JPWO2006082829A1 - Carbon nanotube-supported inorganic particles - Google Patents

Carbon nanotube-supported inorganic particles Download PDF

Info

Publication number
JPWO2006082829A1
JPWO2006082829A1 JP2007501583A JP2007501583A JPWO2006082829A1 JP WO2006082829 A1 JPWO2006082829 A1 JP WO2006082829A1 JP 2007501583 A JP2007501583 A JP 2007501583A JP 2007501583 A JP2007501583 A JP 2007501583A JP WO2006082829 A1 JPWO2006082829 A1 JP WO2006082829A1
Authority
JP
Japan
Prior art keywords
inorganic particles
carbon nanotube
supported
catalyst
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007501583A
Other languages
Japanese (ja)
Inventor
真佐人 谷
真佐人 谷
浩平 土佐
浩平 土佐
俊樹 後藤
俊樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Publication of JPWO2006082829A1 publication Critical patent/JPWO2006082829A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Abstract

樹脂等に配合して優れた補強性を示すカーボンナノチューブ担持無機粒子を得る。繊維状もしくは板状のチタン酸カリウムまたはワラストナイトなどの無機粒子の表面に、微粒子鉄触媒を担持させ、ポリスチレン法などにより該無機粒子の表面上にカーボンナノチューブを生成させることにより製造することができる、無機粒子の表面にカーボンナノチューブを担持させたことを特徴とするカーボンナノチューブ担持無機粒子。Carbon nanotube-supported inorganic particles having excellent reinforcing properties are obtained by blending with a resin or the like. It can be produced by supporting a particulate iron catalyst on the surface of inorganic particles such as fibrous or plate-like potassium titanate or wollastonite, and generating carbon nanotubes on the surface of the inorganic particles by the polystyrene method or the like. A carbon nanotube-supporting inorganic particle characterized in that carbon nanotubes are supported on the surface of the inorganic particle.

Description

本発明は、樹脂等に配合して優れた補強性を示すカーボンナノチューブ担持無機粒子に関するものである。   The present invention relates to a carbon nanotube-supporting inorganic particle that is blended in a resin or the like and exhibits excellent reinforcing properties.

近年、カーボンナノチューブについての研究及び開発が盛んに行われている。特許文献1においては、黒鉛、フラーレン炭素、アモルファスカーボン等の炭素質固体の表面上の一部に、高真空下でイオンビームを照射することにより、その照射面にカーボンナノチューブを生成させる方法が提案されている。特許文献1においては、炭素質固体表面上の一部にカーボンナノチューブを形成させた炭素質物を電子放出体として用いた電子熱源素子が検討されている。   In recent years, research and development on carbon nanotubes have been actively conducted. Patent Document 1 proposes a method of generating a carbon nanotube on the irradiated surface by irradiating a part of the surface of a carbonaceous solid such as graphite, fullerene carbon, and amorphous carbon with an ion beam under high vacuum. Has been. In Patent Document 1, an electron heat source element using a carbonaceous material in which carbon nanotubes are formed on a part of a carbonaceous solid surface as an electron emitter is studied.

特許文献2においては、カーボンナノチューブなどの中空炭素フィブリルを導電剤として熱可塑性樹脂中に配合した熱可塑性樹脂組成物が提案されている。   Patent Document 2 proposes a thermoplastic resin composition in which hollow carbon fibrils such as carbon nanotubes are blended in a thermoplastic resin as a conductive agent.

しかしながら、無機粒子の表面にカーボンナノチューブを担持させることについては検討されておらず、またカーボンナノチューブを担持させた無機粒子を樹脂中に配合させることについては従来より検討がなされていなかった。
特開平9−221309号公報 特開2002−146206号公報
However, no study has been made on supporting carbon nanotubes on the surface of inorganic particles, and no studies have been made on blending inorganic particles supporting carbon nanotubes into a resin.
JP-A-9-221309 JP 2002-146206 A

本発明の目的は、樹脂等に配合して優れた補強性を示すカーボンナノチューブ担持無機粒子に関するものである。   An object of the present invention relates to carbon nanotube-supported inorganic particles which are blended in a resin or the like and exhibit excellent reinforcing properties.

本発明のカーボンナノチューブ担持無機粒子は、無機粒子の表面にカーボンナノチューブを担持させたことを特徴としている。   The carbon nanotube-supporting inorganic particles of the present invention are characterized in that carbon nanotubes are supported on the surface of the inorganic particles.

本発明のカーボンナノチューブ担持無機粒子を、樹脂等に配合させることにより、曲げ強度及び衝撃強度を高めることができ、優れた補強性を樹脂等に付与することができる。   By blending the carbon nanotube-supported inorganic particles of the present invention into a resin or the like, the bending strength and impact strength can be increased, and excellent reinforcing properties can be imparted to the resin or the like.

また、カーボンナノチューブは優れた導電性を有するものであるので、カーボンナノチューブを担持させた本発明の無機粒子は、導電性を樹脂等に付与することができる。   In addition, since carbon nanotubes have excellent conductivity, the inorganic particles of the present invention carrying carbon nanotubes can impart conductivity to a resin or the like.

本発明において用いる無機粒子は、特に限定されるものではないが、例えば、金属酸化物粒子が挙げられる。樹脂等に配合して高い補強性を示す観点からは、繊維状または板状の無機粒子が好ましく用いられる。繊維状または板状の無機粒子としては、繊維状もしくは板状のチタン酸カリウム、並びにワラストナイトなどが挙げられる。   The inorganic particles used in the present invention are not particularly limited, and examples thereof include metal oxide particles. From the viewpoint of blending with a resin or the like and exhibiting high reinforcement, fibrous or plate-like inorganic particles are preferably used. Examples of the fibrous or plate-like inorganic particles include fibrous or plate-like potassium titanate and wollastonite.

無機粒子の表面にカーボンナノチューブを担持させる方法としては、特に限定されるものではないが、例えば、無機粒子の表面にカーボンナノチューブを生成させるための触媒を担持させ、担持させた触媒を用いてカーボンナノチューブを無機粒子の表面から生成させ成長させる方法が挙げられる。   A method for supporting carbon nanotubes on the surface of inorganic particles is not particularly limited. For example, a catalyst for generating carbon nanotubes is supported on the surface of inorganic particles, and carbon is supported using the supported catalyst. There is a method of generating and growing nanotubes from the surface of inorganic particles.

無機粒子の表面に担持させる触媒としては、Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,In,Sn,Al,Ptの内少なくとも1種以上の元素を含む化合物、例えば金属単体、金属酸化物、金属水酸化物、金属炭化物等が使用できる。中でもFe,Ni,Coの酸化物及び水酸化物は担持が容易で優れた触媒であり、表面に効率良くカーボンナノチューブを形成できる。   As the catalyst to be supported on the surface of the inorganic particles, a compound containing at least one element of Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, In, Sn, Al, and Pt, for example, a simple metal, Metal oxide, metal hydroxide, metal carbide, etc. can be used. Among them, oxides and hydroxides of Fe, Ni, Co are easy to carry and are excellent catalysts, and can form carbon nanotubes on the surface efficiently.

無機粒子の表面に上記触媒を担持させる方法としては、スパッタリング、真空蒸着、CVD、鍍金等があげられるが最も簡便で実用的な方法として無機粒子或いは金属酸化物粒子を触媒金属の化合物溶液に浸漬する方法がある。   Sputtering, vacuum deposition, CVD, plating, etc. can be used as a method for supporting the catalyst on the surface of the inorganic particles, but the simplest and practical method is to immerse the inorganic particles or metal oxide particles in the catalyst metal compound solution. There is a way to do it.

単純に溶液に浸漬し分離、乾燥或いは焼成するだけでも触媒金属は担持されるが、より確実に担持させる方法として、無機粒子或いは金属酸化物粒子がアルカリ金属或いはアルカリ土類金属元素を有する場合に触媒化合物溶液に浸漬することでアルカリ金属元素或いはアルカリ土類金属元素と触媒金属が置換し効率的に触媒金属をこれら粒子の表面に固定する方法がある。また、金属化合物が触媒としてカーボンナノチューブを形成するためには微細な粒子として担持される必要があるが、触媒金属化合物の加水分解等を利用して作成されたコロイドゾルに無機粒子或いは金属酸化物粒子を浸漬する方法が有効である。例えば塩化第二鉄の水溶液にワラストナイトを浸漬するだけでも鉄触媒を担持させる事は可能である。この場合ワラストナイト表面のCaが液中のFeイオンと置換し表面に水酸化鉄や酸化鉄微粒子が形成され担持される。   The catalyst metal is supported by simply dipping in a solution, separating, drying, or calcining. However, as a method of more reliably supporting, when inorganic particles or metal oxide particles have an alkali metal or alkaline earth metal element, There is a method in which an alkali metal element or alkaline earth metal element and a catalyst metal are replaced by immersion in a catalyst compound solution, and the catalyst metal is efficiently fixed to the surface of these particles. In addition, in order to form a carbon nanotube as a catalyst, the metal compound needs to be supported as fine particles. However, inorganic particles or metal oxide particles are formed on a colloidal sol prepared by hydrolysis of the catalyst metal compound. The method of immersing the is effective. For example, it is possible to support an iron catalyst simply by immersing wollastonite in an aqueous solution of ferric chloride. In this case, Ca on the surface of wollastonite is replaced with Fe ions in the liquid, and iron hydroxide and iron oxide fine particles are formed and supported on the surface.

一方、同じ塩化第二鉄の水溶液を煮沸水に滴下することで水酸化鉄或いは酸化鉄の微粒子ゾルが形成される、このゾル中に板状のチタン酸カリウムリチウムを浸漬し、分離、乾燥あるいは焼成する事で酸化鉄微粒子触媒を担持することが可能である。この方法は無機粒子或いは金属酸化物粒子の表面に塩基が無くても担持が可能であり幅広い無機粒子或いは金属酸化物粒子に応用できる。   On the other hand, by dropping the same aqueous ferric chloride solution into boiling water, a fine particle sol of iron hydroxide or iron oxide is formed. In this sol, plate-like potassium lithium titanate is immersed, separated, dried or dried. It is possible to carry the iron oxide fine particle catalyst by firing. This method can be supported without a base on the surface of inorganic particles or metal oxide particles, and can be applied to a wide range of inorganic particles or metal oxide particles.

触媒を担持させた無機粒子の表面上にカーボンナノチューブを生成させ成長させる方法としては、CVD法が挙げられる。この場合に用いられるCVD法とは一般にカーボンナノチューブの製造に用いられるエタン、エチレン、アセチレン等の炭化水素ガスと窒素、ヘリウム、アルゴン等の不活性ガスを含む混合ガスによるものだけではなく、エタノールやトルエン等の常温で液体の炭化水素化合物やポリスチレン等の常温で固体の炭化水素を用いるCVD法も可能であり、大量合成法としてむしろ望ましい。例えば前項で記載した酸化鉄触媒を担持させた鉄触媒担持ワラストナイトとポリスチレン樹脂粉末を混合し窒素雰囲気下で700℃以上に加熱することでカーボンナノチューブ担持無機粒子或いは金属酸化物粒子が合成できる。このときのワラストナイトとポリスチレンの混合比はワラストナイト1に対してポリスチレンは0.01以上で可能であるが効率の点より0.1〜10が望ましくCVD温度は800〜1000℃が望ましい。   As a method for generating and growing carbon nanotubes on the surface of inorganic particles carrying a catalyst, a CVD method can be mentioned. The CVD method used in this case is not only based on a mixed gas containing a hydrocarbon gas such as ethane, ethylene or acetylene generally used in the production of carbon nanotubes and an inert gas such as nitrogen, helium or argon, but also ethanol or A CVD method using a hydrocarbon compound that is liquid at room temperature such as toluene or a hydrocarbon that is solid at room temperature such as polystyrene is also possible, which is rather desirable as a mass synthesis method. For example, carbon nanotube-supported inorganic particles or metal oxide particles can be synthesized by mixing the iron catalyst-supporting wollastonite supporting the iron oxide catalyst described in the previous section and polystyrene resin powder and heating to 700 ° C. or higher in a nitrogen atmosphere. . In this case, the mixing ratio of wollastonite and polystyrene can be 0.01 or more with respect to wollastonite 1, but is preferably 0.1 to 10 from the viewpoint of efficiency, and the CVD temperature is preferably 800 to 1000 ° C. .

また、炭化水素ガスの燃焼により発生する燃焼ガスと熱を利用した燃焼法によってもカーボンナノチューブを生成させることができる。この方法は、プロパンやエチレン等の炭化水素ガスを不完全燃焼させ、その炎に触媒を担持した無機粒子を接触させることにより、燃焼ガスを炭素源とし、燃焼熱により触媒を担持させた無機粒子を加熱し、無機粒子の表面にカーボンナノチューブを生成させる方法である。例えば、前述の鉄系触媒を担持したワラストナイトの調製方法と同様の方法により、塩化第二鉄の代わりに塩化ニッケルや酢酸ニッケルを使用し、酸化ニッケルや水酸化ニッケルを担持させたワラストナイトを調製し、これを空気/エチレンの体積比が10以下、好ましくは7以下の混合気体をガスバーナーにより燃焼させてできる炎に、1分以上好ましくは15分程度接触させ、表面にカーボンナノチューブを生成させることができる。この際の温度は、500〜900℃が好ましく、さらには600〜800℃が好ましい。カーボンナノチューブが生成した後、該無機粒子との接触をやめる際に表面に生成したカーボンナノチューブが高温のまま空気と接触すると燃焼するため、500℃以下になるまで空気を遮断した状態で冷却するか、窒素、アルゴン、ヘリウム等の不活性ガスに接触させ冷却するのが望ましい。   Carbon nanotubes can also be generated by a combustion method using combustion gas generated by combustion of hydrocarbon gas and heat. In this method, hydrocarbon gas such as propane or ethylene is incompletely burned, and the inorganic particles carrying the catalyst are brought into contact with the flame, whereby the combustion gas is used as a carbon source, and the inorganic particles are carried by the heat of combustion. Is heated to form carbon nanotubes on the surface of the inorganic particles. For example, by the same method as the method for preparing wollastonite supporting the iron-based catalyst described above, nickel chloride or nickel acetate is used instead of ferric chloride, and wollaston supporting nickel oxide or nickel hydroxide is used. A knight is prepared, and this is brought into contact with a flame formed by burning a mixed gas having an air / ethylene volume ratio of 10 or less, preferably 7 or less, with a gas burner for 1 minute or more, preferably 15 minutes or more, and the surface is carbon nanotubes. Can be generated. The temperature at this time is preferably 500 to 900 ° C, more preferably 600 to 800 ° C. After the formation of carbon nanotubes, when the contact with the inorganic particles is stopped, the carbon nanotubes generated on the surface will burn if they come into contact with air at a high temperature. It is desirable to cool by contacting with an inert gas such as nitrogen, argon or helium.

本発明の製造方法は、上述のCVD法または燃焼法により、触媒を担持させた無機粒子の表面上に、カーボンナノチューブを生成させる方法であり、無機粒子に、カーボンナノチューブ生成触媒となる金属化合物を接触させ、無機粒子の表面に触媒を付着させる工程と、触媒を付着させた無機粒子を500〜1000℃に加熱しながら、炭化水素または一酸化炭素を接触させ、該無機粒子の表面にカーボンナノチューブを生成する工程と、カーボンナノチューブを生成させた後、500℃以下に冷却する工程とを備えることを特徴としている。   The production method of the present invention is a method of generating carbon nanotubes on the surface of inorganic particles carrying a catalyst by the above-mentioned CVD method or combustion method, and a metal compound that becomes a carbon nanotube generation catalyst is formed on the inorganic particles. A step of bringing the catalyst into contact with the surface of the inorganic particles, and contacting the hydrocarbon or carbon monoxide while heating the inorganic particles to which the catalyst has been attached to 500 to 1000 ° C. And a step of cooling to 500 ° C. or lower after generating the carbon nanotubes.

上記CVD法を用いる場合には、炭素源として高分子を用いることができる。
上記燃焼法によりカーボンナノチューブを生成させる場合には、炭化水素と酸素含有ガスの燃焼反応によって無機粒子を加熱し、同時に炭化水素または一酸化炭素と接触させることにより、カーボンナノチューブを生成させる。
When the CVD method is used, a polymer can be used as the carbon source.
When carbon nanotubes are produced by the combustion method, the inorganic particles are heated by a combustion reaction of hydrocarbon and oxygen-containing gas, and simultaneously brought into contact with hydrocarbons or carbon monoxide to produce carbon nanotubes.

本発明において、無機粒子の表面にカーボンナノチューブを担持させて付着させる付着量は、触媒の担持量、供給する不活性ガス量、炭化水素の種類とその量、反応温度と時間等で制御することが可能である。   In the present invention, the amount of adhesion of carbon nanotubes supported on the surface of inorganic particles is controlled by the amount of catalyst supported, the amount of inert gas supplied, the type and amount of hydrocarbon, the reaction temperature and time, etc. Is possible.

またカーボンナノチューブの担持量が少なすぎると樹脂等への補強効果が減少し、多すぎると分散不良につながりやすくなる。従ってカーボンナノチューブの付着量としては無機粒子或いは金属酸化物粒子に対する重量比で0.01〜10程度が好ましく、特に0.05〜1において効率良く生成し補強効果も十分に得られる。   Further, if the amount of carbon nanotubes supported is too small, the reinforcing effect on the resin or the like is reduced, and if it is too large, it tends to lead to poor dispersion. Accordingly, the amount of carbon nanotubes attached is preferably about 0.01 to 10 by weight ratio with respect to the inorganic particles or metal oxide particles.

カーボンナノチューブの付着量は、例えば熱分析などから求めることができる。熱分析を行い、700℃程度までの加熱減量などから求めることができる。   The adhesion amount of the carbon nanotube can be obtained from, for example, thermal analysis. Thermal analysis can be performed, and it can be determined from heating loss up to about 700 ° C.

本発明において、カーボンナノチューブを担持させる無機粒子としては、上述のように、繊維状もしくは板状のチタン酸カリウム、及びワラストナイトなどが挙げられるが、その他のものとしては、マイカ、タルク、ガラスフレーク、板状ハイドロタルサイト、板状ベーマイト、板状アルミナ、ガラス繊維、セラミック繊維、繊維状ホウ酸アルミニウム、繊維状酸化チタンなどが挙げられるが、本発明はこれらに限定されるものではない。   In the present invention, as described above, inorganic particles supporting carbon nanotubes include fibrous or plate-like potassium titanate, wollastonite, and the like. Others include mica, talc, and glass. Flakes, plate-like hydrotalcite, plate-like boehmite, plate-like alumina, glass fiber, ceramic fiber, fibrous aluminum borate, fibrous titanium oxide and the like can be mentioned, but the present invention is not limited to these.

本発明のカーボンナノチューブ担持無機粒子を、樹脂等に配合する方法は特に限定されるものではないが、本発明のカーボンナノチューブ担持無機粒子は一般に樹脂等に分散しにくいものであるので、以下の方法を用いることが好ましい。   The method of blending the carbon nanotube-supported inorganic particles of the present invention into a resin or the like is not particularly limited. However, since the carbon nanotube-supported inorganic particles of the present invention are generally difficult to disperse in a resin or the like, the following method is used. Is preferably used.

すなわち、本発明のカーボンナノチューブ担持無機粉体を高濃度に分散したプレミクスチャーを作製し、このプレミクスチャーを樹脂等に混合することによってカーボンナノチューブ担持無機粒子を樹脂等に配合することが好ましい。プレミクスチャーは、例えば、配合する樹脂を溶解する溶剤中に予めカーボンナノチューブ担持無機粒子を超音波振動を付与する方法などによって分散させておき、この分散溶液中に樹脂を添加して樹脂を溶解させた後乾燥して溶媒を除去することにより作製することができる。このように作製したプレミクスチャーを、樹脂中に混合することにより、本発明のカーボンナノチューブ担持無機粉体を良好に分散させた樹脂組成物を得ることができる。   That is, it is preferable to prepare a premixture in which the carbon nanotube-supported inorganic powder of the present invention is dispersed at a high concentration, and mix the premixture with a resin or the like to blend the carbon nanotube-supported inorganic particles into the resin or the like. In the premixture, for example, carbon nanotube-supported inorganic particles are dispersed in advance in a solvent that dissolves the resin to be blended by a method of applying ultrasonic vibration, and the resin is added to the dispersion to dissolve the resin. And then dried to remove the solvent. A resin composition in which the carbon nanotube-supported inorganic powder of the present invention is well dispersed can be obtained by mixing the thus prepared premixture in the resin.

本発明の樹脂組成物は、上記本発明のカーボンナノチューブ担持無機粉体を含有したことを特徴としている。   The resin composition of the present invention is characterized by containing the carbon nanotube-supported inorganic powder of the present invention.

カーボンナノチューブ担持無機粒子の含有量は、1〜99重量%の範囲内であることが好ましく、さらに好ましくは5〜50重量%の範囲内である。   The content of the carbon nanotube-supporting inorganic particles is preferably in the range of 1 to 99% by weight, and more preferably in the range of 5 to 50% by weight.

本発明のカーボンナノチューブ担持無機粒子を、樹脂等に配合することにより、優れた補強性を得ることができる。   By adding the carbon nanotube-supporting inorganic particles of the present invention to a resin or the like, excellent reinforcing properties can be obtained.

図1は、本発明に従う実施例で得られたカーボンナノチューブ担持ワラストナイトを示す走査型電子顕微鏡写真である。FIG. 1 is a scanning electron micrograph showing a carbon nanotube-supporting wollastonite obtained in an example according to the present invention. 図2は、本発明に従う実施例で得られたカーボンナノチューブ担持ワラストナイトの熱重量−示差熱分析測定チャートである。FIG. 2 is a thermogravimetric-differential thermal analysis measurement chart of the carbon nanotube-supporting wollastonite obtained in the example according to the present invention. 図3は、本発明に従う実施例においてカーボンナノチューブ担持ワラストナイトを加熱するのに用いたCVD装置を示す模式的断面図である。FIG. 3 is a schematic sectional view showing a CVD apparatus used to heat the carbon nanotube-supporting wollastonite in the embodiment according to the present invention. 図4は、本発明に従う実施例で得られたカーボンナノチューブ担持板状チタン酸カリウムリチウムを示す走査型電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph showing the carbon nanotube-supported plate-like lithium potassium titanate obtained in the example according to the present invention. 図5は、本発明に従う実施例においてカーボンナノチューブを生成するのに用いた燃焼法による製造装置を示す正面図である。FIG. 5 is a front view showing an apparatus for producing by a combustion method used for producing carbon nanotubes in an embodiment according to the present invention. 図6は、本発明に従う実施例においてカーボンナノチューブを生成するのに用いた燃焼法による製造装置を示す側面図である。FIG. 6 is a side view showing a combustion manufacturing apparatus used to produce carbon nanotubes in an embodiment according to the present invention. 図7は、本発明に従う実施例で得られたカーボンナノチューブ担持ワラストナイトを示す走査型電子顕微鏡写真である。FIG. 7 is a scanning electron micrograph showing the carbon nanotube-supporting wollastonite obtained in the example according to the present invention.

符号の説明Explanation of symbols

1…CVD装置
2…石英管
3…ガス導入管
4…ガス排出管
5…磁性皿
6…触媒担持ワラストナイト
10…ステンレスメッシュ製円筒
11…隔壁
12…バーナー
13…炎
DESCRIPTION OF SYMBOLS 1 ... CVD apparatus 2 ... Quartz tube 3 ... Gas introduction pipe 4 ... Gas discharge pipe 5 ... Magnetic dish 6 ... Catalyst carrying wollastonite 10 ... Stainless steel mesh cylinder 11 ... Partition wall 12 ... Burner 13 ... Flame

以下、実施例により本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更して実施することが可能なものである。   EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the gist of the present invention. is there.

(合成例1)
0.01モル/リットルの塩化第二鉄水溶液を約50℃に加熱し、この塩化第二鉄水溶液1リットル中にワラストナイト10gを添加して撹拌しながら約1時間浸漬した。撹拌を停止し、ワラストナイトを沈殿させ、上澄み液がほぼ無色透明になっていることを確認した後、上澄み液を注ぎ出し、その後沈殿しているスラリーをデカンテーションで洗浄した。デカンテーションによる洗浄は温水を用いて5回行った。その後濾過し、茶褐色に着色したケーキ状の沈殿物を得た。これを120℃で1時間乾燥し、乳鉢と40メッシュの網で解砕して、表面に微粒子鉄触媒を担持したワラストナイトの粉末を得た。
(Synthesis Example 1)
A 0.01 mol / liter aqueous ferric chloride solution was heated to about 50 ° C., 10 g of wollastonite was added to 1 liter of this aqueous ferric chloride solution and immersed for about 1 hour with stirring. Stirring was stopped, wollastonite was precipitated, and after confirming that the supernatant was almost colorless and transparent, the supernatant was poured out, and the precipitated slurry was washed by decantation. Washing by decantation was performed 5 times using warm water. Thereafter, filtration was performed to obtain a cake-like precipitate colored brown. This was dried at 120 ° C. for 1 hour, and crushed with a mortar and a 40-mesh net to obtain wollastonite powder carrying a fine-particle iron catalyst on the surface.

(実施例1)
合成例1で得られた、表面に微粒子鉄触媒を担持したワラストナイト粉末1gを、試薬1級のポリスチレン10gと混合し、角型の磁性皿の上にこの混合物を展開した。この混合物を入れた磁性皿を、図1に示すCVD装置の石英管内に設置した。図1に示すように、CVD装置1内に石英管2が挿入されており、石英管2には、ガスを導入するためのガス導入管3及びガスを排出するためのガス排出管4が設けられている。微粒子鉄触媒を表面に担持したワラストナイト粉末6を入れた磁性皿5を石英管2内の中央に配置し、ガス導入管3から窒素ガスを導入し、ガス排出管4から石英管2内のガスを排出させながら、石英管2内を加熱した。石英管2の直径は約70mmであり、長さは1200mmである。窒素ガスの流量は20ml/分とし、昇温速度を20℃/分として900℃まで加熱し、900℃で1時間保持した後、自然放冷した。
(Example 1)
1 g of wollastonite powder having a fine particle iron catalyst supported on the surface obtained in Synthesis Example 1 was mixed with 10 g of reagent grade 1 polystyrene, and this mixture was developed on a rectangular magnetic dish. The magnetic dish containing this mixture was placed in the quartz tube of the CVD apparatus shown in FIG. As shown in FIG. 1, a quartz tube 2 is inserted into a CVD apparatus 1, and the quartz tube 2 is provided with a gas introduction tube 3 for introducing gas and a gas discharge tube 4 for discharging gas. It has been. A magnetic dish 5 containing wollastonite powder 6 carrying a fine particle iron catalyst on its surface is placed in the center of the quartz tube 2, nitrogen gas is introduced from the gas introduction tube 3, and the quartz tube 2 is introduced from the gas discharge tube 4. While discharging the gas, the inside of the quartz tube 2 was heated. The diameter of the quartz tube 2 is about 70 mm and the length is 1200 mm. The flow rate of nitrogen gas was 20 ml / min, the heating rate was 20 ° C./min, the temperature was raised to 900 ° C., the temperature was kept at 900 ° C. for 1 hour, and then naturally cooled.

以上の操作により、黒色粉末が得られた。この黒色粉末を、走査型電子顕微鏡(SEM)で観察した。   The black powder was obtained by the above operation. This black powder was observed with a scanning electron microscope (SEM).

図1は、得られた黒色粉末の走査型電子顕微鏡写真である。図1から明らかなように、ワラストナイトの表面に多数のカーボンナノチューブが担持されていることが確認された。   FIG. 1 is a scanning electron micrograph of the obtained black powder. As is clear from FIG. 1, it was confirmed that a large number of carbon nanotubes were supported on the surface of wollastonite.

図2は、得られたカーボンナノチューブ担持無機粒子の熱重量−示差熱分析(TG−DTA)の測定結果を示す図である。図2から明らかなように、約700℃までの加熱減量は27.6%である。従って、カーボンナノチューブの付着量は27.6重量%であると考えられる。   FIG. 2 is a diagram showing a measurement result of thermogravimetric-differential thermal analysis (TG-DTA) of the obtained carbon nanotube-supporting inorganic particles. As is apparent from FIG. 2, the loss on heating up to about 700 ° C. is 27.6%. Therefore, it is considered that the adhesion amount of the carbon nanotube is 27.6% by weight.

(実施例2)
実施例1で得られたカーボンナノチューブ担持ワラストナイト5gを、試薬のテトラヒドロフラン100mlにマグネティックスタラー及び超音波洗浄器を使用して分散させた。その後、このスラリーにポリカーボネート樹脂(商品名「ユーピロン E−2000」、三菱エンジニアリング社製)5gを添加し、マグネティックスタラー及び超音波洗浄器を使用してこの樹脂を溶媒中に溶解させた。
(Example 2)
5 g of the carbon nanotube-supporting wollastonite obtained in Example 1 was dispersed in 100 ml of the reagent tetrahydrofuran using a magnetic stirrer and an ultrasonic cleaner. Thereafter, 5 g of a polycarbonate resin (trade name “Iupilon E-2000”, manufactured by Mitsubishi Engineering) was added to the slurry, and the resin was dissolved in a solvent using a magnetic stirrer and an ultrasonic cleaner.

このスラリーを50〜80℃に加熱しながら撹拌し、溶媒のテトラヒドロフランを蒸発させ、10gのプレミクスチャーを作製した。次に、このプレミクスチャー10gに、40gの上記ポリカーボネート樹脂を加え、小型の混練機(東洋精機社製「ラボプラストミル」)を用いて、270℃、50rpmにて10分間混練し、カーボンナノチューブ担持ワラストナイトを10重量%含有した塊状のポリカーボネート複合材料を得た。   The slurry was stirred while being heated to 50 to 80 ° C., and the solvent tetrahydrofuran was evaporated to prepare 10 g of a premixture. Next, 40 g of the polycarbonate resin is added to 10 g of this premixture, and kneaded at 270 ° C. and 50 rpm for 10 minutes using a small kneader (Toyo Seiki Co., Ltd. “Laboplast Mill”) to carry carbon nanotubes. A bulky polycarbonate composite material containing 10% by weight of wollastonite was obtained.

このポリカーボネート複合材料を小型粉砕機(ホウライ社製)にて5〜10mmのチップ状に粉砕し、射出成形機にて曲げ強度試験片及びアイゾット衝撃抵抗試験片をそれぞれ5本成形した。   This polycarbonate composite material was pulverized into chips of 5 to 10 mm with a small pulverizer (manufactured by Horai Co., Ltd.), and five bending strength test pieces and five Izod impact resistance test pieces were formed with an injection molding machine.

得られた試験片を用いて、オートグラフ及びアイゾット衝撃抵抗測定器により、曲げ強度及びアイゾット衝撃強度を測定した。測定結果を表1に示す。   Using the obtained test piece, bending strength and Izod impact strength were measured by an autograph and an Izod impact resistance measuring instrument. The measurement results are shown in Table 1.

(比較例1)
実施例1のカーボンナノチューブ担持ワラストナイトに代えて、カーボンナノチューブを担持していない、すなわち原料のワラストナイト5gを用いる以外は、実施例2と同様にしてプレミクスチャーを作製し、このプレミクスチャーを用いてポリカーボネート樹脂組成物を実施例2と同様にして作製した。
(Comparative Example 1)
A premixture was prepared in the same manner as in Example 2 except that 5% of the raw material wollastonite was used instead of the carbon nanotube-supporting wollastonite of Example 1, that is, the premixture. A polycarbonate resin composition was prepared in the same manner as in Example 2.

得られたポリカーボネート樹脂組成物について、実施例2と同様にして曲げ強度及びアイゾット衝撃強度を測定し、測定結果を表1に示した。   The obtained polycarbonate resin composition was measured for bending strength and Izod impact strength in the same manner as in Example 2, and the measurement results are shown in Table 1.

(比較例2)
実施例1のカーボンナノチューブ担持ワラストナイトを用いずに、ポリカーボネート樹脂5gのみをテトラヒドロフラン100mlに溶解させ、溶解後テトラヒドロフランを蒸発させて樹脂を再析出させた。この再析出樹脂5gを45gのポリカーボネート樹脂に加え、実施例2と同様にして混練し、ポリカーボネート樹脂のみからなる試験片を実施例2と同様にして作製した。
(Comparative Example 2)
Without using the carbon nanotube-supporting wollastonite of Example 1, only 5 g of the polycarbonate resin was dissolved in 100 ml of tetrahydrofuran, and after dissolution, the tetrahydrofuran was evaporated to reprecipitate the resin. 5 g of this re-precipitated resin was added to 45 g of polycarbonate resin and kneaded in the same manner as in Example 2 to prepare a test piece consisting of only the polycarbonate resin in the same manner as in Example 2.

得られた試験片を用いて、実施例2と同様にして曲げ強度及びアイゾット衝撃強度を測定し、測定結果を表1に示した。   Using the obtained test piece, bending strength and Izod impact strength were measured in the same manner as in Example 2, and the measurement results are shown in Table 1.

表1に示す試験結果から明らかなように、本発明に従うカーボンナノチューブ担持ワラストナイトを用いることにより、曲げ強度を向上させ、衝撃強度の劣化を防ぐことができる。   As is clear from the test results shown in Table 1, the use of the carbon nanotube-supporting wollastonite according to the present invention can improve the bending strength and prevent the impact strength from deteriorating.

(合成例2)
0.1モル/リットルの塩化第二鉄水溶液100mlを作成し、800mlの煮沸水に滴下し、滴下終了後約1時間煮沸を継続し放冷後1000mlにメスアップし透明赤色液を得た。この透明赤色液に板状チタン酸カリウムリチウム(大塚化学製テラセス)10gを添加し1時間攪拌したした後デカンテーションにより温水で5回洗浄、濾過し茶褐色のケーキを得た。これを120℃1時間乾燥後乳鉢と40メッシュの網で解砕し表面に微粒子酸化鉄触媒粒子を担持した板状チタン酸カリウムリチウム得た。
(Synthesis Example 2)
A 0.1 mol / liter ferric chloride aqueous solution (100 ml) was prepared and added dropwise to 800 ml of boiling water. After completion of the dropwise addition, boiling was continued for about 1 hour, allowed to cool, and then made up to 1000 ml to obtain a transparent red liquid. To this transparent red liquid, 10 g of plate-like potassium lithium titanate (Terraces manufactured by Otsuka Chemical) was added and stirred for 1 hour, then washed with warm water five times by decantation and filtered to obtain a brown cake. This was dried at 120 ° C. for 1 hour, and then crushed with a mortar and a 40-mesh net to obtain a plate-like potassium potassium titanate having fine iron oxide catalyst particles supported on the surface.

(実施例3)
合成例2で得た酸化鉄触媒担持板状チタン酸カリウムリチウム1gと試薬1級のポリスチレン10gと混合し角型磁性皿上に展開した。その後実施例1と同様の操作を行い得られた黒色粉末を走査型電子顕微鏡で観察した。
(Example 3)
The iron oxide catalyst-supported plate-like potassium lithium titanate obtained in Synthesis Example 2 was mixed with reagent-grade polystyrene 10 g and developed on a square magnetic dish. Thereafter, the black powder obtained by performing the same operation as in Example 1 was observed with a scanning electron microscope.

図4は得られた黒色粉末の走査型電子顕微鏡写真である。図4より明らかなように、板状チタン酸カリウムリチウムの表面にカーボンナノチューブが担持されている事が確認された。   FIG. 4 is a scanning electron micrograph of the obtained black powder. As is clear from FIG. 4, it was confirmed that carbon nanotubes were supported on the surface of the plate-like potassium lithium titanate.

(合成例3)
約50℃に加熱した0.01モル/リットルの硝酸ニッケル水溶液1リットルに、ワラストナイト10gを添加し攪拌しながら約1時間浸漬した。攪拌を停止し沈殿させ、上澄み液がほぼ無色透明になっているのを確認した後、このスラリーをデカンテーションにて5回温水で洗浄し、薄緑色に着色したケーキ状の沈殿物を得た。これを120℃で1時間乾燥し、乳鉢と40メッシュの網で解砕して、表面に微粒子ニッケル触媒を担持したワラストナイト粉末を得た。
(Synthesis Example 3)
10 g of wollastonite was added to 1 liter of a 0.01 mol / liter nickel nitrate aqueous solution heated to about 50 ° C. and immersed for about 1 hour with stirring. Stirring was stopped and precipitation was carried out. After confirming that the supernatant liquid was almost colorless and transparent, this slurry was washed with warm water five times by decantation to obtain a cake-like precipitate colored light green. . This was dried at 120 ° C. for 1 hour, and pulverized with a mortar and a 40-mesh net to obtain wollastonite powder carrying a fine particle nickel catalyst on the surface.

(実施例4)
合成例3で得られた触媒担持ワラストナイト粉末の表面に、図5及び図6に示す装置を用いて、燃焼法によりカーボンナノチューブを生成させた。図5は正面図であり、図6は側面図である。
図5及び図6に示すように、ステンレス製メッシュからなる円筒10の両側には隔壁11が設けられており、このステンレス製メッシュからなる円筒10内に触媒担持ワラストナイト6を配置する。円筒10の下方には、バーナー12が設けられており、バーナー12で生じた炎13に触媒担持ワラストナイト6が晒される。反応の際、図6に示すように、円筒10を矢印A方向に回転させ、円筒10内の触媒担持ワラストナイト6を攪拌する。
Example 4
Carbon nanotubes were generated on the surface of the catalyst-supported wollastonite powder obtained in Synthesis Example 3 by the combustion method using the apparatus shown in FIGS. FIG. 5 is a front view, and FIG. 6 is a side view.
As shown in FIGS. 5 and 6, partition walls 11 are provided on both sides of a cylinder 10 made of stainless steel mesh, and the catalyst-supporting wollastonite 6 is disposed in the cylinder 10 made of stainless steel mesh. A burner 12 is provided below the cylinder 10, and the catalyst-supporting wollastonite 6 is exposed to a flame 13 generated in the burner 12. During the reaction, as shown in FIG. 6, the cylinder 10 is rotated in the direction of arrow A, and the catalyst-supporting wollastonite 6 in the cylinder 10 is stirred.

合成例3で得られた触媒担持ワラストナイト4.5gを、上述のように、円筒10内に配置し、円筒10を回転させながら、エチレンと空気を体積比2:10に混合したガスを、バーナー12に供給して燃焼させ、発生した炎13に触媒担持ワラストナイトを約15分間650℃で晒し反応させた。反応後、エチレンと空気の混合ガスの供給を止め、直ちに窒素ガスを吹きかけて冷却し、赤熱状態が消えた後、温度を計測し500℃以下になっているのを確認してから、窒素ガスによる冷却を止めた。   As described above, 4.5 g of the catalyst-supported wollastonite obtained in Synthesis Example 3 is placed in the cylinder 10, and a gas in which ethylene and air are mixed at a volume ratio of 2:10 while rotating the cylinder 10 is used. Then, it was supplied to the burner 12 and burned, and the catalyst-supported wollastonite was exposed to the generated flame 13 at 650 ° C. for about 15 minutes to be reacted. After the reaction, stop supplying the mixed gas of ethylene and air, immediately blow it with nitrogen gas and cool it down. After the red hot state disappears, measure the temperature and confirm that the temperature is below 500 ° C. The cooling by was stopped.

円筒10から生成物を取り出し秤量したところ、5.0gであった。得られた生成物を、走査型電子顕微鏡で観察した。
図7は、得られた生成物の走査型電子顕微鏡写真である。図7から明らかなように、ワラストナイトの表面にカーボンナノチューブが生成していることが確認された。
また、得られた生成物について熱分析を行い、約10重量%のカーボンナノチューブがワラストナイトの表面に担持されていることが確認された。
When the product was taken out from the cylinder 10 and weighed, it was 5.0 g. The obtained product was observed with a scanning electron microscope.
FIG. 7 is a scanning electron micrograph of the obtained product. As is clear from FIG. 7, it was confirmed that carbon nanotubes were formed on the surface of wollastonite.
Further, thermal analysis was performed on the obtained product, and it was confirmed that about 10% by weight of carbon nanotubes were supported on the surface of wollastonite.

Claims (8)

無機粒子の表面にカーボンナノチューブを担持させたことを特徴とするカーボンナノチューブ担持無機粒子。   A carbon nanotube-supporting inorganic particle, wherein carbon nanotubes are supported on the surface of the inorganic particle. 無機粒子が繊維状または板状無機粒子であることを特徴とする請求項1に記載のカーボンナノチューブ担持無機粒子。   The inorganic particles according to claim 1, wherein the inorganic particles are fibrous or plate-like inorganic particles. 無機粒子が、金属酸化物であることを特徴とする請求項1または2に記載のカーボンナノチューブ担持無機粒子。   The inorganic particles according to claim 1 or 2, wherein the inorganic particles are metal oxides. 無機粒子または金属酸化物粒子が、繊維状もしくは板状のチタン酸カリウムまたはワラストナイトであることを特徴とする請求項1〜3のいずれか1項に記載のカーボンナノチューブ担持無機粒子。   The inorganic particles or metal oxide particles are fibrous or plate-like potassium titanate or wollastonite, carbon nanotube-supported inorganic particles according to any one of claims 1 to 3. 請求項1〜4のいずれか1項に記載のカーボンナノチューブ担持無機粒子を含有したことを特徴とする樹脂組成物。   A resin composition comprising the carbon nanotube-supported inorganic particles according to claim 1. 無機粒子に、カーボンナノチューブ生成触媒となる金属化合物を接触させ、無機粒子の表面に触媒を付着させる工程と、
触媒を付着させた無機粒子を500℃〜1000℃に加熱しながら、炭化水素または一酸化炭素を接触させ、該無機粒子の表面にカーボンナノチューブを生成させる工程と、
カーボンナノチューブを生成させた後、500℃以下に冷却する工程とを備えることを特徴とするカーボンナノチューブ担持無機粒子の製造方法。
Contacting the inorganic particles with a metal compound serving as a carbon nanotube production catalyst, and attaching the catalyst to the surface of the inorganic particles;
A step of contacting hydrocarbons or carbon monoxide while heating the inorganic particles to which the catalyst is attached to 500 ° C. to 1000 ° C. to generate carbon nanotubes on the surface of the inorganic particles;
And a step of cooling to 500 ° C. or lower after producing the carbon nanotubes.
炭化水素源として高分子を用いるCVD法により、カーボンナノチューブが生成することを特徴とする請求項6に記載のカーボンナノチューブ担持無機粒子の製造方法。   The method for producing carbon nanotube-supporting inorganic particles according to claim 6, wherein carbon nanotubes are produced by a CVD method using a polymer as a hydrocarbon source. 炭化水素と酸素含有ガスの燃焼反応によって無機粒子が加熱され、同時に炭化水素または一酸化炭素と接触することにより、カーボンナノチューブが生成することを特徴とする請求項6に記載のカーボンナノチューブ担持無機粒子の製造方法。   7. The carbon nanotube-supported inorganic particle according to claim 6, wherein the inorganic particle is heated by a combustion reaction of a hydrocarbon and an oxygen-containing gas and is simultaneously brought into contact with the hydrocarbon or carbon monoxide to produce a carbon nanotube. Manufacturing method.
JP2007501583A 2005-02-02 2006-02-01 Carbon nanotube-supported inorganic particles Pending JPWO2006082829A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005026126 2005-02-02
JP2005026126 2005-02-02
PCT/JP2006/301629 WO2006082829A1 (en) 2005-02-02 2006-02-01 Carbon nanotube-loaded inorganic particle

Publications (1)

Publication Number Publication Date
JPWO2006082829A1 true JPWO2006082829A1 (en) 2008-08-07

Family

ID=36777213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007501583A Pending JPWO2006082829A1 (en) 2005-02-02 2006-02-01 Carbon nanotube-supported inorganic particles

Country Status (6)

Country Link
EP (1) EP1845064A4 (en)
JP (1) JPWO2006082829A1 (en)
KR (1) KR20070101302A (en)
CN (2) CN102120895B (en)
TW (1) TW200635854A (en)
WO (1) WO2006082829A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090064546A (en) 2006-09-22 2009-06-19 오츠카 가가쿠 가부시키가이샤 Metal oxide particles carrying carbon nanotubes and granular carbon nanotubes
US8480729B2 (en) * 2007-09-06 2013-07-09 Boston Science Scimed, Inc. Medical devices containing silicate and carbon particles
JP5018387B2 (en) * 2007-10-11 2012-09-05 三菱化学株式会社 Catalyst and method for producing fine hollow carbon fiber using the same
EP2277830A4 (en) * 2008-03-17 2012-02-22 Otsuka Chemical Holdings Co Ltd Method for manufacturing carbon nanotube
WO2010095509A1 (en) * 2009-02-17 2010-08-26 学校法人 名城大学 Process and apparatus for producing composite material
CN102648155A (en) * 2009-12-08 2012-08-22 应用纳米结构方案公司 CNT-infused fibers in thermoplastic matrices
JP5830471B2 (en) 2010-02-02 2015-12-09 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc Method for producing carbon nanotube-introduced fiber material including carbon nanotubes arranged in parallel
JP5874994B2 (en) * 2010-08-19 2016-03-02 国立大学法人信州大学 Method for producing carbon nanotube
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
JP2013135005A (en) * 2011-12-26 2013-07-08 Hitachi Zosen Corp Fibrous carbon-containing resin
CN103480407B (en) * 2013-09-27 2015-11-04 神华集团有限责任公司 Fe-series catalyst auxiliary agent and its preparation method and application
CN109755546B (en) * 2019-03-08 2020-07-14 湖南宸宇富基新能源科技有限公司 Preparation method of silicon-based composite material for lithium ion power battery
CN110611068B (en) * 2019-09-12 2022-03-25 肇庆市华师大光电产业研究院 Preparation method of novel lithium-sulfur battery diaphragm material
CN113943486A (en) * 2021-10-26 2022-01-18 杭州博源电力设备有限公司 Cable plugging material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.
JP2003012939A (en) * 2001-07-03 2003-01-15 Toray Ind Inc Carbon-containing resin composition, molding material and molded product
JP2003238130A (en) * 2002-02-08 2003-08-27 Toray Ind Inc Method of manufacturing carbon nanotube and catalytic composition
JP2004074062A (en) * 2002-08-20 2004-03-11 Kiyoshi Otsuka Catalyst for manufacturing carbon nanotube, manufacturing method thereof and carbon nanotube manufacturing method
JP2005502025A (en) * 2001-08-30 2005-01-20 ティーディーエイ リサーチ インコーポレイテッド Burner and combustion equipment for the production of carbon nanomaterials
JP2005022950A (en) * 2003-07-04 2005-01-27 Rikizo Hatakeyama Method of manufacturing single-wall carbon nanotube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872150B1 (en) * 2004-06-23 2006-09-01 Toulouse Inst Nat Polytech PROCESS FOR THE SELECTIVE MANUFACTURE OF ORDINATED CARBON NANOTUBES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255519A (en) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc Production method for monolayer carbon nanotube and removal method of zeolite.
JP2003012939A (en) * 2001-07-03 2003-01-15 Toray Ind Inc Carbon-containing resin composition, molding material and molded product
JP2005502025A (en) * 2001-08-30 2005-01-20 ティーディーエイ リサーチ インコーポレイテッド Burner and combustion equipment for the production of carbon nanomaterials
JP2003238130A (en) * 2002-02-08 2003-08-27 Toray Ind Inc Method of manufacturing carbon nanotube and catalytic composition
JP2004074062A (en) * 2002-08-20 2004-03-11 Kiyoshi Otsuka Catalyst for manufacturing carbon nanotube, manufacturing method thereof and carbon nanotube manufacturing method
JP2005022950A (en) * 2003-07-04 2005-01-27 Rikizo Hatakeyama Method of manufacturing single-wall carbon nanotube

Also Published As

Publication number Publication date
TW200635854A (en) 2006-10-16
CN101111455B (en) 2012-02-15
CN102120895A (en) 2011-07-13
CN102120895B (en) 2012-11-28
CN101111455A (en) 2008-01-23
EP1845064A1 (en) 2007-10-17
EP1845064A4 (en) 2008-10-15
WO2006082829A1 (en) 2006-08-10
KR20070101302A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
JPWO2006082829A1 (en) Carbon nanotube-supported inorganic particles
JP5343228B2 (en) Carbon nanotube-supported metal oxide particles and granular carbon nanotubes
JP5156383B2 (en) Catalyst for the synthesis of single-walled carbon nanotubes
KR101446116B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
JP6779784B2 (en) Conductive polymer material and molded products using it
JP5347139B2 (en) Method for producing carbon nanotube
JP2013163635A (en) Highly conductive carbon nanotube having bundle moiety with ultra-low bulk density and method for producing the same
KR101089570B1 (en) Catalyst for preparing carbon nanotube by controlling the apparent density
JP6237225B2 (en) Catalyst for carbon nanotube synthesis
US20080160311A1 (en) Carbon Nanotube-Loaded Inorganic Particle
Ferlauto et al. Chemical vapor deposition of multi-walled carbon nanotubes from nickel/yttria-stabilized zirconia catalysts
JP2012031015A (en) Method for producing carbon nanotube
Terry et al. Catalytic growth of carbon nanofibers and nanotubes
JP6531560B2 (en) Catalyst for carbon nanotube synthesis
KR101019971B1 (en) Highly conductive carbon nanofiber and polymer/carbon nanofiber nanocomposites using the same
KR101608477B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
JP5272136B2 (en) Method for producing nanocarbon material
TW200925301A (en) Copper-cobalt-carbon thin film catalyst and preparation method thereof and method for synthesizing carbon nanotube using the catalyst
Gao et al. Surface modification of ZrW2O8 and ZrW2O7 (OH)· 2H2O by in situ polymerization: Enhanced filler particles for use in composites
JP2016140781A (en) Catalyst for producing hollow carbon microfiber and method for producing the same, and method for producing hollow carbon microfiber
CN112705208A (en) Nickel-gallium alloy catalyst and preparation method and application thereof
JP2020196888A (en) Conductive polymer material and molded article using the same
Arumugam Synthesis and Characterization of Manganese (IV) Oxide-Multiwalled Carbon Nano Tubes (MWCNT) Composite Via Solid-State Technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090821

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522