JP4642658B2 - Method for producing single-walled carbon nanotubes with uniform diameter - Google Patents

Method for producing single-walled carbon nanotubes with uniform diameter Download PDF

Info

Publication number
JP4642658B2
JP4642658B2 JP2005506448A JP2005506448A JP4642658B2 JP 4642658 B2 JP4642658 B2 JP 4642658B2 JP 2005506448 A JP2005506448 A JP 2005506448A JP 2005506448 A JP2005506448 A JP 2005506448A JP 4642658 B2 JP4642658 B2 JP 4642658B2
Authority
JP
Japan
Prior art keywords
walled carbon
fullerene
carbon nanotubes
swnt
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005506448A
Other languages
Japanese (ja)
Other versions
JPWO2004106234A1 (en
Inventor
茂夫 丸山
雄平 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2004106234A1 publication Critical patent/JPWO2004106234A1/en
Application granted granted Critical
Publication of JP4642658B2 publication Critical patent/JP4642658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Description

本発明は、フラーレンを昇華させて単層カーボンナノチューブ(以下SWNTという)を製造する方法に関し、特に用いるフラーレンによってSWNTの直径を制御するSWNTの製造方法に関する。 The present invention relates to a method of subliming the fullerene producing single-walled carbon nanotubes (hereinafter referred to as SWNT), a method of manufacturing a SWNT of controlling the diameter of the thus SWNT to fullerene to be used in particular.

カーボンナノチューブ(以下CNTという)はグラフェンシートが筒状になっている、断面の直径が100nm以下の炭素クラスターである。特にグラフェンシートが一層の単層カーボンナノチューブは電気的あるいは化学的特性が特異であることからナノ構造材料として有用であることが数々報告されている。特に、SWNTはそのカイラリティー(Chirality)によって半導体から金属の間の様々な性質を示すことが理論計算より判明しているので、製造時にカイラリティーの制御をするか、分離精製工程でカイラリティーを制御できれば、産業上の有用性が非常に高いことが期待される。   A carbon nanotube (hereinafter referred to as CNT) is a carbon cluster having a graphene sheet in a cylindrical shape and a cross-sectional diameter of 100 nm or less. In particular, single-walled carbon nanotubes with a single graphene sheet have been reported to be useful as nanostructured materials because of their unique electrical or chemical properties. In particular, it has been found from theoretical calculations that SWNT exhibits various properties between semiconductors and metals due to its chirality. If it can be controlled, it is expected to have very high industrial utility.

これらの試みは、学術上数々報告されているが、産業上実施可能な例は報告されていない。一方、SWNTはグラフェンシートを筒状にした構造を持つため、SWNTの直径を厳密に制御できれば、カイラリティーを直接制御するのでなくてもカイラリティーの制御をすることに近いことになる。一方、SWNTの直径の範囲を狭めることにより、実質的にとりうるカイラリティーの幅が狭まる。
SWNTの製造方法としては、アーク放電法、レーザーアブレーション法、高周波プラズマ法、化学熱分解法(化学気相蒸着(CVD)法、触媒化学蒸着(CCVD)法)が知られているが、SWNTの直径制御については触媒や炉の温度を変える、不活性ガスの種類や圧力を変えるなど製造条件を調整することによって直径分布を制御することや、SWNT混合物を熱処理することによって特定の直径付近のSWNTだけを取り出そうとする学術的試みがあるものの、確実な分離にはいたっていない。
These attempts have been reported many academically, but no industrially feasible examples have been reported. On the other hand, since SWNT has a structure in which the graphene sheet is formed into a cylindrical shape, if the SWNT diameter can be strictly controlled, it is close to controlling chirality without directly controlling chirality. On the other hand, by narrowing the range of the diameter of SWNT, the width of the chirality that can be taken substantially decreases.
As a manufacturing method of SWNT, arc discharge method, laser ablation method, high frequency plasma method, chemical pyrolysis method (chemical vapor deposition (CVD) method, catalytic chemical vapor deposition (CCVD) method) are known. For diameter control, the diameter distribution is controlled by adjusting manufacturing conditions such as changing the temperature of the catalyst and furnace, changing the kind and pressure of the inert gas, and SWNTs near a specific diameter by heat treating the SWNT mixture. Although there is an academic attempt to extract only this, it has not been surely separated.

特開2000−203819では、直線状の単層または多層カーボンナノチューブの混合物を、−C≡C−または−C=C−を含んだ炭素材料プラズマ中で反応させることによって製造する方法を開示している。この方法はCNTの長さを制御できると記載されている。
特開2001−058805は、同種又は異種のフラーレン分子の混合体と遷移金属元素またはその合金を混合して、不活性ガス雰囲気下の減圧状態で、500℃以上でCNTを生成させる方法で簡易に、高収率で製造することを主題としている。
特開2001−089117は、レーザーアブレーション法でCNTを製造する際、レーザー照射ターゲットにフラーレン等の炭素の五員環結合を含ませ、さらにターゲットに触媒を混合することによって低い温度でSWNT生成させるというものでSWNTの径の制御については記載がない。
特開2002−029717は、フラーレンあるいはCNTの少なくとも1つと非晶質炭素と混合して、加熱処理して非晶質炭素をフラーレンまたはCNTに変える炭素材料の製造方法を開示している。ある長さのCNTが得られるとの記載はあるが径については記載がない。
JP 2000-203819 discloses a process for producing a mixture of linear single-walled or multi-walled carbon nanotubes by reacting them in a carbon material plasma containing —C≡C— or —C═C—. Yes. This method is described as being able to control the length of the CNTs.
Japanese Patent Laid-Open No. 2001-058805 is a simple method in which a mixture of the same or different fullerene molecules and a transition metal element or an alloy thereof are mixed to generate CNT at 500 ° C. or higher in a reduced pressure state under an inert gas atmosphere. The theme is to produce in high yield.
Japanese Patent Laid-Open No. 2001-089117 says that when producing CNTs by a laser ablation method, a 5-membered ring bond of carbon such as fullerene is included in a laser irradiation target, and a catalyst is mixed with the target to generate SWNT at a low temperature. However, there is no description about control of the diameter of SWNT.
Japanese Patent Application Laid-Open No. 2002-029717 discloses a method for producing a carbon material in which at least one of fullerenes or CNTs is mixed with amorphous carbon, and the amorphous carbon is changed to fullerenes or CNTs by heat treatment. Although there is a description that a CNT having a certain length is obtained, there is no description about the diameter.

また、ZhangとIijimaは、C60粉末に5at%のNiとCoを混ぜたものをレーザーオーブン法のレーザー照射ターゲットとして用いて、グラファイトを用いた場合には電気炉(オーブン)の温度を850℃程度にしないとSWNTが生成できないのに対して、電気炉温度400℃でも微量かつアモルファスまみれであるが、生成できることを示した(Y.Zhang,S.Iijima:Appl.Phys.Lett.75(1999),3087)。この場合には、レーザー照射によって折角のフラーレン構造は破壊されていると考えられ、SWNTの合成に役立っているのはレーザーで完全にバラバラとなっていない破片であると考えられている。レーザー蒸発をさせてしまえば、およそどんな炭素材料であってもSWNTの原料となると考えられ、結果として、フラーレンからのSWNTの合成方法とは言い難い。ちなみに、オーブン温度を400℃としているのは、フラーレンが昇華してしまうのを防ぐためである。SWNTの量が少なすぎてラマンスペクトルから直径がどの程度になっているのかの判断は難しいが、おおよそグラファイト材料を用いた場合と変わらないと考えられている。 Zhang and Iijima used a mixture of C 60 powder mixed with 5 at% Ni and Co as a laser irradiation target of a laser oven method, and when graphite was used, the temperature of an electric furnace (oven) was 850 ° C. SWNT cannot be generated unless it is made to the extent, but it is shown that it can be generated even though it is covered in a trace amount and amorphous even at an electric furnace temperature of 400 ° C. (Y. ), 3087). In this case, it is considered that the folded fullerene structure is destroyed by laser irradiation, and it is considered that the fragments that are not completely separated by the laser are useful for the synthesis of SWNTs. If laser evaporation is performed, any carbon material is considered to be a raw material for SWNT, and as a result, it is difficult to say that SWNT is synthesized from fullerene. Incidentally, the oven temperature is set to 400 ° C. in order to prevent the fullerene from sublimating. Although it is difficult to judge how much the diameter is from the Raman spectrum because the amount of SWNT is too small, it is considered that it is not different from the case of using a graphite material.

また、Champbellらは、CCVD法でのナノチューブ生成を試みているが、生成できたのは多層のナノチューブであった(L.P.Biro,R.Ehlich,R.Tellgmann,A.Gromov,N.Krawez,M.Tschaplyguine,M.M.Pohl,E.Zsoldos,Z.Vertesy,Z.E.Horvath and E.E.B.Chambell:Chem.Phys.Lett.306(1999),155、O.A.Nerushev,R.E.Morjan,D.I.Ostrovskii,M.Sveningsson,M.Jonsson,F.Rohmund and E.E.B.Champbell:Physica B 323(2002),51、O.A.Nerushev,S.Dittmar,R.E.Morjan,F.Rohmund and E.E.B.Campbell:J.Appl.Phys.93(2003),4185)。   Champbell et al. Attempted to produce nanotubes by the CCVD method, but they were able to produce multi-walled nanotubes (LP Biro, R. Ehrich, R. Tellmann, A. Gromov, N. et al. Krawez, M. Tschaplyguine, M. M. Pohl, E. Zsoldos, Z. Vertesy, ZE Horvath and E. E. B. Chamber: Chem. Phys. Lett. 306 (1999), 155 Nerushev, R.E. Morjan, D.I. Ostrovskii, M. Sveningsson, M. Jonsson, F. Rhommund and E.E.B. Champbell: Physica B 323 (2002), 51, OA Nerus. ev, S.Dittmar, R.E.Morjan, F.Rohmund and E.E.B.Campbell: J.Appl.Phys.93 (2003), 4185).

フラーレンと触媒金属の多層薄膜を用いたナノチューブ合成も試みられ、多層のナノチューブともいえる構造が作られている(E.Czerwosz,P.Dluzewski,G.Dmowska,R.Nowakowski,E.Starnawska and H.Wronka:Appl.Surf.Sci.141(1999),350、E.Czerwosz,P.Dluzewski:Diamond Related Mater.9(2000),901)。その後、C60とNiの多層膜を用いた場合にSWNTの単結晶ができるとの衝撃的な論文がIBMのGimzewskiらのグループによってScienceに発表された(R.R.Schlittler,J.W.Seo,J.K.Gimzewski,C.Durkan,M.S.M.Saifullah and M.E.Welland:Science 292(2001),1136)。ただし、その後に、この論文の証拠となったTEM像が、モリブデンの酸化物の像であることが明らかとなり(M.F.Chisholm,Y.Wang,A.R.Lupini,G.Eres,A.A.Puretzky,B.Brinson,A.V.Melechko,D.B.Geohegan,H.Cui,M.P.Johnson,S.J.Pennycook,D.H.Lowndes,S.Arepalli,C.Kittrell,S.Sivaram,M.Kim,G.Lavin,J.Kono,R.Hauge and R.E.Smalley:Science 300(2003),1236b)、IBMのグループでもこれを認める発表を行っている(M.E.Welland,C.Durkan,M.S.M.Saifullah,J.W.Seo,R.R.Schlittler and J.K.Gimzewski:Science 300(2003),1236c)。   Nanotube synthesis using a multi-layer thin film of fullerene and catalytic metal has also been attempted, and a structure that can be said to be a multi-wall nanotube has been created (E. Czerwoz, P. Dluzewski, G. Dmowska, R. Nowawski, E. Starnawska and H. H.). Wronka: Appl.Surf.Sci.141 (1999), 350, E. Czerwoz, P. Dlzewski: Diamond Related Mater. 9 (2000), 901). Later, a shocking paper that SWNT single crystals could be produced when using C60 and Ni multilayers was published in Science by the group of Gimmewski et al. Of IBM (RR Schlittler, JW Seo). , JK Gimzewski, C. Durkan, M. S. M. Saifullah and M. E. Welland: Science 292 (2001), 1136). However, after that, it became clear that the TEM image that proved this paper was an image of an oxide of molybdenum (MF Chisholm, Y. Wang, AR Lupini, G. Eres, A A. Puretzky, B. Brinson, A. V. Melechko, D. B. Geohegan, H. Cui, M. P. Johnson, S. J. Pennycook, D. H. Lownes, S. Arepalli, C. Kittellell , S. Sivaram, M. Kim, G. Lavin, J. Kono, R. Hauge and R. E. Smalley: Science 300 (2003), 1236b), an IBM group has also made an announcement that acknowledges this (M E. Welland, C. Durkan, MSM. aifullah, J.W.Seo, R.R.Schlittler and J.K.Gimzewski: Science 300 (2003), 1236c).

フラーレンが、SWNTの内部に並んだピーポッド(Peapod)を高温で熱処理することでDWNTになることが知られており(B.W.Smith,M.Monthioux and D.E.Luzzi:Chem.Phys.Lett.315(1999),31)、この場合も内部のフラーレンがSWNTに変形したと考えられる。中にできるナノチューブがSWNTであったとしても、それを取り出すのは困難であることと、最大でも元々あったSWNTと同じだけしか生成できないことからフラーレンからのSWNTの生成技術とはなり得ない。
本発明は、CCVD法により直径の制御されたSWNTを製造することを目的とする。
It is known that fullerene becomes DWNT by heat-treating peapods arranged inside SWNT at a high temperature (BW Smith, M. Monothioux and D.E. Luzzi: Chem. Phys. Lett. 315 (1999), 31), also in this case, it is considered that the internal fullerene was transformed into SWNT. Even if the nanotube that can be formed inside is SWNT, it cannot be taken out, and since it can be produced only at most as much as the original SWNT, it cannot be a technique for producing SWNT from fullerene.
The object of the present invention is to produce SWNTs having a controlled diameter by the CCVD method.

本発明は、CCVD法によってSWNTを製造する方法において、フラーレン類を原料に、これを昇華させ、加熱した触媒に接触させてSWNTを合成するもので、使用するフラーレンによって生成するSWNTの直径を制御するSWNTの製造方法である。 The present invention provides a process for preparing SWNT by CCVD process, the fullerene as a raw material, is sublimed this is brought into contact with a heated catalyst intended to synthesize SWNT, the SWNT which thus generates the fullerene to be used in diameter It is a manufacturing method of SWNT which controls.

上述した通り、従来のフラーレン原料を用いた公知技術におけるカーボンナノチューブの生成においては、多層カーボンナノチューブをフラーレンから生成するために、フラーレン気体の分圧の制御が不可欠であると考え、本発明の想到に至った。
まず、0.5Torr以下の真空にした反応装置の中で、1種類または1種類以上のフラーレンC2n(nはn≧18なる整数、例としてC60、C70、C76、C82など)あるいは化学修飾フラーレンを、そのフラーレンの昇華温度以上で昇華させる。
フラーレンの蒸気圧については、パンカジャバリ(Pankajavalli)、Thermochimica Acta,316(1998),101−108の表3に従来の実験データがまとめられて報告されており、表1に示す。
これを参照して、従来の実験の平均を用いると、例えば,フラーレンC60の蒸気圧は、以下の式で計算できる。
p(Torr)=7.5×10×10−9500/T(K)
As described above, in the production of carbon nanotubes in the known technology using conventional fullerene raw materials, in order to produce multi-walled carbon nanotubes from fullerene, it is considered that control of the partial pressure of fullerene gas is indispensable. It came to.
First, in a reactor evacuated to 0.5 Torr or less, one or more fullerenes C 2n (n is an integer satisfying n ≧ 18, for example, C 60 , C 70 , C 76 , C 82, etc.) Alternatively, the chemically modified fullerene is sublimated above the sublimation temperature of the fullerene.
Regarding the vapor pressure of fullerene, conventional experimental data are summarized in Table 3 of Pankajavalli, Thermochimica Acta, 316 (1998), 101-108, and are shown in Table 1.
With reference to this, using the average of the conventional experiment, for example, the vapor pressure of fullerene C 60 can be calculated by the following equation.
p (Torr) = 7.5 × 10 8 × 10 −9500 / T (K)

Figure 0004642658
Figure 0004642658

一例として、フラーレンC60の蒸気圧を上記の式で計算した結果を表2に示す。 As an example, Table 2 shows the results of the vapor pressure of the fullerene C 60 was calculated by the formula above.

Figure 0004642658
Figure 0004642658

この昇華したフラーレン気体を、その蒸気圧を駆動力として反応装置下流に送り、気化温度以上に加熱された多孔質物質または無機物の酸化物の薄膜上に担持させた遷移金属触媒に接触させる。触媒と接触することによってフラーレンからSWNTが生成する。反応開始から所定の時間後、反応装置を冷却しSWNTを取り出す。
フラーレン気体の分圧(すなわちフラーレンの供給速度)が適当であれば、触媒粒子表面でフラーレンが分解して遷移状態のカーボン原子または分子として表面に析出した後、規則性を持った構造が形成され、単層カーボンナノチューブとして析出することができる。これは、フラーレン分子の5員環の向きと位置によって析出するカーボンナノチューブのカイラリティが決まると考えられるためである。従って、フラーレン分子の一部をそのままの形態で触媒粒子表面に残すことができる本方法では、カイラリティが揃った単層カーボンナノチューブを生成することができる。また、本発明の方法で生成されるカーボンナノチューブは、フラーレンの分子構造の規則性を引き継いでいるため、その直径分布を狭くすることができる。
The sublimated fullerene gas is sent downstream of the reaction apparatus with the vapor pressure as a driving force, and is brought into contact with a transition metal catalyst supported on a porous substance or inorganic oxide thin film heated to a vaporization temperature or higher. SWNT is produced from fullerene upon contact with the catalyst. After a predetermined time from the start of the reaction, the reactor is cooled and SWNT is taken out.
If the fullerene gas partial pressure (ie, fullerene supply rate) is appropriate, the fullerene decomposes on the surface of the catalyst particles and deposits on the surface as transitional carbon atoms or molecules, and a regular structure is formed. And can be deposited as single-walled carbon nanotubes. This is because the chirality of the deposited carbon nanotubes is determined by the direction and position of the five-membered ring of the fullerene molecule. Therefore, in the present method in which a part of the fullerene molecule can be left on the catalyst particle surface as it is, single-walled carbon nanotubes with uniform chirality can be generated. Moreover, since the carbon nanotube produced | generated by the method of this invention has inherited the regularity of the molecular structure of fullerene, the diameter distribution can be narrowed.

ただし、フラーレン気体の分圧を高く(供給速度が速く)する生成条件は、単層カーボンナノチューブの生成には適切な条件とはなりえない。これは、触媒粒子表面に遷移状態のカーボンの量が多くなり、規則性を持ったシートが複数枚重なった多層カーボンナノチューブのような構造が形成されるためである。さらに、カーボン原子の配列が規則性を有する前に固体として析出するため、非晶質カーボンが析出するためである。
なお、本発明の方法では、粒子径の揃った触媒粒子を有する基板上に単層カーボンナノチューブの生成を行うようにしている。触媒粒子の大きさは、そこから析出する単層カーボンナノチューブの直径を決める要因であるため、触媒粒子の大きさを揃えることにより、そこから析出する単層カーボンナノチューブの直径の分布をさらに狭くすることができる。
However, the generation conditions for increasing the partial pressure of fullerene gas (the supply speed is high) cannot be appropriate conditions for the generation of single-walled carbon nanotubes. This is because the amount of carbon in the transition state is increased on the surface of the catalyst particles, and a structure like a multi-walled carbon nanotube is formed in which a plurality of sheets having regularity are overlapped. Further, this is because amorphous carbon is deposited because the carbon atoms are deposited as a solid before having regularity.
In the method of the present invention, single-walled carbon nanotubes are generated on a substrate having catalyst particles having a uniform particle diameter. Since the size of the catalyst particles is a factor that determines the diameter of the single-walled carbon nanotubes precipitated therefrom, the distribution of the diameters of the single-walled carbon nanotubes precipitated from the catalyst particles is made narrower by aligning the size of the catalyst particles. be able to.

実施例1のSWNTの生成装置の概略を示す図である。1 is a diagram illustrating an outline of a SWNT generating apparatus according to Embodiment 1. FIG. 実施例1で生成したSWNTの透過型電子顕微鏡写真である。2 is a transmission electron micrograph of SWNT produced in Example 1. 実施例1で生成したSWNTのラマン分光スペクトル図である。2 is a Raman spectroscopic spectrum diagram of SWNT produced in Example 1. FIG. 実施例2のSWNTの生成装置の概略を示す図である。It is a figure which shows the outline of the production | generation apparatus of SWNT of Example 2. FIG. 実施例2で生成したSWNTのラマン分光スペクトル図である。6 is a Raman spectrum diagram of SWNT produced in Example 2. FIG. 実施例3のSWNTの生成装置の概略を示す図である。It is a figure which shows the outline of the production | generation apparatus of SWNT of Example 3. FIG. 実施例3におけるフラーレンの昇温曲線と蒸気圧の変化を示す図である。It is a figure which shows the temperature rising curve of fullerene in Example 3, and the change of vapor pressure. 実施例3で生成したSWNTの透過型電子顕微鏡写真である。4 is a transmission electron micrograph of SWNT produced in Example 3. 実施例3で生成したSWNTの透過型電子顕微鏡写真である。4 is a transmission electron micrograph of SWNT produced in Example 3. 実施例3で生成したSWNTのラマン分光スペクトル図である。6 is a Raman spectrum diagram of SWNT produced in Example 3. FIG. 実施例4で生成したSWNTのラマン分光スペクトル図である。6 is a Raman spectrum diagram of SWNT produced in Example 4. FIG. 実施例3及び4で生成したSWNTと比較例1で生成したSWNTのラマン分光スペクトル図である。It is a Raman spectrum spectrum figure of SWNT produced | generated in Example 3 and 4 and SWNT produced | generated by the comparative example 1. FIG.

図1は本発明を実施するための反応装置の1例を示す概略図である。
本発明の方法では、0.5Torr以下の真空にする。好ましくは0.05Torr以下の真空状態にした反応装置の中で、1種類または1種類以上のフラーレンC2n(nはn≧18なる整数)を、そのフラーレンの昇華温度以上で昇華させる。フラーレン類の蒸発部は、エフュージョンセルか小径の石英管に置く。外部の反応管との間に大きな流動抵抗があるため、その内部の圧力は、おおよそ設定温度におけるフラーレンの蒸気圧になる。
この昇華させたフラーレン気体を整流管を用いてガイドして後流の触媒にふれさせる。図1でフラーレン気体の流れを制御する方法は、片側を封じた石英管内の閉塞側に気化させるフラーレンを置き、真空装置側に開放端を向けて、加熱気化させたフラーレンをフラーレン蒸気圧を駆動力として流動させる。
フラーレン気体の圧力の制御はその加熱温度で行うが、この温度の制御が重要である。反応装置背圧が0.05Torrであれば、フラーレンの蒸気圧として最低でも背圧と同様の0.05Torrは必要となり、660℃での加熱が必要となる。一方、背圧が0.5Torrであると、蒸気圧を0.5Torrとするには760℃での加熱が必要となる。
FIG. 1 is a schematic view showing an example of a reaction apparatus for carrying out the present invention.
In the method of the present invention, a vacuum of 0.5 Torr or less is applied . Preferably, one or more fullerenes C 2n (n is an integer satisfying n ≧ 18 ) are sublimated at a temperature equal to or higher than the sublimation temperature of the fullerene in a reactor in a vacuum state of 0.05 Torr or less. The evaporation part of fullerenes is placed in an effusion cell or a small diameter quartz tube. Since there is a large flow resistance between the external reaction tube, the internal pressure is approximately the vapor pressure of fullerene at the set temperature.
The sublimated fullerene gas is guided using a rectifying tube and is allowed to touch the downstream catalyst. In FIG. 1, the flow of fullerene gas is controlled by placing fullerene to be vaporized on the closed side of the quartz tube sealed on one side and directing the open end to the vacuum device side to drive fullerene vapor pressure by heating and vaporizing fullerene. Flow as power.
Control of the pressure of fullerene gas is performed at the heating temperature, and control of this temperature is important. If the reactor back pressure is 0.05 Torr, 0.05 Torr which is the same as the back pressure is required at the minimum as the vapor pressure of fullerene, and heating at 660 ° C. is required. On the other hand, if the back pressure is 0.5 Torr, heating at 760 ° C. is required to make the vapor pressure 0.5 Torr.

60のきわめて純粋な固体を、純粋なAr中で10分間加熱した場合、959℃以上で熱分解が開始され、977℃以上では、ほぼ完全に熱分解するとの報告がある(M.R.Stetzer et al.Thermal Stability of C60,Phys.Rev.B.Vol55(1997),pp127−131)。一方、わずかな溶媒やC70などの他のフラーレン、酸素などが存在した場合には、上記の場合よりもかなり低い温度で熱分解が進むと考えられ、比較的高純度の原料を用いても、以下の文献に示されるように718℃で既に熱分解が進んでいると報告されている(Y.Piacente et al.J.Phys.Chem.Vol99(1995),pp14052−14057)。
従って、700℃以上とするとC60の分解が進むと考えられ、フラーレンを加熱する温度には上限があり、背圧を下げ昇華温度を低くすることが好ましい。
There is a report that when a very pure solid of C 60 is heated in pure Ar for 10 minutes, thermal decomposition starts at 959 ° C. or higher and almost completely decomposes at 977 ° C. or higher (M.R. Stetzer et al.Thermal Stability of C 60, Phys.Rev.B.Vol55 (1997), pp127-131). On the other hand, other fullerenes such as slight solvent and C 70, when such oxygen exists, pyrolysis is believed to proceed at a much lower temperature than the above case, even using a relatively high purity of the raw materials As shown in the following literature, it has been reported that thermal decomposition has already progressed at 718 ° C. (Y. Piacente et al. J. Phys. Chem. Vol 99 (1995), pp 14052-14057).
Accordingly, it is considered that the decomposition of C 60 proceeds when the temperature is 700 ° C. or higher, and there is an upper limit to the temperature for heating fullerene, and it is preferable to lower the back pressure and lower the sublimation temperature.

蒸発部から移動したフラーレンが遷移金属触媒に衝突して、その分子構造の一部を保存したまま、単層カーボンナノチューブの初期核になることによって,金属触媒から単層カーボンナノチューブが成長する。初期核ができればその後のSWNTの成長は比較的早いと考えられる。このため、フラーレン蒸発開始からの温度上昇の速度が重要となる。触媒はフラーレンからSWNTへの核生成に必要な高温に加熱する。好ましくは750℃〜900℃である。
操作温度に耐え得る基板上に、多孔質物質または無機物の酸化物を塗布または製膜させた上に1種以上の金属微粒子を担持させる。上記の昇華したフラーレンをこの基板上を通過させる。
遷移金属はFe、Co、Mo、Ni、Rh、Pd、Ptのいずれか単体、または、その混合物が好ましい。より好ましくはFe、Co、Moである。金属粒子の径は小さいほどよく、0.1μm以下が好ましく、10nm以下がより好ましく、さらには3nm以下であるものがより一層好ましい。
The fullerene moved from the evaporation part collides with the transition metal catalyst and becomes an initial nucleus of the single-walled carbon nanotube while preserving a part of its molecular structure, so that the single-walled carbon nanotube grows from the metal catalyst. If the initial nucleus is formed, the subsequent growth of SWNT is considered to be relatively fast. For this reason, the rate of temperature rise from the start of fullerene evaporation is important. The catalyst is heated to the high temperature required for nucleation from fullerene to SWNT. Preferably it is 750 to 900 degreeC.
A porous material or an inorganic oxide is applied or formed on a substrate that can withstand the operating temperature, and one or more kinds of metal fine particles are supported. The sublimated fullerene is passed over the substrate.
The transition metal is preferably any one of Fe, Co, Mo, Ni, Rh, Pd, and Pt, or a mixture thereof. More preferably, they are Fe, Co, and Mo. The diameter of the metal particles is preferably as small as possible, preferably 0.1 μm or less, more preferably 10 nm or less, and even more preferably 3 nm or less.

多孔質物質は、上記金属微粒子を担持でき、かつ装置内の反応温度で変化を起こさないものであれば材質に限定はないが、金属酸化物またはその他の無機物の多孔質体が好ましい。中でも、ゼオライト、マグネシア、アルミナ、シリカ、メソポーラスシリカ等の多孔体がより好ましく、特にY型ゼオライトが好ましい。無機物の酸化物の薄膜も好ましく使用でき、特にシリコン酸化膜が好ましい。
これらの多孔質を載せた基板または無機物の酸化膜を形成させた基板(以下基板という)はフラーレンガス流の流れ方向に対し平行に置く。もしくは、反応管内壁に沿った形に加工した板が好ましい。
生成反応開始後、所定時間経過後にこの基板を冷却する。冷却の方法は、反応管の加熱を停止して、外からファンにて室温の空気を当てて反応管を速やかに冷却し、室温到達後に該板を取り出すと板上にSWNTを得る。
この製造方法によると、直径のそろったSWNTを得ることが可能である。
The material of the porous material is not limited as long as it can support the metal fine particles and does not change at the reaction temperature in the apparatus, but a metal oxide or other inorganic porous material is preferable. Among these, porous bodies such as zeolite, magnesia, alumina, silica, and mesoporous silica are more preferable, and Y-type zeolite is particularly preferable. An inorganic oxide thin film can also be preferably used, and a silicon oxide film is particularly preferable.
A substrate on which these porous materials are placed or a substrate on which an inorganic oxide film is formed (hereinafter referred to as a substrate) is placed parallel to the flow direction of the fullerene gas flow. Alternatively, a plate processed into a shape along the inner wall of the reaction tube is preferable.
The substrate is cooled after a predetermined time has elapsed after the start of the production reaction. In the cooling method, the heating of the reaction tube is stopped, the room temperature air is applied by a fan from the outside to cool the reaction tube quickly, and when the plate is taken out after reaching the room temperature, SWNT is obtained on the plate.
According to this manufacturing method, SWNTs having a uniform diameter can be obtained.

以下、実施例により本発明を更に詳しく説明する。本発明は下記の実施例に限定されるものではない。
[実施例1]
図1に示すように、加熱炉の中に置かれた内径26mmの石英管(反応管)の中に、内径4.5mm、長さ200mmの片側を封止した石英管にフラーレンC60500mgを封止側に詰めたものを、フラーレン部分が第一加熱炉の中央に来るように設置する。第二加熱炉内に、Fe/Co触媒微粒子(粒径1〜2nm)を担持したY型ゼオライト粒子(粒径0.3〜1μm)を均一に塗りつけた石英板を流れ方向に平行に置いた。反応管内をロータリーポンプで、0.5Torr以下の真空にした。第一加熱炉は長さ20cm、第二加熱炉は長さ30cmである。第一加熱炉を20cm石英管に沿って第二加熱炉の反対方向にずらし、フラーレンを加熱しない状態で、アルゴンを350Torr、200sccm程度で流しながら第一加熱炉を850℃、第二加熱炉を900℃に昇温した。昇温後にアルゴンを止めて再び0.5Torr以下の真空にした。その後,第一加熱炉を所定に戻してフラーレンの加熱を開始する。上記条件で10分操作を続けた後、加熱を停止し、ファンで室温の空気を当てて反応炉を冷却した。冷却後、ゼオライトを塗布した石英板を取り出し、SWNTを得た。
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
[Example 1]
As shown in FIG. 1, 500 mg of fullerene C 60 is put in a quartz tube sealed in one side with an inner diameter of 4.5 mm and a length of 200 mm in a quartz tube (reaction tube) with an inner diameter of 26 mm placed in a heating furnace. The material packed on the sealing side is installed so that the fullerene portion is in the center of the first heating furnace. In the second heating furnace, a quartz plate uniformly coated with Y-type zeolite particles (particle size: 0.3-1 μm) carrying Fe / Co catalyst fine particles (particle size: 1-2 nm) was placed parallel to the flow direction. . The reaction tube was evacuated to 0.5 Torr or less with a rotary pump. The first heating furnace is 20 cm long and the second heating furnace is 30 cm long. The first heating furnace is shifted along the 20 cm quartz tube in the opposite direction of the second heating furnace, and the first heating furnace is set at 850 ° C. and the second heating furnace is set at a flow rate of about 350 Torr and 200 sccm without heating fullerene. The temperature was raised to 900 ° C. After raising the temperature, the argon was stopped and the vacuum was again reduced to 0.5 Torr or less. Thereafter, the first heating furnace is returned to the predetermined temperature and heating of fullerene is started. After 10 minutes of operation under the above conditions, heating was stopped and the reactor was cooled by applying air at room temperature with a fan. After cooling, the quartz plate coated with zeolite was taken out to obtain SWNT.

生成した試料をトルエン中で超音波処理して、フラーレンを溶解、除去した後に、透視型電子顕微鏡(TEM)で観察し、ラマンスペクトルで分析した。
図2にTEM写真、図3にラマン分光スペクトルを示す。
図2から副生物がなく、径がそろったSWNTが生成していることが分かる。
図3ではグラファイト由来のピーク(1590cm−1)とSWNTに特徴的な150〜300cm−1付近のピークがみられる。また、図にはSWNTの直径とラマンシフトとの関係(Jorio et al.Phys.Rev.Lett.Vol86(2001),pp1118)
d(nm)=248/ν(cm−1
から見積もった直径が示されてあり、ほぼ1nm程度であることが分かる。
The produced sample was sonicated in toluene to dissolve and remove fullerene, and then observed with a transmission electron microscope (TEM) and analyzed with a Raman spectrum.
FIG. 2 shows a TEM photograph, and FIG. 3 shows a Raman spectrum.
It can be seen from FIG. 2 that SWNTs having no by-products and having a uniform diameter are produced.
Peak characteristic 150~300cm around -1 SWNT is seen as in Figure 3 from graphite peak (1590 cm -1). Also, the figure shows the relationship between SWNT diameter and Raman shift (Jorio et al. Phys. Rev. Lett. Vol 86 (2001), pp1118).
d (nm) = 248 / ν (cm −1 )
The diameter estimated from is shown, which is about 1 nm.

[実施例2]
図4に使用した装置の概略図を示す。
実施例1と同様に実施したが、背圧を0.05Torrにし、ゼオライトを塗布した石英板は反応管内壁に沿った形の半円筒型にしたものを使用した。フラーレンを封入した石英管は、直径は実施例1と同じであるが、長さを100mmとした。また、第一加熱炉の温度を680℃、第二加熱炉の温度を825℃とした。
図5に、生成したSWNTのラマン分光スペクトルを示す。
[Example 2]
FIG. 4 shows a schematic diagram of the apparatus used.
Although the same operation as in Example 1 was performed, a quartz plate coated with zeolite at a back pressure of 0.05 Torr and having a semi-cylindrical shape along the inner wall of the reaction tube was used. The quartz tube filled with fullerene has the same diameter as that of Example 1, but the length was 100 mm. Moreover, the temperature of the 1st heating furnace was 680 degreeC, and the temperature of the 2nd heating furnace was 825 degreeC.
FIG. 5 shows the Raman spectrum of the generated SWNT.

[実施例3]
図6に使用した装置の概略図を示す。
実施例2と同様に実施したが、フラーレンを封入した石英管に熱電対を取り付け、フラーレンの昇温条件を測定した。
図7に実験開始からのフラーレンを封入した石英管の温度変化とフラーレンの蒸気圧の変化を示す。
図8、9には、生成したSWNTのTEM写真、図10にラマン分光スペクトルを示す。
[Example 3]
FIG. 6 shows a schematic diagram of the apparatus used.
Although it implemented similarly to Example 2, the thermocouple was attached to the quartz tube which enclosed fullerene, and the temperature rising conditions of fullerene were measured.
FIG. 7 shows the change in temperature of the quartz tube filled with fullerene from the start of the experiment and the change in vapor pressure of fullerene.
8 and 9 show a TEM photograph of the generated SWNT, and FIG. 10 shows a Raman spectrum.

[実施例4]
実施例3と同様に実施したが、原料としてフラーレンC60に変えてフラーレンC70を用いた。
生成したSWNTのラマン分光スペクトルを図11に示す。
60の場合と同様のSWNTが出来ているのが分かる。
[Example 4]
It was carried out analogously to example 3, but using fullerene C 70 in place of the fullerene C 60 as a raw material.
FIG. 11 shows the Raman spectrum of the generated SWNT.
It is seen that the same SWNT in the case of the C 60 is made.

[比較例1]
図12にアルコールからCCVD法によって生成したSWNTのラマン分光スペクトル図を示す。
アルコールからのSWNTと実施例3(C60)および実施例4(C70)で生成したSWNTとの直径分布の比較をラマン分光スペクトルにより示す。アルコールからのSWNTでは、ピークの数が多く、明らかにフラーレンから生成したSWNTの直径分布は狭くなっている。
[Comparative Example 1]
FIG. 12 shows a Raman spectrum of SWNT produced from alcohol by CCVD.
Comparison of diameter distribution between SWNTs from alcohol and SWNTs produced in Example 3 (C 60 ) and Example 4 (C 70 ) is shown by Raman spectroscopy. In SWNT from alcohol, the number of peaks is large, and the diameter distribution of SWNT produced from fullerene is clearly narrow.

本発明で得られるSWNTは、FEDディスプレイ、燃料電池、電子顕微鏡、超高強度材料、電気伝導性複合材料等に広く利用することができる。   The SWNT obtained in the present invention can be widely used for FED displays, fuel cells, electron microscopes, ultra-high strength materials, electrically conductive composite materials, and the like.

Claims (11)

圧力が0.5Torr以下の真空に保持された反応装置内で、少なくとも1種類の触媒金属からなる多数の微粒子が形成された基板上で単層カーボンナノチューブを製造する方法であって、少なくとも1種類のフラーレンC2n(nはn≧18なる整数)を所定の温度以上で昇華させて、分圧が制御されたフラーレン気体を生成し、このフラーレン気体を前記フラーレンの昇華温度以上に加熱された前記基板上に輸送し、前記フラーレン気体を前記触媒金属微粒子に接触させて単層カーボンナノチューブを生成することを特徴とする単層カーボンナノチューブの製造方法。A method for producing single-walled carbon nanotubes on a substrate on which a large number of fine particles made of at least one kind of catalytic metal are formed in a reactor maintained at a vacuum of 0.5 Torr or less, wherein at least one kind The fullerene C 2n (n is an integer satisfying n ≧ 18) is sublimated at a predetermined temperature or higher to generate a fullerene gas having a controlled partial pressure, and the fullerene gas is heated above the sublimation temperature of the fullerene. A method for producing single-walled carbon nanotubes, comprising transporting onto a substrate and bringing the fullerene gas into contact with the catalytic metal fine particles to produce single-walled carbon nanotubes. 前記反応装置内の圧力が、0.05Torr以下であることを特徴とする請求項1に記載の単層カーボンナノチューブの製造方法。  The method for producing single-walled carbon nanotubes according to claim 1, wherein the pressure in the reactor is 0.05 Torr or less. 前記所定の温度が、700℃以下であることを特徴とする請求項1又は2記載の単層カーボンナノチューブの製造方法。  The method for producing single-walled carbon nanotubes according to claim 1 or 2, wherein the predetermined temperature is 700 ° C or lower. 前記触媒金属は、元素の周期律表の5A族、6A族および8族に属する遷移金属であることを特徴とする請求項1ないし3のいずれかに記載の単層カーボンナノチューブの製造方法。  4. The method for producing single-walled carbon nanotubes according to claim 1, wherein the catalyst metal is a transition metal belonging to Groups 5A, 6A, and 8 of the periodic table of elements. 前記遷移金属が、Fe、Co、Mo、Ni、Rh、Pd、Ptのいずれか一種の単体または一種以上の混合物であることを特徴とする請求項4記載の単層カーボンナノチューブの製造方法。  5. The method for producing a single-walled carbon nanotube according to claim 4, wherein the transition metal is any one kind or a mixture of at least one of Fe, Co, Mo, Ni, Rh, Pd, and Pt. 前記基板は、多孔質物質あるいは無機酸化物の少なくとも一方からなる薄膜を有し、前記微粒子は、該薄膜上に形成されていることを特徴とする請求項1ないし5項のいずれかに記載の単層カーボンナノチューブの製造方法。  6. The substrate according to claim 1, wherein the substrate has a thin film made of at least one of a porous material and an inorganic oxide, and the fine particles are formed on the thin film. A method for producing single-walled carbon nanotubes. 前記多孔質物質が、無機多孔質であることを特徴とする請求項6記載の単層カーボンナノチューブの製造方法。  The method for producing a single-walled carbon nanotube according to claim 6, wherein the porous material is an inorganic porous material. 前記無機多孔質が、ゼオライトであることを特徴とする請求項7記載の単層カーボンナノチューブの製造方法。  The method for producing single-walled carbon nanotubes according to claim 7, wherein the inorganic porous material is zeolite. 前記ゼオライトが、Y型であることを特徴とする請求項8記載の単層カーボンナノチューブの製造方法。  The method for producing single-walled carbon nanotubes according to claim 8, wherein the zeolite is Y-type. 前記無機酸化物が、シリコン酸化膜であることを特徴とする請求項記載の単層カーボンナノチューブの製造方法。The method for producing a single-walled carbon nanotube according to claim 6 , wherein the inorganic oxide is a silicon oxide film. 前記微粒子の粒子径が、0.5〜10nmであることを特徴とする請求項1ないし10のいずれかに記載の単層カーボンナノチューブの製造方法。  The method for producing single-walled carbon nanotubes according to any one of claims 1 to 10, wherein a particle diameter of the fine particles is 0.5 to 10 nm.
JP2005506448A 2003-02-07 2004-02-09 Method for producing single-walled carbon nanotubes with uniform diameter Expired - Fee Related JP4642658B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003031508 2003-02-07
JP2003031508 2003-02-07
PCT/JP2004/001348 WO2004106234A1 (en) 2003-02-07 2004-02-09 Process for producing monolayer carbon nanotube with uniform diameter

Publications (2)

Publication Number Publication Date
JPWO2004106234A1 JPWO2004106234A1 (en) 2006-07-20
JP4642658B2 true JP4642658B2 (en) 2011-03-02

Family

ID=33487025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005506448A Expired - Fee Related JP4642658B2 (en) 2003-02-07 2004-02-09 Method for producing single-walled carbon nanotubes with uniform diameter

Country Status (3)

Country Link
US (1) US20060093545A1 (en)
JP (1) JP4642658B2 (en)
WO (1) WO2004106234A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122622A1 (en) * 2002-04-23 2007-05-31 Freedman Philip D Electronic module with thermal dissipating surface
WO2006110346A1 (en) 2005-03-29 2006-10-19 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
US7947247B2 (en) 2005-03-29 2011-05-24 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
CN101007631A (en) * 2006-01-27 2007-08-01 索尼株式会社 Mono-layer carbon nanotube and its preparation method, and electronic element preparation method
WO2007088829A1 (en) * 2006-01-31 2007-08-09 Japan Science And Technology Agency Carbon nanohorn-carried material and method for synthesis of carbon nanotube
KR20080113269A (en) 2006-03-29 2008-12-29 하이페리온 커탤리시스 인터내셔널 인코포레이티드 Method for preparing uniform single walled carbon nanotubes
EP2001794A4 (en) * 2006-03-29 2012-06-20 Hyperion Catalysis Int Method for preparing single walled carbon nanotubes from a metal layer
JP4911758B2 (en) * 2006-06-16 2012-04-04 学校法人 名城大学 Method for producing carbon nanotube
US9174847B2 (en) 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
US8591858B2 (en) * 2008-05-01 2013-11-26 Honda Motor Co., Ltd. Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes
JP5360643B2 (en) * 2008-05-23 2013-12-04 国立大学法人 名古屋工業大学 Carbon nanotube manufacturing method and manufacturing apparatus
WO2011096342A1 (en) 2010-02-04 2011-08-11 独立行政法人科学技術振興機構 Process for production of selectively chemically modified carbon nano-tube
JP5429876B2 (en) * 2010-02-23 2014-02-26 日本電信電話株式会社 Method for producing carbon nanotube
JP6091237B2 (en) * 2012-02-13 2017-03-08 国立大学法人大阪大学 High purity carbon nanotube, method for producing the same, and transparent conductive film using the same
FR3027155B1 (en) * 2014-10-08 2018-01-12 Ecole Polytechnique METHOD FOR MANUFACTURING AN ELECTRONIC DEVICE, PARTICULARLY BASED ON CARBON NANOTUBES
JP7024202B2 (en) * 2017-04-06 2022-02-24 株式会社アイシン Method for manufacturing carbon nanotube complex
KR102109233B1 (en) 2017-09-18 2020-05-12 주식회사 엘지화학 Method for manufacturing cnt fiber having improved tensile strength

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382879B1 (en) * 2000-09-22 2003-05-09 일진나노텍 주식회사 Method of synthesizing carbon nanotubes and apparatus being used therein.
CN1541185A (en) * 2000-11-13 2004-10-27 �Ҵ���˾ Crystals comprising single-walled carbon nanotubes
US20030124717A1 (en) * 2001-11-26 2003-07-03 Yuji Awano Method of manufacturing carbon cylindrical structures and biopolymer detection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.

Also Published As

Publication number Publication date
WO2004106234A1 (en) 2004-12-09
JPWO2004106234A1 (en) 2006-07-20
US20060093545A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
JP4642658B2 (en) Method for producing single-walled carbon nanotubes with uniform diameter
Mubarak et al. An overview on methods for the production of carbon nanotubes
Shah et al. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates
Prasek et al. Methods for carbon nanotubes synthesis
Antisari et al. Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments
JP2006007213A (en) Production method of catalyst for producing carbon nanotube
WO2006052009A1 (en) Carbon nanotube aggregate and process for producing the same
US20090226361A1 (en) Cvd-grown graphite nanoribbons
Mahanandia et al. Synthesis of multi-wall carbon nanotubes by simple pyrolysis
Khorrami et al. Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst
Yoon et al. Growth control of single and multi-walled carbon nanotubes by thin film catalyst
JP2006015342A (en) Method for manufacturing catalyst base for carbon nanotubes production, and method for manufacturing carbon nanotubes using this catalyst base formation method
Mahanandia et al. A one-step technique to prepare aligned arrays of carbon nanotubes
Qian et al. Surface growth of single-walled carbon nanotubes from ruthenium nanoparticles
JP4443423B2 (en) Single-walled carbon nanotube manufacturing method and manufacturing apparatus
WO2012057229A1 (en) Process for production of carbon nanotubes
Chen et al. Low-temperature synthesis multiwalled carbon nanotubes by microwave plasma chemical vapor deposition using CH4–CO2 gas mixture
JP3913583B2 (en) Method for producing carbon nanotube
Wang et al. Multiwalled boron nitride nanotubes: growth, properties, and applications
JP2004339041A (en) Method for selectively producing carbon nanostructure
Cappelli et al. Nano-structured oriented carbon films grown by PLD and CVD methods
Jašek et al. Synthesis of carbon nanostructures by plasma enhanced chemical vapour deposition at atmospheric pressure
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
Borisenko et al. Growth of carbon nanotubes (CNTs) in electric-arc discharge in argon
Maruyama Carbon nanotube growth mechanisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees