot were used, respectively). When measuring H-N MR spectrum, JEOL type NM-LA600 was used as an analytical instrument.
[0047] [表 2]  [0047] [Table 2]
(表中のプロトンは以下の [化 1 ]を参照のこと)  (Refer to [Chemical 1] below for protons in the table)
[0048] [化 1]  [0048] [Chemical 1]
[0049] (結果) [0049] (Result)
表 2を参照すると、プリン環のプロトンである H-8および H-2では比較的大きな高磁 場シフトがあることが分かる。これは、単層カーボンナノチューブの π共役系の環電 流による遮蔽効果を受けたものと考えられ、アデニン部位が単層カーボンナノチュー ブのサイドウォールと相互作用していることを示している。一方、糖部位のプロトン Η- 1 '、 Η- 3 'および Η-4 'では低磁場シフトもしくは若干の高磁場シフトがあることが分 かる。これは、糖部位が単層カーボンナノチューブ表面にあまり関与していないことを 示している。以上の結果に基づくと、単層カーボンナノチューブと ΑΤΡとの間の相互 作用は、単層カーボンナノチューブと塩基部位との π— π相互作用もしくは疎水性 相互作用〖こよるものと考えられる。 Referring to Table 2, the H-8 and H-2 protons of the purine ring have a relatively large magnetic field. It can be seen that there is a field shift. This is thought to be due to the shielding effect of the π-conjugated ring current of the single-walled carbon nanotube, indicating that the adenine site interacts with the sidewall of the single-walled carbon nanotube. On the other hand, the protons 糖 -1 ', 3-3' and Η-4 'in the sugar moiety show a low magnetic field shift or a slight high magnetic field shift. This indicates that the sugar moiety is not significantly involved in the single-walled carbon nanotube surface. Based on the above results, the interaction between single-walled carbon nanotubes and ΑΤΡ is considered to be due to the π-π interaction or hydrophobic interaction between single-walled carbon nanotubes and base sites.
[0050] [単層カーボンナノチューブを含む水溶液の Raman ^ベクトルの測定]  [0050] [Measurement of Raman ^ vector of aqueous solution containing single-walled carbon nanotubes]
上述の操作と同様の操作で調製した「単層カーボンナノチューブを含む水溶液」の 物性を評価するために、 Raman ^ベクトルの測定を実施した。結果を図 4に示す。な お、 Ramanスペクトルの測定に際しては、 日本分光製の型式 NRS— 2100を分析機 器として用いた。  In order to evaluate the physical properties of the “aqueous solution containing single-walled carbon nanotubes” prepared by the same operation as described above, the Raman vector was measured. The results are shown in Fig. 4. In the measurement of Raman spectra, a model NRS-2100 manufactured by JASCO was used as the analytical instrument.
[0051] (結果)  [0051] (Result)
図 4に示すように、全てのスペクトルにおいて、 150〜300cm_1付近のラジアルブリ 一ジングモード (RBM)と、炭素原子の六員環ネットワーク内の格子振動に起因する 1550cm_1付近の Gバンドが観察されており、単層カーボンナノチューブが溶解して いることを確認した。 150〜300cm_1のラジアルブリージングモードは半導体単層力 一ボンナノチューブに対応し、 230〜300cm_ 1のラジアルブリージングモードは金属 、ることから、半導体単層カーボンナノチュー ブおよび金属単層カーボンナノチューブの双方が溶解しているものと考えられる。 As shown in FIG. 4, in all spectra, the 150~300Cm _1 near Rajiaruburi one managing mode (RBM), G band near 1550 cm _1 due to lattice vibration within a six-membered ring network of carbon atoms were observed It was confirmed that the single-walled carbon nanotubes were dissolved. Radial breathing mode 150~300Cm _1 corresponds to the semiconductor monolayer force one carbon nanotube, radial breathing mode 230~300cm _ 1 is a metal Therefore, it is considered that both the semiconductor single-walled carbon nanotube and the metal single-walled carbon nanotube are dissolved.
[0052] [カーボンナノチューブ水溶液中の単層カーボンナノチューブの TEM写真] [0052] [TEM photograph of single-walled carbon nanotube in carbon nanotube aqueous solution]
図 6 (a)〜(c)には、本発明の製造方法で得られたカーボンナノチューブ水溶液に 含まれて 、る単層カーボンナノチューブ(SWNT)の TEM写真を示す。図 6 (a)〜(c )は、それぞれ異なる可溶化剤を用いた場合の TEM写真であり、図 6 (a)では GMP 、図 6 (b)では ADP、図 6 (c)では ATPを可溶化剤として用いている。力かる TEM写 真からは、本発明の製造方法で得られる水溶液には、バンドルの解離した単層カー ボンナノチューブが含まれることが理解できる(特に図 6 (b)および (c)参照)。また、こ の TEM写真から、本発明の製造方法で行う振動処理の効果は、カーボンナノチュー ブのバンドルを完全とは言えないまでも解離させる効果があるに留まっており(振動 処理によって、カーボンナノチューブが元の形態 ·形状力 細くなつていることから、 そのバンドルが少なくとも解離していることが分かる)、カーボンナノチューブ自体の 構造を破壊する効果まではないことが理解できるであろう。 FIGS. 6 (a) to (c) show TEM photographs of single-walled carbon nanotubes (SWNT) contained in the carbon nanotube aqueous solution obtained by the production method of the present invention. Figures 6 (a) to (c) are TEM photographs when different solubilizers are used. Figure 6 (a) shows GMP, Figure 6 (b) shows ADP, and Figure 6 (c) shows ATP. Used as a solubilizer. From the powerful TEM photographs, it can be understood that the aqueous solution obtained by the production method of the present invention contains single-walled carbon nanotubes from which the bundle is dissociated (particularly, see FIGS. 6 (b) and (c)). Also this From the TEM photographs of the above, the effect of the vibration treatment performed by the production method of the present invention is only to dissociate the carbon nanotube bundles, if not completely. It can be understood that the bundle has at least an effect of destroying the structure of the carbon nanotube itself, because the bundle is thin and the bundle is at least dissociated.
[本発明の製造方法と超音波法との比較実験] [Comparison experiment between the production method of the present invention and the ultrasonic method]
本発明の製造方法で行う振動処理の効果を他の処理操作との比較で確認するた めに、本発明の製造方法と超音波法との 2つの製造方法を実施した。  In order to confirm the effect of the vibration treatment performed in the production method of the present invention by comparison with other treatment operations, two production methods of the present invention and the ultrasonic method were carried out.
(1)本発明の製造方法によるカーボンナノチューブ水溶液の製造  (1) Production of an aqueous solution of carbon nanotubes by the production method of the present invention
可溶化剤として ATPおよび GMPをそれぞれ用いて本発明の製造方法でカーボ ンナノチューブ水溶液 (試料 A)を製造した。具体的には、  A carbon nanotube aqueous solution (sample A) was produced by the production method of the present invention using ATP and GMP as solubilizers, respectively. In particular,
(1) O. 3mgの単層カーボンナノチューブ (Carbon Nanotechnologies Incorpo rated製)、 0. 67mmolの可溶化剤および 2個のメノウボール(球直径 5mm)を 20m mの横断面直径、 65mmの長手方向長さを有する円筒形状の密閉容器(当該容器 に形成されている円筒形中空部:胴体部分の横断面直径 12mm、長手方向長さ 50 mm)に t Aん 7こ。  (1) O. 3 mg single-walled carbon nanotubes (Carbon Nanotechnologies Incorpo rated), 0.667 mmol solubilizer and 2 agate balls (sphere diameter 5 mm) 20 mm cross-sectional diameter, 65 mm longitudinal length 7 t A in a cylindrical sealed container with a thickness (cylindrical hollow part formed in the container: 12 mm cross-sectional diameter of the body part, 50 mm long in the longitudinal direction).
(ii)振動機(レッチェ (Retsch)製、 MM200)において、密閉容器中空部の長手方 向をほぼ水平にした状態で、約 30mmの振幅、約 30s_1の振動数で当該密閉容器 を水平方向に往復運動させた。 (ii) In a vibrator (Retsch, MM200), with the sealed container hollow section in the horizontal direction approximately horizontal, the sealed container is moved horizontally with an amplitude of about 30 mm and a frequency of about 30 s_1. Was reciprocated.
(iii)約 20分間密閉容器を往復運動させた後、密閉容器の中空部力も黒色粉末を 取り出した。  (iii) After reciprocating the sealed container for about 20 minutes, the black powder was taken out from the hollow part of the sealed container.
(iv)得られた約 272. 3mgの黒色粉末に約 lOOOmgの重水を加えることによって、 単層カーボンナノチューブを安定的に含む水溶液の試料 Aを得た (溶けきらな力つた 単層カーボンナノチューブの沈殿物は、遠心分離(8000rpm, 10分、約 25°C (室温 )により水溶液力 除去した)。  (iv) By adding about lOOOmg of heavy water to about 272.3 mg of the obtained black powder, a sample A of an aqueous solution containing a single-walled carbon nanotube stably was obtained (the strength of the single-walled carbon nanotube with a melting force). The precipitate was centrifuged (8000 rpm, 10 minutes, approximately 25 ° C (room temperature) to remove the aqueous solution).
(2)超音波法の実施  (2) Implementation of ultrasonic method
超音波法でカーボンナノチューブ水溶液の製造を試みた。可溶化剤は、上述の 本発明の製造方法と同じく ATPおよび GMPをそれぞれ用いて試料 Bを調製した。 操作方法'実験条件は次の通りである。 An attempt was made to produce an aqueous solution of carbon nanotubes by the ultrasonic method. As the solubilizer, Sample B was prepared using ATP and GMP, respectively, as in the production method of the present invention described above. Method of operation 'Experimental conditions are as follows.
(i)まず、 10mLガラスバイアルに対して、 0. 3mgの単層カーボンナノチューブ(Ca rbon Nanotechnologies Incorporated製)および 0. 67mmolの可溶ィ匕剤を仕 込んだ後、約 lOOOmgの重水を仕込んで混合物を形成した。  (i) First, 0.3 mg of a single-walled carbon nanotube (manufactured by Carbon Nanotechnologies Incorporated) and 0.67 mmol of soluble additive were charged into a 10 mL glass vial, and then about 10 mg of heavy water was charged. A mixture was formed.
(ii)超音波ノ ス(180W、 42kHz、 5510 Branson Ultrasonic Corp. )を用い て、 (i)で得られた混合物を 2時間超音波処理に付した。  (ii) The mixture obtained in (i) was subjected to sonication for 2 hours using an ultrasonic wave (180 W, 42 kHz, 5510 Branson Ultrasonic Corp.).
(iii)次いで、(ii)で得られた混合物をマイクロ遠心管(Eppendorf AG製)に仕込 んで 8000rpmの条件で遠心処理に 10分間付した後、沈殿物を除去することよって 試料 Bを得た。  (iii) Next, the mixture obtained in (ii) was charged into a microcentrifuge tube (manufactured by Eppendorf AG), subjected to centrifugation at 8000 rpm for 10 minutes, and then the precipitate was removed to obtain Sample B .
(3)結果  (3) Results
本発明の製造方法で得られた試料 Aおよび超音波法で得られた試料 Bについて、 カーボンナノチューブ濃度を段落 [0042]および [0043]で説明したように、可視吸 収スペクトルにおける 500nm波長の吸光度 (A )力も算出した。結果を表 3に示す  For sample A obtained by the production method of the present invention and sample B obtained by the ultrasonic method, as described in paragraphs [0042] and [0043], the absorbance at 500 nm wavelength in the visible absorption spectrum was used. (A) Force was also calculated. The results are shown in Table 3.
[0054] [表 3] [0054] [Table 3]
[0055] 表 3を参照すると、本発明の製造方法で得られた試料 Aにはカーボンナノチューブ が含まれて 、るのに対して、試料 Bにはカーボンナノチューブは含まれて!/ヽな 、こと が分かる。これは、本発明の製造方法ではカーボンナノチューブが溶解しているため に遠心分離操作でカーボンナノチューブが除去されずに溶液中に残存したのに対し て、超音波法ではカーボンナノチューブが溶解して!/、な力つたため遠心分離操作で 全てが除去されたためと思われる。換言すれば、可溶化剤だけではカーボンナノチュ ーブは可溶ィヒすることはなぐあくまで振動処理があって初めてカーボンナノチュー ブが可溶化することを把握することができ、本発明の製造方法で行う振動処理の効 果が優れていることが理解できた。尚、振動処理では、超音波処理と違ってカーボン ナノチューブに対して剪断力が大きく働くことになる点で、カーボンナノチューブのバ ンドルの解離に対して特に有利な効果があるものと考えられる。 [0055] Referring to Table 3, sample A obtained by the production method of the present invention contains carbon nanotubes, whereas sample B contains carbon nanotubes! I understand that. This is because in the production method of the present invention, since the carbon nanotubes are dissolved, the carbon nanotubes remain in the solution without being removed by centrifugation, whereas in the ultrasonic method, the carbon nanotubes are dissolved! It seems that everything was removed by the centrifugation operation because of the strong force. In other words, it is possible to grasp that the carbon nanotubes are solubilized only by the vibration treatment, not to make the carbon nanotubes soluble only with the solubilizing agent. Effective vibration treatment I understood that the results were excellent. The vibration treatment is considered to have a particularly advantageous effect on the dissociation of the carbon nanotube bundle because the shearing force acts on the carbon nanotube differently from the ultrasonic treatment.
産業上の利用可能性 Industrial applicability
本発明の方法で得られた水溶液は、ガス吸蔵品(例えば車または船舶等の水素ガ ス燃料を保存する水素吸蔵媒体)または電極 (リチウム二次電池などに用いる負極) の製造に用いることができることができるだけでなぐ電界放出ディスプレイ用ェミッタ 一、光電変換素子または化粧品の製造にも用いることができる。  The aqueous solution obtained by the method of the present invention can be used for the production of gas storage products (for example, hydrogen storage media for storing hydrogen gas fuel in cars or ships) or electrodes (anode used for lithium secondary batteries). It can also be used in the manufacture of field emission display emitters, photoelectric conversion elements or cosmetics.

Claims

請求の範囲 The scope of the claims
[1] カーボンナノチューブを含む水溶液を製造する方法であって、  [1] A method for producing an aqueous solution containing carbon nanotubes,
カーボンナノチューブ、可溶化剤としてプリン環を有するヌクレオチド、および硬球 を容器内に供した後、 5〜120s_1の振動数で容器に対して硬球を振動させること、 ならびに Carbon nanotubes, after being subjected as a solubilizer nucleotides having a purine ring, and the hard balls within the container, vibrating the hard balls to the container at a frequency of 5~120S _1, and
振動に付された後のカーボンナノチューブに水を加えて、カーボンナノチューブを 含む水溶液を得ること  Adding water to the carbon nanotubes after being subjected to vibration to obtain an aqueous solution containing carbon nanotubes
を含んで成る方法。  Comprising a method.
[2] 容器を一定方向に往復運動させることによって、容器に対して硬球を振動させてお り、  [2] A hard ball is vibrated with respect to the container by reciprocating the container in a certain direction.
容器を往復運動させる際の振幅 Wと容器を往復運動させる方向の容器中空部長  Amplitude W when reciprocating container and length of container hollow in direction to reciprocate container
b  b
さしとの比 W: Lが 1 : 1. 3〜15 : 1であることを特徴とする、請求項 1に記載の方法。  The method according to claim 1, characterized in that the ratio W: L is from 1: 1.3 to 15: 1.
b b b  b b b
[3] 容器に対して硬球を振動させて、容器内でカーボンナノチューブのバンドルを少な くとも部分的に解離させることを特徴とする、請求項 1に記載の方法。  [3] The method according to claim 1, wherein the hard sphere is vibrated with respect to the container to dissociate at least partially the bundle of carbon nanotubes in the container.
[4] 可溶化剤が、アデノシン三リン酸、アデノシン二リン酸、アデノシン一リン酸、グアノ シン三リン酸、グアノシン二リン酸、グアノシン一リン酸、それらの塩およびそれらの水 和物から成る群力 選択されるヌクレオチドであることを特徴とする、請求項 1に記載 の方法。  [4] The solubilizer comprises adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, salts thereof and hydrates thereof. The method according to claim 1, characterized in that the group power is a selected nucleotide.
[5] カーボンナノチューブが、単層カーボンナノチューブを少なくとも含んで成る、請求 項 1に記載の方法。  [5] The method according to claim 1, wherein the carbon nanotubes comprise at least single-walled carbon nanotubes.
[6] 振動数が 20〜50s_1であることを特徴とする、請求項 1に記載の方法。 [6] The method according to claim 1 , wherein the frequency is 20 to 50s_1.
[7] 容器に対して硬球を振動させる時間が、 2分〜 2時間であることを特徴とする、請求 項 1に記載の方法。 [7] The method according to claim 1, wherein the time for vibrating the hard sphere with respect to the container is 2 minutes to 2 hours.
[8] 硬球の個数が 1〜6個であって、容器中空部体積に対する硬球の総体積の割合が [8] The number of hard spheres is 1-6, and the ratio of the total volume of hard spheres to the volume of the hollow portion of the container is
0. 5〜10%であることを特徴とする、請求項 4に記載の方法。 Method according to claim 4, characterized in that it is 0.5-10%.
[9] カーボンナノチューブ膜を表面に有する基材カも成る部材であって、 [9] A member also comprising a base material having a carbon nanotube film on its surface,
カーボンナノチューブ膜が、請求項 1に記載の方法によって得られるカーボンナノ チューブを含む水溶液を、基材の表面に塗布した後、乾燥させることによって形成さ れる膜であることを特徴とする部材。 The carbon nanotube film is formed by applying an aqueous solution containing carbon nanotubes obtained by the method according to claim 1 to the surface of the substrate and then drying. A member characterized by being a film.
ガス吸蔵品として用いられる、請求項 9に記載の部材。 電極として用いられる、請求項 9に記載の部材。  The member according to claim 9, which is used as a gas storage product. The member according to claim 9, which is used as an electrode.
PCT/JP2006/313324 2005-07-11 2006-07-04 Process for preparation of aqueous solution containing carbon nanotube WO2007007594A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524585A JP5050207B2 (en) 2005-07-11 2006-07-04 Method for producing aqueous solution containing carbon nanotubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-201789 2005-07-11
JP2005201789 2005-07-11

Publications (1)

Publication Number Publication Date
WO2007007594A1 true WO2007007594A1 (en) 2007-01-18

Family

ID=37636990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313324 WO2007007594A1 (en) 2005-07-11 2006-07-04 Process for preparation of aqueous solution containing carbon nanotube

Country Status (2)

Country Link
JP (1) JP5050207B2 (en)
WO (1) WO2007007594A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075634A2 (en) 2005-12-21 2007-07-05 Exxonmobil Research And Engineering Company Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
JP2008300271A (en) * 2007-06-01 2008-12-11 Nippon Oil Corp Lithium ion storage body and the lithium ion storage method
JP2012055814A (en) * 2010-09-07 2012-03-22 Chiba Univ Functional solubilizing agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.
JP2003154260A (en) * 2001-11-21 2003-05-27 National Institute Of Advanced Industrial & Technology Gas storage material
JP2004352605A (en) * 2003-05-01 2004-12-16 Toray Ind Inc Method for refining composition comprising carbon nanotube
JP2005028560A (en) * 2003-07-07 2005-02-03 Naotoshi Nakajima Method for manufacturing water-soluble carbon nanotube using dna and oligonucleotide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.
JP2003154260A (en) * 2001-11-21 2003-05-27 National Institute Of Advanced Industrial & Technology Gas storage material
JP2004352605A (en) * 2003-05-01 2004-12-16 Toray Ind Inc Method for refining composition comprising carbon nanotube
JP2005028560A (en) * 2003-07-07 2005-02-03 Naotoshi Nakajima Method for manufacturing water-soluble carbon nanotube using dna and oligonucleotide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAMANO T. ET AL.: "Kosoku Shindo Fusaiho ni yoru Kayokazai o Mochiita Tanso Carbon Nanotube no Kayoka", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 86 SHUNKI NENKAI KOEN YOKOSHU II, no. 3 K1-39, 2006, pages 1228, XP003007325 *
IKEDA A. ET AL.: "Solubilization and debundling using solubilizing agents in an aqueous solution by high-speed vibration milling technique", CHEM. COMM., vol. 11, 2004, pages 1334 - 1335, XP003007328 *
IKEDA A. ET AL.: "Water-Solubilization of Nucleotides-Coated Single-Walled Carbon Nanotubes Using a High-Speed Vibration Milling Technique", ORGANIC LETTERS, vol. 8, no. 6, 2006, pages 1153 - 1156, XP003007326 *
POLYMER PREPRINTS, JAPAN, vol. 53, no. 1, 10 May 2004 (2004-05-10), pages 1604 (IIPA131), XP003007327 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075634A2 (en) 2005-12-21 2007-07-05 Exxonmobil Research And Engineering Company Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
JP2008300271A (en) * 2007-06-01 2008-12-11 Nippon Oil Corp Lithium ion storage body and the lithium ion storage method
JP2012055814A (en) * 2010-09-07 2012-03-22 Chiba Univ Functional solubilizing agent

Also Published As

Publication number Publication date
JPWO2007007594A1 (en) 2009-01-29
JP5050207B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
Mazari et al. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges–A review
JP5109129B2 (en) Method for producing carbon nanotube dispersion
Yang et al. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review
Lai et al. Self-assembly of two-dimensional nanosheets into one-dimensional nanostructures
Thakur et al. Chemical functionalization of carbon nanomaterials
Lei et al. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors
Eftekhari et al. Curly graphene with specious interlayers displaying superior capacity for hydrogen storage
Chinnappan et al. Carbon nanotube hybrid nanostructures: future generation conducting materials
Khorshidi et al. A review of the synthesis methods, properties, and applications of layered double hydroxides/carbon nanocomposites
Revabhai et al. Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry
Kharissova et al. Carbon–carbon allotropic hybrids and composites: synthesis, properties, and applications
Lim et al. A review on the synthesis, properties, and utilities of functionalized carbon nanoparticles for polymer nanocomposites
Jiang et al. Boron nitride nanosheet dispersion at high concentrations
Jiang et al. Carbon nanotubides: an alternative for dispersion, functionalization and composites fabrication
Ashok Kumar et al. A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future
US20200317524A1 (en) Dense graphene balls for hydrogen storage
Kaur et al. Recent insights into BCN nanomaterials–synthesis, properties and applications
Baghel et al. Ultrafast growth of carbon nanotubes using microwave irradiation: characterization and its potential applications
JP5050207B2 (en) Method for producing aqueous solution containing carbon nanotubes
Yokwana et al. Recent advances in nitrogen-doped graphene oxide nanomaterials: Synthesis and applications in energy storage, sensor electrochemical applications and water treatment
Sengupta Different synthesis routes of graphene-based metal nanocomposites
Shojaei et al. Fabrication, functionalization, and dispersion of carbon nanotubes
JP2005213108A (en) Method for producing aqueous solution containing carbon nano tube
Torrens et al. C-nanostructures cluster models in organic solvents: Fullerenes, tubes, buds and graphenes
Yusuf et al. A Review of Synthesis and applications of boron nitride nanotubes (BNNTs) with future prospects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524585

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767841

Country of ref document: EP

Kind code of ref document: A1