WO2007004652A1 - Method for producing carbon nanotube dispersion liquid - Google Patents

Method for producing carbon nanotube dispersion liquid Download PDF

Info

Publication number
WO2007004652A1
WO2007004652A1 PCT/JP2006/313325 JP2006313325W WO2007004652A1 WO 2007004652 A1 WO2007004652 A1 WO 2007004652A1 JP 2006313325 W JP2006313325 W JP 2006313325W WO 2007004652 A1 WO2007004652 A1 WO 2007004652A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
container
carbon nanotubes
organic solvent
dispersion
Prior art date
Application number
PCT/JP2006/313325
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Ikeda
Jun-Ichi Kikuchi
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Priority to JP2007524079A priority Critical patent/JP5109129B2/en
Publication of WO2007004652A1 publication Critical patent/WO2007004652A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a dispersion containing carbon nanotubes, and more specifically, a dispersion in which carbon nanotubes are stably dispersed from a bundle of carbon nanotubes (or a carbon nanotube mixture). It relates to a method of manufacturing. Furthermore, the present invention also relates to a member manufactured using the carbon nanotube dispersion obtained by the method of the present invention.
  • a carbon nanotube (hereinafter also abbreviated as "CNT”) is one of carbon allotropes having a structure in which a graphite sheet having a hexagonal network of carbon atoms arranged in a cylindrical shape. The diameter is on the order of nanometers.
  • Two types of carbon nanotubes are known: single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs).
  • SWNTs single-walled carbon nanotubes
  • MWNTs multi-walled carbon nanotubes
  • Single-walled carbon nanotubes are a single graphite sheet rolled into a cylindrical shape, whereas multi-walled carbon nanotubes are concentric circles of graphite sheets that overlap in multiple layers at approximately equal intervals. It is.
  • Such carbon nanotubes have unique functions due to their unique structures, and are expected to be applied in various fields.
  • single-walled carbon nanotubes have a relatively large specific surface area, and thus are considered suitable for applications such as gas storage materials such as hydrogen or
  • purifying carbon nanotubes produced by a conventional production method is not always convenient for various applications.
  • purification of carbon nanotubes generally the force that can be obtained by sonicating carbon nanotubes in an acidic solution (see, for example, Non-Patent Document 1) and then neutralizing and diluting such a mixture
  • Non-Patent Document 2 In order to obtain an alcohol dispersion of single-walled carbon nanotubes, a method using berylviridine as a solubilizing agent is disclosed, and it is impractical because sonication for 6 hours is required (for example, Non-Patent Document 2). In addition, a method for producing an amide polar organic solvent dispersion of single-walled carbon nanotubes using polyvinylbiridone as a solubilizing agent has been disclosed, but a nonionic surfactant is an essential component, and it is produced. Requires one hour of sonication (see, for example, Patent Document 1).
  • a method using a polythiophene polymer to obtain a dispersion of carbon nanotubes is also disclosed.
  • a method for obtaining a dispersion (l) CNT is preliminarily dispersed in a solvent under ultrasonic irradiation, and then a conjugated polymer is added and dispersed. (2) CNT and a conjugated polymer are dissolved in a solvent. (3) a method of adding and dispersing CNT in a molten conjugated polymer (see, for example, Patent Document 2 and Paragraph 0016). .
  • Non-patent literature l Jie Liu, Andrew G. Rinzler, etc, “Fullerene PipesJ, Scien ce, 1998. 5. 22, No. 280, pl253-1256
  • Non-Patent Document 2 Jason H. Rouse, “Polymer—Assisted Dispersion of 3 ⁇ 4 mgl e— Walled Carbon Nanotubes in Alcohols and Applicability toward Carbon Nanotube / Sol— Gel Composite Formation J, Langmuir 2005, 21, pl055- 1061
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-154630
  • Patent Document 2 JP-A-2005-089738
  • the present invention provides:
  • a method for producing a dispersion comprising carbon nanotubes comprising:
  • step (i) subjecting the carbon nanotube and the cyclic organic compound to vibration pulverization at a frequency of 5 to 120 s _1 to obtain a carbon nanotube mixture (hereinafter also referred to as “step (i)”), and
  • step (ii) A step of adding an organic solvent to the carbon nanotube mixture to obtain a dispersion containing carbon nanotubes (hereinafter also referred to as “step (ii)”)
  • step (i) is soluble in the organic solvent used in step (ii).
  • the term “vibrating crushing” refers to mechanical shearing on carbon nanotubes by directly applying a mechanical impact to force-bonded nanotubes. This means that the force is applied directly.
  • the method of the present invention has a feature that a dispersion containing carbon nanotubes can be obtained by carrying out such vibration pulverization.
  • the step (ii) of obtaining a dispersion containing carbon nanotubes is additionally characterized by centrifugal separation and Z or filter filtration.
  • the bundle of carbon nanotubes can be at least partially dissociated.
  • dispersions stably contain is subjected to about 5.
  • carbon nano A carbon nanotube dispersion liquid containing a tube, an alcohol, an ether organic solvent or an amide organic solvent as an organic solvent, and polybutylpyrrolidone as a cyclic organic compound is provided.
  • a carbon nanotube dispersion containing carbon nanotubes, an amide organic solvent, a sulfoxide or halogen organic solvent as an organic solvent, and polythiophene as a cyclic organic compound is provided.
  • a member including a substrate having a carbon nanotube film on the surface
  • the carbon nanotube film is a film formed by applying a dispersion containing carbon nanotubes obtained by the method of the present invention to the surface of a substrate and then drying it. .
  • a dispersion in which carbon nanotubes are stably dispersed can be obtained in a shorter time and more simply.
  • the carbon nanotubes are dispersed stably in time in an organic solvent, and the long-term stability is excellent.
  • a dispersion can be considered substantially a solution.
  • the dispersion in which the carbon nanotubes are stably dispersed contains at least one bon nanotube having a dissociated force of the bundle, so that the carbon nanotubes are bundled in the solvent.
  • the specific surface area of the carbon nanotube increases. Therefore, when a member manufactured using such a dispersion is used as a gas occlusion product, the gas occlusion amount increases as compared with the case of using bundle-like carbon nanotubes, and approaches the theoretical value.
  • the carbon nanotubes from which the bundles are dissociated have a larger contact area with the electrode surface than the bundles, the members manufactured using the dispersion obtained by the method of the present invention are used as the electrodes. The one used is highly efficient and approaches its theoretical value.
  • the “theoretical value” here is based on the assumption that all of the carbon nanotubes contained in the strong member are dissociated bundles. ⁇ ⁇ Ideal hydrogen storage capacity or electrode efficiency.
  • FIG. 1 shows the appearance of a dispersion obtained by the production method of the present invention, and the appearance of a dispersion of polybulurpyrrolidone (PVP) single-walled carbon nanotubes (SWNT) under various solvent conditions. Is shown.
  • PVP polybulurpyrrolidone
  • SWNT single-walled carbon nanotubes
  • FIG. 2 shows a visible ultraviolet absorption spectrum of the dispersion obtained by the production method of the present invention, and polybutylpyrrolidone (PVP) single-walled carbon nanotube (SWNT) under various solvent conditions. And a visible ultraviolet absorption spectrum of a dispersion of multi-walled carbon nanotubes (MWNT).
  • PVP polybutylpyrrolidone
  • SWNT single-walled carbon nanotube
  • FIG. 3 shows the Raman absorption spectrum of the dispersion obtained by the production method of the present invention.
  • the dispersion contains polyvinylpyrrolidone (PVP) single-walled carbon nanotubes (SWNT) (organic solvent: 2 shows the Raman absorption spectrum of (isopropanol).
  • PVP polyvinylpyrrolidone
  • SWNT single-walled carbon nanotubes
  • organic solvent: 2 shows the Raman absorption spectrum of (isopropanol).
  • FIG. 4 shows the appearance of the dispersion obtained by the production method of the present invention.
  • PMET (2-methoxyethoxy) ethoxymethylthiophene
  • SWNT carbon nanotube
  • FIG. 5 shows a visible ultraviolet absorption spectrum of the dispersion obtained by the production method of the present invention.
  • PMET (2-methoxyethoxy) ethoxymethylthiophene under various solvent conditions ) Visible UV absorption spectrum of single-walled carbon nanotube (SWNT) dispersion.
  • FIG. 6 shows the near-infrared absorption spectrum of the dispersion obtained by the production method of the present invention.
  • PMET (2-methoxyethoxy) ethoxymethylthio under various solvent conditions Fen
  • SWNT single-walled carbon nanotube
  • FIG. 7 is a schematic diagram showing an embodiment of a preferred vibration crushing process step of the present invention.
  • FIG. 8 schematically shows a container and a hard sphere (center cut view) that can be used in the production method of the present invention.
  • the longitudinal length L and the lateral length of the hollow part in the container are shown.
  • Fig. 9 is contained in the carbon nanotube dispersion obtained by the production method of the present invention.
  • 2 is a TEM photograph showing a single-walled carbon nanotube.
  • Figure 9 (a) is CHC1
  • Figure 9 (b) is
  • NMP is used as the organic solvent.
  • carbon nanotubes are, for example, arc discharge method, laser evaporation method, laser exposure method, and CVD method (or It means a bundle-like carbon nanotube produced by a conventional method such as chemical vapor deposition or chemical vapor deposition.
  • arc discharge method laser evaporation method
  • laser exposure method laser exposure method
  • CVD method or It means a bundle-like carbon nanotube produced by a conventional method such as chemical vapor deposition or chemical vapor deposition.
  • the dispersed carbon nanotubes aggregate and settle with the passage of time when the long-term stability is poor.
  • a precipitate of carbon nanotubes can be seen in a few days at the latest.
  • the carbon nanotubes that are subjected to vibration pulverization may be purified or those that have been subjected to freeze-drying after purification, but more simply are commercially available carbon nanotubes.
  • the carbon nanotubes subjected to vibration pulverization can be either single-walled carbon nanotubes or multi-walled carbon nanotubes, and a dispersion can be easily obtained in a short time. Will be expensive
  • the cyclic organic compound as the dispersant used in the present invention is soluble in the organic solvent used in the step (ii). This cyclic organic compound can disperse the obtained carbon nanotubes, and therefore contributes to obtaining a dispersion containing the carbon nanotubes stably.
  • the cyclic organic compound is, for example, polyvinyl pyrrolidone (PVP), polystyrene sulfonate, and at least one synthetic polymer in which a group force that is also polythiophene power is selected. It is preferable.
  • PVP polyvinyl pyrrolidone
  • polystyrene sulfonate polystyrene sulfonate
  • synthetic polymer in which a group force that is also polythiophene power is selected. It is preferable.
  • the cyclic organic compound is a ⁇ -based compound.
  • “ ⁇ -based compound” refers to a compound having a wide conjugated system and a stronger ⁇ - ⁇ interaction.
  • Force At least one selected compound is preferred.
  • the cyclic organic compound is a ⁇ -based compound, since the carbon nanotube is a ⁇ -based compound, a ⁇ - ⁇ interaction occurs between the cyclic organic compound and the carbon nanotube. Since a force attracting each other with the cyclic organic compound is generated, an effect of assisting the dissociation of the bundle of carbon nanotubes can be provided.
  • the cyclic organic compound may be a synthetic polymer and a ⁇ -based compound. For example, 3- (2-methoxyethoxy) -ethymethylthiophene ( ⁇ ) It can be illustrated.
  • any compound that is soluble in an organic solvent and stably disperses carbon nanotubes can be used in the present invention.
  • the dispersant is not particularly limited.
  • Nafion registered trademark, Nafion
  • polyethylene glycol can be used as a dispersant.
  • the mass ratio between the cyclic organic compound and the carbon nanotube will be described.
  • the mass ratio between the cyclic organic compound provided in the container and the dried carbon nanotube is About 10: 1 to about 1: 200, preferably about 5: 1 to about 1: 100, more preferably about 1: 1 to about 1:50.
  • the organic solvent used in the present invention is preferably an alcohol, an ether organic solvent, an amide organic solvent, a sulfoxide or a halogen organic solvent.
  • the alcohol includes at least one selected from the group consisting of methanol, primary alcohols such as ethanol, secondary alcohols such as isopropanol, and tertiary alcohols such as tert-butanol. Preferred to be alcohol.
  • the ether organic solvent is preferably at least one ether organic solvent selected from the group power consisting of jetyl ether and tetrahydrofuran. With amide organic solvent Therefore, it is preferable that the amide organic solvent is at least one selected from the group consisting of 1-methyl 2-pyrrolidone and N, N dimethylformamide.
  • the sulfoxide is preferably dimethyl sulfoxide.
  • the halogen-based organic solvent at least one kind of halogen-based organic solvent in which the group strength including black-mouth form, methylene chloride, and 1,1,2,2-tetrachloro-tank etanca is also selected is preferable. Mouth Holm is preferred.
  • the carbon nanotube dispersion of the present invention may contain other components as necessary.
  • the organic solvent or the cyclic organic compound is as exemplified above, a highly dispersible carbon nanotube dispersion can be obtained.
  • a combination of a preferable organic solvent and a cyclic organic compound is exemplified.
  • an organic solvent either alcohol, 1-methyl-2-pyrrolidone or N, N dimethylformamide, and polybylpyrrolidone as a cyclic organic compound are used.
  • the organic solvent includes a combination of 1-methyl-2-pyrrolidone, N, N dimethylformamide, dimethyl sulfoxide, or black mouth form, and polythiophene as the cyclic organic compound.
  • a combination of polythiophene as a cyclic organic compound, 1-methyl-2-pyrididone as an organic solvent, or polybutyrrolidone (PVP) as a cyclic organic compound, and isopronool V as an organic solvent is preferred, so that a suitable force can be obtained.
  • the carbon nanotubes and the cyclic organic compound are charged into the container together with the hard balls, and then the hard balls are vibrated against the container. It is preferable to perform vibration pulverization. More specifically, the carbon nanotube, the cyclic organic compound, and the hard sphere are provided to the hollow part of the container body (hereinafter also referred to as “container hollow part”), and the hard sphere is shaken with respect to the container. .
  • “vibrating a hard sphere with respect to a container” substantially refers to an aspect in which the collision between the hard sphere and the wall surface of the hollow portion of the container is repeated over time. Therefore, “vibrating the hard ball with respect to the container” means not only a mode in which the container itself is reciprocated and the hard ball contained therein is reciprocated, but the hard ball is externally applied with the container itself fixed. Including a reciprocating mode. In the case of reciprocating the container (see FIG. 7), it is generally preferred that the reciprocating direction is the longitudinal direction of the container hollow part. The longitudinal direction of the container hollow part is the horizontal direction.
  • the container when the container is installed on the vibrator, it is preferable to move the container so as to reciprocate left and right in the horizontal direction.
  • the vibration direction of the container itself.
  • the form of the container and Z or the container hollow part or the container installed on the vibrator The direction of vibration may be changed as appropriate according to the way, for example, the reciprocating direction may change over time.
  • a hard sphere made of a magnetic material or a container made of a non-magnetic material is used, and a magnetic force is applied to the hard sphere from the outside of the container.
  • a mode in which the hard ball is reciprocated in the container is conceivable.
  • vibration generally means a phenomenon of reciprocating around a certain point, but “vibration” used in this specification is not necessarily limited to a mode in which the container reciprocates only in a certain direction. If the collision between the hard sphere and the wall of the hollow portion of the container is repeated over time (i.e., mechanical impact is directly applied to the carbon nanotubes and mechanical shearing force is applied to the carbon nanotubes). If it acts on the container), it does not matter if the container is in rotational and Z or rocking motion. When the container rotates
  • the base on which the container is installed also rotates, and the rotation direction of the container changes with time (for example, “inverted”), and the rotation direction of the base is also independent of the container. It is preferable that it changes with time.
  • the container generally has a container body and a lid, and is preferably a container that seals the carbon nanotube, the cyclic organic compound, and the hard sphere provided in the hollow portion of the container by shielding them from the ambient atmosphere.
  • the container is preferably formed mainly of a hard material force such as stainless steel, but an impact caused by vibration, for example, a hard ball reciprocating in the container hollow part collides with the hollow part wall surface (that is, the container hollow part wall part). Any kind of material cover may be formed as long as it can withstand the impact generated by the process.
  • the container hollow portion has, for example, a cylindrical shape, and while being subjected to vibration crushing, the hard sphere reciprocates in the longitudinal direction of the hollow portion from one end portion of the cylindrical hollow portion to the other end portion. It preferably has a shape and size that can be formed. As long as the hard sphere moves and reciprocates substantially in the hollow portion of the container, the hollow portion of the container may be in the shape and size of deviation.
  • the end of the container hollow part in the longitudinal direction that is, the top and bottom of a cylindrical container hollow part
  • description will be made on the assumption that the shape of the container hollow portion is a cylindrical shape having a hemispherical top and bottom.
  • the hard sphere reciprocates in the hollow portion of the container, and as a result, preferably the frequency at which the carbon nanotube and the cyclic organic compound are mixed, and Z or the carbon nanotube between the reciprocating hard sphere and the wall of the hollow portion. It is preferable to reciprocate the container at such a frequency that the powder is crushed. If the frequency is 5 s _ 1 or less, the vibration time may be very long.On the other hand, if the frequency is 120 s _ 1 or more, the carbon nanotubes cause a chemical reaction to disperse the carbon nanotubes. The degree may decrease. Therefore, frequency is 5 ⁇ 120S _1, is _1 preferably 10 ⁇ 60S _1, more preferably vibration number 20 to 50 s.
  • the container is reciprocated, and the rotational speed of the container is preferably 5 to 120 times Zs. Yes, more preferably 10 to 60 times Zs, more preferably 20 to 50 times Zs.
  • the vibration time is preferably about 1 minute to 5 hours, more preferably about 1.5 minutes to 3 hours, and still more preferably about 2 minutes to 2 hours. If the vibration time is too short, the dispersibility of the carbon nanotubes decreases, and if the vibration time is too long, the carbon nanotubes react with each other to reduce the dispersibility of the carbon nanotubes.
  • the vibration time may vary depending on vibration conditions such as frequency or amplitude. In addition to the preferable frequency and vibration time as described above, it is preferable to consider a suitable amplitude.
  • the hard sphere reciprocates in the hollow portion of the container, and as a result, the carbon nanotube and the cyclic It is preferable to vibrate the hard sphere with respect to the container with such an amplitude that the organic compound is mixed and an amplitude such that the carbon nanotube is crushed between the hard sphere that reciprocates and the wall surface of the hollow portion.
  • the amplitude w when the container is reciprocated and the container are reciprocated.
  • the ratio (W: L) with the length L of the hollow portion of the container is preferably 1: 1 to 50: 1, more preferably
  • the ratio is preferably 1: 1. 2 to 20: 1, more preferably 1: 1. 3 to 15: 1.
  • vibration refers to the length from the center point to the maximum displacement point when the container to be reciprocated is displaced to the maximum with respect to the center point of the reciprocation.
  • the container hollow part has a cylindrical shape, it is preferable to reciprocate the container in the longitudinal direction of the container hollow part.
  • the container hollow part length L in the direction of reciprocating the container is Yong
  • the amplitude is 5 to: preferably LOOm m, preferably 10 to 80 mm, more preferably 20 to 50 mm. Therefore, the container is reciprocated in the longitudinal direction of the hollow part.
  • the hard sphere provided in the container in the vibration pulverization process preferably has a spherical shape, but any shape suitable for the hard ball to reciprocate in the hollow portion while the hard sphere vibrates with respect to the container. Even if it is the shape of, it does not work.
  • the hard sphere is a sphere having a diameter of 2 to: LO mm, preferably 4 to 6 mm, more preferably 5 mm in diameter.
  • the hard sphere vibrates with respect to the container, the hard sphere reciprocates in the container hollow portion, and as a result, the hardness such that the carbon nanotube is preferably crushed between the hard ball and the wall surface of the container hollow portion.
  • the hard wall and the wall surface of the container hollow part have.
  • the hardness of the hard sphere and the hardness of the wall surface of the container hollow portion are Mohs hardness 4 or less, the deformation and mixing efficiency of the hard sphere are reduced. It may cause a decrease (decrease in mixing efficiency of carbon nanotube and cyclic organic compound).
  • the hardness of the hard sphere is preferably a Mohs strength of 4 to 9.5, more preferably a Mohs strength of 5 to 9.5, and even more preferably a Mohs hardness of 6 to 9.5.
  • Examples of the material of the hard sphere include at least one material selected from the group consisting of agate, slenless, alumina, zirconia, tungsten carbide, chromium steel, and Teflon (registered trademark).
  • examples of the material for the wall surface of the hollow portion of the container include at least one material selected from the group force consisting of agate, slenless, alumina, zircoure, tungsten carbide, chromium steel, and Teflon (registered trademark). be able to.
  • the number of hard balls provided to the container is 1 to 6, preferably 1 to 4, more preferably 2. However, the hard balls reciprocate in the hollow part of the container while the hard balls vibrate against the container.
  • the number of carbon nanotubes and the cyclic organic compound be mixed, and that the carbon nanotubes be crushed between the Z or reciprocating hard sphere and the wall of the container hollow. Any number can be used as long as it is a number. When two or more hard spheres are provided in the container, the carbon nanotubes are crushed even between the reciprocating hard spheres.
  • the hard sphere is small (i.e., when the container is hollow, the length in the longitudinal direction, L force), the hard sphere is small
  • the container is large (i.e., the length in the longitudinal direction of the hollow part of the container), it may not be possible to mix well (mixing of carbon nanotubes and cyclic organic compounds) due to the small collision energy. If L is large), the amplitude will inevitably increase and the vibrator
  • the diameter R of the hard sphere and the longitudinal length of the hollow portion of the container Since it becomes shorter, the energy when the hard sphere collides with the wall surface of the hollow portion of the container is reduced, and mixing may be insufficient. Therefore, the diameter R of the hard sphere and the longitudinal length of the hollow portion of the container
  • the ratio (R: L) to the cutting is preferably 1: 1 ⁇ 5 to 1: 100, more preferably 1: 2 ⁇ 0 to 1: b a b
  • the diameter R of the hard sphere and the inside of the container 75, more preferably 1: 2.5 to 1:50 (see FIG. 8). Also, the diameter R of the hard sphere and the inside of the container
  • the ratio of b b (R: S) is preferably 1: 1: 1 to 1:30, more preferably 1: 1-2 to 1:20, and a b
  • the ratio is 1: 1.3 to 1:15 (see also FIG. 8).
  • the “diameter R" here means
  • the shape of the hard sphere is spherical.
  • the shape of the hard sphere is not particularly limited, and may be a shape other than a sphere. In that case, it is preferable that the hard sphere has an equivalent diameter corresponding to the “diameter” described above. This “equivalent diameter” means the diameter assumed when the shape of a non-spherical hard sphere is made spherical without changing the volume.
  • the preferable relationship between the total volume of the hard spheres and the volume of the container hollow portion is as follows. For example, if the number of hard spheres is 1 to 6, the total volume of hard spheres with respect to the container hollow volume V
  • step (ii) for obtaining a dispersion will be described.
  • the carbon nanotube mixture after being subjected to vibration grinding more specifically, a mixture containing carbon nanotubes and a cyclic organic compound after being subjected to vibration grinding.
  • this dispersion comprises the components of the organic solvent to be added, the carbon nanotubes and the cyclic organic compound.
  • an operation for removing precipitates (the precipitates substantially contain carbon nanotubes not dispersed in the organic solvent) from the obtained mixture as necessary. It may be additionally performed.
  • a centrifugal separation operation is performed to remove the carbon nanotubes that have not been dispersed, and the resulting supernatant can be collected to obtain a carbon nanotube dispersion.
  • the step of obtaining the dispersion in this manner is particularly suitable when polyvinylpyrrolidone (PVP) is used as the cyclic organic compound.
  • the organic solvent may be the same as the organic solvent added to the carbon nanotube mixture after being subjected to vibration pulverization, or may be a solvent having the same principal component as the organic solvent.
  • the membrane filter used for filter filtration has an average membrane pore size of preferably 0.02-5.
  • Carbon nanotubes contained in the supernatant are preferably 2 to 95%, more preferably Those that can be recovered 5 to 95% (recoverable from the supernatant) are preferred.
  • An example of such a membrane filter is a PTFE membrane filter (manufactured by Advantech, model: T020A025A [catalog number], pore size: 0.20 m).
  • the following operation can also be performed.
  • an organic solvent is added to a carbon nanotube mixture after being subjected to vibration grinding (more specifically, a mixture containing carbon nanotubes and a cyclic organic compound after being subjected to vibration grinding), and the resulting mixture is Subject to centrifugation.
  • the precipitate produced by centrifugation is collected, and a carbon nanotube dispersion can be obtained by adding a solvent to the precipitate.
  • the obtained dispersion is subjected to ultrasonic treatment and then subjected to centrifugation, and the resulting supernatant is separated to obtain a dispersion in which carbon nanotubes exist more stably. it can.
  • the step of obtaining the dispersion in this manner is particularly suitable when a ⁇ -based compound is used as the cyclic organic compound.
  • the “solvent added to the precipitate” may be an organic solvent added to the carbon nanotube mixture after being subjected to vibration pulverization, or may be a solvent having the same main component force as the organic solvent.
  • stable means that carbon nanotubes are stably dispersed in an organic solvent over time, and for at least 1 week, preferably at least 2 weeks, more preferably at least 3 weeks. This means that no aggregation or precipitation of carbon nanotubes occurs. in this way, Since the dispersion liquid contains carbon nanotubes stably, it can be considered that the carbon nanotubes are substantially dissolved in the solvent.
  • the dispersion containing the carbon nanotubes contains at least the carbon nanotubes from which the bundles are dissociated, it is considered that the specific surface area of the carbon nanotubes increases in proportion to the degree to which the bundles are dissociated. Therefore, a member having a carbon nanotube film having a larger specific surface area can be produced from a powerful dispersion, and the member can be used as, for example, a gas storage product or an electrode. Such gas storage products can be used for storing hydrogen gas fuel in, for example, cars and ships.
  • a specific example of the electrode for example, a negative electrode such as a lithium secondary battery can be considered.
  • the above-described member of the present invention is formed by applying a dispersion liquid containing a substrate and a carbon nanotube produced by the method of the present invention to the surface of the substrate and then drying the carbon nanotube film. It has.
  • the substrate is a substrate or a support plate suitable for, for example, a gas occlusion product or an electrode
  • the substrate may have a shifted shape or material force.
  • the dispersion containing carbon nanotubes produced by the method of the present invention the carbon nanotubes in which the bundles are dissociated at least partially exist in the organic solvent almost uniformly.
  • the carbon nanotube film obtained by applying the dispersion to the surface of the substrate and drying it can contain carbon nanotubes substantially uniformly. Therefore, in such a carbon nanotube film, the specific surface area of the carbon nanotubes is large, and a gas storage product having a large gas storage amount or a highly efficient electrode force S is brought about.
  • the dispersion obtained by the method of the present invention is used for forming a member such as a gas occlusion product or an electrode as described above, or by subjecting the dispersion to a filtration treatment with a conventional membrane filter. Then, only the carbon nanotubes contained in the dispersion liquid are taken out alone, and the taken out carbon nanotubes are used as field emission display (FED) field emitters, photoelectric conversion elements, composite materials (including plastic and rubber). In other words, it can be used for applications such as cosmetics and other materials that can be mixed to reinforce the grease.
  • FED field emission display
  • the carbon nanotube dispersion liquid of the present invention is made of at least one kind selected from the group forces including polyamide, polyethylene, polybutyl alcohol, polymine, polyacrylic resin, polyepoxy resin, polyurethane and natural rubber.
  • an organic polymer material having the characteristics of carbon nanotubes that is, characteristics such as high elasticity, high strength, or high conductivity
  • Such organic polymer materials should be used as raw materials for urethane molded products, plastic molded products, rubber products, golf shafts, FRP molded products, chemical fibers, paper, etc. (or used in these materials). Can do.
  • a coating material can be obtained using a polymer material containing the dispersion of the present invention, which can be used as an antistatic agent.
  • the dispersion of the present invention is made of at least one organic polymer selected from the group power consisting of polyamide, polyethylene, polyvinyl alcohol, polyimine, polyacrylic resin, polyepoxy resin, polyurethane and natural rubber.
  • Members obtained by mixing with materials and molding by various methods can be used for various applications. For example, such a molded member can be used as an electrode because of its improved conductivity.
  • a method for producing a dispersion containing carbon nanotubes of the present invention will be described over time.
  • a carbon nanotube 1 (preferably a dry carbon nanotube) is prepared.
  • the carbon nanotube 1 dried together with the cyclic organic compound and the two hard spheres 2 is provided in the container body hollow portion of the container 3, and the container body is covered to seal the container 3. .
  • the hard sphere 2 reciprocates in the hollow portion of the container, and as a result, the frequency and amplitude such that the carbon nanotube 1 and the cyclic organic compound are mixed, and the Z or reciprocating hard sphere 2 and the wall surface of the hollow portion.
  • the container 3 is reciprocated in the longitudinal direction of the hollow portion with such a vibration frequency and amplitude that the carbon nanotubes 1 are crushed. Then, after reciprocating the container 3 for an appropriate time, the carbon nanotubes taken out from the container 3 are diluted with an organic solvent to obtain a dispersion liquid stably containing carbon nanotubes.
  • a method for producing a dispersion comprising carbon nanotubes comprising:
  • a method for producing a carbon nanotube dispersion wherein the cyclic organic compound used in step (i) is soluble in the organic solvent used in step (ii).
  • the first aspect is characterized in that after the carbon nanotube, the cyclic organic compound, and the hard ball are provided in the container, the vibration pulverization is performed by vibrating the hard ball in the container. how to.
  • the hard ball is vibrated with respect to the container by reciprocating the container in a certain direction.
  • the ratio of wrinkles to W: L is from 1: 1.3 to 15: 1.
  • the number force of hard spheres is 6 to 6, and the ratio of the total volume of the hard spheres to the volume of the hollow portion of the container is 0.5 to 10%. And how.
  • cyclic organic compound is a synthetic polymer selected from a group force including polyvinylpyrrolidone, polystyrene sulfonate, and polythiophene force.
  • Sixth aspect The method according to any one of the first to fourth aspects, wherein the cyclic organic compound is a ⁇ -based compound.
  • Seventh aspect The method according to the sixth aspect, characterized in that it is selected from the group consisting of ⁇ -based compound power porphyrin derivatives, pyrene derivatives, anthracene derivatives and polythiophene derivatives.
  • the organic solvent is an alcohol, It is an ether organic solvent, an amide organic solvent, a sulfoxide or a halogen organic solvent.
  • Ninth aspect The method according to the eighth aspect, wherein a group power including alcohol power methanol, ethanol, isopropanol and t-butanol power is also selected.
  • amide organic solvent is selected from the group consisting of 1-methyl-2-pyrrolidone and N, N-dimethylformamide.
  • Twelfth aspect The method according to the eighth aspect, wherein the sulfoxide is dimethyl sulfoxide.
  • Fifteenth aspect The method according to any one of the first to fourteenth aspects, wherein the vibration crushing is performed for 2 minutes to 2 hours.
  • Sixteenth aspect The method according to any one of the first to fifteenth aspects, wherein in the step (i) of obtaining the carbon nanotube mixture, a bundle of carbon nanotubes is at least partially dissociated.
  • step (ii) of obtaining a dispersion after adding organic solvent a to the carbon nanotube mixture, the resulting mixture is subjected to centrifugal separation.
  • the method further includes the step of filtering the supernatant obtained by subjecting to the centrifugation and adding a solvent having the same component power as the organic solvent a to the resulting residue.
  • the membrane filter used for filter filtration is contained in the supernatant A method characterized in that 5-95% of the tube is collected.
  • step (ii) of obtaining a dispersion organic solvent a is added to the carbon nanotube mixture, the resulting mixture is subjected to centrifugation, and then the precipitate in the mixture is precipitated. And adding an organic solvent composed of the same main component as the organic solvent a to the precipitate.
  • a twentieth aspect is a member including a base material having a carbon nanotube film on the surface, wherein the carbon nanotube film is obtained by using the carbon nanotube dispersion obtained by the method according to any one of the first to nineteenth aspects as a base material.
  • Twenty-first aspect A component according to the twentieth aspect, wherein the part is used as a gas storage product.
  • Twenty-second aspect The member according to the twentieth aspect, which is used as an electrode.
  • Twenty-third aspect A polymer material containing a carbon nanotube dispersion obtained by the method according to any one of the first to twenty-second aspects.
  • Twenty-fourth aspect A member having the strength of an organic polymer material containing carbon nanotubes, wherein the carbon nanotube dispersion obtained by the method according to any one of the first to second aspects is mixed with another organic polymer material.
  • a carbon nanotube dispersion liquid comprising carbon nanotubes, polyvinylpyrrolidone, and the organic solvent according to the eighth aspect.
  • Twenty-sixth aspect A carbon nanotube dispersion comprising carbon nanotubes, 3- (2-methoxyethoxy) ethoxymethylthiophene and the organic solvent according to the eighth aspect.
  • a dispersion containing carbon nanotubes stably was produced using the production method of the present invention.
  • the obtained dispersion had no carbon nanotube aggregation or precipitation until at least 4 weeks.
  • Example 1 The same operation as in Example 1 was carried out with various solvents under the conditions using PVP (polybulurpyrrolidone) as a dispersant (it was also carried out under the conditions where PVP was not used).
  • the results are shown in Table 1 below.
  • the CNT concentration (mgZlmL) in the table means the mass (mg) of carbon nanotubes contained in 1 mL of the obtained dispersion.
  • the concentration of CNTs can be determined from the absorbance (A) at a wavelength of 500 nm in the visible absorption spectrum when using a 1 mm cell after diluting the dispersion 5 times.
  • SWNT1 is a single-walled carbon nanotube manufactured by Carbon Nanotechnologies, Inc.
  • SWNT2 is a single-walled carbon nanotube manufactured by CarboLex, In.
  • MWNT1 is a multiwall carbon nanotube made by Nanocyl S.A.
  • PVP polybulurpyrrolidone (average molecular weight 360,000).
  • the numbers in “Note” indicate that they are all dispersed or dissolved.
  • PVP plays an important role as a dispersant.
  • 'Alcohols such as methanol, ethanol and isopropanol used as the organic solvent contribute to the formation of the carbon nanotube dispersion in the present invention.
  • Amide organic solvents such as 1-methyl-2-pyrrolidone and N, N-dimethylformamide used as organic solvents contribute to the formation of the carbon nanotube dispersion in the present invention.
  • Example 2 The same operation as in Example 2 was carried out with various solvents under the conditions using PMET (3- (2-methoxyethoxy) -ethoxymethylthiophene) as a dispersant.
  • the results are shown in Table 2 below.
  • the CNT concentration (mgZlmL) in the table means the mass (mg) of carbon nanotubes contained in the obtained dispersion ImL.
  • the concentration of CNTs can be determined from the absorbance (A) at a wavelength of 700 nm in the visible absorption spectrum using a 1 mm cell after diluting the dispersion 10 times, as shown in the following formula. Extinction coefficient
  • SWNT1 is a single-walled carbon nanotube manufactured by Carbon Nanotechnologies, Inc.
  • PMET represents (3- (2-methoxyethoxy) ethoxymethylthiophene) used as a dispersant, and 5 mg was used for all.
  • 'PMET used as a dispersant contributes to the formation of the carbon nanotube dispersion in the present invention.
  • 'A halogen-based organic solvent such as black mouth form used as the organic solvent contributes to the formation of a strong bon nanotube dispersion in the present invention.
  • Dimethyl sulfoxide and other sulfoxide used as organic solvents are used in the present invention. This contributes to the formation of a carbon nanotube dispersion.
  • amide-based organic solvents such as 1-methyl-2-pyrrolidone and N, N-dimethylformamide used as organic solvents have the ability to use PVP as a dispersant. Regardless of this, it contributes to the formation of the carbon nanotube dispersion in the present invention.
  • lmg single-walled carbon nanotubes lOmg polybulurpyrrolidone (PVP: average molecular weight 360, 000) as dispersant and two agate balls (sphere diameter 5mm) 20mm bottom diameter, 65mm longitudinal length (The cylindrical hollow part formed in the said container: The cross-sectional diameter of the trunk
  • drum is 12 mm and the length of a longitudinal direction is 50 mm).
  • PVP polybulurpyrrolidone
  • FIG. 1 shows the appearance of a dispersion of PVP (polyvinylpyrrolidone) -single-walled carbon nanotubes (SWNT) obtained by the production method of the present invention performed under various solvent conditions.
  • the dispersion shows black, confirming that the carbon nanotubes are dispersed in the organic solvent used.
  • Figure 2 shows the visible-ultraviolet absorption of a dispersion of PVP (polyvinylpyrrolidone) single-walled carbon nanotubes (SWNT) and multi-walled nanotubes (MENT) obtained by the production method of the present invention under various solvent conditions. The spectrum is shown. Absorption by carbon nanotubes was observed in the entire measurement region of 250 to 800 nm, and it was confirmed that single-walled carbon nanotubes were dispersed.
  • PVP polyvinylpyrrolidone
  • FIG. 3 shows a Raman absorption spectrum of a dispersion (organic solvent: isopropanol) of PVP (polyvinylpyrrolidone) -single-walled carbon nanotube (SWNT) obtained by the production method of the present invention.
  • PVP polyvinylpyrrolidone
  • SWNT single-walled carbon nanotube
  • 150 to 300 cm _1 near radial breathing mode corresponds to the semiconductor single-walled carbon nanotubes, since the radial breathing mode in the vicinity 230 ⁇ 300Cm _1 corresponds to the metal monolayer carbon nano tube, and semiconducting SWNTs It is thought that both metallic single-walled carbon nanotubes are dispersed.
  • Figure 4 shows the appearance of a dispersion of PMET (3- (2-methoxyethoxy) -ethyoxymethylthiophene) single-walled carbon nanotubes (SWNT) obtained by the production method of the present invention performed under various solvent conditions. Is shown. As in FIG. 1, the dispersion liquid showed a black color, and it was confirmed that the carbon nanotubes were dispersed in the organic solvent used.
  • PMET 3- (2-methoxyethoxy) -ethyoxymethylthiophene
  • Figure 5 shows PMET (3- (2-methoxyethoxy) -ethoxymethylthiophene) single-walled carbon nanotubes (SWN) obtained by the production method of the present invention performed under various solvent conditions.
  • SWN single-walled carbon nanotubes
  • Figure 6 shows the proximity of a dispersion of PMET (3- (2-methoxyethoxy) -ethyoxymethylthiophene) single-walled carbon nanotubes (SWNT) obtained by the production method of the present invention performed under various solvent conditions. Infrared absorption spectrum is shown. Absorption by carbon nanotubes was observed in the entire near-infrared region of 800-1600 nm in this measurement region, and it was confirmed that single-walled carbon nanotubes were dispersed.
  • PMET 3- (2-methoxyethoxy) -ethyoxymethylthiophene
  • FIGS. 9 (a) and 9 (b) show TEM photographs of single-walled carbon nanotubes contained in the carbon nanotube dispersion obtained by the production method of the present invention.
  • Figures 9 (a) and (b) are TEM photographs when different organic solvents are used.
  • CHC1 CHC1
  • NMP (1-methyl-2-pyrrolidone) is used as the organic solvent.
  • the dispersion obtained by the production method of the present invention contains single-walled carbon nanotubes from which bundles are dissociated.
  • the effect of the vibration pulverization treatment performed by the production method of the present invention is only effective to dissociate the carbon nanotube bundles, if not completely (the carbon nanotubes are removed by the vibration treatment). It can be understood that the original form's shape force is also thin, so that the bundle is at least dissociated) and does not destroy the structure of the carbon nanotube itself.
  • NMP 1-methyl-2-pyrrolidone
  • DMF ⁇ , ⁇ dimethylformamide
  • CHC1 black mouth form
  • DMSO dimethylsulfoxide
  • a carbon nanotube dispersion (sample ⁇ ) was produced by the production method of the invention. Specifically, U lmg single layer carphone nanotub (Carbon Nanotechnologies Incorporat ed), 5 mg of a dispersant (specifically polythiophene) and two agate balls (sphere diameter 5 mm) in a cylindrical sealed container with a bottom diameter of 20 mm and a length in the longitudinal direction of 65 mm (the container The cylindrical hollow part formed in the body: the body part was charged with a cross-sectional diameter of 12 mm and a longitudinal length of 50 mm).
  • a dispersant specifically polythiophene
  • two agate balls sphere diameter 5 mm
  • the organic solvent is NMP (1-methyl-2-pyrrolidone), DMF (N, N-dimethylformamide), CHC1 (black mouth form), DMSO (dimethylsulfoxide), as in the production method of the present invention described above.
  • Sample B was prepared using each. Method of operation 'Experimental conditions are as follows.
  • sample A obtained by the production method of the present invention contains carbon nanotubes, whereas sample B contains carbon nanotubes except for the condition of CHC1.
  • the carbon nanotubes are dispersed only by the vibration pulverization process without the dispersion of the carbon nanotubes only with the dispersant and z or the organic solvent. It was understood that the effect was excellent. It should be noted that the vibration pulverization process has a particularly advantageous effect on the dissociation of the bundle of carbon nanotubes because, unlike the ultrasonic process, the shear force acts directly on the carbon nanotubes. Conceivable.
  • the carbon nanotube dispersion obtained by the production method of the present invention is a gas storage product (for example, a hydrogen storage medium for storing hydrogen gas fuel such as a car or a ship) or an electrode (a negative electrode used for a lithium secondary battery or the like). It can also be used for the manufacture of field emission display emitters, photoelectric conversion elements or cosmetics.
  • a gas storage product for example, a hydrogen storage medium for storing hydrogen gas fuel such as a car or a ship
  • an electrode a negative electrode used for a lithium secondary battery or the like. It can also be used for the manufacture of field emission display emitters, photoelectric conversion elements or cosmetics.

Abstract

Disclosed is a method for producing a dispersion liquid containing carbon nanotubes which comprises: (i) a step for obtaining a carbon nanotube mixture by subjecting carbon nanotubes and a cyclic organic compound to oscillation grinding at an oscillation frequency of 5-120 s-1; and (ii) a step for obtaining a dispersion liquid containing carbon nanotubes by adding an organic solvent into the carbon nanotube mixture. This method is characterized in that the cyclic organic compound used in the step (i) is soluble in the organic solvent used in the step (ii).

Description

明 細 書  Specification
力一ボンナノチューブ分散液の製造方法  Method for producing Rikiichi Bonn nanotube dispersion
技術分野  Technical field
[0001] 本発明は、カーボンナノチューブを含む分散液の製造方法に関し、より詳細には、 束状 (バンドル状)のカーボンナノチューブ (またはカーボンナノチューブ混合物)から 、カーボンナノチューブが安定的に分散する分散液を製造する方法に関する。更に 、本発明は、本発明の方法で得られるカーボンナノチューブ分散液を用いて製造さ れる部材等にも関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing a dispersion containing carbon nanotubes, and more specifically, a dispersion in which carbon nanotubes are stably dispersed from a bundle of carbon nanotubes (or a carbon nanotube mixture). It relates to a method of manufacturing. Furthermore, the present invention also relates to a member manufactured using the carbon nanotube dispersion obtained by the method of the present invention.
背景技術  Background art
[0002] カーボンナノチューブ(以下では「CNT」とも略称される)は、六角網目状の炭素原 子配列のグラフアイトシートが円筒状に巻かれた構造を有する炭素同素体の 1つであ り、その直径がナノメートルのオーダーを有する。生成されるカーボンナノチューブは 、単層カーボンナノチューブ(SWNTs : single— walled carbon nanotubes)およ び多層カーボンナノチューブ(MWNTs :multi— walled carbon nanotubes)の 2種類が知られている。単層カーボンナノチューブは、グラフアイトシートが一枚だけ 円筒状に巻かれたものであるのに対して、多層カーボンナノチューブは、グラフアイト シートが同心円状に略等間隔に何重にも重なったものである。そのようなカーボンナ ノチューブは、そのユニークな構造に起因して特異な機能を有することから、種々の 分野での応用が期待されている。特に単層カーボンナノチューブは、その比表面積 が比較的大きいことから、例えば、水素等などのガスの吸蔵材または電極部材等の 用途に適するものと考えられて ヽる。  [0002] A carbon nanotube (hereinafter also abbreviated as "CNT") is one of carbon allotropes having a structure in which a graphite sheet having a hexagonal network of carbon atoms arranged in a cylindrical shape. The diameter is on the order of nanometers. Two types of carbon nanotubes are known: single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). Single-walled carbon nanotubes are a single graphite sheet rolled into a cylindrical shape, whereas multi-walled carbon nanotubes are concentric circles of graphite sheets that overlap in multiple layers at approximately equal intervals. It is. Such carbon nanotubes have unique functions due to their unique structures, and are expected to be applied in various fields. In particular, single-walled carbon nanotubes have a relatively large specific surface area, and thus are considered suitable for applications such as gas storage materials such as hydrogen or electrode members, for example.
[0003] し力しながら、常套の製法で製造されたカーボンナノチューブを精製したものは、種 々の用途に必ずしも好都合とは言えない。カーボンナノチューブの精製では、一般 的に酸性溶液中でカーボンナノチューブを超音波処理した後(例えば、非特許文献 1を参照)、中和して希釈することによって混合物が得られる力 そのような混合物は However, purifying carbon nanotubes produced by a conventional production method is not always convenient for various applications. In the purification of carbon nanotubes, generally the force that can be obtained by sonicating carbon nanotubes in an acidic solution (see, for example, Non-Patent Document 1) and then neutralizing and diluting such a mixture
、カーボンナノチューブを安定的に含んでいない。即ち、そのような混合物では、溶 媒に対してカーボンナノチューブが時間的に安定して分散しておらず、時間の経過 に伴ってカーボンナノチューブが凝集 z沈殿してしまう。その結果、カーボンナノチュ ーブの応用範囲が必然的に制限されてしまうことになる。 It does not contain carbon nanotubes stably. That is, in such a mixture, the carbon nanotubes are not stably dispersed with respect to the solvent over time, and the time elapses. As a result, the carbon nanotubes aggregate and precipitate. As a result, the application range of carbon nanotubes is inevitably limited.
[0004] 上述のように精製されたカーボンナノチューブを含む混合物では、カーボンナノチ ユーブが溶媒中で自己会合により数本〜数百本程度が束になった状態 (バンドル状 )で存在するので、カーボンナノチューブの比表面積が理論値と比べて相当に減少 している。それゆえ、このようなバンドル状のカーボンナノチューブを含む混合物から 製造されるガス吸蔵材では、理論値よりもガス吸蔵量が少なくなる。また、こうしたバン ドル状のカーボンナノチューブを含む混合物を用いて製造した電極は、カーボンナノ チューブと電極との接触面積が小さくなるので、理論値と比べて電極効率が低!ヽもの となる。  [0004] In the mixture containing carbon nanotubes purified as described above, carbon nanotubes exist in a state where several to several hundreds of carbon nanotubes are bundled by self-association in a solvent (bundle shape). The specific surface area of the nanotubes is considerably reduced compared to the theoretical value. Therefore, in the gas storage material manufactured from such a mixture containing bundle-like carbon nanotubes, the gas storage amount is smaller than the theoretical value. In addition, an electrode manufactured using such a mixture containing bundled carbon nanotubes has a lower electrode efficiency than the theoretical value because the contact area between the carbon nanotube and the electrode is reduced.
[0005] 単層カーボンナノチューブのアルコール分散液を得るために、可溶化剤としてビ- ルビリジンを用いる方法が開示されている力 6時間に及ぶ超音波処理が必要である ために実用的でない (例えば非特許文献 2参照)。また、可溶化剤としてポリビニルビ 口リドンを用い、単層カーボンナノチューブのアミド系極性有機溶媒分散液を製造す る方法が開示されているが、非イオン性界面活性剤が必須の成分であり、製造には 1 時間の超音波処理が必要とされる (例えば特許文献 1参照)。  [0005] In order to obtain an alcohol dispersion of single-walled carbon nanotubes, a method using berylviridine as a solubilizing agent is disclosed, and it is impractical because sonication for 6 hours is required (for example, Non-Patent Document 2). In addition, a method for producing an amide polar organic solvent dispersion of single-walled carbon nanotubes using polyvinylbiridone as a solubilizing agent has been disclosed, but a nonionic surfactant is an essential component, and it is produced. Requires one hour of sonication (see, for example, Patent Document 1).
[0006] また、カーボンナノチューブの分散液を得るために、ポリチォフェン系重合体を用い る方法も開示されている。分散液を得る方法として、(l) CNTを溶媒中で予め超音 波照射下で予備分散した後、共役系重合体を添加し分散させる方法、(2) CNTと共 役系高分子を溶媒に混合した後、超音波照射下で分散する方法、(3)溶融した共役 系重合体の中に CNTを添加して分散させる方法が示されて 、る(例えば特許文献 2 、段落 0016参照)。  [0006] In addition, a method using a polythiophene polymer to obtain a dispersion of carbon nanotubes is also disclosed. As a method for obtaining a dispersion, (l) CNT is preliminarily dispersed in a solvent under ultrasonic irradiation, and then a conjugated polymer is added and dispersed. (2) CNT and a conjugated polymer are dissolved in a solvent. (3) a method of adding and dispersing CNT in a molten conjugated polymer (see, for example, Patent Document 2 and Paragraph 0016). .
[0007] 非特許文献 l :Jie Liu, Andrew G. Rinzler, etc, 「Fullerene PipesJ , Scien ce, 1998. 5. 22, No. 280, pl253- 1256  [0007] Non-patent literature l: Jie Liu, Andrew G. Rinzler, etc, “Fullerene PipesJ, Scien ce, 1998. 5. 22, No. 280, pl253-1256
非特許文献 2 :Jason H. Rouse, 「Polymer— Assisted Dispersion of ¾mgl e— Walled Carbon Nanotubes in Alcohols and Applicability toward C arbon Nanotube/ Sol— Gel Composite FormationJ , Langmuir 2005, 21, pl055- 1061 特許文献 1 :特開 2005— 154630号公報 Non-Patent Document 2: Jason H. Rouse, “Polymer—Assisted Dispersion of ¾ mgl e— Walled Carbon Nanotubes in Alcohols and Applicability toward Carbon Nanotube / Sol— Gel Composite Formation J, Langmuir 2005, 21, pl055- 1061 Patent Document 1: Japanese Patent Laid-Open No. 2005-154630
特許文献 2 :特開 2005— 089738号公報  Patent Document 2: JP-A-2005-089738
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の課題は、より短時間で、さらにより簡便な手法でカーボンナノチューブが 安定的に分散する分散液の製造方法を提供することである。また、本発明の課題は 、本発明の方法で得られるカーボンナノチューブを含む分散液力 製造される部材 を提供することでもある。 [0008] An object of the present invention is to provide a method for producing a dispersion in which carbon nanotubes are stably dispersed in a shorter time and by a simpler method. Another object of the present invention is to provide a member produced by a dispersion solution containing carbon nanotubes obtained by the method of the present invention.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、本発明は、 In order to solve the above problems, the present invention provides:
カーボンナノチューブを含んで成る分散液を製造する方法であって、  A method for producing a dispersion comprising carbon nanotubes, comprising:
(i)カーボンナノチューブと環式有機化合物とを 5〜120s_1の振動数で振動粉砕 に付し、カーボンナノチューブ混合物を得る工程 (以下、「工程 (i)」とも 、う)、および(i) subjecting the carbon nanotube and the cyclic organic compound to vibration pulverization at a frequency of 5 to 120 s _1 to obtain a carbon nanotube mixture (hereinafter also referred to as “step (i)”), and
(ii)カーボンナノチューブ混合物に有機溶媒を加えて、カーボンナノチューブを含 んで成る分散液を得る工程 (以下、「工程 (ii)」とも ヽぅ) (ii) A step of adding an organic solvent to the carbon nanotube mixture to obtain a dispersion containing carbon nanotubes (hereinafter also referred to as “step (ii)”)
を含んで成り、  Comprising
工程 (i)で用いる環式有機化合物が工程 (ii)で用いる有機溶媒に対して可溶性を 有する、カーボンナノチューブ分散液の製造方法を提供する。  Provided is a method for producing a carbon nanotube dispersion, wherein the cyclic organic compound used in step (i) is soluble in the organic solvent used in step (ii).
[0010] 本明細書で用いる「振動粉砕 (または単に「振動」もしくは「粉砕」)という用語は、力 一ボンナノチューブに機械的な衝撃を直接的に与えてカーボンナノチューブに対し て機械的な剪断力を直接作用させることを実質的に意味している。本発明の方法は 、そのような振動粉砕を実施することによってカーボンナノチューブを含む分散液を 得ることができる特徴を有している。また、カーボンナノチューブを含む分散液を得る 工程 (ii)では、付加的に遠心分離および Zまたはフィルター濾過が行われる特徴も 有している。尚、カーボンナノチューブ混合物を得る工程 (i)では、カーボンナノチュ ーブのバンドルを少なくとも部分的に解離させることができる。  [0010] As used herein, the term "vibrating crushing" (or simply "vibration" or "crushing") refers to mechanical shearing on carbon nanotubes by directly applying a mechanical impact to force-bonded nanotubes. This means that the force is applied directly. The method of the present invention has a feature that a dispersion containing carbon nanotubes can be obtained by carrying out such vibration pulverization. In addition, the step (ii) of obtaining a dispersion containing carbon nanotubes is additionally characterized by centrifugal separation and Z or filter filtration. In the step (i) of obtaining the carbon nanotube mixture, the bundle of carbon nanotubes can be at least partially dissociated.
[0011] 本発明の製造方法では、約 5. O X 10_4重量%〜約 15 X 10—1重量%のカーボン ナノチューブを安定的に含む分散液が供される。例えば、本発明では、カーボンナノ チューブと、有機溶媒としてアルコール、エーテル系有機溶媒またはアミド系有機溶 媒と、環式有機化合物としてポリビュルピロリドンとを含んだカーボンナノチューブ分 散液が供される。また、カーボンナノチューブと、有機溶媒としてアミド系有機溶媒、 スルホキシドまたはハロゲン系有機溶媒と、環式有機化合物としてポリチォフェンとを 含んだカーボンナノチューブ分散液も供される。 [0011] In the production method of the present invention, dispersions stably contain is subjected to about 5. OX 10_ 4 wt% to about 15 X 10- 1 wt% of carbon nanotubes. For example, in the present invention, carbon nano A carbon nanotube dispersion liquid containing a tube, an alcohol, an ether organic solvent or an amide organic solvent as an organic solvent, and polybutylpyrrolidone as a cyclic organic compound is provided. Also provided is a carbon nanotube dispersion containing carbon nanotubes, an amide organic solvent, a sulfoxide or halogen organic solvent as an organic solvent, and polythiophene as a cyclic organic compound.
[0012] 上記の発明以外にも、本発明では、  In addition to the above invention, the present invention
カーボンナノチューブ膜を表面に有する基材を含む部材であって、  A member including a substrate having a carbon nanotube film on the surface,
カーボンナノチューブ膜が、本発明の方法によって得られるカーボンナノチューブを 含んだ分散液を、基材の表面に塗布した後、乾燥させることによって形成される膜で あることを特徴とする部材が提供される。  There is provided a member characterized in that the carbon nanotube film is a film formed by applying a dispersion containing carbon nanotubes obtained by the method of the present invention to the surface of a substrate and then drying it. .
[0013] また、カーボンナノチューブを含有する高分子材料力もなる部材であって、本発明 の方法によって得られるカーボンナノチューブを含む分散液を、高分子材料に混合 し、成型することによって得られる部材も提供される。 [0013] Further, there is also a member having a polymer material strength containing carbon nanotubes, and a member obtained by mixing and molding a dispersion containing carbon nanotubes obtained by the method of the present invention into a polymer material. Provided.
発明の効果  The invention's effect
[0014] 本発明の方法によれば、カーボンナノチューブが安定的に分散する分散液をより 短時間で、なおかつより簡便に得ることができる。得られた分散液では、カーボンナノ チューブが有機溶媒中で時間的に安定して分散しており、長期的な安定性が優れて いる。従って、そのような分散液は実質的には溶液とみなすことができる。  [0014] According to the method of the present invention, a dispersion in which carbon nanotubes are stably dispersed can be obtained in a shorter time and more simply. In the obtained dispersion, the carbon nanotubes are dispersed stably in time in an organic solvent, and the long-term stability is excellent. Thus, such a dispersion can be considered substantially a solution.
[0015] また、カーボンナノチューブが安定的に分散する分散液は、バンドルが解離した力 一ボンナノチューブを少なくとも含んで成るので、カーボンナノチューブが溶媒中で 束 (バンドル)となって 、る場合よりもカーボンナノチューブの比表面積が増加する。 従って、そのような分散液を用いて製造される部材をガス吸蔵品として用いると、バン ドル状のカーボンナノチューブを用いる場合よりもガス吸蔵量が増加し、より理論値 に近づくことになる。また、バンドル状のものと比べて、バンドルが解離したカーボン ナノチューブの方が電極表面との接触面積が増加するので、本発明の方法で得られ る分散液を用いて製造された部材を電極として用いたものは高効率となり、その効率 力 り理論値に近づくことになる。なお、ここでいう「理論値」とは、力かる部材に含ま れるカーボンナノチューブの全てがバンドルの解離したものであるという仮定に基づく 理想状態の水素吸蔵量または電極効率を ヽぅ。 [0015] In addition, the dispersion in which the carbon nanotubes are stably dispersed contains at least one bon nanotube having a dissociated force of the bundle, so that the carbon nanotubes are bundled in the solvent. The specific surface area of the carbon nanotube increases. Therefore, when a member manufactured using such a dispersion is used as a gas occlusion product, the gas occlusion amount increases as compared with the case of using bundle-like carbon nanotubes, and approaches the theoretical value. In addition, since the carbon nanotubes from which the bundles are dissociated have a larger contact area with the electrode surface than the bundles, the members manufactured using the dispersion obtained by the method of the present invention are used as the electrodes. The one used is highly efficient and approaches its theoretical value. The “theoretical value” here is based on the assumption that all of the carbon nanotubes contained in the strong member are dissociated bundles. 水 素 Ideal hydrogen storage capacity or electrode efficiency.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の製造方法で得られた分散液の外観を示しており、各種溶媒条 件下のポリビュルピロリドン(PVP) 単層カーボンナノチューブ(SWNT)の分散液 の外観を示している。 [FIG. 1] FIG. 1 shows the appearance of a dispersion obtained by the production method of the present invention, and the appearance of a dispersion of polybulurpyrrolidone (PVP) single-walled carbon nanotubes (SWNT) under various solvent conditions. Is shown.
[図 2]図 2は、本発明の製造方法で得られた分散液の可視 紫外吸収スペクトルを示 しており、各種溶媒条件下のポリビュルピロリドン (PVP) 単層カーボンナノチュー ブ(SWNT)および多層カーボンナノチューブ (MWNT)の分散液の可視 紫外吸 収スペクトルを示して 、る。  [FIG. 2] FIG. 2 shows a visible ultraviolet absorption spectrum of the dispersion obtained by the production method of the present invention, and polybutylpyrrolidone (PVP) single-walled carbon nanotube (SWNT) under various solvent conditions. And a visible ultraviolet absorption spectrum of a dispersion of multi-walled carbon nanotubes (MWNT).
[図 3]図 3は、本発明の製造方法で得られた分散液の Raman吸収スペクトルを示して おり、ポリビニルピロリドン (PVP) 単層カーボンナノチューブ(SWNT)を含んだ分 散液 (有機溶媒:イソプロパノール)の Raman吸収スペクトルを示して 、る。  [FIG. 3] FIG. 3 shows the Raman absorption spectrum of the dispersion obtained by the production method of the present invention. The dispersion contains polyvinylpyrrolidone (PVP) single-walled carbon nanotubes (SWNT) (organic solvent: 2 shows the Raman absorption spectrum of (isopropanol).
[図 4]図 4は、本発明の製造方法で得られた分散液の外観を示しており、各種溶媒条 件下の PMET(3—(2—メトキシエトキシ)ーェトキシメチルチオフェン) 単層カーボ ンナノチューブ(SWNT)の分散液の外観を示して 、る。 [FIG. 4] FIG. 4 shows the appearance of the dispersion obtained by the production method of the present invention. PMET (3- (2-methoxyethoxy) ethoxymethylthiophene) monolayer under various solvent conditions The appearance of the carbon nanotube (SWNT) dispersion is shown.
[図 5]図 5は、本発明の製造方法で得られた分散液の可視 紫外吸収スペクトルを示 しており、各種溶媒条件下の PMET(3—(2—メトキシェトキシ) エトキシメチルチ ォフェン) 単層カーボンナノチューブ(SWNT)の分散液の可視 紫外吸収スぺク トルを示している。  FIG. 5 shows a visible ultraviolet absorption spectrum of the dispersion obtained by the production method of the present invention. PMET (3- (2-methoxyethoxy) ethoxymethylthiophene under various solvent conditions ) Visible UV absorption spectrum of single-walled carbon nanotube (SWNT) dispersion.
[図 6]図 6は、本発明の製造方法で得られた分散液の近赤外吸収スペクトルを示して おり、各種溶媒条件下の PMET(3—(2—メトキシェトキシ)ーェトキシメチルチオフ ェン) 単層カーボンナノチューブ(SWNT)の分散液の近赤外吸収スペクトルを示 している。  FIG. 6 shows the near-infrared absorption spectrum of the dispersion obtained by the production method of the present invention. PMET (3- (2-methoxyethoxy) ethoxymethylthio under various solvent conditions Fen) The near-infrared absorption spectrum of a single-walled carbon nanotube (SWNT) dispersion is shown.
[図 7]図 7は、本発明の好ましい振動粉砕処理工程の態様を示した模式図である。  FIG. 7 is a schematic diagram showing an embodiment of a preferred vibration crushing process step of the present invention.
[図 8]図 8は、本発明の製造方法で用いられ得る容器および硬球(中央切断図)を模 式的に示しており、容器内の中空部の長手方向長さ Lおよび短手方向長さ Sを示 [FIG. 8] FIG. 8 schematically shows a container and a hard sphere (center cut view) that can be used in the production method of the present invention. The longitudinal length L and the lateral length of the hollow part in the container are shown. S
b b すと共に、硬球の直径 Rを模式的に示している。  b b The diameter R of the hard sphere is schematically shown.
a  a
[図 9]図 9は、本発明の製造方法で得られたカーボンナノチューブ分散液に含まれる 単層カーボンナノチューブを示した TEM写真である。図 9 (a)は CHC1、図 9 (b)は [Fig. 9] Fig. 9 is contained in the carbon nanotube dispersion obtained by the production method of the present invention. 2 is a TEM photograph showing a single-walled carbon nanotube. Figure 9 (a) is CHC1, and Figure 9 (b) is
3  Three
NMPを有機溶媒として用いて 、る。  NMP is used as the organic solvent.
符号の説明  Explanation of symbols
[0017] 1…カーボンナノチューブ、 2…硬球、 3…容器、 4…容器内の中空部。  [0017] 1 ... carbon nanotube, 2 ... hard sphere, 3 ... container, 4 ... hollow portion in the container.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に、本発明のカーボンナノチューブを含む分散液の製造方法を説明する。尚 、カーボンナノチューブと共に振動粉砕に付される環式有機化合物は、本明細書で は単に「分散剤」として表記して説明している箇所もある点に留意されたい。  [0018] Hereinafter, a method for producing a dispersion liquid containing carbon nanotubes of the present invention will be described. It should be noted that the cyclic organic compound that is subjected to vibration pulverization together with the carbon nanotubes is sometimes described simply as “dispersant” in the present specification.
[0019] 本発明において、「カーボンナノチューブ (具体的には工程 (i)で用いられ得るカー ボンナノチューブ)」とは、例えばアーク放電法、レーザー蒸発法、レーザーァプレー シヨン法および CVD法(または化学気相成長法、 Chemical Vapor Deposition) などの常套の製法で製造された束 (バンドル)状のカーボンナノチューブを意味する 。このようなカーボンナノチューブが束の状態で媒体中に分散した混合物は長期的 な安定性が乏しぐ時間の経過に伴って、分散するカーボンナノチューブが凝集、沈 殿してしまう。例えば、このような混合物では、遅くとも 2〜3日でカーボンナノチュー ブの沈殿物が見られる。  In the present invention, “carbon nanotubes (specifically, carbon nanotubes that can be used in step (i)” are, for example, arc discharge method, laser evaporation method, laser exposure method, and CVD method (or It means a bundle-like carbon nanotube produced by a conventional method such as chemical vapor deposition or chemical vapor deposition. In such a mixture in which carbon nanotubes are dispersed in a medium in the form of bundles, the dispersed carbon nanotubes aggregate and settle with the passage of time when the long-term stability is poor. For example, in such a mixture, a precipitate of carbon nanotubes can be seen in a few days at the latest.
本発明において、振動粉砕に付されるカーボンナノチューブは、精製されたものや 、精製後に凍結乾燥処理を施したものであってもよいが、より簡便には市販のカーボ ンナノチューブである。また、振動粉砕に付されるカーボンナノチューブは、単層カー ボンナノチューブまたは多層カーボンナノチューブのいずれであってもよぐいずれ の場合でも分散液が短時間に簡便に得られ、分散液の分散安定性が高いものとなる  In the present invention, the carbon nanotubes that are subjected to vibration pulverization may be purified or those that have been subjected to freeze-drying after purification, but more simply are commercially available carbon nanotubes. In addition, the carbon nanotubes subjected to vibration pulverization can be either single-walled carbon nanotubes or multi-walled carbon nanotubes, and a dispersion can be easily obtained in a short time. Will be expensive
[0020] 本発明で用いる分散剤としての環式有機化合物は、工程 (ii)で用いる有機溶媒に 対して可溶性を有している。この環式有機化合物は、得られるカーボンナノチューブ を分散させることが可能であり、それゆえ、カーボンナノチューブを安定的に含んだ 分散液を得るのに資するものである。 [0020] The cyclic organic compound as the dispersant used in the present invention is soluble in the organic solvent used in the step (ii). This cyclic organic compound can disperse the obtained carbon nanotubes, and therefore contributes to obtaining a dispersion containing the carbon nanotubes stably.
環式有機化合物は、例えば、ポリビニルピロリドン(PVP)、ポリスチレンスルホネート およびポリチォフェン力もなる群力も選択される少なくとも 1種以上の合成高分子であ ることが好ましい。 The cyclic organic compound is, for example, polyvinyl pyrrolidone (PVP), polystyrene sulfonate, and at least one synthetic polymer in which a group force that is also polythiophene power is selected. It is preferable.
また、環式有機化合物が π系化合物であることも好ましい。ここで「π系化合物」と は、広い共役系を有し、より強い π— π相互作用を有する化合物を指しており、例え ば、ポルフィリン誘導体、ピレン誘導体、アントラセン誘導体およびポリチォフェン誘 導体力 成る群力 選択される少なくとも 1種以上の化合物であることが好ましい。環 式有機化合物が π系化合物である場合には、カーボンナノチューブが π系化合物 であるために、環式有機化合物とカーボンナノチューブとの間で π— π相互作用が 生じ、その結果、カーボンナノチューブと環式有機化合物とが互いに引き合う力が生 じるので、カーボンナノチューブのバンドルの解離を助力する作用がもたらされ得る。 尚、当然のことながら、環式有機化合物は、合成高分子であって、なおかつ、 π系 化合物であるものでもよぐ例えば、 3—(2—メトキシエトキシ)ーェトキシメチルチオ フェン(ΡΜΕΤ)を例示することができる。  It is also preferred that the cyclic organic compound is a π-based compound. Here, “π-based compound” refers to a compound having a wide conjugated system and a stronger π-π interaction. For example, a group consisting of porphyrin derivatives, pyrene derivatives, anthracene derivatives, and polythiophene derivative power. Force At least one selected compound is preferred. When the cyclic organic compound is a π-based compound, since the carbon nanotube is a π-based compound, a π-π interaction occurs between the cyclic organic compound and the carbon nanotube. Since a force attracting each other with the cyclic organic compound is generated, an effect of assisting the dissociation of the bundle of carbon nanotubes can be provided. Of course, the cyclic organic compound may be a synthetic polymer and a π-based compound. For example, 3- (2-methoxyethoxy) -ethymethylthiophene (ΡΜΕΤ) It can be illustrated.
上記で例示した環式有機化合物が本発明に用いる分散剤として好まし 、ものの、 有機溶媒に対して可溶性を有し、カーボンナノチューブを安定的に分散させる化合 物であれば、本発明に用いられる分散剤は、特に限定されない。例えば、分散剤とし てナフイオン (登録商標、 Nafion)またはポリエチレングリコール等も用いることができ る。  Although the cyclic organic compounds exemplified above are preferred as the dispersant used in the present invention, any compound that is soluble in an organic solvent and stably disperses carbon nanotubes can be used in the present invention. The dispersant is not particularly limited. For example, Nafion (registered trademark, Nafion) or polyethylene glycol can be used as a dispersant.
[0021] 環式有機化合物とカーボンナノチューブとの質量比を説明すると、例えば環式有 機化合物が 10mgの場合、容器内に供される環式有機化合物と乾燥したカーボンナ ノチューブとの質量比は、約 10 : 1〜約 1: 200、好ましくは約 5 : 1〜約 1: 100、より好 ましくは約 1: 1〜約 1: 50となっている。  [0021] The mass ratio between the cyclic organic compound and the carbon nanotube will be described. For example, when the cyclic organic compound is 10 mg, the mass ratio between the cyclic organic compound provided in the container and the dried carbon nanotube is About 10: 1 to about 1: 200, preferably about 5: 1 to about 1: 100, more preferably about 1: 1 to about 1:50.
[0022] 本発明で用いられる有機溶媒は、アルコール、エーテル系有機溶媒、アミド系有機 溶媒、スルホキシドまたはハロゲン系有機溶媒が好ましい。アルコールとしては、メタ ノール、エタノールなどの第一級アルコール、イソプロパノールなどの第二級アルコ ールおよび tーブタノール(tert—ブタノール)などの第三級アルコールから成る群か ら選択される少なくとも 1種以上のアルコールであることが好ま 、。エーテル系有機 溶媒としては、ジェチルエーテルおよびテトラヒドロフランカ 成る群力 選択される 少なくとも 1種以上のエーテル系有機溶媒であることが好ましい。アミド系有機溶媒と しては、 1—メチル 2—ピロリドンおよび N, N ジメチルホルムアミド力 成る群から 選択される少なくとも 1種以上のアミド系有機溶媒であることが好まし 、。スルホキシド としてはジメチルスルホキシドが好ましい。ハロゲン系有機溶媒としては、クロ口ホルム 、塩化メチレンおよび 1, 1, 2, 2—テトラクロ口エタンカも成る群力も選択される少なく とも 1種以上のハロゲン系有機溶媒が好ましぐその中でも特にクロ口ホルムが好まし い。尚、本発明のカーボンナノチューブ分散液には、必要に応じて他の成分を含め てもかまわない。 [0022] The organic solvent used in the present invention is preferably an alcohol, an ether organic solvent, an amide organic solvent, a sulfoxide or a halogen organic solvent. The alcohol includes at least one selected from the group consisting of methanol, primary alcohols such as ethanol, secondary alcohols such as isopropanol, and tertiary alcohols such as tert-butanol. Preferred to be alcohol. The ether organic solvent is preferably at least one ether organic solvent selected from the group power consisting of jetyl ether and tetrahydrofuran. With amide organic solvent Therefore, it is preferable that the amide organic solvent is at least one selected from the group consisting of 1-methyl 2-pyrrolidone and N, N dimethylformamide. The sulfoxide is preferably dimethyl sulfoxide. As the halogen-based organic solvent, at least one kind of halogen-based organic solvent in which the group strength including black-mouth form, methylene chloride, and 1,1,2,2-tetrachloro-tank etanca is also selected is preferable. Mouth Holm is preferred. The carbon nanotube dispersion of the present invention may contain other components as necessary.
[0023] 有機溶媒または環式有機化合物は、上述で例示したようなものであれば、分散性 の高いカーボンナノチューブ分散液を得ることができる。ここで、好ましい有機溶媒と 環式有機化合物との組み合せを例示すると、有機溶媒として、アルコール、 1ーメチ ル— 2—ピロリドンまたは N, N ジメチルホルムアミドのいずれかと、環式有機化合 物としてポリビュルピロリドンとの組み合わせ、有機溶媒として、 1ーメチルー 2—ピロリ ドン、 N, N ジメチルホルムアミド、ジメチルスルホキシドまたはクロ口ホルムのいず れかと、環式有機化合物としてポリチォフェンとの組み合わせが挙げられる。特にそ の中でも、環式有機化合物としてポリチォフェン、有機溶媒として 1—メチル 2—ピ 口リドンを用いた組合せ、または、環式有機化合物としてポリビュルピロリドン (PVP)、 有機溶媒としてイソプロノ V—ルを用いた組合せが好ましぐそれによつて好適な力 一ボンナノチューブ分散液を得ることができる。  If the organic solvent or the cyclic organic compound is as exemplified above, a highly dispersible carbon nanotube dispersion can be obtained. Here, a combination of a preferable organic solvent and a cyclic organic compound is exemplified. As an organic solvent, either alcohol, 1-methyl-2-pyrrolidone or N, N dimethylformamide, and polybylpyrrolidone as a cyclic organic compound are used. The organic solvent includes a combination of 1-methyl-2-pyrrolidone, N, N dimethylformamide, dimethyl sulfoxide, or black mouth form, and polythiophene as the cyclic organic compound. In particular, a combination of polythiophene as a cyclic organic compound, 1-methyl-2-pyrididone as an organic solvent, or polybutyrrolidone (PVP) as a cyclic organic compound, and isopronool V as an organic solvent. The combination used is preferred, so that a suitable force can be obtained.
[0024] 本発明の振動粉砕の処理工程 (即ち、カーボンナノチューブ混合物を得る工程 (i) )では、カーボンナノチューブおよび環式有機化合物を硬球と共に容器内に仕込ん だ後、容器に対して硬球を振動させることによって、振動粉砕を実施することが好まし い。より具体的には、カーボンナノチューブと環式有機化合物と硬球とを容器本体の 中空部 (以後、「容器中空部」ともいう)に供して蓋をした後、容器に対して硬球を振 動させる。ここで本明細書にいう「容器に対して硬球を振動させる」とは、硬球と容器 中空部の壁面との衝突が経時的に繰り返して行われる態様を実質的に指している。 従って、「容器に対して硬球を振動させる」は、容器自体を往復運動させて、その中 に含まれる硬球を往復運動させる態様のみならず、容器自体を固定させた状態で硬 球を外部力 往復運動させる態様をも含んで 、る。 容器を往復運動させる態様の場合 (図 7参照)、その往復運動させる方向は、容器 中空部の長手方向であることが一般的に好ましぐその容器中空部の長手方向が水 平方向となるように容器を振動機に設置する場合には、その水平方向にて容器を左 右に往復するように運動させることが好ましい。ただし、硬球と容器中空部の壁面との 衝突が繰り返して行われるのであれば、容器自体の振動方向には特に制限はなぐ 容器および Zもしくは容器中空部の形態または容器の振動機への設置の仕方等に 応じて振動させる方向を適宜変更してもよぐ例えば、往復運動する方向が経時的に 変化するものであってもよ 、。 In the vibration pulverization treatment step of the present invention (ie, the step (i) for obtaining a carbon nanotube mixture), the carbon nanotubes and the cyclic organic compound are charged into the container together with the hard balls, and then the hard balls are vibrated against the container. It is preferable to perform vibration pulverization. More specifically, the carbon nanotube, the cyclic organic compound, and the hard sphere are provided to the hollow part of the container body (hereinafter also referred to as “container hollow part”), and the hard sphere is shaken with respect to the container. . As used herein, “vibrating a hard sphere with respect to a container” substantially refers to an aspect in which the collision between the hard sphere and the wall surface of the hollow portion of the container is repeated over time. Therefore, “vibrating the hard ball with respect to the container” means not only a mode in which the container itself is reciprocated and the hard ball contained therein is reciprocated, but the hard ball is externally applied with the container itself fixed. Including a reciprocating mode. In the case of reciprocating the container (see FIG. 7), it is generally preferred that the reciprocating direction is the longitudinal direction of the container hollow part. The longitudinal direction of the container hollow part is the horizontal direction. Thus, when the container is installed on the vibrator, it is preferable to move the container so as to reciprocate left and right in the horizontal direction. However, if the collision between the hard sphere and the wall of the container hollow part is repeated, there is no particular restriction on the vibration direction of the container itself. The form of the container and Z or the container hollow part or the container installed on the vibrator The direction of vibration may be changed as appropriate according to the way, for example, the reciprocating direction may change over time.
[0025] 容器自体を固定させた状態で硬球を往復運動させる態様の例としては、磁性材料 から成る硬球、非磁性材料から成る容器を用い、容器の外部から硬球に対して磁力 を作用させて硬球を容器内で往復運動させる態様が考えられる。  [0025] As an example of a mode in which the hard sphere is reciprocated with the container itself fixed, a hard sphere made of a magnetic material or a container made of a non-magnetic material is used, and a magnetic force is applied to the hard sphere from the outside of the container. A mode in which the hard ball is reciprocated in the container is conceivable.
[0026] 尚、「振動」は、ある点を中心に往復運動する現象を一般に意味するところ、本明細 書で用いる「振動」とは、容器がある方向にのみ往復運動する態様に必ずしも限定さ れる必要はなぐ硬球と容器中空部の壁面との衝突が経時的に繰り返して行われる のであれば (つまり、カーボンナノチューブに機械的な衝撃を直接的に与えて機械的 な剪断力がカーボンナノチューブに対して作用するのであれば)、容器が回転運動 および Zまたは揺動運動する態様であっても力まわない。容器が回転運動する場合 [0026] It should be noted that "vibration" generally means a phenomenon of reciprocating around a certain point, but "vibration" used in this specification is not necessarily limited to a mode in which the container reciprocates only in a certain direction. If the collision between the hard sphere and the wall of the hollow portion of the container is repeated over time (i.e., mechanical impact is directly applied to the carbon nanotubes and mechanical shearing force is applied to the carbon nanotubes). If it acts on the container), it does not matter if the container is in rotational and Z or rocking motion. When the container rotates
、容器が回転するだけでなぐ例えば容器が設置される架台自体も回転し、容器の回 転方向が時間的に変化 (例えば「反転」)すると共に、架台の回転方向も容器とは独 立に時間的に変化するものであることが好ましい。 In addition to rotating the container, for example, the base on which the container is installed also rotates, and the rotation direction of the container changes with time (for example, “inverted”), and the rotation direction of the base is also independent of the container. It is preferable that it changes with time.
[0027] 容器は、容器本体と蓋とを一般的に有して成り、好ましくは、容器中空部に供される カーボンナノチューブ、環式有機化合物および硬球を外界雰囲気から遮断して密閉 する容器であることが好ましい。容器は、好ましくは、ステンレス等の硬い材料力も主 として形成されるが、振動により生じる衝撃、例えば、容器中空部で往復運動する硬 球が中空部壁面 (即ち、容器中空部壁部)と衝突することで生じる衝撃に耐え得るも のであれば、いずれの種類の材料カゝら形成してもよい。なお一般的に、容器は、振動 に付される間で密閉状態を維持するものが好ましい。従って、適当な密閉が供される ように、容器本体と蓋との間の接触面にガスケットを挟み込み、容器本体と蓋とを外 部からクリップまたはホルダーで締め付けてもよい。 [0027] The container generally has a container body and a lid, and is preferably a container that seals the carbon nanotube, the cyclic organic compound, and the hard sphere provided in the hollow portion of the container by shielding them from the ambient atmosphere. Preferably there is. The container is preferably formed mainly of a hard material force such as stainless steel, but an impact caused by vibration, for example, a hard ball reciprocating in the container hollow part collides with the hollow part wall surface (that is, the container hollow part wall part). Any kind of material cover may be formed as long as it can withstand the impact generated by the process. In general, it is preferable that the container maintain a sealed state while being subjected to vibration. Therefore, in order to provide an appropriate seal, a gasket is sandwiched between the contact surface between the container body and the lid, and the container body and the lid are removed. You may tighten with a clip or a holder from the part.
[0028] 容器中空部は、例えば円筒形状を有し、振動粉砕に付される間、その円筒形中空 部の一方の端部から他方の端部へと硬球が中空部の長手方向に往復運動できる形 状およびサイズを有していることが好ましい。し力しながら、硬球が容器中空部内を実 質的に往復して運動するような形状およびサイズであれば、容器中空部は 、ずれの 形状およびサイズであってもよ 、。例えば容器中空部の長手方向における端部(即 ち、円筒形状の容器中空部ではその頂部および底部)は、平面状に形成されている ことは必ずしも必要でなぐ半球形状に形成されていてもよい。ちなみに、以下の記 載では、容器中空部の形状が、半球形状の頂部および底部を有した円筒形状であ ることを前提として説明を行う。  [0028] The container hollow portion has, for example, a cylindrical shape, and while being subjected to vibration crushing, the hard sphere reciprocates in the longitudinal direction of the hollow portion from one end portion of the cylindrical hollow portion to the other end portion. It preferably has a shape and size that can be formed. As long as the hard sphere moves and reciprocates substantially in the hollow portion of the container, the hollow portion of the container may be in the shape and size of deviation. For example, the end of the container hollow part in the longitudinal direction (that is, the top and bottom of a cylindrical container hollow part) may be formed in a hemispherical shape that is not necessarily required to be formed in a planar shape. . Incidentally, in the following description, description will be made on the assumption that the shape of the container hollow portion is a cylindrical shape having a hemispherical top and bottom.
[0029] 容器中空部で硬球が往復運動し、その結果、好ましくはカーボンナノチューブと環 式有機化合物とが混ざるような振動数および Zまたは往復運動する硬球と中空部壁 面との間でカーボンナノチューブが粉砕されるような振動数で容器を往復運動させる ことが好ましい。振動数が 5s_ 1以下であると、振動時間が非常に長くなつてしまう可 能性がある一方、振動数 120s_ 1以上となると、カーボンナノチューブ同士が化学反 応を起こしてカーボンナノチューブの分散度が低下してしまう可能性がある。従って、 振動数は、 5〜120s_1であり、好ましくは 10〜60s_1、より好ましくは振動数 20〜50 s_1である。尚、容器を回転運動に付すことによって、硬球を容器に対して振動させる 場合には、容器を往復運動させる場合と同様に解して、容器の回転数は、好ましくは 5〜120回 Zsであり、より好ましくは 10〜60回 Zs、より好ましくは振動数 20〜50回 Zsとなり得る。 [0029] The hard sphere reciprocates in the hollow portion of the container, and as a result, preferably the frequency at which the carbon nanotube and the cyclic organic compound are mixed, and Z or the carbon nanotube between the reciprocating hard sphere and the wall of the hollow portion. It is preferable to reciprocate the container at such a frequency that the powder is crushed. If the frequency is 5 s _ 1 or less, the vibration time may be very long.On the other hand, if the frequency is 120 s _ 1 or more, the carbon nanotubes cause a chemical reaction to disperse the carbon nanotubes. The degree may decrease. Therefore, frequency is 5~120S _1, is _1 preferably 10~60S _1, more preferably vibration number 20 to 50 s. In addition, when the hard ball is vibrated with respect to the container by subjecting the container to rotational movement, it is understood that the container is reciprocated, and the rotational speed of the container is preferably 5 to 120 times Zs. Yes, more preferably 10 to 60 times Zs, more preferably 20 to 50 times Zs.
[0030] 振動時間は、好ましくは 1分〜 5時間、より好ましくは 1. 5分〜 3時間、更に好ましく は 2分〜 2時間程度である。振動時間が短すぎるとカーボンナノチューブの分散度が 低下し、また、振動時間が長すぎるとカーボンナノチューブ同士が反応しカーボンナ ノチューブの分散度が低下する力 である。但し、振動時間は、振動数または振幅等 の振動条件に応じて変わり得る可能性があることを留意されたい。上述したような好 適な振動数および振動時間に加えて、好適な振幅も考慮することが好ましい。具体 的には、容器中空部で硬球が往復運動し、その結果、カーボンナノチューブと環式 有機化合物とが混ざるような振幅および zまたは往復運動する硬球と中空部壁面と の間でカーボンナノチューブが粉砕されるような振幅でもって容器に対して硬球を振 動させることが好ましい。容器を一定方向に往復運動させることによって、容器に対し て硬球を振動させる場合、容器を往復運動させる際の振幅 wと容器を往復運動させ [0030] The vibration time is preferably about 1 minute to 5 hours, more preferably about 1.5 minutes to 3 hours, and still more preferably about 2 minutes to 2 hours. If the vibration time is too short, the dispersibility of the carbon nanotubes decreases, and if the vibration time is too long, the carbon nanotubes react with each other to reduce the dispersibility of the carbon nanotubes. However, it should be noted that the vibration time may vary depending on vibration conditions such as frequency or amplitude. In addition to the preferable frequency and vibration time as described above, it is preferable to consider a suitable amplitude. Specifically, the hard sphere reciprocates in the hollow portion of the container, and as a result, the carbon nanotube and the cyclic It is preferable to vibrate the hard sphere with respect to the container with such an amplitude that the organic compound is mixed and an amplitude such that the carbon nanotube is crushed between the hard sphere that reciprocates and the wall surface of the hollow portion. When a hard ball is vibrated with respect to the container by reciprocating the container in a certain direction, the amplitude w when the container is reciprocated and the container are reciprocated.
b  b
る方向の容器中空部長さ Lとの比 (W: L )は、好ましくは 1 : 1〜50 : 1であり、より好 The ratio (W: L) with the length L of the hollow portion of the container is preferably 1: 1 to 50: 1, more preferably
b b b  b b b
ましくは 1 : 1. 2〜20 : 1、更に好ましくは 1 : 1. 3〜15 : 1である。なお、ここでいう「振 幅」とは、往復運動に付される容器が往復運動の中心点を基準にして最大に変位し た場合において、その中心点から最大変位点までの長さをいう。また、容器中空部が 円柱形状である場合では容器中空部の長手方向に容器を往復運動させることが好 ましいので、その場合には「容器を往復運動させる方向の容器中空部長さ L」は、容 The ratio is preferably 1: 1. 2 to 20: 1, more preferably 1: 1. 3 to 15: 1. The term “vibration” as used herein refers to the length from the center point to the maximum displacement point when the container to be reciprocated is displaced to the maximum with respect to the center point of the reciprocation. . In addition, when the container hollow part has a cylindrical shape, it is preferable to reciprocate the container in the longitudinal direction of the container hollow part. In this case, “the container hollow part length L in the direction of reciprocating the container” is Yong
b 器中空部の長手方向長さを実質的に意味している(図 8参照)。  b Means the length in the longitudinal direction of the hollow part (see Fig. 8).
例えば横断面直径 20mm、長手方向長さ 65mmの容器 (その中空部の胴体部分 の横断面直径 12mm、中空部の長手方向長さ 50mm)を用いる場合を例にとると、 振幅が小さすぎると、容器中空部内でカーボンナノチューブと環式有機化合物とを 効率よく混合できない一方、振幅が大きすぎると、硬球が容器中空部の壁面 (例えば 、円筒形状の容器中空部の頂部または底部における壁面)に衝突した後も容器自体 が動き続けることになり、時間的にもエネルギー的にも損失が大きいので、 5〜: LOOm mの振幅、好ましくは 10〜80mmの振幅、より好ましくは 20〜50mmの振幅でもって 中空部長手方向に容器を往復運動させる。  For example, in the case of using a container having a cross-sectional diameter of 20 mm and a longitudinal length of 65 mm (a cross-sectional diameter of 12 mm of the hollow body part and a longitudinal length of the hollow part of 50 mm), if the amplitude is too small, While the carbon nanotube and the cyclic organic compound cannot be efficiently mixed in the container hollow part, if the amplitude is too large, the hard sphere collides with the wall surface of the container hollow part (for example, the wall surface at the top or bottom of the cylindrical container hollow part). After that, the container itself will continue to move, and the loss will be large both in terms of time and energy. Therefore, the amplitude is 5 to: preferably LOOm m, preferably 10 to 80 mm, more preferably 20 to 50 mm. Therefore, the container is reciprocated in the longitudinal direction of the hollow part.
振動粉砕の処理工程にて容器内に供される硬球は好ましくは球形を有するものの 、容器に対して硬球が振動する間、硬球が中空部にて往復運動するのに適した形状 であればいずれの形状であっても力まわない。例えば横断面直径 12mm、長手方向 長さ 50mmの容器中空部サイズの場合、硬球は、直径 2〜: LOmm、好ましくは直径 4 〜6mm、より好ましくは直径 5mmのサイズを有する球体である。また、容器に対して 硬球が振動する間、容器中空部にて硬球が往復運動し、その結果、好ましくは当該 硬球と容器中空部の壁面との間でカーボンナノチューブが粉砕されるような硬さを硬 球および容器中空部の壁面が有することが好ましい。例えば、硬球の硬さおよび容 器中空部の壁面の硬さがモース硬度 4以下であると、硬球の変形および混合効率の 低下 (カーボンナノチューブと環式有機化合物との混合効率の低下)を引き起こす可 能性がある。従って、硬球の硬さは、好ましくはモース強度 4〜9. 5であり、より好まし くはモース強度 5〜9. 5、更に好ましくはモース硬度 6〜9. 5である。 The hard sphere provided in the container in the vibration pulverization process preferably has a spherical shape, but any shape suitable for the hard ball to reciprocate in the hollow portion while the hard sphere vibrates with respect to the container. Even if it is the shape of, it does not work. For example, in the case of a container hollow portion size having a cross-sectional diameter of 12 mm and a longitudinal length of 50 mm, the hard sphere is a sphere having a diameter of 2 to: LO mm, preferably 4 to 6 mm, more preferably 5 mm in diameter. Further, while the hard sphere vibrates with respect to the container, the hard sphere reciprocates in the container hollow portion, and as a result, the hardness such that the carbon nanotube is preferably crushed between the hard ball and the wall surface of the container hollow portion. It is preferable that the hard wall and the wall surface of the container hollow part have. For example, if the hardness of the hard sphere and the hardness of the wall surface of the container hollow portion are Mohs hardness 4 or less, the deformation and mixing efficiency of the hard sphere are reduced. It may cause a decrease (decrease in mixing efficiency of carbon nanotube and cyclic organic compound). Accordingly, the hardness of the hard sphere is preferably a Mohs strength of 4 to 9.5, more preferably a Mohs strength of 5 to 9.5, and even more preferably a Mohs hardness of 6 to 9.5.
[0032] 硬球の材質としては、メノウ、スレンレス、アルミナ、ジルコユア、タングステンカーバ イド、クロム鋼およびテフロン (登録商標)から成る群から選択される少なくとも 1種以 上の材料を挙げることができる。同様に、容器中空部の壁面の材質としては、例えば 、メノウ、スレンレス、アルミナ、ジルコユア、タングステンカーバイド、クロム鋼およびテ フロン (登録商標)から成る群力 選択される少なくとも 1種以上の材料を挙げることが できる。容器に供される硬球の数は、 1〜6個、好ましくは 1〜4個、より好ましくは 2個 であるものの、容器に対して硬球が振動する間、容器中空部にて硬球が往復運動し 、その結果、好ましくはカーボンナノチューブと環式有機化合物とが混ざるのに適し た個数および Zまたは往復運動する硬球と容器中空部の壁面との間でカーボンナノ チューブが粉砕されるのに適した個数であれば、いずれの個数を用いても力まわな い。なお、 2個以上の硬球が容器に供される場合は、往復運動する硬球間でもカー ボンナノチューブが粉砕されることになる。 [0032] Examples of the material of the hard sphere include at least one material selected from the group consisting of agate, slenless, alumina, zirconia, tungsten carbide, chromium steel, and Teflon (registered trademark). Similarly, examples of the material for the wall surface of the hollow portion of the container include at least one material selected from the group force consisting of agate, slenless, alumina, zircoure, tungsten carbide, chromium steel, and Teflon (registered trademark). be able to. The number of hard balls provided to the container is 1 to 6, preferably 1 to 4, more preferably 2. However, the hard balls reciprocate in the hollow part of the container while the hard balls vibrate against the container. As a result, it is preferable that the number of carbon nanotubes and the cyclic organic compound be mixed, and that the carbon nanotubes be crushed between the Z or reciprocating hard sphere and the wall of the container hollow. Any number can be used as long as it is a number. When two or more hard spheres are provided in the container, the carbon nanotubes are crushed even between the reciprocating hard spheres.
[0033] 硬球と容器中空部との関係について具体的に説明すると次のようになる。まず、硬 球が容器中空部で往復運動する必要がある点を考慮した場合、容器中空部の長手 方向長さ Lに対して硬球の直径 Rが小さすぎると、次の点で不都合である。つまり、 [0033] The relationship between the hard sphere and the container hollow portion will be specifically described as follows. First, considering the point that the hard sphere needs to reciprocate in the hollow portion of the container, if the diameter R of the hard sphere is too small with respect to the length L in the longitudinal direction of the hollow portion of the container, the following points are inconvenient. That means
b a  b a
容器が小さい場合 (即ち、容器中空部の長手方向長さ L力 、さい場合)、硬球が小さ  When the container is small (i.e., when the container is hollow, the length in the longitudinal direction, L force), the hard sphere is small
b  b
くなつてしま 、、衝突エネルギーが小さくなるためにうまく混合 (カーボンナノチューブ と環式有機化合物との混合)できない可能性があり、逆に容器が大きい場合 (即ち、 容器中空部の長手方向長さ Lが大きい場合)には必然的に振幅が大きくなり振動機  If the container is large (i.e., the length in the longitudinal direction of the hollow part of the container), it may not be possible to mix well (mixing of carbon nanotubes and cyclic organic compounds) due to the small collision energy. If L is large), the amplitude will inevitably increase and the vibrator
b  b
への負担および消費エネルギーが大きくなる可能性がある点で不都合である。一方 This is inconvenient in that the burden on the device and the energy consumption may increase. on the other hand
、容器中空部の長手方向長さ Lに対して硬球の直径 Rが大きすぎると、ストロークが If the diameter R of the hard sphere is too large relative to the longitudinal length L of the container hollow part, the stroke will
b a  b a
短くなるために硬球が容器中空部の壁面と衝突した際のエネルギーが小さくなり混 合が不充分となる可能性がある。従って、硬球の直径 Rと容器中空部の長手方向長  Since it becomes shorter, the energy when the hard sphere collides with the wall surface of the hollow portion of the container is reduced, and mixing may be insufficient. Therefore, the diameter R of the hard sphere and the longitudinal length of the hollow portion of the container
a  a
さしとの比(R: L )は、好ましくは 1 : 1· 5〜1: 100であり、より好ましくは 1 : 2· 0〜1: b a b  The ratio (R: L) to the cutting is preferably 1: 1 · 5 to 1: 100, more preferably 1: 2 · 0 to 1: b a b
75、更に好ましくは 1 : 2. 5〜1: 50である(図 8参照)。また、硬球の直径 Rと容器中  75, more preferably 1: 2.5 to 1:50 (see FIG. 8). Also, the diameter R of the hard sphere and the inside of the container
a 空部の短手方向長さ S (=円筒形状の容器中空部の胴体部分の横断面直径 S )と a The length S in the short direction of the hollow portion (= the cross-sectional diameter S of the body portion of the hollow portion of the cylindrical container) and
b b の比(R: S )は、好ましくは 1 : 1· 1〜1 : 30であり、より好ましくは 1 : 1· 2〜1 : 20、更 a b  The ratio of b b (R: S) is preferably 1: 1: 1 to 1:30, more preferably 1: 1-2 to 1:20, and a b
に好ましくは 1 : 1. 3〜1: 15である(同様に図 8参照)。尚、ここでいう「直径 R」とは、  Preferably, the ratio is 1: 1.3 to 1:15 (see also FIG. 8). The "diameter R" here means
a 硬球の形状が球形である場合を指している。しかしながら、硬球の形状は特に限定さ れず、球形以外の形状であってもよいので、その場合には、硬球が上記の「直径」に 相当するような相当直径を有していることが好ましい。この「相当直径」とは、非球形 の硬球の体積を変えずにその形状を球形にした場合に想定される直径を意味してい る。  a Indicates the case where the shape of the hard sphere is spherical. However, the shape of the hard sphere is not particularly limited, and may be a shape other than a sphere. In that case, it is preferable that the hard sphere has an equivalent diameter corresponding to the “diameter” described above. This “equivalent diameter” means the diameter assumed when the shape of a non-spherical hard sphere is made spherical without changing the volume.
[0034] また、硬球の総体積と容器中空部の体積との好ましい関係については次のようにな る。例えば硬球の個数が 1〜6個の場合、容器中空部体積 Vに対する硬球の総体積  [0034] Further, the preferable relationship between the total volume of the hard spheres and the volume of the container hollow portion is as follows. For example, if the number of hard spheres is 1 to 6, the total volume of hard spheres with respect to the container hollow volume V
a  a
Vの割合(=V /V X 100 (%) )は、好ましくは 0. 2〜40%、より好ましくは 0. 3〜2 b b a  The ratio of V (= V / V X 100 (%)) is preferably 0.2 to 40%, more preferably 0.3 to 2 b b a
0%、更に好ましくは 0. 5〜10%である。これにより、硬球と容器中空部の壁面との衝 突が増加してカーボンナノチューブがより粉砕されるような効果力もたらされ得る。  It is 0%, more preferably 0.5 to 10%. As a result, the impact between the hard sphere and the wall surface of the hollow portion of the container is increased, and an effect can be brought about such that the carbon nanotubes are more crushed.
[0035] 次に分散液を得る工程 (ii)につ!/、て説明する。分散液を得る工程 (ii)では、振動粉 砕に付された後のカーボンナノチューブ混合物 (より詳細には振動粉砕に付された 後のカーボンナノチューブと環式有機化合物とを含んだ混合物)に対して有機溶媒 をカ卩えることによってカーボンナノチューブを安定的に含む分散液が得られる。従つ て、この分散液は、加えられる有機溶媒の成分、カーボンナノチューブおよび環式有 機化合物の成分を含んで成る。なお、本工程では、有機溶媒を加えた後に必要に応 じて、得られる混合物から沈殿物(当該沈殿物は有機溶媒に分散しなかったカーボ ンナノチューブを実質的に含む)を除去する操作を付加的に行ってもよい。例えば、 カーボンナノチューブ混合物に有機溶媒を添加した後、分散しな力つたカーボンナノ チューブを除去すべく遠心分離操作を行!、、生じる上澄みを分取してカーボンナノ チューブ分散液を得ることができる。このようにして分散液を得る工程は、環式有機化 合物としてポリビニルピロリドン (PVP)を用いる場合に特に好適である。 Next, step (ii) for obtaining a dispersion will be described. In the step (ii) of obtaining a dispersion liquid, the carbon nanotube mixture after being subjected to vibration grinding (more specifically, a mixture containing carbon nanotubes and a cyclic organic compound after being subjected to vibration grinding). By dispersing the organic solvent, a dispersion containing the carbon nanotubes stably can be obtained. Therefore, this dispersion comprises the components of the organic solvent to be added, the carbon nanotubes and the cyclic organic compound. In this step, after adding an organic solvent, an operation for removing precipitates (the precipitates substantially contain carbon nanotubes not dispersed in the organic solvent) from the obtained mixture as necessary. It may be additionally performed. For example, after adding an organic solvent to the carbon nanotube mixture, a centrifugal separation operation is performed to remove the carbon nanotubes that have not been dispersed, and the resulting supernatant can be collected to obtain a carbon nanotube dispersion. . The step of obtaining the dispersion in this manner is particularly suitable when polyvinylpyrrolidone (PVP) is used as the cyclic organic compound.
尚、上記の遠心分離によって得られる上澄みをフィルター濾過に付してもよい。この 場合、フィルター濾過で得られる残渣に対して有機溶媒を加えると、カーボンナノチ ユーブが安定的に分散した分散液を得ることができる。この残渣に対して加えられる 有機溶媒は、振動粉砕に付された後のカーボンナノチューブ混合物に加えられる有 機溶媒と同じでよぐまたは、その有機溶媒と同じ主成分力 成る溶媒であってもよいIn addition, you may attach | subject the supernatant obtained by said centrifugation to filter filtration. In this case, when an organic solvent is added to the residue obtained by filter filtration, a dispersion liquid in which carbon nanotubes are stably dispersed can be obtained. Added to this residue The organic solvent may be the same as the organic solvent added to the carbon nanotube mixture after being subjected to vibration pulverization, or may be a solvent having the same principal component as the organic solvent.
。フィルター濾過でのカーボンナノチューブ回収率が低すぎると(例えば回収率が 2 %よりも少ない場合)、最終的に得られる分散液に含まれるカーボンナノチューブが 少なくなつてしまい所望のカーボンナノチューブ濃度を達成するには非効率 '不経済 である一方、フィルター濾過でのカーボンナノチューブ回収率が高すぎると(例えば 回収率が 95%よりも大きい場合)、バンドルの解離したカーボンナノチューブの他に も、バンドルの解離して 、な 、カーボンナノチューブもより多く含まれてしまう可能性 がある点で好ましくない。従って、フィルター濾過に用いられるメンブレンフィルタ一は 、平均膜孔径が好ましくは 0. 02-5. であって、上澄みに含まれているカーボ ンナノチューブを好ましくは 2〜 95 %、より好まししくは 5〜 95 %回収できるもの(上澄 みから回収できるもの)が好ましい。例えば、そのようなメンブレンフィルタ一としては、 PTFEメンブレンフィルター(アドバンテック製、型式: T020A025A [カタログ番号]、 孔径: 0. 20 m)を挙げることができる。 . If the carbon nanotube recovery rate by filter filtration is too low (for example, if the recovery rate is less than 2%), the final dispersion will have less carbon nanotubes to achieve the desired carbon nanotube concentration. However, if the recovery rate of carbon nanotubes by filtration is too high (for example, if the recovery rate is greater than 95%), in addition to the dissociated carbon nanotubes of the bundle, the dissociation of the bundle However, this is not preferable in that a larger amount of carbon nanotubes may be contained. Therefore, the membrane filter used for filter filtration has an average membrane pore size of preferably 0.02-5. Carbon nanotubes contained in the supernatant are preferably 2 to 95%, more preferably Those that can be recovered 5 to 95% (recoverable from the supernatant) are preferred. An example of such a membrane filter is a PTFE membrane filter (manufactured by Advantech, model: T020A025A [catalog number], pore size: 0.20 m).
[0036] あるいは、分散液を得る工程では、次のような操作も行うことができる。まず、振動粉 砕に付された後のカーボンナノチューブ混合物 (より詳細には振動粉砕に付された 後のカーボンナノチューブと環式有機化合物とを含んだ混合物)に有機溶媒を加え 、得られる混合物を遠心分離に付す。次いで、遠心分離によって生じた沈殿物を分 取し、当該沈殿物へ溶媒を加えることによって、カーボンナノチューブ分散液を得る ことができる。尚、得られた分散液を超音波処理に付した後で更に遠心分離に付し、 それによつて生じる上澄み液を分取すると、カーボンナノチューブがより安定的に存 在する分散液を得ることができる。このようにして分散液を得る工程は、環式有機化 合物として π系化合物を用いる場合に特に好適である。尚、「沈殿物に加える溶媒」 は、振動粉砕に付された後のカーボンナノチューブ混合物に加えられる有機溶媒で あってよく、または、その有機溶媒と同じ主成分力も成る溶媒であってもよい。  [0036] Alternatively, in the step of obtaining the dispersion, the following operation can also be performed. First, an organic solvent is added to a carbon nanotube mixture after being subjected to vibration grinding (more specifically, a mixture containing carbon nanotubes and a cyclic organic compound after being subjected to vibration grinding), and the resulting mixture is Subject to centrifugation. Next, the precipitate produced by centrifugation is collected, and a carbon nanotube dispersion can be obtained by adding a solvent to the precipitate. The obtained dispersion is subjected to ultrasonic treatment and then subjected to centrifugation, and the resulting supernatant is separated to obtain a dispersion in which carbon nanotubes exist more stably. it can. The step of obtaining the dispersion in this manner is particularly suitable when a π-based compound is used as the cyclic organic compound. The “solvent added to the precipitate” may be an organic solvent added to the carbon nanotube mixture after being subjected to vibration pulverization, or may be a solvent having the same main component force as the organic solvent.
[0037] ここで「安定的」とは、時間的にカーボンナノチューブが有機溶媒中で安定して分 散することをいい、少なくとも 1週間、好ましくは少なくとも 2週間、より好ましくは少なく とも 3週間は、カーボンナノチューブの凝集 Ζ沈殿が生じないことをいう。このように、 分散液はカーボンナノチューブを安定的に含んでいるので、カーボンナノチューブ が溶媒中に実質的に溶解して 、ると考えることもできる。 [0037] Here, "stable" means that carbon nanotubes are stably dispersed in an organic solvent over time, and for at least 1 week, preferably at least 2 weeks, more preferably at least 3 weeks. This means that no aggregation or precipitation of carbon nanotubes occurs. in this way, Since the dispersion liquid contains carbon nanotubes stably, it can be considered that the carbon nanotubes are substantially dissolved in the solvent.
[0038] カーボンナノチューブを含む分散液はバンドルが解離したカーボンナノチューブを 少なくとも含んでなるので、バンドルが解離される度合いに比例してカーボンナノチュ 一ブの比表面積は増すものと考えられる。従って、力かる分散液から、比表面積のよ り大きいカーボンナノチューブ膜を有する部材を製造することができ、その部材を例 えばガス吸蔵品または電極等として用いることができる。かかるガス吸蔵品は、例え ば、車、船舶等の水素ガス燃料を保存するのに用いることができる。電極の具体例と しては、例えばリチウム二次電池などの負極等が考えられる。  [0038] Since the dispersion containing the carbon nanotubes contains at least the carbon nanotubes from which the bundles are dissociated, it is considered that the specific surface area of the carbon nanotubes increases in proportion to the degree to which the bundles are dissociated. Therefore, a member having a carbon nanotube film having a larger specific surface area can be produced from a powerful dispersion, and the member can be used as, for example, a gas storage product or an electrode. Such gas storage products can be used for storing hydrogen gas fuel in, for example, cars and ships. As a specific example of the electrode, for example, a negative electrode such as a lithium secondary battery can be considered.
[0039] 上述の本発明の部材は、基材、および本発明の方法で製造されるカーボンナノチ ユーブを含む分散液を当該基材表面に塗布した後で乾燥させることにより形成される カーボンナノチューブ膜を有してなる。基材は、例えばガス吸蔵品または電極等に適 当な基板または支持板等であれば、 、ずれの形状または材料力 なるものであって もよい。本発明の方法で製造されるカーボンナノチューブを含む分散液では、少なく とも部分的にバンドルの解離したカーボンナノチューブがほぼ均一に有機溶媒中で 存在する。その結果、その分散液を基材表面に塗布して乾燥することにより得られる カーボンナノチューブ膜は、カーボンナノチューブをほぼ一様に含んだものとなり得 る。それゆえ、そのようなカーボンナノチューブ膜では、カーボンナノチューブの比表 面積が大きいものとなり、ガス吸蔵量の多いガス吸蔵品または高効率な電極力 Sもたら されること〖こなる。  [0039] The above-described member of the present invention is formed by applying a dispersion liquid containing a substrate and a carbon nanotube produced by the method of the present invention to the surface of the substrate and then drying the carbon nanotube film. It has. As long as the substrate is a substrate or a support plate suitable for, for example, a gas occlusion product or an electrode, the substrate may have a shifted shape or material force. In the dispersion containing carbon nanotubes produced by the method of the present invention, the carbon nanotubes in which the bundles are dissociated at least partially exist in the organic solvent almost uniformly. As a result, the carbon nanotube film obtained by applying the dispersion to the surface of the substrate and drying it can contain carbon nanotubes substantially uniformly. Therefore, in such a carbon nanotube film, the specific surface area of the carbon nanotubes is large, and a gas storage product having a large gas storage amount or a highly efficient electrode force S is brought about.
[0040] なお、本発明の方法で得られる分散液を上述のようにガス吸蔵品または電極などの 部材を形成するのに用いる他、常套のメンブランフィルターで分散液を濾別処理に 付すことによって、その分散液中に含まれるカーボンナノチューブのみを単独に取り 出し、その取り出されたカーボンナノチューブを、電界放出ディスプレイ (FED : Field Emission Display)用ェミッタ一、光電変換素子、複合材料(プラスチック、ゴムも しくは榭脂等を補強するために混ぜられる材料)または化粧品等の用途に用いること ちでさる。  [0040] The dispersion obtained by the method of the present invention is used for forming a member such as a gas occlusion product or an electrode as described above, or by subjecting the dispersion to a filtration treatment with a conventional membrane filter. Then, only the carbon nanotubes contained in the dispersion liquid are taken out alone, and the taken out carbon nanotubes are used as field emission display (FED) field emitters, photoelectric conversion elements, composite materials (including plastic and rubber). In other words, it can be used for applications such as cosmetics and other materials that can be mixed to reinforce the grease.
[0041] さらに、本発明の方法で得られるカーボンナノチューブ分散液を利用して、カーボ ンナノチューブを含有する有機高分子材料を得ることができる。この場合、本発明の カーボンナノチューブ分散液を、ポリアミド、ポリエチレン、ポリビュルアルコール、ポリ ィミン、ポリアクリル榭脂、ポリエポキシ榭脂、ポリウレタンおよび天然ゴム等力も成る 群力も選択される少なくとも 1種以上の有機高分子材料と混合することによって、カー ボンナノチューブの特性 (即ち、高弾性、高強度または高導電性といった特性)を生 力した有機高分子材料を得ることができる。このような有機高分子材料は、ウレタン成 型品、プラスチック成型品、ゴム製品、ゴルフのシャフト、 FRP成型品、化学繊維、紙 などの原料に用いる(又はそれらの原料に含ませて用いる)ことができる。また、本発 明の分散液を含有する高分子材料を使用してコーティング剤を得ることもでき、それ を帯電防止剤として用いることができる。更に、本発明の分散液を、ポリアミド、ポリエ チレン、ポリビニルアルコール、ポリイミン、ポリアクリル榭脂、ポリエポキシ榭脂、ポリウ レタンおよび天然ゴム等力 成る群力 選択される少なくとも 1種以上の有機高分子 材料と混合し、各種方法で成型することによって得られる部材は、種々の用途に用い ることができる。例えば、そのように成型された部材は導電性が向上しているために 電極として用いることができる。 [0041] Further, by using the carbon nanotube dispersion obtained by the method of the present invention, An organic polymer material containing carbon nanotubes can be obtained. In this case, the carbon nanotube dispersion liquid of the present invention is made of at least one kind selected from the group forces including polyamide, polyethylene, polybutyl alcohol, polymine, polyacrylic resin, polyepoxy resin, polyurethane and natural rubber. By mixing with an organic polymer material, an organic polymer material having the characteristics of carbon nanotubes (that is, characteristics such as high elasticity, high strength, or high conductivity) can be obtained. Such organic polymer materials should be used as raw materials for urethane molded products, plastic molded products, rubber products, golf shafts, FRP molded products, chemical fibers, paper, etc. (or used in these materials). Can do. In addition, a coating material can be obtained using a polymer material containing the dispersion of the present invention, which can be used as an antistatic agent. Further, the dispersion of the present invention is made of at least one organic polymer selected from the group power consisting of polyamide, polyethylene, polyvinyl alcohol, polyimine, polyacrylic resin, polyepoxy resin, polyurethane and natural rubber. Members obtained by mixing with materials and molding by various methods can be used for various applications. For example, such a molded member can be used as an electrode because of its improved conductivity.
[0042] 本発明のカーボンナノチューブを含む分散液の製造方法を経時的に説明する。ま ず、カーボンナノチューブ 1 (好ましくは乾燥状態のカーボンナノチューブ)を用意す る。次に、図 7に示すように、環式有機化合物および 2個の硬球 2と共に乾燥したカー ボンナノチューブ 1を容器 3の容器本体中空部に供し、容器本体に蓋をして容器 3を 密閉する。そして、容器中空部で硬球 2が往復運動し、その結果、カーボンナノチュ ーブ 1と環式有機化合物とが混ざるような振動数および振幅ならびに Zまたは往復 運動する硬球 2と中空部壁面との間でカーボンナノチューブ 1が粉砕されるような振 動数および振幅でもって当該容器 3を中空部長手方向に往復運動させる。そして、 適当な時間、容器 3を往復運動させた後、容器 3から取り出されるカーボンナノチュー ブを有機溶媒により希釈することによって、カーボンナノチューブを安定的に含む分 散液が得られる。 [0042] A method for producing a dispersion containing carbon nanotubes of the present invention will be described over time. First, a carbon nanotube 1 (preferably a dry carbon nanotube) is prepared. Next, as shown in FIG. 7, the carbon nanotube 1 dried together with the cyclic organic compound and the two hard spheres 2 is provided in the container body hollow portion of the container 3, and the container body is covered to seal the container 3. . Then, the hard sphere 2 reciprocates in the hollow portion of the container, and as a result, the frequency and amplitude such that the carbon nanotube 1 and the cyclic organic compound are mixed, and the Z or reciprocating hard sphere 2 and the wall surface of the hollow portion. The container 3 is reciprocated in the longitudinal direction of the hollow portion with such a vibration frequency and amplitude that the carbon nanotubes 1 are crushed. Then, after reciprocating the container 3 for an appropriate time, the carbon nanotubes taken out from the container 3 are diluted with an organic solvent to obtain a dispersion liquid stably containing carbon nanotubes.
[0043] 以上、本発明の実施形態について説明してきた力 本発明はこれに限定されず、 種々の改変がなされ得ることは当業者には容易に理解されよう。ちなみに、上述した 本発明は、次のような態様を包含することに留意された ヽ: [0043] The power of the embodiments of the present invention has been described above. The present invention is not limited to this, and it will be easily understood by those skilled in the art that various modifications can be made. By the way, as mentioned above It has been noted that the present invention includes the following aspects:
第 1の態様: カーボンナノチューブを含んで成る分散液を製造する方法であって、 First aspect: A method for producing a dispersion comprising carbon nanotubes, comprising:
(i)カーボンナノチューブと環式有機化合物とを 5〜120s_1の振動数で振動粉砕 に付し、カーボンナノチューブ混合物を得る工程、および (i) subjecting the carbon nanotube and the cyclic organic compound to vibration pulverization at a frequency of 5 to 120 s _1 to obtain a carbon nanotube mixture; and
(ii)カーボンナノチューブ混合物に有機溶媒を加えて、カーボンナノチューブを含 んで成る分散液を得る工程  (ii) A step of adding an organic solvent to the carbon nanotube mixture to obtain a dispersion containing the carbon nanotubes
を含んで成り、 Comprising
工程 (i)で用いる環式有機化合物が工程 (ii)で用いる有機溶媒に対して可溶性を 有する、カーボンナノチューブ分散液の製造方法。  A method for producing a carbon nanotube dispersion, wherein the cyclic organic compound used in step (i) is soluble in the organic solvent used in step (ii).
第 2の態様:上記第 1の態様において、カーボンナノチューブ、環式有機化合物お よび硬球を容器内に供した後、容器に対して硬球を振動させることよって、振動粉砕 を実施することを特徴とする方法。  Second aspect: The first aspect is characterized in that after the carbon nanotube, the cyclic organic compound, and the hard ball are provided in the container, the vibration pulverization is performed by vibrating the hard ball in the container. how to.
第 3の態様:上記第 2に態様において、容器を一定方向に往復運動させることによ つて、容器に対して硬球を振動させており、  Third aspect: In the second aspect, the hard ball is vibrated with respect to the container by reciprocating the container in a certain direction.
容器を往復運動させる際の振幅 Wと容器を往復運動させる方向の容器中空部長  Amplitude W when reciprocating container and length of container hollow in direction to reciprocate container
b  b
さしとの比 W: Lが 1 : 1. 3〜15 : 1であることを特徴とする方法。 The ratio of wrinkles to W: L is from 1: 1.3 to 15: 1.
b b b  b b b
第 4の態様:上記第 2または 3の態様において、硬球の個数力^〜 6個であって、容 器中空部体積に対する硬球の総体積の割合が 0. 5〜10%であることを特徴とする 方法。  Fourth aspect: In the second or third aspect described above, the number force of hard spheres is 6 to 6, and the ratio of the total volume of the hard spheres to the volume of the hollow portion of the container is 0.5 to 10%. And how.
第 5の態様:上記第 1〜4の態様のいずれかにおいて、環式有機化合物が、ポリビ -ルピロリドン、ポリスチレンスルホネートおよびポリチォフェン力もなる群力 選択さ れる合成高分子であることを特徴とする方法。  Fifth aspect: The method according to any one of the first to fourth aspects, wherein the cyclic organic compound is a synthetic polymer selected from a group force including polyvinylpyrrolidone, polystyrene sulfonate, and polythiophene force. .
第 6の態様:上記第 1〜4の態様のいずれかにおいて、環式有機化合物が、 π系化 合物であることを特徴とする方法。  Sixth aspect: The method according to any one of the first to fourth aspects, wherein the cyclic organic compound is a π-based compound.
第 7の態様:上記第 6の態様において、 π系化合物力 ポルフィリン誘導体、ピレン 誘導体、アントラセン誘導体およびポリチォフェン誘導体から成る群から選択されるこ とを特徴とする方法。  Seventh aspect: The method according to the sixth aspect, characterized in that it is selected from the group consisting of π-based compound power porphyrin derivatives, pyrene derivatives, anthracene derivatives and polythiophene derivatives.
第 8の態様:上記第 1〜7の態様のいずれかにおいて、有機溶媒が、アルコール、 エーテル系有機溶媒、アミド系有機溶媒、スルホキシドまたはハロゲン系有機溶媒で あることを特徴とする方法。 Eighth aspect: In any one of the first to seventh aspects, the organic solvent is an alcohol, It is an ether organic solvent, an amide organic solvent, a sulfoxide or a halogen organic solvent.
第 9の態様:上記第 8の態様において、アルコール力 メタノール、エタノール、イソ プロパノールおよび t—ブタノール力も成る群力も選択されることを特徴とする方法。 第 10の態様:上記第 8の態様において、エーテル系有機溶媒力 ジェチルエーテ ルおよびテトラヒドロフランカも成る群力 選択されることを特徴とする方法。  Ninth aspect: The method according to the eighth aspect, wherein a group power including alcohol power methanol, ethanol, isopropanol and t-butanol power is also selected. Tenth aspect: The method according to the eighth aspect, wherein the group power comprising ether-based organic solvent power jetyl ether and tetrahydrofuran is selected.
第 11の態様:上記第 8の態様において、アミド系有機溶媒が、 1—メチル—2—ピロ リドンおよび N, N—ジメチルホルムアミドから成る群カゝら選択されることを特徴とする 方法。  Eleventh aspect: The method according to the eighth aspect, wherein the amide organic solvent is selected from the group consisting of 1-methyl-2-pyrrolidone and N, N-dimethylformamide.
第 12の態様:上記第 8の態様において、スルホキシドがジメチルスルホキシドである ことを特徴とする方法。  Twelfth aspect: The method according to the eighth aspect, wherein the sulfoxide is dimethyl sulfoxide.
第 13の態様:上記第 8の態様において、ハロゲン系有機溶媒力 クロ口ホルム、塩 ィ匕メチレンおよび 1 , 1, 2, 2—テトラクロ口エタンカも成る群力も選択されることを特徴 とする方法。  Thirteenth aspect: The method according to the eighth aspect, wherein a group power comprising a halogen-based organic solvent strength chloroform, salt methylene and 1,1,2,2-tetrachloroethane is also selected. .
第 14の態様:上記第 1〜13の態様のいずれかにおいて、振動数が 20〜50s_1で あることを特徴とする方法。 Fourteenth aspect: In any one of the first to thirteenth aspect, wherein the frequency is 20~50s _1.
第 15の態様:上記第 1〜14の態様のいずれかにおいて、振動粉砕を 2分〜 2時間 行うことを特徴とする方法。  Fifteenth aspect: The method according to any one of the first to fourteenth aspects, wherein the vibration crushing is performed for 2 minutes to 2 hours.
第 16の態様:上記第 1〜15の態様のいずれかにおいて、カーボンナノチューブ混 合物を得る工程 (i)において、カーボンナノチューブのバンドルを少なくとも部分的に 解離させることを特徴とする方法。  Sixteenth aspect: The method according to any one of the first to fifteenth aspects, wherein in the step (i) of obtaining the carbon nanotube mixture, a bundle of carbon nanotubes is at least partially dissociated.
第 17の態様:上記第 1〜16の態様のいずれかにおいて、分散液を得る工程 (ii)に おいて、カーボンナノチューブ混合物に有機溶媒 aを加えた後、得られる混合物を遠 心分離に付すことを特徴とする方法。  Seventeenth aspect: In any one of the first to sixteenth aspects, in step (ii) of obtaining a dispersion, after adding organic solvent a to the carbon nanotube mixture, the resulting mixture is subjected to centrifugal separation. A method characterized by that.
第 18の態様:上記第 17の態様において、前記遠心分離に付すことによって得られ る上澄みをフィルター濾過し、得られる残渣に対して有機溶媒 aと同じ成分力 成る 溶媒を加える工程を更に含んで成り、  Eighteenth aspect: In the seventeenth aspect, the method further includes the step of filtering the supernatant obtained by subjecting to the centrifugation and adding a solvent having the same component power as the organic solvent a to the resulting residue. Consists of
フィルター濾過に用 、るメンブレンフィルターが、上澄みに含まれて 、るカーボンナ ノチューブを 5〜95%回収することを特徴とする方法。 The membrane filter used for filter filtration is contained in the supernatant A method characterized in that 5-95% of the tube is collected.
第 19の態様:上記第 6の態様において、分散液を得る工程 (ii)において、カーボン ナノチューブ混合物に有機溶媒 aを加え、得られる混合物を遠心分離に付した後、そ の混合物中の沈殿物を分取し、沈殿物に対して有機溶媒 aと同じ主成分から成る有 機溶媒を加えることを特徴とする方法。  Nineteenth aspect: In the sixth aspect, in step (ii) of obtaining a dispersion, organic solvent a is added to the carbon nanotube mixture, the resulting mixture is subjected to centrifugation, and then the precipitate in the mixture is precipitated. And adding an organic solvent composed of the same main component as the organic solvent a to the precipitate.
第 20の態様: カーボンナノチューブ膜を表面に有する基材を含む部材であって、 カーボンナノチューブ膜が、上記第 1〜19の態様のいずれかの方法で得られるカー ボンナノチューブ分散液を、基材の表面に塗布することによって形成される膜である 部材。  A twentieth aspect is a member including a base material having a carbon nanotube film on the surface, wherein the carbon nanotube film is obtained by using the carbon nanotube dispersion obtained by the method according to any one of the first to nineteenth aspects as a base material. A member that is a film formed by applying to the surface of a member.
第 21の態様:上記第 20の態様において、ガス吸蔵品として用いられることを特徴と する部品。  Twenty-first aspect: A component according to the twentieth aspect, wherein the part is used as a gas storage product.
第 22の態様:上記第 20の態様において、電極として用いられることを特徴とする部 材。  Twenty-second aspect: The member according to the twentieth aspect, which is used as an electrode.
第 23の態様: 上記第 1〜22の態様のいずれかの方法で得られるカーボンナノチ ユーブ分散液を含有する高分子材料。  Twenty-third aspect: A polymer material containing a carbon nanotube dispersion obtained by the method according to any one of the first to twenty-second aspects.
第 24の態様: カーボンナノチューブを含有する有機高分子材料力 なる部材であ つて、上記第 1〜22の態様のいずれかの方法で得られるカーボンナノチューブ分散 液を、他の有機高分子材料に混合し成型することによって得られる部材。  Twenty-fourth aspect: A member having the strength of an organic polymer material containing carbon nanotubes, wherein the carbon nanotube dispersion obtained by the method according to any one of the first to second aspects is mixed with another organic polymer material. A member obtained by molding.
第 25の態様:カーボンナノチューブ、ポリビニルピロリドンおよび上記第 8の態様に 記載の有機溶媒を含んで成る、カーボンナノチューブ分散液。  Twenty-fifth aspect: A carbon nanotube dispersion liquid comprising carbon nanotubes, polyvinylpyrrolidone, and the organic solvent according to the eighth aspect.
第 26の態様:カーボンナノチューブ、 3—(2—メトキシエトキシ) エトキシメチルチ ォフェンおよび上記第 8の態様に記載の有機溶媒を含んで成る、カーボンナノチュ ーブ分散液。  Twenty-sixth aspect: A carbon nanotube dispersion comprising carbon nanotubes, 3- (2-methoxyethoxy) ethoxymethylthiophene and the organic solvent according to the eighth aspect.
実施例  Example
[0045] 本発明の製造法を用いて、カーボンナノチューブを安定的に含む分散液を製造し た。  [0045] A dispersion containing carbon nanotubes stably was produced using the production method of the present invention.
[0046] 実施例 1  [0046] Example 1
(1) lmgの単層カーボンナノチューブ、分散剤として lOmgのポリビュルピロリドン( PVP:平均分子量 360, 000)および 2個のメノウボール(球直径 5mm)を 20mmの 底面直径、 65mmの長手方向長さを有する円筒形状の密閉容器(当該容器に形成 されている円筒形中空部:胴体部分の横断面直径 12mm、長手方向長さ 50mm)に 仕込んだ。 (1) lmg single-walled carbon nanotubes, lOmg polybulurpyrrolidone as dispersant PVP: average molecular weight 360, 000) and two agate balls (sphere diameter 5 mm), 20 mm bottom diameter, and 65 mm long length in the longitudinal direction (cylindrical hollow part formed in the container) : The cross-sectional diameter of the fuselage was 12mm and the length in the longitudinal direction was 50mm).
(2)振動機(レッチ (Retsch)製、 MM200)において、密閉容器中空部の長手方 向をほぼ水平にした状態で、約 30mmの振幅、約 30s_1の振動数で当該密閉容器 を水平方向に往復運動させた。 (2) In the vibrator (Retsch, MM200), with the longitudinal direction of the hollow part of the closed container being almost horizontal, the closed container is moved horizontally with an amplitude of about 30 mm and a frequency of about 30 s _1. Was reciprocated.
(3)約 20分間密閉容器を往復運動させた後、密閉容器の中空部力も黒色粉末を 取り出した。  (3) After reciprocating the sealed container for about 20 minutes, the black powder was also taken out of the hollow part of the sealed container.
(4)得られた約 l lmgの黒色粉末に約 lmlのエタノールをカ卩え、遠心分離機 (べッ クマン.コールター(Beckman Coulter)社製、マイクロフュージ 22アール(Microf uge 22R)により、回転数 8000rpmで 10分間遠心分離を行った後、上澄み液を分 取してカーボンナノチューブを安定的に含む分散液を得た。  (4) About l ml of ethanol was added to about l lmg of the black powder obtained, and rotated with a centrifuge (Beckman Coulter, Microfuge 22R). After centrifuging at several 8000 rpm for 10 minutes, the supernatant was separated to obtain a dispersion containing carbon nanotubes stably.
(5)得られた分散液は、少なくとも 4週間まではカーボンナノチューブの凝集、沈殿 がみられなかった。  (5) The obtained dispersion had no carbon nanotube aggregation or precipitation until at least 4 weeks.
実飾 12 Decoration 12
(1) lmgの単層カーボンナノチューブ、分散剤として 5mgの PMET(3—(2—メトキ シエトキシ)ーェトキシメチルチオフェン)および 2個のメノウボール(球直径 5mm)を 2 0mmの底面直径、 65mmの長手方向長さを有する円筒形状の密閉容器(当該容器 に形成されている円筒形中空部:胴体部分の横断面直径 12mm、長手方向長さ 50 mm)に t Aん 7こ。  (1) lmg single-walled carbon nanotubes, 5mg PMET (3- (2-methoxyethoxy) ethoxymethylthiophene) and 2 agate balls (sphere diameter 5mm) as dispersant, 20mm bottom diameter, 65mm 7 A in a cylindrical sealed container with a length in the longitudinal direction (cylindrical hollow part formed in the container: 12 mm in cross section diameter of the body part, 50 mm in the longitudinal direction).
(2)振動機(レッチ (Retsch)製、 MM200)において、密閉容器中空部の長手方 向をほぼ水平にした状態で、約 30mmの振幅、約 30s_1の振動数で当該密閉容器 を水平方向に往復運動させた。 (2) In the vibrator (Retsch, MM200), with the longitudinal direction of the hollow part of the closed container being almost horizontal, the closed container is moved horizontally with an amplitude of about 30 mm and a frequency of about 30 s _1. Was reciprocated.
(3)約 20分間密閉容器を往復運動させた後、密閉容器の中空部力も黒色粉末を 取り出した。  (3) After reciprocating the sealed container for about 20 minutes, the black powder was also taken out of the hollow part of the sealed container.
(4)得られた約 l lmgの黒色粉末に約 10mlの 1—メチル—2—ピロリドンをカ卩え、遠 心分離機(ベックマン'コールター(Beckman Coulter)社製、マイクロフュージ 22 アール(Microfuge 22R) )〖こより、回転数 14000rpmで 20分間遠心分離を行った 後、生じた沈殿物を分取した。 (4) About 10 ml of 1-methyl-2-pyrrolidone was added to about 1 mg of black powder obtained, and a centrifugal separator (Beckman Coulter, Microfuge 22). Centrifugation was performed for 20 minutes at a rotational speed of 14000 rpm from Microfuge 22R), and the resulting precipitate was collected.
(5)得られた沈殿物に対して、約 1 mlの 1—メチル—2—ピロリドンをカ卩え、卓上型 超音波洗浄器(ブランソン(Branson Ultrasonic)社製、ブランソニック 5510 (Bran sonic 5510) )超音波処理を 5分間行なった後、遠心分離機(ベックマン'コールタ 一(Beckman Coulter)社製、マイクロフュージ 22アール(Microfuge 22R)によ つて回転数 14000rpmで 60分間遠心分離を行った。そして、生じた上澄み液を分 取してカーボンナノチューブを安定的に含む分散液を得た。  (5) About 1 ml of 1-methyl-2-pyrrolidone was added to the resulting precipitate, and a tabletop ultrasonic cleaner (Branson Ultrasonic, Bransonic 5510 )) Sonication was performed for 5 minutes, followed by centrifugation for 60 minutes at 14000 rpm with a centrifuge (Beckman Coulter, Microfuge 22R). The resulting supernatant was separated to obtain a dispersion containing carbon nanotubes stably.
(6)得られた分散液は、少なくとも 4週間まではカーボンナノチューブの凝集、沈殿 がみられなかった。  (6) The obtained dispersion liquid did not aggregate or precipitate carbon nanotubes for at least 4 weeks.
[0048] 実飾 13  [0048] Decoration 13
分散剤として PVP (ポリビュルピロリドン)を用いた条件下、実施例 1と同様の操作を 種々の溶媒で実施した(尚、 PVPを用いない条件下でも実施を行った)。その結果を 以下の表 1に示す。なお、表中の CNT濃度 (mgZlmL)とは、得られた分散液 lmL 当たりに含まれるカーボンナノチューブの質量 (mg)を意味する。 CNTの濃度は、分 散液を 5倍に希釈した後、 1mmセルを用いたときの可視吸収スペクトルにおける 500 nmの波長の吸光度 (A )から、以下のような式のように分散液中における CNTの  The same operation as in Example 1 was carried out with various solvents under the conditions using PVP (polybulurpyrrolidone) as a dispersant (it was also carried out under the conditions where PVP was not used). The results are shown in Table 1 below. The CNT concentration (mgZlmL) in the table means the mass (mg) of carbon nanotubes contained in 1 mL of the obtained dispersion. The concentration of CNTs can be determined from the absorbance (A) at a wavelength of 500 nm in the visible absorption spectrum when using a 1 mm cell after diluting the dispersion 5 times. CNT
500  500
吸光係数 = 2. 86 X 104cm2/g)を用いることによって得られる: Obtained by using the extinction coefficient = 2. 86 X 10 4 cm 2 / g):
500  500
CNT濃度 (mgZlmL) =A [-] Χ 5 [-]/ ( ε [cmVg] X 0. l [cm] X 10  CNT concentration (mgZlmL) = A [-] Χ 5 [-] / (ε [cmVg] X 0. l [cm] X 10
500 500  500 500
_3 [-])。 _ 3 [-]).
[0049] [表 1] [0049] [Table 1]
分散剤 吸光度 CNT濃度 力一ボンナノチューブ 有機溶媒 ( 1 0mg) (A5。。) i.mg/ 1 mL)Dispersants absorbance CNT concentration force one carbon nanotube organic solvent (1 0mg) (A 5 .. ) i.mg/ 1 mL)
SWNT1 イソプロパノール なし 0 0 SWNT1 Isopropanol None 0 0
SWNT1 エタノール PVP 0.014 0.02 SWNT1 Ethanol PVP 0.014 0.02
SWNT1 イソプロパノール PVP 0.154 0.27SWNT1 Isopropanol PVP 0.154 0.27
SWNT2 メタノール PVP 0.450 0.79SWNT2 Methanol PVP 0.450 0.79
SWNT2 エタノール PVP 0.526 0.92SWNT2 Ethanol PVP 0.526 0.92
SWNT2 イソプロパノール PVP 0.649 注 1.00SWNT2 Isopropanol PVP 0.649 Note 1.00
MWNT1 メタノール PVP 0.620注 1.00MWNT1 Methanol PVP 0.620 Note 1.00
MWNT1 エタノール PVP 0.759 注 1.00MWNT1 Ethanol PVP 0.759 Note 1.00
MWNT1 イソプロパノール PVP 0.755 注 1.00MWNT1 Isopropanol PVP 0.755 Note 1.00
SWNT1 1—メチル一 2 _ピロリドン PVP 0.032 0.06SWNT1 1-Methyl-1-Pyrrolidone PVP 0.032 0.06
SWNT1 N, N—ジメチルホルムアミド' PVP 0.035 0.06 SWNT1 N, N-dimethylformamide 'PVP 0.035 0.06
[0050] 上記表 1中、 SWNT1は Carbon Nanotechnologies, Inc.製単層カーボンナノチュー ブである。  [0050] In Table 1 above, SWNT1 is a single-walled carbon nanotube manufactured by Carbon Nanotechnologies, Inc.
上記表 1中、 SWNT2は CarboLex, In 製単層カーボンナノチューブである。 上 記表 1中、 MWNT1は Nanocyl S.A.製多層カーボンナノチューブである。  In Table 1 above, SWNT2 is a single-walled carbon nanotube manufactured by CarboLex, In. In Table 1 above, MWNT1 is a multiwall carbon nanotube made by Nanocyl S.A.
上記表 1中、 PVPはポリビュルピロリドン(平均分子量 360, 000)である。 上記表 1中、「注」の数値は全て分散または溶解したことを示す。  In Table 1 above, PVP is polybulurpyrrolidone (average molecular weight 360,000). In Table 1 above, the numbers in “Note” indicate that they are all dispersed or dissolved.
[0051] 表 1の結果を参照すると、以下のことが分力つた。 [0051] Referring to the results in Table 1, the following were obtained.
'分散剤として PVPを用いた場合では、 CNT濃度を確認できたのに対して、 PVP を用いな力つた場合では CNT濃度が 0であった。従って、本発明の製造方法では、 PVPが分散剤として重要な役割を果たして 、る。  'When PVP was used as a dispersant, the CNT concentration could be confirmed, whereas when PVP was used, the CNT concentration was zero. Therefore, in the production method of the present invention, PVP plays an important role as a dispersant.
'本発明の製造方法では、単層カーボンナノチューブおよび多層カーボンナノチュ ーブの種類に依存することなぐカーボンナノチューブ分散液を製造することができる  'With the production method of the present invention, it is possible to produce a carbon nanotube dispersion that does not depend on the types of single-walled carbon nanotubes and multi-walled carbon nanotubes.
'有機溶媒として用いたメタノール、エタノーおよびイソプロパノールといったアルコ ールは、本発明でのカーボンナノチューブ分散液の形成に資する。 'Alcohols such as methanol, ethanol and isopropanol used as the organic solvent contribute to the formation of the carbon nanotube dispersion in the present invention.
•有機溶媒として用いた 1—メチル - 2-ピロリドンおよび N, N -ジメチルホルムアミ ドといったアミド系有機溶媒は、本発明でのカーボンナノチューブ分散液の形成に資 する。  • Amide organic solvents such as 1-methyl-2-pyrrolidone and N, N-dimethylformamide used as organic solvents contribute to the formation of the carbon nanotube dispersion in the present invention.
•カーボンナノチューブの分散液を得るには、原料として有機溶媒および PVPを用 、るのみであり、その他の更なる添加剤を特に用いなくてもよ!/、。 • To obtain a carbon nanotube dispersion, use organic solvent and PVP as raw materials. , And you don't have to use any other additional additives! /
•振動粉砕処理自体は、約 20分であることを鑑みると、比較的短時間でカーボンナ ノチューブ分散液を得ることができる。  • Considering that the vibration pulverization process itself takes about 20 minutes, a carbon nanotube dispersion can be obtained in a relatively short time.
[0052] 実施例 4 [0052] Example 4
分散剤として PMET(3—(2—メトキシエトキシ)ーェトキシメチルチオフェン)を用い た条件下、実施例 2と同様の操作を種々の溶媒で実施した。その結果を以下の表 2 に示す。なお、表中の CNT濃度 (mgZlmL)とは、得られた分散液 ImL当たりに含 まれるカーボンナノチューブの質量 (mg)を意味する。 CNTの濃度は、分散液を 10 倍に希釈した後、 1mmセルを用いたときの可視吸収スペクトルにおける 700nmの波 長の吸光度 (A )から、以下のような式のように分散液中における CNTの吸光係数  The same operation as in Example 2 was carried out with various solvents under the conditions using PMET (3- (2-methoxyethoxy) -ethoxymethylthiophene) as a dispersant. The results are shown in Table 2 below. The CNT concentration (mgZlmL) in the table means the mass (mg) of carbon nanotubes contained in the obtained dispersion ImL. The concentration of CNTs can be determined from the absorbance (A) at a wavelength of 700 nm in the visible absorption spectrum using a 1 mm cell after diluting the dispersion 10 times, as shown in the following formula. Extinction coefficient
700  700
( ε =2. 35 X104cm2/g)を用いることによって得られる: CNT濃度 (mg/lmL obtained by using (ε = 2. 35 X10 4 cm 2 / g): CNT concentration (mg / lmL
700  700
)=Α [-]Χ10[-]/( ε [cmVg]XO. 1 [cm] X 10"3[-])o ) = Α [-] Χ10 [-] / (ε [cmVg] XO. 1 [cm] X 10 " 3 [-]) o
700 700  700 700
[0053] [表 2]  [0053] [Table 2]
[0054] 上記表 2中、 SWNT1は Carbon Nanotechnologies, Inc.製単層カーボンナノチュー ブである。  [0054] In Table 2 above, SWNT1 is a single-walled carbon nanotube manufactured by Carbon Nanotechnologies, Inc.
上記表 2中、 PMETは、分散剤として用いた(3—(2—メトキシエトキシ) エトキシメ チルチオフェン)を示しており、いずれも 5mg用いた。  In Table 2 above, PMET represents (3- (2-methoxyethoxy) ethoxymethylthiophene) used as a dispersant, and 5 mg was used for all.
[0055] 表 2の結果を参照すると、以下のことが分力つた。 [0055] Referring to the results in Table 2, the following were obtained.
'分散剤として用いた PMETは、本発明でのカーボンナノチューブ分散液の形成 に資する。  'PMET used as a dispersant contributes to the formation of the carbon nanotube dispersion in the present invention.
'有機溶媒として用いたクロ口ホルムといったハロゲン系有機溶媒は、本発明での力 一ボンナノチューブ分散液の形成に資する。  'A halogen-based organic solvent such as black mouth form used as the organic solvent contributes to the formation of a strong bon nanotube dispersion in the present invention.
•有機溶媒として用いたジメチルスルフォキシドと ヽつたスルホキシドは、本発明で のカーボンナノチューブ分散液の形成に資する。 • Dimethyl sulfoxide and other sulfoxide used as organic solvents are used in the present invention. This contributes to the formation of a carbon nanotube dispersion.
'表 1の結果をも併せて参照すると、有機溶媒として用いた 1ーメチルー 2—ピロリドン および N, N—ジメチルホルムアミドといったアミド系有機溶媒は、分散剤が PVPであ る力 PMETである力否かに依らず、本発明でのカーボンナノチューブ分散液の形成 に資する。  'Referring also to the results in Table 1, amide-based organic solvents such as 1-methyl-2-pyrrolidone and N, N-dimethylformamide used as organic solvents have the ability to use PVP as a dispersant. Regardless of this, it contributes to the formation of the carbon nanotube dispersion in the present invention.
•表 1の結果と同様、カーボンナノチューブの分散液を得るには、原料として有機溶 媒および PMETを用いるのみであり、その他の更なる添加剤を特に用いなくてもよい  • Similar to the results in Table 1, to obtain a dispersion of carbon nanotubes, only organic solvent and PMET are used as raw materials, and no other additional additives are required.
•表 1の結果と同様、振動粉砕処理自体は、約 20分であることを鑑みると、比較的短 時間でカーボンナノチューブ分散液を得ることができる。 • Similar to the results in Table 1, considering that the vibration grinding process itself takes about 20 minutes, a carbon nanotube dispersion can be obtained in a relatively short time.
実飾 15 Decoration 15
(1) lmgの単層カーボンナノチューブ、分散剤として lOmgのポリビュルピロリドン( PVP:平均分子量 360, 000)および 2個のメノウボール(球直径 5mm)を 20mmの 底面直径、 65mmの長手方向長さを有する円筒形状の密閉容器(当該容器に形成 されている円筒形中空部:胴体部分の横断面直径 12mm、長手方向長さ 50mm)に 仕込んだ。  (1) lmg single-walled carbon nanotubes, lOmg polybulurpyrrolidone (PVP: average molecular weight 360, 000) as dispersant and two agate balls (sphere diameter 5mm) 20mm bottom diameter, 65mm longitudinal length (The cylindrical hollow part formed in the said container: The cross-sectional diameter of the trunk | drum is 12 mm and the length of a longitudinal direction is 50 mm).
(2)振動機(レッチ (Retsch)製、 MM200)において、密閉容器中空部の長手方 向をほぼ水平にした状態で、約 30mmの振幅、約 30s_1の振動数で当該密閉容器 を水平方向に往復運動させた。 (2) In the vibrator (Retsch, MM200), with the longitudinal direction of the hollow part of the closed container being almost horizontal, the closed container is moved horizontally with an amplitude of about 30 mm and a frequency of about 30 s _1. Was reciprocated.
(3)約 20分間密閉容器を往復運動させた後、密閉容器の中空部力も黒色粉末を 取り出した。  (3) After reciprocating the sealed container for about 20 minutes, the black powder was also taken out of the hollow part of the sealed container.
(4)得られた約 l lmgの黒色粉末に約 lmlのエタノールをカ卩え、遠心分離機 (べッ クマン.コールター(Beckman Coulter)社製、マイクロフュージ 22アール(Microf uge 22R)により、回転数 8000rpmで 10分間遠心分離を行った後、上澄み液を分 取した。  (4) About l ml of ethanol was added to about l lmg of the black powder obtained, and rotated with a centrifuge (Beckman Coulter, Microfuge 22R). After centrifuging at 8,000 rpm for 10 minutes, the supernatant was collected.
(5)上澄み液を、メンブレンフィルター(アドバンテック社製、型式: T020A025A[ カタログ番号]、平均膜孔径 0. 20 m)でもって濾過した。力かる濾過によって、上 澄み液に含まれていたカーボンナノチューブが 10%回収された。 (6)濾過で得られた残渣に対して、エタノールを加えることによって、カーボンナノ チューブを安定的に含む分散液を得た。 (5) The supernatant was filtered with a membrane filter (manufactured by Advantech, model: T020A025A [catalog number], average membrane pore size 0.20 m). By vigorous filtration, 10% of the carbon nanotubes contained in the supernatant were recovered. (6) A dispersion containing the carbon nanotubes stably was obtained by adding ethanol to the residue obtained by filtration.
(7)得られた分散液は、少なくとも 4週間まではカーボンナノチューブの凝集、沈殿 がみられなかった。  (7) The obtained dispersion did not show aggregation or precipitation of carbon nanotubes until at least 4 weeks.
図 1には、各種溶媒条件下で行った本発明の製造方法で得られた PVP (ポリビ- ルピロリドン)—単層カーボンナノチューブ(SWNT)の分散液の外観を示している。 分散液が黒色を示しており、カーボンナノチューブが用いた有機溶媒に分散してい ることが確認される。  FIG. 1 shows the appearance of a dispersion of PVP (polyvinylpyrrolidone) -single-walled carbon nanotubes (SWNT) obtained by the production method of the present invention performed under various solvent conditions. The dispersion shows black, confirming that the carbon nanotubes are dispersed in the organic solvent used.
図 2には、各種溶媒条件下で行った本発明の製造方法で得られた PVP (ポリビ- ルピロリドン) 単層カーボンナノチューブ(SWNT)および多層ナノチューブ(MEN T)の分散液の可視—紫外吸収スペクトルを示している。カーボンナノチューブによる 吸収が今回の測定領域 250〜800nmすべての範囲で観測されており、単層カーボ ンナノチューブが分散して 、ることを確認した。  Figure 2 shows the visible-ultraviolet absorption of a dispersion of PVP (polyvinylpyrrolidone) single-walled carbon nanotubes (SWNT) and multi-walled nanotubes (MENT) obtained by the production method of the present invention under various solvent conditions. The spectrum is shown. Absorption by carbon nanotubes was observed in the entire measurement region of 250 to 800 nm, and it was confirmed that single-walled carbon nanotubes were dispersed.
図 3には、本発明の製造方法で得られた PVP (ポリビニルピロリドン)—単層カーボ ンナノチューブ(SWNT)の分散液(有機溶媒:イソプロパノール)の Raman吸収スぺ タトルを示している。 150〜300cm_1付近のラジアルブリージングモード(RBM)と、 炭素原子の六員環ネットワーク内の格子振動に起因する 1550cm_1付近の Gバンド が観測されており、単層カーボンナノチューブが分散していることを確認した。 150〜 300cm_1付近のラジアルブリージングモードは半導体単層カーボンナノチューブに 対応し、 230〜300cm_1付近のラジアルブリージングモードは金属単層カーボンナ ノチューブに対応していることから、半導体性単層カーボンナノチューブおよび金属 性単層カーボンナノチューブの双方が分散しているものと考えられる。 FIG. 3 shows a Raman absorption spectrum of a dispersion (organic solvent: isopropanol) of PVP (polyvinylpyrrolidone) -single-walled carbon nanotube (SWNT) obtained by the production method of the present invention. And 150~300Cm _1 near radial breathing mode (RBM), G band near 1550 cm _1 due to lattice vibration within a six-membered ring network of carbon atoms has been observed, that the single-walled carbon nanotubes are dispersed It was confirmed. 150 to 300 cm _1 near radial breathing mode corresponds to the semiconductor single-walled carbon nanotubes, since the radial breathing mode in the vicinity 230~300Cm _1 corresponds to the metal monolayer carbon nano tube, and semiconducting SWNTs It is thought that both metallic single-walled carbon nanotubes are dispersed.
図 4には、各種溶媒条件下で行った本発明の製造方法で得られた PMET(3— (2 ーメトキシエトキシ)ーェトキシメチルチオフェン) 単層カーボンナノチューブ(SWN T)の分散液の外観を示している。図 1と同様に、分散液が黒色を示しており、カーボ ンナノチューブが用いた有機溶媒に分散して 、ることを確認した。  Figure 4 shows the appearance of a dispersion of PMET (3- (2-methoxyethoxy) -ethyoxymethylthiophene) single-walled carbon nanotubes (SWNT) obtained by the production method of the present invention performed under various solvent conditions. Is shown. As in FIG. 1, the dispersion liquid showed a black color, and it was confirmed that the carbon nanotubes were dispersed in the organic solvent used.
図 5には、各種溶媒条件下で行った本発明の製造方法で得られた PMET(3— (2 ーメトキシエトキシ)ーェトキシメチルチオフェン) 単層カーボンナノチューブ(SWN T)の分散液の可視—紫外吸収スペクトルを示している。カーボンナノチューブによる 吸収が今回の測定領域 300〜800nmすべての範囲で観測され、単層カーボンナノ チューブが分散して!/、ることを確認した。 Figure 5 shows PMET (3- (2-methoxyethoxy) -ethoxymethylthiophene) single-walled carbon nanotubes (SWN) obtained by the production method of the present invention performed under various solvent conditions. The visible-ultraviolet absorption spectrum of the dispersion of T) is shown. Absorption by carbon nanotubes was observed in the entire measurement region of 300 to 800 nm, and it was confirmed that single-walled carbon nanotubes were dispersed! /.
図 6には、各種溶媒条件下で行った本発明の製造方法で得られた PMET(3— (2 ーメトキシエトキシ)ーェトキシメチルチオフェン) 単層カーボンナノチューブ(SWN T)の分散液の近赤外吸収スペクトルを示している。カーボンナノチューブによる吸収 が今回の測定領域 800〜1600nmの近赤外領域のすべての範囲で観測され、単層 カーボンナノチューブが分散して 、ることを確認した。  Figure 6 shows the proximity of a dispersion of PMET (3- (2-methoxyethoxy) -ethyoxymethylthiophene) single-walled carbon nanotubes (SWNT) obtained by the production method of the present invention performed under various solvent conditions. Infrared absorption spectrum is shown. Absorption by carbon nanotubes was observed in the entire near-infrared region of 800-1600 nm in this measurement region, and it was confirmed that single-walled carbon nanotubes were dispersed.
[0058] [分散液中の単層カーボンナノチューブの TEM写真] [0058] [TEM photograph of single-walled carbon nanotubes in dispersion]
図 9 (a)および (b)には、本発明の製造方法で得られたカーボンナノチューブ分散 液に含まれる単層カーボンナノチューブの TEM写真を示す。図 9 (a)および (b)は、 それぞれ異なる有機溶媒を用いた場合の TEM写真であり、図 9 (a)では、 CHC1 、  FIGS. 9 (a) and 9 (b) show TEM photographs of single-walled carbon nanotubes contained in the carbon nanotube dispersion obtained by the production method of the present invention. Figures 9 (a) and (b) are TEM photographs when different organic solvents are used. In Figure 9 (a), CHC1,
3 図 9 (b)では、 NMP (1—メチル 2 ピロリドン)を有機溶媒として用いている。かか る TEM写真からは、本発明の製造方法で得られる分散液には、バンドルの解離した 単層カーボンナノチューブが含まれることが理解できる。また、この TEM写真から、 本発明の製造方法で行う振動粉砕処理の効果は、カーボンナノチューブのバンドル を完全とは言えないまでも解離させる効果があるに留まっており(振動処理によって、 カーボンナノチューブが元の形態'形状力も細くなつていることから、そのバンドルが 少なくとも解離して 、ることが分かる)、カーボンナノチューブ自体の構造を破壊する 効果まではな 、ことが理解できるであろう。  3 In Fig. 9 (b), NMP (1-methyl-2-pyrrolidone) is used as the organic solvent. From this TEM photograph, it can be understood that the dispersion obtained by the production method of the present invention contains single-walled carbon nanotubes from which bundles are dissociated. In addition, from this TEM photograph, the effect of the vibration pulverization treatment performed by the production method of the present invention is only effective to dissociate the carbon nanotube bundles, if not completely (the carbon nanotubes are removed by the vibration treatment). It can be understood that the original form's shape force is also thin, so that the bundle is at least dissociated) and does not destroy the structure of the carbon nanotube itself.
[0059] [本発明の製造方法と従来技術の超音波法との比較実験] [0059] [Comparison Experiment of Manufacturing Method of the Present Invention and Conventional Ultrasonic Method]
本発明の製造方法で行う振動粉砕処理の効果を従来技術との比較で確認するた めに、本発明の製造方法と超音波法との 2つの製造方法を実施した。  In order to confirm the effect of the vibration pulverization treatment performed by the production method of the present invention by comparison with the prior art, two production methods of the present invention and the ultrasonic method were carried out.
(1)本発明の製造方法によるカーボンナノチューブ分散液の製造  (1) Production of carbon nanotube dispersion by the production method of the present invention
有機溶媒として NMP (1—メチル— 2—ピロリドン)、 DMF (Ν,Ν ジメチルホルム アミド)、 CHC1 (クロ口ホルム)、 DMSO (ジメチルスルホキシド)をそれぞれ用いて本  NMP (1-methyl-2-pyrrolidone), DMF (Ν, Ν dimethylformamide), CHC1 (black mouth form), DMSO (dimethylsulfoxide) are used as organic solvents.
3  Three
発明の製造方法でカーボンナノチューブ分散液 (試料 Α)を製造した。具体的には、 U lmgの単層カーホンナノチューフ (Carbon Nanotechnologies Incorporat ed製)、 5mgの分散剤(具体的にはポリチォフェン)および 2個のメノウボール (球直 径 5mm)を 20mmの底面直径、 65mmの長手方向長さを有する円筒形状の密閉容 器(当該容器に形成されている円筒形中空部:胴体部分の横断面直径 12mm、長手 方向長さ 50mm)に仕込んだ。 A carbon nanotube dispersion (sample Α) was produced by the production method of the invention. Specifically, U lmg single layer carphone nanotub (Carbon Nanotechnologies Incorporat ed), 5 mg of a dispersant (specifically polythiophene) and two agate balls (sphere diameter 5 mm) in a cylindrical sealed container with a bottom diameter of 20 mm and a length in the longitudinal direction of 65 mm (the container The cylindrical hollow part formed in the body: the body part was charged with a cross-sectional diameter of 12 mm and a longitudinal length of 50 mm).
(ii)振動機(レッチェ (Retsch)製、 MM200)において、密閉容器中空部の長手方 向をほぼ水平にした状態で、約 30mmの振幅、約 30s_1の振動数で当該密閉容器 を水平方向に往復運動させた。 (ii) In a vibrator (Retsch, MM200), with the sealed container hollow section in the horizontal direction approximately horizontal, the sealed container is moved horizontally with an amplitude of about 30 mm and a frequency of about 30 s_1. Was reciprocated.
(iii)約 20分間密閉容器を往復運動させた後、密閉容器中空部力も黒色粉末を取 り出した。  (iii) After reciprocating the sealed container for about 20 minutes, the black powder was also taken out from the hollow part force of the sealed container.
(iv)得られた約 6mgの黒色粉末に約 lmLの有機溶媒を加えることによって、単層 カーボンナノチューブを安定的に含む分散液の試料 Aを得た (単層カーボンナノチュ ーブの沈殿物は、遠心分離(18000rpm, 20分、約 25°C (室温))により水溶液から 除去した)。  (iv) By adding about 1 mL of an organic solvent to about 6 mg of the obtained black powder, a dispersion A containing a single-walled carbon nanotube stably was obtained (precipitate of single-walled carbon nanotube). Was removed from the aqueous solution by centrifugation (18000 rpm, 20 minutes, approximately 25 ° C (room temperature)).
(2)超音波法の実施  (2) Implementation of ultrasonic method
従来技術の超音波法でカーボンナノチューブ分散液の製造を試みた。有機溶媒は 、上述の本発明の製造方法と同じく NMP (1—メチル— 2—ピロリドン)、 DMF (N,N —ジメチルホルムアミド)、 CHC1 (クロ口ホルム)、 DMSO (ジメチルスルホキシド)を  An attempt was made to produce a carbon nanotube dispersion by the conventional ultrasonic method. The organic solvent is NMP (1-methyl-2-pyrrolidone), DMF (N, N-dimethylformamide), CHC1 (black mouth form), DMSO (dimethylsulfoxide), as in the production method of the present invention described above.
3  Three
それぞれ用いて試料 Bを調製した。操作方法'実験条件は次の通りである。 Sample B was prepared using each. Method of operation 'Experimental conditions are as follows.
(i)まず、 10mLガラスバイアルに対して、 1. Omgの単層カーボンナノチューブ(Ca rbon Nanotechnologies Incorporated製)および 5mgの分散剤 (具体的にはポ リチォフェン)を仕込んだ後、約 lmLの有機溶媒を仕込むことによって混合物を得た  (i) First, 1 mg of a single-walled carbon nanotube (manufactured by Carbon Nanotechnologies Incorporated) and 5 mg of a dispersant (specifically, polythiophene) were charged into a 10 mL glass vial, and then about 1 mL of an organic solvent. Got the mixture by charging
(ii)超音波バス(40W、 42KHz、 5510 Branson Ultrasonic Corp. )を用い て、 (i)で得られた混合物を 90分超音波処理に付した。 (ii) Using an ultrasonic bath (40 W, 42 KHz, 5510 Branson Ultrasonic Corp.), the mixture obtained in (i) was subjected to sonication for 90 minutes.
(iii)その後、(ii)で得られた混合物をマイクロ遠心管(Eppendorf AG)に仕込ん で遠心処理に付し、沈殿物を除去することよって試料 Bを得た。  (iii) Thereafter, the mixture obtained in (ii) was charged into a microcentrifuge tube (Eppendorf AG), subjected to centrifugation, and the precipitate was removed to obtain Sample B.
(3)結果  (3) Results
本発明の製造方法で得られた試料 Aおよび超音波法で得られた試料 Bについて、 カーボンナノチューブ濃度を可視吸収スペクトルにおける 500nmの波長の吸光度( A )から算出した (実施例 3参照)。結果を表 3に示す。 About sample A obtained by the production method of the present invention and sample B obtained by the ultrasonic method, The carbon nanotube concentration was calculated from the absorbance (A) at a wavelength of 500 nm in the visible absorption spectrum (see Example 3). The results are shown in Table 3.
500  500
[0060] [表 3]  [0060] [Table 3]
[0061] 表 3を参照すると、本発明の製造方法で得られた試料 Aにはカーボンナノチューブ が含まれているのに対して、試料 Bには CHC1の条件を除いてカーボンナノチュー  [0061] Referring to Table 3, sample A obtained by the production method of the present invention contains carbon nanotubes, whereas sample B contains carbon nanotubes except for the condition of CHC1.
3  Three
ブは含まれていないことが分かる。このことから、分散剤および zまたは有機溶媒だ けではカーボンナノチューブが分散することはなぐあくまで振動粉砕処理があって 初めてカーボンナノチューブが分散することが把握でき、本発明の製造方法の振動 粉碎処理の効果が優れていることが理解できた。尚、振動粉砕処理では、超音波処 理と違ってカーボンナノチューブに対して直接的に剪断力が大きく働くことになる点 で、カーボンナノチューブのバンドルの解離に対して特に有利な効果があるものと考 えられる。  It can be seen that this is not included. From this, it is possible to grasp that the carbon nanotubes are dispersed only by the vibration pulverization process without the dispersion of the carbon nanotubes only with the dispersant and z or the organic solvent. It was understood that the effect was excellent. It should be noted that the vibration pulverization process has a particularly advantageous effect on the dissociation of the bundle of carbon nanotubes because, unlike the ultrasonic process, the shear force acts directly on the carbon nanotubes. Conceivable.
産業上の利用可能性  Industrial applicability
[0062] 本発明の製造方法で得られたカーボンナノチューブ分散液は、ガス吸蔵品(例え ば車または船舶等の水素ガス燃料を保存する水素吸蔵媒体)または電極 (リチウム 二次電池などに用いる負極)の製造に用いることができることができるだけでなぐ電 界放出ディスプレイ用ェミッタ一、光電変換素子または化粧品の製造にも用いること ができる。  [0062] The carbon nanotube dispersion obtained by the production method of the present invention is a gas storage product (for example, a hydrogen storage medium for storing hydrogen gas fuel such as a car or a ship) or an electrode (a negative electrode used for a lithium secondary battery or the like). It can also be used for the manufacture of field emission display emitters, photoelectric conversion elements or cosmetics.

Claims

請求の範囲 The scope of the claims
[1] カーボンナノチューブを含んで成る分散液を製造する方法であって、  [1] A method for producing a dispersion liquid comprising carbon nanotubes,
(i)カーボンナノチューブと環式有機化合物とを 5〜120s_1の振動数で振動粉砕 に付し、カーボンナノチューブ混合物を得る工程、および (i) subjecting the carbon nanotube and the cyclic organic compound to vibration pulverization at a frequency of 5 to 120 s _1 to obtain a carbon nanotube mixture; and
(ii)カーボンナノチューブ混合物に有機溶媒を加えて、カーボンナノチューブを含 んで成る分散液を得る工程  (ii) A step of adding an organic solvent to the carbon nanotube mixture to obtain a dispersion containing the carbon nanotubes
を含んで成り、  Comprising
工程 (i)で用いる環式有機化合物が工程 (ii)で用いる有機溶媒に対して可溶性を 有する、カーボンナノチューブ分散液の製造方法。  A method for producing a carbon nanotube dispersion, wherein the cyclic organic compound used in step (i) is soluble in the organic solvent used in step (ii).
[2] カーボンナノチューブ、環式有機化合物および硬球を容器内に供した後、容器に 対して硬球を振動させることよって、振動粉砕を実施することを特徴とする、請求項 1 に記載の方法。 [2] The method according to claim 1, wherein after the carbon nanotube, the cyclic organic compound, and the hard sphere are provided in the container, the vibration pulverization is performed by vibrating the hard sphere with respect to the container.
[3] 容器を一定方向に往復運動させることによって、容器に対して硬球を振動させてお り、  [3] By reciprocating the container in a certain direction, hard balls are vibrated against the container.
容器を往復運動させる際の振幅 Wと容器を往復運動させる方向の容器中空部長  Amplitude W when reciprocating container and length of container hollow in direction to reciprocate container
b  b
さしとの比 W: Lが 1 : 1. 3〜15 : 1であることを特徴とする、請求項 2に記載の方法。  The method according to claim 2, characterized in that the ratio W: L is from 1: 1.3 to 15: 1.
b b b  b b b
[4] 硬球の個数が 1〜6個であって、容器中空部体積に対する硬球の総体積の割合が [4] The number of hard spheres is 1-6, and the ratio of the total volume of the hard spheres to the volume of the container hollow portion
0. 5〜10%であることを特徴とする、請求項 2に記載の方法。 Method according to claim 2, characterized in that it is between 5 and 10%.
[5] 環式有機化合物が、ポリビュルピロリドン、ポリスチレンスルホネートおよびポリチォ フェン力 なる群力 選択される、請求項 1に記載の方法。 [5] The method according to claim 1, wherein the cyclic organic compound is selected from the group force of polybulurpyrrolidone, polystyrene sulfonate, and polythiophene force.
[6] 環式有機化合物が、 π系化合物であることを特徴とする、請求項 1に記載のカーボ ンナノチューブ分散液の製造方法。 [6] The method for producing a carbon nanotube dispersion according to [1], wherein the cyclic organic compound is a π-based compound.
[7] π系化合物が、ポルフィリン誘導体、ピレン誘導体、アントラセン誘導体およびポリ チォフェン誘導体から成る群から選択されることを特徴とする、請求項 6に記載の方 法。 [7] The method according to claim 6, wherein the π-based compound is selected from the group consisting of a porphyrin derivative, a pyrene derivative, an anthracene derivative, and a polythiophene derivative.
[8] 有機溶媒が、アルコール、エーテル系有機溶媒、アミド系有機溶媒、スルホキシドま たはハロゲン系有機溶媒であることを特徴とする、請求項 1に記載の方法。  [8] The method according to claim 1, wherein the organic solvent is an alcohol, an ether organic solvent, an amide organic solvent, a sulfoxide or a halogen organic solvent.
[9] アルコールが、メタノール、エタノール、イソプロパノールおよび tーブタノールから 成る群から選択されることを特徴とする、請求項 8に記載の方法。 [9] Alcohol is from methanol, ethanol, isopropanol and t-butanol 9. The method of claim 8, wherein the method is selected from the group consisting of:
[10] エーテル系有機溶媒力 ジェチルエーテルおよびテトラヒドロフランカ 成る群から 選択されることを特徴とする、請求項 8に記載の方法。 [10] The method according to claim 8, wherein the organic solvent power is selected from the group consisting of jetyl ether and tetrahydrofuran.
[11] アミド系有機溶媒力 1—メチル—2—ピロリドンおよび N, N—ジメチルホルムアミド から成る群から選択されることを特徴とする、請求項 8に記載の方法。 [11] The method according to claim 8, wherein the amide-based organic solvent power is selected from the group consisting of 1-methyl-2-pyrrolidone and N, N-dimethylformamide.
[12] スルホキシドがジメチルスルホキシドであることを特徴とする、請求項 8に記載の方 法。 [12] The method according to claim 8, wherein the sulfoxide is dimethyl sulfoxide.
[13] ハロゲン系有機溶媒力 クロ口ホルム、塩化メチレンおよび 1, 1, 2, 2—テトラクロ口 ェタン力 成る群力 選択されることを特徴とする、請求項 8に記載の方法。  [13] The method according to claim 8, wherein the group power is selected from the group consisting of halogen-based organic solvent power, black mouth form, methylene chloride, and 1,1,2,2-tetrachloro mouth power.
[14] 振動数が 20〜50s_1であることを特徴とする、請求項 1に記載の方法。 [14] frequency is characterized in that it is a 20~50s _1, The method of claim 1.
[15] 振動粉砕を 2分〜 2時間行うことを特徴とする、請求項 1に記載の方法。 15. The method according to claim 1, wherein the vibration grinding is performed for 2 minutes to 2 hours.
[16] カーボンナノチューブ混合物を得る工程 (i)において、カーボンナノチューブのバン ドルを少なくとも部分的に解離させることを特徴とする、請求項 1に記載の方法。 16. The method according to claim 1, wherein in the step (i) of obtaining the carbon nanotube mixture, the carbon nanotube bundle is at least partially dissociated.
[17] 分散液を得る工程 (ii)において、カーボンナノチューブ混合物に有機溶媒を加え た後、得られる混合物を遠心分離に付すことを特徴とする、請求項 1に記載の方法。 17. The method according to claim 1, wherein in the step (ii) of obtaining a dispersion, an organic solvent is added to the carbon nanotube mixture, and then the resulting mixture is subjected to centrifugation.
[18] 前記遠心分離に付すことによって得られる上澄みをフィルター濾過し、得られる残 渣に対して前記有機溶媒と同じ主成分から成る溶媒を加える工程を更に含んで成り フィルター濾過に用 、るメンブレンフィルターが、上澄みに含まれて 、るカーボンナ ノチューブを 5〜95%回収することを特徴とする、請求項 17に記載の方法。 [18] A membrane for filtering, further comprising a step of filtering the supernatant obtained by centrifugation and adding a solvent comprising the same main component as the organic solvent to the resulting residue. The method according to claim 17, wherein the filter collects 5-95% of carbon nanotubes contained in the supernatant.
[19] 分散液を得る工程 (ii)にお 、て、カーボンナノチューブ混合物に有機溶媒を加え、 得られる混合物を遠心分離に付した後、その混合物中の沈殿物を分取し、沈殿物に 対して前記有機溶媒と同じ主成分から成る溶媒を加えることを特徴とする、請求項 6 に記載の方法。 [19] In the step (ii) of obtaining a dispersion liquid, an organic solvent is added to the carbon nanotube mixture, and the resulting mixture is subjected to centrifugation. The method according to claim 6, wherein a solvent comprising the same main component as the organic solvent is added.
[20] カーボンナノチューブ膜を表面に有する基材を含む部材であって、  [20] A member comprising a substrate having a carbon nanotube film on the surface,
カーボンナノチューブ膜力 請求項 1に記載の方法によって得られるカーボンナノチ ユーブ分散液を、基材の表面に塗布することによって形成される膜である部材。  Carbon nanotube film strength A member which is a film formed by applying a carbon nanotube dispersion obtained by the method according to claim 1 to the surface of a substrate.
[21] ガス吸蔵品として用いられる、請求項 20に記載の部材。 21. The member according to claim 20, which is used as a gas storage product.
[22] 電極として用いられる、請求項 20に記載の部材。 [22] The member according to claim 20, which is used as an electrode.
[23] 請求項 1に記載の方法によって得られるカーボンナノチューブ分散液を含有する高 分子材料。  [23] A high molecular weight material containing the carbon nanotube dispersion obtained by the method according to claim 1.
[24] カーボンナノチューブを含有する有機高分子材料からなる部材であって、  [24] A member made of an organic polymer material containing carbon nanotubes,
請求項 1に記載の方法によって得られるカーボンナノチューブ分散液を、他の有機 高分子材料に混合し成型することによって得られる部材。  A member obtained by mixing and molding the carbon nanotube dispersion obtained by the method according to claim 1 into another organic polymer material.
[25] カーボンナノチューブ、ポリチォフェンおよび 1ーメチルー 2—ピロリドンを含んで成 る、カーボンナノチューブ分散液。  [25] A carbon nanotube dispersion liquid comprising carbon nanotubes, polythiophene, and 1-methyl-2-pyrrolidone.
PCT/JP2006/313325 2005-07-05 2006-07-04 Method for producing carbon nanotube dispersion liquid WO2007004652A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524079A JP5109129B2 (en) 2005-07-05 2006-07-04 Method for producing carbon nanotube dispersion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005195681 2005-07-05
JP2005-195681 2005-07-05
JP2005365277 2005-12-19
JP2005-365277 2005-12-19

Publications (1)

Publication Number Publication Date
WO2007004652A1 true WO2007004652A1 (en) 2007-01-11

Family

ID=37604513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313325 WO2007004652A1 (en) 2005-07-05 2006-07-04 Method for producing carbon nanotube dispersion liquid

Country Status (2)

Country Link
JP (1) JP5109129B2 (en)
WO (1) WO2007004652A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076998A (en) * 2005-08-19 2007-03-29 Toray Ind Inc Carbon nanotube dispersion liquid and method for producing the same
JP2008024522A (en) * 2006-07-15 2008-02-07 Toray Ind Inc Carbon nanotube dispersion, its production method, and electroconductive material using it
JP2008169094A (en) * 2007-01-12 2008-07-24 Nara Institute Of Science & Technology Carbon nanotube fluid dispersion and method of manufacturing the same, and application thereof
JP2009023886A (en) * 2007-07-20 2009-02-05 Nara Institute Of Science & Technology Carbon nanotube dispersion liquid, its production process and its use
JP2009170410A (en) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd Electrode, lithium battery, manufacturing method for electrode, and composition for electrode coating
JP2009245887A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Electrode material and its manufacturing method, electrode for electrochemical element, and electrochemical element
JP2010132812A (en) * 2008-12-05 2010-06-17 Nec Corp Carbon nanotube ink composition and method of spraying the same
JP2010192296A (en) * 2009-02-19 2010-09-02 Tokai Rubber Ind Ltd Conductive material
US20100310851A1 (en) * 2009-05-18 2010-12-09 Xiaoyun Lai Conductive Fiber Glass Strands, Methods Of Making The Same, And Composites Comprising The Same
JP2011070908A (en) * 2009-09-25 2011-04-07 Mikuni Color Ltd Conductive material dispersion liquid, electrode paste, and conductive material coating active substance
JP2012020924A (en) * 2010-06-16 2012-02-02 Sekisui Chem Co Ltd Method for manufacturing graphite particle dispersion, and graphite particle dispersion
JP2012040507A (en) * 2010-08-19 2012-03-01 Fujikura Kasei Co Ltd Method for production of filler dispersion
KR101136776B1 (en) 2009-09-21 2012-04-20 (주)월드튜브 Manufacturing method of nanocarbon dispersion solution, nanocarbon dispersion solution, evaluation method of nanocarbon, manufacturing method of nanocarbon material using the same using the same
WO2012096317A1 (en) 2011-01-12 2012-07-19 保土谷化学工業株式会社 Thermosetting-resin-containing liquid having dispersed fine carbon fibers, and molded thermoset resin obtained therefrom
JP2016523439A (en) * 2013-08-01 2016-08-08 エルジー・ケム・リミテッド Conductive material composition, slurry composition for electrode formation of lithium secondary battery using the same, and lithium secondary battery
KR20170056658A (en) * 2014-09-17 2017-05-23 베르뗑 떼끄놀로지 Unit for grinding biological samples
EP2634139A4 (en) * 2010-10-29 2017-06-07 Toray Industries, Inc. Method for manufacturing liquid dispersion of carbon-nanotube aggregates
JP2018534731A (en) * 2015-12-10 2018-11-22 エルジー・ケム・リミテッド Conductive material dispersion and lithium secondary battery produced using the same
JP2022060234A (en) * 2015-12-15 2022-04-14 エージーシー ケミカルズ アメリカズ,インコーポレイテッド Layered tube, and layer for layered tube
WO2023022073A1 (en) * 2021-08-20 2023-02-23 三菱鉛筆株式会社 Carbon nanotube dispersion, conductive paste using same, electrode paste for secondary battery, electrode for secondary battery, and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.
JP2003154260A (en) * 2001-11-21 2003-05-27 National Institute Of Advanced Industrial & Technology Gas storage material
JP2004352605A (en) * 2003-05-01 2004-12-16 Toray Ind Inc Method for refining composition comprising carbon nanotube
JP2005500648A (en) * 2001-06-08 2005-01-06 エイコス・インコーポレーテッド Nanocomposite dielectric
JP2005089738A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP2005154630A (en) * 2003-11-27 2005-06-16 National Institute Of Advanced Industrial & Technology Carbon nanotube-dispersed polar organic solvent
JP2005220245A (en) * 2004-02-06 2005-08-18 Toyo Ink Mfg Co Ltd Carbon nanotube composition and carbon nanotube dispersion containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.
JP2005500648A (en) * 2001-06-08 2005-01-06 エイコス・インコーポレーテッド Nanocomposite dielectric
JP2003154260A (en) * 2001-11-21 2003-05-27 National Institute Of Advanced Industrial & Technology Gas storage material
JP2004352605A (en) * 2003-05-01 2004-12-16 Toray Ind Inc Method for refining composition comprising carbon nanotube
JP2005089738A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP2005154630A (en) * 2003-11-27 2005-06-16 National Institute Of Advanced Industrial & Technology Carbon nanotube-dispersed polar organic solvent
JP2005220245A (en) * 2004-02-06 2005-08-18 Toyo Ink Mfg Co Ltd Carbon nanotube composition and carbon nanotube dispersion containing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAMANO T. ET AL.: "Kosoku Shindo Funsaiho ni yoru Kayokazai o Mochiita Tanso Carbon Nanotube no Kayoka", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 86 SHUNKI NENKAI KOEN YOKOSHU II, 13 March 2006 (2006-03-13), XP003008985 *
HAYASHI K. ET AL.: "Kosoku Shindo Funsai ni yoru Carbon Nanotube no Kayoka", POLYMER PREPRINTS, JAPAN, vol. 53, no. 1, 10 May 2004 (2004-05-10), pages 1604 (IIPA131), XP003008987 *
IKEDA A. ET AL.: "Solubilization and debundling of purified single-walled carbon nanotubes using solubilizing agents in an aqueous solution by high-speed vibration milling technique", CHEM. COMM., vol. 11, 2004, pages 1334 - 1335, XP003008986 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076998A (en) * 2005-08-19 2007-03-29 Toray Ind Inc Carbon nanotube dispersion liquid and method for producing the same
JP2008024522A (en) * 2006-07-15 2008-02-07 Toray Ind Inc Carbon nanotube dispersion, its production method, and electroconductive material using it
JP2008169094A (en) * 2007-01-12 2008-07-24 Nara Institute Of Science & Technology Carbon nanotube fluid dispersion and method of manufacturing the same, and application thereof
JP2009023886A (en) * 2007-07-20 2009-02-05 Nara Institute Of Science & Technology Carbon nanotube dispersion liquid, its production process and its use
JP2009170410A (en) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd Electrode, lithium battery, manufacturing method for electrode, and composition for electrode coating
US9397330B2 (en) 2008-01-15 2016-07-19 Samsung Electronics Co., Ltd. Electrode, lithium battery, method of manufacturing electrode, and composition for coating electrode
JP2009245887A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Electrode material and its manufacturing method, electrode for electrochemical element, and electrochemical element
JP2010132812A (en) * 2008-12-05 2010-06-17 Nec Corp Carbon nanotube ink composition and method of spraying the same
JP2010192296A (en) * 2009-02-19 2010-09-02 Tokai Rubber Ind Ltd Conductive material
US20100310851A1 (en) * 2009-05-18 2010-12-09 Xiaoyun Lai Conductive Fiber Glass Strands, Methods Of Making The Same, And Composites Comprising The Same
KR101136776B1 (en) 2009-09-21 2012-04-20 (주)월드튜브 Manufacturing method of nanocarbon dispersion solution, nanocarbon dispersion solution, evaluation method of nanocarbon, manufacturing method of nanocarbon material using the same using the same
JP2011070908A (en) * 2009-09-25 2011-04-07 Mikuni Color Ltd Conductive material dispersion liquid, electrode paste, and conductive material coating active substance
JP2012020924A (en) * 2010-06-16 2012-02-02 Sekisui Chem Co Ltd Method for manufacturing graphite particle dispersion, and graphite particle dispersion
JP2012040507A (en) * 2010-08-19 2012-03-01 Fujikura Kasei Co Ltd Method for production of filler dispersion
EP2634139A4 (en) * 2010-10-29 2017-06-07 Toray Industries, Inc. Method for manufacturing liquid dispersion of carbon-nanotube aggregates
WO2012096317A1 (en) 2011-01-12 2012-07-19 保土谷化学工業株式会社 Thermosetting-resin-containing liquid having dispersed fine carbon fibers, and molded thermoset resin obtained therefrom
JP2016523439A (en) * 2013-08-01 2016-08-08 エルジー・ケム・リミテッド Conductive material composition, slurry composition for electrode formation of lithium secondary battery using the same, and lithium secondary battery
US10862124B2 (en) 2013-08-01 2020-12-08 Lg Chem, Ltd. Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
KR20170056658A (en) * 2014-09-17 2017-05-23 베르뗑 떼끄놀로지 Unit for grinding biological samples
JP2017535410A (en) * 2014-09-17 2017-11-30 ベルタン・テクノロジーズBertin Technologies Unit for crushing biological samples
US10677692B2 (en) 2014-09-17 2020-06-09 Bertin Technologies Unit for grinding biological samples
KR102452263B1 (en) * 2014-09-17 2022-10-07 베르뗑 떼끄놀로지 Unit for grinding biological samples
JP2018534731A (en) * 2015-12-10 2018-11-22 エルジー・ケム・リミテッド Conductive material dispersion and lithium secondary battery produced using the same
US10727477B2 (en) 2015-12-10 2020-07-28 Lg Chem, Ltd. Conductive material dispersed liquid and lithium secondary battery manufactured using same
JP2022060234A (en) * 2015-12-15 2022-04-14 エージーシー ケミカルズ アメリカズ,インコーポレイテッド Layered tube, and layer for layered tube
WO2023022073A1 (en) * 2021-08-20 2023-02-23 三菱鉛筆株式会社 Carbon nanotube dispersion, conductive paste using same, electrode paste for secondary battery, electrode for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JPWO2007004652A1 (en) 2009-01-29
JP5109129B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5109129B2 (en) Method for producing carbon nanotube dispersion
Thakur et al. Chemical functionalization of carbon nanomaterials
Lai et al. Self-assembly of two-dimensional nanosheets into one-dimensional nanostructures
Aqel et al. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation
Hirsch et al. Functionalization of carbon nanotubes
JP4900376B2 (en) Method for treating carbon nanotubes
Lee et al. Short carbon nanotubes produced by cryogenic crushing
Ma et al. Spiers memorial lecture advances of carbon nanomaterials
Ghazitabar et al. A facile chemical route for synthesis of nitrogen-doped graphene aerogel decorated by Co3O4 nanoparticles
Pillai et al. Purification of multi-walled carbon nanotubes
Zhang et al. Carbon nanotube: Controlled synthesis determines its future
Kouloumpis et al. Controlled deposition of fullerene derivatives within a graphene template by means of a modified Langmuir-Schaefer method
JP3918178B2 (en) Manufacturing method of high purity nanoscale carbon tube containing carbonaceous material
Makama et al. Recent developments in purification of single wall carbon nanotubes
US8562935B2 (en) Amplification of carbon nanotubes via seeded-growth methods
Zamolo et al. Carbon nanotubes: synthesis, structure, functionalization, and characterization
JP6051427B2 (en) Method for preparing highly dispersible nanomaterials
JP2009023886A (en) Carbon nanotube dispersion liquid, its production process and its use
KR101219761B1 (en) Method for purifying carbon nanotubes and method for dispersing carbon nanotubes
JP2005213108A (en) Method for producing aqueous solution containing carbon nano tube
Zhang et al. High-conductivity graphene nanocomposite via facile, covalent linkage of gold nanoparticles to graphene oxide
WO2008004347A1 (en) Method for production of cup-shaped nanocarbon and cup-shaped nanocarbon
JP5050207B2 (en) Method for producing aqueous solution containing carbon nanotubes
JP2004323258A (en) Method of purifying carbon nanotube
Bhilkar et al. Functionalized Carbon Nanomaterials: Fabrication, Properties, and Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524079

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767842

Country of ref document: EP

Kind code of ref document: A1