DE10323345A1 - Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren - Google Patents

Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren Download PDF

Info

Publication number
DE10323345A1
DE10323345A1 DE10323345A DE10323345A DE10323345A1 DE 10323345 A1 DE10323345 A1 DE 10323345A1 DE 10323345 A DE10323345 A DE 10323345A DE 10323345 A DE10323345 A DE 10323345A DE 10323345 A1 DE10323345 A1 DE 10323345A1
Authority
DE
Germany
Prior art keywords
alkyl
aryl
heteroaryl
cycloalkyl
heterocyclyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10323345A
Other languages
English (en)
Inventor
Eckhard Dr. Günther
Eckhard Dr. Claus
Irene Dr. Seipelt
Ulf R. Prof. Rapp
Ludmilla Wixler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aeterna Zentaris GmbH
Original Assignee
Zentaris AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zentaris AG filed Critical Zentaris AG
Priority to DE10323345A priority Critical patent/DE10323345A1/de
Priority to YU20050876A priority patent/RS51906B/sr
Priority to NZ544112A priority patent/NZ544112A/en
Priority to MEP-2008-831A priority patent/ME00541B/de
Priority to PL04733768T priority patent/PL1636228T3/pl
Priority to RU2005140377/04A priority patent/RU2330851C9/ru
Priority to AU2004240746A priority patent/AU2004240746B2/en
Priority to SI200431009T priority patent/SI1636228T1/sl
Priority to PT04733768T priority patent/PT1636228E/pt
Priority to DE502004008322T priority patent/DE502004008322D1/de
Priority to MXPA05012645A priority patent/MXPA05012645A/es
Priority to JP2006529871A priority patent/JP2007500195A/ja
Priority to BRPI0410633-4A priority patent/BRPI0410633A/pt
Priority to KR1020057022237A priority patent/KR20060015283A/ko
Priority to EP04733768A priority patent/EP1636228B1/de
Priority to PCT/EP2004/005379 priority patent/WO2004104002A1/de
Priority to UAA200510686A priority patent/UA78929C2/uk
Priority to KR1020057022424A priority patent/KR101111464B1/ko
Priority to RU2005140378/04A priority patent/RU2005140378A/ru
Priority to ES04733768T priority patent/ES2316985T3/es
Priority to JP2006529872A priority patent/JP4571944B2/ja
Priority to CN2004800142149A priority patent/CN1795195B/zh
Priority to EP04733782A priority patent/EP1628976A1/de
Priority to PCT/EP2004/005388 priority patent/WO2004104003A1/de
Priority to AT04733768T priority patent/ATE411992T1/de
Priority to AU2004240747A priority patent/AU2004240747B2/en
Priority to CA2524525A priority patent/CA2524525C/en
Priority to YUP-2005/0864A priority patent/RS20050864A/sr
Priority to MXPA05012592A priority patent/MXPA05012592A/es
Priority to CNA2004800142045A priority patent/CN1795194A/zh
Priority to DK04733768T priority patent/DK1636228T3/da
Priority to CA002524948A priority patent/CA2524948A1/en
Priority to BRPI0410632-6A priority patent/BRPI0410632A/pt
Priority to TW093114324A priority patent/TWI341839B/zh
Priority to TW093114323A priority patent/TW200504062A/zh
Priority to ARP040101772A priority patent/AR045686A1/es
Priority to US10/851,966 priority patent/US7323468B2/en
Priority to US10/851,976 priority patent/US7276507B2/en
Priority to ARP040101771A priority patent/AR045685A1/es
Publication of DE10323345A1 publication Critical patent/DE10323345A1/de
Priority to ZA200508872A priority patent/ZA200508872B/en
Priority to ZA200508633A priority patent/ZA200508633B/en
Priority to NO20056032A priority patent/NO332005B1/no
Priority to NO20056030A priority patent/NO20056030L/no
Priority to HK06111425.6A priority patent/HK1090643A1/xx
Priority to US11/825,200 priority patent/US8193186B2/en
Priority to US11/985,031 priority patent/US20080113991A1/en
Priority to HR20090036T priority patent/HRP20090036T3/xx
Priority to CY20091100081T priority patent/CY1108715T1/el
Priority to JP2010150895A priority patent/JP5447855B2/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Abstract

Die Erfindung betrifft neue Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I, deren Herstellung und Verwendung als Arzneimittel, insbesondere zur Behandlung von malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen. DOLLAR F1

Description

  • Die Erfindung betrifft Kinase-Inhibitoren vom Typ der Pyrido[2,3-b]pyrazine, deren Herstellung und Verwendung als Arzneimittel insbesondere zur Behandlung von malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen, wie z. B. Restenose, Psoriasis, Arteriosklerose und Leberzirrhose.
  • Die Aktivierung von Proteinkinasen ist ein zentrales Ereignis bei zellulären Signaltransduktions-Prozessen. Eine aberrante Kinaseaktivierung wird bei diversen Krankheitszuständen beobachtet. Daher ist die gezielte Inhibition solcher konstitutiv aktiven Kinasen ein fundamentales therapeutisches Ziel.
  • Die Phosphorylierung von Proteinen wird im Allgemeinen durch extrazelluläre Signale initiiert und stellt einen universellen Mechanismus für die Kontrolle von verschiedenen zellulären Ereignissen, wie z. B. metabolischen Prozessen, Zellwachstum, Zellmigration, Zelldifferenzierung, Membrantransport und Apoptose dar. Für die Proteinphosphorylierung ist die Proteinfamilie der Kinasen verantwortlich. Diese Enzyme katalysieren den Phosphat-Transfer zu spezifischen Substratproteinen. Basierend auf der Substratspezifität werden die Kinasen in zwei Hauptklassen, die Tyrosinkinasen und die Serin/Threonin-Kinasen unterteilt. Sowohl die Rezeptor-Tyrosinkinasen als auch die cytoplasmatischen Tyrosin- und Serin/Threoninkinasen sind wichtige Proteine der Signaltransduktion der Zelle. Eine Überexpression bzw. Entartung dieser Proteine spielt eine wichtige Rolle bei auf pathologischen Zellproliferationen beruhenden Erkrankungen. Dazu zählen unter anderem Stoffwechselerkrankungen, Erkrankung des Bindegewebes und der Blutgefäße, sowie maligne und benigne Tumorerkrankungen. Bei der Tumorentstehung und Entwicklung treten sie häufig als Onkogene d.h. als aberrante, konstitutiv aktive Kinaseproteine auf. Die Folgen dieser übermäßigen Kinaseaktivierung sind z. B. das unkontrollierte Zellwachstum und der reduzierte Zelltod. Auch die Stimulation von tumorinduzierten Wachstumsfaktoren kann Ursache für die Überstimulation von Kinasen sein. Die Entwicklung von Kinaseinhibitoren ist daher von besonderem Interesse für alle pathogenen Prozesse, die durch Kinasen beeinflusst werden.
  • Die Erfindung ist daher darauf ausgerichtet, neue Verbindungen zu schaffen, die als Inhibitoren von solchen konstitutiv aktiven Kinasen, insbesondere den Rezeptor-Tyrosinkinasen als auch den cytoplasmatischen Tyrosin- und Serin/Threoninkinasen geeignet sind.
  • In 6-Position substituierte Pyrido[2,3-b]pyrazin-Derivate finden als pharmakologisch aktive Verbindungen und als Synthesebausteine in der pharmazeutischen Chemie vielfältige Verwendung. Beispielsweise werden in der Patentschrift WO99/17759 Pyrido[2,3-b]pyrazine beschrieben, die in 6-Position unter anderem Alkyl-, Aryl- und Heteroarylsubstituierte Carbamate tragen. Diese Verbindungen sollen dazu verwendet werden, die Funktion von Serin-Threonin-Proteinkinasen zu modulieren.
  • Weiterhin werden in dem Patent WO 03/024448 A2 von Delorme et al. Amid- und Acrylamid-substituierte Pyrido[2,3-b]pyrazine beschrieben, die als zusätzliche Substituenten auch Carbamate enthalten und als Histon Deacetylase-Inhibitoren zur Behandlung von Zellproliferationserkrankungen verwendet werden können.
  • In einer weiteren Publikation (C. Temple, Jr.; J. Med. Chem. 1990, 3044-3050) wird an einem Beispiel die Synthese eines 6-Ethylcarbamat-substituierten Pyrido[2,3-b]pyrazin-Derivates beschrieben. Eine Antitumorwirkung ist weder offenbart noch nahegelegt.
  • Die Synthese von weiteren Derivaten des 6-Ethylcarbamat-substituierten Pyrido[2,3-b]pyrazins wird in einer Veröffentlichung von R. D. Elliott beschrieben (J. Org. Chem. 1968, 2393-2397). Eine biologische Wirkung dieser Verbindungen ist weder beschrieben noch nahegelegt.
  • In der Publikation von C.Temple, Jr. J. Med. Chem. 1968, 1216-1218 wird die Synthese und Untersuchung von 6-Ethylcarbamat-substituierten Pyrido[2,3-b]pyrazinen als potentielle Antimalaria-Wirkstoffe beschrieben. Eine Antitumorwirkung ist weder offenbart noch nahegelegt.
  • Es wurde jetzt überraschend gefunden, daß neue Verbindungen aus der Reihe der Pyrido[2,3-b]pyrazine, welche in 6-Position z. B. mit Harnstoff-, Thioharnstoff-, Guanidin- oder Amidingruppen substituiert sind, zur Herstellung von Arzneimitteln und insbesondere zur Behandlung von malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen geeignet sind. Gemäß diesem Aspekt werden in der vorliegenden Anmeldung neue Verbindungen aus der Reihe der Pyrido[2,3-b]pyrazine gemäß der allgemeinen Formel I beschrieben,
    Figure 00030001
    worin die Substituenten R1-R3 folgende Bedeutung haben
    R1 und R2 können unabhängig voneinander:
    (i) Wasserstoff
    (ii) Hydroxyl
    (iii) Alkyl, wobei der Alkylrest gesättigt ist und aus 1 bis 8 C-Atomen bestehen kann,
    (iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NNC(O)-Alkyl, NHC(O)-Cycloalkyl, NNC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-,Aryl-, Heteroaryl-, Alkyl-Cycloalkyl-, Alkyl-Heterocyclyl-, Alkyl-Aryl- und Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
    (v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)N(Alkyl)2, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO3H, SO2O-Alkyl, SO2O-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylsubstituenten ihrerseits wiederum substituiert sein können, bedeutet.
    R3 kann:
    -C(Y)NR4R5 bedeuten, wobei Y = O, S und R4 und R5 unabhängig voneinander
    (i) Wasserstoff,
    (ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl, Alkyl-Aryl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3N, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten,
    (vii) oder R4 und R5 zusammen Cycloalkyl oder Heterocyclyl bedeuten,
    -C(Y)NR6R7 bedeuten, wobei Y = NH und R6 und R7 unabhängig voneinander
    (i) Wasserstoff,
    (ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten,
    (vii) oder R6 und R7 zusammen Cycloalkyl oder Heterocyclyl bedeuten, -C(NR8)R9 bedeuten, wobei R8 = H und R9
    (i) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (ii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (iii) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-ON, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
    (v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Neteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten.
  • Der Ausdruck „Alkyl" umfasst im Sinne dieser Erfindung acyclische gesättigte oder ungesättigte Kohlenwasserstoffreste, die verzweigt oder geradkettig sein können, mit 1 bis 8 C-Atomen, d.h. C1-8-Alkanyle, C2-8-Alkenyle und C2-8-Alkinyle. Dabei weisen Alkenyle mindestens eine C-C-Doppelbindung und Alkinyle mindestens eine C-C-Dreifachbindung auf. Es ist bevorzugt, dass der Alkylrest ausgewählt ist aus der Gruppe, die Methyl, Ethyl, n-Propyl, 2-Propyl, n-Butyl, sec.-Butyl, tert-Butyl, n-Pentyl, iso-Pentyl, neo-Pentyl, n-Hexyl, 2-Hexyl, n-Octyl, Ethylenyl (Vinyl), Ethinyl, Propenyl (-CH2CH=CH2; -CH=CH-CH3, -C(=CH2)-CH3), Propinyl (-CH2-C≡CH, -C≡C-CH3), Butenyl, Butinyl, Pentenyl, Pentinyl, Hexenyl, Hexinyl, Heptenyl, Heptinyl, Octenyl und Octinyl enthält.
  • Der Ausdruck „Cycloalkyl" bedeutet für die Zwecke dieser Erfindung cyclische Kohlenwasserstoffe mit 3-12 Kohlenwasserstoffen, die gesättigt oder ungesättigt sein können. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Cycloalkyl-Restes erfolgen. Der Cycloalkyl-Rest kann auch Teil eines bi- oder polycyclischen Systems sein.
  • Der Ausdruck „Heterocyclyl" steht für einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen cyclischen organischen Rest, der mindestens 1, ggf. 2, 3, 4 oder 5 Heteroatome enthält, wobei die Heteroatome gleich oder verschieden sind und der cyclische Rest gesättigt oder ungesättigt, aber nicht aromatisch ist. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Heterocyclyl-Restes erfolgen. Der Heterocyclus kann auch Teil eines bi- oder polycyclischen Systems sein. Bevorzugte Heteroatome sind Stickstoff, Sauerstoff und Schwefel. Es ist bevorzugt, dass der Heterocyclyl-Rest ausgewählt ist aus der Gruppe, die Tetrahydrofuryl, Tetrahydropyranyl, Pyrrolidinyl, Piperidinyl, Piperazinyl und Morpholinyl enthält.
  • Der Ausdruck „Aryl" bedeutet im Sinne dieser Erfindung aromatische Kohlenwasserstoffe, u.a. Phenyle, Naphthyle und Anthracenyle. Die Reste können auch mit weiteren gesättigten, (partiell) ungesättigten oder aromatischen Ringsystemen kondensiert sein. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Aryl-Restes erfolgen.
  • Der Ausdruck „Heteroaryl" steht für einen 5-, 6- oder 7-gliedrigen cyclischen aromatischen Rest, der mindestens 1, ggf. auch 2, 3, 4 oder 5 Heteroatome enthält, wobei die Heteroatome gleich oder verschieden sind. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Heteroaryl-Restes erfolgen. Der Heterocyclus kann auch Teil eines bi- oder polycyclischen Systems sein. Bevorzugte Heteroatome sind Stickstoff, Sauerstoff und Schwefel. Es ist bevorzugt, dass der Heteroaryl-Rest ausgewählt ist aus der Gruppe, die Pyrrolyl, Furyl, Thienyl, Thiazolyl, Oxazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl, Pyridinyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Phthalazinyl, Indolyl, Indazolyl, Indolizinyl, Chinolinyl, Isochinolinyl, Chinoxalinyl, Chinazolinyl, Carbazolyl, Phenazinyl, Phenothiazinyl, Acridinyl enthält.
  • Die Ausdrücke „Alkyl-Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" oder „Alkyl-Heteroaryl" bedeuten für die Zwecke der vorliegenden Erfindung, daß Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl die oben definierten Bedeutungen haben und der Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-Rest über eine C1-8-Alkyl-Gruppe an die Verbindungen der allgemeinen Struktur I gebunden ist.
  • Im Zusammenhang mit „Alkyl", „Cycloalkyl", „Heterocyclyl", „Aryl", „Heteroaryl", „Alkyl-Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" und „Alkyl-Heteroaryl" versteht man unter dem Begriff substituiert im Sinne dieser Erfindung, insofern oben nicht explicit definiert, die Substitution eines oder mehrerer Wasserstoffreste durch F, Cl, Br, I, CN, CF3, NH2, NH-Alkyl, NH-Aryl, N(Alkyl)2, NO2, SH, S-Alkyl, OH, OCF3, O-Alkyl, O-Aryl, CHO, CO2H, SO3H oder Alkyl. Die Substituenten können gleich oder verschieden sein und die Substitution kann in jeder beliebigen und möglichen Position des Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylrestes vorkommen.
  • Unter mehrfach substituierten Resten sind solche zu verstehen, die entweder an verschiedenen oder an gleichen Atomen mehrfach, z. B. zwei- oder dreifach substituiert sind, beispielsweise dreifach am gleichen C-Atom wie im Falle von CF3, -CN2CF3 oder an verschiedenen Stellen wie im Falle von -CH(OH)-CH=CH-CHCl2. Die Mehrfachsubstitution kann mit dem gleichen oder verschiedenen Substituenten erfolgen.
  • Sofern die erfindungsgemäßen Verbindungen der allgemeinen Formel I mindestens ein Asymmetriezentrum aufweisen, können sie in Form ihrer Racemate, in Form der reinen Enantiomeren und/oder Diastereomeren oder in Form von Mischungen dieser Enantiomeren und/oder Diastereomeren vorliegen. Die Mischungen können in jedem beliebigen Mischungsverhältnis der Stereoisomeren vorliegen.
  • So lassen sich beispielsweise die erfindungsgemäßen Verbindungen gemäß der allgemeinen Formel I, welche ein 'oder mehrere Chiralitätszentren aufweisen und die als Racemate auftreten, nach an sich bekannten Methoden in ihre optischen Isomeren, also Enantiomere oder Diastereomere auftrennen. Die Trennung kann durch Säulentrennung an chiralen Phasen oder durch Umkristallisation aus einem optisch aktiven Lösungsmittel oder unter Verwendung einer optisch aktiven Säure oder Base oder durch Derivatisierung mit einem optisch aktiven Reagenz, wie beispielsweise einem optisch aktiven Alkohol, und anschließender Abspaltung des Restes erfolgen.
  • Sofern möglich, können die erfindungsgemäßen Verbindungen in Form der Tautomeren vorliegen.
  • Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können, falls sie eine ausreichend basische Gruppe, wie zum Beispiel ein primäres, sekundäres oder tertiäres Amin besitzen, mit anorganischen und organischen Säuren in ihre physiologisch verträglichen Salze überführt werden. Vorzugsweise werden die pharmazeutisch annehmbaren Salze der erfindungsgemäßen Verbindungen gemäß der allgemeinen Struktur I mit Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, p-Toluolsulfonsäure, Kohlensäure, Ameisensäure, Essigsäure, Trifluoressigsäure, Sulfoessigsäure, Oxasäure, Malonsäure, Maleinsäure, Bernsteinsäure, Weinsäure, Traubensäure, Äpfelsäure, Embonsäure, Mandelsäure, Fumarsäure, Milchsäure, Citronensäure, Glutaminsäure oder Asparaginsäure gebildet. Bei den gebildeten Salzen handelt es sich u.a. um Hydrochloride, Hydrobromide, Sulfate, Hydrogensulfate, Phosphate, Methansulfonate, Tosylate, Carbonate, Hydrogencarbonate, Formiate, Acetate, Triflate, Sulfoacetate, Oxalate, Malonate, Maleate, Succinate, Tartrate, Malate, Embonate, Mandelate, Fumarate, Lactate, Citrate, Glutaminate und Aspartate. Die Stöchiometrie der gebildeten Salze der erfindungsgemäßen Verbindungen kann dabei ganzzahlige oder nicht ganzzahlige Vielfache von eins betragen.
  • Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können, falls sie eine ausreichend saure Gruppe, wie zum Beispiel die Carboxygruppe enthalten, mit anorganischen und organischen Basen in ihre physiologisch verträglichen Salze überführt werden. Als anorgArylsche Basen kommen beispielsweise Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid, als orgArylsche Basen Ethanolamin, Diethanolamin, Triethanolamin, Cyclohexylamin, Dibenzylethylendiamin und Lysin in Betracht. Die Stöchiometrie der gebildeten Salze der erfindungsgemäßen Verbindungen kann dabei ganzzahlige oder nicht ganzzahlige Vielfache von eins betragen.
  • Ebenfalls bevorzugt sind Solvate und insbesondere Hydrate der erfindungsgemäßen Verbindungen, die z. B. durch Kristallisation aus einem Lösungsmittel oder aus wässriger Lösung erhalten werden können. Es können sich dabei ein, zwei, drei oder beliebig viele Solvat- oder Wasser-Moleküle mit den erfindungsgemäßen Verbindungen zu Solvaten und Hydraten verbinden.
  • Es ist bekannt, dass chemische Substanzen Festkörper ausbilden, die in verschiedenen Ordnungszuständen vorliegen, die man als polymorphe Formen oder Modifikationen bezeichnet. Die verschiedenen Modifikationen einer polymorphen Substanz können sich in ihren physikalischen Eigenschaften stark unterscheiden. Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können in verschiedenen polymorphen Formen vorliegen, dabei können bestimmte Modifikationen metastabil sein.
  • Die Verfahren zur Herstellung erfindungsgemäßer substituierter Pyrido[2,3-b]pyrazine werden nachstehend erläutert.
  • Die Verbindungen der allgemeinen Formel I sind gemäß der folgenden Schemata (Schema 1 und 2) erhältlich: Schema 1
    Figure 00160001
    Schema 2
    Figure 00170001
  • Die Ausgangsverbindungen sind entweder im Handel erhältlich oder können nach an sich bekannten Verfahrensweisen hergestellt werden. Die Edukte 1 und 4 stellen wertvolle Zwischenverbindungen für die Herstellung der erfindungsgemäßen Pyridopyrazine der allgemeinen Formel I dar.
  • Für die Herstellung der Ausgangs- und Zielverbindungen sei beispielsweise auf folgende Primärliteratur verwiesen, deren Inhalt hiermit Bestandteil der Offenbarung der vorliegenden Anmeldung werden soll:
    • 1) Houben-Weyl, Methoden der 1) organischen Chemie, Band 4/1a, S. 343-350
    • 2) Houben-Weyl, Methoden der 2) organischen Chemie, 4. Aufl., Band E 7b (Teil 2), S. 579; Degussa GB 1184848 (1970); S. Seko, et al. EP 735025 (1996)
    • 3) D. Catarzi, et al.; J. Med. Chem. 1996, 1330-1336; J. K. Seydel, et al.; J. Med. Chem. 1994, 3016-3022
    • 4) Methods of 4) Houben-Weyl, OrgArylc Chemistry, Volume E 9c, S.231-235
    • 5) A. M. Thompson, et al. J. Med. Chem. 2000, 4200-4211
    • 6) G. Heinisch, et al. Arch. Pharm. 1997, 207-210
    • 7) N. A. Dales, et al. Org. Lett. 2001, 2313-2316; G. Dannhardt, et al. Arch. Pharm. 2000, 267-274
    • 8) M. L. Mussous, et al. Tetrahedron 1999, 4077-4094; A. Kling, et al. Bioorg. Med. Chem. Lett. 2002, 441-446
    • 9) I. K. Khanna, et al.; J. Med. Chem. 2000, 3168-3185
    • 10) L. Younghee, et al.; Bioorg. Med. Chem. Lett. 2000, 2771-2774; N. L. Reddy et al.; J. Med. Chem. 1998, 3298-3302
  • Allgemeine Vorschrift zur Darstellung der Verbindungen der allgemeinen Formel I
  • 1. Stufe
  • 2,6-Diamino-3-nitropyridin wird in einem polaren, organischen Lösungsmittel, wie beispielsweise Methanol, Ethanol, Dimethylformamid oder Dioxan, allein oder in Kombination zweier dieser Lösungsmittel, gelöst. Nach Zugabe eines Katalysators, beispielsweise Raney-Nickel, Palladium auf Kohle oder Platin(IV)dioxid, setzt man das Reaktionsgemisch unter eine Wasserstoff-Atmosphäre, wobei ein Druck zwischen 1 und 5 bar eingestellt wird. Man läßt das Reaktionsgemisch mehrere Stunden, beispielsweise 1-16 Stunden, in einem Temperaturbereich zwischen 20 °C und 60 °C reagieren. Nach beendeter Umsetzung filtriert man die unlöslichen Rückstände ab, wobei das Filtermedium beispielsweise aus Kieselgel, Celite oder handelsüblichen Glasfaserfiltern bestehen kann, und wäscht mit dem entsprechenden Lösungsmittel nach. Das Rohprodukt wird, in Lösung vorliegend, ohne weitere Aufreinigung für die nächste Umsetzung verwendet.
  • 2. Stufe
  • Das 1,2-Dion-Derivat wird in einem organischen Lösungsmittel, beispielsweise Methanol, Ethanol, Dioxan, Toluol oder Dimethylformamid, vorgelegt. 2,3,6-Triaminopyridin wird direkt nach der Reduktion als Lösung seines Rohproduktes in einem der oben genannten Lösungsmittel zum vorgelegten 1,2-Dion gegeben, gegebenenfalls unter Zugabe einer Säure, wie z. B. Essigsäure oder einer Base, beispielsweise Kaliumhydroxid. Das Reaktionsgemisch läßt man in einem Temperaturbereich von 20 °C bis 80 °C einige Zeit, beispielsweise 20 Minuten bis 40 Stunden, reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
  • 3. Stufe
  • Im Anschluß an das Grundverfahren können in Folgereaktionen die nach dem Grundverfahren entstandenen Produkte in einer dem Fachmann bekannten Vorgehensweise zu erfindungsgemässen Folgeprodukten gemäß der Formel I umgesetzt werden.
  • So kann, wenn das Produkt ein Derivat der Verbindung 5 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit einem entsprechenden Isocyanat und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Kaliumhexamethyldisilazid, Triethylamin oder Kaliumcarbonat, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Acetonitril, Tetrahydrofuran, Dichlormethan, Chloroform, 1,2-Dichlorethan oder Dioxan umgesetzt werden. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 1–24 Stunden, in einem Temperaturbereich zwischen 0 und 80 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigne ten Lösungsmittel, beispielsweise Ethanol oder Toluol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
  • Oder es kann alternativ, wenn das Produkt ein Derivat der Verbindung 6 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit Phosgen oder Carbonyldiimidazol und einem entsprechenden Amin in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Tetrahydrofuran, Toluol, Dichlormethan oder Acetonitril umgesetzt werden. Gegebenenfalls wird eine geeignete Base, vorzugsweise Pyridin, Natriumhydrogencarbonat, Triethylamin, N-Methylmorpholin oder Natriumacetat verwendet. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 15 Minuten bis 24 Stunden, in einem Temperaturbereich zwischen 0 und 60 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
  • So kann, wenn das Produkt ein Derivat der Verbindung 7 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit einem entsprechenden Isothiocyanat und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Triethylamin oder Pyridin, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Tetrahydrofuran, Aceton oder Toluol umgesetzt werden. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 30 Minuten bis 90 Stunden, in einem Temperaturbereich zwischen 0 und 115 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
  • Oder es kann alternativ, wenn das Produkt ein Derivat der Verbindung 8 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit Thiophosgen oder Thiocarbonyldiimidazol und einem entsprechenden Amin in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Tetrahydrofuran, Toluol, Dichlormethan, Ethanol oder Acetonitril umgesetzt werden. Gegebenenfalls wird eine geeignete Base, vorzugsweise Pyridin, Natriumhydrogencarbonat, Kaliumcarbonat, Triethylamin oder Imidazol verwendet. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 1 bis 24 Stunden, in einem Temperaturbereich zwischen -10 und 80 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Ethylacetat und Hexan.
  • So kann, wenn das Produkt ein Derivat der Verbindung 9 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit einem entsprechenden Aminonitril und gegebenenfalls einer geeigneten Base, vorzugsweise Triethylamin, oder einer geeigneten Säure, vorzugsweise Salzsäure, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Aceton, Toluol, Chlorbenzol, Ethanol, Tetrahydrofuran oder Dimethylsulfoxid umgesetzt werden. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 2 bis 140 Stunden, in einem Temperaturbereich zwischen 20 und 135 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
  • Oder es kann, wenn das Produkt ein Derivat der Verbindung 10 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit einem entsprechenden Nitril und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumamid oder Natriumhexamethyldisilazid, oder einem geeigneten Katalysator, beispielsweise Aluminiumtrichlorid, Trimethylaluminium, Eisessig oder Schwefelsäure, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Tetrahydrofuran, Toluol, oder Ethanol, bzw. ohne Lösungsmittel umgesetzt werden. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 30 Minuten bis 24 Stunden, in einem Temperaturbereich zwischen 0 und 200 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
  • Unter einigen der genannten Reaktionsbedingungen können OH-, SH- und NH2-Gruppen möglicherweise unerwünschte Nebenreaktionen eingehen. Es ist daher bevorzugt, diese mit Schutzgruppen zu versehen oder im Falle von NH2 durch NO2 zu ersetzen und nachfolgend die Schutzgruppe abzuspalten oder die NO2-Gruppe zu reduzieren. So kann in Abwandlung des oben beschriebenen Verfahrens in den Ausgangsverbindungen mindestens eine OH-Gruppe beispielsweise durch eine Benzyloxygruppe und/oder mindestens eine SH-Gruppe beispielsweise durch eine S-Benzylgruppe und/oder mindestens eine NH2-Gruppe durch eine NO2-Gruppe ersetzt werden. Nachfolgend kann mindestens eine – vorzugsweise alle – Benzyloxygruppe/n beispielsweise mit Wasserstoff und Palladium auf Kohle und/oder mindestens eine – vorzugsweise alle – S-Benzylgruppe/n beispielsweise mit Natrium in Ammoniak abgespalten und/oder mindestens eine – vorzugsweise alle – NO2-Gruppe/n beispielsweise mit Wasserstoff und Raney-Nickel zu NH2 reduziert werden.
  • Unter einigen der genannten Reaktionsbedingungen können Carbonsäureester- und Carbonsäureamidgruppen möglicherweise unerwünschte Nebenreaktionen eingehen. Es ist daher bevorzugt, Carbonsäureester- und Carbonsäureamidgruppen aus Verfahrensprodukten, welche mindestens eine OH- und/oder mindestens eine NH2- und/oder mindestens eine COOH-Gruppe enthalten, herzustellen. In Abwandlung des oben beschriebenen Verfahrens können Verfahrensprodukte, welche mindestens eine OH-Gruppe besitzen, und/oder welche mindestens eine NH2-Gruppe besitzen, durch Umsetzung mit einer aktivierten Carbonsäuregruppe, beispielsweise einer Carbonsäurechloridgruppe, in Carbonsäureester- bzw. Carbonsäureamidgruppen überführt werden. In Abwandlung des oben beschriebenen Verfahrens können Verfahrensprodukte, welche mindestens eine COOH-Gruppe besitzen, durch Umsetzung mit einem Aktivierungsmittel, wie beispielsweise Thionylchlorid oder Carbonyldiimidazol, und nachfolgender Umsetzung mit einem geeigneten Alkohol oder Amin in Carbonsäureester- bzw. Carbonsäureamidgruppen überführt werden.
  • Die erfindungsgemäßen Pyrido[2,3-b]pyrazin-Derivate gemäß der allgemeinen Formel I sind als Wirkstoffe in Arzneimitteln, insbesondere bei malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen, wie z. B. Restenose, Psoriasis, Arteriosklerose und Leberzirrhose zur Behandlung von Menschen, Säugetieren und Geflügel geeignet. Säugetiere können Haustiere wie Pferde, Kühe, Hunde, Katzen, Hasen, Schafe und dergleichen sein.
  • Die medizinische Wirkung der erfindungsgemäßen Pyrido[2,3-b]pyrazin-Derivate kann zum Beispiel auf einer Hemmung der Signaltransduktion durch Wechselwirkung mit Rezeptor-Tyrosinkinasen als auch mit cytoplasmatischen Tyrosin- und Serin/Threoninkinasen beruhen. Daneben sind noch weitere bekannte und unbekannte WirkmechArylsmen zur Bekämpfung von malignen Prozessen denkbar.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zur Bekämpfung von Tumoren beim Menschen und in Säugetieren bereitgestellt, welches dadurch gekennzeichnet ist, daß mindestens ein Pyrido[2,3-b]pyrazin-Derivat gemäß der allgemeinen Formel I dem Menschen oder einem Säugetier in einer für die Tumorbehandlung wirksamen Menge verabreicht wird. Die für die Behandlung zu verabreichende therapeutisch effektive Dosis des jeweiligen erfindungsgemäßen Pyrido[2,3-b]pyrazin-Derivates richtet sich u.a. nach der Art und dem Stadium der Tumorerkrankung, dem Alter und Geschlecht des Patienten, der Art der Verabreichung und der Dauer der Behandlung. Die erfindungsgemäßen Arzneimittel können als flüssige, halbfeste und feste Arzneiformen verabreicht werden. Dies erfolgt in der jeweils geeigneten Weise in Form von Aerosolen, Pulver, Puder und Streupuder, Tabletten, Dragees, Emulsionen, Schäume, Lösungen, Suspensionen, Gele, Salben, Pasten, Pillen, Pastillen, Kapseln oder Suppositorien.
  • Die Arzneiformen enthalten neben mindestens einem erfindungsgemäßen Bestandteil je nach eingesetzter galenischer Form gegebenenfalls Hilfsstoffe, wie unter anderem Lösungsmittel, Lösungsbeschleuniger, Lösungsvermittler, Emulgatoren, Netzmittel, Antischaummittel, Gelbildner, Verdickungsmittel, Filmbildner, Bindemittel, Puffer, Salzbildner, Trocknungsmittel, Fließregulierungsmittel, Füllstoffe, Konservierungsstoffe, Antioxidatien, Farbstoffe, Formentrennmittel, Gleitmittel, Sprengmittel, Geschmacks – und Geruchskorrigentien. Die Auswahl der Hilfsstoffe sowie die einzusetzenden Mengen derselben hängt von der gewählten galenischen Form ab und orientiert sich an den dem Fachmann bekannten Rezepturen.
  • Die erfindungsgemäßen Arzneimittel können in einer geeigneten Darreichungsform auf die Haut, epicutan als Lösung, Suspension, Emulsion, Schaum, Salbe, Paste oder Pflaster; über die Mund- und Zungenschleimhaut, buccal, lingual oder sublingual als Tablette, Pastille, Dragees, Linctus oder Gurgelwasser; über die Magen- und Darmschleimhaut, enteral als Tablette, Dragees, Kapsel, Lösung, Suspension oder Emulsion; über die Rectumschleimhaut, rectal als Suppositorium, Rectalkapsel oder Salbe; über die Nasenschleimhaut, nasal als Tropfen, Salben oder Spray; über das Bronchial- und Alveolarepithel, pulmonal oder per inhalationem als Aerosol oder Inhalat; über die Conjunctiva, conjunctival als Augentropfen, Augensalbe, Augentabletten, Lamellae oder Augenwasser; über die Schleimhäute der Genitalorgane, intravaginal als Vaginalkugeln, Salben und Spülung, intrauterin als Uterus-Pessare; über die ableitenden Harnwege, intraurethral als Spülung, Salbe oder Arzneistäbchen; in eine Arterie, intraarteriell als Injektion; in eine Vene, intravenös als Injektion oder Infusion; in die Haut, intracutan als Injektion oder Implantat; unter die Haut, subcutan als Injektion oder Implantat; in den Muskel, intramusculär als Injektion oder Implantat; in die Bauchhöhle, intraperitoneal als Injektion oder Infusion verabreicht werden.
  • Die erfindungsgemäßen Verbindungen der allgemeinen Struktur I können in Hinblick auf praktische therapeutische Erfordernisse mittels geeigneter Maßnahmen in ihrer Arzneistoffwirkung verlängert werden. Dieses Ziel kann auf chemischem und/oder galenischem Wege erreicht werden. Beispiele für die Erzielung einer Wirkungsverlängerung sind der Einsatz von Implantaten und Liposomen, die Bildung von schwerlöslichen Salzen und Komplexen oder der Einsatz von Kristall-Suspensionen.
  • Besonders bevorzugt sind dabei Arzneimittel, die mindestens eine Verbindung aus der nachfolgenden Gruppe der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Struktur I enthalten und die in Form ihrer freien Base oder auch als pharmazeutisch annehmbare Salze physiologisch verträglicher Säuren vorliegen können:
    1-Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Beispiel 1)
    1-Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 2)
    1-Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff (Bsp. 3)
    1-Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff-Hydrochlorid (Bsp. 4)
    1-(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 5)
    1-(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 6)
    1-[3-(4-Methoxy-phenyl)-pyrido[2,3-b)pyrazin-6-yl]-3-(2-methyl-allyl)-thioharnstoff (Bsp. 7)
    1-(3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thioharnstoff (Bsp. 8)
    1-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thioharnstoff (Bsp. 9)
    1-tert-Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 10)
    1-Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 11)
    1-Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 12)
    1-Benzyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 13)
    1-(4-Fluoro-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 14)
    1-(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-harnstoff (Bsp. 15)
    1-(4-Chloro-3-trifluoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff (Bsp. 16)
    1-(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff (Bsp. 17)
  • Gemäß der allgemeinen Vorschriften für die Stufen 1-3, denen die Syntheseschemata 1 und 2 zugrundeliegen, wurden folgende Verbindungen synthetisiert, die unter der Angabe der jeweiligen chemischen Bezeichnung aus der nachfolgenden Übersicht hervorgehen. Ferner sind ihre NMR-spektroskopischen Daten und Schmelzpunkte beigefügt. In der sich anschließenden Tabelle 1 sind aus der allgemeinen Formel II und den Substituenten R1, R2, X und Y die Strukturen dieser Verbindungen zu ersehen.
  • Die eingesetzten Chemikalien und Lösungsmittel wurden kommerziell bei den herkömmlichen Anbietern erworben (Acros, Aldrich, Fluka, Lancaster, Maybridge, Merck, Sigma, TCI, etc.) oder synthetisiert.
  • Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden, ohne darauf beschränkt zu sein.
  • Beispiel 1:
  • Herstellung von 3-Phenyl-pyrido[2,3-b]pyrazin-6-ylamin (Umsetzung gemäß Schema 1, 1. und 2. Stufe)
  • Eine Lösung aus 1.22 g 2,6-Diamino-3-nitropyridin (7.92 mmol) in 210 ml Ethanol wird mit Raney-Nickel als Katalysator bei 50 °C und 5 bar hydriert. Nach beendeter Hydrierung saugt man den Katalysator über einen Glasfaserfilter ab. In die Vorlage werden vor der Filtration 1.68 g Phenylglyoxal-Hydrat (11.03 mmol) in 50 ml Ethanol vorgelegt. Dann wird der Katalysator unter Stickstoff als Schutzgas abfiltriert und die Hydrierlösung direkt in den Reaktionskolben gesaugt. Das grün-blaue Reaktionsgemisch wird unter Stickstoff 30 min. unter Rückfluß erhitzt. Das Gemisch läßt man abkühlen und entfernt das Lösungsmittel im Vakuum. Man erhält schließlich einen dunkelbraunen Feststoff. Säulenchromatographische Reinigung an Kieselgel (Laufmittelgemisch Dichlormethan/Methanol) liefert einen hellgelben kristallinen Feststoff.
  • Herstellung von 1-Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Umsetzung gemäß Schema 2, 3. Stufe)
  • 0.246 g Natriumhydrid (6.14 mmol) werden in 5 ml wasserfreiem Dimethylformamid unter Stickstoff als Schutzgas vorgelegt. Das Gemisch wird im Eisbad auf 0 °C abgekühlt. 1.05 g 3-Phenyl-pyrido[2,3-b]pyrazin-6-ylamin (4.72 mmol) werden in 5 ml wasserfreiem Dimethylformamid gelöst und tropfenweise zugegeben. Man entfernt das Kühlbad und läßt das Gemisch 30 Minuten bei RT rühren. Danach kühlt man das Gemisch im Eisbad wieder auf 0 °C ab und fügt 0.469 g Allylisothiocyanat (4.72 mmol) in 4 ml wasserfreiem Dimethylformamid gelöst, tropfenweise hinzu. Nach beendeter Zugabe entfernt man das Kühlbad und läßt das Gemisch noch 1,5 Stunden bei Raumtemperatur rühren. Zur Aufarbeitung gießt man das Gemisch in ca. 250 ml destilliertes Wasser und saugt den ausgefallenen orangefarbenen Feststoff ab. Mehrfache säulenchromatographische Reinigung (Laufmittelgemische Dichlormethan/Methanol) und anschließende Aufreinigung an der präparativen HPLC liefern einen gelben Feststoff.
    Schmelzpunkt: 239-240°C (Zers.)
    1H-NMR (d6-DMSO): δ = 4.40 (m, 2H), 5.30 (d, 1H), 5.60 (d, 1H), 6.07-6.17 (m, 1H), 7.55-7.70 (m, 4H), 8.35 (d, 2H), 8.45 (d, 1H), 9.50 (s, 1H), 11.35 (s, 1H), 12.55 (m, 1H).
  • Folgende Beispiele wurden gemäß Beispiel 1 synthetisiert:
  • Beispiel 2: 1-Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
    • Smp.: 242-243°C (Zers.)
    • 1H-NMR (d6-DMSO): δ = 4.42 (m, 2H), 5.37 (d, 1H), 5.65 (d, 1 H), 6.07-6.19 (m, 1H), 7.57-7.68 (m, 3H), 7.97-8.05 (m, 1H), 8.07-8.19 (m, 2H), 8.40-8.52 (m, 2H), 8.99 (s, 1H), 9.70 (s, 1H), 11.36 (s, 1H), 12.56 (t, 1H).
  • Beispiel 3: 1-Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
    • Smp.: 240-241 °C (Zers.)
    • 1H-NMR (d6-DMSO): δ = 3.87 (s, 3H), 4.36-4.42 (m, 2H), 5.32 (d, 1H), 5.60 (d, 1H), 6.06-6.16 (m, 1H), 7.16 (d, 2H), 7.60 (d, 1H), 8.32 (d, 2H), 8.42 (d, 1H), 9.56 (s, 1H), 11.29 (s, 1H), 12.56 (m, 1H).
  • Beispiel 4: 1-Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff-Hydrochlorid
    • Smp.: 160-161 °C (Zers.)
    • 1H-NMR (ds-DMSO): δ = 4.36-4.43 (m, 2H), 5.31 (d, 1H), 5.59 (d, 1H), 6.05-6.16 (m, 1H), 6.97 (d, 2H), 7.57 (d, 1H), 8.20 (d, 2H), 8.40 (d, 1H), 9.41 (s, 1H), 10.17 (bs, 1H), 11.24 (s, 1H), 12.56 (m, 1H).
  • Beispiel 5: 1-(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
    • Smp.: 225-226°C (Zers.)
    • 1H-NMR (d6-DMSO): δ = 1.90 (s, 3H), 4.30-4.35 (m, 2H), 5.01 (s, 1H), 5.22 (s, 1H), 7.55-7.80 (m, 4H), 8.30-8.38 (m, 2H), 8.45 (d, 1H), 9.52 (s, 1H), 11.32 (s, 1H), 12.65 (m, 1H).
  • Beispiel 6: 1-(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
    • Smp.: 239-240°C (Zers.)
    • 1H-NMR (d6-DMSO): δ = 1.94 (s, 3H), 4.32 (m, 2H), 5.07 (s, 1H), 5.28 (s, 1H), 7.60-7.69 (m, 3H), 8.00-8.05 (m, 1H), 8.07-8.12 (m, 1H), 8.14 (d, 1H), 8.42-8.51 (m, 2H), 8.98 (s, 1H), 9.68 (s, 1H), 11.32 (s, 1H), 12.78 (m, 1H).
  • Beispiel 7: 1-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(2-methyl-Allyl)-thioharnstoff
    • Smp.: 251-252°C (Zers.)
    • 1H-NMR (d6-DMSO): δ = 1.92 (s, 3H), 3.85 (s, 3H), 4.27-4.35 (m, 2H), 5.02 (s, 1H), 5.24 (s, 1H), 7.15 (d, 2H), 7.58 (d, 1H), 8.31 (d, 2H), 8.41 (d, 1H), 9.46 (s, 1H), 11.29 (s, 1H), 12.68 (m, 1H).
  • Beispiel 8: 1-(3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thioharnstoff
    • Smp.: 260-261°C (Zers.)
    • 1H-NMR (d6-DMSO): δ = 7.61-7.68 (m, 3H), 7.72 (d, 2H), 7.75 (d, 1H), 8.01-8.06 (m, 1H), 8.16 (m, 2H), 8.26 (d, 2H), 8.53 (d, 1H), 8.58 (d, 1H), 9.04 (s, 1H), 9.62 (s, 1H), 9.76 (s, 1H), 11.81 (s, 1H).
  • Beispiel 9: 1-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thioharnstoff
    • Smp.: 250-251°C (Zers.)
    • 1H-NMR (d6-DMSO): δ = 3.85 (s, 3H), 7.17 (d, 2H), 7.71 (d, 2H), 8.21 (d, 2H), 8.22-8.27 (m, 1H), 8.36-8.42 (m, 3H), 9.53 (s, 1H), 9.65 (s, 1H), 11.77 (s, 1H).
  • Beispiel 10: 1-tert.Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
    • Smp.: 227°C (Zers.)
    • 1H-NMR (d6-DMSO): δ = 1.65 (s, 9H), 7.53-7.69 (m, 4H), 8.34 (d, 2H), 8.41 (d, 1H), 9.51 (s, 1H), 10.98 (s, 1H), 12.75 (s, 1H).
  • Beispiel 11: 1-Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
    • Smp.: 233-234°C
    • 1H-NMR (d6-DMSO): δ = 0.70-0.80 (m, 2H), 0.91-1.00 (m, 2H), 3.20-3.28 (m, 1H), 7.51-7.72 (m, 4H), 8.36 (d, 2H), 8.45 (d, 1H), 9.52 (s, 1H), 11.31 (s, 1H), 12.45 (s, 1H).
  • Beispiel 12: 1-Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
    • Smp.: 253-254°C
    • 1H-NMR (d6-DMSO): δ = 3.25 (s, 3H), 7.59-7.67 (m, 4H), 8.38 (d, 2H), 8.46 (d, 1H), 9.52 (s, 1H), 11.31 (s, 1H), 12.10 (s, 1H).
  • Beispiel 13: 1-Benzyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
    • Smp.: 232-233°C
    • 1H-NMR (d6-DMSO): δ = 4.96 (m, 2H), 7.37-7.48 (m, 3H), 7.54-7.67 (m, 6H), 8.32 (d, 2H), 8.47 (d, 1H), 9.52 (s, 1H), 11.43 (s, 1H), 12.91 (s, 1H).
  • Beispiel 14: 1-(4-Fluoro-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
    • Smp.: 225-226°C
    • 1H-NMR (d6-DMSO): δ = 7.33 (m, 2H), 7.57-7.65 (m, 3H), 7.70-7.81 (m, 3H), 8.34 (d, 2H), 8.54 (d, 1H), 9.57 (s, 1H), 11.62 (s, 1H).
  • Beispiel 15: 1-(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-harnstoff
    • Smp.: 298-299°C
    • 1H-NMR (d6-DMSO): δ = 2.29 (s, 3H), 7.20 (d, 2H), 7.52 (d, 2H), 7.59-7.67 (m, 3H), 7.80 (d, 1H), 8.38 (d, 2H), 8.44 (d, 1H), 9.59 (s, 1H), 10.36 (s, 1H), 11.46 (s, 1H).
  • Beispiel 16: 1-(4-Chloro-3-trifluoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff
    • Smp.: 250°C
    • 1H-NMR (d6-DMSO): δ = 7.58-7.67 (m, 3H), 7.74 (d, 1H), 7.80 (d, 1 H), 7.87 (d, 1H), 8.21 (s, 1H), 8.39 (d, 2H), 8.48 (d, 1H), 9.53 (s, 1H), 10.55 (s, 1H), 11.82 (s, 1H).
  • Beispiel 17: 1-(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff
    • Smp.: 226°C
    • 1H-NMR (d6-DMSO): δ = 2.45-2.67 (m, 6H), 3.40-3.48 (m, 2H), 3.60-3.69 (m, 4H), 7.55-7.70 (m, 4H), 8.30-8.40 (m, 3H), 9.29 (s, 1H), 9.42 (s, 1H), 10.18 (s, 1H).
  • Tabelle 1:
    Figure 00340001
  • Biologische Wirkungen der erfindungsgemäßen Verbindungen
  • Die inhibitorische Wirkung der erfindungsgemäßen Verbindungen wurde an folgenden humanen Serin/Threonin- und Tyrosinkinasen in klassischen Kinaseassays getestet: PKB/Akt1, c-Raf, B-Raf, Mek, PDGFRbeta, Flt-3, c-Kit, c-Abl, KDR, FGFR1 und IGF1 R. Eingesetzt wurden sowohl die Volllängenkinasen als auch verkürzte Fragmente – mindestens aber die cytoplasmatischen, konstitutiv aktiven Kinasedomänen. Die Kinasen wurden als rekombinante Fusionsproteine mit GST-(Glutathion-S-Transferase) oder HIS-Tag in Sf9-Zellkultur hergestellt. Je nach Substrattyp wurden die verschiedenen Kinasereaktionen in Sandwich-ELISA-Formaten oder mittels einfacher Substratadsorptionstest auf 96-Well Flashplates (Perkin Elmer) durchgeführt.
  • Nachfolgend wird die Substanztestung an der Raf-Mek-Erk-Kaskade genauer beschrieben. Ausgewählte Testergebnisse zu den Raf- bzw. Mek-Inhibitoren sind anschließend aufgeführt.
  • Prozedere: Raf-Mek-Erk-ELISA
  • Potentielle Inhibitoren wurden zunächst bei einer Konzentration von 20μg/ml in initialen Single-Dose-Bestimmungen auf 96er Mikrotiterplatten (MTPs) untersucht. Substanzen >70% Inhibition wurden für Dosis-Wirkungsstudien eingesetzt.
  • Die Rekonstitution der Raf-Mek-Erk-Kaskade wurde mithilfe eines zellfreien ELISAs quantifiziert. Verwendet wurden folgende rekombinant hergestellte Kinaseproteine: 1.) konstitutiv aktive GST-c-Raf-DD aus Sf9-Zellen 2.) nicht aktive GST-Mek1 aus E. coli und 3.) nicht aktive His-Erk2 aus E. coli.
  • Ein typischer Kinaseansatz wurde in einem finalen Volumen von 50μl mit je 20-150ng Raf-, Mek-, Erk-Kinaseprotein, 1mM ATP, 10mM MgCl2, 150mM NaCl, 25mM beta-Glycerophosphat, 25mM Hepes pH 7.5 durchgeführt. Vor der Kinasereaktion wurden die Testsubstanzen jeweils für 30 Minuten bei Raumtemperatur mit jedem der drei Kinaseproteine einzeln vorinkubiert. Für die Kinasereaktion wurden die mit Testsubstanz vorinkubierten Kinasen zusammengeführt und für 30 Minuten bei 26°C inkubiert. Durch eine finale Konzentration von 2% SDS und 10 Minuten bei 50°C im Heizblock wurde die Reaktion gestoppt.
  • Zur Immundetektion wurden die Reaktionsansätze auf anti-Erk-Ak(K-23, Santa Cruz Biotechnology)-beschichtete 96er MTPs übertragen, 60 Minuten bei Raumtemperatur inkubiert und 3x mit TBST gewaschen. Anti-phospho-Erk-Ak (#9106, New England Biolabs) 1:500 in 50μl TBST/1 % BSA wurde zugegeben und über Nacht bei 4°C inkubiert. Nach 3x Wasch der MTPs mit TBST wurde mit sekundärem anti-Maus-IgGPOD-Konjugat (#NA931, Pharmacia) 1:2500 versetzt, 1h bei Raumtemperatur inkubiert und wiederum 3x mit TBST gewaschen. Zur kolorimetrischen Detektion der Kinasereaktion wurden je 50μl OPD (o-Phenyldiamin-dihydrochlorid)-Färbepuffer auf die Kavitäten pipettiert und 30 Minuten bei 37°C inkubiert. Die Farbreaktion wurde anschließend im ELISA-Reader bei 492nm bestimmt.
  • Die experimentelle Bestimmung von Dosis-Wirkungskurven erfolgte mittels des selben Versuchsaufbaus bei 10 halblogarithmisch abgestuften Konzentrationen von 31.6pM-100μM. Die IC50-Werte wurden in GraphPadPrism kalkuliert.
  • Die erfindungsgemäßen Verbindungen zeigen eine effektive Inhibition der Erk-Phosphorylierung mit IC50-Werten bis zu 400nM (siehe Ausführungsbeispiele 4 und 12).
  • Figure 00360001

Claims (21)

  1. Neue Pyrido[2,3-b]pyrazin-Derivate gemäß der allgemeinen Formel I
    Figure 00370001
    worin die Substituenten R1-R3 folgende Bedeutung haben: R1 und R2 können unabhängig voneinander: (i) Wasserstoff (ii) Hydroxyl (iii) Alkyl, wobei der Alkylrest gesättigt ist und aus 1 bis 8 C-Atomen bestehen kann, (iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl-, Heteroaryl-, Alkyl-Cycloalkyl-, Alkyl-Heterocyclyl-, Alkyl-Aryl- und Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können, (v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)N(Alkyl)2, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO3H, SO2O-Alkyl, SO2O-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylsubstituenten ihrerseits wiederum substituiert sein können, bedeutet. R3 kann: -C(Y)NR4R5 bedeuten, wobei Y = O, S und R4 und R5 unabhängig voneinander (i) Wasserstoff, (ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl, Alkyl-Aryl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NNC(O)-Alkyl, NHC(O)-Cycloalkyl, NNC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NN-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2N, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten, (vii) oder R4 und R5 zusammen Cycloalkyl oder Heterocyclyl bedeuten, -C(Y)NR6R7 bedeuten, wobei Y = NH und R6 und R7 unabhängig voneinander (i) Wasserstoff, (ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NNC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O-Alkyl, O-Cycloalkyl, O-Neterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Neterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten, (vii) oder R6 und R7 zusammen Cycloalkyl oder Heterocyclyl bedeuten, -C(NR8)R9 bedeuten, wobei R8 = H und R9 (i) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (ii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (iii) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten.
  2. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach anspruch 1, worin: „Alkyl" acyclische gesättigte oder ungesättigte Kohlenwasserstoffreste verzweigt oder geradkettig, mit 1 bis 8 C-Atomen sein können, wobei Alkenyle mindestens eine C-C-Doppelbindung und Alkinyle mindestens eine C-C-Dreifachbindung aufweisen, „Cycloalkyl" cyclische Kohlenwasserstoffe mit 3-12 Kohlenwasserstoffen, gesättigt oder ungesättigt sein können, deren Bindung an die Verbindungen der allgemeinen Struktur I über jedes beliebige und mögliche Ringglied des Cycloalkyl-Restes erfolgen kann und der Cycloalkyl-Rest auch Teil eines bi- oder polycyclischen Systems sein kann, „Heterocyclyl" für einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen cyclischen organischen Rest, gesättigt oder ungesättigt, jedoch nicht aromatisch steht, der mindestens 1, ggf. 2, 3, 4 oder 5 Heteroatome, bevorzugt Stickstoff, Sauerstoff und Schwefel enthält, wobei die Heteroatome gleich oder verschieden sind und dessen Bindung an die Verbindungen der allgemeinen Struktur I über jedes beliebige und mögliche Ringglied des Heterocyclyl-Restes erfolgen kann, wobei der Heterocyclus auch Teil eines bi- oder polycyclischen Systems sein kann, „Aryl" aromatische Kohlenwasserstoffe, u.a. Phenyle, Naphthyle und Anthracenyle bezeichnet, deren Reste auch mit weiteren gesättigten, (partiell) ungesättigten oder aromatischen Ringsystemen kondensiert sein können und deren Bindung an die Verbindungen der allgemeinen Struktur I über jedes beliebige und mögliche Ringglied des Aryl-Restes erfolgen kann, „Heteroaryl" für einen 5-, 6- oder 7-gliedrigen cyclischen aromatischen Rest steht, der mindestens 1, gegebenenfalls auch 2, 3, 4 oder 5 Heteroatome, bevorzugt Stickstoff, Sauerstoff, Schwefel enthält, wobei die Heteroatome gleich oder verschieden sind und dessen Bindung an die Verbindungen der allgemeinen Struktur I über jedes beliebige und mögliche Ringglied des Heteroaryl-Restes erfolgen kann, wobei der Heterocyclus auch Teil eines bi- oder polycyclischen Systems sein kann, „Alkyl-Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" oder „Alkyl-Heteroaryl" die für Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl definierten Bedeutungen haben und der Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-Rest über eine C1-8-Alkyl-Gruppe an die Verbindungen der allgemeinen Struktur I gebunden ist, „substituiert" im Zusammenhang mit „Alkyl", „Cycloalkyl", „Heterocyclyl", „Aryl", „Heteroaryl", „Alkyl-Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" und „Alkyl-Heteroaryl", insofern nicht gemäß Anspruch 1 bereits explicit definiert, die Substitution eines oder mehrerer Wasserstoffreste durch F, Cl, Br, I, CN, CF3, NH2, NH-Alkyl, NH-Aryl, N(Alkyl)2, NO2, SH, S-Alkyl, OH, OCF3, O-Alkyl, O-Aryl, CO2H, SO3H oder Alkyl bedeuten kann, wobei die Substituenten gleich oder verschieden sein und in jeder beliebigen und möglichen Position des Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylrestes vorkommen können und wobei mehrfach substituierte Reste entweder an verschiedenen oder an gleichen Atomen mehrfach, mit dem gleichen oder mit verschiedenen Substituenten erfolgen können.
  3. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der Alkylrest Methyl, Ethyl, n-Propyl, 2-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, neo-Pentyl, n-Hexyl, 2-Hexyl, n-Octyl, Ethylenyl (Vinyl), Ethinyl, Propenyl (-CH2CH=CH2; -CH=CH-CH3, -C(=CH2)- CH3), Propinyl (-CH2-C≡CH, -C≡C-CH3), Butenyl, Butinyl, Pentenyl, Pentinyl, Hexenyl, Hexinyl, Heptenyl, Heptinyl, Octenyl und Octinyl sein kann.
  4. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der Heterocyclyl-Rest Tetrahydrofuryl, Tetrahydropyranyl, Pyrrolidinyl, Piperidinyl, Piperazinyl und Morpholinyl sein kann.
  5. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der Heteroaryl-Rest Pyrrolyl, Furyl, Thienyl, Thiazolyl, Oxazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl, Pyridinyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Phthalazinyl, Indolyl, Indazolyl, Indolizinyl, Chinolinyl, Isochinolinyl, Chinoxalinyl, Chinazolinyl, Carbazolyl, Phenazinyl, Phenothiazinyl, Acridinyl sein kann.
  6. Physiologisch verträgliche Salze der Verbindungen nach Formel I gemäß Ansprüchen 1 bis 5, gekennzeichnet durch Neutralisation der basischen Verbindungen mit anorganischen und organischen Säuren bzw. Neutralisation der sauren Verbindungen mit anorganischen und organischen Basen, sowie deren Solvate und Hydrate.
  7. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I gemäß den Ansprüchen 1 bis 6 mit mindestens einem asymmetrischen Kohlenstoffatom in Form ihrer Racemate, in Form der reinen Enantiomeren und/oder Diastereomeren oder in Form von Mischungen dieser Enantiomeren und/oder Diastereomeren oder in Form der Tautomeren.
  8. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I gemäß den Ansprüchen 1 bis 7, insbesondere eine der folgenden Verbindungen: 1-Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff 1-Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoft-Hydrochlorid 1-(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(2-methyl-allyl)-thioharnstoff 1-(3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thioharnstoff 1-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thioharnstoff 1-tert-Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-Benzyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-(4-Fluoro-phenyl)-3-(3-phenyl-pyrido[2,3-b)pyrazin-6-yl)-thioharnstoff 1-(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-harnstoff 1-(4-Chloro-3-trifluoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff 1-(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff
  9. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von malignen Erkrankungen.
  10. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von auf pathologischen Zellproliferationen beruhenden Erkrankungen.
  11. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 und 10 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von Erkrankungen wie Restenose, Psoriasis, Arteriosklerose und Leberzirrhose.
  12. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von Tumoren im Menschen und in Säugetieren.
  13. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Aktivität von Tyrosin- und Serin/Threoninkinasen.
  14. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 und 13 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Aktivität von Kinasen, wie c-Raf, B-Raf, Mek, PDGFRbeta, Flt-3, IGF1R, PKB/Akt1, c-Kit, c-Abl, FGFR1 und KDR.
  15. Arzneimittel zur Verwendung bei der Behandlung von malignen Erkrankungen, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, vorzugsweise zusammen mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen.
  16. Arzneimittel zur Verwendung bei der Behandlung von auf pathologischen Zellproliferationen beruhenden Erkrankungen, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, vorzugsweise zusammen mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen.
  17. Arzneimittel zur Verwendung bei der Behandlung von Tumoren im Menschen und in Säugetieren, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, vorzugsweise zusammen mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen.
  18. Arzneimittel zur Verwendung bei der Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Aktivität von Tyrosin- und Serin/Threoninkinasen, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, vorzugsweise zusammen mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen.
  19. Arzneimittel, enthaltend eine oder mehrere Verbindungen der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 neben üblichen physiologisch verträglichen Hilfs-, Zusatz- und Trägerstoffen.
  20. Verfahren zur Herstellung eines Arzneimittels nach Anspruch 19, dadurch gekennzeichnet, daß ein oder mehrere Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen zu pharmazeutischen Zubereitungen verarbeitet, beziehungsweise in eine therapeutisch anwendbare Form gebracht werden.
  21. Verfahren zur Behandlung von Tumoren beim Menschen und in Säugetieren, dadurch gekennzeichnet, daß mindestens eine Verbindung der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 dem Menschen oder einem Säugetier in einer für die Tumorbehandlung wirksamen Menge verabreicht wird.
DE10323345A 2003-05-23 2003-05-23 Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren Withdrawn DE10323345A1 (de)

Priority Applications (49)

Application Number Priority Date Filing Date Title
DE10323345A DE10323345A1 (de) 2003-05-23 2003-05-23 Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
YU20050876A RS51906B (sr) 2003-05-23 2004-05-19 Novi piridopirazini i njihova upotreba kao modulatora kinaza
NZ544112A NZ544112A (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase modulators
MEP-2008-831A ME00541B (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
PL04733768T PL1636228T3 (pl) 2003-05-23 2004-05-19 Nowe pirydopirazyny i ich zastosowanie jako modulatorów kinazy
RU2005140377/04A RU2330851C9 (ru) 2003-05-23 2004-05-19 ПИРИДО[2,3-b]ПИРАЗИНОВЫЕ ПРОИЗВОДНЫЕ, ЛЕКАРСТВЕННОЕ СРЕДСТВО ДЛЯ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЯ ИЛИ НАРУШЕНИЯ, КОТОРЫЕ ОБУСЛОВЛЕНЫ НЕПРАВИЛЬНО НАПРАВЛЕННЫМИ ПРОЦЕССАМИ КЛЕТОЧНОЙ СИГНАЛЬНОЙ ТРАНСДУКЦИИ, СПОСОБ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННОГО СРЕДСТВА
AU2004240746A AU2004240746B2 (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase inhibitors
SI200431009T SI1636228T1 (sl) 2003-05-23 2004-05-19 Novi piridopirazini in uporaba le-teh kot modulatorjev kinaz
PT04733768T PT1636228E (pt) 2003-05-23 2004-05-19 Novas piridopirazinas e sua utilização como moduladores de cinases
DE502004008322T DE502004008322D1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
MXPA05012645A MXPA05012645A (es) 2003-05-23 2004-05-19 Piridopirazinas novedosas y su uso como moduladores de cinasa.
JP2006529871A JP2007500195A (ja) 2003-05-23 2004-05-19 新規ピリドピラジン及びキナーゼ阻害剤としてのその使用
BRPI0410633-4A BRPI0410633A (pt) 2003-05-23 2004-05-19 piridopirazinas e uso das mesmas como moduladores de cinase
KR1020057022237A KR20060015283A (ko) 2003-05-23 2004-05-19 신규한 피리도피라진 및 키나제 억제제로서의 이의 용도
EP04733768A EP1636228B1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
PCT/EP2004/005379 WO2004104002A1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als kinase-inhibitoren
UAA200510686A UA78929C2 (uk) 2003-05-23 2004-05-19 Піридопіразини та їх застосування як кіназних модуляторів
KR1020057022424A KR101111464B1 (ko) 2003-05-23 2004-05-19 신규한 피리도피라진 및 이를 포함하는 키나제 조절제로서의 약제
RU2005140378/04A RU2005140378A (ru) 2003-05-23 2004-05-19 ПИРИДО[2,3-b]ПИРАЗИНОВЫЕ ПРОИЗВОДНЫЕ (ВАРИАНТЫ), ЛЕКАРСТВЕННОЕ СРЕДСТВО НА ИХ ОСНОВЕ (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННОГО СРЕДСТВА И СПОСОБ ЛЕЧЕНИЯ ОПУХОЛЕЙ У ЧЕЛОВЕКА И МЛЕКОПИТАЮЩИХ ЖИВОТНЫХ
ES04733768T ES2316985T3 (es) 2003-05-23 2004-05-19 Nuevas piridopirazidinas y su uso como moduladores de quinasas.
JP2006529872A JP4571944B2 (ja) 2003-05-23 2004-05-19 新規のピリドピラジン及びそれらのキナーゼモジュレーターとしての使用
CN2004800142149A CN1795195B (zh) 2003-05-23 2004-05-19 新颖的吡啶并吡嗪及其作为激酶调节剂的用途
EP04733782A EP1628976A1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als kinase-inhibitoren
PCT/EP2004/005388 WO2004104003A1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
AT04733768T ATE411992T1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
AU2004240747A AU2004240747B2 (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase modulators
CA2524525A CA2524525C (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase modulators
YUP-2005/0864A RS20050864A (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase inhibitors
MXPA05012592A MXPA05012592A (es) 2003-05-23 2004-05-19 Nuevas piridopirazinas y uso de las mismas como inhibidores de cinasa.
CNA2004800142045A CN1795194A (zh) 2003-05-23 2004-05-19 新的吡啶并吡嗪类化合物及其用作激酶抑制剂的用途
DK04733768T DK1636228T3 (da) 2003-05-23 2004-05-19 Nye pyridopyraziner og deres anvendelse som kinasemodulatorer
CA002524948A CA2524948A1 (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase inhibitors
BRPI0410632-6A BRPI0410632A (pt) 2003-05-23 2004-05-19 piridopirazinas e uso das mesmas como inibidores de cinase
TW093114324A TWI341839B (en) 2003-05-23 2004-05-20 Novel pyridopyrazines and the use thereof as kinase inhibitors
TW093114323A TW200504062A (en) 2003-05-23 2004-05-20 Novel pyridopyrazines and the use thereof as kinase inhibitors
ARP040101772A AR045686A1 (es) 2003-05-23 2004-05-21 Derivados de pirido[2,3-b]pirazinas, y su uso como moduladores de quinasas
US10/851,966 US7323468B2 (en) 2003-05-23 2004-05-21 Pyridopyrazines and the use thereof as kinase inhibitors
US10/851,976 US7276507B2 (en) 2003-05-23 2004-05-21 Pyridopyrazines and the use thereof as kinase inhibitors
ARP040101771A AR045685A1 (es) 2003-05-23 2004-05-21 Piridopirazinas, procedimiento para prepararlas y su uso como inhibidores de quinasas
ZA200508872A ZA200508872B (en) 2003-05-23 2005-02-11 Novel pyridopyrazines and use thereof as kinase modulators
ZA200508633A ZA200508633B (en) 2003-05-23 2005-10-25 Novel pyridopyrazines and use thereof as kinase inhibitors
NO20056032A NO332005B1 (no) 2003-05-23 2005-12-19 Nye pyridopyraziner, anvendelse derav, medikament inneholdende minst en slik forbindelse og fremgangsmate for fremstilling av et slikt medikament
NO20056030A NO20056030L (no) 2003-05-23 2005-12-19 Nye pyridopyraziner og anvendelse derav som kinaseinhibitorer
HK06111425.6A HK1090643A1 (en) 2003-05-23 2006-10-18 Novel pyridopyrazines and use thereof as kinase modulators
US11/825,200 US8193186B2 (en) 2003-05-23 2007-07-05 Pyridopyrazines and the use thereof as kinase inhibitors
US11/985,031 US20080113991A1 (en) 2003-05-23 2007-11-12 Pyridopyrazines and the use thereof as kinase inhibitors
HR20090036T HRP20090036T3 (en) 2003-05-23 2009-01-21 Novel pyridopyrazines and use thereof as kinase modulators
CY20091100081T CY1108715T1 (el) 2003-05-23 2009-01-21 Νεες πυριδοπυραζινες και η χρηση τους ως διαμορφωτες kinασων
JP2010150895A JP5447855B2 (ja) 2003-05-23 2010-07-01 新規のピリドピラジンのキナーゼモジュレーターとしての使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10323345A DE10323345A1 (de) 2003-05-23 2003-05-23 Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren

Publications (1)

Publication Number Publication Date
DE10323345A1 true DE10323345A1 (de) 2004-12-16

Family

ID=33441206

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10323345A Withdrawn DE10323345A1 (de) 2003-05-23 2003-05-23 Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren

Country Status (17)

Country Link
US (3) US7323468B2 (de)
EP (1) EP1628976A1 (de)
JP (1) JP2007500195A (de)
KR (1) KR20060015283A (de)
CN (2) CN1795195B (de)
AR (1) AR045685A1 (de)
AU (1) AU2004240746B2 (de)
BR (1) BRPI0410632A (de)
CA (1) CA2524948A1 (de)
DE (1) DE10323345A1 (de)
MX (1) MXPA05012592A (de)
NO (1) NO20056030L (de)
RS (2) RS51906B (de)
RU (1) RU2005140378A (de)
TW (1) TW200504062A (de)
WO (1) WO2004104002A1 (de)
ZA (2) ZA200508872B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022383A1 (de) * 2004-05-06 2005-12-01 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323345A1 (de) * 2003-05-23 2004-12-16 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
MXPA05012645A (es) * 2003-05-23 2006-02-08 Zentaris Gmbh Piridopirazinas novedosas y su uso como moduladores de cinasa.
US20100132790A1 (en) * 2005-05-09 2010-06-03 Solaris Nanosciences, Inc. Rechargeable Dye Sensitized Solar Cell
CN101356173B (zh) * 2005-11-11 2012-10-31 阿特纳赞塔里斯有限公司 新的吡啶并吡嗪和它们作为激酶调节剂的用途
EP1790342A1 (de) * 2005-11-11 2007-05-30 Zentaris GmbH Pyridopyrazin-Derivate und deren Verwendung als Modulatoren der Signaltransduktionswege
US8217042B2 (en) 2005-11-11 2012-07-10 Zentaris Gmbh Pyridopyrazines and their use as modulators of kinases
WO2007054556A1 (de) 2005-11-11 2007-05-18 Æterna Zentaris Gmbh Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
EP1785423A1 (de) * 2005-11-11 2007-05-16 Zentaris GmbH Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
EP1990342A1 (de) 2007-05-10 2008-11-12 AEterna Zentaris GmbH Pyridopyrazin-Derivate sowie Herstellungs- und Verwendungsverfahren dafür
GB201007286D0 (en) 2010-04-30 2010-06-16 Astex Therapeutics Ltd New compounds
GB201020179D0 (en) 2010-11-29 2011-01-12 Astex Therapeutics Ltd New compounds
EP2508184A1 (de) 2011-04-06 2012-10-10 Æterna Zentaris GmbH Pyridopyrazinderivate und ihre Verwendungen
WO2012167423A1 (en) * 2011-06-08 2012-12-13 Hutchison Medipharma Limited Substituted pyridopyrazines as novel syk inhibitors
GB201118654D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118656D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118675D0 (en) 2011-10-28 2011-12-14 Astex Therapeutics Ltd New compounds
GB201118652D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201209613D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
GB201209609D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
GB201307577D0 (en) 2013-04-26 2013-06-12 Astex Therapeutics Ltd New compounds
HUE053654T2 (hu) 2014-03-26 2021-07-28 Astex Therapeutics Ltd FGFR- és CMET-inhibitorok kombinációi a rák kezelésére
JP6980385B2 (ja) 2014-03-26 2021-12-15 アステックス、セラピューティックス、リミテッドAstex Therapeutics Limited Fgfr阻害剤とigf1r阻害剤の組合せ
JO3512B1 (ar) 2014-03-26 2020-07-05 Astex Therapeutics Ltd مشتقات كينوكسالين مفيدة كمعدلات لإنزيم fgfr كيناز
JOP20200201A1 (ar) 2015-02-10 2017-06-16 Astex Therapeutics Ltd تركيبات صيدلانية تشتمل على n-(3.5- ثنائي ميثوكسي فينيل)-n'-(1-ميثيل إيثيل)-n-[3-(ميثيل-1h-بيرازول-4-يل) كينوكسالين-6-يل]إيثان-1.2-ثنائي الأمين
US10478494B2 (en) 2015-04-03 2019-11-19 Astex Therapeutics Ltd FGFR/PD-1 combination therapy for the treatment of cancer
MX2018003564A (es) 2015-09-23 2018-06-18 Janssen Pharmaceutica Nv 1,4-benzodiazepinas biheteroarilo sustituidas y usos de las mismas para el tratamiento del cancer.
EP3353177B1 (de) 2015-09-23 2020-06-03 Janssen Pharmaceutica NV Trizyklische heterozyklen zur behandlung von krebs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590428A1 (de) * 1992-09-26 1994-04-06 Hoechst Aktiengesellschaft Azachinoxaline, Verfahren zu ihrer Herstellung und ihre Verwendung
WO1999017759A2 (en) * 1997-10-06 1999-04-15 Asta Medica Aktiengesellschaft Methods of modulating serine/threonine protein kinase function with 5-azaquinoxaline-based compounds

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053394A (de) 1973-09-20 1975-05-12
GB9413975D0 (en) 1994-07-11 1994-08-31 Fujisawa Pharmaceutical Co New heterobicyclic derivatives
US5700823A (en) 1994-01-07 1997-12-23 Sugen, Inc. Treatment of platelet derived growth factor related disorders such as cancers
KR20040048411A (ko) * 2001-09-14 2004-06-09 메틸진, 인크. 히스톤 데아세틸라아제의 억제제
US20060142178A1 (en) 2002-04-08 2006-06-29 Barnett Stanley F Method of treating cancer
JP4394960B2 (ja) 2002-04-08 2010-01-06 メルク エンド カムパニー インコーポレーテッド Akt活性阻害薬
WO2003086403A1 (en) 2002-04-08 2003-10-23 Merck & Co., Inc. Inhibitors of akt activity
WO2004005472A2 (en) 2002-07-02 2004-01-15 Southern Research Institute Inhibitors of ftsz and uses thereof
US20050282814A1 (en) * 2002-10-03 2005-12-22 Targegen, Inc. Vasculostatic agents and methods of use thereof
KR20050056227A (ko) 2002-10-03 2005-06-14 탈자진 인코포레이티드 혈관항상성 유지제 및 그의 사용 방법
US7199119B2 (en) * 2002-10-31 2007-04-03 Amgen Inc. Antiinflammation agents
DE10323345A1 (de) 2003-05-23 2004-12-16 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
WO2006074147A2 (en) 2005-01-03 2006-07-13 Myriad Genetics, Inc. Nitrogen containing bicyclic compounds and therapeutical use thereof
CN1826341A (zh) 2003-07-18 2006-08-30 巴斯福股份公司 芳基稠合的3-芳基吡啶化合物及其在防治病原性真菌中的用途
WO2005056825A1 (en) 2003-12-05 2005-06-23 Board Of Regents, The University Of Texas System Screening for modulators of mekk2 and mekk3
JP2007514759A (ja) 2003-12-19 2007-06-07 タケダ サン ディエゴ インコーポレイテッド キナーゼ阻害剤
DE102004017932A1 (de) 2004-04-14 2005-11-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Alkin-Verbindungen mit MCH-antagonistischer Wirkung und diese Verbindungen enthaltende Arzneimittel
CN101018783B (zh) 2004-04-30 2012-11-21 遗传技术研究公司 Hedgehog信号传导途径的喹喔啉抑制剂
GB0413955D0 (en) 2004-06-22 2004-07-28 Syngenta Participations Ag Chemical compounds
GB0413953D0 (en) 2004-06-22 2004-07-28 Syngenta Participations Ag Chemical compounds
TW200621251A (en) 2004-10-12 2006-07-01 Neurogen Corp Substituted biaryl quinolin-4-ylamine analogues
US7776869B2 (en) 2004-10-18 2010-08-17 Amgen Inc. Heteroaryl-substituted alkyne compounds and method of use
JP2006137723A (ja) 2004-11-15 2006-06-01 Kyowa Hakko Kogyo Co Ltd スルホンアミド誘導体
EP1824828A2 (de) 2004-12-03 2007-08-29 Peakdale Molecular Limited Verbindungen auf pyridinbasis, die sich als zwischenprodukte für pharmazeutika oder landwirtschaftliche endprodukte eignen
WO2006073938A2 (en) 2004-12-30 2006-07-13 East Carolina University Method for the synthesis of 3-substituted indolizine and benzoindolizine compounds
JP2008526997A (ja) 2005-01-14 2008-07-24 ニューロジェン・コーポレーション ヘテロアリール置換キノリン−4−イルアミン類縁体
JP2008528587A (ja) 2005-01-25 2008-07-31 グラクソ グループ リミテッド 抗菌剤
JP2008528598A (ja) 2005-01-25 2008-07-31 グラクソ グループ リミテッド 抗菌剤
JP2008528613A (ja) 2005-01-25 2008-07-31 ニューロジェン・コーポレーション 置換ピリダジニル−及びピリミジニル−キノリン−4−イルアミン類縁体
EP1846416A4 (de) 2005-01-25 2009-07-01 Glaxo Group Ltd Antibakterielle wirkstoffe
JP2008528588A (ja) 2005-01-25 2008-07-31 グラクソ グループ リミテッド 抗菌剤
WO2006128172A2 (en) 2005-05-26 2006-11-30 Synta Pharmaceuticals Corp. Method for treating b cell regulated autoimmune disorders
WO2006128129A2 (en) 2005-05-26 2006-11-30 Synta Pharmaceuticals Corp. Method for treating cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590428A1 (de) * 1992-09-26 1994-04-06 Hoechst Aktiengesellschaft Azachinoxaline, Verfahren zu ihrer Herstellung und ihre Verwendung
WO1999017759A2 (en) * 1997-10-06 1999-04-15 Asta Medica Aktiengesellschaft Methods of modulating serine/threonine protein kinase function with 5-azaquinoxaline-based compounds

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ELLIOTT,Robert D.,et.al.: The Isomerie Pyridopyrazines from the Reaction of Some Tetraaminopyridines with Pyruvaldehyde and Benzil. In: Isomeric Pyridophyrazines, Vol.33,No.6,June 1968, S.2393-2397, ganzes Dokument *
ELLIOTT,Robert D.,et.al.: The Isomerie Pyridopyrazines from the Reaction of Some Tetraaminopyridines with Pyruvaldehyde and Benzil. In: Isomeric Pyridophyrazines, Vol.33,No.6,June 1968, S.2393-2397, ganzes Dokument;
TEMPLE,Carroll,RENER,Gregory A.: Potential Antimitotic Agents. Synthesis of Some Ethyl Benzopyrazin-7-ylcarbamates, and Ethyl Pyrido(3,4-e)-as-triazin-7-ylcarbamates.Ethyl Pyrodo (3,4-b)pyra- zin-7-ylcarbamates, and Ethyl Pyrido (3,4-e)-as-triazin-7-ylear- bamates. In: J.Med.Chem.1990,33,S.3044-3050 *
TEMPLE,Carroll,RENER,Gregory A.: Potential Antimitotic Agents. Synthesis of Some Ethyl Benzopyrazin-7-ylcarbamates, and Ethyl Pyrido(3,4-e)-as-triazin-7-ylcarbamates.Ethyl Pyrodo (3,4-b)pyra- zin-7-ylcarbamates, and Ethyl Pyrido (3,4-e)-as-triazin-7-ylear- bamates. In: J.Med.Chem.1990,33,S.3044-3050;

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022383A1 (de) * 2004-05-06 2005-12-01 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen

Also Published As

Publication number Publication date
AU2004240746B2 (en) 2007-05-31
US20080113991A1 (en) 2008-05-15
BRPI0410632A (pt) 2006-06-13
WO2004104002A1 (de) 2004-12-02
AU2004240746A1 (en) 2004-12-02
US8193186B2 (en) 2012-06-05
US20050032803A1 (en) 2005-02-10
RU2005140378A (ru) 2007-06-27
CA2524948A1 (en) 2004-12-02
RS51906B (sr) 2012-02-29
CN1795195B (zh) 2010-04-21
NO20056030L (no) 2006-02-15
ZA200508633B (en) 2006-07-26
MXPA05012592A (es) 2006-02-08
CN1795195A (zh) 2006-06-28
ZA200508872B (en) 2006-07-26
TW200504062A (en) 2005-02-01
AR045685A1 (es) 2005-11-09
RS20050864A (en) 2008-04-04
CN1795194A (zh) 2006-06-28
RS20050876A (en) 2008-04-04
US20070275972A1 (en) 2007-11-29
US7323468B2 (en) 2008-01-29
EP1628976A1 (de) 2006-03-01
JP2007500195A (ja) 2007-01-11
KR20060015283A (ko) 2006-02-16

Similar Documents

Publication Publication Date Title
EP1636228B1 (de) Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
DE10323345A1 (de) Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
DE69826841T2 (de) Phthalazines mit angiogenesis-hemmender wirkung
DE60124577T2 (de) Aza- und polyaza-naphthalenylcarbonsäureamide als hiv-integrase-hemmer
CA2905993C (en) Substituted 4-amino-pyrimidinyl-2-amino-phenyl derivatives and pharmaceutical compositions thereof for use as jak2 and alk2 inhibitors
EP3459952B1 (de) Pyrimidinderivat, verfahren zur herstellung davon und verwendung davon in der medizin
JP2013512217A (ja) 新規なナフチリジン誘導体及びそのキナーゼ阻害剤としての使用
DE10057754A1 (de) Neue Sulfonamid-substituierte Pyrazolopyridinderivate
EP1902054B1 (de) Pyrido[2,3-d]pyrimidin-derivate sowie deren herstellung und therapeutische anwendung
EP2241557A1 (de) Chinoxalin-Derivate und deren Anwendung zur Behandlung gutartiger und bösartiger Tumorerkrankungen
DE10315285A1 (de) Chromenonindole
DE10331500A1 (de) Neue Acridin-Derivate und deren Verwendung als Arzneimittel
DE4230464A1 (de) Imidazolderivate
DE602004009097T2 (de) 1.3.4-triaza-phenalen- und 1,3,4,6-tetraazaphenalen-derivate
DE102004022383A1 (de) Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
CA3234336A1 (en) Quinazoline derivative compounds, and uses thereof
EP1651600A2 (de) Neue n-substituierte indolyl-3-glyoxysäureamide, deren verwendung als arzneimittel gegen krebs und verfahren zu deren herstellung
EP1785423A1 (de) Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8127 New person/name/address of the applicant

Owner name: AETERNA ZENTARIS GMBH, 60314 FRANKFURT, DE

8139 Disposal/non-payment of the annual fee