WO2004104003A1 - Neue pyridopyrazine und deren verwendung als modulatoren von kinasen - Google Patents

Neue pyridopyrazine und deren verwendung als modulatoren von kinasen Download PDF

Info

Publication number
WO2004104003A1
WO2004104003A1 PCT/EP2004/005388 EP2004005388W WO2004104003A1 WO 2004104003 A1 WO2004104003 A1 WO 2004104003A1 EP 2004005388 W EP2004005388 W EP 2004005388W WO 2004104003 A1 WO2004104003 A1 WO 2004104003A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
heteroaryl
cycloalkyl
heterocyclyl
Prior art date
Application number
PCT/EP2004/005388
Other languages
English (en)
French (fr)
Inventor
Eckhard Günther
Eckhard Claus
Irene Seipelt
Ulf-R. Rapp
Ludmilla Wixler
Original Assignee
Zentaris Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10323345A external-priority patent/DE10323345A1/de
Priority claimed from DE102004022383A external-priority patent/DE102004022383A1/de
Priority to EP04733768A priority Critical patent/EP1636228B1/de
Priority to NZ544112A priority patent/NZ544112A/en
Priority to YU20050876A priority patent/RS51906B/sr
Priority to AU2004240747A priority patent/AU2004240747B2/en
Priority to CN2004800142149A priority patent/CN1795195B/zh
Priority to KR1020057022424A priority patent/KR101111464B1/ko
Priority to DE502004008322T priority patent/DE502004008322D1/de
Priority to DK04733768T priority patent/DK1636228T3/da
Application filed by Zentaris Gmbh filed Critical Zentaris Gmbh
Priority to JP2006529872A priority patent/JP4571944B2/ja
Priority to CA2524525A priority patent/CA2524525C/en
Priority to MXPA05012645A priority patent/MXPA05012645A/es
Priority to PL04733768T priority patent/PL1636228T3/pl
Priority to BRPI0410633-4A priority patent/BRPI0410633A/pt
Priority to UAA200510686A priority patent/UA78929C2/uk
Priority to SI200431009T priority patent/SI1636228T1/sl
Priority to MEP-2008-831A priority patent/ME00541B/de
Publication of WO2004104003A1 publication Critical patent/WO2004104003A1/de
Priority to NO20056032A priority patent/NO332005B1/no
Priority to HK06111425.6A priority patent/HK1090643A1/xx
Priority to HR20090036T priority patent/HRP20090036T3/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • Novel pyridopyrazines and their use as modulators of kinases are novel pyridopyrazines and their use as modulators of kinases.
  • the invention relates to kinase modulators of the type of pyrido [2,3-b] pyrazines, their preparation and use as medicaments for the modulation of aberrant cellular signal transduction processes, in particular for influencing the function of tyrosine and serine / threonine kinases and for the treatment of malignant or ., tumor diseases and other, based on pathological cell proliferation diseases such.
  • Activation of protein kinases is a key event in cellular signal transduction processes. An aberrant kinase activation is observed in various disease states. Therefore, targeted inhibition of kinases is a fundamental therapeutic target.
  • the phosphorylation of proteins is generally initiated by extracellular signals and provides a universal mechanism for the control of various cellular events, such as cell proliferation. For example, metabolic processes, cell growth, cell migration, cell differentiation, membrane transport and apoptosis.
  • the protein family of kinases is responsible for protein phosphorylation. These enzymes catalyze the phosphate transfer to specific substrate proteins. Based on the substrate specificity, the kinases are subdivided into two main classes, the tyrosine kinases and the serine / threonine kinases. Both the receptor tyrosine kinases and the cytoplasmic tyrosine and serine / threonine kinases are important proteins of the signal transduction of the cell.
  • Overexpression or degeneration of these proteins plays an important role in disorders based on pathological cell proliferation. These include metabolic diseases, connective tissue and blood vessel diseases, as well as malignant and benign tumors. In tumorigenesis and development, they often appear as oncogenes, ie as aberrant, constitutively active kinase proteins. The consequences of this excessive Kinaseeducation ist are z. For example, uncontrolled cell growth and reduced cell death. The stimulation of tumor-induced growth factors can also be the cause of the overstimulation of kinases. The development of Kina Semodulators are therefore of particular interest for all pathogenic processes that are influenced by kinases.
  • the invention is therefore directed to providing novel compounds useful as modulators of receptor tyrosine kinases and cytoplasmic tyrosine and serine / threonine kinases. Since not all in dysregulated signal transduction cascades cascaded in sequence - such. For example, in Raf / Mek / Erk - as oncogenic kinases or as constitutively active enzymes must be present in this invention, the non-active kinases are considered as therapeutic target proteins, i. the new compounds can bind to both active and non-active kinases, thereby influencing signal transduction.
  • Pyrido [2,3-b] pyrazine derivatives substituted in the 6- or 7-position are widely used as pharmacologically active compounds and as synthesis building blocks in pharmaceutical chemistry.
  • WO 99/17759 describes pyrido [2,3-b] pyrazines which, in the 6-position, carry, inter alia, alkyl-, aryl- and heteroaryl-substituted carbamates. These compounds will be used to modulate the function of serine-threonine protein kinases.
  • WO 04/005472 of White et al. are described, inter alia, in 6-position carbamate-substituted pyrido [2,3-b] pyrazines, which inhibit the growth of bacteria as antibacterial substances. An antitumor effect is not described.
  • R1 and R2 can be independent of each other:
  • halogen such as chlorine or bromine
  • alkyl wherein the alkyl radical is saturated and may consist of 1 to 8 carbon atoms
  • R6 can be alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkylcycloalkyl, alkylheterocyclyl, alkylaryl or alkylheteroaryl, and the alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl groups -, alkyl-cycloalkyl, alkyl-heterocyclyl, alkyl-aryl or alkyl heteroaryl substituents in turn may be substituted,
  • R7 and R8 independently of one another may be hydrogen, alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkylcycloalkyl, alkylheterocyclyl, alkylaryl or alkylheteroaryl, and the alkyl, cycloalkyl, heterocyclyl -, aryl and heteroaryl, alkyl-cycloalkyl, alkyl-heterocyclyl, alkyl-aryl or alkyl-heteroaryl substituents in turn may be substituted, or R7 and R8 together are cycloalkyl or heterocyclyl, wherein cycloalkyl and heterocyclyl in turn may be substituted, mean ,
  • C (O) N (heteroaryl) 2 , alkyl, or aryl may be mono- or polysubstituted by identical or different substituents,
  • heterocyclyl radical is mono- or polysubstituted, identically or differently, by OH, O-alkyl, O-aryl, NH 2 , NH-alkyl, NH-aryl, alkyl, alkyl-aryl or aryl can
  • R 11 and R 12 together may denote cycloalkyl or heterocyclyl
  • heterocyclyl radical may be monosubstituted, polysubstituted or differently substituted by OH, O-alkyl, O-aryl, NH 2 , NH-alkyl, NH-aryl, alkyl, or aryl,
  • R 13 and R 14 together may denote cycloalkyl or heterocyclyl
  • heterocyclyl radical may be mono- or polysubstituted, identically or differently, by OH, O-alkyl, O-aryl, NH 2 , NH-alkyl, NH-aryl, alkyl or aryl,
  • C (O) N (heteroaryl) 2 SO 2 alkyl, SO 2 -aryl, SO 2 NH 2 , SO 2 NH-alkyl, SO NH-aryl, SO 2 NH-heteroaryl, SO 3 H, SO 2 O-alkyl, SO 2 O-aryl, SO 2 O-heteroaryl, alkyl, cycloalkyl, heterocyclyl, aryl or heteroaryl, may be mono- or polysubstituted by identical or different substituents ,
  • cycloalkyl for the purposes of this invention means cyclic hydrocarbons of 3-12 carbons, which may be saturated or unsaturated .
  • Bonding to the compounds of general structure I may be via any and possible ring member of the cycloalkyl radical Residue may also be part of a bicyclic or polycyclic system.
  • heterocyclyl represents a 3-, 4-, 5-, 6-, 7- or 8-membered cyclic organic radical which contains at least 1, optionally 2, 3, 4 or 5 heteroatoms, wherein the Heteroatoms are the same or different and the cyclic radical is saturated or unsaturated but not aromatic
  • the bonding to the compounds of the general structure I can take place via any and possible ring member of the heterocyclyl radical.
  • Preferred heteroatoms are nitrogen, oxygen and sulfur It is preferred that the heterocyclyl moiety is selected from the group comprising tetrahydrofuryl, tetrahydropyranyl, pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl.
  • aryl in the context of this invention means aromatic hydrocarbons having 6 to 14 carbon atoms, including phenyls, naphthyls and anthracenyls
  • the radicals may also be condensed with further saturated, (partially) unsaturated or aromatic ring systems
  • the general structure I can be carried out via any and possible ring member of the aryl radical.
  • heteroaryl denotes a 5-, 6- or 7-membered cyclic aromatic radical which contains at least 1, optionally also 2, 3, 4 or 5 heteroatoms, where the heteroatoms are identical or different Compounds of general structure I can be made via any and possible ring member of the heteroaryl radical
  • the heterocycle can also be part of a bi- or polycyclic system
  • Preferred heteroatoms are nitrogen, oxygen and sulfur
  • the Heteroaryl radical is selected from the group which comprises pyrrolyl, furyl, thienyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, phthalazinyl, indolyl, indazolyl, indolizinyl, quinolinyl, isoquinolinyl, quinoxalinyl, Quinazolinyl, carb
  • alkylcycloalkyl means, for the purposes of the present invention, that alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl have the meanings defined above and that cycloalkyl, heterocyclyl, aryl and heteroaryl radical is bonded via a C ⁇ -8 alkyl group to the compounds of general structure I.
  • alkyl In the context of “alkyl”, “cycloalkyl”, “heterocyclyl”, “aryl”, “heteroaryl”, “alkyl-cycloalkyl”, “alkyl-heterocyclyl”, “alkyl-aryl” and “alkyl-heteroaryl” is meant by the Term substituted in the sense of this invention, insofar as not explicitly defined in the description or the claims, the substitution of one or more hydrogen radicals by F, Cl, Br, I, CN, CF 3 , NH 2 , NH-alkyl, NH-aryl, N (alkyl) 2 , NO 2 , SH, S-alkyl, OH, OCF 3 , O-alkyl, O-aryl, OSO 3 H, OP (O) (OH) 2 , CHO, CO 2 H, SO 3 H
  • the substituents may be the same or different and the substitution may occur in any and possible position of the alkyl, cycloalky
  • the compounds of the general formula I according to the invention may be present in the form of their racemates, in the form of the pure enantiomers and / or diastereomers or in the form of mixtures of these enantiomers and / or diastereomers.
  • the mixtures can be present in any mixing ratio of the stereoisomers.
  • the compounds according to the invention of general formula I which have one or more centers of chirality and which occur as racemates can be separated into their optical isomers, ie enantiomers or diastereomers, by methods known per se.
  • the separation can be carried out by column separation on chiral phases or by recrystallization from an optically active solvent or by using an optically active acid or base or by derivatization with an optically active reagent, such as an optically active alcohol, followed by cleavage of the residue.
  • the compounds of the invention may be in the form of tautomers.
  • the compounds of the general formula I according to the invention if they have a sufficiently basic group, such as, for example, a primary, secondary or tertiary amine, can be converted into their physiologically acceptable salts with inorganic and organic acids.
  • the pharmaceutically acceptable salts of the compounds of the invention according to the general structure I with hydrochloric, hydrobromic, sulfuric, phosphoric, methanesulfonic, p-toluenesulfonic, carbonic, formic, acetic, trifluoroacetic, sulfoacetic, oxalic, malonic, maleic, Succinic acid, tartaric acid, racemic acid, malic acid, embonic acid, mandelic acid, fumaric acid, lactic acid, citric acid, glutamic acid or aspartic acid.
  • the salts formed are, inter alia, hydrochlorides, hydrobromides, sulfates, hydrogen sulfates, phosphates, methanesulfonates, tosylates, carbonates, hydrogencarbonates, formates, acetates, triflates, sulfoacetates, oxalates, malonates, maleates, succinates, tartrates, malates, embonates , Almates, fumarates, lactates, citrates, glutaminates and aspartates.
  • the stoichiometry of the formed salts of the compounds according to the invention can be integer or non-integer multiples of one.
  • the compounds of the general formula I according to the invention if they contain a sufficiently acidic group such as, for example, the carboxy group, can be converted into their physiologically tolerated salts with inorganic and organic bases.
  • Suitable inorganic bases are, for example, sodium hydroxide, potassium hydroxide, calcium hydroxide, as organic bases ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dibenzylethylenediamine and lysine.
  • the stoichiometry of the formed salts of the compounds according to the invention can be integer or non-integer multiples of one.
  • solvates and in particular hydrates of the compounds of the invention can be obtained by crystallization from a solvent or from aqueous solution.
  • One, two, three or any number of solvate or water molecules can combine with the compounds according to the invention to give solvates and hydrates.
  • R 17 alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkyl-aryl, alkyl-heteroaryl
  • the starting compounds are either commercially available or can be prepared by per se known procedures.
  • the educts 4, 7 and 10-13 are valuable intermediates for the preparation of the pyridopyrazines of the general formula I according to the invention.
  • For the preparation of the starting and target compounds reference is made, for example, to the following primary literature, the content of which is hereby to become part of the disclosure of the present application:
  • 2,6-diamino-3-nitropyridine or 2-amino-3,5-dinitro-pyridine are dissolved in a suitable inert solvent such as methanol, ethanol, dimethylformamide or dioxane.
  • a catalyst for example Raney nickel, palladium on carbon or platinum (IV) dioxide
  • the reaction mixture is placed under a hydrogen atmosphere, wherein a pressure between 1 and 5 bar is set.
  • the reaction mixture is allowed to react for several hours, for example 1-16 hours, in a temperature range between 20 ° C and 60 ° C.
  • the insoluble residues are filtered off, it being possible for the filter medium to consist, for example, of silica gel, celite or commercially available glass fiber filters, and the residue is washed with the appropriate solvent.
  • the crude product is used in solution without further purification for the next reaction.
  • the 1, 2-dione derivative is presented in a suitable inert solvent, for example methanol, ethanol, dioxane, toluene or dimethylformamide.
  • 2,3,6-triaminopyridine or 2,3,5-triaminopyridine are added directly after the reduction as a solution of the crude products in one of the abovementioned solvents for the presented 1, 2-dione, optionally with the addition of an acid such.
  • acetic acid or a base for example potassium hydroxide.
  • the reaction mixture is allowed to react in a temperature range of 20 ° C to 80 ° C for some time, for example, 20 minutes to 40 hours.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate was filtered off or the aqueous phase with a suitable organic solvent such.
  • a suitable organic solvent such as dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the remaining crude product is purified by recrystallization from a suitable solvent, for example dioxane, or by column or flash chromatography on silica gel or alumina.
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • 2,3,6-triaminopyridine or 2,3,5-triaminopyridine are introduced directly after the reduction as a solution of the crude products in one of the abovementioned solvents.
  • an oxalic acid derivative such as.
  • diethyl oxalate or oxalyl chloride the reaction mixture, optionally with the addition of an acid such.
  • an acid such as hydrochloric acid, sulfuric acid or glacial acetic acid, in a temperature range of 20 ° C to 150 ° C for some time, for example, 10 minutes to 24 hours, react.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate is filtered off or the aqueous phase with a suitable organic solvent such.
  • a suitable organic solvent such as dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the purification of the remaining crude product is carried out by recrystallization from a suitable solvent, for example dioxane or toluene, or by column or flash chromatography on silica gel or alumina.
  • the eluent used is, for example, a mixture of methanol and dichloromethane. step
  • the dione derivative 8 is initially charged in a suitable inert solvent, for example dimethylformamide, dioxane or toluene, or without solvent.
  • a chlorinating agent e.g. As phosphoryl chloride or thionyl chloride is added at room temperature and the reaction mixture is allowed to react in a temperature range of 20 ° C to 100 ° C for some time, for example, 1 hour to 24 hours.
  • the reaction mixture is poured into water and neutralized with a suitable aqueous base, for example sodium hydroxide solution.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and the remaining solid dried in vacuo, or the aqueous phase is washed with a suitable organic solvent such.
  • a suitable organic solvent such as dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the purification of the remaining crude product is carried out by recrystallization from a suitable solvent, for example dioxane or toluene, or by column or flash chromatography on silica gel or alumina.
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • Intermediate 9 may be treated with a corresponding alcohol, thiol or amine and optionally with a suitable base, preferably sodium hydride, pyridine, triethylamine, potassium carbonate or sodium methoxide in methanol, in a suitable inert solvent such as dimethylformamide, dimethylsulfoxide, methanol, toluene , or in a base as a solvent, such as.
  • a suitable base preferably sodium hydride, pyridine, triethylamine, potassium carbonate or sodium methoxide in methanol
  • a suitable inert solvent such as dimethylformamide, dimethylsulfoxide, methanol, toluene
  • a base such as a solvent, such as.
  • pyridine or triethylamine or without solvents.
  • the reaction mixture is allowed to react for some time, for example 30 minutes to 2 days, in a temperature range between 20 ° C and 140 ° C. After completion of the reaction, any precipitate which has
  • example may consist of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate filtered off or the aqueous phase with a suitable organic solvent such.
  • a suitable organic solvent such as dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the purification of the remaining crude product is carried out by recrystallization from a suitable solvent, for example dioxane or toluene, or by column or flash chromatography on silica gel or alumina.
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • Intermediates 4 and 7 may be treated with an appropriate, suitable chloride, bromide or tosylate and optionally with a suitable base, preferably sodium hydride, pyridine, triethylamine, potassium carbonate or sodium methoxide in methanol, in a suitable inert solvent such as dimethylformamide, dimethyl sulfoxide, methanol or in a base as a solvent, such as.
  • a suitable base preferably sodium hydride, pyridine, triethylamine, potassium carbonate or sodium methoxide in methanol
  • a suitable inert solvent such as dimethylformamide, dimethyl sulfoxide, methanol or in a base as a solvent, such as.
  • pyridine or triethylamine or without solvents.
  • the reaction mixture is allowed to react for some time, for example 1 hour to 24 hours, in a temperature range between 20 ° C and 150 ° C.
  • intermediates 4 and 7 may be reacted with a corresponding aryl bromide or iodide and a suitable catalyst, such as e.g. B. palladium acetate or Pd 2 (dba) 3 , and a suitable ligand, such as. B. BINAP, and a suitable base, for example, potassium carbonate or sodium tert.butanolat, are reacted in a suitable solvent such as toluene or dioxane.
  • a suitable catalyst such as e.g. B. palladium acetate or Pd 2 (dba) 3
  • a suitable ligand such as. B. BINAP
  • a suitable base for example, potassium carbonate or sodium tert.butanolat
  • any precipitate which has precipitated out is filtered off, it being possible for the filter medium to consist, for example, of commercially available filter paper, to rinse with the appropriate solvent and to remove the residual solid in vacuo. dries, or any existing catalyst residues are filtered off with the appropriate solvent and washed the solvent removed in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate filtered off or the aqueous phase with a suitable organic solvent such. For example, dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the remaining crude product is purified by recrystallization from a suitable solvent, for example EtOH, or by column or flash chromatography on silica gel or alumina.
  • a suitable solvent for example EtOH
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • the reaction product 4, 7 or 13 with a corresponding isocyanate and optionally a suitable base, preferably sodium hydride, potassium hexamethyldisilazide, pyridine, triethylamine or potassium carbonate , in a suitable inert solvent such as dimethylformamide, dimethyl sulfoxide, acetonitrile, dichloromethane, 1, 2-dichloroethane or dioxane, or in a base as a solvent such.
  • a suitable inert solvent such as dimethylformamide, dimethyl sulfoxide, acetonitrile, dichloromethane, 1, 2-dichloroethane or dioxane, or in a base as a solvent such.
  • the reaction mixture is allowed to react for several hours, for example 1 to 24 hours, in a temperature range between 0 and 80 ° C.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate is filtered off or the aqueous phase with a suitable organic solvent, such as. For example, dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the purification of the remaining crude product is carried out by recrystallization from a suitable solvent, for example ethanol or ethyl acetate, or by column or flash chromatography on silica gel or alumina.
  • a suitable solvent for example ethanol or ethyl acetate
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • the product is to be a derivative of compound 15 according to Scheme 4, after completion of the basic reactions, the reaction product 4, 7 or 13 with phosgene or carbonyldiimidazole and a corresponding amine in a suitable inert solvent such as dimethylformamide , Tetrahydrofuran, toluene, dichloromethane or acetonitrile.
  • a suitable base preferably pyridine, sodium bicarbonate, triethylamine, N-methyl-morpholine or sodium acetate is used.
  • the reaction mixture is allowed to react for some time, for example 15 minutes to 24 hours, in a temperature range between 0 and 60 ° C.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate is filtered off or the aqueous phase with a suitable organic solvent such.
  • a suitable organic solvent such as dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the remaining crude product is purified by recrystallization from a suitable solvent, for example ethanol or ethyl acetate, or by column or flash chromatography on silica gel or alumina.
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • the reaction product is to be a derivative of compound 16 according to Scheme 4, after completion of the basic reactions, the reaction product 4, 7 or 13 with a corresponding isothiocyanate and optionally a suitable base, preferably sodium hydride, triethylamine, potassium carbonate or pyridine, in a geeigne - th, inert solvent such as dimethylformamide, tetrahydrofuran, acetone or toluene, or in a base as a solvent such. As pyridine or triethylamine, or without solvents.
  • the reaction mixture is allowed to react for some time, for example 30 minutes to 90 hours, in a temperature range between 0 and 115 ° C.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate is filtered off or the aqueous phase with a suitable organic solvent such.
  • a suitable organic solvent such as dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the purification of the remaining crude product is carried out by recrystallization from a suitable solvent, for example ethanol or ethyl acetate, or by column or flash chromatography on silica gel or alumina.
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • the product is to be a derivative of Compound 17 according to Scheme 4, after completion of the basic reactions, the reaction product 4, 7 or 13 with thiophosgene or thiocarbonyldiimidazole and a corresponding amine in a suitable inert solvent, such as For example, dimethylformamide, tetrahydrofuran, toluene, dichloromethane, ethanol or acetonitrile are reacted.
  • a suitable base preferably pyridine, sodium bicarbonate, potassium carbonate, triethylamine or imidazole is used.
  • the reaction mixture is allowed to react for several hours, for example 1 to 24 hours, in a temperature range between -10 and 80 ° C.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate is filtered off or the aqueous phase with a suitable organic solvent such. Eg lormethan or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the remaining crude product is purified by recrystallization from a suitable solvent, for example ethanol or ethyl acetate, or by column or flash chromatography on silica gel or alumina.
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • the reaction product is to be a derivative of compound 18 according to Scheme 4, after completion of the basic reactions, the reaction product 4, 7 or 13 with a corresponding aminonitrile and optionally a suitable base, preferably triethylamine or pyridine, or a suitable acid, preferably hydrochloric acid , in a suitable, inert solvent such as acetone, toluene, chlorobenzene, ethanol, tetrahydrofuran or dimethyl sulfoxide, or in a base as a solvent such.
  • a suitable, inert solvent such as acetone, toluene, chlorobenzene, ethanol, tetrahydrofuran or dimethyl sulfoxide
  • a base as a solvent such.
  • pyridine or triethylamine or be reacted without solvent.
  • the reaction mixture is allowed to react for several hours, for example 2 to 140 hours, in a temperature range between 20 and 135 ° C.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the remaining crude product is purified by recrystallization from a suitable solvent, for example dioxane, or by column or flash chromatography on silica gel or alumina or by HPLC.
  • the eluent used is, for example, a mixture of methanol and dichloromethane, or in HPLC purification, for example, an eluent mixture of acetonitrile and water.
  • the reaction product 4, 7 or 13 with a corresponding nitrile and optionally a suitable base, preferably sodium hydride, pyridine, triethylamine or sodium hexamethyldisilazide, or a suitable catalyst, for example aluminum trichloride, trimethylaluminum, glacial acetic acid or sulfuric acid, in a suitable inert solvent such as dioxane, toluene or ethanol, or in a base as a solvent such.
  • a suitable base preferably sodium hydride, pyridine, triethylamine or sodium hexamethyldisilazide
  • a suitable catalyst for example aluminum trichloride, trimethylaluminum, glacial acetic acid or sulfuric acid, in a suitable inert solvent such as dioxane, toluene or ethanol, or in a base as a solvent such.
  • a suitable inert solvent such as dioxane, toluene or ethanol
  • the Reaction mixture is allowed to react for some time, for example 30 minutes to 24 hours, in a temperature range between 0 and 200 ° C.
  • any precipitated precipitate is filtered off, the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the remaining crude product is purified by recrystallization from a suitable solvent, for example dioxane, or by column or flash chromatography on silica gel or alumina or by HPLC.
  • the eluent used is, for example, a mixture of methanol and dichloromethane or, in the case of HPLC purification, for example, an eluent mixture of acetonitrile and water.
  • the reaction product 20 or 23 with a corresponding carboxylic acid chloride and optionally a suitable base, preferably sodium hydride, potassium hydroxide, pyridine, triethylamine or potassium carbonate , in a suitable inert solvent such as tetrahydrofuran, toluene, acetonitrile, dichloromethane, acetone or dioxane, or in a base as a solvent such.
  • a suitable inert solvent such as tetrahydrofuran, toluene, acetonitrile, dichloromethane, acetone or dioxane
  • a base such as a solvent such.
  • pyridine or triethylamine or without solvents.
  • the reaction mixture is allowed to react for some time, for example 30 minutes to 12 hours, in a temperature range between 0 and 110 ° C.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate filtered off or the aqueous Phase, after neutralization with a suitable aqueous acid, such. Hydrochloric acid, with a suitable organic solvent, such as. For example, dichloromethane or ethyl acetate, and the organic phase are concentrated in vacuo.
  • the remaining crude product is purified by recrystallization from a suitable solvent, for example ethanol, or by column or flash chromatography on silica gel or alumina.
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • the reaction product 20 or 23 with an appropriate sulfonic acid chloride and optionally a suitable base, preferably sodium hydride, potassium hydroxide, pyridine, triethylamine or potassium carbonate , in a suitable inert solvent such as tetrahydrofuran, toluene, acetonitrile, dichloromethane, acetone, dimethylformamide or dioxane, or in a base as a solvent such.
  • a suitable inert solvent such as tetrahydrofuran, toluene, acetonitrile, dichloromethane, acetone, dimethylformamide or dioxane, or in a base as a solvent such.
  • reaction mixture is allowed to react for some time, for example 30 minutes to 16 hours, in a temperature range between 0 and 80 ° C.
  • the filter medium may consist for example of commercial filter paper, washed with the appropriate solvent and dried the remaining solid in vacuo, or the reaction mixture is freed from the solvent in vacuo.
  • the reaction mixture can be stirred into a large amount of water and the precipitate filtered off or the aqueous phase, after neutralization with a suitable aqueous acid, such as. Hydrochloric acid, with a suitable organic solvent, such as. For example, dichloromethane or ethyl acetate, and the organic phase are concentrated in vacuo.
  • the reaction mixture is stirred into a large amount of water and the precipitate is filtered off or the aqueous phase with a suitable organic solvent such.
  • a suitable organic solvent such as dichloromethane or ethyl acetate, and the organic phases are concentrated in vacuo.
  • the remaining crude product is purified by recrystallization from a suitable solvent, for example ethanol, or by column or flash chromatography on silica gel or aluminum oxide. oxide.
  • the eluent used is, for example, a mixture of methanol and dichloromethane.
  • OH, SH and NH 2 groups may possibly undergo undesirable side reactions. It is therefore preferred to provide these with protective groups or replace in the case of NH 2 by NO 2 and subsequently to split off the protecting group or to reduce the NO 2 group.
  • at least one OH group for example by a benzyloxy group and / or at least one SH group, for example by an S-benzyl group and / or at least one NH 2 group by a NO 2 - Group to be replaced.
  • At least one - preferably all - Benzyloxygrup- pe / n for example, with hydrogen and palladium on carbon and / or at least one - preferably all - S-benzyl / n, for example, cleaved with sodium in ammonia and / or at least one - preferably all - NO 2 group / n, for example, with hydrogen and Raney nickel are reduced to NH 2 .
  • starting compounds and intermediates which contain at least one OH and / or at least one NH 2 and / or at least one COOH group into corresponding carboxylic acid ester and carboxylic acid amide derivatives.
  • starting compounds and intermediates which have at least one OH group and / or which have at least one NH 2 group can be converted into carboxylic acid ester or carboxylic acid amide derivatives by reaction with an activated carboxylic acid group, for example a carboxylic acid chloride group be transferred.
  • starting compounds and intermediates having at least one COOH group can be prepared by reaction with an activating agent such as thionyl chloride or carbonyldiimidazole and subsequent reaction with a suitable alcohol or amine in carboxylic acid esters.
  • an activating agent such as thionyl chloride or carbonyldiimidazole
  • a suitable alcohol or amine in carboxylic acid esters.
  • Carboxylic acid amide derivatives are transferred.
  • the pyrido [2,3-b] pyrazine derivatives according to the general formula I according to the invention are active substances in medicaments for modulating misdirected cellular signal transduction processes, in particular for influencing the function of tyrosine and serine / threonine kinases and in malignant or benign tumors, such as As the breast, prostate, lung, skin, ovaries and other diseases based on pathological cell proliferation diseases such.
  • restenosis, psoriasis, arteriosclerosis and cirrhosis for the treatment of humans, mammals and poultry suitable. Mammals may be pets such as horses, cows, dogs, cats, rabbits, sheep and the like.
  • the medicinal effect of the pyrido [2,3-b] pyrazine derivatives according to the invention can be based, for example, on a modulation of the signal transduction by interaction with receptor tyrosine kinases as well as with cytoplasmic tyrosine and serine / threonine kinases.
  • receptor tyrosine kinases as well as with cytoplasmic tyrosine and serine / threonine kinases.
  • other known and unknown mechanisms of action to combat malignant processes are conceivable.
  • a method for combating tumors in humans, mammals and poultry which is characterized in that at least one pyrido [2,3-b] pyrazine derivative according to the general formula I is given to humans, a mammal or poultry is administered in an amount effective for the treatment of the tumor.
  • the therapeutically effective dose of the particular pyrido [2,3-b] pyrazine derivative according to the invention to be administered for the treatment depends i.a. according to the type and stage of the tumor disease, the age and sex of the patient, the mode of administration and the duration of the treatment.
  • the medicaments according to the invention can be administered as liquid, semisolid and solid dosage forms.
  • the dosage forms optionally contain auxiliaries, depending on the galenic form used, such as, inter alia, solvents, dissolution accelerators, solubilizers, emulsifiers, wetting agents, antifoams, gelling agents, thickeners, film formers, binders, buffers, Salt formers, drying agents, flow regulators, fillers, preservatives, antioxidants, dyes, mold release agents, lubricants, disintegrants, flavor and odor remedies.
  • auxiliaries depending on the galenic form used, such as, inter alia, solvents, dissolution accelerators, solubilizers, emulsifiers, wetting agents, antifoams, gelling agents, thickeners, film formers, binders, buffers, Salt formers, drying agents, flow regulators, fillers, preservatives, antioxidants, dyes, mold release agents, lubricants, disintegrants, flavor and odor remedies.
  • the choice of auxiliaries and the amounts to be used depend on the galen
  • the medicaments according to the invention may be applied to the skin in a suitable dosage form, epicutaneously as a solution, suspension, emulsion, foam, ointment, paste or patch; via the mouth and tongue mucosa, buccal, lingual or sublingual as a tablet, troche, dragee, linctus or gargle; via the gastric and intestinal mucosa, enterally as a tablet, dragees, capsule, solution, suspension or emulsion; via the rectal mucosa, rectal as suppository, rectal capsule or ointment; via the nasal mucosa, nasally as drops, ointments or spray; via the bronchial and alveolar epithelium, pulmonary or by inhalation as aerosol or inhalate; via the conjunctiva, conjunctival as eye drops, eye ointment, eye tablets, lamellas or eye water; via the mucous membranes of the genital organs, intra vaginally as
  • the compounds of general structure I according to the invention can be extended in terms of practical therapeutic requirements by means of suitable measures in their drug effect. This goal can be achieved by chemical and / or galenic means. Examples of achieving an effect extension are the use of implants and liposomes, the formation of poorly soluble salts and complexes or the use of crystal suspensions.
  • medicaments which contain at least one compound from the following group of the pyrido [2,3-b] pyrazine derivatives of the general structure I and which may be in the form of their free base or else as pharmaceutically acceptable salts of physiologically acceptable acids: -Allyl-3- (3-phenylpyrido [2,3-b] pyrazin-6-yl) thiourea (Example 1) -Allyl-3- (3-naphthalen-2-yl-pyrido [2,3- b] pyrazin-6-yl) thiourea (Ex.
  • a solution of 1.22 g of 2,6-diamino-3-nitropyridine (7.92 mmol) in 210 ml of ethanol is hydrogenated with Raney nickel as catalyst at 50 ° C and 5 bar. After completion of the hydrogenation, the catalyst is filtered off through a glass fiber filter. 1.68 g of phenylglyoxal hydrate (11.03 mmol) in 50 ml of ethanol are initially introduced into the original before the filtration. Then the catalyst is filtered off under nitrogen as inert gas and the hydrogenation solution is sucked directly into the reaction flask. The green-blue reaction mixture is stirred under nitrogen for 30 min. heated to reflux. The mixture is allowed to cool and the solvent is removed in vacuo. Finally, a dark
  • 0.246 g of sodium hydride (6.14 mmol) are placed in 5 ml of anhydrous dimethylformamide under nitrogen as a protective gas. The mixture is cooled to 0 ° C. in an ice bath. 1.05 g of 3-phenyl-pyrido [2,3-b] pyrazine-6-ylamine (4.72 mmol) are dissolved in 5 ml of anhydrous dimethylformamide and added dropwise. The cooling bath is removed and the mixture is stirred for 30 minutes at RT.
  • Example 7 1 - [3- (4-Methoxyphenyl) -pyrido [2,3-b] pyrazine-6-yl] -3- (2-methyl-allyl) -thiourea
  • Example 8 1- (3-Naphthalen-2-yl-pyrido [2,3-b] pyrazin-6-yl) -3- (4-nitrophenyl) thiourea
  • Example 9 1 - [3- (4-Methoxyphenyl) -pyrido [2,3-b] pyrazin-6-yl] -3- (4-nitrophenyl) -thiourea
  • Example 12 1-Methyl-3- (3-phenylpyrido [2,3-b] pyrazin-6-yl) thiourea
  • Example 14 1- (4-Fluorophenyl) -3- (3-enyl-pyrido [2,3-b] pyrazine-6-yl) thiourea
  • Example 16 1-isopropyl-3- (3-phenyl-pyrido [2,3-b] pyrazine-6-yl) thiourea
  • Example 17 1-furan-2-ylmethyl-3- (3-phenylpyrido [2,3-b] pyrazine-6-yl) thiourea
  • Example 21 4- [6- (3-Allyl-thiourea) -pyrido [2,3-b] pyrazin-3-yl] -benzoic acid ethyl ester
  • Example 24 1 - [3- (4-Hydroxy-phenyl) -pyrido [2,3-b] pyrazine-6-yl] -3-prop-2-ynyl-thiourea
  • Example 25 1-Allyl-3- [3- (4-hydroxyphenyl) -pyrido [2,3-b] pyrazin-6-yl] thiourea Mp .: 230 ° C (decomp.)
  • Example 26 1- [3- (4-Hydroxy-phenyl) -pyrido [2,3-b] pyrazin-6-yl] -3 - ((propenyl) -thiourea
  • Example 27 1-Allyl-3- [2,3-bis (4-hydroxyphenyl) pyrido [2,3-b] pyrazin-6-yl] thiourea
  • Example 28 1 - [2,3-Bis- (4-hydroxyphenyl) -pyrido [2,3-b] pyrazin-6-yl] -3 - ((propenyl) thiourea
  • Example 33 1- (3-Phenyl-pyrido [2,3-b] pyrazine-6-yl) -3-p-tolyl-urea
  • Example 34 1- (4-Chloro-3-trifluoromethyl-phenyl) -3- (3-phenyl-pyrido [2,3-b] pyrazine-6-yl) -urea
  • Example 35 1- (2-morpholin-4-yl-ethyl) -3- (3-phenylpyrido [2,3-b] pyrazin-6-yl) -humbbard
  • Example 36 1-Phenethyl-3- (3-phenylpyrido [2,3-] pyrazine-6-yl) -urea
  • Example 37 1- (2,3-Di-pyridin-2-yl-pyrido [2,3-b] pyrazine-6-yl) -3-ethyl-urea
  • Example 38 1- (2,3-Dimethyl-pyrido [2,3-b] pyrazine-6-yl) -3-ethyl-urea
  • R3 / R4 hydrogen or
  • the inhibitory activity of the compounds according to the invention was tested on the following human serine / threonine and tyrosine kinases in classical kinase assays: PKB / Akt1, c-Raf-Mek-Erk, B-Raf-Mek-Erk, Mek-Erk, MAPKs, PDGFRbeta, Flt - 3, c-Kit, c-Abl, KDR, FGFR1, and IGF1 R. Both full-length kynases and truncated fragments were used, but at least the cytoplasmic kinase domains.
  • the kinases were produced as recombinant fusion proteins with GST (glutathione S-transferase) or HIS tag in Sf9 cell culture. Depending on the type of substrate, the various kinase reactions were performed in sandwich ELISA formats or by simple substrate adsorption test on 96-well flashplates (Perkin Elmer).
  • a typical kinase approach was performed in a final volume of 50 / I with 20-150ng each of Raf, Mek, Erk protein, 1 mM ATP, 10 mM MgCl 2 , 150 mM NaCl, 25 mM beta-glycerophosphate, 25 mM Hepes pH 7.5.
  • the test substances were each individually preincubated for 30 minutes at room temperature with each of the three kinase proteins.
  • the preincubated with test substance kinases were combined and incubated for 30 minutes at 26 ° C. By a final concentration of 2% SDS and 10 minutes at 50 ° C in the heating block, the reaction was stopped.
  • the reactions were transferred to anti-Erk-Ab (K-23, Santa Cruz Biotechnology) -coated 96-MTPs, incubated for 60 minutes at room temperature and washed 3 times with TBST.
  • Anti-phospho Erk-Ak (# 9106, New England Biolabs) 1: 500 in 50 l TBST / 1% BSA was added and incubated overnight at 4 ° C.
  • secondary anti-mouse IgG POD conjugate # NA931, Pharmacia
  • 2500 was added, incubated for 1 h at room temperature and washed again 3 times with TBST.
  • OPD o-phenyldiamine dihydrochloride
  • the compounds of the invention show effective inhibition of Erk phosphorylation with IC 5 o values of up to 400 nM (see exemplary embodiments 4 and 12).
  • Embodiment IC 50 UM

Abstract

Die Erfindung betrifft neue Pyrido[2,3-blpyrazin-Derivate der allgemeinen Formel (I), deren Herstellung und Verwendung als Arzneimittel, insbesondere zur Behandlung von malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen.

Description

Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
Die Erfindung betrifft Kinase-Modulatoren vom Typ der Pyrido[2,3-b]pyrazine, deren Herstellung und Verwendung als Arzneimittel zur Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Funktion von Tyrosin- und Serin/Threoninkinasen und zur Behandlung von malignen bzw. be- nignen Tumorerkrankungen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen, wie z. B. Restenose, Psoriasis, Arteriosklerose und Leberzirrhose.
Die Aktivierung von Proteinkinasen ist ein zentrales Ereignis bei zellulären Signaltransduktions-Prozessen. Eine aberrante Kinaseaktivierung wird bei diversen Krankheitszuständen beobachtet. Daher ist die gezielte Inhibition von Kinasen ein fundamentales therapeutisches Ziel.
Die Phosphorylierung von Proteinen wird im Allgemeinen durch extrazelluläre Signale initiiert und stellt einen universellen Mechanismus für die Kontrolle von verschiedenen zellulären Ereignissen, wie z. B. metabolischen Prozessen, Zellwachstum, Zellmigration, Zelldifferenzierung, Membrantransport und Apoptose dar. Für die Pro- teinphosphorylierung ist die Proteinfamilie der Kinasen verantwortlich. Diese Enzyme katalysieren den Phosphat-Transfer zu spezifischen Substratproteinen. Basierend auf der Substratspezifität werden die Kinasen in zwei Hauptklassen, die Tyrosinkina- sen und die Serin/Threonin-Kinasen unterteilt. Sowohl die Rezeptor-Tyrosin-kinasen als auch die cytoplasmatischen Tyrosin- und Serin/Threoninkinasen sind wichtige Proteine der Signaltransduktion der Zelle. Eine Überexpression bzw. Entartung dieser Proteine spielt eine wichtige Rolle bei auf pathologischen Zellproliferationen beruhenden Erkrankungen. Dazu zählen unter anderem Stoffwechselerkrankungen, Erkrankung des Bindegewebes und der Blutgefäße, sowie maligne und benigne Tumorerkrankungen. Bei der Tumorentstehung und Entwicklung treten sie häufig als Onkogene d.h. als aberrante, konstitutiv aktive Kinaseproteine auf. Die Folgen dieser übermäßigen Kinaseaktivierung sind z. B. das unkontrollierte Zellwachstum und der reduzierte Zelltod. Auch die Stimulation von tumorinduzierten Wachstumsfaktoren kann Ursache für die Überstimulation von Kinasen sein. Die Entwicklung von Kina- semodulatoren ist daher von besonderem Interesse für alle pathogenen Prozesse, die durch Kinasen beeinflusst werden.
Die Erfindung ist daher darauf ausgerichtet, neue Verbindungen zu schaffen, die als Modulatoren von Rezeptor-Tyrosinkinasen und cytoplasmatischen Tyrosin- und Serin/Threoninkinasen geeignet sind. Da nicht alle in fehlregulierten Signaltransdukti- onskaskaden hintereinander geschalteten Kinasen - wie z. B. bei Raf/Mek/Erk - als onkogene Kinasen bzw. als konstitutiv aktive Enzyme vorliegen müssen, werden in dieser Erfindung auch die nicht-aktiven Kinasen als therapeutische Zielproteine betrachtet, d.h. die neuen Verbindungen können sowohl an aktiven als auch an nichtaktiven Kinasen binden und damit die Signaltransduktion beeinflussen.
In 6- oder 7-Position substituierte Pyrido[2,3-b]pyrazin-Derivate finden als pharmako- logisch aktive Verbindungen und als Synthesebausteine in der pharmazeutischen Chemie vielfältige Verwendung. Beispielsweise werden in der Patentschrift WO 99/17759 Pyrido[2,3-b]pyrazine beschrieben, die in 6-Position unter anderem Alkyl-, Aryl- und Heteroarylsubstituierte Carbamate tragen. Diese Verbindungen sollen dazu verwendet werden, die Funktion von Serin-Threonin-Proteinkinasen zu modulieren. In dem Patent WO 04/005472 von White et al. werden unter anderem in 6-Position Carbamat-substituierte Pyrido[2,3-b]pyrazine beschrieben, die als antibakterielle Substanzen das Wachstum von Bakterien hemmen. Eine Antitumorwirkung ist nicht beschrieben.
Bestimmte Diphenylchinoxaline und -pyrido[2,3-b]pyrazine mit speziellen Alkylpyrro- lidin-, Alkylpiperidin- oder Alkylsulfonamid-Resten an einem Phenylring, die zusätzlich auch Harnstoff- oder Carbamat-Substitutionen in 6- oder 7-Position tragen können, werden in den Patentschriften WO 03/084473 (Barnett et al.), WO 03/086394 (Bilodeau et al.) und WO 03/086403 (Lindsley et al.) als Inhibitoren der Aktivität der Serin/Threonin-Kinase Akt beschrieben. Für diese Verbindungen wird eine Verwendung bei der Behandlung von Krebserkrankungen angegeben. Für die dort beschriebenen Pyrido[2,3-b]pyrazin-Beispiel-Verbindungen ist kein definierter Hinweis auf eine biologische Wirkung angegeben. Ausserdem besteht ein deutlicher struktureller Unterschied zu den in dieser Erfindung beschriebenen erfindungsgemäßen Pyri- do[2,3-b]pyrazinen. Weiterhin werden in dem Patent WO 03/024448 von Delorme et al. Amid- und Acry- lamid-substituierte Pyrido[2,3-b]pyrazine beschrieben, die als zusätzliche Substituen- ten auch Carbamate enthalten und als Histon Deacetylase-Inhibitoren zur Behandlung von Zellproliferationserkrankungen verwendet werden können. In einer weiteren Publikation (C. Temple, Jr.; J. Med. Chem. 1990, 3044-3050) wird an einem Beispiel die Synthese eines 6-Ethylcarbamat-substituierten Pyrido[2,3- bjpyrazin-Derivates beschrieben. Eine Antitumorwirkung ist weder offenbart noch nahegelegt.
Die Synthese von weiteren Derivaten des 6-Ethylcarbamat-substituierten Pyrido[2,3- bjpyrazins wird in einer Veröffentlichung von R. D. Elliott beschrieben (J. Org. Chem. 1968, 2393-2397). Eine biologische Wirkung dieser Verbindungen ist weder beschrieben noch nahegelegt.
In der Publikation von C.Temple, Jr. J. Med. Chem. 1968,1216-1218 wird die Synthese und Untersuchung von 6-Ethylcarbamat-substituierten Pyrido[2,3-b]pyrazinen als potentielle Antimalaria-Wirkstoffe beschrieben. Eine Antitumorwirkung ist weder offenbart noch nahegelegt.
Es wurde jetzt überraschend gefunden, dass neue Verbindungen aus der Reihe der Pyrido[2,3-b]pyrazine, welche in 6- oder 7-Position z. B. mit Harnstoff-, Thioharnstoff, Guanidin- oder Amidingruppen substituiert sind, zur Herstellung von Arzneimitteln zur Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Funktion von Tyrosin- und Serin/Threoninkinasen und zur Behandlung von malignen bzw. benignen Tumorerkrankungen, wie z. B. der Brust, Prostata, Lunge, Haut, Eierstöcke und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen geeignet sind. Gemäß diesem Aspekt werden in der vorliegenden Anmeldung neue Verbindungen aus der Reihe der Pyrido[2,3- b]pyrazine gemäß der allgemeinen Formel I beschrieben,
Figure imgf000004_0001
worin die Substituenten R1-R4 folgende Bedeutung haben:
R1 und R2 können unabhängig voneinander:
(i) Wasserstoff
(ii) Hydroxyl
(iii) Halogen, wie beispielsweise Chlor oder Brom
(iv) Alkyl, wobei der Alkylrest gesättigt ist und aus 1 bis 8 C-Atomen bestehen kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O- Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O- Alkyl-OH, O-(CH2)n-0, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl-Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Heterocyclyl, OSO2-Aryl, OSO2- Heteroaryl, OSO2-Alkyl-Aryl, OSO2-Alkyl-Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2- Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, CO2- Alkyl- Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2) C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH- Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Alkyl-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, n den Wert 1 ,2 oder 3 annehmen kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, A- ryl-, Heteroaryl-, Alkyl-Cycloalkyl-, Alkyl-Heterocyclyl-, Alkyl-Aryl- und Alkyl- Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, S-Heteroaryl, OH, OCF3) O-Alkyl, O-Cycloalkyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)- Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl- Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2- Heterocyclyl, OSO2-Aryl, OSO2- Heteroaryl, OSO2- Alkyl- Aryl, OSO2-Alkyl- Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2- Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl- Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2) C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH- Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl- Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO2O- Aryl, SO2O-Alkyl-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylsubstituenten ihrerseits wiederum substituiert sein können, (vii) OR5, wobei R5 Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl- Cycloalkyl, Alkyl-Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroaryl sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl-, Heteroaryl-, Alkyl-Cycloalkyl, Alkyl- Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(viii) SR6, wobei R6 Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl- Cycloalkyl, Alkyl-Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroaryl sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-, Alkyl-Cycloalkyl-, Alkyl-Heterocyclyl-, Alkyl-Aryl- oder Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(ix) NR7R8, wobei R7 und R8 unabhängig voneinander Wasserstoff, Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl-Cycloalkyl, Alkyl-Heterocyclyl, Alkyl- Aryl oder Alkyl-Heteroaryl sein können, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-, Alkyl-Cycloalkyl, Alkyl-Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können, oder R7 und R8 zusammen Cycloalkyl oder Heterocyclyl bedeuten, wobei Cycloalkyl und Heterocyclyl ihrerseits wiederum substituiert sein können, bedeuten.
R3 und R4 können unabhängig voneinander Wasserstoff oder NR9R10 bedeuten, unter der Voraussetzung, dass, wenn R3 = NR9R10 ist, R4 = H ist, und wenn R4 = NR9R10 ist, R3 = H ist, wobei R9 Wasserstoff, Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl- Cycloalkyl, Alkyl-Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroaryl sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-, Alkyl-Cycloalkyl, Alkyl- Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
und R10:
-C(Y)NR11 R12 bedeuten kann, wobei Y = O, S und R11 und R12 unabhängig voneinander (i) Wasserstoff,
(ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)- Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)- Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2-Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl- Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl-Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2-Alkyl-Aryl, OSO2-Alkyl-Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2- Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2- Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2) C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O- Alkyl-Aryl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, OH, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)- Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl- Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2-Cycloalkyl, OS02- Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2-Alkyl-Aryl, OSO2-Alkyl- Heteroaryl, OP(O)(OH)2, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH2, NH-Alkyl, NH-Aryl, Alkyl, Alkyl-Aryl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO - Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S- Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, O-(CH2)n-O, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl-Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2-Alkyl-Aryl, OSOs-Alkyl-Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO - Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2- Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O- Alkyl-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und n den Wert 1 , 2 oder 3 annehmen kann,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)- Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl- Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2- Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2-Alkyl-Aryl, OSO2-Alkyl- Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2- Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl- Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH- Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl- Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(AlkyI)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO2O- Aryl, SO2O-Alkyl-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, (vii) -C(O)-R17, wobei R17 Alkyl, Aryl oder Heteroaryl sein kann, und die Alkyl und Arylsubstituenten ihrerseits wiederum substituiert sein können,
(viii) oder R11 und R12 zusammen Cycloalkyl oder Heterocyclyl bedeuten können,
-C(Y)NR13R14 bedeuten kann, wobei Y = NH und R13 und R14 unabhängig voneinander
(i) Wasserstoff,
(ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO -Alkyl, NHSO -Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OS O2- Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2- Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2,
C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2- Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl,
1 Ö NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)~ Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, C02-Alkyl, CO -Cycloalkyl, CO2-Heterocyclyl, C02-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH2, NH-Alkyl, NH-Aryl, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, O-(CH2)n-O, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2- Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2- Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl- Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH- Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O- Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und n den Wert 1 , 2 oder 3 annehmen kann,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3) O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2- Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2- Alkyl-Heterocyclyl, CO2- Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(vii) oder R13 und R14 zusammen Cycloalkyl oder Heterocyclyl bedeuten können,
-C(NR15)R16 bedeuten kann, wobei R15 = H und R16
(i) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)- Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2- Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O- Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-
1≥ Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C02-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, CO2- Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2) C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, S03H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(ii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OS02-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH2, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl- Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)- Cycloalkyl, NHC(O)-Heterocyclyl, NHC(0)-Aryl, NHC(O)-Heteroaryl, NHSO2- Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S- Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, O-(CH2)n-O, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2- Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(0)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2- Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl- aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(0)NH-Aryl, C(O) NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH- Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O- Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und n den Wert 1 , 2 oder 3 annehmen kann,
(v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2- Heterocyclyl, CO2-Aryl, CO2- Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO≥- Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten können.
Der Ausdruck „Alkyl" umfasst im Sinne dieser Erfindung acyclische gesättigte oder ungesättigte Kohlenwasserstoffreste, die verzweigt oder geradkettig sein können, mit 1 bis 8 C-Atomen, d.h. Cι-8-Alkanyle, C2-8-Alkenyle und C2-8-Alkinyle. Dabei weisen Alkenyle mindestens eine C-C-Doppelbindung und Alkinyle mindestens eine C-C- Dreifachbindung auf. Es ist bevorzugt, dass der Alkylrest ausgewählt ist aus der Gruppe, die Methyl, Ethyl, n-Propyl, 2-Propyl, n-Butyl, sec.-Butyl, tett-Butyl, n-Pentyl, /so-Pentyl, πeo-Pentyl, π-Hexyl, 2-Hexyl, n-Octyl, Ethylenyl (Vinyl), Ethinyl, Propenyl (-CH2CH=CH2; -CH=CH-CH3, -C(=CH2)-CH3), Propinyl (-CH2-C≡CH, -C≡C-CH3), Bu- tenyl, Butinyl, Pentenyl, Pentinyl, Hexenyl, Hexinyl, Heptenyl, Heptinyl, Octenyl und Octinyl enthält.
Der Ausdruck „Cycloalkyl" bedeutet für die Zwecke dieser Erfindung cyclische Kohlenwasserstoffe mit 3-12 Kohlenstoffen, die gesättigt oder ungesättigt sein können. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Cycloalkyl- Restes erfolgen. Der Cycloalkyl-Rest kann auch Teil eines bi- oder polycyclischen Systems sein.
Der Ausdruck „Heterocyclyl" steht für einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen cycli- schen organischen Rest, der mindestens 1 , ggf. 2, 3, 4 oder 5 Heteroatome enthält, wobei die Heteroatome gleich oder verschieden sind und der cyclische Rest gesättigt oder ungesättigt, aber nicht aromatisch ist. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Hetero- cyclyl-Restes erfolgen. Der Heterocyclus kann auch Teil eines bi- oder polycyclischen Systems sein. Bevorzugte Heteroatome sind Stickstoff, Sauerstoff und Schwefel. Es ist bevorzugt, dass der Heterocyclyl-Rest ausgewählt ist aus der Gruppe, die Tetrahydrofuryl, Tetrahydropyranyl, Pyrrolidinyl, Piperidinyl, Piperazinyl und Morpho- linyl enthält. Der Ausdruck „Aryl" bedeutet im Sinne dieser Erfindung aromatische Kohlenwasserstoffe mit 6 bis 14 C-Atomen, u.a. Phenyle, Naphthyle und Anthracenyle. Die Reste können auch mit weiteren gesättigten, (partiell) ungesättigten oder aromatischen Ringsystemen kondensiert sein. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Aryl-Restes erfolgen.
Der Ausdruck „Heteroaryl" steht für einen 5-, 6- oder 7-gliedrigen cyclischen aromatischen Rest, der mindestens 1 , ggf. auch 2, 3, 4 oder 5 Heteroatome enthält, wobei die Heteroatome gleich oder verschieden sind. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Hete- roaryl-Restes erfolgen. Der Heterocyclus kann auch Teil eines bi- oder polycycli- schen Systems sein. Bevorzugte Heteroatome sind Stickstoff, Sauerstoff und Schwefel. Es ist bevorzugt, dass der Heteroaryl-Rest ausgewählt ist aus der Gruppe, die Pyrrolyl, Furyl, Thienyl, Thiazolyl, Oxazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl, Pyridi- nyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Phthalazinyl, Indolyl, Indazolyl, Indolizinyl, Chinolinyl, Isochinolinyl, Chinoxalinyl, Chinazolinyl, Carbazolyl, Phenazinyl, Phe- nothiazinyl, Acridinyl enthält.
Die Ausdrücke „Alkyl-Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" oder „Alkyl- Heteroaryl" bedeuten für die Zwecke der vorliegenden Erfindung, daß Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl die oben definierten Bedeutungen haben und der Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-Rest über eine Cι-8-Alkyl-Gruppe an die Verbindungen der allgemeinen Struktur I gebunden ist.
Im Zusammenhang mit „Alkyl", „Cycloalkyl", „Heterocyclyl", „Aryl", „Heteroaryl", „Alkyl- Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" und „Alkyl-Heteroaryl" versteht man unter dem Begriff substituiert im Sinne dieser Erfindung, insofern oben in der Beschreibung oder den Ansprüchen nicht explicit definiert, die Substitution eines oder mehrerer Wasserstoffreste durch F, Cl, Br, I, CN, CF3, NH2, NH-Alkyl, NH-Aryl, N(Alkyl)2, NO2, SH, S-Alkyl, OH, OCF3, O-Alkyl, O-Aryl, OSO3H, OP(O)(OH)2, CHO, CO2H, SO3H oder Alkyl. Die Substituenten können gleich oder verschieden sein und die Substitution kann in jeder beliebigen und möglichen Position des Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylrestes vorkommen. Unter mehrfach substituierten Resten sind solche zu verstehen, die entweder an verschiedenen oder an gleichen Atomen mehrfach, z. B. zwei- oder dreifach substituiert sind, beispielsweise dreifach am gleichen C-Atom wie im Falle von CF3, -CH2CF3 oder an verschiedenen Stellen wie im Falle von -CH(OH)-CH=CH-CHCI2. Die Mehrfachsubstitution kann mit dem gleichen oder verschiedenen Substituenten erfolgen.
Sofern die erfindungsgemäßen Verbindungen der allgemeinen Formel I mindestens ein Asymmetriezentrum aufweisen, können sie in Form ihrer Racemate, in Form der reinen Enantiomeren und/oder Diastereomeren oder in Form von Mischungen dieser Enantiomeren und/oder Diastereomeren vorliegen. Die Mischungen können in jedem beliebigen Mischungsverhältnis der Stereoisomeren vorliegen.
So lassen sich beispielsweise die erfindungsgemäßen Verbindungen gemäß der allgemeinen Formel I, welche ein oder mehrere Chiralitätszentren aufweisen und die als Racemate auftreten, nach an sich bekannten Methoden in ihre optischen Isomeren, also Enantiomere oder Diastereomere auftrennen. Die Trennung kann durch Säulentrennung an chiralen Phasen oder durch Umkristallisation aus einem optisch aktiven Lösungsmittel oder unter Verwendung einer optisch aktiven Säure oder Base oder durch Derivatisierung mit einem optisch aktiven Reagenz, wie beispielsweise einem optisch aktiven Alkohol, und anschließender Abspaltung des Restes erfolgen.
Sofern möglich, können die erfindungsgemäßen Verbindungen in Form der Tautomeren vorliegen.
Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können, falls sie eine ausreichend basische Gruppe, wie zum Beispiel ein primäres, sekundäres oder tertiäres Amin besitzen, mit anorganischen und organischen Säuren in ihre physiologisch verträglichen Salze überführt werden. Vorzugsweise werden die pharmazeutisch annehmbaren Salze der erfindungsgemäßen Verbindungen gemäß der allgemeinen Struktur I mit Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, p-Toluolsulfonsäure, Kohlensäure, Ameisensäure, Essigsäure, Trifluoressigsäure, Sulfoessigsäure, Oxalsäure, Malonsäure, Maleinsäure, Bernsteinsäure, Weinsäure, Traubensäure, Äpfelsäure, Embonsäure, Mandelsäure, Fumarsäure, Milchsäure, Citronensäure, Glutaminsäure oder Asparaginsäure gebildet. Bei den gebildeten Salzen handelt es sich u.a. um Hydrochloride, Hydrobromide, Sulfate, Hydrogensulfate, Phosphate, Methansulfonate, Tosylate, Carbonate, Hydro- gencarbonate, Formiate, Acetate, Triflate, Sulfoacetate, Oxalate, Malonate, Maleate, Succinate, Tartrate, Malate, Embonate, Mandelate, Fumarate, Lactate, Citrate, Glu- taminate und Aspartate. Die Stöchiometrie der gebildeten Salze der erfindungsgemäßen Verbindungen kann dabei ganzzahlige oder nicht ganzzahlige Vielfache von eins betragen.
Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können, falls sie eine ausreichend saure Gruppe, wie zum Beispiel die Carboxygruppe enthalten, mit anorganischen und organischen Basen in ihre physiologisch verträglichen Salze ü- berführt werden. Als anorganische Basen kommen beispielsweise Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid, als organische Basen Ethanolamin, Diethanola- min, Triethanolamin, Cyclohexylamin, Dibenzylethylendiamin und Lysin in Betracht. Die Stöchiometrie der gebildeten Salze der erfindungsgemäßen Verbindungen kann dabei ganzzahlige oder nicht ganzzahlige Vielfache von eins betragen.
Ebenfalls bevorzugt sind Solvate und insbesondere Hydrate der erfindungsgemäßen Verbindungen, die z. B. durch Kristallisation aus einem Lösungsmittel oder aus wäss- riger Lösung erhalten werden können. Es können sich dabei ein, zwei, drei oder beliebig viele Solvat- oder Wasser-Moleküle mit den erfindungsgemäßen Verbindungen zu Solvaten und Hydraten verbinden.
Es ist bekannt, dass chemische Substanzen Festkörper ausbilden, die in verschiedenen Ordnungszuständen vorliegen, die man als polymorphe Formen oder Modifikationen bezeichnet. Die verschiedenen Modifikationen einer polymorphen Substanz können sich in ihren physikalischen Eigenschaften stark unterscheiden. Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können in verschiedenen polymorphen Formen vorliegen, dabei können bestimmte Modifikationen metastabil sein. Die Verfahren zur Herstellung erfindungsgemäßer substituierter Pyrido[2,3- bjpyrazine werden nachstehend erläutert.
Die Verbindungen der allgemeinen Formel I sind gemäß der folgenden Schemata (Schema 1 - 5) erhältlich:
Schema 1
I.Stufe Reduktion R2
Figure imgf000020_0001
Figure imgf000020_0002
2.Stufe
Figure imgf000020_0003
Figure imgf000020_0004
2.Stufe
Figure imgf000020_0005
Figure imgf000020_0006
1Ö Vorstufen für ausgewählte Beispiele der erfindungsgemäßen Pyrido[2,3-b]ρyrazine gemäß der allgemeinen Formel I, bei denen die Substituenten R1 und/oder R2 die Reste OR5, SR6, NR7R8 sein sollen, sind beispielsweise nach dem Verfahren in Schema 2 bzw. einem entsprechenden, dem Fachmann bekannten Verfahren erhältlich.
Schema 2
Figure imgf000021_0001
HSR6
10 HNR7R8
Figure imgf000021_0002
11
Figure imgf000021_0003
Vorstufen für ausgewählte Beispiele der erfindungsgemäßen Pyrido[2,3-b]pyrazine gemäß der allgemeinen Formel I, bei denen der Substituent R9 ≠ H sein soll, sind beispielsweise nach dem Verfahren in Schema 3 erhältlich.
Schema 3
Figure imgf000022_0001
R9— OTos
4 / 7 13
Die Umsetzung der Vorstufen 4, 7, und 13 aus den Schemata 1 -3 zu den erfindungsgemäßen substituierten Pyrido[2,3-b]pyrazinen gemäß der allgemeinen Formel I kann beispielsweise nach den Verfahren in Schema 4 erfolgen.
Schema 4
I.Stufe
Figure imgf000023_0001
4/7/13 14
Figure imgf000023_0002
Figure imgf000023_0003
16
Thiophosgen o.
Figure imgf000023_0004
18
Figure imgf000023_0005
19 Ausgewählte Beispiele der erfindungsgemäßen Pyrido[2,3-b]pyrazine gemäß der allgemeinen Formel I, bei denen die Substituenten R1 und R2 ausgewählte Carbonsäureester-, Carbonsäureamid-, Sulfonsäureester- oder Sulfonamid-substituierte Reste sein können, sind beispielsweise nach dem Verfahren in Schema 5 oder entsprechenden, dem Fachmann bekannten Verfahren erhältlich.
Schema 5
I.Stufe
Figure imgf000024_0001
R17 = Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl-Aryl, Alkyl-Heteroaryl
Die Ausgangsverbindungen sind entweder im Handel erhältlich oder können nach an sich bekannten Verfahrensweisen hergestellt werden. Die Edukte 4, 7 und 10-13 stellen wertvolle Zwischenverbindungen für die Herstellung der erfindungsgemäßen Pyridopyrazine der allgemeinen Formel I dar. Für die Herstellung der Ausgangs- und Zielverbindungen sei beispielsweise auf folgende Primärliteratur verwiesen, deren Inhalt hiermit Bestandteil der Offenbarung der vorliegenden Anmeldung werden soll:
1) Houben-Weyl, Methoden der Organischen Chemie, Band 4/1 a, S. 343-350
2) Houben-Weyl, Methoden der Organischen Chemie, 4.Aufl., Band E 7b (Teil 2), S. 579; Degussa GB 1184848 (1970); S. Seko, et al. EP 735025 (1996)
3) D. Catarzi, et al.; J. Med. Chem. 1996, 1330-1336; J. K. Seydel, et al.; J. Med. Chem. 1994, 3016-3022
4) Houben-Weyl, Methods of Organic Chemistry, Volume E 9c, S.231-235
5) Houben-Weyl/Science of Synthesis, Volume 16, S. 1269
6 ) C. Goenczi, et al. J. Chem. Soc. Perkin Trans.1 2000, 9, 1417-1422
7) M. S. A. El-Gaby, et al. Indian J. Chem. Sect. B 2001 , 40, 195- 200; M. R. Myers, et al. Bioorg. Med. Chem. Lett. 2003, 13, 3091-3096 ; A. R. Renslo, et al. J. Amer. Chem. Soc. 1999, 121, 7459-7460 ; C. O. Okafor, et al. J. Heterocyclic Chemistry 1983, 20, 199-203
8) J. Yin, et al. Org. Lett. 2002, 4, 3481 -3484 ; O. A. El-Sayed, et al. Arch. Pharm. 2002, 335, 403-410 ; C. Temple, et al. J. Med. Chem. 1992, 35, 988-993
9) A. M. Thompson, et al. J. Med. Chem. 2000, 4200-4211
10) G. Heinisch, et al. Arch. Pharm. 1997, 207-210
11) N. A. Dales, et al. Org. Lett. 2001 , 2313-2316; G. Dannhardt, et al. Arch. Pharm. 2000, 267-274
12) M. L. Mussous, et al. Tetrahedron 1999, 4077-4094; A. Kling, et al. Bioorg. Med. Chem. Lett. 2002, 441-446
13) I. K. Khanna, et al. J. Med. Chem. 2000, 3168-3185
14) L. Younghee, et al. Bioorg. Med. Chem. Lett. 2000, 2771-2774; N. L. Reddy, et al. J. Med. Chem. 1998, 3298,3302
15) A. V. Wizuycia, et al. J. Org. Chem. 2002, 67, 7151-7154; K. Kano, et al. J. Amer. Chem. Soc. 2002, 124, 9937-9944; M. L. Bushey, et al. J. Amer. Chem. Soc. 2003, 125, 8264-8269, A. Casini, et al. Bioorg. Med. Chem. Lett. 2003, 13, 837-840 Allgemeine Vorschrift zur Darstellung der Verbindungen der allgemeinen Formel I :
Schema 1: 1. Stufe
2,6-Diamino-3-nitropyridin oder 2-Amino-3,5-dinitro-pyridin werden in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Methanol, Ethanol, Dimethylformamid oder Dioxan, gelöst. Nach Zugabe eines Katalysators, beispielsweise Raney-Nickel, Palladium auf Kohle oder Platin(IV)dioxid, setzt man das Reaktionsgemisch unter eine Wasserstoff-Atmosphäre, wobei ein Druck zwischen 1 und 5 bar eingestellt wird. Man läßt das Reaktionsgemisch mehrere Stunden, beispielsweise 1-16 Stunden, in einem Temperaturbereich zwischen 20 °C und 60 °C reagieren. Nach beendeter Umsetzung filtriert man die unlöslichen Rückstände ab, wobei das Filtermedium beispielsweise aus Kieselgel, Celite oder handelsüblichen Glasfaserfiltern bestehen kann, und wäscht mit dem entsprechenden Lösungsmittel nach. Das Rohprodukt wird, in Lösung vorliegend, ohne weitere Aufreinigung für die nächste Umsetzung verwendet.
2. Stufe
Das 1 ,2-Dion-Derivat wird in einem geeigneten, inerten Lösungsmittel, beispielsweise Methanol, Ethanol, Dioxan, Toluol oder Dimethylformamid, vorgelegt. 2,3,6- Triaminopyridin oder 2,3,5-Triaminopyridin werden direkt nach der Reduktion als Lösung der Rohprodukte in einem der oben genannten Lösungsmittel zum vorgelegten 1 ,2-Dion gegeben, gegebenenfalls unter Zugabe einer Säure, wie z. B. Essigsäure oder einer Base, beispielsweise Kaliumhydroxid. Das Reaktionsgemisch läßt man in einem Temperaturbereich von 20 °C bis 80 °C einige Zeit, beispielsweise 20 Minuten bis 40 Stunden, reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Di- methylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Dioxan, oder durch Säulen- bzw. Flash- Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Schema 2: 1. Stufe
2,3,6-Triaminopyridin oder 2,3,5-Triaminopyridin werden direkt nach der Reduktion als Lösung der Rohprodukte in einem der oben genannten Lösungsmittel vorgelegt. Nach Zugabe eines Oxalsäure-Derivates, wie z. B. Oxalsäurediethylester oder Oxa- lylchlorid, läßt man das Reaktionsgemisch, gegebenenfalls unter Zugabe einer Säure, wie z. B. Salzsäure, Schwefelsäure oder Eisessig, in einem Temperaturbereich von 20 °C bis 150 °C einige Zeit, beispielsweise 10 Minuten bis 24 Stunden, reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Dioxan oder Toluol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan. Stufe
Das Dion-Derivat 8 wird in einem geeigneten, inerten Lösungsmittel, beispielsweise Dimethylformamid, Dioxan oder Toluol, oder ohne Lösungsmittel vorgelegt. Ein Chlorierungsmittel, z. B. Phosphorylchlorid oder Thionylchlorid, wird bei Raumtemperatur zugegeben und das Reaktionsgemisch lässt man in einem Temperaturbereich von 20 °C bis 100 °C einige Zeit, beispielsweise 1 Stunde bis 24 Stunden, reagieren. Nach beendeter Umsetzung wird das Reaktionsgemisch auf Wasser gegossen und mit einer geeigneten wässrigen Base, beispielsweise Natronlauge, neutralisiert. Ein eventuell ausgefallener Niederschlag wird abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, oder die wässrige Phase wird mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert, und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Dioxan oder Toluol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
3. Stufe
Die Zwischenstufe 9 kann mit einem entsprechenden Alkohol, Thiol oder Amin und gegebenenfalls mit einer geeigneten Base, vorzugsweise Natriumhydrid, Pyridin, Triethylamin, Kaliumcarbonat oder Natriummethanolat in Methanol, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Dimethylsulfo- xid, Methanol, Toluol, oder in einer Base als Lösungsmittel, wie z. B. Pyridin oder Triethylamin, oder ohne Lösungsmittel, umgesetzt werden. Das Reaktionsgemisch lässt man einige Zeit, beispielsweise 30 Minuten bis 2 Tage, in einem Temperaturbereich zwischen 20 °C und 140 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispiels- weise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid oder Dimethylsulfoxid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Dioxan oder Toluol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Schema 3: 1. Stufe
Die Zwischenstufen 4 und 7 können mit einem entsprechenden, geeigneten Chlorid, Bromid oder Tosylat und gegebenenfalls mit einer geeigneten Base, vorzugsweise Natriumhydrid, Pyridin, Triethylamin, Kaliumcarbonat oder Natriummethanolat in Methanol, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Dimethylsulfoxid, Methanol oder in einer Base als Lösungsmittel, wie z. B. Pyridin oder Triethylamin, oder ohne Lösungsmittel, umgesetzt werden. Das Reaktionsgemisch lässt man einige Zeit, beispielsweise 1 Stunde bis 24 Stunden, in einem Temperaturbereich zwischen 20 °C und 150 °C reagieren. Alternativ können die Zwischenstufen 4 und 7 mit einem entsprechenden Aryl-Bromid oder -lodid und einem geeigneten Katalysator, wie z. B. Palladiumacetat oder Pd2(dba)3, und einem geeigneten Liganden, wie z. B. BINAP, und einer geeigneten Base, beispielsweise, Kaliumcarbonat oder Natrium-tert.butanolat, in einem geeignetem Lösungsmittel, wie beispielsweise Toluol oder Dioxan, umgesetzt werden. Das Reaktionsgemisch lässt man einige Zeit, beispielsweise 10 Stunden bis 30 Stunden, in einem Temperaturbereich zwischen 60 °C und 120 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum ge- trocknet, bzw. werden evtl. vorhandene Katalysatorreste abfiltriert mit dem entsprechenden Lösungsmittel nachgewaschen und das Lösungsmittel im Vakuum entfernt, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid oder Dimethylsulfoxid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise EtOH, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Schema 4: 1. Stufe
Im Anschluß an die Grundverfahren können in Folgereaktionen die nach dem Grundverfahren entstandenen Produkte in einer dem Fachmann bekannten Vorgehensweise zu erfindungsgemässen Folgeprodukten gemäß der Formel I umgesetzt werden.
So kann, wenn das Produkt ein Derivat der Verbindung 14 gemäß Schema 4 sein soll, nach Ablauf der Grundreaktionen das Reaktionsprodukt 4, 7 oder 13 mit einem entsprechenden Isocyanat und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Kaliumhexamethyldisilazid, Pyridin, Triethylamin oder Kaliumcarbo- nat, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Dimethylsulfoxid, Acetonitril, Dichlormethan, 1 ,2-Dichlorethan oder Dioxan, oder in einer Base als Lösungsmittel, wie z. B. Pyridin oder Triethylamin, oder ohne Lösungsmittel, umgesetzt werden. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 1 - 24 Stunden, in einem Temperaturbereich zwischen 0 und 80 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid oder Dimethylsulfoxid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Oder es kann alternativ, wenn das Produkt ein Derivat der Verbindung 15 gemäß Schema 4 sein soll, nach Ablauf der Grundreaktionen das Reaktionsprodukt 4, 7 o- der 13 mit Phosgen oder Carbonyldiimidazol und einem entsprechenden Amin in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Tetrahydrofuran, Toluol, Dichlormethan oder Acetonitril umgesetzt werden. Gegebenenfalls wird eine geeignete Base, vorzugsweise Pyridin, Natriumhydrogencarbonat, Triethylamin, N-Methyl-morpholin oder Natriumacetat verwendet. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 15 Minuten bis 24 Stunden, in einem Temperaturbereich zwischen 0 und 60 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
So kann, wenn das Produkt ein Derivat der Verbindung 16 gemäß Schema 4 sein soll, nach Ablauf der Grundreaktionen das Reaktionsprodukt 4, 7 oder 13 mit einem entsprechenden Isothiocyanat und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Triethylamin, Kaliumcarbonat oder Pyridin, in einem geeigne- ten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Tetrahydrofuran, Aceton oder Toluol, oder in einer Base als Lösungsmittel, wie z. B. Pyridin oder Triethylamin, oder ohne Lösungsmittel, umgesetzt werden. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 30 Minuten bis 90 Stunden, in einem Temperaturbereich zwischen 0 und 115 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Oder es kann alternativ, wenn das Produkt ein Derivat der Verbindung 17 gemäß Schema 4 sein soll, nach Ablauf der Grundreaktionen das Reaktionsprodukt 4, 7 o- der 13 mit Thiophosgen oder Thiocarbonyldiimidazol und einem entsprechenden A- min in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Tetrahydrofuran, Toluol, Dichlormethan, Ethanol oder Acetonitril umgesetzt werden. Gegebenenfalls wird eine geeignete Base, vorzugsweise Pyridin, Natrium- hydrogencarbonat, Kaliumcarbonat, Triethylamin oder Imidazol verwendet. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 1 bis 24 Stunden, in einem Temperaturbereich zwischen -10 und 80 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dich- lormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
So kann, wenn das Produkt ein Derivat der Verbindung 18 gemäß Schema 4 sein soll, nach Ablauf der Grundreaktionen das Reaktionsprodukt 4, 7 oder 13 mit einem entsprechenden Aminonitril und gegebenenfalls einer geeigneten Base, vorzugsweise Triethylamin oder Pyridin, oder einer geeigneten Säure, vorzugsweise Salzsäure, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Aceton, Toluol, Chlorbenzol, Ethanol, Tetrahydrofuran oder Dimethylsulfoxid, oder in einer Base als Lösungsmittel, wie z. B. Pyridin oder Triethylamin, oder ohne Lösungsmittel umgesetzt werden. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 2 bis 140 Stunden, in einem Temperaturbereich zwischen 20 und 135 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Dioxan, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid oder durch HPLC. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan, bzw. bei HPLC-Aufreinigung beispielsweise ein Laufmittelgemisch aus Acetonitril und Wasser.
Oder es kann, wenn das Produkt ein Derivat der Verbindung 19 gemäß Schema 4 sein soll, nach Ablauf der Grundreaktionen das Reaktionsprodukt 4, 7 oder 13 mit einem entsprechenden Nitril und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Pyridin, Triethylamin oder Natriumhexamethyldisilazid, oder einem geeigneten Katalysator, beispielsweise Aluminiumtrichlorid, Trimethylalumini- um, Eisessig oder Schwefelsäure, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dioxan, Toluol oder Ethanol, oder in einer Base als Lösungsmittel, wie z. B. Pyridin oder Triethylamin, oder ohne Lösungsmittel umgesetzt werden. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 30 Minuten bis 24 Stunden, in einem Temperaturbereich zwischen 0 und 200 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Dioxan, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid oder durch HPLC. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan bzw. bei HPLC-Aufreinigung beispielsweise ein Laufmittelgemisch aus Acetonitril und Wasser.
Schema 5: 1. Stufe
Im Anschluß an die Grundverfahren können in Folgereaktionen die nach dem Grundverfahren entstandenen Produkte in einer dem Fachmann bekannten Vorgehensweise zu erfindungsgemässen Folgeprodukten gemäß der Formel I umgesetzt werden.
So kann, wenn das Produkt ein Derivat der Verbindung 21 oder 24 gemäß Schema 5 sein soll, nach Ablauf der Grundreaktionen das Reaktionsprodukt 20 oder 23 mit einem entsprechenden Carbonsäurechlorid und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Kaliumhydroxid, Pyridin, Triethylamin oder Kalium- carbonat, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Tetrahydrofuran, Toluol, Acetonitril, Dichlormethan, Aceton oder Dioxan, oder in einer Base als Lösungsmittel, wie z. B. Pyridin oder Triethylamin, oder ohne Lösungsmittel, umgesetzt werden. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 30 Minuten bis 12 Stunden, in einem Temperaturbereich zwischen 0 und 110 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Alternativ kann das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase, nach Neutralisation mit einer geeigneten wässrigen Säure, wie z. B. Salzsäure, mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organische Phase im Vakuum eingeengt werden. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Oder es kann alternativ, wenn das Produkt ein Derivat der Verbindung 22 oder 25 gemäß Schema 5 sein soll, nach Ablauf der Grundreaktionen das Reaktionsprodukt 20 oder 23 mit einem entsprechenden Sulfonsäurechlorid und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Kaliumhydroxid, Pyridin, Triethylamin oder Kaliumcarbonat, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Tetrahydrofuran, Toluol, Acetonitril, Dichlormethan, Aceton, Dimethylformamid oder Dioxan, oder in einer Base als Lösungsmittel, wie z. B. Pyridin oder Triethylamin, o- der ohne Lösungsmittel, umgesetzt werden. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 30 Minuten bis 16 Stunden, in einem Temperaturbereich zwischen 0 und 80 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Alternativ kann das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase, nach Neutralisation mit einer geeigneten wässrigen Säure, wie z. B. Salzsäure, mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organische Phase im Vakuum eingeengt werden. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel, wie z. B. Dichlormethan oder Ethylacetat, extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Alumini- umoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Unter einigen der genannten Reaktionsbedingungen können OH-, SH- und NH2- Gruppen möglicherweise unerwünschte Nebenreaktionen eingehen. Es ist daher bevorzugt, diese mit Schutzgruppen zu versehen oder im Falle von NH2 durch NO2 zu ersetzen und nachfolgend die Schutzgruppe abzuspalten oder die NO2-Gruppe zu reduzieren. So kann in Abwandlung der oben beschriebenen Verfahren in den Ausgangsverbindungen mindestens eine OH-Gruppe beispielsweise durch eine Benzy- loxygruppe und/oder mindestens eine SH-Gruppe beispielsweise durch eine S- Benzylgruppe und/oder mindestens eine NH2-Gruppe durch eine NO2-Gruppe ersetzt werden. Nachfolgend kann mindestens eine - vorzugsweise alle - Benzyloxygrup- pe/n beispielsweise mit Wasserstoff und Palladium auf Kohle und/oder mindestens eine - vorzugsweise alle - S-Benzylgruppe/n beispielsweise mit Natrium in Ammoniak abgespalten und/oder mindestens eine - vorzugsweise alle - NO2-Gruppe/n beispielsweise mit Wasserstoff und Raney-Nickel zu NH2 reduziert werden.
Unter einigen der genannten Reaktionsbedingungen können OH-, NH2- und COOH- Gruppen möglicherweise unerwünschte Nebenreaktionen eingehen. Es ist daher bevorzugt, Ausgangsverbindungen und Zwischenstufen, welche mindestens eine OH- und/oder mindestens eine NH2- und/oder mindestens eine COOH-Gruppe enthalten, in entsprechende Carbonsäureester- und Carbonsäureamid-Derivate zu überführen. In Abwandlung der oben beschriebenen Verfahren können Ausgangsverbindungen und Zwischenstufen, welche mindestens eine OH-Gruppe besitzen, und/oder welche mindestens eine NH2-Gruppe besitzen, durch Umsetzung mit einer aktivierten Carbonsäuregruppe, beispielsweise einer Carbonsäurechloridgruppe, in Carbonsäureester- bzw. Carbonsäureamid-Derivate überführt werden. In Abwandlung der oben beschriebenen Verfahren können Ausgangsverbindungen und Zwischenstufen, welche mindestens eine COOH-Gruppe besitzen, durch Umsetzung mit einem Aktivierungsmittel, wie beispielsweise Thionylchlorid oder Carbonyldiimidazol, und nachfolgender Umsetzung mit einem geeigneten Alkohol oder Amin in Carbonsäureesterbzw. Carbonsäureamid-Derivate überführt werden. Die erfindungsgemäßen Pyrido[2,3-b]pyrazin-Derivate gemäß der allgemeinen Formel I sind als Wirkstoffe in Arzneimitteln zur Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Funktion von Tyrosin- und Serin/Threoninkinasen und bei malignen bzw. benignen Tumorerkrankungen, wie z. B. der Brust, Prostata, Lunge, Haut, Eierstöcke und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen, wie z. B. Restenose, Psoriasis, Arteriosklerose und Leberzirrhose zur Behandlung von Menschen, Säugetieren und Geflügel geeignet. Säugetiere können Haustiere wie Pferde, Kühe, Hunde, Katzen, Hasen, Schafe und dergleichen sein.
Die medizinische Wirkung der erfindungsgemäßen Pyrido[2,3-b]pyrazin-Derivate kann zum Beispiel auf einer Modulation der Signaltransduktion durch Wechselwirkung mit Rezeptor-Tyrosinkinasen als auch mit cytoplasmatischen Tyrosin- und Serin/Threoninkinasen beruhen. Daneben sind noch weitere bekannte und unbekannte Wirkmechanismen zur Bekämpfung von malignen Prozessen denkbar.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zur Bekämpfung von Tumoren beim Menschen, in Säugetieren und in Geflügel bereitgestellt, welches dadurch gekennzeichnet ist, daß mindestens ein Pyrido[2,3-b]pyrazin-Derivat gemäß der allgemeinen Formel I dem Menschen, einem Säugetier oder Geflügel in einer für die Tumorbehandlung wirksamen Menge verabreicht wird. Die für die Behandlung zu verabreichende therapeutisch effektive Dosis des jeweiligen erfindungsgemäßen Py- rido[2,3-b]pyrazin-Derivates richtet sich u.a. nach der Art und dem Stadium der Tumorerkrankung, dem Alter und Geschlecht des Patienten, der Art der Verabreichung und der Dauer der Behandlung. Die erfindungsgemäßen Arzneimittel können als flüssige, halbfeste und feste Arzneiformen verabreicht werden. Dies erfolgt in der jeweils geeigneten Weise in Form von Aerosolen, Pulver, Puder und Streupuder, Tabletten, Dragees, Emulsionen, Schäume, Lösungen, Suspensionen, Gele, Salben, Pasten, Pillen, Pastillen, Kapseln oder Suppositorien.
Die Arzneiformen enthalten neben mindestens einem erfindungsgemäßen Bestandteil je nach eingesetzter galenischer Form gegebenenfalls Hilfsstoffe, wie unter anderem Lösungsmittel, Lösungsbeschleuniger, Lösungsvermittler, Emulgatoren, Netzmittel, Antischaummittel, Gelbildner, Verdickungsmittel, Filmbildner, Bindemittel, Puffer, Salzbildner, Trocknungsmittel, Fließregulierungsmittel, Füllstoffe, Konservierungsstoffe, Antioxidatien, Farbstoffe, Formentrennmittel, Gleitmittel, Sprengmittel, Geschmacks - und Geruchskorrigentien. Die Auswahl der Hilfsstoffe sowie die einzusetzenden Mengen derselben hängt von der gewählten galenischen Form ab und orientiert sich an den dem Fachmann bekannten Rezepturen.
Die erfindungsgemäßen Arzneimittel können in einer geeigneten Darreichungsform auf die Haut, epicutan als Lösung, Suspension, Emulsion, Schaum, Salbe, Paste oder Pflaster; über die Mund- und Zungenschleimhaut, buccal, lingual oder sublingu- al als Tablette, Pastille, Dragees, Linctus oder Gurgelwasser; über die Magen- und Darmschleimhaut, enteral als Tablette, Dragees, Kapsel, Lösung, Suspension oder Emulsion; über die Rectumschleimhaut, rectal als Suppositorium, Rectalkapsel oder Salbe; über die Nasenschleimhaut, nasal als Tropfen, Salben oder Spray; über das Bronchial- und Alveolarepithel, pulmonal oder per inhalationem als Aerosol oder In- halat; über die Conjunctiva, conjunctival als Augentropfen, Augensalbe, Augentabletten, Lamellae oder Augenwasser; über die Schleimhäute der Genitalorgane, intravaginal als Vaginalkugeln, Salben und Spülung, intrauterin als Uterus-Pessare; über die ableitenden Harnwege, intraurethral als Spülung, Salbe oder Arzneistäbchen; in eine Arterie, intraarteriell als Injektion; in eine Vene, intravenös als Injektion oder Infusion; in die Haut, intracutan als Injektion oder Implantat; unter die Haut, subcutan als Injektion oder Implantat; in den Muskel, intramusculär als Injektion oder Implantat; in die Bauchhöhle, intraperitoneal als Injektion oder Infusion verabreicht werden.
Die erfindungsgemäßen Verbindungen der allgemeinen Struktur I können in Hinblick auf praktische therapeutische Erfordernisse mittels geeigneter Maßnahmen in ihrer Arzneistoffwirkung verlängert werden. Dieses Ziel kann auf chemischem und/oder galenischem Wege erreicht werden. Beispiele für die Erzielung einer Wirkungsverlängerung sind der Einsatz von Implantaten und Liposomen, die Bildung von schwerlöslichen Salzen und Komplexen oder der Einsatz von Kristall-Suspensionen.
Besonders bevorzugt sind dabei Arzneimittel, die mindestens eine Verbindung aus der nachfolgenden Gruppe der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Struktur I enthalten und die in Form ihrer freien Base oder auch als pharmazeutisch annehmbare Salze physiologisch verträglicher Säuren vorliegen können: -Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Beispiel 1 ) -Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Bsp. 2) -Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff (Bsp. 3) -Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff-Hydrochlorid
(Bsp. 4) -(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 5) -(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 6) -[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(2-methyl-allyl)-thioharnstoff
(Bsp. 7) (3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thioharnstoff (Bsp.
8) [3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thiohamstoff
(Bsp. 9)
-ferf-Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 10) -Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 11) -Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 12) -Benzyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Bsp. 13) -(4-Fluoro-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 14) -Cyclohexyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 15) -lsopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 16) -Furan-2-ylmethyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 17) -Methyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff (Bsp.18) -[3-(4-Hydroxy-phenyl)-pyrido[2,3-]pyrazin-6-yl]-3-methyl-thioharnstoff (Bsp. 19) -Allyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff (Bsp. 20)
4-[6-(3-Allyl-thioharnstoff)-pyrido[2,3-b]pyrazin-3-yl]-benzoesäureethyl-ester (Bsp. 21 ) -Allyl-3-[3-(3-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff (Bsp. 22) -Allyl-3-(3-benzo[1 ,3]dioxol-5-yl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Bsp. 23) -[3-(4-Hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-prop-2-ynyl-thiohamstoff (Bsp.
24) -Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff (Bsp. 25) -[3-(4-Hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-((propenyl)-thiohamstoff (Bsp.
26)
1 -Allyl-3-[2,3-bis-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff (Bsp. 27) 1-[2,3-Bis-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-((propenyl)-thioharnstoff
(Bsp. 28)
1 -Allyl-3-[2-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff (Bsp. 29)
1 -Allyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-7-yl]-thioharnstoff (Bsp. 30)
1 -Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-hamstoff (Bsp. 31 )
1 -Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-ylj-harnstoff (Bsp. 32)
1 -(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-hamstoff (Bsp. 33)
1-(4-Chloro-3-trifluoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff
(Bsp. 34)
1 -(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff (Bsp. 35)
1 -Phenethyl-3-(3-phenyl-pyhdo[2,3-]pyrazin-6-yl)-harnstoff (Bsp. 36)
1 -(2,3-Di-pyridin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-ethyl-harnstoff (Bsp. 37)
1-(2,3-Dimethyl-pyrido[2,3-b]pyrazin-6-yl)-3-ethyl-harnstoff (Bsp.38)
Ausführungsbeispiele:
Gemäß den allgemeinen Synthesevorschriften, denen die Syntheseschemata 1 - 4 zugrundeliegen, wurden folgende Verbindungen synthetisiert, die unter der Angabe der jeweiligen chemischen Bezeichnung aus der nachfolgenden Übersicht hervorgehen. Ferner sind ihre NMR-spektroskopischen Daten und Schmelzpunkte beigefügt. In der sich anschließenden Tabelle 1 sind aus der allgemeinen Formel II und den Substituenten R1 , R2, R3, R4, sowie R5 und Y die Strukturen dieser Verbindungen zu ersehen.
Die eingesetzten Chemikalien und Lösungsmittel wurden kommerziell bei den herkömmlichen Anbietern erworben (Acros, Aldrich, Fluka, Lancaster, Maybridge, Merck, Sigma, TCI, etc.) oder synthetisiert.
Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden, ohne darauf beschränkt zu sein.
Beispiel 1 :
Herstellung von 3-Phenyl-pyrido[2,3-b]pyrazin-6-ylamin (Umsetzung gemäß Schema 1 , 1. und 2. Stufe)
Eine Lösung aus 1.22 g 2,6-Diamino-3-nitropyridin (7.92 mmol) in 210 ml Ethanol wird mit Raney-Nickel als Katalysator bei 50 °C und 5 bar hydriert. Nach beendeter Hydrierung saugt man den Katalysator über einen Glasfaserfilter ab. In die Vorlage werden vor der Filtration 1.68 g Phenylglyoxal-Hydrat (11.03 mmol) in 50 ml Ethanol vorgelegt. Dann wird der Katalysator unter Stickstoff als Schutzgas abfiltriert und die Hydrierlösung direkt in den Reaktionskolben gesaugt. Das grün-blaue Reaktionsgemisch wird unter Stickstoff 30 min. unter Rückfluß erhitzt. Das Gemisch läßt man abkühlen und entfernt das Lösungsmittel im Vakuum. Man erhält schließlich einen dun-
4o: kelbraunen Feststoff. Säulenchromatographische Reinigung an Kieselgel (Laufmittelgemisch Dichlormethan / Methanol) liefert einen hellgelben kristallinen Feststoff. Herstellung von 1-Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Umsetzung gemäß Schema 4, 1. Stufe)
0.246 g Natriumhydrid (6.14 mmol) werden in 5 ml wasserfreiem Dimethylformamid unter Stickstoff als Schutzgas vorgelegt. Das Gemisch wird im Eisbad auf 0 °C abgekühlt. 1.05 g 3-Phenyl-pyrido[2,3-b]pyrazin-6-ylamin (4.72 mmol) werden in 5 ml wasserfreiem Dimethylformamid gelöst und tropfenweise zugegeben. Man entfernt das Kühlbad und läßt das Gemisch 30 Minuten bei RT rühren. Danach kühlt man das Gemisch im Eisbad wieder auf 0 °C ab und fügt 0.469 g Allylisothiocyanat (4.72 mmol) in 4 ml wasserfreiem Dimethylformamid gelöst, tropfenweise hinzu. Nach beendeter Zugabe entfernt man das Kühlbad und läßt das Gemisch noch 1 ,5 Stunden bei Raumtemperatur rühren. Zur Aufarbeitung gießt man das Gemisch in ca. 250 ml destilliertes Wasser und saugt den ausgefallenen orangefarbenen Feststoff ab. Mehrfache säulenchromatographische Reinigung (Laufmittelgemische Dichlormethan / Methanol) und anschließende Aufreinigung an der präparativen HPLC liefern einen gelben Feststoff.
Schmelzpunkt: 239-240°C (Zers.)
1H-NMR (de-DMSO): δ = 4.40 (m, 2H), 5.30 (d, 1 H), 5.60 (d, 1 H), 6.07-6.17 (m, 1 H), 7.55-7.70 (m, 4H), 8.35 (d, 2H), 8.45 (d, 1 H), 9.50 (s, 1 H), 11.35 (s, 1 H), 12.55 (m, 1 H).
Folgende Beispiele wurden gemäß Beispiel 1 und den allgemeinen Synthesevorschriften synthetisiert :
Beispiel 2: 1 -Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 242-243°C (Zers.) 1H-NMR (de-DMSO): δ = 4.42 (m, 2H), 5.37 (d, 1H), 5.65 (d, 1H), 6.07-6.19 (m, 1H), 7.57-7.68 (m, 3H), 7.97-8.05 (m, 1H), 8.07-8.19 (m, 2H), 8.40-8.52 (m, 2H), 8.99 (s, 1 H), 9.70 (s, 1 H), 11.36 (s, 1 H), 12.56 (t, 1 H).
Beispiel 3: 1 -Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
Smp.: 240-241 °C (Zers.)
1H-NMR (de-DMSO): δ = 3.87 (s, 3H), 4.36-4.42 (m, 2H), 5.32 (d, 1H), 5.60 (d, 1H), 6.06-6.16 (m, 1H), 7.16 (d, 2H), 7.60 (d, 1H), 8.32 (d, 2H), 8.42 (d, 1H), 9.56 (s, 1H), 11.29(s, 1H), 12.56 (m, 1H).
Beispiel 4: 1 -Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff- Hydrochlorid
Smp.: 160-161 °C (Zers.)
1H-NMR (de-DMSO): δ = 4.36-4.43 (m, 2H), 5.31 (d, 1H), 5.59 (d, 1H), 6.05-6.16 (m, 1H), 6.97 (d, 2H), 7.57 (d, 1H), 8.20 (d, 2H), 8.40 (d, 1H), 9.41 (s, 1H), 10.17 (bs, 1H), 11.24 (s, 1H), 12.56 (m, 1H).
Beispiel 5: 1 -(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
Smp.: 225-226°C (Zers.)
1H-NMR (de-DMSO): δ = 1.90 (s, 3H), 4.30-4.35 (m, 2H), 5.01 (s, 1H), 5.22 (s, 1H), 7.55-7.80 (m, 4H), 8.30-8.38 (m, 2H), 8.45 (d, 1H), 9.52 (s, 1H), 11.32 (s, 1H), 12.65 (m, 1H). Beispiel 6: 1 -(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioham- stoff
Smp.: 239-240°C (Zers.)
1H-NMR (de-DMSO): δ = 1.94 (s, 3H), 4.32 (m, 2H), 5.07 (s, 1 H), 5.28 (s, 1H), 7.60- 7.69 (m, 3H), 8.00-8.05 (m, 1 H), 8.07-8.12 (m, 1 H), 8.14 (d, 1 H), 8.42-8.51 (m, 2H), 8.98 (s, 1 H), 9.68 (s, 1 H), 11.32 (s, 1H), 12.78 (m, 1H).
Beispiel 7: 1 -[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(2-methyl-allyl)-thio- harnstoff
Smp.: 251 -252°C (Zers.)
1H-NMR (de-DMSO): δ = 1.92 (s, 3H), 3.85 (s, 3H), 4.27-4.35 (m, 2H), 5.02 (s, 1 H), 5.24 (s, 1 H), 7.15 (d, 2H), 7.58 (d, 1 H), 8.31 (d, 2H), 8.41 (d, 1 H), 9.46 (s, 1 H), 11.29 (s, 1 H), 12.68 (m, 1 H).
Beispiel 8: 1 -(3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thioharn- stoff
Smp.: 260-261 °C (Zers.)
1H-NMR (de-DMSO): δ = 7.61 -7.68 (m, 3H), 7.72 (d, 2H), 7.75 (d, 1 H), 8.01 -8.06 (m, 1 H), 8.16 (m, 2H), 8.26 (d, 2H), 8.53 (d, 1 H), 8.58 (d, 1 H), 9.04 (s, 1 H), 9.62 (s, 1 H), 9.76 (s, 1 H), 11.81 (s, 1 H).
Beispiel 9: 1 -[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thio- harnstoff
Smp.: 250-251 °C (Zers.) H-NMR (de-DMSO): δ = 3.85 (s, 3H), 7.17 (d, 2H), 7.71 (d, 2H), 8.21 (d, 2H), 8.22- 8.27 (m, 1 H), 8.36-8.42 (m, 3H), 9.53 (s, 1 H), 9.65 (s, 1 H), 11.77 (s, 1 H).
Beispiel 10: 1 -tet .Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 227°C (Zers.)
1H-NMR (de-DMSO): δ = 1.65 (s, 9H), 7.53-7.69 (m, 4H), 8.34 (d, 2H), 8.41 (d, 1 H),
9.51 (s, 1 H), 10.98 (s, 1 H), 1 .75 (s, 1 H).
Beispiel 11 : 1 -Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 233-234°C
1H-NMR (de-DMSO): δ = 0.70-0.80 (m, 2H), 0.91-1.00 (m, 2H), 3.20-3.28 (m, 1 H), 7.51-7.72 (m, 4H), 8.36 (d, 2H), 8.45 (d, 1 H), 9.52 (s, 1 H), 11.31 (s, 1 H), 12.45 (s, 1 H).
Beispiel 12: 1 -Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 253-254°C
1 H-NMR (de-DMSO): δ = 3.25 (s, 3H), 7.59-7.67 (m, 4H), 8.38 (d, 2H), 8.46 (d, 1 H),
9.52 (s, 1 H), 11.31 (s, 1 H), 1 .10 (s, 1 H).
Beispiel 13: 1 -Benzyl-3-(3-phenyl-ρyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 232-233°C 1 H-NMR (de-DMSO): δ = 4.96 (m, 2H), 7.37-7.48 (m, 3H), 7.54-7.67 (m, 6H), 8.32 (d, 2H), 8.47 (d, 1 H), 9.52 (s, 1 H), 11.43 (s, 1 H), 12.91 (s, 1 H).
Beispiel 14: 1 -(4-Fluoro-phenyl)-3-(3 henyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 225-226°C
1 H-NMR (d6-DMSO): δ = 7.33 (m, 2H), 7.57-7.65 (m, 3H), 7.70-7.81 (m, 3H), 8.34 (d, 2H), 8.54 (d, 1 H), 9.57 (s, 1 H), 11.62 (s, 1 H).
Beispiel 15: 1 -Cyclohexyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 230-232°C
1 H-NMR (de-DMSO): δ = 1.50-1.75 (m, 6H), 1.80-2.00 (m, 4H), 7.55-7.70 (m, 4H), 8.37 (d, 2H), 8.45 (d, 1 H), 9.55 (s, 1H), 11.20 (s, 1 H), 12.80 (s, 1 H).
Beispiel 16: 1 -lsopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 229-230°C
1H-NMR (de-DMSO): δ = 1.40 (d, 6H), 4.40-4.50 (m, 1 H), 7.58-7.66 (m, 4H), 8.36 (d, 2H), 8.44 (d, 1 H), 9.52 (s, 1 H), 11.20 (s, 1 H), 12.48 (s, 1 H).
Beispiel 17: 1 -Furan-2-ylmethyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 250°C (Zers.)
1 H-NMR (de-DMSO): δ = 4.95 (s, 2H), 6.55 (m, 1 H), 6.68 (d, 1 H), 7.59-7.68 (m, 4H), 7.74 (d, 1 H), 8.37 (d, 2H), 8.48 (d, 1 H), 9.55 (s, 1 H), 11.45 (s, 1 H), 1 .83 (s, 1 H). Beispiel 18: 1 -Methyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
Smp.: 270°C
1H-NMR (de-DMSO): δ = 3.25 (s, 3H), 7.70 (d, 1 H), 8.44 (d, 2H), 8.50 (d, 1 H), 8.64 (d, 2H), 9.64 (s, 1 H), 11.38 (s, 1 H), 12.03 (s, 1 H).
Beispiel 19: 1 -[3-(4-Hydroxy-phenyl)-pyrido[2,3-]pyrazin-6-yl]-3-methyl-thioharnstoff
Smp.: 282°C
1 H-NMR (de-DMSO): δ = 3.25 (s, 3H), 6.98 (d, 2H), 7.57 (d, 1 H), 8.26 (d, 2H), 8.40 (d, 1 H), 9.45 (s, 1 H), 10.18 (s, 1 H), 11.25 (s, 1 H), 12.10 (s, 1 H).
Beispiel 20: 1 -Allyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff
Smp.: 244°C (Zers.)
1H-NMR (d6-DMSO): δ = 4.40 (s, 2H), 5.36 (d, 1 H), 5.59 (d, 1 H), 6.08-6.15 (m, 1 H), 7.71 (d, 1 H), 8.46 (d, 2H), 8.51 (d, 1 H), 8.60 (d, 2H), 9.64 (s, 1 H), 11.45 (s, 1 H), 12.51 (t, 1 H).
Beispiel 21 : 4-[6-(3-Allyl-thiohamstoff)-pyrido[2,3-b]pyrazin-3-yl]-benzoesäureethyl- ester
Smp.: 223-224°C 1 H-NMR (de-DMSO): δ = 1.39 (t, 3H), 4.35-4.42 (m, 4H), 5.35 (d, 1H), 5.60 (d, 1H), 6.08-6.15 (m, 1H), 7.68 (d, 1H), 8.17 (d, 2H), 8.47 (d, 2H), 8.50 (d, 1H), 9.60 (s, 1H), 11.40(s, 1H), 12.52 (t, 1H).
Beispiel 22: 1 -Allyl-3-[3-(3-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff
Smp.: 205°C (Zers.)
1H-NMR (de-DMSO): δ = 4.41 (s, 2H), 5.33 (d, 1H), 5.58 (d, 1H), 6.07-6.15 (m, 1H), 6.99 (d, 1H), 7.42 (t, 1H), 7.64 (d, 1H), 7.72 (s, 1H), 7.77 (d, 1H), 8.46 (d, 1H), 9.45 (s, 1 H), 9.80 (s, 1 H), 11.37 (s, 1 H), 12.55 (s, 1 H).
Beispiel 23: 1 -Allyl-3-(3-benzo[1 ,3]dioxol-5-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.:218-220°C(Zers.)
1 H-NMR (d6-DMSO): δ = 4.40 (s, 2H), 5.31 (d, 1H), 5.60 (d, 1H), 6.08-6.20 (m, 3H), 7.16 (d, 1H), 7.61 (d, 1H), 7.90 (s, 1H), 7.96 (d, 1H), 8.43 (d, 1H), 9.49 (s, 1H), 11.34 (s, 1H), 12.58 (s, 1H).
Beispiel 24: 1 -[3-(4-Hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-prop-2-ynyl-thio- hamstoff
Smp.: 350 °C (Zers.)
1H-NMR (de-DMSO): δ = 2.09 (s, 1H), 2.44 (s, 2H), 6.99 (d, 2H), 7.19 (s, 1H), 7.44 (s, 1 H), 8.24 (d, 2H), 8.26 (d, 1 H), 9.29 (s, 1 H), 10.08 (s, 1 H), 11.81 (s, 1 H).
Beispiel 25: 1 -Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff Smp.: 230 °C (Zers.)
1H-NMR (d6-DMSO): δ = 4.40 (s, 2H), 5.34 (d, 1H), 5.60 (d, 1H), 6.07-6.15 (m, 1H), 6.98 (d, 2H), 7.58 (d, 1H), 8.24 (d, 2H), 8.42 (d, 1H), 9.45 (s, 1H), 10.19 (s, 1H), 11.34(s, 1H), 12.60 (s,1H).
Beispiel 26: 1 -[3-(4-Hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-((propenyl)-thio- harnstoff
Smp.:
1H-NMR (de-DMSO): δ = 2.12 (d, 3H), 5.17 (m, 1H), 6.96 (d, 2H), 7.22-7.26 (m, 1H), 7.59 (d, 1H), 8.25 (d, 2H), 8.45 (d, 1H), 9.48 (s, 1H), 10.20 (s, 1H), 11.56 (s, 1H), 14.67 (s, 1H).
Beispiel 27: 1 -Allyl-3-[2,3-bis-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharn- stoff
Smp.: 270 °C (Zers.)
1 H-NMR (de-DMSO): δ = 4.40 (s, 2H), 5.25 (d, 1H), 5.50 (d, 1H), 6.02-6.13 (m, 1H), 6.74 (d, 2H), 6.76 (d, 2H), 7.31 (d, 2H), 7.36 (d, 2H), 7.62 (d, 1H), 8.42 (d, 1H), 9.78 (s, 1 H), 9.85 (s, 1 H), 11.30 (s, 1 H), 12.47 (s, 1 H).
Beispiel 28: 1 -[2,3-Bis-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-((propenyl)- thiohamstoff
Smp.: 240 °C (Zers.)
1H-NMR (de-DMSO): δ = 2.05 (d, 3H), 5.10-5.18 (m, 1H), 6.74 (d, 2H), 6.76 (d, 2H), 7.20-7.26 (m, 1H), 7.34 (d, 2H), 7.39 (d, 2H), 7.63 (d, 1H), 8.45 (d, 1H), 9.79 (s, 1H), 9.89 (s, 1 H), 11.55 (s, 1 H), 14.56 (d, 1 H). Beispiel 29: 1 -Allyl-3-[2-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
Smp.: 260 °C (Zers.)
1H-NMR (de-DMSO): δ = 4.40 (s, 2H), 5.28 (d, 1H), 5.48 (d, 1H), 6.03-6.12 (m, 1H), 6.96 (d, 2H), 7.66 (d, 1H), 8.16 (d, 2H), 8.43 (d, 1H), 9.52 (s, 1H), 10.06 (s, 1H), 11.31 (s, 1H), 12.40 (s, 1H).
Beispiel 30: 1 -AIIyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-7-yl]-thioharnstoff
Smp.: 250 °C (Zers.)
1H-NMR (de-DMSO): δ = 4.23 (s, 2H), 5.19 (d, 1H), 5.29 (d, 1H), 5.90-6.00 (m, 1H), 8.46 (d, 2H), 8.55 (s, 1H), 8.64 (d, 2H), 8.92 (s, 1H), 9.23 (s, 1H), 9.77 (s, 1H), 10.35 (s,1H).
Beispiel 31 : 1-Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff
Smp.: 158-160 °C
1H-NMR (de-DMSO): δ = 0.52-0.60 (m, 2H), 0.72-0.82 (m, 2H), 2.70-2.79 (m, 1H), 7.57-7.65 (m, 3H), 7.71 (d, 1H), 8.34 (d, 2H), 8.38 (d, 1H), 9.21 (s, 1H), 9.46 (s, 1H), 10.12 (s, 1H).
Beispiel 32: 1 -Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-harnstoff
Smp.: 240 °C (Zers.) 1 H-NMR (de-DMSO): δ = 3.98 (s, 2H), 5.19 (d, 1 H), 5.37 (d, 1 H), 5.96-6.05 (m, 1H), 6.97 (d, 2H), 7.59 (d, 1 H), 8.22 (d, 2H), 8.33 (d, 1 H), 9.38 (s, 1 H), 9.45 (s, 1 H), 10.13 (s, 1 H), 10.18 (s, 1 H).
Beispiel 33: 1 -(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-harnstoff
Smp.: 298-299°C
1H-NMR (de-DMSO): δ = 2.29 (s, 3H), 7.20 (d, 2H), 7.52 (d, 2H), 7.59-7.67 (m, 3H), 7.80 (d, 1 H), 8.38 (d, 2H), 8.44 (d, 1 H), 9.59 (s, 1 H), 10.36 (s, 1 H), 11.46 (s, 1 H).
Beispiel 34: 1 -(4-Chloro-3-trifluoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6- yl)-harnstoff
Smp.: 250°C
1H-NMR (de-DMSO): δ = 7.58-7.67 (m, 3H), 7.74 (d, 1H), 7.80 (d, 1 H), 7.87 (d, 1 H), 8.21 (s, 1 H), 8.39 (d, 2H), 8.48 (d, 1 H), 9.53 (s, 1 H), 10.55 (s, 1 H), 11.82 (s, 1 H).
Beispiel 35: 1 -(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-ham- stoff
Smp.: 226°C
1H-NMR (de-DMSO): δ = 2.45-2.67 (m, 6H), 3.40-3.48 (m, 2H), 3.60-3.69 (m, 4H), 7.55-7.70 (m, 4H), 8.30-8.40 (m, 3H), 9.29 (s, 1H), 9.42 (s, 1 H), 10.18 (s, 1 H).
Beispiel 36: 1 -Phenethyl-3-(3-phenyl-pyrido[2,3-]pyrazin-6-yl)-hamstoff
Smp.: 250 °C (Zers.) 1H-NMR (de-DMSO): δ = 2.88-2.95 (m, 2H), 3.52-3.60 (m, 2H), 7.18 (t, 1 H), 7.28 (t, 2H), 7.42 (d, 2H), 7.58-7.68 (m, 4H), 8.37 (d, 3H), 9.25 (s, 1 H), 9.48 (s, 1 H), 10.18 (s, 1 H).
Beispiel 37: 1 -(2,3-Di-pyridin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-ethyl-harnstoff
Smp.: 236-237 °C
1H-NMR (de-DMSO): δ = 1.13-1.22 (m, 3H), 3.28-3.39 (m, 2H), 3.60-3.69 (m, 4H), 7.31-7.39 (m, 2H), 7.79 (d, 1 H), 7.91 -7.99 (m, 4H), 8.26 (d, 1 H), 8.29 (d, 1 H), 8.47 (d, 1 H), 9.08 (s, 1 H), 10.20 (s, 1 H).
Beispiel 38: 1 -(2,3-Dimethyl-pyrido[2,3-b]pyrazin-6-yl)-3-ethyl-harnstoff
Smp.: 246-248 °C
1H-NMR (de-DMSO): δ = 1.17 (t, 3H), 2.64 (s, 3H), 2.67 (s, 3H), 3.24-3.40 (m, 2H), 7.55 (d, 1 H), 8.24 (d, 1 H), 9.14 (s, 1 H), 9.91 (s, 1 H).
Tabelle 1 :
Figure imgf000053_0001
R3 / R4: Wasserstoff oder
Figure imgf000053_0002
Figure imgf000053_0003
Figure imgf000054_0001
Biologische Wirkungen der erfindungsgemäßen Verbindungen
Die inhibitorische Wirkung der erfindungsgemäßen Verbindungen wurde an folgenden humanen Serin/ Threonin- und Tyrosinkinasen in klassischen Kinaseassays getestet: PKB/Akt1, c-Raf-Mek-Erk, B-Raf-Mek-Erk, Mek-Erk, MAPKs, PDGFRbeta, Flt- 3, c-Kit, c-Abl, KDR, FGFR1 und IGF1 R. Eingesetzt wurden sowohl die Volllängenki- nasen als auch verkürzte Fragmente - mindestens aber die cytoplasmatischen Kina- sedomänen. Die Kinasen wurden als rekombinante Fusionsproteine mit GST- (Glutathion-S-Transferase) oder HIS-Tag in Sf9-Zellkultur hergestellt. Je nach Substrattyp wurden die verschiedenen Kinasereaktionen in Sandwich-ELISA-Formaten oder mittels einfacher Substratadsorptionstest auf 96-Well Flashplates (Perkin Eimer) durchgeführt.
Nachfolgend wird die Substanztestung an der c-Raf-Mek-Erk-Kaskade genauer beschrieben. Ausgewählte Testergebnisse des c-Raf-Mek-Erk-Assays sind anschließend aufgeführt.
Prozedere: c-Raf-Mek-Erk-ELISA
Potentielle Inhibitoren wurden zunächst bei einer Konzentration von 20μg/ml in initialen Single-Dose-Bestimmungen auf 96er Mikrotiterplatten (MTPs) untersucht. Substanzen >70% Inhibition wurden für Dosis-Wirkungsstudien eingesetzt. Die Rekonstitution der c-Raf-Mek-Erk-Kaskade wurde mithilfe eines zellfreien ELI- SAs quantifiziert. Verwendet wurden folgende rekombinant hergestellte Kinaseproteine: 1.) konstitutiv aktive GST-c-Raf-DD aus Sf9-Zellen 2.) nicht aktive GST-Mek1 aus E. coli und 3.) nicht aktive His-Erk2 aus E. coli.
Ein typischer Kinaseansatz wurde in einem finalen Volumen von 50 /I mit je 20-150ng Raf-, Mek-, Erk-Protein, 1mM ATP, 10mM MgCI2, 150mM NaCI, 25mM beta- Glycerophosphat, 25mM Hepes pH 7.5 durchgeführt. Vor der Kinasereaktion wurden die Testsubstanzen jeweils für 30 Minuten bei Raumtemperatur mit jedem der drei Kinaseproteine einzeln vorinkubiert. Für die Kinasereaktion wurden die mit Testsubstanz vorinkubierten Kinasen zusammengeführt und für 30 Minuten bei 26°C inkubiert. Durch eine finale Konzentration von 2% SDS und 10 Minuten bei 50°C im Heizblock wurde die Reaktion gestoppt. Zur Immundetektion wurden die Reaktionsansätze auf anti-Erk-Ak(K-23, Santa Cruz Biotechnology)-beschichtete 96er MTPs übertragen, 60 Minuten bei Raumtemperatur inkubiert und 3x mit TBST gewaschen. Anti-phospho-Erk-Ak (#9106, New England Biolabs) 1 :500 in 50 l TBST/1% BSA wurde zugegeben und über Nacht bei 4°C inkubiert. Nach 3x Wasch der MTPs mit TBST wurde mit sekundärem anti-Maus- lgGPOD-Konjugat (#NA931 , Pharmacia) 1 :2500 versetzt, 1 h bei Raumtemperatur inkubiert und wiederum 3x mit TBST gewaschen. Zur kolorimetrischen Detektion der Kinasereaktion wurden je 50μl OPD (o-Phenyldiamin-dihydrochlorid)-Färbepuffer auf die Kavitäten pipettiert und 30 Minuten bei 37°C inkubiert. Die Farbreaktion wurde anschließend im ELISA-Reader bei 492nm bestimmt.
Die experimentelle Bestimmung von Dosis-Wirkungskurven erfolgte mittels des selben Versuchsaufbaus bei 10 halblogarithmisch abgestuften Konzentrationen von 31.6pM-100μM. Die IC50-Werte wurden in GraphPadPrism kalkuliert.
Die erfindungsgemäßen Verbindungen zeigen eine effektive Inhibition der Erk- Phosphorylierung mit IC5o-Werten bis zu 400nM (siehe Ausführungsbeispiele 4 und 12).
Ausführungsbeispiel IC50 U M)
1 ca. 1.0
2 16
3 ca. 1.0
4 0.4
5 ca. 1.0
6 ca. 100
7 43
8 > 100
9 > 100
10 > 100
11 0.9
12 0.4
13 > 100
14 ca. 50
33 > 100
34 > 100
35 15

Claims

Patentansprüche
1. Neue Pyrido[2,3-b]pyrazin-Derivate gemäß der allgemeinen Formel I
Figure imgf000057_0001
worin die Substituenten R1-R4 folgende Bedeutung haben :
R1 und R2 können unabhängig voneinander:
(i) Wasserstoff
(ii) Hydroxyl
(iii) Halogen
(iv) Alkyl, wobei der Alkylrest gesättigt ist und aus 1 bis 8 C-Atomen bestehen kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O- Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O- Alkyl-OH, O-(CH2)n-O, OC(O)-Alkyl, OC(0)-Cycloalkyl, OC(O)-Heterocyclyl,
\ 50 OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl-Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Heterocyclyl, OSO2-Aryl, OSO2- Heteroaryl, OSO2- Alkyl- Aryl, OSO2-Alkyl-Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2- Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH- Alkyl, SO2NH-Aryl, SO≥NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Alkyl-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, n den Wert 1 , 2 oder 3 annehmen kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl-, Heteroaryl-, Alkyl-Cycloalkyl-, Alkyl-Heterocyclyl-, Alkyl-Aryl- und Alkyl- Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)- Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl- Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2- Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2-Alkyl-Aryl, OSO2-Alkyl- Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2- Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl- Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH- Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl- Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO-Aryl, SO2O-Alkyl-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(vii) OR5, wobei R5 Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl- Cycloalkyl, Alkyl-Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroaryl sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl-, Heteroaryl-, Alkyl-Cycloalkyl, Alkyl- Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(viii) SR6, wobei R6 Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl- Cycloalkyl, Alkyl-Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroaryl sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-, Alkyl-Cycloalkyl-, Alkyl-Heterocyclyl-, Alkyl-Aryl- oder Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(ix) NR7R8, wobei R7 und R8 unabhängig voneinander Wasserstoff, Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl-Cycloalkyl, Alkyl-Heterocyclyl, Alkyl- Aryl oder Alkyl-Heteroaryl sein können, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-, Alkyl-Cycloalkyl, Alkyl-Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können, oder R7 und R8 zusammen Cycloalkyl oder Heterocyclyl bedeuten, wobei Cycloalkyl und Heterocyclyl ihrerseits wiederum substituiert sein können, bedeuten.
R3 und R4 können unabhängig voneinander Wasserstoff oder NR9R10 bedeuten, unter der Voraussetzung, dass, wenn R3 = NR9R10 ist, R4 = H ist, und wenn R4 = NR9R10 ist, R3 = H ist, wobei R9 Wasserstoff, Alkyl, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkyl- Cycloalkyl, Alkyl-Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroaryl sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-, Alkyl-Cycloalkyl, Alkyl- Heterocyclyl, Alkyl-Aryl oder Alkyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
und R10:
-C(Y)NR11 R12 bedeuten kann, wobei Y = O, S und R11 und R12 unabhängig voneinander
(i) Wasserstoff,
(ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)- Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)- Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2-Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl- Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl-Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2-Alkyl-Aryl, OSO2-Alkyl-Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2- Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2- Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O- Alkyl-Aryl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, OH, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)- Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl- Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OS02-Cycloalkyl, OSO2- Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2-Alkyl-Aryl, OSO2-Alkyl- Heteroaryl, OP(O)(OH)2, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O) NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH2, NH-Alkyl, NH-Aryl, Alkyl, Alkyl-Aryl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S- Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, O-(CH2)n-O, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl-Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2- Alkyl-Aryl, OSO2-Alkyl-Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2- Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2- Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O- Alkyl-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und n den Wert 1, 2 oder 3 annehmen kann,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHC(O)-Alkyl-Aryl, NHC(O)-Alkyl-Heteroaryl, NHSO2-Alkyl, NHSO2- Cycloalkyl, NHSO2-Heterocyclyl, NHSO2-Aryl, NHSO2-Heteroaryl, NHSO2- Alkyl-Aryl, NHSO2-Alkyl-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)- Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OC(O)-Alkyl- Aryl, OC(O)-Alkyl-Heteroaryl, OSO3H, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2- Heterocyclyl, OSO2-Aryl, OSO2-Heteroaryl, OSO2- Alkyl- Aryl, OSO2-Alkyl- Heteroaryl, OP(O)(OH)2, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2- Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl- Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH- Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl- Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO2NH-Alkyl-Aryl, SO3H, SO O-Alkyl, SO-Aryl, SO2O-Alkyl-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(vii) -C(O)-R17, wobei R17 Alkyl, Aryl oder Heteroaryl sein kann, und die Alkyl und Arylsubstituenten ihrerseits wiederum substituiert sein können,
(viii) oder R11 und R12 zusammen Cycloalkyl oder Heterocyclyl bedeuten können,
-C(Y)NR13R14 bedeuten kann, wobei Y = NH und R13 und R14 unabhängig voneinander
(i) Wasserstoff,
(ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2- Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2,
C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2- Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH2, NH-Alkyl, NH-Aryl, Alkyl, oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, O-(CH2)n-0, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2- Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2- Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl- Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH- Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O- Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und n den Wert 1 , 2 oder 3 annehmen kann,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(vii) oder R13 und R14 zusammen Cycloalkyl oder Heterocyclyl bedeuten können, -C(NR15)R16 bedeuten kann, wobei R15 = H und R16
(i) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)- Cycloalkyl, NHC(O)-Heterocyclyl, NHC(0)-Aryl, NHC(O)-Heteroaryl, NHSO2- Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O- Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl- Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-HeterocycIyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(ii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH2, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl- Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)- Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2- Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S- Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, O-(CH2)n-O, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2- Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2- Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl- aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH- Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O- Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und n den Wert 1 , 2 oder 3 annehmen kann,
(v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(0)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten können;
sowie physiologisch verträgliche Salze, Derivate oder Analoga der Verbindungen nach Formel I, wobei die Salze erhältlich sind durch Neutralisation der basischen Verbindungen mit anorganischen und organischen Säuren bzw. Neutralisation der sauren Verbindungen mit anorganischen und organischen Basen, sowie deren Sol- vate, Hydrate und polymorphe Formen,
wobei die Verbindungen der allgemeinen Formel I sowie deren Salze, Derivate oder Analoga, deren Solvate, Hydrate und polymorphe Formen in Form ihrer Racemate, in Form der reinen Enantiomeren und/oder Diastereomeren oder in Form von Mischungen dieser Enantiomeren und/oder Diasteromeren oder in Form der Tautomeren vorliegen können.
2. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach Anspruch 1 , dadurch gekennzeichnet, dass der Alkylrest Methyl, Ethyl, n-Propyl, 2-Propyl, n-Butyl, sec- Butyl, te/t-Butyl, n-Pentyl, /so-Pentyl, neo-Pentyl, π-Hexyl, 2-Hexyl, n-Octyl, Ethylenyl (Vinyl), Ethinyl, Propenyl (-CH2CH=CH2; -CH=CH-CH3, -C(=CH2)-CH3), Propinyl (- CH2-C≡CH, -C≡C-CH3), Butenyl, Butinyl, Pentenyl, Pentinyl, Hexenyl, Hexinyl, Hep- tenyl, Heptinyl, Octenyl und Octinyl sein kann.
3. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach Anspruch 1 , dadurch gekennzeichnet, dass der Heterocyclyl-Rest Tetrahydrofuryl, Tetrahydropyranyl, Pyr- rolidinyl, Piperidinyl, Piperazinyl und Morpholinyl sein kann.
4. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach Anspruch 1 , dadurch gekennzeichnet, dass der Heteroaryl-Rest Pyrrolyl, Furyl, Thienyl, Thiazolyl, Oxazo- lyl, Isoxazolyl, Pyrazolyl, Imidazolyl, Pyridinyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Phthalazinyl, Indolyl, Indazolyl, Indolizinyl, Chinolinyl, Isochinolinyl, Chinoxalinyl, Chi- nazolinyl, Carbazolyl, Phenazinyl, Phenothiazinyl, Acridinyl sein kann.
5. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach den Ansprüchen 1 bis 4, insbesondere eine der folgenden Verbindungen:
-Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
-Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
-Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff
-Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff-Hydrochlorid
-(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
-(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(2-methyl-allyl)-thioharnstoff
-(3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thioharnstoff
-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thioharnstoff
-ferf-Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
-Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
-Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
-Benzyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
-(4-Fluoro-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
-Cyclohexyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
•lsopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
-Furan-2-ylmethyl-3-(3-phenyl-pyrido[2,3-b]ρyrazin-6-yl)-thioharnstoff
•Methyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
-[3-(4-Hydroxy-phenyl)-pyrido[2,3-]pyrazin-6-yl]-3-methyl-thiohamstoff
-Allyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff
6'8 4-[6-(3-Allyl-thiohamstoff)-pyrido[2,3-b]pyrazin-3-yl]-benzoesäureethyl-ester
1-Allyl-3-[3-(3-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
1-Allyl-3-(3-benzo[1 ,3]dioxol-5-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
1 -[3-(4-Hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-prop-2-ynyl-thioharnstoff
1-Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
1-[3-(4-Hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-((propenyl)-thiohamstoff
1 -Allyl-3-[2,3-bis-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
1 -[2,3-Bis-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-((propenyl)-thioharnstoff
1-Allyl-3-[2-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
1-Allyl-3-[3-(4-nitro-phenyl)-pyrido[2,3-b]pyrazin-7-yl]-thiohamstoff
1 -Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-hamstoff
1 -Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-harnstoff
1-(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-hamstoff
1 -(4-Chloro-3-trifluoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-hamstoff
1-(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-hamstoff
1-Phenethyl-3-(3-phenyl-pyrido[2,3-]pyrazin-6-yl)-hamstoff
1 -(2,3-Di-pyridin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-ethyl-harnstoff
1-(2,3-Dimethyl-pyrido[2,3-b]pyrazin-6-yl)-3-ethyl-harnstoff
6. Arzneimittel, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 5.
7. Arzneimittel gemäß Anspruch 6, wobei die Verbindung in Kombination mit mindestens einem weiteren pharmazeutischen Wirkstoff und/oder pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsmitteln in der Zusammensetzung vorliegt.
8. Verfahren zur Herstellung eines Arzneimittels nach Anspruch 6 und 7, dadurch gekennzeichnet, daß ein oder mehrere Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 5 mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen zu pharmazeutischen Zubereitungen verarbeitet, beziehungsweise in eine therapeutisch anwendbare Form gebracht werden.
9. Verbindung gemäß einem der Ansprüche 1 bis 5 zur Verwendung als pharmazeutisches Mittel.
10. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 5 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von Erkrankungen, die aus fehlgeleiteten zellulären Signaltransduktionsprozessen resultieren.
11. Verwendung gemäß Anspruch 10 zur Behandlung von auf pathologischen Zellproliferationen beruhenden Erkrankungen, wie Restenose, Psoriasis, Arterioskle- rose und Leberzirrhose.
12. Verwendung gemäß Anspruch 10 zur Behandlung von malignen bzw. benignen Tumorerkrankungen, insbesondere der Brust, Prostata, Lunge, Haut und Eierstöcke.
13. Verwendung gemäß den Ansprüchen 10 bis 12 zur Behandlung von Erkrankungen, die aus fehlgeleiteten zellulären Signaltransduktionsprozessen resultieren, von auf pathologischen Zellproliferationen beruhenden Erkrankungen und malignen bzw. benignen Tumorerkrankungen im Menschen, in Säugetieren und in Geflügel.
14. Verwendung gemäß Anspruch 10 zur Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Funktion von aktiven und inaktiven Tyrosin- und Serin/Threoninkinasen, wie c-Raf, B-Raf, Mek, MAPKs, PDGFRbeta, Flt-3, IGF1 R, PKB/Akt1 , c-Kit, c-Abl, FGFR1 und KDR.
PCT/EP2004/005388 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen WO2004104003A1 (de)

Priority Applications (19)

Application Number Priority Date Filing Date Title
SI200431009T SI1636228T1 (sl) 2003-05-23 2004-05-19 Novi piridopirazini in uporaba le-teh kot modulatorjev kinaz
MEP-2008-831A ME00541B (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
MXPA05012645A MXPA05012645A (es) 2003-05-23 2004-05-19 Piridopirazinas novedosas y su uso como moduladores de cinasa.
YU20050876A RS51906B (sr) 2003-05-23 2004-05-19 Novi piridopirazini i njihova upotreba kao modulatora kinaza
AU2004240747A AU2004240747B2 (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase modulators
CN2004800142149A CN1795195B (zh) 2003-05-23 2004-05-19 新颖的吡啶并吡嗪及其作为激酶调节剂的用途
KR1020057022424A KR101111464B1 (ko) 2003-05-23 2004-05-19 신규한 피리도피라진 및 이를 포함하는 키나제 조절제로서의 약제
DE502004008322T DE502004008322D1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
DK04733768T DK1636228T3 (da) 2003-05-23 2004-05-19 Nye pyridopyraziner og deres anvendelse som kinasemodulatorer
EP04733768A EP1636228B1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
JP2006529872A JP4571944B2 (ja) 2003-05-23 2004-05-19 新規のピリドピラジン及びそれらのキナーゼモジュレーターとしての使用
CA2524525A CA2524525C (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase modulators
NZ544112A NZ544112A (en) 2003-05-23 2004-05-19 Novel pyridopyrazines and use thereof as kinase modulators
PL04733768T PL1636228T3 (pl) 2003-05-23 2004-05-19 Nowe pirydopirazyny i ich zastosowanie jako modulatorów kinazy
BRPI0410633-4A BRPI0410633A (pt) 2003-05-23 2004-05-19 piridopirazinas e uso das mesmas como moduladores de cinase
UAA200510686A UA78929C2 (uk) 2003-05-23 2004-05-19 Піридопіразини та їх застосування як кіназних модуляторів
NO20056032A NO332005B1 (no) 2003-05-23 2005-12-19 Nye pyridopyraziner, anvendelse derav, medikament inneholdende minst en slik forbindelse og fremgangsmate for fremstilling av et slikt medikament
HK06111425.6A HK1090643A1 (en) 2003-05-23 2006-10-18 Novel pyridopyrazines and use thereof as kinase modulators
HR20090036T HRP20090036T3 (en) 2003-05-23 2009-01-21 Novel pyridopyrazines and use thereof as kinase modulators

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10323345A DE10323345A1 (de) 2003-05-23 2003-05-23 Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
DE10323345.8 2003-05-23
DE102004022383.1 2004-05-06
DE102004022383A DE102004022383A1 (de) 2004-05-06 2004-05-06 Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen

Publications (1)

Publication Number Publication Date
WO2004104003A1 true WO2004104003A1 (de) 2004-12-02

Family

ID=33477517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/005388 WO2004104003A1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als modulatoren von kinasen

Country Status (26)

Country Link
US (1) US7276507B2 (de)
EP (1) EP1636228B1 (de)
JP (2) JP4571944B2 (de)
KR (1) KR101111464B1 (de)
AR (1) AR045686A1 (de)
AT (1) ATE411992T1 (de)
AU (1) AU2004240747B2 (de)
BR (1) BRPI0410633A (de)
CA (1) CA2524525C (de)
CY (1) CY1108715T1 (de)
DE (1) DE502004008322D1 (de)
DK (1) DK1636228T3 (de)
ES (1) ES2316985T3 (de)
HK (1) HK1090643A1 (de)
HR (1) HRP20090036T3 (de)
ME (1) ME00541B (de)
MX (1) MXPA05012645A (de)
NO (1) NO332005B1 (de)
NZ (1) NZ544112A (de)
PL (1) PL1636228T3 (de)
PT (1) PT1636228E (de)
RU (1) RU2330851C9 (de)
SI (1) SI1636228T1 (de)
TW (1) TWI341839B (de)
UA (1) UA78929C2 (de)
WO (1) WO2004104003A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785423A1 (de) * 2005-11-11 2007-05-16 Zentaris GmbH Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
WO2007054556A1 (de) 2005-11-11 2007-05-18 Æterna Zentaris Gmbh Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
EP1790342A1 (de) * 2005-11-11 2007-05-30 Zentaris GmbH Pyridopyrazin-Derivate und deren Verwendung als Modulatoren der Signaltransduktionswege
JP2008530111A (ja) * 2005-02-14 2008-08-07 メルク エンド カムパニー インコーポレーテッド Akt活性の阻害剤
EP1990342A1 (de) * 2007-05-10 2008-11-12 AEterna Zentaris GmbH Pyridopyrazin-Derivate sowie Herstellungs- und Verwendungsverfahren dafür
US8217042B2 (en) 2005-11-11 2012-07-10 Zentaris Gmbh Pyridopyrazines and their use as modulators of kinases
EP2508184A1 (de) 2011-04-06 2012-10-10 Æterna Zentaris GmbH Pyridopyrazinderivate und ihre Verwendungen
WO2013061080A1 (en) 2011-10-28 2013-05-02 Astex Therapeutics Limited Anticancer pyridopyrazines via the inhibition of fgfr kinases

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO2985B1 (ar) 2006-12-20 2016-09-05 Takeda Pharmaceuticals Co مثبطات كينازmapk/erk
WO2011041584A2 (en) 2009-09-30 2011-04-07 President And Fellows Of Harvard College Methods for modulation of autophagy through the modulation of autophagy-enhancing gene products
GB201007286D0 (en) 2010-04-30 2010-06-16 Astex Therapeutics Ltd New compounds
GB201020179D0 (en) 2010-11-29 2011-01-12 Astex Therapeutics Ltd New compounds
GB201118675D0 (en) 2011-10-28 2011-12-14 Astex Therapeutics Ltd New compounds
GB201118652D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118654D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201209613D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
GB201209609D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
GB201307577D0 (en) 2013-04-26 2013-06-12 Astex Therapeutics Ltd New compounds
JO3512B1 (ar) 2014-03-26 2020-07-05 Astex Therapeutics Ltd مشتقات كينوكسالين مفيدة كمعدلات لإنزيم fgfr كيناز
RU2715893C2 (ru) 2014-03-26 2020-03-04 Астекс Терапьютикс Лтд Комбинации ингибитора fgfr и ингибитора igf1r
HUE053654T2 (hu) 2014-03-26 2021-07-28 Astex Therapeutics Ltd FGFR- és CMET-inhibitorok kombinációi a rák kezelésére
JOP20200201A1 (ar) 2015-02-10 2017-06-16 Astex Therapeutics Ltd تركيبات صيدلانية تشتمل على n-(3.5- ثنائي ميثوكسي فينيل)-n'-(1-ميثيل إيثيل)-n-[3-(ميثيل-1h-بيرازول-4-يل) كينوكسالين-6-يل]إيثان-1.2-ثنائي الأمين
US10478494B2 (en) 2015-04-03 2019-11-19 Astex Therapeutics Ltd FGFR/PD-1 combination therapy for the treatment of cancer
EP3353164B1 (de) 2015-09-23 2021-11-03 Janssen Pharmaceutica, N.V. Bi-heteroaryl-substituierte 1,4-benzodiazepine und ihre anwendung in der krebsbehandlung
SI3353177T1 (sl) 2015-09-23 2020-08-31 Janssen Pharmaceutica Nv Triciklični heterocikli za zdravljenje raka
WO2018237190A1 (en) * 2017-06-22 2018-12-27 City Of Hope PYRIDOPYRAZINE COMPOUNDS AND USES THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017759A2 (en) * 1997-10-06 1999-04-15 Asta Medica Aktiengesellschaft Methods of modulating serine/threonine protein kinase function with 5-azaquinoxaline-based compounds
US20020107251A1 (en) * 1994-07-11 2002-08-08 Fujisawa Pharmaceutical Co., Ltd. Heterobicyclic derivatives
WO2003084473A2 (en) * 2002-04-08 2003-10-16 Merck & Co., Inc. Method of treating cancer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW274550B (de) * 1992-09-26 1996-04-21 Hoechst Ag
US5700823A (en) * 1994-01-07 1997-12-23 Sugen, Inc. Treatment of platelet derived growth factor related disorders such as cancers
KR20040048411A (ko) 2001-09-14 2004-06-09 메틸진, 인크. 히스톤 데아세틸라아제의 억제제
JP4394960B2 (ja) 2002-04-08 2010-01-06 メルク エンド カムパニー インコーポレーテッド Akt活性阻害薬
US20050130977A1 (en) 2002-04-08 2005-06-16 Lindsley Craig W. Inhibitors of akt activity
EP1538907A4 (de) 2002-07-02 2008-12-24 Southern Res Inst Ftsz-hemmer und ihre verwendung
JP4560483B2 (ja) 2002-10-03 2010-10-13 ターゲジェン インコーポレーティッド 血管静態化物質およびそれらの使用法
DE10323345A1 (de) * 2003-05-23 2004-12-16 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107251A1 (en) * 1994-07-11 2002-08-08 Fujisawa Pharmaceutical Co., Ltd. Heterobicyclic derivatives
WO1999017759A2 (en) * 1997-10-06 1999-04-15 Asta Medica Aktiengesellschaft Methods of modulating serine/threonine protein kinase function with 5-azaquinoxaline-based compounds
WO2003084473A2 (en) * 2002-04-08 2003-10-16 Merck & Co., Inc. Method of treating cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. TEMPLE, JR. ET. AL.: "Potential Antimitotic Agents. Synthesis of Some Ethyl Benzopyrazin-7-yl-carbamates, Ethyl Pyrido[3,4-b]pyrazin-7-yl-cabamates, and Ethyl Pyrido[3,4-e]-as-triazin-7-yl-carbamates.", JOURNAL OF MEDICINAL CHEMISTRY, vol. 33, 1990, pages 3044 - 50, XP002293472 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530111A (ja) * 2005-02-14 2008-08-07 メルク エンド カムパニー インコーポレーテッド Akt活性の阻害剤
RU2487713C2 (ru) * 2005-11-11 2013-07-20 Этерна Центарис ГмбХ Фармацевтическая композиция и способ лечения или профилактики физиологических и/или патофизиологических состояний, ассоциированных с ингибированием киназ pi3k, у млекопитающих
AU2006313701B2 (en) * 2005-11-11 2012-05-31 Aeterna Zentaris Gmbh Novel pyridopyrazines and their use as modulators of kinases
WO2007079999A2 (de) * 2005-11-11 2007-07-19 Æterna Zentaris Gmbh Pyridopyrazin-derivate und deren verwendung als modulatoren der signaltransduktionswege
WO2007079999A3 (de) * 2005-11-11 2007-10-04 Aeterna Zentaris Gmbh Pyridopyrazin-derivate und deren verwendung als modulatoren der signaltransduktionswege
WO2007054556A1 (de) 2005-11-11 2007-05-18 Æterna Zentaris Gmbh Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
EP1785423A1 (de) * 2005-11-11 2007-05-16 Zentaris GmbH Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
TWI423973B (zh) * 2005-11-11 2014-01-21 Zentaris Gmbh 吡啶並吡衍生物及其用途
KR101400905B1 (ko) 2005-11-11 2014-05-29 아에테르나 젠타리스 게엠베하 신규한 피리도피라진 및 키나제의 조절제로서의 이의 용도
JP2009515854A (ja) * 2005-11-11 2009-04-16 エテルナ ツェンタリス ゲゼルシャフト ミット ベシュレンクテル ハフツング ピリドピラジン誘導体及びその使用
JP2009515853A (ja) * 2005-11-11 2009-04-16 エテルナ ツェンタリス ゲゼルシャフト ミット ベシュレンクテル ハフツング 新規のピリドピラジン及び前記ピリドピラジンをキナーゼのモジュレーターとして用いる使用
AU2006334721B2 (en) * 2005-11-11 2011-08-11 Aeterna Zentaris Gmbh Pyridopyrazine derivatives and use thereof as modulators of the signal transduction paths
EP1790342A1 (de) * 2005-11-11 2007-05-30 Zentaris GmbH Pyridopyrazin-Derivate und deren Verwendung als Modulatoren der Signaltransduktionswege
US8937068B2 (en) 2005-11-11 2015-01-20 Zentaris Gmbh Pyridopyrazine derivatives and their use
US8217042B2 (en) 2005-11-11 2012-07-10 Zentaris Gmbh Pyridopyrazines and their use as modulators of kinases
RU2495038C2 (ru) * 2007-05-10 2013-10-10 Этерна Центарис ГмбХ Пиридопиразиновые производные, фармацевтическая композиция и набор на их основе, вышеназванные производные и фармацевтическая композиция в качестве лекарственного средства и средства способа лечения заболеваний и их профилактики
WO2008138878A3 (en) * 2007-05-10 2009-03-19 Aeterna Zentaris Gmbh Novel pyridopyrazine derivatives, process of manufacturing and uses thereof
WO2008138878A2 (en) * 2007-05-10 2008-11-20 Æterna Zentaris Gmbh Novel pyridopyrazine derivatives, process of manufacturing and uses thereof
EP1990342A1 (de) * 2007-05-10 2008-11-12 AEterna Zentaris GmbH Pyridopyrazin-Derivate sowie Herstellungs- und Verwendungsverfahren dafür
US8912189B2 (en) 2011-04-06 2014-12-16 Aeterna Zentaris Gmbh Pyridopyrazine derivatives and their use
WO2012136691A1 (en) 2011-04-06 2012-10-11 Æterna Zentaris Gmbh Pyridopyrazine derivatives and their use
EP2508184A1 (de) 2011-04-06 2012-10-10 Æterna Zentaris GmbH Pyridopyrazinderivate und ihre Verwendungen
WO2012136694A1 (en) 2011-04-06 2012-10-11 Æterna Zentaris Gmbh Pyridopyrazine derivatives and their use
WO2013061080A1 (en) 2011-10-28 2013-05-02 Astex Therapeutics Limited Anticancer pyridopyrazines via the inhibition of fgfr kinases
EA027563B1 (ru) * 2011-10-28 2017-08-31 Астекс Терапьютикс Лимитед Пиридопиразины, обладающие противораковой активностью через ингибирование fgfr киназ

Also Published As

Publication number Publication date
SI1636228T1 (sl) 2009-04-30
RU2330851C2 (ru) 2008-08-10
CY1108715T1 (el) 2014-04-09
RU2005140377A (ru) 2006-05-10
TWI341839B (en) 2011-05-11
US20040266777A1 (en) 2004-12-30
RU2330851C9 (ru) 2008-10-20
AU2004240747B2 (en) 2008-01-03
HRP20090036T3 (en) 2009-03-31
MXPA05012645A (es) 2006-02-08
NZ544112A (en) 2010-01-29
ATE411992T1 (de) 2008-11-15
NO332005B1 (no) 2012-05-21
JP4571944B2 (ja) 2010-10-27
AU2004240747A1 (en) 2004-12-02
NO20056032L (no) 2006-02-15
ME00541B (de) 2011-10-10
EP1636228B1 (de) 2008-10-22
EP1636228A1 (de) 2006-03-22
PT1636228E (pt) 2009-02-02
CA2524525C (en) 2012-01-03
KR20060038376A (ko) 2006-05-03
CA2524525A1 (en) 2004-12-02
UA78929C2 (uk) 2007-04-25
TW200505917A (en) 2005-02-16
KR101111464B1 (ko) 2012-02-21
HK1090643A1 (en) 2006-12-29
JP2006528223A (ja) 2006-12-14
ES2316985T3 (es) 2009-04-16
AR045686A1 (es) 2005-11-09
PL1636228T3 (pl) 2009-04-30
DK1636228T3 (da) 2009-02-23
US7276507B2 (en) 2007-10-02
JP2010209121A (ja) 2010-09-24
JP5447855B2 (ja) 2014-03-19
DE502004008322D1 (de) 2008-12-04
BRPI0410633A (pt) 2006-06-13

Similar Documents

Publication Publication Date Title
EP1636228B1 (de) Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
US8193186B2 (en) Pyridopyrazines and the use thereof as kinase inhibitors
EP2504336B1 (de) Neuartige naphthyridinderivate und ihre verwendung als kinasehemmer
EP1962854B1 (de) Pyridopyrazin-derivate und deren verwendung als modulatoren der signaltransduktionswege
DE60124577T2 (de) Aza- und polyaza-naphthalenylcarbonsäureamide als hiv-integrase-hemmer
EP2241557A1 (de) Chinoxalin-Derivate und deren Anwendung zur Behandlung gutartiger und bösartiger Tumorerkrankungen
WO2020150545A1 (en) Pyrazole derivatives as modulators of the wnt/b-catenin signaling pathway
DE10331500A1 (de) Neue Acridin-Derivate und deren Verwendung als Arzneimittel
US20050009809A1 (en) Acridine derivatives and their use as medicaments
DE102004022383A1 (de) Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
WO2005014542A2 (de) Neue n-substituierte indolyl-3-glyoxylsäureamide, deren verwendung als arzneimittel gegen krebs und verfahren zu deren herstellung
EP1785423A1 (de) Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
EP1897864A1 (de) Anthracen-Derivate und deren Verwendung zur Behandlung gutartiger und bösartiger Tumorerkrankungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004733768

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2524525

Country of ref document: CA

Ref document number: 171729

Country of ref document: IL

Ref document number: 200508872

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2004240747

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12005502094

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: P-2005/0876

Country of ref document: YU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/012645

Country of ref document: MX

Ref document number: 20048142149

Country of ref document: CN

Ref document number: 1020057022424

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006529872

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1349/MUMNP/2005

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2004240747

Country of ref document: AU

Date of ref document: 20040519

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004240747

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 544112

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2005140377

Country of ref document: RU

Ref document number: A20051298

Country of ref document: BY

WWP Wipo information: published in national office

Ref document number: 2004733768

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057022424

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0410633

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2004240747

Country of ref document: AU

Date of ref document: 20040519

Kind code of ref document: B