WO2018221126A1 - 無方向性電磁鋼板とその製造方法 - Google Patents

無方向性電磁鋼板とその製造方法 Download PDF

Info

Publication number
WO2018221126A1
WO2018221126A1 PCT/JP2018/017716 JP2018017716W WO2018221126A1 WO 2018221126 A1 WO2018221126 A1 WO 2018221126A1 JP 2018017716 W JP2018017716 W JP 2018017716W WO 2018221126 A1 WO2018221126 A1 WO 2018221126A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
hot
rolling
Prior art date
Application number
PCT/JP2018/017716
Other languages
English (en)
French (fr)
Inventor
智幸 大久保
善彰 財前
正憲 上坂
尾田 善彦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2019014336A priority Critical patent/MX2019014336A/es
Priority to US16/617,262 priority patent/US11404189B2/en
Priority to CN201880035197.9A priority patent/CN110678568A/zh
Priority to KR1020197033939A priority patent/KR102315078B1/ko
Priority to EP18810011.9A priority patent/EP3633059A4/en
Priority to RU2019142421A priority patent/RU2724346C1/ru
Publication of WO2018221126A1 publication Critical patent/WO2018221126A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a method for producing the same, and more specifically to a non-oriented electrical steel sheet having improved cold rolling properties and magnetic properties and a method for producing the same.
  • Non-oriented electrical steel sheet is a soft magnetic material mainly used as an iron core of a motor, and low iron loss is strongly demanded from the viewpoint of improving motor efficiency.
  • EV and HEV drive motors and high-efficiency air conditioner motors whose markets have been expanding in recent years, tend to be directed to high-speed rotation for miniaturization of motors, so high-frequency iron loss characteristics are important. It has come to be.
  • Patent Document 1 discloses that Si, sol.
  • the steel plate before cold rolling is heated to a temperature of 50 to 200 ° C., and the sheet passing speed in the first pass in cold rolling is limited to 60 to 200 m / min.
  • a rolling method has been proposed.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to reduce magnetic properties and productivity even when it contains a large amount of alloy components such as Si, Al, and Mn.
  • An object of the present invention is to provide a non-oriented electrical steel sheet capable of improving the cold rollability without incurring, and to propose a method for producing the non-oriented electrical steel sheet.
  • the inventors have made extensive studies focusing on the influence of the component composition of the non-oriented electrical steel sheet containing a large amount of Si, Mn, Al, etc. on the cold rolling property. As a result, it has been found that it is effective to use high-purity steel in which the contents of P and As are reduced as much as possible in order to improve the cold rollability of the high-alloy non-oriented electrical steel sheet.
  • the present invention provides C: 0.0050 mass% or less, Si: 3.2 to 4.5 mass%, Mn: 0.1 to 2.0 mass%, P: 0.020 mass% or less, S: 0 .0050 mass% or less, Al: 0.4 to 2.0 mass%, N: 0.0050 mass% or less, Ti: 0.0030 mass% or less, As: 0.0030 mass% or less, Sn + Sb: 0.005 to 0.10 mass% And O: 0.0050 mass% or less, further containing one or two selected from Mo and W in a total range of 0.0020 to 0.10 mass%, the balance being Fe and inevitable impurities It is a non-oriented electrical steel sheet which has the component composition which consists of.
  • the non-oriented electrical steel sheet of the present invention further contains one or more selected from Ca, Mg and REM in addition to the above component composition in a range of 0.0005 to 0.020 mass% in total. It is characterized by doing.
  • the number density of 50-500 nm Al-based precipitates existing within a range from the surface of the steel sheet cross section to a depth of 2.0 ⁇ m is 0.010 / ⁇ m 2 or less. It is characterized by being.
  • the non-oriented electrical steel sheet of the present invention is characterized in that the plate thickness is 0.30 mm or less.
  • the present invention hot-rolls a steel slab having any of the above-described component compositions, performs hot-rolled sheet annealing, or does not perform hot-rolled sheet annealing, or one or more times sandwiching intermediate annealing.
  • the atmosphere of the finish annealing is selected from one or more selected from N 2 , H 2 and a rare gas.
  • a non-oriented electrical steel sheet manufacturing method characterized in that the N 2 content in the atmosphere is 20 vol% or less.
  • the method for producing the non-oriented electrical steel sheet of the present invention is characterized in that the rolling reduction in the first pass in the hot rolling is 25% or less and the average strain rate is 4 / sec or less.
  • the method for producing the non-oriented electrical steel sheet according to the present invention is characterized in that the thickness after cold rolling is 0.30 mm or less.
  • the present invention it is possible to improve the cold rollability of the non-oriented electrical steel sheet containing a large amount of alloy elements without causing deterioration of magnetic properties and productivity. Therefore, according to the present invention, a non-oriented electrical steel sheet having a low iron loss can be stably produced, which greatly contributes to improving the efficiency of EV and HEV drive motors and high-efficiency air conditioner motors.
  • N 2 content in the atmosphere of recrystallization annealing is a graph showing the effect on the iron loss W 10/400.
  • N 2 content in the atmosphere of recrystallization annealing is a graph showing the effect on the number density of the Al-based precipitates of the steel sheet surface layer.
  • Example 1 C: 0.0020 mass%, Si: 3.65 mass%, Mn: 0.60 mass%, P: 0.005 mass%, S: 0.0020 mass%, Al: 0.60 mass%, O: 0.0025 mass%, N : 0.0015mass%, Ti: 0.0010mass%, Sn: 0.025mass%, Mo: 0.006mass% is contained, As is contained in variously in the range of 0.0005 to 0.006mass%. Then, a steel having a composition composed of Fe and inevitable impurities as a balance is melted in a vacuum melting furnace to form a steel ingot, and the steel ingot is heated at 1100 ° C.
  • Example 2 C: 0.0020 mass%, Si: 3.65 mass%, Mn: 0.60 mass%, S: 0.0020 mass%, Al: 0.60 mass%, O: 0.0025 mass%, N: 0.0015 mass%, Ti : 0.0010 mass%, As: 0.0010 mass%, Sn: 0.025 mass%, Mo: 0.006 mass%, P is variously changed in the range of 0.004 to 0.06 mass%.
  • a steel having a composition composed of Fe and inevitable impurities as a balance is melted in a vacuum melting furnace to form a steel ingot, and then the steel ingot is heated at 1100 ° C. for 20 minutes and then hot-rolled to obtain a plate thickness of 2. A 2 mm hot-rolled sheet was used.
  • This hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. ⁇ 30 sec, and then a bending test piece of length: 100 mm ⁇ width: 30 mm was sampled and sandwiched between jigs having a radius of 15 mm, and 45 ° The bending test was repeated, and the number of times of bending until breaking was measured. The results are shown in FIG. From this figure, it can be seen that the bending workability is remarkably improved by reducing the P content to 0.020 mass% or less.
  • C 0.0050 mass% or less Since C is a harmful element that causes magnetic aging and increases the iron loss of the product plate, the upper limit is set to 0.0050 mass%. Preferably it is 0.0025 mass% or less.
  • Si 3.2 to 4.5 mass%
  • Si is an element effective for increasing the specific resistance of steel and reducing high-frequency iron loss.
  • addition of 3.2 mass% or more is required.
  • the upper limit of Si shall be 4.5 mass%.
  • the range is preferably 3.4 to 4.3 mass%, more preferably 3.6 to 4.1 mass%.
  • Mn 0.1 to 2.0 mass% Mn, like Si and Al, is an element that is effective in increasing the specific resistance of steel and reducing high-frequency iron loss, but its reduction effect is small compared to Si and Al. Further, fixing S as MnS also has an effect of suppressing hot brittleness. In order to acquire the said effect, addition of 0.1 mass% or more is required. However, if added in a large amount, the raw material cost increases, so the upper limit is made 2.0 mass%. The range is preferably 0.3 to 1.0 mass%.
  • P 0.020 mass% or less P is desirably reduced as much as possible because it causes embrittlement of the steel and increases cracks (sheet breakage) in cold rolling. For this reason, in this invention, an upper limit is restrict
  • S 0.0050 mass% or less S is a harmful element that forms fine sulfides to inhibit crystal grain growth and increases iron loss, so it is desirable to reduce it as much as possible. For this reason, in this invention, an upper limit shall be 0.0050 mass%. Preferably it is 0.0030 mass% or less.
  • Al 0.4 to 2.0 mass%
  • Al is an element effective in increasing the specific resistance of steel and reducing high-frequency iron loss. In order to acquire the said effect, addition of 0.4 mass% or more is required. However, increasing the amount of Al added not only increases the raw material cost but also facilitates oxidation and nitridation of the steel sheet surface, and fine precipitates such as Al 2 O 3 and AlN are formed inside the steel sheet surface layer, resulting in iron loss. The improvement effect will be offset. Therefore, the upper limit of Al is set to 2.0 mass%. The range is preferably 0.6 to 1.20 mass%.
  • N 0.0050 mass% or less N is a harmful element that forms fine nitrides to inhibit crystal grain growth and increases iron loss, so it is desirable to reduce it as much as possible. For this reason, in this invention, an upper limit is restrict
  • Ti 0.0030 mass% or less
  • Ti is a harmful element that forms fine TiN or the like to inhibit crystal grain growth and increases iron loss, so it is desirable to reduce it as much as possible. For this reason, in this invention, an upper limit is restrict
  • an upper limit shall be 0.0030 mass%. Preferably it is 0.0020 mass% or less.
  • Sb + Sn 0.005 to 0.10 mass%
  • Sb and Sn are elements that segregate on the surface of the steel sheet and suppress oxidation and nitriding, and have the effect of improving iron loss.
  • addition of 0.005 mass% or more is required in total.
  • the upper limit is made 0.10 mass% in total.
  • it is in the range of 0.01 to 0.05 mass%.
  • Mo and W which will be described later, simultaneously.
  • Mo, W: 0.0020 to 0.10 mass% in total Mo and W are effective elements for suppressing surface defects (hegging) in high alloy steel sheets containing a large amount of alloy elements such as Si, Al, and Mn.
  • High-alloy steel sheets tend to oxidize on the surface, so it is thought that the rate of occurrence of whipping due to surface cracking will increase, but by adding a small amount of Mo or W, which is an element that enhances high-temperature strength, cracking is suppressed. be able to.
  • the total addition amount is less than 0.0020 mass%, the above effect cannot be obtained.
  • the total addition amount exceeds 0.10 mass% the effect is saturated and only the raw material cost is increased. Therefore, it is limited to the above range.
  • it is in the range of 0.0050 to 0.050 mass%.
  • O 0.0050 mass% or less
  • O is a harmful element that forms oxide inclusions in steel and increases iron loss, so it is desirable to reduce it as much as possible. Therefore, in this invention, an upper limit shall be 0.0050 mass%. Preferably it is 0.0030 mass% or less.
  • the non-oriented electrical steel sheet of the present invention further includes one or more selected from Ca, Mg and REM in addition to the above essential components in a range of 0.0005 to 0.020 mass% in total.
  • Ca, Mg, and REM are very stable, form large sulfides, and reduce fine precipitates. Therefore, Ca, Mg, and REM have an effect of promoting grain growth and improving iron loss. In order to acquire the said effect, at least 0.0005 mass% is required, On the other hand, even if it adds exceeding 0.020 mass%, the said effect will be saturated. Therefore, when added, the total content is preferably in the range of 0.0005 to 0.020 mass%.
  • the steel material (slab) used in the production of the non-oriented electrical steel sheet of the present invention is made by melting steel that conforms to the above-described component composition by a generally known refining process using a converter, electric furnace, vacuum degassing apparatus, or the like. Then, it can be produced by a continuous casting method or an ingot-bundling rolling method.
  • the slab is reheated and hot-rolled to obtain a hot-rolled sheet having a predetermined thickness.
  • the reheating temperature of the slab is preferably in the range of 1000 to 1200 ° C. If it is less than 1000 ° C., Ostwald growth of MnS and AlN becomes insufficient. On the other hand, if it exceeds 1200 ° C., MnS and AlN are dissolved in a solid solution, and some of them are finely precipitated in the subsequent process, which adversely affects iron loss. Because it affects.
  • the hot rolling is usually composed of rough rolling and finish rolling.
  • the rolling reduction of the first pass that is, the first pass of the rough rolling is 25% or less, and the average strain rate is 4 / sec. It is important to roll as follows. High-alloy steels that contain many alloy components such as non-oriented electrical steel sheets tend to oxidize the surface layer of the rolled material, so if the above conditions are not met, intergranular cracking occurs on the surface of the rolled material, and the rate of occurrence of lashes is high. Because it becomes. More preferably, the rolling reduction in one pass of rough rolling is 20% or less, and the average strain rate is 2 / sec or less.
  • the strain rate is a value calculated based on an equation described in Shida Shigeru's technical literature (plasticity and processing, 7 (1966), P424).
  • the finishing temperature in the finish rolling of the hot rolling is 700 ° C. or higher and the winding temperature is 700 ° C. or lower. This is because if the finish rolling finish temperature is less than 700 ° C., it is difficult to roll to a predetermined plate thickness, and if the winding temperature exceeds 700 ° C., the descaling property deteriorates.
  • the hot-rolled steel sheet (hot-rolled sheet) is subjected to hot-rolled sheet annealing as necessary. This is because hot-rolled sheet annealing is effective in improving magnetic properties and preventing ridging.
  • the hot-rolled sheet subjected to hot-rolled sheet annealing is then pickled and cold-rolled once or two or more cold-rolled with intermediate annealing in between.
  • the final plate thickness is preferably 0.30 mm or less, and more preferably 0.20 mm or less. This is because the non-oriented electrical steel sheet of the present invention is characterized in that oxidation and nitridation of the steel sheet surface are suppressed, and the effect of the present invention (iron loss improvement effect) becomes more pronounced as the plate thickness is thinner. It should be noted that, if the plate thickness is excessively reduced, the productivity is lowered, the manufacturing cost is increased, and the manufacture of the core is difficult. Therefore, the lower limit plate thickness is preferably about 0.10 mm.
  • the cold-rolled sheet having the above-mentioned final thickness is subjected to finish annealing, and an insulating coating is formed as necessary to obtain a product sheet.
  • a known method can be used for the above-mentioned finish annealing, but it is preferably performed in a continuous annealing line under conditions of a soaking temperature of 700 to 1100 ° C. and a soaking time of 300 sec or less. The soaking temperature and time can be appropriately adjusted according to the target magnetic characteristics, mechanical characteristics, and the like.
  • the steel sheet containing a large amount of Si, Al, Mn and the like is likely to be oxidized or nitrided on the surface, and therefore it is important to control the atmosphere during finish annealing.
  • the atmospheric gas in the finish annealing is one or two or more mixed gases selected from N 2 , H 2 and a rare gas from the viewpoint of preventing oxidation and nitridation of the steel sheet surface, and, it is necessary that the content of N 2 in the atmospheric gas is less than 20 vol%.
  • the preferable N 2 content is 10 vol% or less.
  • it is preferable to perform annealing in an atmosphere of H 2 : N 2 90: 10 in a vol% ratio.
  • the dew point is preferably reduced as much as possible, specifically, -30 ° C or lower.
  • the final product sheet is cut along the rolling direction, embedded in a mold resin, polished, and then etched with 1 mass% nital solution for 1 second to form a steel sheet structure.
  • the number density of Al-based precipitates deposited on the steel sheet surface layer may be measured by SEM. Whether or not it is an Al-based precipitate can be easily determined from the EDX spectrum.
  • the size (equivalent circle diameter) of the Al-based precipitate to be observed is limited to the range of 50 to 500 nm. The reason why the precipitates of less than 50 nm are excluded is that component analysis is difficult with EDX of SEM.
  • the reason why the precipitates exceeding 500 nm are excluded is that the coarse precipitates are not formed by nitridation or oxidation in the finish annealing, but are included before the finish annealing. And if the said Al type precipitate is 0.010 piece / micrometer ⁇ 2 > or less, it can be judged that the degree of nitriding and oxidation of the steel plate surface in finish annealing is low. A more preferable number density of Al-based precipitates is 0.001 / ⁇ m 2 or less.
  • the steel slab having a thickness of 200 mm obtained by melting steels having various component compositions shown in Table 1 and continuously casting the steel slab having a thickness of 200 mm is reheated at 1100 ° C. for 30 minutes, and then the rolling reduction ratio in the first pass of the rough hot rolling is determined.
  • hot rolling for finish rolling was performed to obtain a hot rolled sheet having a thickness of 2.0 mm.
  • the finishing temperature of the finish rolling was 910 ° C., and the winding temperature was 600 ° C.
  • the hot-rolled sheet is subjected to hot-rolled sheet annealing at 980 ° C.
  • the steel sheet having a component composition suitable for the present invention has a low occurrence rate of heges, and the number density of Al-based precipitates is 0.010 / ⁇ m 2 or less, which is excellent in iron loss. It turns out that it has a characteristic.
  • the steel sheets 1 to 5 have a component composition suitable for the present invention, the rate of occurrence of lashes is low. Further, in the present invention, No. 1 was subjected to finish annealing in a suitable atmosphere. As a result of the suppression of oxidation and nitriding, the steel sheets of Nos. 2 to 5 have a number density of Al-based precipitates of 0.010 pieces / ⁇ m 2 or less, and have excellent iron loss characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

mass%でC:0.0050%以下、Si:3.2~4.5%、Mn:0.1~2.0%、P:0.020%以下、As:0.0030%以下、Sn+Sb:0.005~0.10%、さらに、MoおよびWのうちから選ばれる1種または2種を合計で0.0020~0.10%の範囲で含有する鋼スラブを熱間圧延し、熱延板焼鈍し、あるいは熱延板焼鈍を行わず、1回もしくは中間焼鈍を挟む2回以上の冷間圧延して最終板厚とした後、仕上焼鈍を施して無方向性電磁鋼板とする際、上記仕上焼鈍の雰囲気中のN2含有量を20vol%以下とし、好ましくは上記熱間圧延の粗圧延における1パス目の圧下率を25%以下、平均歪速度を4/sec以下とすることで、磁気特性の劣化や生産性の低下を招くことなく冷間圧延性を改善する。

Description

無方向性電磁鋼板とその製造方法
 本発明は、無方向性電磁鋼板とその製造方法に関し、具体的には、冷間圧延性と磁気特性を向上した無方向性電磁鋼板とその製造方法に関するものである。
 無方向性電磁鋼板は、主にモータの鉄心として使用される軟磁性材料であり、モータ効率を向上する観点から、低鉄損化が強く求められている。特に、近年、市場が拡大しているEVやHEVの駆動用モータや高効率エアコン用モータにおいては、モータの小型化のため、高速回転を指向する傾向があることから、高周波鉄損特性が重視されるようになってきている。
 高周波での鉄損低減には、SiやAl,Mn等の比抵抗を高める元素を多量に添加する高合金化や、鋼板板厚を低減する薄手化によって、古典渦電流損を低減することが有効であるが、高合金化すると、鋼の靭性が低下し、冷間圧延時に板破断等の操業トラブルが発生し易くなるという問題がある。
 この問題に対して、特許文献1には、無方向性電磁鋼板に添加するSi,sol.Al,Mnのバランスを適正化するとともに、冷間圧延前の鋼板を50~200℃の温度に加熱し、かつ、冷間圧延における1パス目の通板速度を60~200m/minに制限して圧延する方法が提案されている。
国際公開第2013/146879号
 しかしながら、上記特許文献1に記載の技術は、鋼板を冷間圧延する前に加熱すると、温度ムラに起因して形状不良が発生したり、加熱に要する時間のため、冷間圧延の生産性が低下したりする等の問題が指摘されている。
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、SiやAl,Mn等の合金成分を多く含有する場合でも、磁気特性の劣化や生産性の低下を招くことなく冷間圧延性を改善することができる無方向性電磁鋼板を提供するとともに、その無方向性電磁鋼板の製造方法を提案することにある。
 発明者らは、上記課題の解決に向け、SiやMn,Al等を多く含む無方向性電磁鋼板の成分組成が冷間圧延性に及ぼす影響に着目して鋭意検討を重ねた。その結果、高合金の無方向性電磁鋼板の冷間圧延性を改善するためには、PおよびAsの含有量を極力低減した高純度鋼を用いることが有効であることを見出した。
 しかし、PやAsを低減すると、冷間圧延後の仕上焼鈍における、鋼板表面の酸化や窒化が起こり易くなり、製品板の磁気特性に悪影響を及ぼすという新たな問題が発生した。従来、鋼板表面における酸化や窒化を防止するには、SnやSbの添加が有効であるとされているが、SnやSbの添加のみでは、仕上焼鈍における鋼板表面の酸化や窒化(特に、窒化)を完全に抑止できないこと、そして、上記窒化を完全に抑止するためには、仕上焼鈍の雰囲気からNを排除する必要があることを見出した。
 また、PやAsを低減すると、連続鋳造や熱延工程におけるスラブや鋼板の表面割れに起因する表面欠陥(ヘゲ)が増加するという問題があることもわかった。この問題に対しては、鋼成分として微量のMo,Wを添加すること、および、熱間圧延における粗圧延の1パス目の圧下率を25%以下、平均歪速度を4/sec以下として圧延することが有効であることを見出し、本発明を開発するに至った。
 上記の知見に基く本発明は、C:0.0050mass%以下、Si:3.2~4.5mass%、Mn:0.1~2.0mass%、P:0.020mass%以下、S:0.0050mass%以下、Al:0.4~2.0mass%、N:0.0050mass%以下、Ti:0.0030mass%以下、As:0.0030mass%以下、Sn+Sb:0.005~0.10mass%およびO:0.0050mass%以下を含有し、さらに、MoおよびWのうちから選ばれる1種または2種を合計で0.0020~0.10mass%の範囲で含有し、残部がFe及び不可避不純物からなる成分組成を有する無方向性電磁鋼板である。
 本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、Ca,MgおよびREMのうちから選ばれる1種または2種以上を合計で0.0005~0.020mass%の範囲で含有することを特徴とする。
 また、本発明の上記無方向性電磁鋼板は、鋼板断面の表面から深さ2.0μmまでの範囲内に存在する50~500nmのAl系析出物の個数密度が0.010個/μm以下であることを特徴とする。
 また、本発明の上記無方向性電磁鋼板は、板厚が0.30mm以下であることを特徴とする。
 また、本発明は、上記のいずれかに記載の成分組成を有する鋼スラブを熱間圧延し、熱延板焼鈍し、あるいは熱延板焼鈍を行わず、1回もしくは中間焼鈍を挟む2回以上の冷間圧延して最終板厚とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、上記仕上焼鈍の雰囲気をN、Hおよび希ガスから選ばれる1種または2種以上の混合ガスとし、かつ、上記雰囲気中のN含有量を20vol%以下とすることを特徴とする無方向性電磁鋼板の製造方法を提案する。
 本発明の上記無方向性電磁鋼板の製造方法は、熱間圧延の粗圧延における1パス目の圧下率を25%以下、平均歪速度を4/sec以下とすることを特徴とする。
 また、本発明の上記無方向性電磁鋼板の製造方法は、冷間圧延後の板厚を0.30mm以下とすることを特徴とする。
 本発明によれば、合金元素を多く含む無方向性電磁鋼板の冷間圧延性を、磁気特性の劣化や生産性の低下を招くことなく改善することができる。したがって、本発明によれば、低鉄損の無方向性電磁鋼板を安定して製造できるようになるので、EVやHEVの駆動用モータや高効率エアコン用モータの効率向上に大いに寄与する。
As含有量が熱延板の繰返し曲げ回数に及ぼす影響を示すグラフである。 P含有量が熱延板の繰返し曲げ回数に及ぼす影響を示すグラフである。 仕上焼鈍の雰囲気中のN含有量が鉄損W10/400に及ぼす影響を示すグラフである。 仕上焼鈍の雰囲気中のN含有量が鋼板表層のAl系析出物の個数密度に及ぼす影響を示すグラフである。
 まず、本発明を開発する契機となった実験について説明する。
(実験1)
 C:0.0020mass%、Si:3.65mass%、Mn:0.60mass%、P:0.005mass%、S:0.0020mass%、Al:0.60mass%、O:0.0025mass%、N:0.0015mass%、Ti:0.0010mass%、Sn:0.025mass%、Mo:0.006mass%を含有し、Asを0.0005~0.006mass%の範囲で種々に変化して含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼を真空溶解炉で溶製し、鋼塊とし、該鋼塊を1100℃で20min加熱した後、熱間圧延して板厚2.2mmの熱延板とした。
 この熱延板に、1000℃×30secの熱延板焼鈍を施した後、長さ:100mm×幅:30mmの曲げ試験片を採取し、半径:15mmの丸みを有する治具に挟み、45度の繰り返し曲げ試験を行い、破断するまでの曲げ回数を測定した。
 結果を図1に示す。この図から、Asの含有量を0.0030mass%以下に低減することで、曲げ加工性が著しく改善されることがわかる。
(実験2)
 C:0.0020mass%、Si:3.65mass%、Mn:0.60mass%、S:0.0020mass%、Al:0.60mass%、O:0.0025mass%、N:0.0015mass%、Ti:0.0010mass%、As:0.0010mass%、Sn:0.025mass%、Mo:0.006mass%を含有し、Pを0.004~0.06mass%の範囲で種々に変化して含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼を真空溶解炉で溶製し、鋼塊とした後、該鋼塊を1100℃で20min加熱した後、熱間圧延して板厚2.2mmの熱延板とした。
 この熱延板に、1000℃×30secの熱延板焼鈍を施した後、長さ:100mm×幅:30mmの曲げ試験片を採取し、半径:15mmの丸みを有する治具に挟み、45度の繰り返し曲げ試験を行い、破断するまでの曲げ回数を測定した。
 結果を図2に示す。この図から、Pの含有量を0.020mass%以下に低減することで、曲げ加工性が著しく改善されることがわかる。
[規則91に基づく訂正 21.08.2018] 
(実験3)
 上記実験結果に基き、AsおよびPを低減した鋼を溶製し、磁気特性に及ぼす影響を確認するため、以下の実験を行った。
 C:0.0020mass%、Si:3.65mass%、Mn:0.60mass%、P:0.005mass%、S:0.0020mass%、Al:0.60mass%、O:0.0025mass%、N:0.0015mass%、Ti:0.0010mass%、As:0.0010mass%、Sn:0.025mass%、Mo:0.007mass%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼を真空溶解炉で溶製し、鋼塊とした後、該鋼塊を1100℃で20min加熱した後、熱間圧延して板厚2.2mmの熱延板とした。
 次いで、上記熱延板に1000℃×30secの熱延板焼鈍を施した後、酸洗し、冷間圧延して最終板厚0.25mmの冷間板とした後、上記冷延板に、vol%比でH:N=30:70、露点:-50℃の雰囲気下で1000℃×10secの仕上焼鈍を施した。
 次いで、上記仕上焼鈍後の鋼板の鉄損W10/400(最大磁束密度1.0T、周波数400Hzで正弦励磁したときの鉄損値)を測定したところ、発明者らが所期した鉄損が得られなかった。この原因について調査するため、上記仕上焼鈍後の鋼板の断面をSEMで観察したところ、鋼板表層、具体的には、鋼板表面から板厚方向に2.0μm以内の断面に、微細なAl系析出物が認められ、これにより鉄損が増加したものと推定された。これは、本実験では、粒界偏析元素であるAsとPを低減していることから、仕上焼鈍における粒界拡散が活発となり、鋼板表層のAlの酸化および窒化(特に窒化)が促進されたためであると考えられる。
 従来の知見では、SnおよびSbを添加することで、鋼板表面の酸化や窒化は抑制されるとされているが、上記したように、本実験では異なる結果が得られた。この原因は、本実験では、AsとPを極微量に低減した高純度の鋼素材を用いているためであると考えられる。そこで、仕上焼鈍における酸化や窒化を積極的に防止し、上記鉄損に及ぼす悪影響を回避するため、上記した実験において、仕上焼鈍に使用しているHとNの混合雰囲気中のNの比率を変更する実験を行った。
 結果を図3に示す。この図から、仕上焼鈍で使用している雰囲気中のN濃度を20vol%以下に低減することで、優れた鉄損が得られることがわかった。
 本発明は、上記の新規な知見に基き、開発したものである。
 次に、本発明の無方向性電磁鋼板の成分組成について説明する。
C:0.0050mass%以下
 Cは、磁気時効を起こして製品板の鉄損を増加させる有害元素であるので、上限を0.0050mass%とする。好ましくは0.0025mass%以下である。
Si:3.2~4.5mass%
 Siは、鋼の比抵抗を高め、高周波鉄損を低減するのに有効な元素である。上記効果を得るためには3.2mass%以上の添加が必要である。しかし、Siの増加とともに鋼の強度が増加し、靭性が低下するため、冷間圧延性が低下する。このため、本発明ではSiの上限を4.5mass%とする。好ましくは3.4~4.3mass%、より好ましくは3.6~4.1mass%の範囲である。
Mn:0.1~2.0mass%
 Mnは、SiやAlと同様、鋼の比抵抗を高め、高周波鉄損を低減するのに有効な元素であるが、Si,Alに比べるとその低減効果は小さい。また、SをMnSとして固定することで、熱間脆性を抑制する効果もある。上記効果を得るためには0.1mass%以上の添加が必要である。しかし、多量に添加すると、原料コストが上昇することから、上限は2.0mass%とする。好ましくは0.3~1.0mass%の範囲である。
P:0.020mass%以下
 Pは、鋼を脆化させ、冷間圧延における割れ(板破断)を増加させるため、極力低減するのが望ましい。このため、本発明では、上限を0.020mass%に制限する。好ましくは0.010mass%以下である。
S:0.0050mass%以下
 Sは、微細硫化物を形成して結晶粒成長を阻害し、鉄損を増加させる有害元素であるため、極力低減することが望ましい。このため、本発明では、上限を0.0050mass%とする。好ましくは0.0030mass%以下である。
Al:0.4~2.0mass%
 Alは、鋼の比抵抗を高め、高周波鉄損を低減するのに有効な元素である。上記効果を得るためには0.4mass%以上の添加が必要である。しかし、Alの添加量を高めると、原料コストが増加するだけでなく、鋼板表面が酸化や窒化されやすくなり、鋼板表層内部にAlやAlN等の微細析出物が形成されて鉄損の改善効果が相殺されてしまう。よって、Alの上限は2.0mass%とする。好ましくは0.6~1.20mass%の範囲である。
N:0.0050mass%以下
 Nは、微細窒化物を形成して結晶粒成長を阻害し、鉄損を増加させる有害元素であるため、極力低減することが望ましい。このため、本発明では、上限を0.0050mass%に制限する。好ましくは0.0030mass%以下である。
Ti:0.0030mass%以下
 Tiは、微細なTiN等を形成して結晶粒成長を阻害し、鉄損を増加させる有害元素であるため、極力低減することが望ましい。このため、本発明では、上限を0.0030mass%に制限する。好ましくは0.0015mass%以下である。
As:0.0030mass%以下
 Asは、鋼を脆化させ、冷間圧延で耳割れや板破断を引き起こす有害元素であるため、極力低減することが望ましい。このため、本発明では、上限を0.0030mass%とする。好ましくは0.0020mass%以下である。
Sb+Sn:0.005~0.10mass%
SbおよびSnは、鋼板表面に偏析し、酸化・窒化を抑制する元素であり、鉄損を改善する効果がある。上記効果を得るためには合計で0.005mass%以上の添加が必要である。しかし、0.10mass%を超えて添加しても、上記効果が飽和するだけであるため、上限は合計で0.10mass%とする。好ましくは0.01~0.05mass%の範囲である。ただし、ヘゲの発生を助長する幣害もあるため、後述する、MoやWを同時に添加するのが有効である。
Mo,W:合計で0.0020~0.10mass%
 MoおよびWは、SiやAl,Mn等の合金元素を多く含む高合金鋼板の表面欠陥(ヘゲ)を抑制するのに有効な元素である。高合金鋼板は、表面が酸化されやすいため、表面割れに起因するヘゲの発生率が高くなると考えられるが、高温強度を高める元素であるMoやWを微量添加することで、割れを抑制することができる。合計の添加量が0.0020mass%未満では上記効果は得られず、一方、合計で0.10mass%を超えて添加しても、効果が飽和し、原料コストが高くなるだけである。よって、上記範囲に制限する。好ましくは、0.0050~0.050mass%の範囲である。
O:0.0050mass%以下
 Oは、鋼中で酸化物系介在物を形成し、鉄損を増加させる有害元素であるため、極力低減するのが望ましい。よって、本発明では、上限を0.0050mass%とする。好ましくは0.0030mass%以下である。
 本発明の無方向性電磁鋼板は、上記必須とする成分に加えてさらに、Ca,MgおよびREMのうちから選ばれる1種または2種以上を合計で0.0005~0.020mass%の範囲で含有することができる。
 Ca,MgおよびREMは、非常に安定で、大きな硫化物を形成し、微細析出物を低減するため、粒成長を促進し、鉄損を改善する効果がある。上記効果を得るためには少なくとも0.0005mass%が必要であり、一方、0.020mass%超え添加しても、上記効果は飽和してしまう。よって、添加する場合は、合計で0.0005~0.020mass%の範囲とするのが好ましい。
 次に、本発明の無方向性電磁鋼板の製造方法について説明する。
 本発明の無方向性電磁鋼板の製造に用いる鋼素材(スラブ)は、前述した成分組成に適合する鋼を転炉や電気炉、真空脱ガス装置等を用いた通常公知の精錬プロセスで溶製した後、連続鋳造法あるいは造塊-分塊圧延法で製造することができる。
 上記スラブは、再加熱し、熱間圧延して所定の板厚の熱延板とする。上記スラブの再加熱温度は1000~1200℃の範囲とするのが好ましい。1000℃未満では、MnSやAlNのオストワルド成長が不十分となり、一方、1200℃を超えると、MnSやAlNが固溶し、その一部が後工程で微細に析出するため、鉄損に悪影響を及ぼすからである。
 また、上記熱間圧延は、通常、粗圧延と仕上圧延から構成されているが、その1パス目、即ち、粗圧延の1パス目の圧下率を25%以下、平均歪速度を4/sec以下として圧延することが重要である。無方向性電磁鋼板のように合金成分を多く含む高合金鋼は、圧延素材表層が酸化し易いため、上記条件を外れると、圧延素材表面に粒界割れが起こり、ヘゲの発生率が高くなるからである。より好ましい粗圧延の1パスの圧下率は20%以下、平均歪速度は2/sec以下である。ここで、上記歪速度は、志田茂の技術文献(塑性と加工,7(1966),P424))に記載された式に基いて計算した値である。
 また、上記熱間圧延の仕上圧延における終了温度は700℃以上とし、巻取温度は700℃以下とするのが好ましい。仕上圧延終了温度が700℃未満では、所定の板厚まで圧延することが難しく、また、巻取温度が700℃を超えると、脱スケール性が悪化するからである。
 熱間圧延後の鋼板(熱延板)は、必要に応じて熱延板焼鈍を行う。熱延板焼鈍は、磁気特性の改善およびリジングの防止に効果があるからである。
[規則91に基づく訂正 21.08.2018] 
 熱間圧延まま、あるいは、熱間圧延後、熱延板焼鈍を施した熱延板は、その後、酸洗し、1回の冷間圧延、または、中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。ここで、上記最終板厚(製品板厚)は、0.30mm以下とするのが好ましく、0.20mm以下がより好ましい。本発明の無方向性電磁鋼板は、鋼板表面の酸化や窒化が抑制されていることが特徴であり、板厚が薄いほど本発明の効果(鉄損改善効果)が顕著となるからである。なお、過度に板厚を薄くすることは、生産性が低下し、製造コストが上昇することや、コアの製造が難しくなることから、下限の板厚は0.10mm程度とするのが好ましい。
 次いで、上記最終板厚とした冷延板は、仕上焼鈍を施し、必要に応じて絶縁被膜を被成して製品板とする。上記仕上焼鈍は、公知の方法を用いることができるが、連続焼鈍ラインで、均熱温度700~1100℃、均熱時間300sec以下の条件で行うことが好ましい。均熱温度と時間は、目標とする磁気特性や機械的特性等によって適宜調整することができる。
 ここで、本発明の無方向性電磁鋼板の製造方法においては、SiやAl,Mn等を多く含む鋼板は表面の酸化や窒化が起こり易いため、仕上焼鈍時の雰囲気制御が重要である。具体的には、仕上焼鈍における雰囲気ガスは、鋼板表面の酸化や窒化を防止する観点から、N,Hおよび希ガスのうちからから選ばれる1種または2種以上の混合ガスであり、かつ、上記雰囲気ガス中のNの含有量が20vol%以下であることが必要である。好ましいN含有量は10vol%以下であり、例えば、vol%比でH:N=90:10の雰囲気などで焼鈍を行うことが好ましい。また、露点は、極力低減すること、具体的には、-30℃以下とすることが好ましい。
 ここで、鋼板表面の窒化や酸化の度合いを判定するには、最終製品板を圧延方向に沿って切断し、モールド樹脂に埋め込み、研磨した後、1mass%ナイタール液で1秒間エッチングして鋼板組織と析出物を可視化した後、SEMで鋼板表層(板厚表面から2.0μm以内の領域)に析出したAl系析出物の個数密度を測定すればよい。Al系の析出物であるか否かは、EDXのスペクトルから容易に判断することができる。なお、観察対象のAl系析出物のサイズ(円相当直径)は、50~500nmの範囲に限定する。50nm未満の析出物を排除するのは、SEMのEDXでは成分分析が難しいためである。また、500nm超えの析出物を排除するのは、粗大な析出物は、仕上焼鈍における窒化や酸化で形成されたものではなく、仕上焼鈍前から含まれていたものだからである。そして、上記Al系析出物が0.010個/μm以下であれば、仕上焼鈍における鋼板表面の窒化や酸化の度合いが低いと判断することができる。なお、より好ましいAl系析出物の個数密度は0.001個/μm以下である。
 表1に示した各種成分組成を有する鋼を溶製し、連続鋳造して得た厚さ200mmの鋼スラブを、1100℃×30minの再加熱後、粗熱延の1パス目の圧下率を15%、歪速度を1/secとする粗圧延した後、仕上圧延する熱間圧延を行い、板厚2.0mmの熱延板とした。なお、上記仕上圧延の終了温度は910℃、巻取温度は600℃とした。次いで、上記熱延板に、980℃×20secの熱延板焼鈍を施した後、酸洗し、冷間圧延して最終板厚0.25mmの冷延板とし、該冷延板に、vol%比でH:Ar=20:80、露点:-50℃の雰囲気下で1000℃×10secの仕上焼鈍を施した後、絶縁被膜を被成して、製品板とした。
 次いで、上記製品板について、鋼板表面に発生したヘゲの発生率(不良部として除去された長さ%)を測定するとともに、試験片を採取し、鉄損W10/400(最大磁束密度1.0T、周波数400Hzで正弦励磁したときの鉄損)および鋼板表層(表面から2.0μmの範囲)のAl系析出物の個数密度を測定した。
 上記測定の結果を、表1-1および表1-2に示した。これらの結果から、本発明に適合する成分組成を有する鋼板は、ヘゲの発生率が低く、また、Al系析出物の個数密度も0.010個/μm以下であり、優れた鉄損特性を有していることがわかる。
[規則91に基づく訂正 21.08.2018] 
Figure WO-DOC-TABLE-1-1
[規則91に基づく訂正 21.08.2018] 
Figure WO-DOC-TABLE-1-2
[規則91に基づく訂正 21.08.2018] 
 表1のNo.12に示した鋼スラブを、1120℃×20minの再加熱後、粗熱延の1パス目の圧下率を18%、歪速度を2/secとする粗圧延した後、仕上圧延する熱間圧延を行い、板厚1.6mmの熱延板とした。なお、上記仕上圧延の終了温度は870℃、巻取温度は500℃とした。次いで、上記熱延板に、990℃×30secの熱延板焼鈍を施した後、酸洗し、冷間圧延して最終板厚0.20mmの冷延板とし、該冷延板に、表2に示した種々の雰囲気下(露点:-45℃)で1030℃×15secの仕上焼鈍を施した後、絶縁被膜を被成して、製品板とした。
 次いで、上記製品板について、鋼板表面に発生したヘゲの発生率(不良部として除去された長さ%)を測定するとともに、試験片を採取し、鉄損W10/400(最大磁束密度1.0T、周波数400Hzで正弦励磁したときの鉄損)および鋼板表層(表面から2.0μmの範囲)のAl系析出物の個数密度を測定した。
 上記測定の結果を、表2に示した。この結果から、まずNo.1~5の鋼板は本発明に適合する成分組成を有することから、ヘゲの発生率が低くなっている。さらに本発明において好適な雰囲気下で仕上焼鈍を行ったNo.2~5の鋼板は、酸化や窒化が抑制された結果、Al系析出物の個数密度が0.010個/μm以下であり、より優れた鉄損特性を有していることがわかる。
[規則91に基づく訂正 21.08.2018] 
Figure WO-DOC-TABLE-2
 表1のNo.7に示した鋼スラブを、1090℃×30minの再加熱後、粗熱延の1パス目の圧下率と歪速度を表3のように種々に変化させて粗圧延した後、仕上圧延する熱間圧延を行い、板厚1.8mmの熱延板とした。なお、上記仕上圧延の終了温度は820℃、巻取温度は550℃とした。次いで、上記熱延板に、910℃×30secの熱延板焼鈍を施した後、酸洗し、冷間圧延して最終板厚0.25mmの冷延板とし、該冷延板に、H:100vol%雰囲気下(露点:-55℃)で1000℃×10secの仕上焼鈍を施した後、絶縁被膜を被成して、製品板とした。
 次いで、上記製品板について、鋼板表面に発生したヘゲの発生率(不良部として除去された長さ%)を測定するとともに、試験片を採取し、鉄損W10/400(最大磁束密度1.0T、周波数400Hzで正弦励磁したときの鉄損)および鋼板表層(表面から2.0μmの範囲)のAl系析出物の個数密度を測定した。
 上記測定の結果を、表3に併記した。この結果から、熱間粗圧延の1パス目を低圧下率・低歪速度としたNo.1~3およびNo.7~10の鋼板は、高圧下率・高歪速度としたNo.4~6およびNo.11,12の鋼板と比較し、ヘゲの発生率を大幅に低減できていることがわかる。
[規則91に基づく訂正 21.08.2018] 
Figure WO-DOC-TABLE-3

Claims (7)

  1. C:0.0050mass%以下、Si:3.2~4.5mass%、Mn:0.1~2.0mass%、P:0.020mass%以下、S:0.0050mass%以下、Al:0.4~2.0mass%、N:0.0050mass%以下、Ti:0.0030mass%以下、As:0.0030mass%以下、Sn+Sb:0.005~0.10mass%およびO:0.0050mass%以下を含有し、さらに、MoおよびWのうちから選ばれる1種または2種を合計で0.0020~0.10mass%の範囲で含有し、残部がFe及び不可避不純物からなる成分組成を有する無方向性電磁鋼板。
  2. 上記成分組成に加えてさらに、Ca,MgおよびREMのうちから選ばれる1種または2種以上を合計で0.0005~0.020mass%の範囲で含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
  3. 鋼板断面の表面から深さ2.0μmまでの範囲内に存在する50~500nmのAl系析出物の個数密度が0.010個/μm以下であることを特徴とする請求項1または2に記載の無方向性電磁鋼板。
  4. 板厚が0.30mm以下であることを特徴とする請求項1~3のいずれか1項に記載の無方向性電磁鋼板。
  5. 請求項1または2に記載の成分組成を有する鋼スラブを熱間圧延し、熱延板焼鈍し、あるいは熱延板焼鈍を行わず、1回もしくは中間焼鈍を挟む2回以上の冷間圧延して最終板厚とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、
    上記仕上焼鈍の雰囲気をN、Hおよび希ガスから選ばれる1種または2種以上の混合ガスとし、かつ、上記雰囲気中のN含有量を20vol%以下とすることを特徴とする無方向性電磁鋼板の製造方法。
  6. 熱間圧延の粗圧延における1パス目の圧下率を25%以下、平均歪速度を4/sec以下とすることを特徴とする請求項5に記載の無方向性電磁鋼板の製造方法。
  7. 冷間圧延後の板厚を0.30mm以下とすることを特徴とする請求項5または6に記載の無方向性電磁鋼板の製造方法。
PCT/JP2018/017716 2017-05-31 2018-05-08 無方向性電磁鋼板とその製造方法 WO2018221126A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2019014336A MX2019014336A (es) 2017-05-31 2018-05-08 Lamina de acero electrico de grano no orientado y metodo para la fabricacion de la misma.
US16/617,262 US11404189B2 (en) 2017-05-31 2018-05-08 Non-oriented electrical steel sheet and method for manufacturing the same
CN201880035197.9A CN110678568A (zh) 2017-05-31 2018-05-08 无方向性电磁钢板及其制造方法
KR1020197033939A KR102315078B1 (ko) 2017-05-31 2018-05-08 무방향성 전자 강판과 그의 제조 방법
EP18810011.9A EP3633059A4 (en) 2017-05-31 2018-05-08 NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD FOR PRODUCING SAME
RU2019142421A RU2724346C1 (ru) 2017-05-31 2018-05-08 Нетекстурированная электротехническая листовая сталь и способ ее изготовления

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-107588 2017-05-31
JP2017107588A JP6738047B2 (ja) 2017-05-31 2017-05-31 無方向性電磁鋼板とその製造方法

Publications (1)

Publication Number Publication Date
WO2018221126A1 true WO2018221126A1 (ja) 2018-12-06

Family

ID=64455946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017716 WO2018221126A1 (ja) 2017-05-31 2018-05-08 無方向性電磁鋼板とその製造方法

Country Status (9)

Country Link
US (1) US11404189B2 (ja)
EP (1) EP3633059A4 (ja)
JP (1) JP6738047B2 (ja)
KR (1) KR102315078B1 (ja)
CN (1) CN110678568A (ja)
MX (1) MX2019014336A (ja)
RU (1) RU2724346C1 (ja)
TW (1) TWI665313B (ja)
WO (1) WO2018221126A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136993A1 (ja) * 2018-12-27 2020-07-02 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
EP4079893A4 (en) * 2019-12-19 2023-05-31 Posco NON-ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
EP4079896A4 (en) * 2019-12-20 2023-06-07 Posco NON-ORIENTED ELECTRICAL STEEL SHEET, AND METHOD OF MANUFACTURING THEREOF
WO2024057940A1 (ja) * 2022-09-13 2024-03-21 Jfeスチール株式会社 高強度無方向性電磁鋼板とその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2022003841A (es) * 2019-10-29 2022-04-29 Jfe Steel Corp Hoja de acero electrico no orientado y metodo para su fabricacion.
WO2021167086A1 (ja) * 2020-02-20 2021-08-26 日本製鉄株式会社 無方向性電磁鋼板用熱延鋼板
US11970750B2 (en) 2021-03-31 2024-04-30 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
CN113502433A (zh) * 2021-04-19 2021-10-15 本钢板材股份有限公司 薄规格无取向硅钢35bw440及其生产方法
JP7268803B1 (ja) * 2021-11-02 2023-05-08 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
JPWO2023079922A1 (ja) * 2021-11-02 2023-05-11

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046661A1 (ja) * 2011-09-27 2013-04-04 Jfeスチール株式会社 無方向性電磁鋼板
WO2013146879A1 (ja) 2012-03-29 2013-10-03 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
WO2014030512A1 (ja) * 2012-08-21 2014-02-27 Jfeスチール株式会社 打抜加工による鉄損特性の劣化が小さい無方向性電磁鋼板
WO2014129106A1 (ja) * 2013-02-22 2014-08-28 Jfeスチール株式会社 無方向性電磁鋼板製造用の熱延鋼板およびその製造方法
WO2014142149A1 (ja) * 2013-03-15 2014-09-18 Jfeスチール株式会社 高周波鉄損特性に優れる無方向性電磁鋼板
WO2016002904A1 (ja) * 2014-07-02 2016-01-07 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法
JP2016151063A (ja) * 2015-02-19 2016-08-22 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836048B2 (ja) 1980-09-01 1983-08-06 新日本製鐵株式会社 鉄損の優れた一方向性電磁鋼板の製造法
JPH0819466B2 (ja) 1990-02-01 1996-02-28 日本鋼管株式会社 無方向性電磁鋼板の製造方法
JP2970436B2 (ja) 1994-11-11 1999-11-02 住友金属工業株式会社 フルプロセス無方向性電磁鋼板の製造方法
JPH11181577A (ja) * 1997-12-22 1999-07-06 Nippon Steel Corp 打抜き性に優れた無方向性電磁鋼板およびその製造方法
JP2001131717A (ja) 1999-11-05 2001-05-15 Kawasaki Steel Corp 打ち抜き性に優れた低鉄損無方向性電磁鋼板
JP2001323344A (ja) 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた無方向性電磁鋼板
EP1501951B2 (en) * 2002-05-08 2013-08-28 Ak Steel Properties, Inc. Method of continuous casting non-oriented electrical steel strip
JP4718749B2 (ja) * 2002-08-06 2011-07-06 Jfeスチール株式会社 回転機用高磁束密度無方向性電磁鋼板及び回転機用部材
JP4276612B2 (ja) 2004-11-08 2009-06-10 新日本製鐵株式会社 無方向性電磁鋼板およびその製造方法
JP4589747B2 (ja) 2005-02-04 2010-12-01 新日本製鐵株式会社 磁気特性に優れた無方向性電磁鋼板とその製造方法および歪取焼鈍方法
KR100973627B1 (ko) 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 무방향성 전자 강판 및 그 제조 방법
JP4658840B2 (ja) 2006-03-20 2011-03-23 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP5228379B2 (ja) 2006-07-27 2013-07-03 新日鐵住金株式会社 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
JP5609057B2 (ja) 2009-10-22 2014-10-22 Jfeスチール株式会社 モータコア
JP5310599B2 (ja) 2010-02-26 2013-10-09 新日鐵住金株式会社 高周波用無方向性電磁鋼板の製造方法
US20110273054A1 (en) 2010-05-04 2011-11-10 Gwynne Johnston Electrical steel, a motor, and a method for manufacture of electrical steel with high strength and low electrical losses
JP5780013B2 (ja) * 2011-06-28 2015-09-16 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
DE102011053722C5 (de) 2011-09-16 2020-12-24 Voestalpine Stahl Gmbh Verfahren zum Herstellen eines höherfesten Elektrobandes, Elektroband und dessen Verwendung
WO2014020369A1 (en) * 2012-07-31 2014-02-06 Arcelormittal Investigación Y Desarrollo Sl Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
KR20140060727A (ko) 2012-11-12 2014-05-21 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2014185365A (ja) 2013-03-22 2014-10-02 Jfe Steel Corp 高周波鉄損特性に優れる無方向性電磁鋼板
CN103498096B (zh) 2013-09-16 2016-03-16 武汉钢铁(集团)公司 Rm≥600MPa的优良磁性能无取向电工钢及其生产方法
CN103667879B (zh) 2013-11-27 2016-05-25 武汉钢铁(集团)公司 磁性能和机械性能优良的无取向电工钢及生产方法
CA2956686C (en) 2014-07-31 2019-01-08 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same
KR101653142B1 (ko) * 2014-12-24 2016-09-01 주식회사 포스코 무방향성 전기강판 및 그의 제조방법
JP6269971B2 (ja) 2015-01-28 2018-01-31 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
JP6048699B2 (ja) 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
JP6794705B2 (ja) 2016-08-05 2020-12-02 日本製鉄株式会社 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
CA3051823C (en) * 2017-02-07 2022-07-12 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
JP6770260B2 (ja) * 2017-03-30 2020-10-14 Jfeスチール株式会社 無方向性電磁鋼板の製造方法、モータコアの製造方法およびモータコア

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046661A1 (ja) * 2011-09-27 2013-04-04 Jfeスチール株式会社 無方向性電磁鋼板
WO2013146879A1 (ja) 2012-03-29 2013-10-03 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
WO2014030512A1 (ja) * 2012-08-21 2014-02-27 Jfeスチール株式会社 打抜加工による鉄損特性の劣化が小さい無方向性電磁鋼板
WO2014129106A1 (ja) * 2013-02-22 2014-08-28 Jfeスチール株式会社 無方向性電磁鋼板製造用の熱延鋼板およびその製造方法
WO2014142149A1 (ja) * 2013-03-15 2014-09-18 Jfeスチール株式会社 高周波鉄損特性に優れる無方向性電磁鋼板
WO2016002904A1 (ja) * 2014-07-02 2016-01-07 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法
JP2016151063A (ja) * 2015-02-19 2016-08-22 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633059A4
SHIGERU SHIDA, JOURNAL OF THE JAPAN SOCIETY FOR TECHNOLOGY OF PLASTICITY, vol. 7, 1966, pages 424

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136993A1 (ja) * 2018-12-27 2020-07-02 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6738056B1 (ja) * 2018-12-27 2020-08-12 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
KR20210082516A (ko) * 2018-12-27 2021-07-05 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판 및 그 제조 방법
CN113166869A (zh) * 2018-12-27 2021-07-23 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法
EP3904551A4 (en) * 2018-12-27 2022-04-06 JFE Steel Corporation NON-ORIENTED ELECTRICAL STEEL SHEET AND PRODUCTION METHOD THEREOF
CN113166869B (zh) * 2018-12-27 2022-10-25 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法
KR102530719B1 (ko) 2018-12-27 2023-05-09 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판 및 그 제조 방법
EP4079893A4 (en) * 2019-12-19 2023-05-31 Posco NON-ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
EP4079896A4 (en) * 2019-12-20 2023-06-07 Posco NON-ORIENTED ELECTRICAL STEEL SHEET, AND METHOD OF MANUFACTURING THEREOF
WO2024057940A1 (ja) * 2022-09-13 2024-03-21 Jfeスチール株式会社 高強度無方向性電磁鋼板とその製造方法

Also Published As

Publication number Publication date
JP2018204052A (ja) 2018-12-27
KR102315078B1 (ko) 2021-10-19
JP6738047B2 (ja) 2020-08-12
US20210159002A1 (en) 2021-05-27
TWI665313B (zh) 2019-07-11
CN110678568A (zh) 2020-01-10
TW201903169A (zh) 2019-01-16
EP3633059A4 (en) 2020-04-29
KR20190142357A (ko) 2019-12-26
RU2724346C1 (ru) 2020-06-23
MX2019014336A (es) 2020-01-27
US11404189B2 (en) 2022-08-02
EP3633059A1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
WO2018221126A1 (ja) 無方向性電磁鋼板とその製造方法
EP3404124B1 (en) Non-oriented electrical steel sheet and production method thereof
TWI589707B (zh) Non-directional electromagnetic steel plate and its manufacturing method and motor core
KR101499371B1 (ko) 무방향성 전기 강판의 제조 방법
CN113166869B (zh) 无方向性电磁钢板及其制造方法
EP2910658B1 (en) Hot-rolled steel sheet for production of non-oriented electrical steel sheet and method of manufacturing same
JP2014162939A (ja) 無方向性電磁鋼板製造用の熱延鋼板およびその製造方法
TW202104613A (zh) 無方向性電磁鋼板的製造方法與馬達鐵芯的製造方法、以及馬達鐵芯
KR20190077025A (ko) 무방향성 전기 강판 및 그 제조 방법
EP3037564A1 (en) Non-oriented magnetic steel sheet and hot-rolled steel sheet thereof
JP5167824B2 (ja) エッチング加工用無方向性電磁鋼板とモータコアの製造方法
TW202003875A (zh) 無方向性電磁鋼板及其製造方法
WO2020090156A1 (ja) 無方向性電磁鋼板の製造方法
WO2023149248A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2023149249A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2023149287A1 (ja) 無方向性電磁鋼板用熱延鋼板の製造方法、無方向性電磁鋼板の製造方法、および無方向性電磁鋼板用熱延鋼板
JP4258163B2 (ja) 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板
JP7392902B1 (ja) 無方向性電磁鋼板およびその製造方法
JP5768327B2 (ja) 高磁場鉄損の優れた無方向性電磁鋼板の製造方法
JPH04337050A (ja) 磁気特性の優れた高抗張力磁性材料およびその製造方法
JP2003027139A (ja) 方向性電磁鋼板の製造方法
JP4259003B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033939

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018810011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018810011

Country of ref document: EP

Effective date: 20200102