WO2024057940A1 - 高強度無方向性電磁鋼板とその製造方法 - Google Patents

高強度無方向性電磁鋼板とその製造方法 Download PDF

Info

Publication number
WO2024057940A1
WO2024057940A1 PCT/JP2023/031709 JP2023031709W WO2024057940A1 WO 2024057940 A1 WO2024057940 A1 WO 2024057940A1 JP 2023031709 W JP2023031709 W JP 2023031709W WO 2024057940 A1 WO2024057940 A1 WO 2024057940A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
group
steel sheet
annealing
Prior art date
Application number
PCT/JP2023/031709
Other languages
English (en)
French (fr)
Inventor
勇人 齋藤
孝明 田中
智幸 大久保
龍一 末廣
茂宏 丸山
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024057940A1 publication Critical patent/WO2024057940A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to a non-oriented electrical steel sheet with high strength and low core loss, and a method for manufacturing the same.
  • the iron core of a rotating machine is generally composed of a rotor (rotor core) and a stator (stator core).
  • a large centrifugal force is applied to the rotor core, so the non-oriented electrical steel sheet (material steel sheet) used for the core is required to have high strength.
  • non-oriented electrical steel sheets used for stator cores are required to have low iron loss.
  • stator core material and stator core material from the same non-oriented electrical steel sheet (material steel sheet), and from the perspective of reducing iron loss in the stator core, core assembly It is preferable that the core loss can be reduced when strain relief annealing is performed afterwards.
  • Patent Document 1 states that in mass %, C: 0.060% or less, Si: 0.2 to 3.5%, Mn: 0.05 to 3.0 %, P: 0.30% or less, S: 0.040% or less, Al: 2.50% or less, and N: 0.020% or less, with the remainder consisting of Fe and inevitable impurities.
  • a high-strength electrical steel sheet with excellent magnetic properties in which a processed structure remains inside the steel material has been proposed.
  • Patent Document 2 in mass %, C: 0.005% or less, Si: more than 3.5% and 4.5% or less, Mn: 0.01% or more and 0.10% or less, Al: 0. 0.005% or less, Ca: 0.0010% or more and 0.0050% or less, S: 0.0030% or less and N: 0.0030% or less, and satisfies Ca/S: 0.80 or more, and the remainder has a component composition consisting of Fe and unavoidable impurities, plate thickness: 0.40 mm or less, unrecrystallized processed structure: 10% or more and 70% or less, tensile strength (TS): 600 MPa or more, iron loss W 10/ 400 : Electrical steel sheets with a power of 30 W/kg or less have been proposed.
  • TS tensile strength
  • the present invention has been made in view of the above-mentioned problems faced by the prior art, and its purpose is to provide a non-oriented electrical steel sheet that has high strength after finish annealing and low iron loss after strain relief annealing.
  • the object of the present invention is to provide an advantageous manufacturing method for the same.
  • the inventors have made extensive studies focusing on the chemical composition and manufacturing conditions of steel. As a result, by controlling the final annealing temperature of the cold-rolled sheet to an appropriate temperature according to the composition of the steel, a non-oriented electrical steel sheet with high strength after final annealing and low iron loss after strain relief annealing can be produced.
  • the present inventors have discovered that the present invention can be obtained, and have completed the present invention.
  • the present invention based on the above findings provides C: 0.0050 mass% or less, Si: 2.0 to 5.0 mass%, Mn: 0.2 to 1.8 mass%, P: 0.020 mass% or less, S: 0. 0050 mass% or less, Al: 0.5 to 2.5 mass%, N: 0.0050 mass% or less, Mo: 0.001 to 0.100 mass%, and O: 0.0050 mass% or less, and further contains Sn and Sb.
  • the content of at least one of these is 0.02 to 0.10 mass% in total, and the content (mass%) of Si, Al and Mn is expressed as [Si], [Al] and [Mn], respectively.
  • a non-directional sheet that satisfies the following and has a composition with the remainder consisting of Fe and unavoidable impurities, has a tensile strength of 700 to 950 MPa, and has a dislocation density at the center of the plate thickness of 1.2 x 10 14 m -2 or more. It is a magnetic steel sheet.
  • the above-mentioned non-oriented electrical steel sheet of the present invention is characterized by further containing Ge: 0.0005 to 0.0100 mass% in addition to the above-mentioned composition.
  • the above-mentioned non-oriented electrical steel sheet of the present invention is characterized in that, in addition to the above-mentioned composition, it further contains at least one component of the following groups A to H. - Group A; Zn: 0.001 to 0.010 mass% ⁇ Group B: Pb: 0.0001 to 0.0030 mass% ⁇ Group C; Ca, Mg and REM: 0.0010 to 0.0080 mass% of at least one species in total ⁇ Group D; Ti, Nb and V: at least one species in total 0.0005 to 0.0030 mass% ⁇ Group E; Cr, Cu and Ni: 0.01 to 0.40 mass% of at least one species in total ⁇ Group F; B: 0.0003 to 0.0040 mass% ⁇ G group; Co, W and Ta: 0.0005 to 0.0200 mass% of at least one species in total - Group H; at least one of Ga: 0.0005 to 0.0100 mass% and As: 0.001 to 0.010 mass%
  • the present invention involves hot rolling a steel slab having any of the above-mentioned compositions, annealing the hot-rolled plate, and performing one cold rolling or two or more cold rollings with intermediate annealing in between.
  • the final annealing is performed to obtain a cold-rolled sheet with a final thickness
  • a non-oriented electrical steel sheet characterized by having a temperature T (°C) defined by or below, a time for holding at the soaking temperature above 60 seconds or less, and a time for staying at a temperature of 500°C or higher to be 100 seconds or less. Propose a manufacturing method.
  • a high-strength rotor core material and a low-core loss stator core material can be extracted from the same non-oriented electrical steel sheet, making it possible to efficiently manufacture a high-performance motor core. .
  • C 0.0050 mass% or less Since C is a harmful element that forms carbides and deteriorates iron loss, it is limited to 0.0050 mass% or less in the present invention. Preferably it is 0.0035 mass% or less. Although the lower limit of C is not particularly determined, it is preferably about 0.0003 mass% from the viewpoint of suppressing the increase in decarburization cost in the steel manufacturing process.
  • Si:2.0 ⁇ 5.0mass% Si is an important element that has the effect of increasing the specific resistance of steel and reducing iron loss.
  • solid solution strengthening has the effect of increasing the strength of the steel plate.
  • it is necessary to contain 2.0 mass% or more. Preferably it is 2.8 mass% or more.
  • the upper limit is set to 5.0 mass%. Preferably it is 3.8 mass% or less.
  • Mn 0.2 to 1.8 mass%
  • Mn is an element effective in reducing iron loss and increasing strength. It is also an element that improves hot workability. Therefore, in the present invention, 0.2 mass% or more of Mn is contained. Preferably it is 0.3 mass% or more.
  • the upper limit is set to 1.8 mass%. Preferably it is 1.4 mass% or less.
  • P 0.020 mass% or less P segregates at grain boundaries, embrittles the steel sheet, and reduces rollability, so the upper limit needs to be 0.020 mass%. Preferably, it is 0.015 mass% or less. Note that P also contributes to increasing the strength of the steel plate through solid solution strengthening, but it is preferably contained in an amount of 0.005 mass% or more in order to obtain the above effect.
  • S 0.0050 mass% or less
  • S is a harmful element that forms fine sulfides and deteriorates iron loss, so it is limited to 0.0050 mass% or less in the present invention. Preferably it is 0.0030 mass% or less.
  • Al 0.5 to 2.5 mass% Like Si, Al has the effect of increasing the specific resistance of steel and reducing iron loss. It also has the effect of increasing the strength of the steel plate through solid solution strengthening. In order to obtain these effects, it is necessary to contain 0.5 mass% or more. Preferably it is 0.7 mass% or more. On the other hand, if Al is added excessively, nitrides and oxides are formed, which impairs manufacturability, so the upper limit is set to 2.5 mass%. Preferably it is 1.8 mass% or less.
  • N 0.0050 mass% or less
  • N is a harmful element that forms fine nitrides, inhibits grain growth, and deteriorates iron loss, so it needs to be limited to 0.0050 mass% or less. Preferably it is 0.0030 mass% or less.
  • Mo 0.001 ⁇ 0.100mass%
  • Mo is an element necessary to increase the dislocation density after final annealing, and must be contained at 0.001 mass% or more.
  • Mo is added in a range of 0.001 to 0.100 mass%.
  • Mo is preferably added at 0.003 mass% or more, more preferably at least 0.005 mass%.
  • Mo is preferably 0.070 mass% or less.
  • O 0.0050 mass% or less
  • O is a harmful element that forms oxides, inhibits grain growth, and deteriorates iron loss, so it must be limited to 0.0050 mass% or less. Preferably it is 0.0030 mass% or less.
  • At least one of Sn and Sb 0.02 to 0.10 mass% in total Sn and Sb are both effective elements for improving magnetic properties through improving texture. Therefore, it is necessary to contain at least one of Sn and Sb in a total amount of 0.02 mass% or more. On the other hand, even if added in excess, the above effect is saturated, so the upper limit is set to 0.10 mass% in total.
  • Equation (1) is a parameter that represents the difficulty of recovery and recrystallization during final annealing, that is, the difficulty of reducing dislocation density.
  • the above content is expressed by the following formula (1'); [Si]+[Al]/2.5+[Mn]/4 ⁇ 3.65...(1') It is preferable to satisfy the following.
  • the non-oriented electrical steel sheet of the present invention can contain Ge in addition to the above components.
  • Ge is an element that contributes to improving iron loss by segregated on the steel plate surface and grain boundaries and suppressing oxidation and nitridation. Further, it has the effect of suppressing a decrease in dislocation density during final annealing under the conditions specified in the present invention and increasing the tensile strength of the product sheet.
  • it is 0.0008 mass% or more.
  • grain boundary segregation will become significant, inhibiting grain growth and deteriorating iron loss. is preferred.
  • the non-oriented electrical steel sheet of the present invention may further contain at least one component selected from the following groups A to H in addition to the above components.
  • Group A; Zn: 0.001 to 0.010 mass% Zn is an element that refines the steel sheet structure (crystal grains) and contributes to high strength. In order to obtain the above effects, it is preferable to contain 0.001 mass% or more.
  • Zn exceeds 0.010 mass% oxides are excessively formed and iron loss deteriorates, so when Zn is added, it is preferably 0.010 mass% or less.
  • Pb is an element that makes crystal grains finer and contributes to higher strength. In order to obtain the above effects, it is preferable to contain 0.0001 mass% or more. On the other hand, if it exceeds 0.0030 mass%, grain growth during strain relief annealing is inhibited and iron loss deteriorates, so when added, it is preferably 0.0030 mass% or less.
  • Group C at least one of Ca, Mg and REM: 0.0010 to 0.0080 mass% in total Ca, Mg, and REM are all elements that fix S as sulfide and contribute to improving core loss.
  • the upper limit is preferably 0.0080 mass%. More preferably, the total amount is in the range of 0.0020 to 0.0050 mass%.
  • Group D at least one of Ti, Nb and V: 0.0005 to 0.0030 mass% in total Ti, Nb, and V are all effective elements for increasing the strength of a steel sheet through precipitation strengthening and grain refinement.
  • the upper limit is preferably 0.0030 mass%.
  • Group E at least one of Cr, Cu, and Ni: 0.01 to 0.40 mass% in total Cr, Cu, and Ni all have the effect of increasing the specific resistance of the steel plate and improving core loss.
  • the upper limit is preferably 0.40 mass%. More preferably, the total amount is in the range of 0.03 to 0.15 mass%.
  • Group F; B: 0.0003 to 0.0040 mass% B is an element that contributes to increasing strength by making crystal grains finer. In order to obtain the above effect, it is preferable to add 0.0003 mass% or more. On the other hand, if it is added in excess of 0.0040 mass%, not only the above effects will be saturated, but also excessive boride will be generated and the iron loss will deteriorate, so the upper limit should be 0.0040 mass%. preferable.
  • Group G at least one of Co, W and Ta: 0.0005 to 0.0200 mass% in total Co, W, and Ta are all elements that form precipitates and contribute to high strength through the refinement of crystal grains and the effect of dispersing the precipitates.
  • the upper limit is preferably 0.0200 mass%. More preferably, it is in the range of 0.0010 to 0.0100 mass%.
  • Ga 0.0005 to 0.0100 mass% and As: 0.001 to 0.010 mass%
  • Ga and As segregate on the steel sheet surface and grain boundaries, causing oxidation and nitridation. It is an element that contributes to improving iron loss by suppressing iron loss.
  • Ga be 0.0100 mass% or less and As be 0.010 mass% or less.
  • the remainder other than the above components is Fe and inevitable impurities.
  • the non-oriented electrical steel sheet of the present invention is produced by manufacturing a steel material (slab) having the above-mentioned composition, and hot rolling the slab into a hot-rolled sheet having a predetermined thickness. Next, the hot-rolled plate is subjected to hot-rolled plate annealing, then pickled, and cold-rolled once or twice or more with intermediate annealing to obtain a cold-rolled plate of the final thickness, After that, it is manufactured by performing finish annealing. This will be explained in detail below.
  • Steel material there are no particular limitations on the method for manufacturing the slab, which is the steel material used to manufacture the non-oriented electrical steel sheet.
  • steel having the above-mentioned composition is melted using a commonly known refining process using a converter, an electric furnace, a vacuum degassing device, or the like.
  • the melted steel may be made into a steel material using a continuous casting method, an ingot-blowing method, a thin slab continuous casting method, or the like.
  • iron scrap or directly reduced iron may be used as the raw material.
  • the slab is heated to a predetermined temperature and then hot rolled to form a hot rolled plate having a predetermined thickness.
  • the hot rolling conditions are not particularly limited, but the heating temperature of the slab is preferably in the range of 1000°C or more and 1150°C or less. Further, the coil winding temperature after hot rolling is preferably in the range of 500°C or more and 700°C or less.
  • Hot-rolled sheet annealing Next, the hot-rolled steel sheet (hot-rolled sheet) is subjected to hot-rolled sheet annealing.
  • This hot-rolled sheet annealing is preferably carried out under conditions of maintaining the temperature at 800 to 1000° C. for 5 to 300 seconds.
  • the steel sheet structure crystal grains
  • areas with concentrated strains such as deformation bands and shear bands are formed during cold rolling after pickling, which promotes recrystallization. Therefore, the dislocation density tends to decrease. Therefore, the temperature of hot-rolled sheet annealing is preferably 950°C or lower. More preferably it is 920°C or lower.
  • the hot-rolled sheet after the hot-rolled sheet annealing is subjected to a conventional pickling method to remove scale.
  • the above-mentioned pickling may be carried out under any condition as long as scale can be removed to the extent that cold rolling, which is the next step, can be carried out, and for example, conventional pickling conditions using hydrochloric acid, sulfuric acid, etc. can be applied.
  • mechanical descaling may be additionally performed to generate cracks in the scale by, for example, shot blasting or light rolling, before or during the pickling.
  • the pickled hot-rolled sheet is cold-rolled to obtain a cold-rolled sheet having a final thickness (product thickness).
  • This cold rolling is not particularly limited as long as the above final plate thickness can be achieved.
  • cold rolling is not limited to one time, and cold rolling may be performed two or more times with intermediate annealing interposed therebetween, if necessary.
  • the intermediate annealing conditions in this case may be any commonly used conditions and are not particularly limited.
  • the rolling reduction ratio of the cold rolling to obtain the final plate thickness is too low, work hardening may be insufficient and the strength after final annealing may be lower than the expected value. It is preferable to set it to 50% or more. More preferably it is 70% or more.
  • This final annealing is a process that imparts predetermined strength and magnetic properties to the cold rolled sheet, and is a particularly important process in the present invention.
  • the temperature T defined by the above equation (2) is a parameter representing the softening temperature at which the dislocation density decreases and the tensile strength decreases.
  • the tensile strength of the steel plate after final annealing can be 700 MPa or more, and the dislocation density at the center of the plate thickness can be 1.2 ⁇ 10 14 m ⁇ 2 or more.
  • the soaking temperature for final annealing exceeds the temperature T defined by equation (2) above, or if the soaking time exceeds 60 seconds, the dislocation density in the steel plate will rapidly decrease, and the tensile strength as described above will decrease. will not be obtained.
  • the index of the softening temperature is determined from the content of Si, Al, and Mn; This is because it is sufficient to consider the quantity.
  • the soaking temperature for final annealing is less than 500°C, sufficient recovery will not occur and the tensile strength will exceed 950MPa, resulting in poor punching workability, so the soaking temperature must be 500°C or higher. There is. Preferably it is 600°C or higher. For the same reason, it is preferable that the soaking time is also 5 seconds or more.
  • the residence time at a temperature of 500° C. or higher during final annealing is 100 seconds or less. If it remains in the temperature range of 500°C or higher for a long time, the dislocation density will decrease too much, making it impossible to obtain the desired tensile strength. Preferably it is 60 seconds or less.
  • the steel plate after the above finish annealing is coated with an insulating coating as necessary to form a product plate.
  • the steel sheet properties of the non-oriented electrical steel sheet of the present invention will be explained.
  • Tensile strength 700 MPa or more and 950 MPa or less
  • the tensile strength of the steel plate after finish annealing must be 700 MPa or more.
  • the upper limit is set to 950 MPa.
  • it is in the range of 730 to 860 MPa.
  • Dislocation density at center of sheet thickness 1.2 ⁇ 10 14 m ⁇ 2 or more
  • the non-oriented electrical steel sheet of the present invention can be obtained by performing finish annealing under conditions according to the chemical composition of the steel and the chemical composition. , it is necessary to set the dislocation density at the center of the thickness of the steel plate to 2 ⁇ 10 14 m ⁇ 2 or more. Thereby, the above-mentioned high tensile strength can be ensured.
  • a preferable dislocation density is 3.0 ⁇ 10 14 m ⁇ 2 or more.
  • the above dislocation density can be determined by reducing the thickness of one side of the steel plate to 1/2 by mechanical polishing and chemical polishing, and then performing X-ray diffraction on the polished surface (plane parallel to the steel plate surface) and calculating the half-value width of the peak. can be determined using the Williamson-Hall method.
  • the non-oriented electrical steel sheet of the present invention is characterized by excellent iron loss properties after strain relief annealing.
  • the iron loss characteristics after strain relief annealing are also influenced by strain relief annealing conditions.
  • the above-mentioned strain relief annealing is generally performed in a non-oxidizing or reducing atmosphere under conditions of 700 to 900° C. for 1 to 2 hours.
  • the strain relief annealing conditions are defined within the above range, it becomes difficult to evaluate the magnetic properties. Therefore, in the present invention, the magnetic properties after strain relief annealing are evaluated based on the magnetic properties after heat treatment at 800° C. for 2 hours in an N 2 atmosphere, which simulates strain relief annealing. Note that it goes without saying that the strain relief annealing conditions applied to the actual stator core may be different from the above conditions.
  • the iron loss value of a steel plate largely depends on the plate thickness, it is necessary to set a reference value for determining whether the iron loss is good or bad for each plate thickness. Therefore, in the present invention, as the above reference values, when the plate thickness is 0.20 mm, W 10/400 : 10.3 W/kg, and when the plate thickness is 0.25 mm, W 10/400 : 11.5 W/kg, and the plate thickness is 0. .35 mm, W 10/400 : 14.7 W/kg, and 0.50 mm plate thickness, W 10/400 : 22.5 W/kg. If the iron loss is below the above standard value, stator core material It is evaluated that it can be suitably used as
  • the above-mentioned slab was heated in a gas furnace to a temperature of 1100° C. for 30 minutes, and then hot-rolled by rough rolling and finish rolling to obtain a hot-rolled plate having a thickness of 1.8 mm.
  • the above hot rolled sheet was subjected to hot rolled sheet annealing at 920°C for 30 seconds, pickled, and cold rolled to obtain a cold rolled sheet with a final thickness of 0.25 mm, and then subjected to the conditions shown in Table 2. Finish annealing was performed to obtain a product plate.
  • ⁇ Tensile test> A JIS No. 5 tensile test piece with the tensile direction as the rolling direction was taken from the sample, and the tensile strength TS was measured in accordance with JIS Z 2241.
  • ⁇ Dislocation density measurement> A 25 mm x 30 mm test piece was taken from the above sample, one surface of the test piece was mechanically polished and chemically polished to reduce the thickness to the center of the plate, and the polished surface was subjected to X-ray diffraction to determine the half width of the peak. was measured, and the dislocation density was determined by the Williamson-Hall method.
  • test pieces of width: 30 mm x length: 280 mm were taken from the L direction (rolling direction) and C direction (perpendicular to the rolling direction), and iron loss W10/400 was determined according to JIS C 2550-1. was measured. Furthermore, after performing heat treatment simulating stress relief annealing (SRA) at 800° C. for 2 hours in an N 2 atmosphere, the iron loss W 10/400 after the stress relief annealing was measured using the method described above.
  • SRA stress relief annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

mass%で、C:0.0050%以下、Si:2.0~5.0%、Mn:0.2~1.8%、Al:0.5~2.5%、Mo:0.001~0.100%、SnおよびSbを合計で0.02~0.10mass%を含有し、Si,AlおよびMnの含有量が所定の関係を満たす鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍して無方向性電磁鋼板を製造する際、上記仕上焼鈍における均熱温度を500℃以上かつSi,AlおよびMnの含有量から決められる温度T以下とし、上記均熱温度に保持する時間を60s以下とし、500℃以上の滞留時間を100s以下として引張強さが700~950MPa、板厚中心部の転位密度が1.2×1014m-2以上とすることで、仕上焼鈍後は高強度で、歪取焼鈍後は低鉄損の無方向性電磁鋼板を得る。

Description

高強度無方向性電磁鋼板とその製造方法
 本発明は、高い強度を有する低鉄損の無方向性電磁鋼板とその製造方法に関するものである。
 近年、電気機器に対する省エネルギー化への要求は強まりつつあり、回転機の鉄心に用いられる無方向性電磁鋼板に対しても磁気特性の向上が強く求められるようになってきている。回転機の鉄心は、回転子(ロータコア)と固定子(ステータコア)とから構成されているのが一般的である。大径のモータや回転数の高いモータでは、ロータコアには大きな遠心力が加わるため、コアに用いられる無方向性電磁鋼板(素材鋼板)には高強度であることが求められる。一方、ステータコアコアに用いられる無方向性電磁鋼板には低鉄損であることが求められる。
 また、素材の歩留まりや生産効率を高める観点からは、同一の無方向性電磁鋼板(素材鋼板)から、ロータコア材とステータコア材を採取できること、さらに、ステータコアの鉄損を低減する観点から、コア組み立て後に歪取焼鈍を施したときに低鉄損化できることが好ましい。
 高強度を有する無方向性電磁鋼板として、例えば特許文献1には、質量%で、C:0.060%以下、Si:0.2~3.5%、Mn:0.05~3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下およびN:0.020%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼材内部に加工組織が残存する、磁気特性に優れた高強度電磁鋼板が提案されている。
 また、特許文献2には、質量%で、C:0.005%以下、Si:3.5%超4.5%以下、Mn:0.01%以上0.10%以下、Al:0.005%以下、Ca:0.0010%以上0.0050%以下、S:0.0030%以下およびN:0.0030%以下を含有し、かつ、Ca/S:0.80以上を満たし、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚:0.40mm以下、未再結晶の加工組織:10%以上70%以下、引張強さ(TS):600MPa以上、鉄損W10/400:30W/kg以下の電磁鋼板が提案されている。
特開2005-113185号公報 特開2012-149337号公報
 しかしながら、発明者らの調査した結果によると、上記の特許文献1および特許文献2に開示された技術では、高強度の無方向性電磁鋼板は得られるものの、歪取焼鈍後の鉄損が必ずしも良好でないという問題があることが明らかとなった。
 本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、仕上焼鈍後は高強度で、歪取焼鈍後は低鉄損の特性を有する無方向性電磁鋼板を提供するとともに、その有利な製造方法を提案することにある。
 発明者らは、上記課題の解決に向け、鋼の成分組成および製造条件に着目して鋭意検討を重ねた。その結果、鋼の成分組成に応じて冷延板の仕上焼鈍温度を適切な温度に制御することで、仕上焼鈍後は高強度で、歪取焼鈍後は低鉄損の無方向性電磁鋼板が得られることを知見し、本発明を完成させるに至った。
 上記知見に基づく本発明は、C:0.0050mass%以下、Si:2.0~5.0mass%、Mn:0.2~1.8mass%、P:0.020mass%以下、S:0.0050mass%以下、Al:0.5~2.5mass%、N:0.0050mass%以下、Mo:0.001~0.100mass%およびO:0.0050mass%以下を含有し、さらにSnおよびSbのうちの少なくとも1種を合計で0.02~0.10mass%含有し、かつ、上記Si,AlおよびMnの含有量(mass%)をそれぞれ[Si]、[Al]および[Mn]と表すとき、上記含有量が下記(1)式;
 [Si]+[Al]/2.5+[Mn]/4≧2.72 ・・・(1)
を満たし、残部がFeおよび不可避的不純物からなる成分組成を有し、引張強さが700~950MPaで、板厚中心部の転位密度が1.2×1014-2以上である無方向性電磁鋼板である。
 本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、Ge:0.0005~0.0100mass%を含有することを特徴とする。
 また、本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、下記A~H群のうちの少なくとも1群の成分を含有することを特徴とする。
     記
 ・A群;Zn:0.001~0.010mass%
 ・B群:Pb:0.0001~0.0030mass%
 ・C群;Ca、MgおよびREM:少なくとも1種を合計で0.0010~0.0080mass%
 ・D群;Ti、NbおよびV:少なくとも1種を合計で0.0005~0.0030mass%
 ・E群;Cr、CuおよびNi:少なくとも1種を合計で0.01~0.40mass%
 ・F群;B:0.0003~0.0040mass%
 ・G群;Co、WおよびTa:少なくとも1種を合計で0.0005~0.0200mass%
 ・H群;Ga:0.0005~0.0100mass%およびAs:0.001~0.010mass%のうちの少なくとも1種
 また、本発明は上記のいずれかに記載の成分組成を有する鋼スラブを熱間圧延し、熱延板焼鈍し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とし、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、上記仕上焼鈍における均熱温度を500℃以上かつ下記(2)式;
 T=184×([Si]+[Al]/2.5+[Mn]/4) ・・・(2)
で定義される温度T(℃)以下とし、上記均熱温度に保持する時間を60s以下とし、500℃以上の温度に滞留する時間を100s以下とすることを特徴とする無方向性電磁鋼板の製造方法を提案する。
 本発明によれば、高強度のロータコア材と低鉄損のステータコア材を、同一の無方向性電磁鋼板から採取することができるので、高性能のモータコアを効率的に製造することが可能となる。
 まず、本発明の無方向性電磁鋼板の成分組成とその限定理由について説明する。
C:0.0050mass%以下
 Cは、炭化物を形成して鉄損を劣化する有害元素であるため、本発明では0.0050mass%以下に制限する。好ましくは0.0035mass%以下である。なお、Cの下限は特に定めないが、製鋼工程での脱炭コストの上昇を抑制する観点から、0.0003mass%程度とするのが好ましい。
Si:2.0~5.0mass%
 Siは、鋼の比抵抗を高めて、鉄損を低減する効果がある重要な元素である。また、固溶強化により、鋼板を高強度化する効果もある。これらの効果を得るためには、2.0mass%以上含有する必要がある。好ましくは2.8mass%以上である。一方、Siが5.0mass%を超えると、飽和磁束密度が低下したり、圧延して製造したりすることが困難になるため、上限は5.0mass%とする。好ましくは3.8mass%以下である。
Mn:0.2~1.8mass%
 Mnは、Siと同様、鉄損の低減と高強度化に有効な元素である。また、熱間加工性を改善する元素でもある。このため、本発明ではMnを0.2mass%以上含有させる。好ましくは0.3mass%以上である。一方、Mnが1.8mass%を超えると、Mn炭化物の析出により鉄損が劣化するようになるため、上限は1.8mass%とする。好ましくは1.4mass%以下である。
P:0.020mass%以下
 Pは、粒界に偏析して鋼板を脆化し、圧延性を低下するため、上限を0.020mass%とする必要がある。好ましくは、0.015mass%以下である。なお、Pは、固溶強化により鋼板の高強度化にも寄与するが、上記効果を得るためには0.005mass%以上含有することが好ましい。
S:0.0050mass%以下
 Sは、微細な硫化物を形成して、鉄損を劣化させる有害元素であるため、本発明では0.0050mass%以下に制限する。好ましくは0.0030mass%以下である。
Al:0.5~2.5mass%
 Alは、Si同様、鋼の比抵抗を高めて鉄損を低減する効果がある。また、固溶強化により鋼板を高強度化する効果もある。これらの効果を得るためには、0.5mass%以上含有する必要がある。好ましくは0.7mass%以上である。一方、Alを過剰に添加すると、窒化物や酸化物を形成して製造性を害するようになるため、上限は2.5mass%とする。好ましくは1.8mass%以下である。
N:0.0050mass%以下
 Nは、微細窒化物を形成して、粒成長を阻害し、鉄損を劣化させる有害元素であるため、0.0050mass%以下に制限する必要がある。好ましくは0.0030mass%以下である。
Mo:0.001~0.100mass%
 Moは、仕上焼鈍後の転位密度を高めるのに必要な元素であり、0.001mass%以上含有する必要がある。一方、0.100mass%を超えて添加すると、歪取焼鈍中に炭化物を形成して、粒成長を阻害し、歪取焼鈍後の磁気特性を劣化させるようになる。そのため、Moは0.001~0.100mass%の範囲で添加する。なお、転位密度をより高める観点から、Moは0.003mass%以上添加するのが好ましく、0.005mass%以上添加するのがより好ましい。一方、歪取焼鈍後の鉄損をより低減する観点から、Moは0.070mass%以下とするのが好ましい。
O:0.0050mass%以下
 Oは、酸化物を形成して、粒成長を阻害し、鉄損を劣化させる有害元素であるため、0.0050mass%以下に制限する必要がある。好ましくは0.0030mass%以下である。
SnおよびSbのうちの少なくとも1種:合計で0.02~0.10mass%
 SnおよびSbは、いずれも集合組織の改善を介して磁気特性を向上するのに有効な元素である。このため、Sn、Sbは、少なくとも1種を合計で0.02mass%以上含有する必要がある。一方、過剰に添加しても、上記効果が飽和するため、上限は合計で0.10mass%とする。
[Si]+[Al]/2.5+[Mn]/4≧2.72
 本発明の無方向性電磁鋼板は、上記Si,AlおよびMnの含有量(mass%)をそれぞれ[Si]、[Al]および[Mn]と表すとき、上記含有量が下記(1)式;
 [Si]+[Al]/2.5+[Mn]/4≧2.72 ・・・(1)
を満たすことが必要である。上記(1)式は、仕上焼鈍中の回復および再結晶のし難さ、即ち、転位密度の低下のし難さを表すパラメータであり、上記(1)式を満たしたうえで、後述する適切な仕上焼鈍を施すことで、仕上焼鈍後の引張強さおよび鋼板の板厚中心部の転位密度を所期した値まで高めることができる。なお、上記含有量は、下記(1´)式;
 [Si]+[Al]/2.5+[Mn]/4≧3.65 ・・・(1´)
を満たすことが好ましい。
 本発明の無方向性電磁鋼板は、上記成分に加えて、Geを含有することができる。
Ge:0.0005~0.0100mass%
 Geは、鋼板表面や結晶粒界に偏析して酸化や窒化を抑制することで鉄損の改善に寄与する元素である。また、本発明で規定する条件下での仕上焼鈍中における転位密度の低下を抑制し、製品板の引張強さを高める効果がある。上記の効果を得るためには0.0005mass%以上含有させることが好ましい。好ましくは0.0008mass%以上である。一方、0.0100mass%を超えて添加すると、粒界偏析が著しくなり、粒成長を阻害したり、鉄損を劣化したりするようになるので、添加する場合は0.0100mass%以下とするのが好ましい。
 さらに、本発明の無方向性電磁鋼板は、上記成分に加えてさらに、下記のA~H群のうちから選ばれる少なくとも1群の成分を含有することができる。
A群;Zn:0.001~0.010mass%
 Znは、鋼板組織(結晶粒)を細粒化し、高強度化に寄与する元素である。上記効果を得るためには0.001mass%以上含有させることが好ましい。一方、Znが0.010mass%を超えると、酸化物が過剰に形成されて鉄損が劣化するため、添加する場合は、0.010mass%以下とするのが好ましい。
B群;Pb:0.0001~0.0030mass%
 Pbは、Znと同様、結晶粒を細粒化し、高強度化に寄与する元素である。上記効果を得るためには0.0001mass%以上含有させることが好ましい。一方、0.0030mass%を超えると、歪取焼鈍における粒成長を阻害し、鉄損が劣化するようになるため、添加する場合は、0.0030mass%以下とするのが好ましい。
C群;Ca、MgおよびREMのうちの少なくとも1種:合計で0.0010~0.0080mass%
 Ca、MgおよびREMは、いずれもSを硫化物として固定し、鉄損の改善に寄与する元素である。上記効果を得るためには、少なくとも1種を合計で0.0010mass%以上添加することが好ましい。一方、0.0080mass%を超えて添加すると、介在物を形成して製造性を害するようになるため、上限は0.0080mass%とするのが好ましい。より好ましくは合計で0.0020~0.0050mass%の範囲である。
D群;Ti、NbおよびVのうちの少なくとも1種:合計で0.0005~0.0030mass%
 Ti、NbおよびVは、いずれも析出強化や結晶粒の微細化により鋼板強度を高めるのに有効な元素である。上記効果を得るためには、少なくとも1種を合計で0.0005mass%以上添加することが好ましい。一方、0.0030mass%を超えて添加すると粒成長を著しく阻害し、鉄損が劣化するようになるため、上限は0.0030mass%とするのが好ましい。
E群;Cr、CuおよびNiのうちの少なくとも1種:合計で0.01~0.40mass%
 Cr、CuおよびNiは、いずれも鋼板の固有抵抗を高めて、鉄損を改善する効果がある。上記効果を得るためには、少なくとも1種を合計で0.01mass%以上添加することが好ましい。しかし、過剰に添加すると、炭化物を生成して鉄損を劣化しり、表面性状を劣化したりするようになるため、上限は0.40mass%とするのが好ましい。より好ましくは合計で0.03~0.15mass%の範囲である。
F群;B:0.0003~0.0040mass%
 Bは、結晶粒の細粒化により高強度化に寄与する元素である。上記効果を得るためには、0.0003mass%以上添加することが好ましい。一方、0.0040mass%を超えて添加すると、上記の効果が飽和するだけでなく、硼化物が過剰に生成して鉄損が劣化するようになるため、上限は0.0040mass%とするのが好ましい。
G群;Co、WおよびTaのうちの少なくとも1種:合計で0.0005~0.0200mass%
 Co、WおよびTaは、いずれも析出物を形成して、結晶粒の微細化や析出物の分散効果により高強度化に寄与する元素である。上記効果を得るためには、少なくとも1種を合計で0.0005mass%以上添加するのが好ましい。一方、合計で0.0200mass%を超える添加は、歪取焼鈍における粒成長を著しく阻害し、鉄損を劣化させるようになるため、上限は0.0200mass%とするのが好ましい。さらに好ましくは0.0010~0.0100mass%の範囲である。
H群;Ga:0.0005~0.0100mass%およびAs:0.001~0.010mass%のうちの少なくとも1種
 GaおよびAsは、いずれも鋼板表面や結晶粒界に偏析して酸化や窒化を抑制することで鉄損の改善に寄与する元素である。上記効果を得るためにはGaは0.0005mass%以上、Asは0.001mass%以上含有させることが好ましい。好ましくはGa:0.0008mass%以上、As:0.002mass%以上である。一方、Ga:0.0100mass%、As:0.010mass%を超えて添加すると、粒界偏析が著しくなり、粒成長を阻害したり、鉄損を劣化したりするようになるので、添加する場合は、Gaは0.0100mass%以下、Asは0.010mass%以下とするのが好ましい。
 本発明の無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。
 次に、本発明の無方向性電磁鋼板の製造方法について説明する。
 本発明の無方向性電磁鋼板は、上述した成分組成を有する鋼素材(スラブ)を製造し、該スラブを熱間圧延して所定の板厚の熱延板とする。次いで、上記熱延板に熱延板焼鈍を施した後、酸洗し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とし、その後、仕上焼鈍を施すことにより製造する。以下、具体的に説明する。
鋼素材(スラブ)
 無方向性電磁鋼板の製造に用いる鋼素材となるスラブの製造方法は、特に限定しない。例えば、上述した成分組成を有する鋼を転炉または電気炉や真空脱ガス装置等を用いた通常公知の精錬プロセスを用いて溶製する。次いで、上記溶製した鋼を、連続鋳造法または造塊-分塊圧延法、薄スラブ連鋳法等を用いて鋼素材とすればよい。なお、原料として鉄スクラップや直接還元鉄を用いてもよい。
熱間圧延
 次いで、上記スラブは、所定の温度に加熱した後、熱間圧延して所定の板厚の熱延板とする。熱間圧延の条件は、特に限定しないが、スラブの加熱温度は1000℃以上1150℃以下の範囲とするのが好ましい。また、熱間圧延後のコイル巻取温度は500℃以上700℃以下の範囲とするのが好ましい。
熱延板焼鈍
 次いで、上記熱延圧延後の鋼板(熱延板)は熱延板焼鈍を施す。この熱延板焼鈍は、800~1000℃の温度に5~300sec間保持する条件で行うのが好ましい。なお、熱延板焼鈍後の鋼板組織(結晶粒)が粗大になると、酸洗後の冷間圧延で、変形帯やせん断帯等の歪みが集中した領域が形成され、再結晶が促進されるため、転位密度が低下し易い。そのため、熱延板焼鈍の温度は950℃以下とするのが好ましい。より好ましくは920℃以下である。
酸洗
 次いで、上記熱延板焼鈍後の熱延板は、常法の酸洗をしてスケールを除去する。上記酸洗は、次工程である冷間圧延が可能となる程度にスケールが除去できる条件であればばよく、例えば塩酸や硫酸等を使用する常用の酸洗条件を適用することができる。また、スケール除去を促進するため、酸洗前もしくは酸洗中に、例えばショットブラストや軽圧延等でスケールに亀裂を生じさせるメカニカルデスケーリングを追加して行ってもよい。
冷間圧延
 次いで、上記酸洗した熱延板は、冷間圧延して最終板厚(製品板厚)の冷延板とする。この冷間圧延は、上記最終板厚とすることができれば、特に制限されない。また、冷間圧延は、1回に限定されず、必要に応じて中間焼鈍を挟む2回以上の冷間圧延を行ってもよい。この場合の中間焼鈍条件も常用の条件であればよく、特に制限はない。ただし、上記冷間圧延のうち、最終板厚とする冷間圧延の圧下率は、低過ぎると加工硬化が不十分となり、仕上焼鈍後の強度が所期した値より低下する虞があるため、50%以上とするのが好ましい。より好ましくは70%以上である。
仕上焼鈍
 次いで、上記最終板厚とした冷延板に仕上焼鈍を施す。この仕上焼鈍は、冷延板に所定の強度と磁気特性を付与する工程であり、本発明において特に重要な工程である。冷延板に本発明が所期した強度(引張強さ:700MPa以上)を付与するためには、仕上焼鈍の均熱温度は、鋼板中のSi、AlおよびMnの含有量をそれぞれ[Si],[Al]および[Mn]と表すとき、下記(2)式;
 T=184×([Si]+[Al]/2.5+[Mn]/4) ・・・(2)
で定義される温度T以下の温度とし、かつ、該温度に保持する時間(均熱時間)を60s以下として行う必要がある。ここで、上記(2)式で定義される温度Tは、転位密度が低下して引張強さが低下するようになる軟化温度を表すパラメータである。上記条件を満たすことで、仕上焼鈍後の鋼板の引張強さを700MPa以上とし、かつ、板厚中心部の転位密度を1.2×1014-2以上とすることができる。しかし、仕上焼鈍の均熱温度が上記(2)式で定義される温度Tを超える、もしくは、均熱時間が60sを超えると、鋼板内の転位密度が急速に低下し、上記した引張強さが得られなくなる。なお、上記(2)式では、軟化温度の指標をSi,AlおよびMnの含有量から求めているが、これは、本発明の範囲では、主要な添加元素であるSi、Al、Mnの添加量を考慮すれば十分であるからである。
 ただし、仕上焼鈍の均熱温度が500℃未満となると、十分に回復が起こらず引張強さが950MPaを超え、打ち抜き加工性が低下するようになるため、均熱温度は500℃以上とする必要がある。好ましくは600℃以上である。同様の理由から、均熱時間も5s以上とするのが好ましい。
 また、仕上焼鈍において500℃以上の温度に滞留する時間は100s以下とすることが重要である。500℃以上の温度域でも長時間滞留すると、転位密度が低下し過ぎて、所期した引張強さが得られなくなる。好ましくは60s以下である。
 上記仕上焼鈍後の鋼板は、必要に応じて絶縁被膜を被成し、製品板とする。
 次に、本発明の無方向性電磁鋼板の鋼板特性について説明する。
引張強さ:700MPa以上950MPa以下
 大型あるいは高速回転するモータのロータコアが十分な耐久性を確保するためには、仕上焼鈍後の状態における鋼板の引張強さが700MPa以上であることが必要である。しかし、引張強さが過剰に高くなり過ぎると、打ち抜き加工性が低下するようになるため、上限は950MPaとする。好ましくは730~860MPaの範囲である。
板厚中心部の転位密度:1.2×1014-2以上
 また、本発明の無方向性電磁鋼板は、鋼の成分組成と、該成分組成に応じた条件の仕上焼鈍を施すことで、鋼板の板厚中心部の転位密度を2×1014-2以上とするが必要である。これにより、上記した高い引張強さを確実に確保することができる。好ましい転位密度は、3.0×1014-2以上である。なお、上記転位密度は、鋼板の片側表面を機械研磨および化学研磨により板厚1/2まで減厚し、その研磨面(鋼板表面に平行な面)をX線回折してピークの半価幅を測定し、Williamson-Hall法を用いて求めることができる。
歪取焼鈍後の鉄損特性
 本発明の無方向性電磁鋼板は、歪取焼鈍後の鉄損特性が優れていることが特徴である。ここで、歪取焼鈍後の鉄損特性は、歪取焼鈍条件によっても影響される。上記歪取焼鈍は、通常、非酸化性または還元性の雰囲気において、700~900℃×1~2hrの条件で行われることが一般的である。しかし、歪取焼鈍条件を上記のような範囲で規定すると磁気特性を評価することが難しくなる。そこで、本発明では、歪取焼鈍後の磁気特性の評価は、歪取焼鈍を模擬した、N雰囲気下で800℃×2hrの熱処理後の磁気特性で評価することとする。なお、実際のステータコアに施す歪取焼鈍条件は、上記条件と異ならせてもよいことは勿論である。
 また、鋼板の鉄損値は板厚に大きく依存するため、鉄損の良否を判断する基準値は板厚ごとに設定する必要がある。そこで、本発明では上記基準値として、板厚が0.20mmの場合はW10/400:10.3W/kg、0.25mmの場合はW10/400:11.5W/kg、板厚0.35mmの場合はW10/400:14.7W/kg、板厚0.50mmの場合W10/400:22.5W/kgと規定し、上記基準値以下の鉄損であれば、ステータコア材として好適に用いることができると評価する。
 表1に示した種々の成分を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼を常法の精錬プロセスで溶製した後、連続鋳造法でスラブとした。次いで、上記スラブをガス炉で1100℃の温度に30min間加熱した後、粗圧延と仕上圧延からなる熱間圧延して板厚1.8mmの熱延板とした。その後、上記熱延板に920℃×30sの熱延板焼鈍を施した後、酸洗し、冷間圧延して最終板厚0.25mmの冷延板とした後、表2に示した条件で仕上焼鈍を施して製品板とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 次いで、上記のようにして得た製品板から評価用のサンプルを採取し、以下の評価試験に供した。
<引張試験>
 上記サンプルから、引張方向を圧延方向とするJIS5号引張試験片を採取し、JIS Z 2241に準拠して、引張強さTSを測定した。
<転位密度測定>
 上記サンプルから、25mm×30mmの試験片を採取し、試験片の片側表面を機械研磨および化学研磨して板厚中央部まで減厚し、該研磨面をX線回折してピークの半価幅を測定し、Williamson-Hall法により転位密度を求めた。
<磁気特性>
 上記サンプルから、幅:30mm×長さ:280mmの試験片をL方向(圧延方向)およびC方向(圧延方向と直角方向)から採取し、JIS C 2550-1に準拠して鉄損W10/400を測定した。さらに、N雰囲気下で800℃×2hrの歪取焼鈍(SRA:Stress Relief Annealing)を模擬した熱処理を施した後、上記した方法で歪取焼鈍後の鉄損W10/400を測定した。
 上記評価試験の結果を表2に併記した。この結果から、本発明に適合した条件で製造した発明例の鋼板は、いずれも転位密度が1.2×1014-2以上、引張強さが700MPa以上であり、しかも、SRA後の鉄損値も基準値(W10/400:11.5W/kg)より低く、磁気特性に優れていることがわかる。なお、No.28の鋼板は、(2)式で定義される温度Tが489℃で、500℃を下回っていることから、引張強さが本発明の範囲外となり、鉄損も劣る比較例となっている。

 

Claims (4)

  1. C:0.0050mass%以下、Si:2.0~5.0mass%、Mn:0.2~1.8mass%、P:0.020mass%以下、S:0.0050mass%以下、Al:0.5~2.5mass%、N:0.0050mass%以下、Mo:0.001~0.100mass%およびO:0.0050mass%以下を含有し、さらにSnおよびSbのうちの少なくとも1種を合計で0.02~0.10mass%含有し、かつ、上記Si,AlおよびMnの含有量(mass%)をそれぞれ[Si]、[Al]および[Mn]と表すとき、上記含有量が下記(1)式を満たし、残部がFeおよび不可避的不純物からなる成分組成を有し、
    引張強さが700~950MPaで、
    板厚中心部の転位密度が1.2×1014-2以上である無方向性電磁鋼板。
         記
     [Si]+[Al]/2.5+[Mn]/4≧2.72 ・・・(1)
  2. 上記成分組成に加えてさらに、Ge:0.0005~0.0100mass%を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
  3. 上記成分組成に加えてさらに、下記A~H群のうちの少なくとも1群の成分を含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板。
         記
     ・A群;Zn:0.001~0.010mass%
     ・B群:Pb:0.0001~0.0030mass%
     ・C群;Ca、MgおよびREM:少なくとも1種を合計で0.0010~0.0080mass%
     ・D群;Ti、NbおよびV:少なくとも1種を合計で0.0005~0.0030mass%
     ・E群;Cr、CuおよびNi:少なくとも1種を合計で0.01~0.40mass%
     ・F群;B:0.0003~0.0040mass%
     ・G群;Co、WおよびTa:少なくとも1種を合計で0.0005~0.0200mass%
     ・H群;Ga:0.0005~0.0100mass%およびAs:0.001~0.010mass%のうちの少なくとも1種
  4. 請求項1~3のいずれか1項に記載の成分組成を有する鋼スラブを熱間圧延し、熱延板焼鈍し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とし、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、
    上記仕上焼鈍における均熱温度を500℃以上かつ下記(2)式で定義される温度T(℃)以下とし、上記均熱温度に保持する時間を60s以下とし、500℃以上の温度に滞留する時間を100s以下とすることを特徴とする無方向性電磁鋼板の製造方法。
         記
     T=184×([Si]+[Al]/2.5+[Mn]/4) ・・・(2)
     
PCT/JP2023/031709 2022-09-13 2023-08-31 高強度無方向性電磁鋼板とその製造方法 WO2024057940A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-145195 2022-09-13
JP2022145195 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024057940A1 true WO2024057940A1 (ja) 2024-03-21

Family

ID=90275087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031709 WO2024057940A1 (ja) 2022-09-13 2023-08-31 高強度無方向性電磁鋼板とその製造方法

Country Status (1)

Country Link
WO (1) WO2024057940A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046661A1 (ja) * 2011-09-27 2013-04-04 Jfeスチール株式会社 無方向性電磁鋼板
WO2014142149A1 (ja) * 2013-03-15 2014-09-18 Jfeスチール株式会社 高周波鉄損特性に優れる無方向性電磁鋼板
JP2017106059A (ja) * 2015-12-08 2017-06-15 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
WO2018221126A1 (ja) * 2017-05-31 2018-12-06 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
JP2019504193A (ja) * 2015-12-11 2019-02-14 ポスコPosco 無方向性電磁鋼板及びその製造方法
JP2021509447A (ja) * 2017-12-26 2021-03-25 ポスコPosco 無方向性電磁鋼板およびその製造方法
WO2021084785A1 (ja) * 2019-10-29 2021-05-06 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2021117325A1 (ja) * 2019-12-09 2021-06-17 Jfeスチール株式会社 無方向性電磁鋼板とモータコアならびにそれらの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046661A1 (ja) * 2011-09-27 2013-04-04 Jfeスチール株式会社 無方向性電磁鋼板
WO2014142149A1 (ja) * 2013-03-15 2014-09-18 Jfeスチール株式会社 高周波鉄損特性に優れる無方向性電磁鋼板
JP2017106059A (ja) * 2015-12-08 2017-06-15 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2019504193A (ja) * 2015-12-11 2019-02-14 ポスコPosco 無方向性電磁鋼板及びその製造方法
WO2018221126A1 (ja) * 2017-05-31 2018-12-06 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
JP2021509447A (ja) * 2017-12-26 2021-03-25 ポスコPosco 無方向性電磁鋼板およびその製造方法
WO2021084785A1 (ja) * 2019-10-29 2021-05-06 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2021117325A1 (ja) * 2019-12-09 2021-06-17 Jfeスチール株式会社 無方向性電磁鋼板とモータコアならびにそれらの製造方法

Similar Documents

Publication Publication Date Title
CN110536971B (zh) 无方向性电磁钢板的制造方法、马达铁芯的制造方法和马达铁芯
JP6866935B2 (ja) 無方向性電磁鋼板の製造方法
WO2018147044A1 (ja) 無方向性電磁鋼板の製造方法とモータコアの製造方法ならびにモータコア
WO2020262063A1 (ja) 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
JP5854182B2 (ja) 無方向性電磁鋼板の製造方法
JP5273235B2 (ja) 無方向性電磁鋼板の製造方法
KR102635010B1 (ko) 무방향성 전기 강판과 그 제조 방법 및 모터 코어
CN110964977B (zh) 一种能降低表面硬度的取向硅钢及其制备方法
JP7119519B2 (ja) 無方向性電磁鋼板、ステータコア、ロータコア及びこれらの製造方法
JP2023554123A (ja) 無方向性電磁鋼板およびその製造方法
WO2024057940A1 (ja) 高強度無方向性電磁鋼板とその製造方法
JP4987190B2 (ja) 加工性が良好で、加工して歪取焼鈍した後の鉄損が低い無方向性電磁鋼板の製造方法
CN113166871A (zh) 无取向电工钢板及其制造方法
JP7268803B1 (ja) 無方向性電磁鋼板とその製造方法
WO2024080140A1 (ja) 無方向性電磁鋼板とその製造方法
JP7444275B2 (ja) 無方向性電磁鋼板とその製造方法
TW202413664A (zh) 高強度無方向性電磁鋼板及其製造方法
WO2022255259A1 (ja) 方向性電磁鋼板の製造方法
WO2023282071A1 (ja) 無方向性電磁鋼板とその製造方法
JP4239351B2 (ja) 無方向性電磁鋼板
KR20240093976A (ko) 무방향성 전자 강판과 그의 제조 방법
JPH066779B2 (ja) 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865296

Country of ref document: EP

Kind code of ref document: A1