KR100977415B1 - 시험 장치 및 시험 방법 - Google Patents

시험 장치 및 시험 방법 Download PDF

Info

Publication number
KR100977415B1
KR100977415B1 KR1020087008467A KR20087008467A KR100977415B1 KR 100977415 B1 KR100977415 B1 KR 100977415B1 KR 1020087008467 A KR1020087008467 A KR 1020087008467A KR 20087008467 A KR20087008467 A KR 20087008467A KR 100977415 B1 KR100977415 B1 KR 100977415B1
Authority
KR
South Korea
Prior art keywords
device under
under test
power supply
test
supply voltage
Prior art date
Application number
KR1020087008467A
Other languages
English (en)
Other versions
KR20080055900A (ko
Inventor
사마카츠 수다
Original Assignee
가부시키가이샤 어드밴티스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 어드밴티스트 filed Critical 가부시키가이샤 어드밴티스트
Publication of KR20080055900A publication Critical patent/KR20080055900A/ko
Application granted granted Critical
Publication of KR100977415B1 publication Critical patent/KR100977415B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

피시험 디바이스를 시험하는 시험 장치에 있어서, 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생부, 피시험 디바이스의 출력 신호에 기초하여 피시험 디바이스의 양부를 판정하는 판정부, 피시험 디바이스에 전원 전력을 공급하는 전원 장치, 피시험 디바이스가 소비하는 소비 전류의 변동으로 생기는 피시험 디바이스에 인가되는 전원 전압의 변동을 보상하기 위하여 소비 전류의 변동에 따른 보상 전류를 설정되는 전류 범위 내에서 미리 정해진 계조수로 생성하는 부하 변동 보상 회로, 및 시험 패턴이 피시험 디바이스에 입력되었을 경우, 전원 전압의 변동량을 검출하고 검출한 변동량에 기초하여 부하 변동 보상 회로에서의 전류 범위를 설정하는 설정부를 포함하는 시험 장치를 제공한다.
시험 장치, 피시험 디바이스, 패턴 발생부, 부하 변동 보상 회로, 전원 전압

Description

시험 장치 및 시험 방법{Testing apparatus and testing method}
본 발명은 반도체 회로 등의 피시험 디바이스를 시험하는 시험 장치 및 시험 방법에 관한 것이다. 특히, 본 발명은 피시험 디바이스에 공급하는 전원 전력의 변동을 보상하는 시험 장치 및 시험 방법에 관한 것이다. 문헌의 참조에 의한 편입이 인정되는 지정국에 대해서는 다음의 출원에 기재된 내용을 참조에 의해 본 출원에 편입하고 본 출원의 일부로 한다.
일본특허출원 2005-313335 출원일 2005년 10월 27일
반도체 회로 등의 피시험 디바이스를 시험할 경우, 피시험 디바이스를 구동하기 위한 전원 전력을 공급한다. 예를 들면, 시험 장치에 포함되는 전원 장치는 전원 배선을 통해서 피시험 디바이스에 전원 전력을 공급한다.
그러나, CMOS 회로 등의 피시험 디바이스에서는 피시험 디바이스에 포함되는 소자의 동작율이 변동함으로써 소비 전류가 변동한다. 이 경우, 전원 장치와 피시험 디바이스를 접속하는 전원 배선의 임피던스, 피시험 디바이스 내부의 전원 배선의 임피던스, 또는 전원 장치의 출력 임피던스로 인하여 소비 전류의 변동에 따라 피시험 디바이스의 회로에 공급되는 전원 전압의 전압 강하량이 변동한다.
이러한 전원 전압의 변동이 생긴 경우, 피시험 디바이스의 시험을 높은 정밀 도로 수행할 수 없다. 이러한 문제에 대하여, 종래의 시험 장치는 전원 전압의 변동을 검출해서 전원 장치에 피드백하고 당해 변동을 보상하는 전원 전압을 생성하고 있다. 현재, 관련되는 특허 문헌 등은 인식하지 않고 있으므로, 그 기재를 생략한다.
그러나, 상술한 시험 장치는 전원 전압을 생성하는 전원 장치에 전원 전압의 변동을 피드백하고 있으므로, 전원 배선 및 피드백 경로 등의 저항 성분 및 용량 성분 등에 의한 시정수의 크기에 의해 전원 전압의 변동에 고속으로 추종해서 보상할 수 없다. 예를 들면, 상술한 시험 장치에서의 피드백의 속도는 수십KHz 이하이다.
이에 대하여, 시험 패턴에 의존해서 변동하는 피시험 디바이스의 전원 전압의 변동은 수십MHz 이상이며, 상술한 시험 장치에서는 이렇게 고속으로 천이하는 전원 전압의 변동에 추종하는 것이 곤란하다.
이 때문에 본 발명의 하나의 측면에서는 상술한 과제를 해결할 수 있는 시험 장치 및 시험 방법을 제공하는 것을 목적으로 한다. 이 목적은 청구의 범위의 독립항에 기재된 특징의 조합에 의해 달성된다. 또한, 종속항은 본 발명의 또 다른 유리한 구체예를 규정한다.
상기 과제를 해결하기 위해서, 본 발명의 제1 형태에 따르면, 피시험 디바이스를 시험하는 시험 장치에 있어서, 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생부, 피시험 디바이스의 출력 신호에 기초하여 피시험 디바이스의 양부를 판정하는 판정부, 피시험 디바이스에 전원 전력을 공급하는 전원 장치, 피시험 디바이스가 소비하는 소비 전류의 변동으로 생기는 피시험 디바이스에 인가되는 전원 전압의 변동을 보상하기 위하여 소비 전류의 변동에 따른 보상 전류를 설정되는 전류 범위 내에서 미리 정해진 계조수로 생성하는 부하 변동 보상 회로, 및 시험 패턴이 피시험 디바이스에 입력되었을 경우, 전원 전압의 변동량을 검출하고 검출한 변동량에 기초하여 부하 변동 보상 회로에서의 전류 범위를 설정하는 설정부를 포함하는 시험 장치를 제공한다.
패턴 발생부는 피시험 디바이스의 실시험시에 입력해야 할 복수의 시험 패턴을 피시험 디바이스에 순차 입력하며, 설정부는 각각의 시험 패턴마다 전원 전압의 변동량을 검출하고 검출한 전원 전압의 변동량 가운데의 최대치에 기초하여 부하 변동 보상 회로에서의 전류 범위를 설정하여도 된다.
패턴 발생부는 전원 전압의 변동량을 최대로 하기 위해 미리 정해진 시험 패턴을 피시험 디바이스에 입력하며, 설정부는 당해 시험 패턴이 피시험 디바이스에 입력되었을 경우, 전원 전압의 변동을 검출하고 검출한 변동량에 기초하여 부하 변동 보상 회로에서의 전류 범위를 설정하여도 된다.
패턴 발생부는 피시험 디바이스의 실시험 전에 시험 패턴을 피시험 디바이스에 입력하며, 설정부는 피시험 디바이스의 실시험 전에 부하 변동 보상 회로에서의 전류 범위를 설정하여도 된다.
패턴 발생부는 피시험 디바이스의 실시험 후에 판정부의 판정 결과에서의 피시험 디바이스의 불량율이 소정의 기준치보다 높을 경우에 전원 전압의 변동을 측정하기 위하여 시험 패턴을 피시험 디바이스에 입력하며, 설정부는 당해 시험 패턴이 피시험 디바이스에 입력되었을 경우, 전원 전압의 변동량에 기초하여 부하 변동 보상 회로에서의 전류 범위를 설정하여도 된다.
패턴 발생부는 시험 패턴을 피시험 디바이스에 반복 입력하며, 설정부는, 패턴 발생부가 시험 패턴을 피시험 디바이스에 입력할 때마다 부하 변동 보상 회로에서의 전류 범위를 변경하여 부하 변동 보상 회로로 하여금 각각의 전류 범위에 따른 보상 전류를 생성하게 하는 부하 제어부, 및 전류 범위마다 전원 전압의 변동을 계측하는 계측부를 포함하며, 부하 제어부는 계측부가 계측한 전원 전압의 변동량이 최소로 되는 전류 범위를 피시험 디바이스의 실시험시에 부하 변동 보상 회로에 설정하여도 된다.
계측부는 피시험 디바이스에 입력되는 시험 패턴마다 또는 시험 패턴의 어드레스 블록마다 피시험 디바이스의 전원 전압 파형을 측정하고, 측정한 각각의 전원 전압 파형에 기초하여 전원 전압의 최대치와 최소치를 비교함으로써 전원 전압의 변동량을 시험 패턴마다 검출하여도 된다.
부하 변동 보상 회로는, 피시험 디바이스에 공급되는 전원 전압의 단위 변동량에 대하여 소정의 제1 변동량으로 지연량이 변동하여 주어지는 클럭 신호를 지연시키는 제1 지연 회로부, 피시험 디바이스에 공급되는 전원 전압의 단위 변동량에 대하여 제1 변동량보다 큰 제2 변동량으로 지연량이 변동하여 주어지는 클럭 신호를 지연시키며 제1 지연 회로부와 병렬로 설치된 제2 지연 회로부, 피시험 디바이스와 병렬로 설치되며 전원 배선의 적어도 일부를 피시험 디바이스와 공통으로 하는 부하 회로, 및 제1 지연 회로부가 출력하는 클럭 신호와 제2 지연 회로부가 출력하는 클럭 신호의 위상차를 검출하고 당해 위상차에 근거해서 부하 회로가 소비하는 소비 전류량을 설정부가 설정하는 전류 범위에서 계조수로 조정하는 위상 검출부를 포함하여도 된다.
설정부는 전원 전압을 계측하는 계측부를 포함하며, 계측부는, 피시험 디바이스에 공급되는 전원 전압에 따른 주파수의 클럭 신호를 출력하는 발진기, 클럭 신호의 주파수를 측정하는 주파수 측정부, 및 주파수 측정부가 측정한 주파수에 기초하여 전원 전압을 산출하는 전압 산출부를 포함하여도 된다.
본 발명의 제2 형태에 따르면, 내부 회로가 소비하는 소비 전류의 변동으로 생기는 내부 회로에 인가되는 전원 전압의 변동을 보상하기 위하여 소비 전류의 변동에 따른 보상 전류를 설정되는 전류 범위 내에서 미리 정해진 계조수로 생성하는 부하 변동 보상 회로를 포함하는 피시험 디바이스를 시험하는 시험 장치에 있어서, 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생부, 피시험 디바이스의 출력 신호에 기초하여 피시험 디바이스의 양부를 판정하는 판정부, 피시험 디바이스에 전원 전력을 공급하는 전원 장치, 및 시험 패턴이 피시험 디바이스에 입력되었을 경우, 전원 전압의 변동량을 검출하고 검출한 변동량에 기초하여 부하 변동 보상 회로에서의 전류 범위를 설정하는 설정부를 포함하는 시험 장치를 제공한다.
본 발명의 제3 형태에 따르면, 피시험 디바이스를 시험하는 시험 방법에 있어서, 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생 단계, 피시험 디바이스의 출력 신호에 기초하여 피시험 디바이스의 양부를 판정하는 판정 단계, 피시험 디바이스에 전원 전력을 공급하는 전원 단계, 피시험 디바이스가 소비하는 소비 전류의 변동으로 생기는 피시험 디바이스에 인가되는 전원 전압의 변동을 보상하기 위하여 소비 전류의 변동에 따른 보상 전류를 설정되는 전류 범위 내에서 미리 정해진 계조수로 생성하는 부하 변동 보상 단계, 및 시험 패턴이 피시험 디바이스에 입력되었을 경우, 전원 전압의 변동량을 검출하고 검출한 변동량에 기초하여 부하 변동 보상 단계에서의 전류 범위를 설정하는 설정 단계를 포함하는 시험 방법을 제공한다.
본 발명의 제4 형태에 따르면, 내부 회로가 소비하는 소비 전류의 변동으로 생기는 내부 회로에 인가되는 전원 전압의 변동을 보상하기 위하여 소비 전류의 변동에 따른 보상 전류를 설정되는 전류 범위 내에서 미리 정해진 계조수로 생성하는 부하 변동 보상 회로를 포함하는 피시험 디바이스를 시험하는 시험 방법에 있어서, 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생 단계, 피시험 디바이스의 출력 신호에 기초하여 피시험 디바이스의 양부를 판정하는 판정 단계, 피시험 디바이스에 전원 전력을 공급하는 전원 단계, 및 시험 패턴이 피시험 디바이스에 입력되었을 경우, 전원 전압의 변동량을 검출하고 검출한 변동량에 기초하여 부하 변동 보상 회로에서의 전류 범위를 설정하는 설정 단계를 포함하는 시험 방법을 제공한다.
또한, 상기 발명의 개요는 본 발명이 필요로 하는 특징의 모두를 열거한 것이 아니며, 이들 특징군의 서브 콤비네이션도 또한 발명이 될 수 있다.
도 1은 본 발명의 실시 형태에 관한 시험 장치(100)의 구성의 일례를 도시하 는 도면이다.
도 2는 피시험 디바이스(200)의 전원 전압 파형의 일례를 도시하는 도면이다.
도 3은 전원 전압 변동의 보상의 일례를 설명하는 도면이다. 도 3(a)는 종래의 시험 장치에서의 전원 전압 변동의 보상을 도시하며, 도 3(b)는 도 1에 도시한 시험 장치(100)에서의 전원 전압 변동의 보상의 일례를 도시한다.
도 4는 시험 장치(100)의 동작의 일례를 도시하는 흐름도이다.
도 5는 시험 장치(100)의 동작의 다른 예를 도시하는 흐름도이다.
도 6은 시험 장치(100)의 구성의 다른 예를 도시하는 도면이다.
도 7은 부하 변동 보상 회로(40)의 구성의 일례를 도시하는 도면이다.
도 8은 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에서의 전원 전압과 지연량의 관계의 일례를 도시하는 도면이다.
도 9는 부하 변동 보상 회로(40)의 구성의 다른 예를 도시하는 도면이다.
도 10은 도 9에서 설명한 부하 변동 보상 회로(40)의 동작의 일례를 설명하는 타이밍 차트이다.
도 11은 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에서의 각 단의 지연 소자가 출력하는 클럭 신호의 지연 시간을 도시하는 도면이다.
도 12는 부하기(54)의 구성의 일례를 도시하는 도면이다.
도 13은 계측부(30)의 구성의 일례를 도시하는 도면이다.
<부호의 설명>
10 패턴 발생부, 12 파형 성형부, 14 타이밍 발생부, 16 판정부, 18 전원 장치, 20 설정부, 24 부하 제어부, 25 임피던스 성분, 26 분기 전원 배선, 29 주전원 배선, 30 계측부, 31 전원 배선, 32 필터부, 34 발진기, 36 주파수 측정부, 38 전압 산출부, 40 부하 변동 보상 회로, 42 지연 회로부, 44 위상 검출부, 46 부하 회로, 48 제1 지연 소자, 50 제2 지연 소자, 52 위상 비교기, 54 부하기, 57 위상차 생성부, 59 가변 지연 회로, 100 시험 장치, 108, 110 트랜지스터, 198 로직 회로, 200 피시험 디바이스
이하, 발명의 실시 형태를 통해서 본 발명을 설명하지만, 이하의 실시 형태는 청구의 범위에 따른 발명을 한정하는 것이 아니며 또한 실시 형태에서 설명되는 특징의 조합의 모두가 발명의 해결 수단에 필수적인 것은 아니다.
도 1은 본 발명의 실시 형태에 관한 시험 장치(100)의 구성의 일례를 도시하는 도면이다. 시험 장치(100)는 반도체 회로 등의 피시험 디바이스(200)를 시험하는 장치이며, 패턴 발생부(10), 파형 성형부(12), 타이밍 발생부(14), 판정부(16), 전원 장치(18), 설정부(20), 및 부하 변동 보상 회로(40)를 포함한다.
패턴 발생부(10)는 피시험 디바이스(200)를 시험하는 시험 패턴을 생성하고, 파형 성형부(12)를 통해서 피시험 디바이스(200)에 입력한다. 예를 들면, 패턴 발생부(10)는 사용자 등에 의해 미리 주어지는 시험 프로그램에 기초하여 복수의 시험 패턴을 피시험 디바이스(200)의 실시험시에 순차 생성한다. 시험 패턴은, 예를 들면 디지탈 데이타로 표현되는 패턴이다. 피시험 디바이스(200)의 실시험이란, 예를 들면 소정의 시험 패턴을 피시험 디바이스에 입력했을 경우에 피시험 디바이스가 출력하는 신호와 기대치 신호를 비교함으로써 피시험 디바이스(200)의 기능이 정상인지를 시험하는 기능 시험, 피시험 디바이스(200)의 동작 속도를 시험하는 실시간 시험 등을 가리킨다.
파형 성형부(12)는 패턴 발생부(10)로부터 주어지는 시험 패턴에 기초하여 피시험 디바이스(200)에 입력하는 신호를 성형한다. 예를 들면, 파형 성형부(12)는 타이밍 발생부(14)로부터 주어지는 타이밍 클럭에 따라 시험 패턴의 디지탈 데이타에 따른 전압값을 도시하는 신호를 성형한다.
판정부(16)는 피시험 디바이스(200)의 출력 신호에 기초하여 피시험 디바이스(200)의 양부를 판정한다. 예를 들면, 판정부(16)는 패턴 발생부(10)로부터 주어지는 기대치 신호와 피시험 디바이스(200)의 출력 신호를 비교함으로써 피시험 디바이스(200)의 양부를 판정한다. 또한, 판정부(16)는 타이밍 발생부(14)로부터 주어지는 타이밍 클럭에 따라 당해 비교를 수행하여도 된다.
전원 장치(18)는 피시험 디바이스(200)를 구동하는 전원 전력을 피시험 디바이스(200)에 공급한다. 부하 변동 보상 회로(40)는 피시험 디바이스(200)의 소비 전류의 변동으로 생기는 피시험 디바이스(200)에 인가되는 전원 전압의 변동을 보상한다. 예를 들면, 부하 변동 보상 회로(40)는 전원 장치(18)와 피시험 디바이스(200)를 접속하는 전원 배선으로부터 분기해서 접속되며, 당해 전원 배선으로부터 보상 전류를 끌어 들인다. 즉, 부하 변동 보상 회로(40)가 피시험 디바이스(200)의 소비 전류의 변동에 따른 보상 전류를 소비함으로써 전원 배선을 전송하 는 전원 전류를 실질적으로 일정하게 하며, 전원 배선에서의 전원 전압의 전압 하강을 실질적으로 일정하게 할 수 있다.
이러한 구성에 의해, 피시험 디바이스(200)의 실시험시의 소비 전류의 변동을 보상하며 또한 피시험 디바이스(200)에 인가되는 전원 전압의 변동을 보상할 수 있다. 부하 변동 보상 회로(40)는 피시험 디바이스(200)의 전원 입력 단자의 근방에서 전원 배선으로부터 분기해서 접속되는 것이 바람직하다. 피시험 디바이스(200)의 근방에 부하 변동 보상 회로(40)를 설치함으로써 전원 전압의 변동에 고속으로 추종할 수 있다.
또한, 부하 변동 보상 회로(40)는 미리 정해진 계조수로 보상 전류를 생성하여 피시험 디바이스(200)에 공급되는 전원 전압의 변동을 보상한다. 당해 계조수는, 예를 들면 부하 변동 보상 회로(40)의 회로 구성에 의해 정해진다.
그러나, 전원 전압의 변동량은 입력되는 시험 패턴, 디바이스의 특성 등에 의해 일정하다고는 할 수 없다. 이 때문에, 부하 변동 보상 회로(40)가 생성하는 보상 전류의 계조수, 설정 분해능, 가변 범위가 일정하면, 전원 전압의 변동량에 따라서는 고정밀도로 보상할 수 없을 경우가 있다. 이에 대하여, 본 예에서의 시험 장치(100)는 시험 패턴이 피시험 디바이스에 입력되었을 경우, 전원 전압의 변동량을 검출하고 검출한 변동량에 기초하여 부하 변동 보상 회로(40)에서의 보상 전류의 분해능 및 가변량(전류 범위)을 설정하는 설정부(20)를 포함한다.
설정부(20)는 부하 변동 보상 회로(40)에서의 당해 전류 범위 및 전류 보상의 분해능을 설정한다. 여기서, 부하 변동 보상 회로(40)에서의 전류 보상의 계조 수는 일정하므로, 설정부(20)는 당해 전류 범위 또는 당해 분해능의 어느 하나를 정함으로써 당해 전류 범위 및 당해 분해능의 쌍방을 설정하여도 된다. 또한, 설정부(20)는 피시험 디바이스(200)에 공급되는 전원 전압의 변동의 최대치에 기초하여 당해 전류 범위 및 당해 분해능을 정한다. 예를 들면, 당해 전류 범위의 최대치의 보상 전류를 생성했을 경우에 보상되는 전원 전압의 변동량과 전원 전압의 변동의 최대치가 실질적으로 동일하게 되도록 정함으로써 일정한 계조수가 정해진 부하 변동 보상 회로(40)로 하여금 보다 높은 정밀도로 보상 전류를 생성하게 하여 전원 전압의 변동을 보상시킬 수 있다.
설정부(20)는 계측부(30) 및 부하 제어부(24)를 포함한다. 계측부(30)는 당해 시험 패턴이 피시험 디바이스(200)에 공급되었을 경우에, 피시험 디바이스(200)에 인가되는 전원 전압의 미리 정해진 기준 전압으로부터의 변동량을 계측한다. 여기서, 기준 전압이란 피시험 디바이스(200)에 인가되기 위하여 사양 등에 의해 미리 정해진 정격 전압이어도 되며, 또는 시험 프로그램에서 당해 시험 패턴 앞에 생성되어야 할 시험 패턴을 피시험 디바이스(200)에 인가한 경우의 전원 전압이어도 된다.
부하 제어부(24)는 계측부(30)가 계측한 전원 전압의 변동량에 기초하여 부하 변동 보상 회로(40)에서의 전류 범위 및 분해능을 설정한다. 부하 제어부(24)는 상술한 바와 같이 당해 전류 범위의 최대치의 보상 전류를 생성했을 경우에 보상되는 전원 전압의 변동량과 전원 전압의 변동의 최대치가 실질적으로 동일하게 되도록 전류 범위 및 분해능을 정해도 된다. 이러한 구성에 의해, 일정한 계조수 가 정해진 부하 변동 보상 회로(40)로 하여금 보다 높은 정밀도로 보상 전류를 생성하게 하여 전원 전압을 보상시킬 수 있다.
상술한 부하 변동 보상 회로(40)의 설정은, 예를 들면 피시험 디바이스(200)의 실시험 전에 수행하여도 된다. 피시험 디바이스(200)의 실시험시에 복수의 시험 패턴을 입력할 경우, 패턴 발생부(10)는 부하 변동 보상 회로(40)의 설정시 당해 복수의 시험 패턴을 피시험 디바이스에 순차 입력한다.
계측부(30)는 각각의 시험 패턴마다 피시험 디바이스(200)에 인가되는 전원 전압의 변동량을 검출하여도 된다. 예를 들면, 계측부(30)는 피시험 디바이스(200)에 입력되는 시험 패턴마다 피시험 디바이스(200)의 전원 전압 파형을 측정하고, 측정한 각각의 전원 전압 파형에 기초하여 전원 전압의 최대치와 최소치를 비교함으로써 전원 전압의 변동량을 시험 패턴마다 검출하여도 된다. 또한, 부하 제어부(24)는 검출한 전원 전압의 변동량 가운데의 최대치에 기초하여 부하 변동 보상 회로(40)에서의 전류 범위 및 분해능을 설정하여도 된다. 이러한 설정을 수행함으로써 전원 전압의 변동을 높은 정밀도로 보상할 수 있다.
또한, 패턴 발생부(10)는 피시험 디바이스(200)의 실시험 전에 피시험 디바이스(200)의 전원 전압의 변동량을 최대로 하기 위해 미리 정해진 시험 패턴을 피시험 디바이스(200)에 입력하여도 된다. 예를 들면, 당해 시험 패턴은 시험 패턴이 피시험 디바이스(200)에 공급되었을 경우, 피시험 디바이스(200)에 포함되는 소자 그룹의 동작율에 의해 정해지는 소비 전류를 산출함으로써 설정할 수 있다.
이 경우, 계측부(30)는 당해 시험 패턴이 피시험 디바이스(200)에 입력되었 을 경우, 피시험 디바이스(200)의 전원 전압의 변동을 검출한다. 그리고, 부하 제어부(24)는 검출한 변동량에 기초하여 피시험 디바이스(200)의 실시험 전에 부하 변동 보상 회로(40)에서의 전류 범위 및 분해능을 설정한다.
또한, 부하 변동 보상 회로(40)의 설정은, 예를 들면 피시험 디바이스(200)의 실시험 후에 판정부(16)에서의 피시험 디바이스(200)의 불량율이 소정의 기준치보다 높은 경우에 수행하여도 된다. 이 경우, 패턴 발생부(10)는 피시험 디바이스(200)의 전원 전압의 변동을 측정하기 위하여 상술한 복수의 시험 패턴 또는 미리 정해진 시험 패턴을 피시험 디바이스(200)에 입력한다. 그리고, 설정부(20)는 상술한 바와 같이 부하 변동 보상 회로(40)에서의 전류 범위 및 분해능을 설정한다. 그리고, 시험 장치(100)는 피시험 디바이스(200)의 실시험을 다시 수행한다. 이러한 제어에 의해, 부하 변동 보상 회로(40)의 설정이 최적화되지 않음에 따른, 피시험 디바이스(200)의 양부의 오판정을 저감할 수 있다.
상술한 부하 변동 보상 회로(40)의 설정시 및 피시험 디바이스(200)의 실시험시의 패턴 발생부(10) 및 설정부(20)의 동작은 시험 장치(100)를 제어하는 제어 수단이 수행하여도 된다.
도 2는 피시험 디바이스(200)의 전원 전압 파형의 일례를 도시하는 도면이다. 도 2에서 가로축은 피시험 디바이스(200)에 인가되는 시험 패턴의 어드레스 블록을 도시하며 세로축은 전원 전압의 전압값을 도시한다.
패턴 발생부(10)는 복수의 시험 패턴을 순차 생성하고 피시험 디바이스(200)에 순차 입력한다. 또한, 각각의 시험 패턴은 각각 복수의 어드레스 블록에 분할 된다. 도 2에 도시한 예에서는 각각의 시험 패턴은 5개의 어드레스 블록에 분할된다.
상술한 바와 같이, 계측부(30)는 각각의 시험 패턴마다 피시험 디바이스(200)에 인가되는 전원 전압의 변동량을 검출하여도 된다. 또한, 계측부(30)는 각각의 어드레스 블록마다 피시험 디바이스(200)에 인가되는 전원 전압의 변동량을 검출해도 된다. 계측부(30)가 시험 패턴마다 또는 어드레스 블록마다의 어디에서 전원 전압의 변동을 검출할 지는 사용자가 미리 정해도 된다.
도 3은 전원 전압 변동의 보상의 일례를 설명하는 도면이다. 도 3(a)는 부하 변동 보상 회로(40)의 설정을 최적화하지 않은 경우의 보상을 도시하며, 도 3(b)는 부하 변동 보상 회로(40)의 설정을 최적화한 경우의 보상의 일례를 도시한다. 또한, 도 3에서 가로축은 시간 또는 피시험 디바이스(200)에 인가되는 시험 패턴 혹은 어드레스 블록을 도시하며, 세로축은 피시험 디바이스(200)에 공급되는 전원 전압의 전압값을 도시한다.
부하 변동 보상 회로(40)는 도 3에서 실선으로 도시하는 전원 전압의 변동에 따라 도 3에서 원으로 도시하도록 소정의 응답 주기로 당해 변동을 보상하는 전류를 생성한다. 부하 변동 보상 회로(40)가 생성하는 보상 전류에 의해 보상되는 전압의 파형은 전원 전압의 변동 파형에 따른 파형이 되는 것이 바람직하다.
그러나, 부하 변동 보상 회로(40)의 설정을 최적화 하지 않은 경우, 도 3(a)에 나타내는 바와 같이 전원 전압의 변동량에 대하여 보상 가능한 전압 범위가 클 경우에 전원 전압의 보상에 사용되지 않는 보상 전류의 계조가 생기고 전원 전압의 보상에 이용되는 계조수가 감소한다. 이 때문에, 도 3(a)에 나타내는 바와 같이 왜곡이 큰 파형에서 전원 전압을 보상하도록 된다.
이에 대하여, 부하 변동 보상 회로(40)의 설정을 최적화한 경우, 전원 전압의 변동의 최대치에 따라 적절한 보상 전류의 전류 범위 및 분해능을 설정할 수 있으므로, 미리 정해진 보상의 계조수를 효율적으로 이용할 수 있다. 이 때문에, 전원 전압의 변동을 보다 높은 정밀도로 보상할 수 있다.
도 4는 시험 장치(100)의 동작의 일례를 도시하는 흐름도이다. 본 예에서는 피시험 디바이스(200)의 실시험 후에 부하 변동 보상 회로(40)의 설정을 최적화할 경우에 대해서 설명한다.
우선, 시험 장치(100)는 복수의 피시험 디바이스(200)의 실시험을 수행한다 (S200). S200에서 시험되는 복수의 피시험 디바이스(200)는 동일한 설계에 의해 제조된 디바이스이어도 된다.
다음에, 피시험 디바이스(200)의 실시험에서 피시험 디바이스(200)의 불량율이 소정의 기준치보다 높을 것인가 아닌가를 판정한다 (S202). S202에서의 판정은 시험 장치(100)를 제어하는 제어 수단이 수행하여도 되며, 또는 시험 장치(100)의 사용자가 수행하여도 된다. 제어 수단 또는 사용자는 S202에서의 판정 결과를 시험 장치(100)에 통지한다.
실시험에서의 불량율이 기준치보다 작을 경우, 시험 장치(100)는 피시험 디바이스(200)의 시험을 종료한다. 또한, 실시험에서의 불량율이 기준치보다 클 경우, 시험 장치(100)는 부하 변동 보상 회로(40)의 설정을 최적화하는 처리(S204∼ S210)를 수행한다.
부하 변동 보상 회로(40)의 설정을 최적화할 경우, 우선 설정부(20)가 부하 변동 보상 회로(40)에서의 전류 범위 및 분해능을 설정한다 (S204). S204에서는 전류 범위 및 분해능을 소정의 값씩 증가시켜도 된다.
다음에, 패턴 발생부(10)는 시험 패턴을 피시험 디바이스(200)에 입력한다 (S206). 그리고, 계측부(30)는 당해 시험 패턴이 피시험 디바이스(200)에 입력되었을 경우에 전원 전압의 변동량을 계측한다 (S208). 상술한 바와 같이, 당해 시험 패턴은 전원 전압의 변동량을 최대로 하기 위해 미리 설정된 시험 패턴이어도 된다. 또한, 복수의 시험 패턴을 피시험 디바이스(200)에 입력할 경우, 각각의 시험 패턴마다 S206 및 S208의 처리를 수행하고 시험 패턴마다의 전원 전압의 변동량을 계측하여도 된다.
다음에, 설정부(20)는 계측한 변동량에 기초하여 S204에서 설정한 보상량(전류 범위 및 분해능)이 최적일 것인가 아닌가를 판정한다 (S210). S210에서는 S208에서 계측한 전원 전압의 변동량이 최소로 된 경우, S204에서 설정한 보상량이 최적이라고 판정하여도 된다. 예를 들면, 부하 변동 보상 회로(40)에서의 가능 보상량이 보상되어야 할 전원 전압의 변동량의 최대치보다 작은 경우, S204에서 가능 보상량을 서서히 증가시켰을 경우에 보상된 후의 전원 전압의 변동량은 서서히 작아진다. 그리고, 어떤 보상량에서 전원 전압의 변동량은 제로에 근접하여 거의 변화되지 않게 된다. 설정부(20)는 당해 보상량을 최적값으로서 판정하여도 된다.
또한, 설정부(20)는 S208에서 계측한 변동량이 소정의 기준치보다 작아졌을 경우에 대응하는 보상량을 최적값으로서 판정해도 된다. 또한, 설정부(20)는 보상량을 가변 범위의 전범위에 걸쳐 변화시키고 전원 전압의 변동이 최소로 되는 보상량을 검출해도 된다. 또한, S206 및 S208에서 복수의 시험 패턴에 대하여 전원 전압의 변동량을 계측할 경우, 당해 변동량의 평균치가 최소로 되는 보상량이 최적이라고 판정하여도 된다.
또한, S204에서 설정한 보상량이 최적이 아니라고 판정한 경우, S204 내지 S208의 처리를 반복한다. 즉, 설정부(20)는 부하 변동 보상 회로(40)에서의 보상량을 순차 변경하고, 패턴 발생부(10)는 설정부(20)가 보상량을 설정할 때마다 복수의 시험 패턴 또는 미리 정해진 시험 패턴을 반복하여 피시험 디바이스(200)에 입력한다.
그리고, 설정부(20)는 부하 변동 보상 회로(40)의 보상량을 변경할 때마다 부하 변동 보상 회로(40)에 의해 보상된 후의 전원 전압의 변동량을 계측한다. 그리고, 설정부(20)는 보상된 후의 전원 전압의 변동량이 최소로 되는 최적인 보상량을 검출하고, 최적인 보상량을 설정한 상태에서 피시험 디바이스(200)의 실시험을 수행한다. 이러한 처리에 의해, 피시험 디바이스(200)의 전원 전압의 변동을 고속이면서 높은 정밀도로 보상할 수 있으며, 따라서 피시험 디바이스(200)의 양부를 높은 정밀도로 판정할 수 있다.
도 5는 시험 장치(100)의 동작의 다른 예를 도시하는 흐름도이다. 본 예에서는 피시험 디바이스(200)의 실시험(S200)을 수행하기 전에 부하 변동 보상 회로(40)의 설정을 최적화하는 처리(S204 내지 S210)를 수행한다. 각각의 처리에서 의 시험 장치(100)의 동작은 도 4에서 설명한 처리와 동일하다. 이러한 처리에 의해, 실시험 전에 부하 변동 보상 회로(40)의 설정을 최적화하여 높은 정밀도로 피시험 디바이스(200)를 시험할 수 있다.
도 6은 시험 장치(100)의 구성의 다른 예를 도시하는 도면이다. 본 예에서는 도 1에 관련하여 설명한 부하 변동 보상 회로(40)를 피시험 디바이스(200)가 구비한다. 즉, 본 예에서의 시험 장치(100)는 부하 변동 보상 회로(40)를 포함하지 않는 점을 제외하고, 도 1 에 관련하여 설명한 시험 장치(100)와 동일한 구성 및 기능을 갖는다.
피시험 디바이스(200)는, 예를 들면 복수의 블록으로 분할된 로직 회로(198)(내부 회로)와 복수의 로직 회로(198)에 대응해서 설치된 복수의 부하 변동 보상 회로(40)를 포함한다. 각각의 부하 변동 보상 회로(40)는 대응하는 로직 회로(198)와 전원 배선의 적어도 일부를 공통으로 해서 설치된다. 본 예에서 부하 변동 보상 회로(40)는 외부의 전원 장치(18)로부터 주어지는 전원 전력을 로직 회로(198)에 전송하는, 피시험 디바이스(200)의 내부에 설치된 전원 배선으로부터 분기해서 설치된다.
또한, 피시험 디바이스(200)는 부하 변동 보상 회로(40)와 시험 장치(100)에 설치된 부하 제어부(24)를 전기적으로 접속하는 단자를 포함한다. 부하 제어부(24)는 도 1에 관련하여 설명한 부하 제어부(24)와 마찬가지로 각각의 부하 변동 보상 회로(40)의 전압 보상의 전압 범위 및 분해능을 설정한다.
이러한 구성에 의해, 피시험 디바이스(200)에 내장된 부하 변동 보상 회 로(40)에 대하여 시험 프로그램에 따라 전압 보상의 전압 범위 및 분해능을 적절한 값으로 설정할 수 있다. 피시험 디바이스(200)에서 부하 변동 보상 회로(40)의 설정값을 재기록 불가능한 안티 퓨즈 방식으로 설정할 경우, 시험 장치는 당해 설정을 피시험 디바이스(200)에 기입하는 것이 바람직하다. 이에 따라, 피시험 디바이스(200)는 출하 후에 실장된 상태일지라도 높은 정밀도로 동작할 수 있다.
또한, 도 1 및 도 6에 도시한 시험 장치(100)는 피시험 디바이스(200)가 오동작하지 않는 전원 전압의 변동량을 검출할 수도 있다. 예를 들면, 전원 전압을 보상할 경우에 생성해야 할 보상 전류에 대하여 부호가 역전한 보상 전류를 생성함으로써 통상의 전원 전압의 변동량보다 큰 전원 전압의 변동을 피시험 디바이스(200)에 공급할 수 있다. 이 때문에, 보상 전류의 부호 및 보상 전류의 절대치를 제어함으로써 피시험 디바이스(200)에 인가되는 전원 전압을 소망의 값으로 설정할 수 있다.
예를 들면, 부하 변동 보상 회로(40)가 생성하는 보상 전류값을 서서히 변화시키고 피시험 디바이스(200)에 인가되는 전원 전압을 서서히 변화시키면서, 피시험 디바이스(200)의 기능 시험을 수행하고 피시험 디바이스(200)가 오동작하는 전원 전압의 변동량을 검출한다. 이러한 제어에 의해, 피시험 디바이스(200)에 대하여 전원 전압 변동을 어느 정도 억제하면 피시험 디바이스(200)가 오동작하지 않을 지를 평가할 수 있다.
도 7은 부하 변동 보상 회로(40)의 구성의 일례를 도시하는 도면이다. 부하 변동 보상 회로(40)는 전원 장치(18)로부터 피시험 디바이스(200)에 전원 전력을 공급하는 전원 배선(31)으로부터 분기해서 설치된다. 전원 장치(18)는 정출력 단자 및 부출력 단자를 포함하며, 각각 정전원 배선(31-1) 및 부전원 배선(31-2)을 통하여 피시험 디바이스(200)의 정전원 입력 단자 및 부전원 입력 단자에 접속된다.
또한, 전원 배선(31)은 피시험 디바이스(200)의 전원 입력 단자의 근방에서 주전원 배선(29-1 및 29-2, 이하 29라고 총칭한다) 및 분기 전원 배선(26-1 및 26-2, 이하 26이라고 총칭한다)으로 분기한다. 주전원 배선(29)은 전원 장치(18)와 피시험 디바이스(200)를 접속하며 피시험 디바이스(200)에 전원 전력을 공급한다. 또한, 분기 전원 배선(26)은 전원 장치(18)와 부하 변동 보상 회로(40)를 접속하며 부하 변동 보상 회로(40)에 전원 전력을 공급한다.
여기서, 피시험 디바이스(200)의 전원 입력 단자의 근방에서의 분기점은 예를 들면 당해 분기점에서 피시험 디바이스(200)까지의 주전원 배선(29)의 임피던스가 실질적으로 제로 또는 실질적으로 무시할 수 있는 크기로 되는 위치이어도 된다. 적어도, 전원 장치(18)로부터 당해 분기점까지의 전원 배선(31)의 임피던스보다 당해 분기점에서 피시험 디바이스(200)까지의 주전원 배선(29)의 임피던스가 작아지는 위치로 되도록 설치된다. 또한, 분기 전원 배선(26)의 임피던스도 실질적으로 제로 또는 실질적으로 무시할 수 있는 크기로 되도록 설치되는 것이 바람직하다.
부하 변동 보상 회로(40)는 피시험 디바이스(200)에 공급되는 전원 전력의 변동을 보상한다. 본 예에서 부하 변동 보상 회로(40)는 제1 지연 회로부(42-1), 제2 지연 회로부(42-2), 위상 검출부(44), 및 부하 회로(46)를 포함한다.
제1 지연 회로부(42-1)는 피시험 디바이스(200)에 공급되는 전원 전압의 단위 변동량에 대하여 소정의 제1 변동량으로 지연량이 변동하여 주어지는 클럭 신호를 지연시킨다. 또한, 제2 지연 회로부(42-2)는 피시험 디바이스(200)에 공급되는 전원 전압의 단위 변동량에 대하여 제1 변동량보다 큰 제2 변동량으로 지연량이 변동하여 주어지는 클럭 신호를 지연시킨다. 본 예에서 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에는 분기 전원 배선(26)을 통해서 전원 전압이 주어지며, 당해 전원 전압의 변동에 따라 지연량이 변동한다.
또한, 본 예에 있어서는 제2 지연 회로부(42-2)에서의 제2 변동량이 제1 지연 회로부(42-1)에서의 제1 변동량보다 클 경우에 대해서 설명하지만, 다른 예에서는 제1 변동량이 제2 변동량보다 커도 된다. 즉, 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에서 전원 전압의 단위 변동량에 대한 지연량의 변동량이 다르면 된다. 제1 변동량 또는 제2 변동량의 어느 쪽이 클 경우일지라도, 부하 변동 보상 회로(40)는 등가인 동작을 수행할 수 있다.
부하 회로(46)는 피시험 디바이스(200)와 병렬로 설치되며, 전원 배선의 적어도 일부를 피시험 디바이스(200)와 공통으로 한다. 본 예에서 부하 회로(46)는 전원 배선(31)을 피시험 디바이스(200)와 공통으로 하며, 분기 전원 배선(26)으로부터 전원 전력을 수취한다.
위상 검출부(44)는 제1 지연 회로부(42-1)가 출력하는 클럭 신호와 제2 지연 회로부(42-2)가 출력하는 클럭 신호의 위상차를 검출하고, 당해 위상차에 근거해서 부하 회로(46)가 소비하는 소비 전류량을 제어한다. 예를 들면, 부하 회로(46)는 미리 정해진 소비 전류를 분기 전원 배선(26)을 통해서 소비할 것인가 아닌가를 선택 가능한 회로이며, 위상 검출부(44)는 제1 지연 회로부(42-1)가 출력하는 클럭 신호와 제2 지연 회로부(42-2)가 출력하는 클럭 신호의 어느 위상이 진행하고 있을 지에 기초하여 부하 회로(46)로 하여금 당해 소비 전류를 소비시킬 것인가 아닌가를 선택하게 하여도 된다. 또한, 부하 회로(46)는 소비 전류량이 변동 가능한 회로이며, 위상 검출부(44)는 당해 위상차에 근거해서 부하 회로(46)에서의 소비 전류량을 제어하여도 된다.
도 8은 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에서의 전원 전압과 지연량의 관계의 일례를 도시하는 도면이다. 본 예에서는 제2 변동량이 제1 변동량보다 클 경우에 대해서 설명한다. 즉, 도 8에 나타내는 바와 같이, 전원 전압-지연량 특성의 기울기가 제1 지연 회로부(42-1)보다 제2 지연 회로부(42-2)의 쪽이 클 경우에 대해서 설명한다.
제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에서의 지연량은 피시험 디바이스(200)에 공급되는 전원 전압이 소정의 기준 전압으로 된 경우에 동일하게 되도록 설계된다. 예를 들면, 제1 지연 회로부(42-1)는 도 8의 점선에서 나타내는 바와 같이 전원 전압-지연량 특성의 기울기가 제2 지연 회로부(42-2)보다 작은 지연 소자, 및 주어지는 클럭 신호를 지연 시간 t0 지연시켜서 당해 지연 소자에 입력하는 위상차 생성부를 포함한다. 위상차 생성부에서의 지연 시간 t0를 제어함으로써 소망의 기준 전압에서 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에서 의 지연량을 실질적으로 동일하게 할 수 있다. 당해 기준 전압은, 예를 들면 피시험 디바이스(200)에 주어져야 할 전원 전압과 실질적으로 동등한 전압이어도 되며, 예를 들면 피시험 디바이스(200)의 정격 전압과 실질적으로 동등한 전압이어도 된다.
위상 검출부(44)는 제1 지연 회로부(42-1)가 출력하는 클럭 신호와 제2 지연 회로부(42-2)가 출력하는 클럭 신호의 위상차가 미리 정해진 위상차로 되도록 부하 회로(46)가 소비하는 소비 전류량을 제어한다. 본 예에서는 위상 검출부(44)는 당해 위상차가 실질적으로 제로로 되도록 부하 회로(46)가 소비하는 소비 전류량을 제어한다.
도 8에 나타내는 바와 같이, 당해 위상차가 실질적으로 제로가 되는 것은 제1 지연 회로부(42-1)에서의 지연량과 제2 지연 회로부(42-2)에서의 지연량이 실질적으로 동등해질 경우이다. 즉, 위상 검출부(44)는 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에 주어지는 전원 전압이 도 8에 도시하는 소정의 기준 전압으로 되도록 부하 회로(46)가 소비하는 소비 전류량을 제어한다.
예를 들면, 피시험 디바이스(200)의 소비 전류량이 감소한 경우, 전원 배선(31)의 임피던스 성분(25)에서의 전압 강하량은 감소한다. 즉, 피시험 디바이스(200)에 공급되는 전원 전압은 기준 전압보다 커진다. 이 경우, 도 8에 나타내는 바와 같이 제2 지연 회로부(42-2)에서의 지연량이 제1 지연 회로부(42-1)에서의 지연량보다 커지므로, 제1 지연 회로부(42-1)가 출력하는 클럭 신호의 위상은 제2 지연 회로부(42-2)가 출력하는 클럭 신호의 위상보다 앞선다.
위상 검출부(44)는 제1 지연 회로부(42-1)가 출력하는 클럭 신호의 위상이 제2 지연 회로부(42-2)가 출력하는 클럭 신호의 위상보다 앞서 있을 경우에 부하 회로(46)의 소비 전류량을 증가시킨다. 예를 들면, 부하 회로(46)를 온 상태로 제어하여 소정의 소비 전류를 소비시킨다. 부하 회로(46)는 전원 배선(31)을 통해서 전원 전류를 수취하므로, 이러한 제어에 의해 전원 배선(31)에 흐르는 전원 전류량은 증대한다. 이에 따라, 피시험 디바이스(200)의 소비 전류의 감소에 의한 전원 전압의 증대를 보상할 수 있다.
또한, 피시험 디바이스(200)의 소비 전류량이 증대한 경우, 마찬가지로 피시험 디바이스(200)에 공급되는 전원 전압은 기준 전압보다 작아진다. 이 경우, 제1 지연 회로부(42-1)가 출력하는 클럭 신호의 위상은 제2 지연 회로부(42-2)가 출력하는 클럭 신호의 위상보다 늦는다.
위상 검출부(44)는 제1 지연 회로부(42-1)가 출력하는 클럭 신호의 위상이 제2 지연 회로부(42-2)가 출력하는 클럭 신호의 위상보다 늦고 있을 경우, 부하 회로(46)의 소비 전류량을 감소시킨다. 예를 들면, 부하 회로(46)를 오프 상태로 제어하여 소비 전류량을 실질적으로 제로로 한다. 이에 따라, 피시험 디바이스(200)의 소비 전류의 증대에 의한 전원 전압의 감소를 보상할 수 있다.
본 예에서의 부하 변동 보상 회로(40)에 의하면, 상술한 바와 같이 피시험 디바이스(200)의 소비 전류의 변동에 의한 전원 전압 변동을 보상할 수 있다. 또한, 전원 전압의 변동을 전원 장치(18)에 피드백하지 않고, 피시험 디바이스(200)의 근방에 설치한 부하 회로(46)의 소비 전류를 제어함으로써 전원 전압 변동을 보 상하므로 부하 변동에 고속으로 추종할 수 있다. 특히, 부하 회로(46)의 온 또는 오프를 선택함으로써 전원 전압 변동을 보상할 수 있으므로, 간이한 제어로 부하 변동에 고속으로 추종할 수 있다.
도 9는 부하 변동 보상 회로(40)의 구성의 다른 예를 도시하는 도면이다. 본 예에서의 부하 변동 보상 회로(40)는 도 7에서 설명한 부하 변동 보상 회로(40)의 구성에 더하여 위상차 생성부(57)를 더 포함한다. 또한, 본 예에서의 제1 지연 회로부(42-1)는 직렬로 접속된 n개(단, n은 자연수)의 제1 지연 소자(48-1 내지 48-n, 이하 48이라고 총칭한다)를 포함한다. 또한, 본 예에서의 제2 지연 회로부(42-2)는 직렬로 접속된 n개의 제2 지연 소자(50-1 내지 50-n, 이하 50이라고 총칭한다)를 포함한다. 또한, 위상 검출부(44)는 n개의 위상 비교기(52-1 내지 52-n, 이하 52라고 총칭한다)를 포함하며, 부하 회로(46)는 n개의 부하기(54-1 내지 54-n, 이하 54라고 총칭한다)를 포함한다.
복수의 제1 지연 소자(48)는 직렬 접속되며 주어지는 클럭 신호를 순차 지연시킨다. 각각의 제1 지연 소자(48)에는 분기 전원 배선(26)으로부터 전원 전압(VH, VL)이 주어지며, 당해 전원 전압에 따른 지연을 생기게 한다. 각각의 제1 지연 소자(48)에서의 지연량은 실질적으로 동일하다. 예를 들면, 각각의 제1 지연 소자(48)에서의 지연량은 도 8에서 점선으로 도시한 지연량을 n 분할한 지연량이어도 된다. 각각의 제1 지연 소자의 지연량은 예를 들면 d1×V로 주어진다. 여기서, d1은 제1 지연 소자(48)에 주어지는 전원 전압의 단위 변동량에 대한 지연량의 변동량을 나타내며, 예를 들면 제1 지연 소자(48)에 공급하는 바이어스 전압에 의 해 제어된다. 또한, V는 제1 지연 소자(48)에 주어지는 전원 전압을 나타낸다.
복수의 제2 지연 소자(50)는 직렬 접속되며 주어지는 클럭 신호를 순차 지연시킨다. 각각의 제2 지연 소자(50)에는 분기 전원 배선(26)으로부터 전원 전압(VH, VL)이 주어지며, 당해 전원 전압에 따른 지연을 생기게 한다. 각각의 제2 지연 소자(50)에서의 지연량은 실질적으로 동일하다. 예를 들면, 각각의 제2 지연 소자(50)에서의 지연량은 도 8에 도시한 제2 지연 회로부(42-2)의 지연량을 n 분할한 지연량이어도 된다. 각각의 제2 지연 소자(50)에서의 지연량은 예를 들면 d2×V로 주어진다. 여기서, d2는 제2 지연 소자(50)에 주어지는 전원 전압의 단위 변동량에 대한 지연량의 변동량을 나타내며, 예를 들면 제2 지연 소자(50)에 공급하는 바이어스 전압에 의해 제어된다. 또한, V는 제2 지연 소자(50)에 주어지는 전원 전압을 나타내며, 제1 지연 소자(48)에 주어지는 전원 전압과 실질적으로 동일하다. 또한, 제2 지연 소자(50)에서 전원 전압의 단위 변동량에 대한 지연량의 변동량(d2)은 제1 지연 소자(48)에서의 당해 단위 변동량에 대한 지연량의 변동량(d1)보다 크다.
위상차 생성부(57)는 제1 지연 회로부(42-1)에 입력되는 클럭 신호와 제2 지연 회로부(42-2)에 입력되는 클럭 신호의 사이에 소정의 위상차를 생기게 한다. 본 예에서 위상차 생성부(57)는 제1 지연 회로부(42-1)에 입력되는 클럭 신호를 지연시키는 가변 지연 회로(59-1) 또는 제2 지연 회로부(42-2)에 입력되는 클럭 신호를 지연시키는 가변 지연 회로(59-2)의 적어도 어느 하나를 포함하며, 제1 지연 회로부(42-1)에 입력되는 클럭 신호 또는 제2 지연 회로부(42-2)에 입력되는 클럭 신 호의 어느 하나를 소정의 시간 지연시킨다. 또한, 가변 지연 회로(59)의 지연량은 부하 변동 보상 회로(40)에 주어지는 전원 전압에 관계없이 일정하다. 부하 변동 보상 회로(40)는 일정한 전원 전압을 가변 지연 회로(59)에 공급하는 수단을 포함하는 것이 바람직하다.
본 예에서 위상차 생성부(57)는 피시험 디바이스(200)에 주어지는 전원 전압이 소정의 기준 전압으로 된 경우에, 제1 지연 회로부(42-1)에서의 실질적으로 중간단의 제1 지연 소자(48)가 출력하는 클럭 신호의 위상과 제2 지연 회로부(42-2)에서의 실질적으로 중간단의 제2 지연 소자(50)가 출력하는 클럭 신호의 위상이 실질적으로 동일하게 되도록, 제1 지연 회로부(42-1) 또는 제2 지연 회로부(42-2)에 공급하는 클럭 신호를 지연시킨다. 예를 들면, 제2 지연 소자(50)의 지연량이 제1 지연 소자(48)의 지연량보다 클 경우, 제1 지연 회로부(42-1)에 입력하는 클럭 신호를 소정 시간 지연시킨다.
복수의 위상 비교기(52)는 복수의 제1 지연 소자(48) 및 복수의 제2 지연 소자(50)와 대응해서 설치된다. 각각의 위상 비교기(52)는 대응하는 제1 지연 소자(48) 및 대응하는 제2 지연 소자(50)가 출력하는 클럭 신호의 위상차를 검출한다. 본 예에서는 제1 지연 회로부(42-1)에 주어지는 클럭 신호의 위상이 제2 지연 회로부(42-2)에 주어지는 클럭 신호의 위상보다 늦으며 제2 지연 소자(50)의 지연량이 제1 지연 소자(48)의 지연량보다 크므로, 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에서 어느 단수의 지연 소자가 출력하는 클럭 신호에서 위상 관계가 역전한다.
예를 들면, 당해 단수의 지연 소자보다 상류의 지연 소자에서는 제1 지연 소자(48)가 출력하는 클럭 신호의 위상이 제2 지연 소자(50)가 출력하는 클럭 신호의 위상보다 늦어지고 있다. 또한, 당해 단수의 지연 소자보다 하류의 지연 소자에서는 제1 지연 소자(48)가 출력하는 클럭 신호의 위상이 제2 지연 소자(50)가 출력하는 클럭 신호의 위상보다 앞서고 있다. 이 때문에, 당해 단수의 지연 소자보다 상류의 지연 소자에 대응하는 위상 비교기(52)는 위상 비교 결과로서 예를 들면 하이 논리의 신호를 출력하며, 당해 단수의 지연 소자 이후의 지연 소자에 대응하는 위상 비교기는 위상 비교 결과로서 예를 들면 로우 논리의 신호를 출력한다.
복수의 부하기(54)는 복수의 위상 비교기(52)와 대응해서 설치된다. 각각의 부하기(54)는 대응하는 위상 비교기(52)의 비교 결과에 따라 소정의 전류량을 소비할 것인가 아닌가를 선택한다. 또한, 각각의 부하기(54)는 피시험 디바이스(200)와 병렬로 설치되며, 전원 배선의 적어도 일부를 피시험 디바이스(200)와 공통으로 한다. 본 예에서 부하기(54)는 전원 배선(31)을 피시험 디바이스(200)와 공통으로 하여 분기 전원 배선(26)으로부터 전원 전력을 수취한다. 각각의 부하기(54)에서의 소정의 전류량은 각각 동일하여도 된다.
본 예에서 각각의 위상 비교기(52)는 대응하는 제1 지연 소자(48)가 출력하는 클럭 신호의 위상이 대응하는 제2 지연 소자(50)가 출력하는 클럭 신호의 위상보다 앞서고 있을 경우, 대응하는 부하기(54)를 온 상태로 제어하여 소정의 전류량을 소비시킨다. 또한, 각각의 위상 비교기(52)는 대응하는 제1 지연 소자(48)가 출력하는 클럭 신호의 위상이 대응하는 제2 지연 소자(50)가 출력하는 클럭 신호의 위상보다 늦어지고 있을 경우, 대응하는 부하기(54)를 오프 상태로 제어하여 소비 전류량을 실질적으로 제로로 제어한다.
도 10은 도 9에서 설명한 부하 변동 보상 회로(40)의 동작의 일례를 설명하는 타이밍 차트이다. 본 예에서 위상차 생성부(57)는 제1 지연 회로부(42-1)에 입력되는 클럭 신호의 위상을 제2 지연 회로부(42-2)에 입력되는 클럭 신호의 위상에 대하여 소정의 시간 T1 늦춰서 입력할 경우에 대해서 설명한다. 또한, 본 예에서는 제2 지연 소자(50)의 지연량이 제1 지연 소자(48)의 지연량보다 클 경우에 대해서 설명한다.
우선, 가변 지연 회로(59-1) 및 가변 지연 회로(59-2)로부터 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에 대하여 각각 클럭 신호가 주어진다. 상술한 바와 같이, 제1 지연 회로부(42-1)에 입력되는 클럭 신호의 위상은 제2 지연 회로부(42-2)에 입력되는 클럭 신호의 위상보다 소정의 위상차 T1만큼 늦어지고 있다.
제1 지연 소자(48-1) 및 제2 지연 소자(50-1)는 각각 주어진 클럭 신호를 지연시켜서 출력한다. 상술한 바와 같이, 제2 지연 소자(50)-1에서의 지연량은 제1 지연 소자(48-1)에서의 지연량보다 크다. 이 때문에, 제1 지연 소자(48-1)가 출력하는 클럭 신호와 제2 지연 소자(50-1)가 출력하는 클럭 신호의 위상차 T2는 위상차 T1로부터 제1 지연 소자(48-1)와 제2 지연 소자(50-2)의 지연차를 뺀 값 T2로 된다.
각각의 클럭 신호를 복수의 제1 지연 소자(48) 및 제2 지연 소자(50)를 통과하게 함으로써 각각의 클럭 신호의 위상차는 서서히 작아지며, 소정의 제1 지연 소 자(48-(k+1)) 및 제2 지연 소자(50-(k+1))에서 클럭 신호의 위상 관계가 역전한다. 상술한 바와 같이, 위상 비교기(52)는 대응하는 제1 지연 소자(48) 및 제2 지연 소자(50)가 출력하는 클럭 신호의 위상을 비교하고, 비교 결과에 따라 대응하는 부하기(54)를 온 또는 오프 상태로 제어한다.
각각의 클럭 신호의 위상이 역전하는 지연 소자의 단수는 초기의 위상차 T1과 제1 지연 소자(48) 및 제2 지연 소자(50)에서의 지연차에 의해 정해진다. 초기의 위상차 T1은 예를 들면 피시험 디바이스(200)에 주어지는 전원 전압이 소정의 기준 전압으로 된 경우, 제1 지연 회로부(42-1)에서의 실질적으로 중간단의 제1 지연 소자(48)가 출력하는 클럭 신호의 위상과 제2 지연 회로부(42-2)에서의 실질적으로 중간단의 제2 지연 소자(50)가 출력하는 클럭 신호의 위상이 실질적으로 동일하게 되도록 설정된다.
또한, 제1 지연 소자(48) 및 제2 지연 소자(50)에서의 지연량은 피시험 디바이스(200)에 공급되는 전원 전압에 따라 변동한다. 이 때문에, 어느 단수에서 클럭 신호의 위상 관계가 역전할 지는 주어지는 전원 전압에 의해 정해진다. 예를 들면, 전원 전압이 기준 전압보다 작아졌을 경우, 제1 지연 소자(48) 및 제2 지연 소자(50)에서의 지연차는 기준 전압이 주어지고 있는 상태에 비해 감소한다. 이 때문에, 클럭 신호의 위상 관계가 역전하는 지연 소자의 단수는 중간단으로부터 기준 전압에 대한 전원 전압의 변동량에 따른 단수만큼 하류로 이동한다.
이 경우, 이동한 단수에 따라 온 상태로 되는 부하기(54)의 개수가 감소하여 부하 회로(46)에서의 소비 전류가 감소한다. 이 때문에, 전원 배선(31)에서의 전 압 강하량이 감소하고 피시험 디바이스(200)에 주어지는 전원 전압의 변동을 보상할 수 있다.
도 11은 제1 지연 회로부(42-1) 및 제2 지연 회로부(42-2)에서의 각 단의 지연 소자가 출력하는 클럭 신호의 지연 시간을 도시하는 도면이다. 도 10에서 설명한 바와 같이, 각각의 지연 소자가 출력하는 클럭 신호의 위상은 제1 지연 소자(48) 및 제2 지연 소자(50)의 지연차에 따른 단수에서 역전한다. 도 11에 나타내는 바와 같이, 지연 소자의 하나의 단에 대하여 제1 지연 소자(48) 및 제2 지연 소자(50)의 지연차는 (d2-d1)×V로 주어진다. 당해 지연차는 전원 전압에 비례하므로, 위상이 역전하는 단수가 전원 전압에 따라 변화되는 것을 알 수 있다. 부하 변동 보상 회로(40)는 전원 전압의 변동량과 위상이 역전하는 단수의 변동량의 관계가 선형으로 근사할 수 있는 전압 범위에서 전원 전압의 변동을 보상해도 된다.
도 12는 부하기(54)의 구성의 일례를 도시하는 도면이다. 부하기(54)는 분기 전원 배선(26-1) 및 분기 전원 배선(26-2)의 사이에 직렬로 접속된 트랜지스터(108) 및 트랜지스터(110)를 복수단 포함한다. 각 단의 트랜지스터(108)는 예를 들면 PMOS 트랜지스터이며, 소스 단자가 분기 전원 배선(26-1)에 접속되고 드레인 단자가 트랜지스터(110)의 드레인 단자에 접속되며 게이트 단자가 전류량 제어 신호의 대응하는 비트 신호를 수취한다.
각 단의 트랜지스터(110)는 예를 들면 NMOS 트랜지스터이며, 소스 단자가 분기 전원 배선(26-2)에 접속되고 드레인 단자가 트랜지스터(108)의 드레인 단자에 접속되며 게이트 단자가 대응하는 위상 비교기(52)가 출력하는 비교 결과 신호를 수취한다.
즉, 전류량 제어 신호에 의해 온 상태로 되는 트랜지스터(108)의 개수를 제어할 수 있다. 또한, 트랜지스터(110)는 위상 비교기(52)에서의 비교 결과에 따라 모두 온 또는 모두 오프 상태로 된다. 이 때문에, 전류량 제어 신호에 의해 위상 비교기(52)가 부하기(54)를 온 상태로 제어했을 경우에, 부하기(54)가 소비하는 전류량을 소망의 값으로 제어할 수 있다.
부하 제어부(24)는 상술한 바와 같이 전류량 제어 신호에 의해 부하기(54)가 소비하는 전류량을 소망의 값으로 제어한다. 즉, 부하 회로(46)가 소비하는 전류의 분해능을 제어한다. 이에 따라, 전압 보상의 전압 범위 및 분해능을 제어할 수 있다. 예를 들면, 부하 제어부(24)는 피시험 디바이스(200)가 소비하는 전류의 변동량의 최대치와 부하 회로(46)가 소비하는 전류의 변동량의 최대치가 실질적으로 동일하게 되도록 각각의 부하기(54)가 소비하는 전류량을 조정하여도 된다.
도 13은 계측부(30)의 구성의 일례를 도시하는 도면이다. 본 예에서의 계측부(30)는 필터부(32), 발진기(34), 주파수 측정부(36), 및 전압 산출부(38)를 포함한다. 필터부(32)는 피시험 디바이스(200)의 전원 입력 단자에 공급되는 전원 전압을 수취한다. 그리고, 필터부(32)는 입력된 전원 전압의 DC 성분을 제거하고, 추출한 AC 성분을 소정의 전압 레벨에 중첩해서 출력한다. 이에 따라, 필터부(32)는 소정의 전압 레벨을 기준으로 하여 전원 전압의 변동량에 따라 변동하는 전압을 출력한다. 당해 전압 레벨은 상술한 기준 전압이어도 된다. 또한, 다른 예에서는 발진기(34)는 피시험 디바이스(200)에 인가되는 전원 전압을 필터부(32)를 거치지 않고 수취해도 된다.
발진기(34)는 필터부(32)로부터 공급된 전압에 따른 주파수의 클럭 신호를 발생한다. 즉, 발진기(34)는 DC 성분이 제거된 전원 전압에 따른 주파수의 클럭 신호를 출력한다. 본 실시 형태에서는 발진기(34)는 전원 전압이 높아지면 주파수가 높아지며 전원 전압이 작아지면 주파수가 낮아지는 클럭 신호를 발생한다.
주파수 측정부(36)는 발진기(34)로부터 출력된 클럭 신호의 주파수를 계측한다. 보다 구체적으로는, 주파수 측정부(36)는 미리 정해진 기준 기간내(예를 들면, 기준 클럭의 소정 주기의 사이)에서의 클럭 신호의 펄스수를 계측한다. 전압 산출부(38)는 주파수 측정부(36)가 측정한 클럭 신호의 주파수에 기초하여 피시험 디바이스(200)의 전원 전압을 측정한다.
전압 산출부(38)에는 당해 클럭 신호의 주파수와 발진기(34)에 공급되는 전원 전압의 관계가 미리 주어져도 된다. 전압 산출부(38)는 측정한 전원 전압을 부하 제어부(24)에 통지한다. 부하 제어부(24)는 통지된 전압값에 기초하여 상술한 바와 같이 부하 회로(46)가 소비하는 전류의 분해능을 제어한다. 부하 제어부(24)에는 전원 전압의 변동량과 설정해야 할 부하 회로(46)의 소비 전류의 분해능의 관계가 미리 주어져도 된다. 당해 관계는 전원 배선(31)에서의 임피던스 성분(25)의 저항값에 근거해서 산출할 수 있다.
이상으로부터 분명한 바와 같이, 본 발명의 하나의 측면에 의하면, 부하 변동 보상 회로를 피시험 디바이스의 내부 또는 근방에 설치함으로써 소비 전류 및 전원 전압의 변동에 고속으로 추종할 수 있다. 더욱이, 부하 변동 보상 회로에서의 보상 범위 및 보상 분해능을 적절한 값으로 설정할 수 있다. 이 때문에, 소비 전류 및 전원 전압의 변동을 높은 정밀도로 보상하여 피시험 디바이스를 높은 정밀도로 시험할 수 있다.
이상, 본 발명을 실시 형태를 이용해서 설명하였지만, 본 발명의 기술적 범위는 상기 실시 형태에 기재된 범위에 한정되지는 않는다. 상기 실시 형태에 다양한 변경 또는 개량을 추가할 수 있다는 것이 당업자에게 명확하다. 이와 같은 변경 또는 개량을 추가한 형태도 본 발명의 기술적 범위에 포함될 수 있다는 것이 청구의 범위의 기재로부터 명확하다.

Claims (13)

  1. 피시험 디바이스를 시험하는 시험 장치에 있어서,
    상기 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생부,
    상기 피시험 디바이스의 출력 신호에 기초하여 상기 피시험 디바이스의 양부를 판정하는 판정부,
    상기 피시험 디바이스에 전원 전력을 공급하는 전원 장치,
    상기 피시험 디바이스가 소비하는 소비 전류의 변동으로 생기는 상기 피시험 디바이스에 인가되는 전원 전압의 변동을 보상하기 위하여 상기 소비 전류의 변동에 따른 보상 전류를 계조수로 생성하는 부하 변동 보상 회로, 및
    상기 시험 패턴이 상기 피시험 디바이스에 입력되었을 경우, 상기 전원 전압의 변동량을 검출하고 검출한 상기 변동량에 기초하여 상기 부하 변동 보상 회로에서의 상기 전류 범위를 설정하는 설정부
    를 포함하는 시험 장치.
  2. 제1항에 있어서,
    상기 패턴 발생부는 상기 피시험 디바이스의 실시험시에 입력해야 할 복수의 상기 시험 패턴을 상기 피시험 디바이스에 순차 입력하며,
    상기 설정부는 각각의 상기 시험 패턴마다 또는 상기 시험 패턴의 어드레스 블록마다 상기 전원 전압의 변동량을 검출하고 검출한 상기 전원 전압의 변동량 가운데의 최대치에 기초하여 상기 부하 변동 보상 회로에서의 상기 전류 범위를 설정하는 시험 장치.
  3. 제1항에 있어서,
    상기 피시험 디바이스에 포함된 소자 그룹의 동작율에 의해 정해지는 소비 전류에 따라 상기 패턴 발생부는 상기 전원 전압의 변동량을 최대로 하기 위해 상기 시험 패턴을 상기 피시험 디바이스에 입력하며,
    상기 설정부는 당해 시험 패턴이 상기 피시험 디바이스에 입력되었을 경우, 상기 전원 전압의 변동을 검출하고 검출한 상기 변동량에 기초하여 상기 부하 변동 보상 회로에서의 상기 전류 범위를 설정하는 시험 장치.
  4. 제2항 또는 제3항에 있어서,
    상기 패턴 발생부는 상기 피시험 디바이스의 실시험 전에 상기 시험 패턴을 상기 피시험 디바이스에 입력하며,
    상기 설정부는 상기 피시험 디바이스의 실시험 전에 상기 부하 변동 보상 회로에서의 상기 전류 범위를 설정하는 시험 장치.
  5. 제2항 또는 제3항에 있어서,
    상기 패턴 발생부는 상기 피시험 디바이스의 실시험 후에 상기 판정부의 판정 결과에서의 상기 피시험 디바이스의 불량율이 기준치보다 높을 경우에 상기 전원 전압의 변동을 측정하기 위해 상기 시험 패턴을 상기 피시험 디바이스에 입력하며,
    상기 설정부는 당해 시험 패턴이 상기 피시험 디바이스에 입력되었을 경우, 상기 전원 전압의 변동량에 기초하여 상기 부하 변동 보상 회로에서의 상기 전류 범위를 설정하는 시험 장치.
  6. 제2항 또는 제3항에 있어서,
    상기 패턴 발생부는 상기 시험 패턴을 상기 피시험 디바이스에 반복 입력하며,
    상기 설정부는,
    상기 패턴 발생부가 상기 시험 패턴을 상기 피시험 디바이스에 입력할 때마다 상기 부하 변동 보상 회로에서의 상기 전류 범위를 변경하고 상기 부하 변동 보상 회로로 하여금 각각의 상기 전류 범위에 따른 보상 전류를 생성하게 하는 부하 제어부, 및
    상기 전류 범위마다 상기 전원 전압의 변동을 계측하는 계측부
    를 포함하며,
    상기 부하 제어부는 상기 계측부가 계측한 상기 전원 전압의 변동량이 최소로 되는 상기 전류 범위를 상기 피시험 디바이스의 실시험시에 상기 부하 변동 보상 회로에 설정하는 시험 장치.
  7. 제6항에 있어서,
    상기 계측부는 상기 피시험 디바이스에 입력되는 상기 시험 패턴마다 상기 피시험 디바이스의 전원 전압 파형을 측정하고 측정한 각각의 상기 전원 전압 파형에 기초하여 상기 전원 전압의 최대치와 최소치를 비교함으로써 상기 전원 전압의 변동량을 상기 시험 패턴마다 검출하는 시험 장치.
  8. 제1항에 있어서,
    상기 부하 변동 보상 회로는,
    상기 피시험 디바이스에 공급되는 전원 전압의 단위 변동량에 대하여 소정의 제1 변동량으로 지연량이 변동하여 주어지는 클럭 신호를 지연시키는 제1 지연 회로부,
    상기 피시험 디바이스에 공급되는 상기 전원 전압의 상기 단위 변동량에 대하여 상기 제1 변동량보다 큰 제2 변동량으로 지연량이 변동하여 주어지는 상기 클럭 신호를 지연시키며, 상기 제1 지연 회로부와 병렬로 설치된 제2 지연 회로부,
    상기 피시험 디바이스와 병렬로 설치되며 전원 배선의 적어도 일부를 상기 피시험 디바이스와 공통으로 하는 부하 회로, 및
    상기 제1 지연 회로부가 출력하는 상기 클럭 신호와 상기 제2 지연 회로부가 출력하는 상기 클럭 신호의 위상차를 검출하고 당해 위상차에 근거해서 상기 설정부가 설정하는 상기 전류 범위에서 상기 부하 회로가 소비하는 소비 전류량을 상기 계조수로 조정하는 위상 검출부
    를 포함하는 시험 장치.
  9. 제1항에 있어서,
    상기 설정부는 상기 전원 전압을 계측하는 계측부를 포함하며,
    상기 계측부는,
    상기 피시험 디바이스에 공급되는 상기 전원 전압에 따른 주파수의 클럭 신호를 출력하는 발진기,
    상기 클럭 신호의 주파수를 측정하는 주파수 측정부, 및
    상기 주파수 측정부가 측정한 상기 주파수에 기초하여 상기 전원 전압을 산출하는 전압 산출부
    를 포함하는 시험 장치.
  10. 내부 회로가 소비하는 소비 전류의 변동으로 생기는 상기 내부 회로에 인가되는 전원 전압의 변동을 보상하기 위하여 상기 소비 전류의 변동에 따른 보상 전류를 계조수로 생성하는 부하 변동 보상 회로를 포함하는 피시험 디바이스를 시험하는 시험 장치에 있어서,
    상기 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생부,
    상기 피시험 디바이스의 출력 신호에 기초하여 상기 피시험 디바이스의 양부를 판정하는 판정부,
    상기 피시험 디바이스에 전원 전력을 공급하는 전원 장치, 및
    상기 시험 패턴이 상기 피시험 디바이스에 입력되었을 경우, 상기 전원 전압의 변동량을 검출하고 검출한 상기 변동량에 기초하여 상기 부하 변동 보상 회로에서의 상기 전류 범위를 설정하는 설정부
    를 포함하는 시험 장치.
  11. 피시험 디바이스를 시험하는 시험 방법에 있어서,
    상기 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생 단계,
    상기 피시험 디바이스의 출력 신호에 기초하여 상기 피시험 디바이스의 양부를 판정하는 판정 단계,
    상기 피시험 디바이스에 전원 전력을 공급하는 전원 단계,
    상기 피시험 디바이스가 소비하는 소비 전류의 변동으로 생기는 상기 피시험 디바이스에 인가되는 전원 전압의 변동을 보상하기 위하여 상기 소비 전류의 변동에 따른 보상 전류를 계조수로 생성하는 부하 변동 보상 단계, 및
    상기 시험 패턴이 상기 피시험 디바이스에 입력되었을 경우, 상기 전원 전압의 변동량을 검출하고 검출한 상기 변동량에 기초하여 상기 부하 변동 보상 단계에서의 상기 전류 범위를 설정하는 설정 단계
    를 포함하는 시험 방법.
  12. 내부 회로가 소비하는 소비 전류의 변동으로 생기는 상기 내부 회로에 인가되는 전원 전압의 변동을 보상하기 위하여 상기 소비 전류의 변동에 따른 보상 전류를 계조수로 생성하는 부하 변동 보상 회로를 포함하는 피시험 디바이스를 시험하는 시험 방법에 있어서,
    상기 피시험 디바이스에 시험 패턴을 입력하는 패턴 발생 단계,
    상기 피시험 디바이스의 출력 신호에 기초하여 상기 피시험 디바이스의 양부를 판정하는 판정 단계,
    상기 피시험 디바이스에 전원 전력을 공급하는 전원 단계,
    상기 시험 패턴이 상기 피시험 디바이스에 입력되었을 경우, 상기 전원 전압의 변동량을 검출하고 검출한 상기 변동량에 기초하여 상기 부하 변동 보상 회로에서의 상기 전류 범위를 설정하는 설정 단계
    를 포함하는 시험 방법.
  13. 제1항에 있어서,
    상기 계조수는 상기 부하 변동 보상 회로의 회로 구성에 의해 정해지는 시험 장치.
KR1020087008467A 2005-10-27 2006-10-16 시험 장치 및 시험 방법 KR100977415B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00313335 2005-10-27
JP2005313335 2005-10-27

Publications (2)

Publication Number Publication Date
KR20080055900A KR20080055900A (ko) 2008-06-19
KR100977415B1 true KR100977415B1 (ko) 2010-08-24

Family

ID=37967589

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087008467A KR100977415B1 (ko) 2005-10-27 2006-10-16 시험 장치 및 시험 방법

Country Status (5)

Country Link
US (1) US7979218B2 (ko)
JP (1) JP4939429B2 (ko)
KR (1) KR100977415B1 (ko)
DE (1) DE112006003066T5 (ko)
WO (1) WO2007049476A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241542B1 (ko) 2010-11-04 2013-03-11 가부시키가이샤 어드밴티스트 시험장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542975B2 (ja) * 2005-09-27 2010-09-15 株式会社アドバンテスト 電子デバイス、負荷変動補償回路、電源装置、及び試験装置
WO2010029597A1 (ja) * 2008-09-10 2010-03-18 株式会社アドバンテスト 試験装置および回路システム
JP5272892B2 (ja) * 2009-05-27 2013-08-28 富士通セミコンダクター株式会社 試験条件調整装置および試験条件調整方法
JP2012083208A (ja) * 2010-10-12 2012-04-26 Advantest Corp 試験装置
JP2013181831A (ja) * 2012-03-01 2013-09-12 Advantest Corp 試験装置
JP2014185853A (ja) 2013-03-21 2014-10-02 Advantest Corp 電流補償回路、半導体デバイス、タイミング発生器、試験装置
CN104142419B (zh) * 2014-07-18 2017-02-01 华中电网有限公司 一种考虑负荷影响的电网短路电流获取方法
JP6683515B2 (ja) * 2016-03-23 2020-04-22 株式会社メガチップス 信号生成装置及びレギュレータの出力電圧の変動抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847800U (ja) * 1981-09-28 1983-03-31 セイコーインスツルメンツ株式会社 X線分析装置
JPH07218596A (ja) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp 半導体試験装置
JPH09236637A (ja) * 1996-02-29 1997-09-09 Advantest Corp 電圧印加電流測定回路
JP2001004692A (ja) 1999-01-01 2001-01-12 Advantest Corp 半導体試験装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152470A (ja) * 1983-02-18 1984-08-31 Nec Home Electronics Ltd プリント方法
JPS59152470U (ja) * 1983-03-30 1984-10-12 ニチコン株式会社 電圧測定装置
TWI316607B (en) 2003-05-21 2009-11-01 Advantest Corp Electric source device, test device and power supply voltage stabilizer
JP4192830B2 (ja) 2004-04-27 2008-12-10 ブラザー工業株式会社 配線部材の接続方法
JP4598645B2 (ja) * 2005-10-13 2010-12-15 富士通セミコンダクター株式会社 試験方法および試験装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847800U (ja) * 1981-09-28 1983-03-31 セイコーインスツルメンツ株式会社 X線分析装置
JPH07218596A (ja) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp 半導体試験装置
JPH09236637A (ja) * 1996-02-29 1997-09-09 Advantest Corp 電圧印加電流測定回路
JP2001004692A (ja) 1999-01-01 2001-01-12 Advantest Corp 半導体試験装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241542B1 (ko) 2010-11-04 2013-03-11 가부시키가이샤 어드밴티스트 시험장치

Also Published As

Publication number Publication date
US7979218B2 (en) 2011-07-12
KR20080055900A (ko) 2008-06-19
DE112006003066T5 (de) 2008-09-25
WO2007049476A1 (ja) 2007-05-03
JPWO2007049476A1 (ja) 2009-04-30
US20090287431A1 (en) 2009-11-19
JP4939429B2 (ja) 2012-05-23

Similar Documents

Publication Publication Date Title
KR100977415B1 (ko) 시험 장치 및 시험 방법
US7808268B2 (en) Time based driver output transition (slew) rate compensation
US7978109B1 (en) Output apparatus and test apparatus
JP5161878B2 (ja) 雑音測定装置及び試験装置
US7203611B2 (en) Timing generator, test apparatus and skew adjusting method
JP4825131B2 (ja) 消費電流バランス回路、補償電流量調整方法、タイミング発生器及び半導体試験装置
US20060150019A1 (en) Semiconductor device, test apparatus and measurement method therefor
US20100190448A1 (en) Compensation circuit and test apparatus
JP4542975B2 (ja) 電子デバイス、負荷変動補償回路、電源装置、及び試験装置
US8466701B2 (en) Power supply stabilizing circuit, electronic device and test apparatus
DE112006001998T5 (de) Timing-Generator und Halbleitertestgerät
US20120161800A1 (en) Measurement circuit and test apparatus
US7987062B2 (en) Delay circuit, test apparatus, storage medium semiconductor chip, initializing circuit and initializing method
US8013593B2 (en) Voltage measuring apparatus for semiconductor integrated circuit and voltage measuring system having the same
US10020728B2 (en) Signal generation device and method for controlling output voltage of regulator
KR101218910B1 (ko) 전원 회로 및 시험 장치
JP2009049681A (ja) スキュー調整回路
JP2000206212A (ja) 半導体試験方法および半導体試験装置
KR101047282B1 (ko) 타이밍 발생 회로 및 타이밍 발생 방법
JP2001183432A (ja) タイミング調整方法、半導体試験装置におけるタイミングキャリブレーション方法
JPH11337618A (ja) タイミング・デスキュー装置及びタイミング・デスキュー方法
JP2010054279A (ja) 半導体試験装置
KR20200106747A (ko) Sar 기반의 디지털 ldo 레귤레이터
JP2009171337A (ja) 位相調整回路および試験装置
JP2002062322A (ja) パルス信号検査装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130719

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee