WO2016056179A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2016056179A1
WO2016056179A1 PCT/JP2015/004721 JP2015004721W WO2016056179A1 WO 2016056179 A1 WO2016056179 A1 WO 2016056179A1 JP 2015004721 W JP2015004721 W JP 2015004721W WO 2016056179 A1 WO2016056179 A1 WO 2016056179A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive element
magnet
magnetic sensor
meander
magnetic
Prior art date
Application number
PCT/JP2015/004721
Other languages
English (en)
French (fr)
Inventor
清高 山田
和弘 尾中
一宮 礼孝
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/300,747 priority Critical patent/US10094890B2/en
Publication of WO2016056179A1 publication Critical patent/WO2016056179A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • the present invention relates to a magnetic sensor having a bias magnet.
  • Patent Document 1 discloses a conventional magnetic sensor in which one bias magnet is arranged immediately below four magnetoresistive elements.
  • Patent Document 2 discloses another conventional magnetic sensor in which a bias magnet is disposed so as to cover an upper portion of a magnetoresistive element. These conventional magnetic sensors are insufficient for further miniaturization and higher accuracy.
  • Patent Documents 2 to 5 disclose conventional magnetic sensors in which a plurality of magnetoresistive elements are arranged on a substrate. However, in Patent Documents 2 to 5, the specific configuration and shape of each magnetoresistive element are not clear. Therefore, Patent Documents 2 to 5 cannot provide a magnetic sensor that can further increase the sensitivity to a magnetic field.
  • the magnetic sensor includes a substrate, a magnetoresistive element group including first and second magnetoresistive elements disposed on the substrate, and first and second magnetoresistive elements respectively corresponding to the first and second magnetoresistive elements. And a magnet group including a magnet.
  • This magnetic sensor can be made smaller and more accurate.
  • FIG. 1 is a schematic diagram of a magnetic sensor according to the first embodiment.
  • FIG. 2 is a schematic top view of a substrate having a magnetoresistive element arranged in the magnetic sensor according to the first embodiment.
  • FIG. 3A is a perspective view showing the operation of the magnetic sensor according to the first exemplary embodiment.
  • FIG. 3B is a perspective view showing another operation of the magnetic sensor according to the first exemplary embodiment.
  • FIG. 4A is an enlarged view of the magnetoresistive element of the magnetic sensor according to the first exemplary embodiment.
  • 4B is a cross-sectional view of the magnetoresistive element shown in FIG. 4A taken along line 4B-4B.
  • FIG. 5A is a plan view showing the direction of magnetic bias of each magnet constituting the magnet group of the magnetic sensor according to the first embodiment.
  • FIG. 5B is a plan view showing another magnetic bias direction of each magnet constituting the magnet group of the magnetic sensor according to the first embodiment.
  • FIG. 6 is a plan view of the magnetic sensor according to the second embodiment.
  • FIG. 7 is a plan view of the magnetoresistive element of the magnetic sensor according to the second embodiment.
  • FIG. 8 is a plan view of the magnetoresistive element of the magnetic sensor according to the second embodiment.
  • FIG. 9 is a plan view of the magnetoresistive element of the magnetic sensor according to the second embodiment.
  • FIG. 10 is a plan view of the magnetoresistive element of the magnetic sensor according to the second embodiment.
  • FIG. 11A is a schematic diagram of a magnetoresistive element of the magnetic sensor according to the second embodiment.
  • FIG. 11B is a schematic diagram of a magnetoresistive element of the magnetic sensor according to Embodiment 2.
  • FIG. 12A is a diagram illustrating the MR ratio of the magnetoresistive element of the magnetic sensor according to the second embodiment.
  • FIG. 12B is a diagram illustrating the MR ratio of the magnetoresistive element of the magnetic sensor according to the second embodiment.
  • FIG. 13 is a perspective view showing how to use the magnetic sensor according to the second embodiment.
  • FIG. 14 is a side view showing how to use the magnetic sensor according to the second embodiment.
  • FIG. 15 is a plan view showing how to use the magnetic sensor according to the second embodiment.
  • FIGS. 1 to 5A and 5B show examples of preferable embodiments, and the present invention is not limited to the respective configurations, shapes, and numerical values. Moreover, it is possible to combine suitably each element technology demonstrated in embodiment in the range without a contradiction.
  • FIG. 1 is a schematic top view of the magnetic sensor 95 according to the first embodiment.
  • the magnetic sensor 95 includes the substrate 1.
  • FIG. 2 is a schematic top view of the substrate 1.
  • the substrate 1 has a surface 1A and a surface 1B opposite to the surface 1A.
  • a substrate 1 is disposed on the die pad 20.
  • the magnetoresistive elements 2, 3, 4 are arranged on the surface 1 A of the substrate 1.
  • a plurality of pads 30 including pads for connecting 4 to the ground are disposed.
  • a magnet group 5 ⁇ / b> P having magnets 5 and 6 is disposed on the substrate 1.
  • the magnet group 5P preferably further includes a magnet 7.
  • the plurality of external terminals 19 and the plurality of pads 30 included in the magnetic sensor 95 are electrically connected to each other through the wires 18.
  • the surface 1 ⁇ / b> B of the substrate 1 is preferably mounted on the die pad 20.
  • the die pad 20 is made of metal, and by arranging the die pad 20 on the ground pattern, it is possible to remove noise from the outside with respect to the entire magnetic sensor 95.
  • the magnetoresistive elements 2, 3 and 4 on the substrate 1, the magnetoresistive pattern constituting the wiring 10, the wiring pattern constituting the wiring 10, and the pad 30 are mainly described.
  • the magnet groups 5P (magnets 5, 6, 7) are respectively arranged in regions indicated by dotted lines.
  • the magnetic sensor 95 includes a substrate 1 having a surface 1A and a surface 1B opposite to the surface 1A, and a magnetoresistive element 2 disposed on the surface 1A of the substrate 1. 3 and 4, a magnet group 5 ⁇ / b> P including a magnet 5 corresponding to the magnetoresistive element 2, and a magnet 6 corresponding to the magnetoresistive element 3.
  • the magnetic sensor 95 it is possible to apply a magnetic bias from separate magnets 5, 6, 7 to each of the magnetoresistive elements 2, 3, 4 constituting the magnetoresistive element group 2 ⁇ / b> P. . Accordingly, the degree of freedom in design can be improved, such as not only applying the magnetic bias in the same direction to each of the magnetoresistive elements 2, 3, and 4, but also applying a magnetic bias in different directions. . Furthermore, further miniaturization and higher accuracy are possible.
  • Patent Documents 1 and 2 only disclose a structure in which one bias magnet is arranged with respect to a metal pattern such as one or a plurality of magnetoresistive elements. Such a structure is insufficient for further miniaturization and higher accuracy.
  • FIGS. 3A and 3B are perspective views showing the operation of the magnetic sensor 95.
  • FIG. 3A the magnetic sensor 95 is disposed on the side of the detection target magnet 96, and in FIG. 3B, the magnetic sensor 95 is disposed above the detection target magnet 96.
  • the magnet to be detected 96 shown in FIGS. 3A and 3B has a structure that can rotate around a rotating shaft 96C.
  • the detection target magnet 96 has a disk shape having a center through which the rotation shaft 96C passes.
  • the detection target magnet 96 has magnetic poles 96A and 96B which are separated by a plane passing through the center of the disk shape and have opposite polarities.
  • the magnetic pole 96A is an N pole
  • the magnetic pole 96B is an S pole
  • the detection target magnet may have a configuration other than the above.
  • the detection target magnet may be composed of plates having N poles and S poles alternately arranged on a straight line.
  • the magnetic sensor 95 is disposed so as to be relatively movable in a direction from the magnetic pole 96A of the detection target magnet toward the magnetic pole 96B or a direction from the magnetic pole 96B toward the magnetic pole 96A. Specifically, as the detection target magnet 96 rotates, the magnetic pole of the detection target magnet 96 that passes above or to the side of the magnetic sensor 95 is alternately switched from the magnetic pole 96A to the magnetic pole 96B and from the magnetic pole 96B to the magnetic pole 96A.
  • the magnetic sensor 95 and the detection target magnet 96 are arranged so as to achieve a proper positional relationship.
  • a magnetic sensor is, for example, a sensor having a property that a resistance value changes according to the strength of a magnetic field in a specific direction. Therefore, the magnetic sensor 95 can read the change in the resistance value of the magnetoresistive elements 2, 3, and 4 corresponding to the change from the magnetic pole 96A to the magnetic pole 96B and the change from the magnetic pole 96B to the magnetic pole 96A.
  • the magnetic sensor 95 can detect the rotation angle ⁇ of the detection target magnet 96 around the rotation axis 96 ⁇ / b> C based on the resistance values of the magnetoresistive elements 2, 3, and 4, and the rotation angle of the measurement target having the detection target magnet 96. Can be detected.
  • the above operation of the magnetic sensor 95 will be specifically described.
  • the magnetic pole 96A of the detection target magnet 96 is changed to the magnetic pole.
  • the change in resistance value is proportional to a sine wave (sin ⁇ ) and a cosine wave (cos ⁇ ), respectively.
  • the magnetoresistive element group 2 ⁇ / b> P preferably includes the magnetoresistive element 4, and the magnet group 5 ⁇ / b> P preferably includes the magnet 7 corresponding to the magnetoresistive element 4.
  • the magnet 7 applies a magnetic bias to the magnetoresistive element 4.
  • the magnetoresistive element 4 with respect to the magnetoresistive element 3 is preferably arranged in line symmetry with the axis 95C as the axis of symmetry, and the magnetoresistive element 2 is preferably arranged on the axis 95C.
  • the magnetoresistive element 2 is preferably connected to the voltage application pad 11, the ground pad 12, the output terminal 13, and the output terminal 16.
  • the magnetoresistive element 3 is preferably connected to the voltage application pad 11, the ground pad 12, and the output terminal 14.
  • the magnetoresistive element 4 is preferably connected to the voltage application pad 11, the ground pad 12, and the output terminal 15.
  • the magnetoresistive element 4 and the ground pad 12 are indirectly connected through the magnetoresistive element 2 or the magnetoresistive element 3. With such an arrangement, the reliability of the sensing function of the magnetic sensor can be ensured as will be described later.
  • Equation 1 the output V1 and the output V4, which are the resistance value change characteristics of the magnetoresistive element 2, are expressed by Equation 1.
  • V3 can be expressed by Equation 3.
  • Equation 4 The difference V12 between the output V1 and the output V2 can be expressed by Equation 4.
  • Equation 5 the difference V34 between the output V3 and the output V4 can be expressed by Equation 5.
  • Equations 3 and 4 since the difference V12 and the difference V34 have a phase shift of 90 degrees, when the difference V12 is a sine wave, the difference V34 is a cosine wave. Then, the tangent tan ⁇ can be calculated from the differences V12 and V34, that is, the sine wave and the cosine wave, and the rotation angle ⁇ can be calculated. In this way, the rotation angle of the measurement object can be detected.
  • the structure of the magnetoresistive elements 2, 3, and 4 disposed in the magnetic sensor 95 according to the first embodiment will be described. Further, the direction of the magnetic bias of the magnets 5, 6, and 7 constituting the magnet group 5P will be described.
  • FIG. 4A is an enlarged view of the magnetoresistive element 2.
  • 4B is a cross-sectional view taken along line 4B-4B of the magnetoresistive element 2 shown in FIG. 4A.
  • 5A and 5B show magnetic biases 5M, 6M, and 7M at the centers 5C, 6C, and 7C of the magnets 5, 6, and 7 constituting the magnet group 5P.
  • the magnetoresistive element 2 has patterns 2A, 2B, 2C, and 2D each having a meander shape having a plurality of turns.
  • the pattern 2A, 2B, 2C, 2D has the linear shape part 2E, 2F, 2G, 2H which has the maximum length, respectively.
  • the linear shape portion 2E and the linear shape portion 2G are arranged so as to be shifted by 90 degrees
  • the linear shape portion 2F and the linear shape portion 2H are arranged so as to be shifted by 90 degrees
  • the linear shape portion 2G and the linear shape portion 2F are shifted by 90 degrees. Placed in.
  • the linear shape portion 2E and the linear shape portion 2H are arranged so as to be shifted by 90 degrees. As shown in FIGS. 4A, 5A, and 5B, the linear portions 2E, 2F, 2G, and 2H are arranged to be inclined by 45 degrees with respect to the direction of the magnetic bias 5M of the magnet 5.
  • a positioning portion 9 for positioning the corner 5T (6T, 7T) corresponding to the corner 5T (6T, 7T) of the magnet 5 (6, 7). is preferably arranged.
  • the position of the magnet 5 is shifted, a shift occurs in the direction of the magnetic bias 5M from the magnet 5, and reliability may be impaired. Therefore, the positional shift of the magnet 5 is suppressed by arranging the magnet 5 while confirming the positional relationship between the corner 5T (6T, 7T) of the magnet 5 (6, 7) and the positioning portion 9 with an optical microscope or the like. , Reliability can be improved.
  • the positioning part 9 is comprised from the metal.
  • the material of the positioning part 9 is the same as the material of the wiring 10 extended from the magnetoresistive element group 2P. Since the positioning part 9 can be formed using the same process as the process of forming the wiring 10, it is desirable in terms of cost. The above is the same as the magnet 5 for the other magnets 6 and 7.
  • the magnet 5 is preferably arranged on the magnetoresistive element 2 via an adhesive 8 made of a thermosetting adhesive or a UV curable adhesive.
  • the adhesive 8 preferably covers a part of the side surface connected to the surface of the magnet 5 facing the magnetoresistive element 2. If the position of the magnet 5 is deviated, the position and direction of the magnetic bias 5M from the magnet 5 will be deviated, and reliability may be impaired. Therefore, after confirming the position of the magnet 5, the positional deviation of the magnet 5 can be suppressed and the reliability can be improved by curing the adhesive 8 made of a thermosetting adhesive or a UV curable adhesive. The above is the same as the magnet 5 for the other magnets 6 and 7.
  • a protective film 17 having a silicon oxide film or a fluorine resin film is disposed on the magnetoresistive element group 2P.
  • the adhesive 8 may be directly attached on the magnetoresistive element group 2P, but the adhesive 8 does not contact the magnetoresistive element group 2P through the protective film 17, thereby ensuring the reliability of the magnetic sensor 95. can do.
  • the magnetoresistive elements 2, 3, and 4 constituting the magnetoresistive element group 2P have a magnetic layer containing Ni, Co, and Fe and a nonmagnetic layer containing Cu stacked on the magnetic layer.
  • An artificial lattice film is preferred.
  • Each magnetoresistive element may be an anisotropic magnetoresistive element whose resistance value changes according to the strength of the magnetic field in a specific direction and does not change according to the strength of the magnetic field other than the specific direction. preferable.
  • the magnetoresistive element group 2P may be disposed on the surface 1A of the substrate 1 via a base film such as a silicon oxide film.
  • the direction of the magnetic field (magnetic bias 6M) at the center 6C of the magnet 6 is parallel to the direction of the magnetic field (magnetic bias 7M) at the center 7C of the magnet 7, and
  • the direction of the magnetic field (magnetic bias 5M) is preferably perpendicular to the direction of the magnetic field (magnetic bias 6M) at the center 6C of the magnet 6.
  • the magnets 5, 6, and 7 are arranged at a sufficient distance so that the magnetic field by the magnet 5, the magnetic field by the magnet 6, and the magnetic field by the magnet 7 do not interfere with each other. By doing in this way, the rotation angle of a measuring object can be detected with high accuracy.
  • the direction of the magnetic field (magnetic bias 5M) at the center 5C of the magnet 5 is opposite to the direction of the magnetic field (magnetic bias 6M) at the center 6C of the magnet 6. That is, the magnetic field (magnetic bias 5M) at the center 5C of the magnet 5 is opposed to the magnetic field (magnetic bias 6M) at the center 6C of the magnet 6.
  • the magnetic field at the center 5C of the magnet 5 (magnetic bias 5M) may face outward, and the magnetic field at the center 6C of the magnet 6 (magnetic bias 6M) may face outward.
  • the magnetic field shown in FIG. Can be magnetized together.
  • a processing circuit 51 for processing a signal from the magnetoresistive element group 2P is disposed between the magnetoresistive element 3 and the magnetoresistive element 4 on the surface 1A of the substrate 1.
  • the processing circuit 51 can amplify a signal from the magnetoresistive element group 2P.
  • the magnet 5, the magnet 6 and the magnet 7 are preferably formed of a material made of resin and rare earth magnet powder dispersed in the resin.
  • the resin is a thermosetting resin
  • the rare earth magnet powder is preferably SmFeN magnet powder. SmFeN is advantageous in terms of the manufacturing process because it has the property that resin molding is easy.
  • the size of the magnetoresistive element 3 and the magnetoresistive element 4 is preferably smaller than the size of the magnetoresistive element 2.
  • the magnetoresistive element 2 has four miranda-shaped patterns 2A to 2D.
  • the linear portions having the maximum length of the adjacent patterns 2A to 2D are inclined by 90 degrees.
  • each of the magnetoresistive element 3 and the magnetoresistive element 4 has two miranda-shaped patterns, and the linear portions having the maximum lengths of the two patterns are inclined by 90 degrees from each other.
  • each of the magnetoresistive element 3 and the magnetoresistive element 4 may further include two meander-shaped dummy patterns, and may have the same number of four miranda-shaped patterns as the magnetoresistive element 2.
  • FIG. 6 is a plan view of the magnetic sensor 100 according to the second embodiment.
  • the magnetic sensor 100 includes a substrate 101 and a magnetoresistive element group 116 disposed on the substrate 101.
  • the substrate 101 is made of silicon and has a plate shape having a surface 101A and a surface 101B opposite to the surface 101A.
  • the magnetoresistive element group 116 includes magnetoresistive elements 120, 130, 140, and 150.
  • an application electrode 102, a ground electrode 103, output electrodes 104 and 105, and wirings 106 to 115 are arranged on the surface 101A of the substrate 101.
  • the jumper wire 113 straddles the wiring 108 and electrically connects the wiring 111 to the wiring 112.
  • the jumper wire 113 is electrically insulated from the wiring 108.
  • the magnetoresistive element 120 has ends 120A and 120B.
  • the magnetoresistive element 130 has ends 130A and 130B.
  • the magnetoresistive element 140 has ends 140A and 140B.
  • the magnetoresistive element 150 has ends 150A and 150B.
  • the magnetoresistive elements 120, 130, 140, and 150 have a magnetoresistive effect that changes the resistance value between the ends 120A, 130A, 140A, and 150A and the ends 120B, 130B, 140B, and 150B when a magnetic field is applied.
  • the magnetoresistive element 120, the magnetoresistive element 130, the magnetoresistive element 140, and the magnetoresistive element 150 are, for example, giant magnetoresistive elements. More specifically, each of the magnetoresistive elements 120, 130, 140, and 150 is an artificial lattice having a magnetic layer containing Ni, Co, and Fe and a nonmagnetic layer containing Cu stacked on the magnetic layer. It is a membrane.
  • the application electrode 102 is electrically connected to the magnetoresistive element 120 via the wiring 106 and the magnetoresistive element 130 via the wiring 110.
  • the ground electrode 103 is electrically connected to the end 140 ⁇ / b> B of the magnetoresistive element 140 through the wiring 109, and is electrically connected to the end 150 ⁇ / b> A of the magnetoresistive element 150 through the wiring 115.
  • the output electrode 104 is electrically connected to the end 120A of the magnetoresistive element 120 via the wiring 107, and is electrically connected to the end 140A of the magnetoresistive element 140 via the wiring 108.
  • the output electrode 105 is electrically connected to the end 130 ⁇ / b> B of the magnetoresistive element 130 through the wiring 111, the wiring 112, and the jumper wire 113, and is electrically connected to the end 150 ⁇ / b> B of the magnetoresistive element 150 through the wiring 114. Yes.
  • the magnetoresistive element 120 and the magnetoresistive element 140 constitute a half bridge circuit.
  • the magnetoresistive element 130 and the magnetoresistive element 150 constitute a half bridge circuit.
  • an X axis and a Y axis that are parallel to the surface 101A of the substrate 101 and are orthogonal to each other are defined.
  • the X-axis direction is the left-right direction of the paper surface
  • the Y-axis direction is the vertical direction of the paper surface.
  • the positive direction of the X axis is defined as the forward direction X1
  • the negative direction opposite to the positive direction of the X axis opposite to the positive direction of the X axis, that is, the direction opposite to the forward direction X1 is defined as the reverse direction X2.
  • the positive direction of the Y axis is defined as the forward direction Y1
  • the negative direction opposite to the positive direction of the Y axis, that is, the direction opposite to the forward direction Y1 is defined as the reverse direction Y2.
  • 7, 8, 9, and 10 are plan views of the magnetoresistive elements 120, 130, 140, and 150 shown in FIG. 6, respectively. 7, 8, 9, and 10 are different from each other in the enlargement ratio with respect to FIG. 6 in the vertical direction and the horizontal direction in order to make it easy to see.
  • the magnetoresistive element 120 has meander parts 121, 122, 123, 124 connected in series from the end 120A to the end 120B in this order.
  • the meander portions 121, 122, 123, and 124 are formed of a pattern having a magnetoresistive effect.
  • the end 120A of the magnetoresistive element 120 is located at the corner of the magnetoresistive element 120 in the forward direction X1 and the forward direction Y1, and the end 120B is located at the corner of the magnetoresistive element 120 in the reverse direction X2 and the forward direction Y1. To position.
  • the end 121A of the meander part 121 is the end 120A of the magnetoresistive element 120.
  • the meander portion 121 extends in the reverse direction X2 from the end 121A (120A) located at the end portion of the meander portion 121 (the magnetoresistive element 120) in the upper right direction of the drawing, which is a corner portion in the forward direction X1 and the forward direction Y1, and further reversely. It extends in the direction Y2, further extends in the forward direction X1, and further extends in the reverse direction Y2.
  • the meander unit 121 extends to the end 121B by repeatedly extending in the reverse direction X2, the reverse direction Y2, the forward direction X1, and the reverse direction Y2 in this order.
  • the meander part 121 extends from the end 121A to the end 121B in the reverse direction Y2 while being folded back in the forward direction X1 and the reverse direction X2.
  • the end 121B of the meander part 121 is located at the corner of the meander part 121 in the reverse direction X2 and the reverse direction Y2.
  • the end 122A of the meander part 122 is connected to the end 121B of the meander part 121.
  • the meander portion 122 extends in the reverse direction X2 from the end 122A located at the corner in the forward direction X1 and the reverse direction Y2 of the meander portion 122, further extends in the forward direction Y1, further extends in the forward direction X1, and further in the forward direction Y1. It extends to.
  • the meander unit 122 extends to the end 122B by repeatedly extending in the reverse direction X2, the forward direction Y1, the forward direction X1, and the forward direction Y1 in this order.
  • the meander part 122 extends from the end 122A to the end 122B in the forward direction Y1 while being folded back in the forward direction X1 and the reverse direction X2.
  • the end 122B of the meander part 122 is located at the corner of the reverse direction X2 and the forward direction Y1 of the meander part 122.
  • the end 123A of the meander part 123 is connected to the end 122B of the meander part 122.
  • the meander portion 123 extends in the reverse direction X2 from the end 123A located at the corner of the meander portion 123 in the forward direction X1 and the forward direction Y1, further extends in the reverse direction Y2, further extends in the forward direction X1, and further in the reverse direction Y2. It extends to.
  • the meander portion 123 is repeatedly extended in this order in the reverse direction X2, the reverse direction Y2, the forward direction X1, and the reverse direction Y2, and extends to the end 123B.
  • the meander portion 123 extends from the end 123A to the end 123B in the reverse direction Y2 while being folded back in the forward direction X1 and the reverse direction X2.
  • the end 123B of the meander part 123 is located at the corner of the meander part 123 in the reverse direction X2 and the reverse direction Y2.
  • the end 124A of the meander part 124 is connected to the end 123B of the meander part 123.
  • the meander part 124 extends in the reverse direction X2 from the end 124A located at the corner of the meander part 124 in the forward direction X1 and the reverse direction Y2, further extends in the forward direction Y1, further extends in the forward direction X1, and further in the forward direction Y1. It extends to.
  • the meander portion 124 extends to the end 124B by repeatedly extending in the reverse direction X2, the forward direction Y1, the forward direction X1, and the forward direction Y1 in this order.
  • the meander portion 124 extends from the end 124A to the end 124B in the forward direction Y1 while being folded back in the forward direction X1 and the reverse direction X2.
  • the end 124B of the meander part 124 is located at the corner of the reverse direction X2 and the forward direction Y1 of the meander part 124.
  • An end 124B of the meander portion 124 is an end 120B located at a corner of the magnetoresistive element 130 in the reverse direction X2 and the forward direction Y1.
  • the meander part 123 has the same shape as the meander part 121.
  • the meander part 124 has the same shape as the meander part 122.
  • the meander part 121 and the meander part 122 are in an inverted relationship, and the shape itself is the same. That is, the meander parts 121, 122, 123, and 124 have the same shape.
  • a pattern extending in the forward direction Y1 or the backward direction Y2 while being folded back in the forward direction X1 and the backward direction X2 like the meander parts 121, 122, 123, 124 is defined as a first type pattern.
  • the magnetoresistive element 120 has a pattern in which meander parts 121, 122, 123, and 124, which are first type patterns, are continuously arranged in this order in the reverse direction X2.
  • the magnetoresistive element 130 has meander parts 131, 132, 133, and 134 connected in series from the end 130A to the end 130B in this order.
  • the meander parts 131, 132, 133, 134 are formed of a pattern having a magnetoresistive effect.
  • the end 130A of the magnetoresistive element 130 is located at the corner of the magnetoresistive element 130 in the reverse direction X2 and the forward direction Y1, and the end 120B is located at the corner of the magnetoresistive element 120 in the reverse direction X2 and the reverse direction Y2. To position.
  • the end 131A of the meander part 131 is the end 130A of the magnetoresistive element 130.
  • the meander part 131 extends in the reverse direction Y2 from the end 131A (130A) located at the upper left end of the paper, which is a corner between the reverse direction X2 and the forward direction Y1 of the meander part 131 (the magnetoresistive element 130). It extends in the direction X1, further extends in the forward direction Y1, and further extends in the forward direction X1.
  • the meander unit 131 extends to the end 131B by repeatedly extending in the reverse direction Y2, the forward direction X1, the forward direction Y1, and the forward direction X1 in this order.
  • the meander part 131 extends from the end 131A to the end 131B in the forward direction X1 while being folded back in the forward direction Y1 and the reverse direction Y2.
  • the end 131B of the meander part 131 is located at the corner of the meander part 131 in the forward direction X1 and the reverse direction Y2.
  • the end 132A of the meander part 132 is connected to the end 131B of the meander part 131.
  • the meander part 132 extends in the reverse direction Y2 from the end 132A located at the corner of the meander part 132 in the forward direction X1 and the forward direction Y1, further extends in the reverse direction X2, further extends in the forward direction Y1, and further in the reverse direction X2. It extends to.
  • the meander unit 132 extends to the end 132B by repeatedly extending in the reverse direction Y2, the reverse direction X2, the forward direction Y1, and the reverse direction X2 in this order.
  • the meander part 132 extends from the end 132A to the end 132B in the reverse direction X2 while being folded back in the forward direction Y1 and the reverse direction Y2.
  • the end 132B of the meander part 132 is located at the corner of the meander part 132 in the reverse direction X2 and the reverse direction Y2.
  • the end 133A of the meander part 133 is connected to the end 132B of the meander part 132.
  • the meander part 133 extends in the reverse direction Y2 from the end 133A located at the corner between the reverse direction X2 and the forward direction Y1 of the meander part 133, further extends in the forward direction X1, further extends in the forward direction Y1, and further in the forward direction X1. It extends to.
  • the meander part 133 is repeatedly extended in this order in the reverse direction Y2, the forward direction X1, the forward direction Y1, and the forward direction X1, and extends to the end 133B.
  • the meander part 133 extends from the end 133A to the end 133B in the forward direction X1 while being folded back from the end 133A in the forward direction Y1 and the reverse direction Y2.
  • the end 133B of the meander part 133 is located at a corner of the meander part 133 in the forward direction X1 and the reverse direction Y2.
  • the end 134A of the meander part 134 is connected to the end 133B of the meander part 133.
  • the meander part 134 extends in the reverse direction Y2 from the end 134A located at the corner of the meander part 134 in the forward direction X1 and the forward direction Y1, further extends in the reverse direction X2, further extends in the forward direction Y1, and further in the reverse direction X2. It extends to.
  • the meander part 134 extends to the end 134B by repeatedly extending in the reverse direction Y2, the reverse direction X2, the forward direction Y1, and the reverse direction X2 in this order.
  • the meander part 134 extends from the end 134A to the end 134B in the reverse direction X2 while being folded back in the forward direction Y1 and the reverse direction Y2.
  • the end 134B of the meander part 134 is located at the corner of the meander part 134 in the reverse direction X2 and the reverse direction Y2.
  • An end 134B of the meander part 134 is an end 130B located at a corner of the magnetoresistive element 130 in the reverse direction X2 and the reverse direction Y2.
  • the meander part 133 has the same shape as the meander part 131.
  • the meander part 134 has the same shape as the meander part 132.
  • the meander part 131 and the meander part 132 are in an inverted relationship, and the shape itself is the same. That is, the meander parts 131, 132, 133, 134 have the same shape.
  • a pattern extending in the forward direction X1 or the backward direction X2 while being folded back in the forward direction Y1 and the backward direction Y2 like the meander portions 131, 132, 133, 134 is defined as a second type pattern.
  • the magnetoresistive element 130 has a pattern in which meander parts 131, 132, 133, and 134, which are second type patterns, are continuously arranged in the reverse direction Y2 in this order.
  • the magnetoresistive element 140 has meander parts 141, 142, 143, 144 connected in series from the end 140A to the end 140B in this order.
  • the meander portions 141, 142, 143, 144 are formed of a pattern having a magnetoresistive effect.
  • the end 140A of the magnetoresistive element 140 is located at the corner of the magnetoresistive element 140 in the reverse direction X2 and the reverse direction Y2, and the end 140B is at the corner of the magnetoresistive element 140 in the forward direction X1 and the reverse direction Y2. To position.
  • the end 141A of the meander part 141 is the end 140A of the magnetoresistive element 140.
  • the meander part 141 extends in the forward direction X1 from the end 141A (140A) located at the lower left end of the paper, which is a corner in the reverse direction X2 and the reverse direction Y2 of the meander part 141 (the magnetoresistive element 140). It extends in the direction Y1, further extends in the reverse direction X2, and further extends in the forward direction Y1.
  • the meander portion 141 is repeatedly extended in this order in the forward direction X1, the forward direction Y1, the reverse direction X2, and the forward direction Y1, and extends to the end 141B.
  • the meander part 141 extends from the end 141A to the end 141B in the forward direction Y1 while being folded back in the forward direction X1 and the reverse direction X2.
  • An end 141B of the meander part 141 is located at a corner of the meander part 141 in the forward direction X1 and the forward direction Y1.
  • the end 142A of the meander part 142 is connected to the end 141B of the meander part 141.
  • the meander part 142 extends in the forward direction X1 from the end 142A located at the corner of the meander part 142 in the reverse direction X2 and the forward direction Y1, further extends in the reverse direction Y2, further extends in the reverse direction X2, and further in the reverse direction Y2. It extends to.
  • the meander portion 142 extends to the end 142B by repeatedly extending in this order in the forward direction X1, the reverse direction Y2, the reverse direction X2, and the reverse direction Y2. Thereby, the meander part 142 extends from the end 142A to the end 142B in the reverse direction Y2 while being folded back in the forward direction X1 and the reverse direction X2.
  • the end 143A of the meander part 143 is connected to the end 142B of the meander part 142.
  • the meander part 143 extends in the forward direction X1 from the end 143A located at the corner in the reverse direction X2 and the reverse direction Y2 of the meander part 143, further extends in the forward direction Y1, further extends in the reverse direction X2, and further extends in the forward direction Y1. It extends to.
  • the meander part 143 repeats extending in this order in the forward direction X1, the forward direction Y1, the reverse direction X2, and the forward direction Y1, and extends to the end 143B. Thereby, the meander part 143 extends from the end 143A to the end 143B in the forward direction Y1 while being folded back in the forward direction X1 and the reverse direction X2.
  • the end 144A of the meander part 144 is connected to the end 143B of the meander part 143.
  • the meander part 144 extends in the forward direction X1 from the end 144A located at the corner of the meander part 144 in the reverse direction X2 and the forward direction Y1, further extends in the reverse direction Y2, further extends in the reverse direction X2, and further in the reverse direction Y2. It extends to.
  • the meander portion 144 is repeatedly extended in this order in the forward direction X1, the reverse direction Y2, the reverse direction X2, and the reverse direction Y2, and extends to the end 144B.
  • the meander portion 144 extends from the end 144A to the end 144B in the reverse direction Y2 while being folded back in the forward direction X1 and the reverse direction X2.
  • An end 144B of the meander part 144 is an end 140B located at a corner of the magnetoresistive element 140 in the forward direction X1 and the reverse direction Y2.
  • the meander part 143 has the same shape as the meander part 141.
  • the meander part 144 has the same shape as the meander part 142.
  • the meander part 141 and the meander part 142 are in an inverted relationship, and the shape itself is the same. That is, the meander parts 141, 142, 143, 144 have the same shape.
  • the magnetoresistive element 140 has a pattern in which meander portions 141, 142, 143, 144, which are first type patterns, are continuously arranged in this order in the forward direction X1.
  • the magnetoresistive element 150 has meander portions 151, 152, 153, and 154 connected in series from the end 150A to the end 150B in this order.
  • the meander portions 151, 152, 153, 154 are formed of a pattern having a magnetoresistive effect.
  • the end 150A of the magnetoresistive element 150 is located at the corner of the magnetoresistive element 150 in the forward direction X1 and the reverse direction Y2, and the end 150B is located at the corner of the magnetoresistive element 150 in the forward direction X1 and forward direction Y1. To position.
  • the end 151A of the meander portion 151 is the end 150A of the magnetoresistive element 150.
  • the meander portion 151 extends in the forward direction Y1 from the end 151A (150A) located at the end portion of the meander portion 151 (the magnetoresistive element 150) in the lower right direction on the paper, which is a corner portion in the forward direction X1 and the reverse direction Y2. It extends in the reverse direction X2, further extends in the reverse direction Y2, and further extends in the reverse direction X2.
  • the meander portion 151 is repeatedly extended in this order in the forward direction Y1, the reverse direction X2, the reverse direction Y2, and the reverse direction X2, and extends to the end 151B.
  • the meander portion 151 extends from the end 151A to the end 151B in the reverse direction X2 while being folded back in the forward direction Y1 and the reverse direction Y2.
  • the end 151B of the meander part 151 is located at the corner of the reverse direction X2 and the forward direction Y1 of the meander part 151.
  • the end 152A of the meander unit 152 is connected to the end 151B of the meander unit 151.
  • the meander part 152 extends in the forward direction Y1, extends further in the forward direction X1, further extends in the reverse direction Y2, and further extends in the forward direction X1 from the end 152A located at the corner of the meander part 152 in the reverse direction X2 and the reverse direction Y2. It extends to.
  • the meander unit 152 extends to the end 152B by repeatedly extending in this order in the forward direction Y1, the forward direction X1, the reverse direction Y2, and the forward direction X1.
  • the meander part 152 extends from the end 152A to the end 152B in the forward direction X1 while being folded back in the forward direction Y1 and the reverse direction Y2.
  • the end 152B of the meander part 152 is located at a corner of the meander part 152 in the forward direction X1 and the forward direction Y1.
  • the end 153A of the meander unit 153 is connected to the end 152B of the meander unit 152.
  • the meander part 153 extends from the end 153A located at the corner of the meander part 153 in the forward direction X1 and the reverse direction Y2 in the forward direction Y1, further in the reverse direction X2, further in the reverse direction Y2, and further in the reverse direction X2. It extends to.
  • the meander portion 153 is repeatedly extended in this order in the forward direction Y1, the reverse direction X2, the reverse direction Y2, and the reverse direction X2, and extends to the end 153B.
  • the meander portion 153 extends from the end 153A to the end 153B in the reverse direction X2 while being folded back from the end 153A in the forward direction Y1 and the reverse direction Y2.
  • the end 153B of the meander part 153 is located at the corner of the reverse direction X2 and the forward direction Y1 of the meander part 153.
  • the end 154A of the meander unit 154 is connected to the end 153B of the meander unit 153.
  • the meander portion 154 extends in the forward direction Y1 from the end 154A located at the corner in the reverse direction X2 and the reverse direction Y2 of the meander portion 154, further extends in the forward direction X1, further extends in the reverse direction Y2, and further in the forward direction X1. It extends to.
  • the meander part 154 is repeatedly extended in this order in the forward direction Y1, the forward direction X1, the reverse direction Y2, and the forward direction X1, and extends to the end 154B.
  • the meander portion 154 extends from the end 154A to the end 154B in the forward direction X1 while being folded back in the forward direction Y1 and the reverse direction Y2.
  • the end 154B of the meander part 154 is located at a corner of the meander part 154 in the forward direction X1 and the forward direction Y1.
  • An end 154 ⁇ / b> B of the meander portion 154 is an end 150 ⁇ / b> B located at a corner of the magnetoresistive element 150 in the forward direction X ⁇ b> 1 and the forward direction Y ⁇ b> 1.
  • the meander part 153 has the same shape as the meander part 151.
  • the meander part 154 has the same shape as the meander part 152.
  • the meander part 151 and the meander part 152 are in an inverted relationship, and the shape itself is the same. That is, the meander parts 151, 152, 153, 154 have the same shape.
  • the magnetoresistive element 150 has a pattern in which meander portions 151, 152, 153, and 154, which are second type patterns, are continuously arranged in this order in the forward direction Y1.
  • the magnetoresistive elements 120, 130, 140, and 150 have the same shape and further have the same resistance value.
  • the magnetoresistive elements 120, 130, 140, 150 are point symmetric with respect to a point P0 that is equidistant from the magnetoresistive elements 120, 130, 140, 150.
  • the angular interval between the magnetoresistive elements 150 and 120 around the point P0 is 90 °.
  • FIG. 11A and 11B are schematic views of the magnetoresistive element 180.
  • the magnetoresistive element 180 corresponds to the magnetoresistive elements 120, 130, 140, and 150, and is made of the same material.
  • an external magnetic field 183 in a direction perpendicular to the direction of the current I180 flowing through the magnetoresistive element 180 is applied to the magnetoresistive element 180.
  • an external magnetic field 184 in a direction parallel to the direction of the current I180 is applied to the magnetoresistive element 180.
  • the direction of the current I180 is the direction in which the magnetoresistive element 180 extends.
  • both ends of the magnetoresistive element 180 are electrically connected to electrodes 181 and 182 located at both ends, respectively.
  • the magnetoresistive element 180 is a giant magnetoresistive element.
  • FIG. 12A shows the Magneto-Resistance (MR) ratio of the magnetoresistive element 180 shown in FIG. 11A
  • FIG. 12B shows the MR ratio of the magnetoresistive element 180 shown in FIG. 11B
  • the horizontal axis indicates the external magnetic fields 183 and 184
  • the vertical axis indicates the MR ratio.
  • the difference between the resistance value of the magnetoresistive element 180 when a certain magnetic field is applied and the resistance value of the magnetoresistive element 180 when no magnetic field is applied is the resistance of the magnetoresistive element 180 when no magnetic field is applied.
  • the value divided by the value is defined as the MR ratio in the magnetic field.
  • the MR ratio when no magnetic field is 0. As the applied magnetic field 183, 184 increases, the resistance value decreases, and the MR ratio becomes a negative value.
  • the change in MR ratio with respect to the change in magnetic field is called MR characteristics.
  • FIGS. 12A and 12B when an external magnetic field 183, 184 is applied to the magnetoresistive element 180, the resistance value of the magnetoresistive element 180 decreases, the MR ratio is negative, and its absolute value increases.
  • the change in the MR ratio with respect to the change in the magnetic field is sharper than the MR ratio shown in FIG. 12A.
  • the MR ratio shown in FIG. 12A does not show hysteresis depending on the direction of change of the magnetic field, but hysteresis appears in the MR ratio shown in FIG. 12B.
  • the maximum change values of the MR ratio shown in FIGS. 12A and 12B are the same.
  • the magnetoresistive element When a magnetic field parallel to the pattern of the magnetoresistive element is applied, the magnetoresistive element may be magnetized. If the straight line portion of the magnetoresistive element pattern is long, the hysteresis appears large. If the straight line portion of the magnetoresistive element pattern is short, the hysteresis becomes small or no hysteresis appears. Due to this influence, when a giant magnetoresistive element is used as the magnetoresistive element, hysteresis appears depending on conditions such as the shape of the pattern and the application direction of the external magnetic field.
  • magnetoresistive elements 120, 130, 140, and 150 meander-shaped patterns with folds are continuously arranged, so that the linear portion of the pattern becomes relatively short. Thereby, in the magnetoresistive elements 120, 130, 140, and 150, hysteresis does not appear in the MR ratio, or even if it appears, it is very small.
  • the total length of the portions extending in the X-axis direction is the sum of the lengths of the portions extending in the Y-axis direction (forward direction Y1 or reverse direction Y2). 95% or more and 105% or less.
  • the magnetoresistive element 120 reduces the difference in MR characteristics when the direction of the applied external magnetic field is the X-axis direction and the Y-axis direction.
  • the magnetoresistive element 120 When the direction of the magnetic field is perpendicular to the X axis and the Y axis, the magnetoresistive element 120 has a small difference in MR characteristics depending on the direction of the applied external magnetic field, and the MR characteristics are almost equal regardless of the direction of the external magnetic field. Become.
  • the magnetoresistive element 120 When the sum of the lengths of the portions extending in the X-axis direction of the magnetoresistive element 120 is equal to the sum of the lengths of the portions extending in the Y-axis direction, the magnetoresistive element 120 has the direction of the applied external magnetic field in the X-axis direction. The difference in MR characteristics between the direction and the direction of the Y axis is almost eliminated. When the X axis is perpendicular to the Y axis, the magnetoresistive element 120 has substantially the same MR characteristics regardless of the direction of the applied external magnetic field.
  • the magnetoresistive elements 130, 140, and 150 are configured so that the total length of the portions extending in the X-axis direction is 95% to 105% of the total length of the portions extending in the Y-axis direction.
  • the difference in MR characteristics between when the magnetic field direction is the X-axis direction and the Y-axis direction is substantially eliminated.
  • the MR characteristics can be made substantially constant regardless of the direction of the applied external magnetic field.
  • each of the magnetoresistive elements 120 to 150 the total length of the portions extending in the X-axis direction is made equal to the total length of the portions extending in the Y-axis direction, so that the direction of the external magnetic field applied is X
  • the difference in MR characteristics between the axial direction and the Y-axis direction is substantially eliminated.
  • the magnetoresistive elements 120 to 150 substantially eliminate the difference in MR characteristics depending on the direction of the applied external magnetic field.
  • the magnetoresistive elements 120, 130, 140, and 150 have constant MR characteristics regardless of the direction in which the external magnetic field is applied, that is, have magnetic isotropy.
  • the magnetoresistive elements 120, 130, 140, and 150 have the same MR characteristics.
  • FIG. 13, FIG. 14, and FIG. 15 are a perspective view, a side view, and a plan view showing how to use the magnetic sensor 100 in the second embodiment, respectively.
  • FIGS. 13 and 14 only the outer shapes of the magnetoresistive elements 120, 130, 140, and 150 are shown, and the wirings 106 to 112, the jumper lines 113, and the wirings 114 and 115 are omitted.
  • a bias magnet 160 is attached to the surface 101B of the substrate 101.
  • the bias magnet 160 has an N pole 161 and an S pole 162.
  • the direction connecting the N pole 161 and the S pole 162 is perpendicular to the surface 101B of the substrate 101.
  • the N pole 161 is in contact with the surface 101B, but the S pole 162 may be in contact.
  • the bias magnet 160 does not overlap any of the magnetoresistive elements 120, 130, 140, and 150 in plan view. In other words, the bias magnet 160 does not overlap the magnetoresistive element group 116 in plan view.
  • the rotating magnet 170 is rotatably supported by the rotating shaft 175, so that the rotating magnet 170 can rotate around the central axis 170C passing through the point P0.
  • the rotating magnet 170 has an N pole 171 and an S pole 172.
  • a line connecting the N pole 171 and the S pole 172 is parallel to the surface 101 A of the substrate 101.
  • a magnetic field obtained by combining the magnetic field from the bias magnet 160 and the magnetic field from the rotating magnet 170 is applied to the magnetoresistive elements 120, 130, 140, and 150.
  • the rotating magnet 170 rotates around the rotating shaft 175 (center shaft 170C) with a rotation period.
  • the absolute value of the magnetic field intensity at a certain point on the substrate 101 of the magnetic sensor 100 changes with the rotation period.
  • the magnetoresistive elements 120, 130, 140, and 150 are magnetically isotropic and have a resistance value that changes in accordance with the absolute value of the magnetic field strength, so that the rotating magnet 170 rotates once. Their resistance values change with the period.
  • the resistance values of the magnetoresistive elements 120 and 140 change 180 degrees out of phase with each other.
  • 150 also change with a 180 ° phase shift from each other.
  • the resistance values of the magnetoresistive elements 120 and 130 change 90 degrees out of phase with each other.
  • the output electrode 104 When a voltage is applied between the application electrode 102 and the ground electrode 103, the output electrode 104 generates a voltage corresponding to the change in the resistance value of the magnetoresistive elements 120 and 140. Similarly, the output electrode 105 generates a voltage corresponding to a change in the resistance value of the magnetoresistive elements 130 and 150. Since the phase difference of the change in the resistance value of the magnetoresistive elements 120 and 140 is 180 °, the output from the output electrode 104 outputs a voltage based on the change in the resistance value of the magnetoresistive element 120 alone or the magnetoresistive element 140 alone.
  • the output from the output electrode 105 is a voltage based on the change in the resistance value of the magnetoresistive element 130 alone or the magnetoresistive element 150 alone.
  • the output from the output electrode 104 and the output from the output electrode 105 have a phase difference of 90 °.
  • the rotation angle of the rotating magnet 170 can be specified by the outputs from the output electrodes 104 and 105 whose phases are shifted by 90 °. That is, the magnetic sensor 100 can determine the rotation angle of the rotating magnet 170.
  • the rotation angle of the rotating object is obtained by mechanically connecting the object to the rotating magnet 170 and measuring the rotating angle of the rotating magnet 170.
  • FIGS. 13 to 15 are merely examples, and other usage methods may be used.
  • the magnetoresistive element group 116 includes the magnetoresistive elements 120, 130, 140, and 150, but includes only the magnetoresistive elements 120 and 130 and includes the magnetoresistive elements 140 and 150. It does not have to be.
  • the resistors constituting the bridge circuit with the magnetoresistive elements 120 and 130 are arranged, so that the rotation angle of the rotary magnet 170 from the output electrodes 104 and 105. The output according to can be obtained.
  • the magnetic sensor 100 includes a substrate 101 and a magnetoresistive element group 116, and may further include a bias magnet 160.
  • the magnetic sensor 100 includes a substrate 101 and a magnetoresistive element group 116, further includes a rotating magnet 170, and may not include a bias magnet 160.
  • the magnetic sensor 100 includes a substrate 101 and a magnetoresistive element group 116, and may further include a bias magnet 160 and a rotating magnet 170.
  • the X axis is perpendicular to the Y axis, but the direction of the X axis is not parallel to the direction of the Y axis, and may be inclined in a direction other than a right angle.
  • the forward direction X1 and the reverse direction X2 parallel to the surface 101A of the substrate 101 are opposite to each other.
  • the forward direction Y1 and the reverse direction Y2 parallel to the surface 101A of the substrate 101 are opposite to each other.
  • the forward direction X1 and the reverse direction X2 are perpendicular to the forward direction Y1 and the reverse direction Y2.
  • the forward direction X1 and the reverse direction X2 are not parallel to the forward direction Y1 and the reverse direction Y2, and may be inclined in a direction other than a right angle.
  • the substrate 101 may be an alumina substrate instead of a silicon substrate.
  • the magnetoresistive elements 120, 130, 140, 150 have the same resistance value and the same MR characteristics, the rotation angle can be easily obtained from the output voltages from the output electrodes 104, 105.
  • the magnetoresistive elements 120 to 150 at least one having the same resistance value and the same MR characteristic may not be established. That is, the magnetoresistive elements 120 to 150 may have the same resistance value and different MR characteristics. Alternatively, the magnetoresistive elements 120 to 150 may have the same MR characteristics and different resistance values.
  • the magnetoresistive elements 120, 130, 140, and 150 have the same shape, their MR characteristics can be made equal. Furthermore, since the magnetoresistive elements 120 to 150 are point symmetric with respect to the point P0, the change in resistance value due to the rotation of the rotating magnet 170 can be made equal. Thereby, the rotation angle can be easily obtained from the output voltage from the output electrodes 104 and 105. The same effect can be obtained even if the arrangement of the point symmetry is reversed. However, the shapes of the magnetoresistive elements 120 to 150 need not be the same. Furthermore, the magnetoresistive elements 120 to 150 need not be point-symmetric.
  • the bias magnet 160 is disposed on the surface 101B of the substrate 101, but may be disposed on the surface 101A side. In this case, the bias magnet 160 may be disposed between the surface 101A and the magnetoresistive element group 116, or may be disposed on the magnetoresistive element group 116.
  • the bias magnet 160 is arranged so that the line connecting the N pole 161 and the S pole 162 is perpendicular to the surface 101B of the substrate 101.
  • the line connecting the N pole 161 and the S pole 162 is used. May be parallel to the surface 101B of the substrate 101.
  • the change in the magnetic field is larger than in the case where the line is perpendicular to the magnetoresistive element 120 due to the change in the magnetic field. Care must be taken not to substantially saturate the change in resistance value of ⁇ 150.
  • the terms “equal” and “same” do not mean that they are physically completely equal and completely identical, but include errors and are practically equal or practical. Including the difference that can be treated as the same.
  • the magnetic sensor of the present invention has high sensitivity to a magnetic field, and is useful for equipment that requires high sensitivity such as a vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 磁気センサは、基板と、基板上に配置された第1と第2の磁気抵抗素子とを含む磁気抵抗素子群と、第1と第2の磁気抵抗素子にそれぞれ対応する第1と第2の磁石とを含む磁石群とを備える。この磁気センサは、より小型化、高精度化が可能である。

Description

磁気センサ
 本発明は、バイアス磁石を有する磁気センサに関する。
 特許文献1は、4つの磁気抵抗素子の直下に1つのバイアス磁石を配置する従来の磁気センサを開示している。また、特許文献2は、磁気抵抗素子の上方を覆うようにバイアス磁石を配置する他の従来の磁気センサを開示している。これら従来の磁気センサでは、さらなる小型化、高精度化には不十分である。
 特許文献2~5は、基板上に複数の磁気抵抗素子を配置する従来の磁気センサを開示している。しかし、特許文献2~5においては、それぞれの磁気抵抗素子の具体的構成、形状が明らかではない。したがって、特許文献2~5は磁界に対する感度をより高めることが可能な磁気センサを提供することができない。
特開2006-208025号公報 特開2013-024674号公報 特表2011-525631号公報 特開2012-063203号公報 特開2003-130933号公報
 磁気センサは、基板と、基板上に配置された第1と第2の磁気抵抗素子とを含む磁気抵抗素子群と、第1と第2の磁気抵抗素子にそれぞれ対応する第1と第2の磁石とを含む磁石群とを備える。
 この磁気センサは、より小型化、高精度化が可能である。
図1は実施の形態1に係る磁気センサの概略図である。 図2は実施の形態1に係る磁気センサ内に配置される磁気抵抗素子を有する基板の概略上面図である。 図3Aは実施の形態1に係る磁気センサの動作を示す斜視図である。 図3Bは実施の形態1に係る磁気センサの他の動作を示す斜視図である。 図4Aは実施の形態1に係る磁気センサの磁気抵抗素子の拡大図である。 図4Bは図4Aに示す磁気抵抗素子の線4B-4Bにおける断面図である。 図5Aは実施の形態1に係る磁気センサの磁石群を構成する各磁石の磁気バイアスの方向を示す平面図である。 図5Bは実施の形態1に係る磁気センサの磁石群を構成する各磁石の他の磁気バイアスの方向を示す平面図である。 図6は実施の形態2に係る磁気センサの平面図である。 図7は実施の形態2に係る磁気センサの磁気抵抗素子の平面図である。 図8は実施の形態2に係る磁気センサの磁気抵抗素子の平面図である。 図9は実施の形態2に係る磁気センサの磁気抵抗素子の平面図である。 図10は実施の形態2に係る磁気センサの磁気抵抗素子の平面図である。 図11Aは実施の形態2に係る磁気センサの磁気抵抗素子の模式図である。 図11Bは実施の形態2に係る磁気センサの磁気抵抗素子の模式図である。 図12Aは実施の形態2に係る磁気センサの磁気抵抗素子のMR比を示す図である。 図12Bは実施の形態2に係る磁気センサの磁気抵抗素子のMR比を示す図である。 図13は実施の形態2に係る磁気センサの使用方法を示す斜視図である。 図14は実施の形態2に係る磁気センサの使用方法を示す側面図である。 図15は実施の形態2に係る磁気センサの使用方法を示す平面図である。
 (実施の形態1)
 以下、実施の形態1に係る磁気センサについて、図1から図5A、図5Bを参照して説明する。図1から図5A、図5Bにおいて、同一部分に対する符号の付与を省略し、その説明を適宜省略することがある。また、図1から図5A、図5Bは好ましい形態の一例を示すものであり、それぞれの構成・形状・数値に限定されるわけではない。また、実施の形態中で説明する各要素技術を矛盾の無い範囲で適宜組み合わせることは可能である。
 以下で、実施の形態1に係る磁気センサの基本構成とセンシング方法について説明する。
 図1は実施の形態1に係る磁気センサ95の概略上面図である。磁気センサ95は基板1を備える。図2は基板1の概略上面図である。基板1は、面1Aと、面1Aの反対側の面1Bとを有する。ダイパッド20上に、基板1が配置されている。磁気抵抗素子2、3、4は基板1の面1Aに配置されている。そして、基板1上には、磁気抵抗素子2、3、4からの出力を読み出すためのパッド、磁気抵抗素子2、3、4に電圧を印加するためのパッド、及び、磁気抵抗素子2、3、4をグランドに接続するためのパッドなどを含む複数のパッド30が配置されている。そして、基板1上には、磁石5、6を有する磁石群5Pが配置されている。なお、磁石群5Pは磁石7をさらに有することが好ましい。そして、磁気センサ95が有する複数の外部端子19と複数のパッド30とはワイヤ18を介してそれぞれ電気的に接続している。
 なお、図1に示すように、基板1の面1Bがダイパッド20に実装されていることが好ましい。ダイパッド20は金属よりなり、ダイパッド20をグランドパターン上に配置することで、磁気センサ95全体に対する外部からのノイズを除去することも可能である。
 図2においては、基板1上の磁気抵抗素子2、3、4を構成する磁気抵抗素子パターン、配線10を構成する配線パターン、パッド30などを中心に記載している。磁石群5P(磁石5、6、7)は点線で示す領域にそれぞれ配置されている。
 図2に示すように、実施の形態1に係る磁気センサ95は、面1Aと面1Aの反対側の面1Bとを有する基板1と、基板1の面1A上に配置された磁気抵抗素子2、3、4を含む磁気抵抗素子群2Pと、磁気抵抗素子2に対応する磁石5と、磁気抵抗素子3に対応する磁石6とを含む磁石群5Pとを有する。
 実施の形態1に係る磁気センサ95では、磁気抵抗素子群2Pを構成する磁気抵抗素子2、3、4のそれぞれに対して別々の磁石5、6、7から磁気バイアスをかけることが可能である。従って、それぞれの磁気抵抗素子2、3、4に対して、同じ方向の磁気バイアスをかけるだけでなく、異なる方向の磁気バイアスをかけることができるなど、設計自由度を向上させることが可能となる。そして、さらなる小型化と高精度化が可能となる。
 特許文献1、2は、1つ又は複数の磁気抵抗素子などの金属パターンに対して1つのバイアス磁石を配置する構造を開示しているのみである。このような構造では、さらなる小型化、高精度化には不十分である。
 図3Aと図3B磁気センサ95の動作を示す斜視図である。図3Aでは磁気センサ95が検知対象磁石96の側方に配置されており、図3Bでは磁気センサ95が検知対象磁石96の上方に配置されている。図3Aと図3Bに示す検知対象磁石96は回転軸96Cを中心に回転可能な構造を有する。実施の形態1では、検知対象磁石96は回転軸96Cが通る中心を有する円盤形状を有する。検知対象磁石96は円盤形状の中心を通る平面で分けられて互いに反対の極性を有する磁極96A、96Bを有する。実施の形態1では磁極96AはN極であり、磁極96BはS極である。検知対象磁石は上記以外の構成でも構わない。例えば、検知対象磁石は、交互に直線上に配置されたN極とS極を有する板で構成されても構わない。
 図3Aと図3Bに示すように、磁気センサ95は、検知対象磁石の磁極96Aから磁極96Bに向かう方向又は磁極96Bから磁極96Aに向かう方向に相対的に移動可能となるように配置される。具体的には、検知対象磁石96が回転することによって、磁気センサ95の上方又は側方を通過する検知対象磁石96の磁極が磁極96Aから磁極96Bに磁極96Bから磁極96Aにと交互に入れ替わるような位置関係となるように、磁気センサ95と検知対象磁石96を配置する。磁気センサとは、例えば、特定方向の磁界の強度に応じて抵抗値が変化する性質を有するセンサである。そのため、磁気センサ95は磁極96Aから磁極96Bへの変化、磁極96Bから磁極96Aへの変化に対応した磁気抵抗素子2、3、4の抵抗値の変化を読み取ることが可能となる。磁気センサ95では、磁気抵抗素子2、3、4の抵抗値により回転軸96Cを中心とする検知対象磁石96の回転角θを検出することができ、検知対象磁石96を有する測定対象の回転角を検知することが可能となる。
 磁気センサ95の上記の動作を具体的に説明する。例えば、磁石5により磁気抵抗素子2に印加される磁気バイアスの方向と磁石6により磁気抵抗素子3に印加される磁気バイアスの方向が90度ずれている場合、検知対象磁石96の磁極96Aから磁極96Bへの変化と磁極96Bから磁極96Aへの変化に対応した磁気抵抗素子2と磁気抵抗素子3の出力特性すなわち検知対象磁石96の回転角θに対して磁気抵抗素子2と磁気抵抗素子3の抵抗値の変化はそれぞれ正弦波(sinθ)と余弦波(cosθ)に比例する。これは、検知対象磁石96から磁気抵抗素子2、3にそれぞれ印加される磁界の方向は、磁気抵抗素子2、3に印加される磁石5、6により90度ずれることに起因する。そして、上記の正弦波と余弦波から正接tanθを算出し、回転角θを算出することが可能となる。このようにして、測定対象の回転角を検出することが可能となる。
 また、図1、図2に示すように、磁気抵抗素子群2Pは磁気抵抗素子4を有しており、磁石群5Pは磁気抵抗素子4に対応する磁石7を有していることが好ましい。磁石7は磁気抵抗素子4に磁気バイアスを印加する。平面視において、磁気抵抗素子3との磁気抵抗素子4は軸95Cを対称軸として線対称に配置されており、磁気抵抗素子2は軸95C上に配置されていることが好ましい。そして、磁気抵抗素子2は電圧印加用パッド11、グランド用パッド12、出力端子13、出力端子16に接続されていることが好ましい。そして、磁気抵抗素子3は電圧印加用パッド11、グランド用パッド12、出力端子14に接続されていることが好ましい。そして、磁気抵抗素子4は電圧印加用パッド11、グランド用パッド12、出力端子15に接続されていることが好ましい。なお、磁気抵抗素子4とグランド用パッド12とは磁気抵抗素子2又は磁気抵抗素子3を介して間接的に接続されている。このような配置とすることで、後述するように、磁気センサのセンシング機能の信頼性を確保することができる。
 磁気センサ95の検知対象磁石96を検知する動作についてより詳細に説明する。まず、磁気抵抗素子2の抵抗値変化特性である出力V1及び出力V4を数1で表す。
Figure JPOXMLDOC01-appb-M000001
 この時、磁石6の磁気バイアスの方向を磁石5の磁気バイアスの方向から90度ずらすようにすると、磁気抵抗素子3の抵抗値変化特性である出力V2は数2で表せる。
Figure JPOXMLDOC01-appb-M000002
 また、磁石7の磁気バイアスの方向を磁石6の磁気バイアスの方向から180度ずらす(磁石5の磁気バイアス方向から-90度ずらす)ようにすると、磁気抵抗素子4の抵抗値変化特性である出力V3は数3で表せる。
Figure JPOXMLDOC01-appb-M000003
 出力V1と出力V2の差分V12は数4で表せる。
Figure JPOXMLDOC01-appb-M000004
 一方、出力V3と出力V4の差分V34は数5で表せる。
Figure JPOXMLDOC01-appb-M000005
 数3と数4に示すように、差分V12と差分V34とは90度の位相ずれが生じているので、差分V12が正弦波である場合に差分V34は余弦波となる。そして、差分V12、V34すなわち正弦波、余弦波から正接tanθを算出し、回転角θを算出することが可能となる。このようにして、測定対象の回転角を検出することが可能となる。
 以下で、実施の形態1に係る磁気センサ95内に配置される磁気抵抗素子2、3、4の構造を説明する。また、磁石群5Pを構成する磁石5、6、7の磁気バイアスの方向について説明する。
 図4Aは磁気抵抗素子2の拡大図である。図4Bは図4Aに示す磁気抵抗素子2の線4B-4Bにおける断面図である。また、図5Aと図5Bは、磁石群5Pを構成する磁石5、6、7の中心5C、6C、7Cにおける磁気バイアス5M、6M、7Mを示す。
 図4Aに示すように、磁気抵抗素子2は、複数の折り返しを有するミアンダ形状をそれぞれ有するパターン2A、2B、2C、2Dを有している。そして、図4Aに示すように、パターン2A、2B、2C、2Dは、最大の長さを有する直線形状部2E、2F、2G、2Hをそれぞれ有している。直線形状部2Eと直線形状部2Gは90度ずれるように配置され、直線形状部2Fと直線形状部2Hは90度ずれるように配置され、直線形状部2Gと直線形状部2Fは90度ずれるように配置される。直線形状部2Eと直線形状部2Hは90度ずれるように配置される。図4A、図5A、図5Bに示すように、直線形状部2E、2F、2G、2Hは磁石5の磁気バイアス5Mの方向に対して45度傾くように配置されている。なお、磁気抵抗素子群2Pを構成する他の磁気抵抗素子3、4のパターンと、磁気抵抗素子3、4にそれぞれ対応する磁石6、7との関係も、磁気抵抗素子2のパターンと磁気抵抗素子2に対応する磁石5との関係と同様である。このような配置とすることで、磁気センサ95のセンシング機能の信頼性を確保することができる。
 また、図4Aに示すように、基板1の面1A上には、磁石5(6、7)のコーナー5T(6T、7T)に対応してコーナー5T(6T、7T)を位置決めする位置決め部9が配置されていることが好ましい。磁石5の位置がずれると、磁石5からの磁気バイアス5Mの方向にずれが生じることになり、信頼性が損なわれる可能性がある。そこで、磁石5(6、7)のコーナー5T(6T、7T)と位置決め部9との位置関係を光学顕微鏡などで確認しながら、磁石5を配置することにより、磁石5の位置ずれを抑制し、信頼性を向上させることができる。なお、位置決め部9は、金属から構成されていることが好ましい。そして、位置決め部9の材料は、磁気抵抗素子群2Pから延びる配線10の材料と同一であることが好ましい。配線10を形成するプロセスと同じプロセスを用いて位置決め部9を形成できるので、コスト面で望ましい。なお、上記のことは、その他の磁石6、7についても磁石5と同様である。
 また、図4Bに示すように、磁石5は、磁気抵抗素子2上に熱硬化性接着剤又はUV硬化性接着剤からなる接着剤8を介して配置されていることが好ましい。そして、接着剤8は、磁石5の磁気抵抗素子2に対向する面に繋がる側面の一部を覆っていることが好ましい。磁石5の位置がずれると、磁石5からの磁気バイアス5Mの位置や方向にずれが生じることになり、信頼性が損なわれる可能性がある。そこで、磁石5の位置を確認後、熱硬化性接着剤又はUV硬化性接着剤からなる接着剤8を硬化させることで、磁石5の位置ずれを抑制し、信頼性を向上させることができる。なお、上記のことは、その他の磁石6、7についても磁石5と同様である。
 また、図4Bに示すように、磁気抵抗素子群2P上には、シリコン酸化膜又はフッ素系樹脂膜を有する保護膜17が配置されている。磁気抵抗素子群2P上に接着剤8を直接貼り付けても構わないが、保護膜17を介することで接着剤8が磁気抵抗素子群2Pに接触しないことで、磁気センサ95の信頼性を確保することができる。
 なお、磁気抵抗素子群2Pを構成する磁気抵抗素子2、3、4は、Ni、Co、およびFeを含む磁性体層と、磁性体層に積層されたCuを含む非磁性体層とを有する人工格子膜であることが好ましい。また、各磁気抵抗素子は、特定方向の磁界の強度に応じて抵抗値が変化して、特定方向以外の磁界の強度に応じては抵抗値が変化しない異方性磁気抵抗素子であることが好ましい。
 また、磁気抵抗素子群2Pは、基板1の面1A上にシリコン酸化膜などの下地膜を介して配置されていてもよい。
 図5Aと図5Bに示すように、磁石6の中心6Cの磁界(磁気バイアス6M)の向きは磁石7の中心7Cの磁界(磁気バイアス7M)の向きと平行であり、磁石5の中心5Cの磁界(磁気バイアス5M)の向きは磁石6の中心6Cの磁界(磁気バイアス6M)の向きと直角であることが好ましい。また、磁石5による磁界と磁石6による磁界と磁石7による磁界とが互いに干渉し合わないように、磁石5、6、7は十分な距離だけ離して配置することが好ましい。このようにすることで、測定対象の回転角を高精度に検出することができる。
 また、図5Aに示すように、磁石5の中心5Cの磁界(磁気バイアス5M)の向きは、磁石6の中心6Cの磁界(磁気バイアス6M)の向きと対向している。すなわち、磁石5の中心5Cの磁界(磁気バイアス5M)は磁石6の中心6Cの磁界(磁気バイアス6M)に対向している。また、図5Bに示すように、磁石5の中心5Cの磁界(磁気バイアス5M)は外側を向き、磁石6の中心6Cの磁界(磁気バイアス6M)は外側を向いていても構わない。図5Aに示す磁界を実現するには、それぞれの磁石5、6、7ごとに印磁する必要があるのに対し、図5Bに示す磁界を実現するには、全ての磁石5、6、7をまとめて印磁することができる。
 図1に示すように、磁気抵抗素子群2Pからの信号を処理する処理回路51が基板1の面1A上における磁気抵抗素子3と磁気抵抗素子4の間に配置されていることが好ましい。処理回路51は、例えば、磁気抵抗素子群2Pからの信号を増幅することができる。磁気抵抗素子3と磁気抵抗素子4の間の空いたスペースに処理回路51を配置することで、磁気センサ95全体の小型化を実現することができる。
 なお、磁石5、磁石6及び磁石7は、樹脂と、樹脂中に分散する希土類磁石粉よりなる材料で形成することが好ましい。その樹脂は熱硬化性の樹脂であり、希土類磁石粉はSmFeN磁石粉であることが好ましい。SmFeNは樹脂の成形が容易であるという性質を有するため、製造プロセス面で有利である。
 また、図2に示すように、磁気抵抗素子3及び磁気抵抗素子4の大きさは磁気抵抗素子2の大きさよりも小さいことが好ましい。具体的には、図4Aに示すように、磁気抵抗素子2は4つのミランダ形状のパターン2A~2Dを有している。パターン2A~2Dの互いに隣り合うパターンの最大の長さを有する直線形状部は互いに90度傾斜している。これに対して、磁気抵抗素子3及び磁気抵抗素子4のそれぞれは2つのミランダ形状のパターンを有しており、それら2つのパターンの最大の長さを有する直線形状部は互いに90度傾斜していることが好ましい。ただし、磁気抵抗素子3及び磁気抵抗素子4のそれぞれは、2つのミアンダ形状のダミーパターンをさらに有して、磁気抵抗素子2と同じ数の4つのミランダ形状のパターンを有していてもよい。
 (実施の形態2)
 図6は実施の形態2における磁気センサ100の平面図である。磁気センサ100は、基板101と、基板101に配置された磁気抵抗素子群116を有している。基板101はシリコンからなり、面101Aと、面101Aの反対側の面101Bとを有する板形状を有する。磁気抵抗素子群116は磁気抵抗素子120、130、140、150を有している。基板101の面101Aには印加電極102とグランド電極103と出力電極104、105と配線106~115が配置されている。ジャンパー線113は配線108を跨いで配線111を配線112と電気的に接続している。ジャンパー線113は配線108と電気的に絶縁されている。
 磁気抵抗素子120は端120A、120Bを有する。磁気抵抗素子130は端130A、130Bを有する。磁気抵抗素子140は端140A、140Bを有する。磁気抵抗素子150は端150A、150Bを有する。磁気抵抗素子120、130、140、150は磁界が印加されると端120A、130A、140A、150Aと端120B、130B、140B、150Bとの間の抵抗値が変化する磁気抵抗効果を有する。磁気抵抗素子120、磁気抵抗素子130、磁気抵抗素子140、および磁気抵抗素子150は例えば巨大磁気抵抗素子である。より具体的には、磁気抵抗素子120、130、140、150は、Ni、Co、およびFeを含む磁性体層と、磁性体層に積層されたCuを含む非磁性体層とを有する人工格子膜である。
 印加電極102は配線106を介して磁気抵抗素子120と、配線110を介して磁気抵抗素子130とそれぞれ電気的に接続されている。グランド電極103は配線109を介して磁気抵抗素子140の端140Bと電気的に接続され、配線115を介して磁気抵抗素子150の端150Aと電気的に接続されている。出力電極104は配線107を介して磁気抵抗素子120の端120Aと電気的に接続され、配線108を介して磁気抵抗素子140の端140Aと電気的に接続されている。出力電極105は配線111、配線112、およびジャンパー線113を介して磁気抵抗素子130の端130Bと電気的に接続され、配線114を介して磁気抵抗素子150の端150Bと電気的に接続されている。磁気抵抗素子120および磁気抵抗素子140はハーフブリッジ回路を構成する。磁気抵抗素子130および磁気抵抗素子150はハーフブリッジ回路を構成する。
 図6において基板101の面101Aに平行でかつ互いに直交するX軸とY軸とを定義する。X軸の方向は紙面の左右方向であり、Y軸の方向は紙面の上下方向である。X軸の正方向を順方向X1と定義し、X軸の正方向の反対のX軸の正方向の反対の負方向すなわち順方向X1の反対の方向を逆方向X2と定義する。同様に、Y軸の正方向を順方向Y1と定義し、Y軸の正方向の反対の負方向すなわち順方向Y1の反対の方向を逆方向Y2と定義する。
 図7と図8と図9と図10はそれぞれ図6に示す磁気抵抗素子120、130、140、150の平面図である。図7、図8、図9、および図10は、見やすくするために、上下方向と左右方向の図6に対する拡大比率を異ならせている。
 図7に示すように、磁気抵抗素子120は端120Aから端120Bまで直列にこの順で接続されたミアンダ部121、122、123、124を有する。ミアンダ部121、122、123、124は磁気抵抗効果を有するパターンよりなる。磁気抵抗素子120の端120Aは磁気抵抗素子120での順方向X1と順方向Y1での角部に位置し、端120Bは磁気抵抗素子120での逆方向X2と順方向Y1での角部に位置する。
 ミアンダ部121の端121Aは磁気抵抗素子120の端120Aである。ミアンダ部121はミアンダ部121(磁気抵抗素子120)の順方向X1と順方向Y1での角部である紙面右上方向の端部に位置する端121A(120A)から逆方向X2に延び、さらに逆方向Y2に延び、さらに順方向X1に延びて、さらに逆方向Y2に延びている。ミアンダ部121は、以下、同様に逆方向X2と逆方向Y2と順方向X1と逆方向Y2とにこの順で延びることを繰り返して端121Bまで延びている。これにより、ミアンダ部121は順方向X1および逆方向X2に折り返しながら逆方向Y2に端121Aから端121Bまで延びている。ミアンダ部121の端121Bはミアンダ部121の逆方向X2と逆方向Y2の角部に位置する。
 ミアンダ部122の端122Aはミアンダ部121の端121Bに接続されている。ミアンダ部122はミアンダ部122の順方向X1と逆方向Y2での角部に位置する端122Aから逆方向X2に延び、さらに順方向Y1に延び、さらに順方向X1に延びて、さらに順方向Y1に延びている。ミアンダ部122は、以下、同様に逆方向X2と順方向Y1と順方向X1と順方向Y1とにこの順で延びることを繰り返して端122Bまで延びている。これにより、ミアンダ部122は順方向X1および逆方向X2に折り返しながら順方向Y1に端122Aから端122Bまで延びている。ミアンダ部122の端122Bはミアンダ部122の逆方向X2と順方向Y1の角部に位置する。
 ミアンダ部123の端123Aはミアンダ部122の端122Bに接続されている。ミアンダ部123はミアンダ部123の順方向X1と順方向Y1での角部に位置する端123Aから逆方向X2に延び、さらに逆方向Y2に延び、さらに順方向X1に延びて、さらに逆方向Y2に延びている。ミアンダ部123は、以下、同様に逆方向X2と逆方向Y2と順方向X1と逆方向Y2とにこの順で延びることを繰り返して端123Bまで延びている。これにより、ミアンダ部123は順方向X1および逆方向X2に折り返しながら逆方向Y2に端123Aから端123Bまで延びている。ミアンダ部123の端123Bはミアンダ部123の逆方向X2と逆方向Y2の角部に位置する。
 ミアンダ部124の端124Aはミアンダ部123の端123Bに接続されている。ミアンダ部124はミアンダ部124の順方向X1と逆方向Y2での角部に位置する端124Aから逆方向X2に延び、さらに順方向Y1に延び、さらに順方向X1に延びて、さらに順方向Y1に延びている。ミアンダ部124は、以下、同様に逆方向X2と順方向Y1と順方向X1と順方向Y1とにこの順で延びることを繰り返して端124Bまで延びている。これにより、ミアンダ部124は順方向X1および逆方向X2に折り返しながら順方向Y1に端124Aから端124Bまで延びている。ミアンダ部124の端124Bはミアンダ部124の逆方向X2と順方向Y1の角部に位置する。ミアンダ部124の端124Bは磁気抵抗素子130の逆方向X2と順方向Y1の角部に位置する端120Bである。
 ミアンダ部123はミアンダ部121と同一形状を有する。ミアンダ部124はミアンダ部122と同一形状を有する。ミアンダ部121とミアンダ部122とは反転した関係にあり、形状自体は同一である。即ち、ミアンダ部121、122、123、124は同一形状を有する。ミアンダ部121、122、123、124のように順方向X1および逆方向X2へ折り返しながら順方向Y1または逆方向Y2へ延びるパターンを第1型のパターンと定義する。磁気抵抗素子120は第1型のパターンであるミアンダ部121、122、123、124がこの順で逆方向X2に連続的に配列されたパターンを有する。
 図8に示すように、磁気抵抗素子130は端130Aから端130Bまで直列にこの順で接続されたミアンダ部131、132、133、134を有する。ミアンダ部131、132、133、134は磁気抵抗効果を有するパターンよりなる。磁気抵抗素子130の端130Aは磁気抵抗素子130での逆方向X2と順方向Y1での角部に位置し、端120Bは磁気抵抗素子120での逆方向X2と逆方向Y2での角部に位置する。
 ミアンダ部131の端131Aは磁気抵抗素子130の端130Aである。ミアンダ部131はミアンダ部131(磁気抵抗素子130)の逆方向X2と順方向Y1での角部である紙面左上方向の端部に位置する端131A(130A)から逆方向Y2に延び、さらに順方向X1に延び、さらに順方向Y1に延びて、さらに順方向X1に延びている。ミアンダ部131は、以下、同様に逆方向Y2と順方向X1と順方向Y1と順方向X1とにこの順で延びることを繰り返して端131Bまで延びている。これにより、ミアンダ部131は順方向Y1および逆方向Y2に折り返しながら順方向X1に端131Aから端131Bまで延びている。ミアンダ部131の端131Bはミアンダ部131の順方向X1と逆方向Y2の角部に位置する。
 ミアンダ部132の端132Aはミアンダ部131の端131Bに接続されている。ミアンダ部132はミアンダ部132の順方向X1と順方向Y1での角部に位置する端132Aから逆方向Y2に延び、さらに逆方向X2に延び、さらに順方向Y1に延びて、さらに逆方向X2に延びている。ミアンダ部132は以下、同様に逆方向Y2と逆方向X2と順方向Y1と逆方向X2とにこの順で延びることを繰り返して端132Bまで延びている。これにより、ミアンダ部132は順方向Y1および逆方向Y2に折り返しながら逆方向X2に端132Aから端132Bまで延びている。ミアンダ部132の端132Bはミアンダ部132の逆方向X2と逆方向Y2の角部に位置する。
 ミアンダ部133の端133Aはミアンダ部132の端132Bに接続されている。ミアンダ部133はミアンダ部133の逆方向X2と順方向Y1での角部に位置する端133Aから逆方向Y2に延び、さらに順方向X1に延び、さらに順方向Y1に延びて、さらに順方向X1に延びている。ミアンダ部133は、以下、同様に逆方向Y2と順方向X1と順方向Y1と順方向X1とにこの順で延びることを繰り返して端133Bまで延びている。これにより、ミアンダ部133は端133Aから順方向Y1および逆方向Y2に折り返しながら順方向X1に端133Aから端133Bまで延びている。ミアンダ部133の端133Bはミアンダ部133の順方向X1と逆方向Y2の角部に位置する。
 ミアンダ部134の端134Aはミアンダ部133の端133Bに接続されている。ミアンダ部134はミアンダ部134の順方向X1と順方向Y1での角部に位置する端134Aから逆方向Y2に延び、さらに逆方向X2に延び、さらに順方向Y1に延びて、さらに逆方向X2に延びている。ミアンダ部134は、以下、同様に逆方向Y2と逆方向X2と順方向Y1と逆方向X2とにこの順で延びることを繰り返して端134Bまで延びている。これにより、ミアンダ部134は順方向Y1および逆方向Y2に折り返しながら逆方向X2に端134Aから端134Bまで延びている。ミアンダ部134の端134Bはミアンダ部134の逆方向X2と逆方向Y2の角部に位置する。ミアンダ部134の端134Bは磁気抵抗素子130の逆方向X2と逆方向Y2の角部に位置する端130Bである。
 ミアンダ部133はミアンダ部131と同一形状を有する。ミアンダ部134はミアンダ部132と同一形状を有する。ミアンダ部131とミアンダ部132とは反転した関係にあり、形状自体は同一である。即ち、ミアンダ部131、132、133、134は同一形状を有する。ミアンダ部131、132、133、134のように順方向Y1および逆方向Y2へ折り返しながら順方向X1または逆方向X2へ延びるパターンを第2型のパターンと定義する。磁気抵抗素子130は第2型のパターンであるミアンダ部131、132、133、134がこの順で逆方向Y2に連続的に配列されたパターンを有する。
 図9に示すように、磁気抵抗素子140は端140Aから端140Bまで直列にこの順で接続されたミアンダ部141、142、143、144を有する。ミアンダ部141、142、143、144は磁気抵抗効果を有するパターンよりなる。磁気抵抗素子140の端140Aは磁気抵抗素子140での逆方向X2と逆方向Y2での角部に位置し、端140Bは磁気抵抗素子140での順方向X1と逆方向Y2での角部に位置する。
 ミアンダ部141の端141Aは磁気抵抗素子140の端140Aである。ミアンダ部141はミアンダ部141(磁気抵抗素子140)の逆方向X2と逆方向Y2での角部である紙面左下方向の端部に位置する端141A(140A)から順方向X1に延び、さらに順方向Y1に延び、さらに逆方向X2に延びて、さらに順方向Y1に延びている。ミアンダ部141は、以下、同様に順方向X1と順方向Y1と逆方向X2と順方向Y1とにこの順で延びることを繰り返して端141Bまで延びている。これにより、ミアンダ部141は順方向X1および逆方向X2に折り返しながら順方向Y1に端141Aから端141Bまで延びている。ミアンダ部141の端141Bはミアンダ部141の順方向X1と順方向Y1の角部に位置する。
 ミアンダ部142の端142Aはミアンダ部141の端141Bに接続されている。ミアンダ部142はミアンダ部142の逆方向X2と順方向Y1での角部に位置する端142Aから順方向X1に延び、さらに逆方向Y2に延び、さらに逆方向X2に延びて、さらに逆方向Y2に延びている。ミアンダ部142は、以下、同様に順方向X1と逆方向Y2と逆方向X2と逆方向Y2とにこの順で延びることを繰り返して端142Bまで延びている。これにより、ミアンダ部142は順方向X1および逆方向X2に折り返しながら逆方向Y2に端142Aから端142Bまで延びている。
 ミアンダ部143の端143Aはミアンダ部142の端142Bに接続されている。ミアンダ部143はミアンダ部143の逆方向X2と逆方向Y2での角部に位置する端143Aから順方向X1に延び、さらに順方向Y1に延び、さらに逆方向X2に延びて、さらに順方向Y1に延びている。ミアンダ部143は、以下、同様に順方向X1と順方向Y1と逆方向X2と順方向Y1とにこの順で延びることを繰り返して端143Bまで延びている。これにより、ミアンダ部143は順方向X1および逆方向X2に折り返しながら順方向Y1に端143Aから端143Bまで延びている。
 ミアンダ部144の端144Aはミアンダ部143の端143Bに接続されている。ミアンダ部144はミアンダ部144の逆方向X2と順方向Y1での角部に位置する端144Aから順方向X1に延び、さらに逆方向Y2に延び、さらに逆方向X2に延びて、さらに逆方向Y2に延びている。ミアンダ部144は、以下、同様に順方向X1と逆方向Y2と逆方向X2と逆方向Y2とにこの順で延びることを繰り返して端144Bまで延びている。これにより、ミアンダ部144は順方向X1および逆方向X2に折り返しながら逆方向Y2に端144Aから端144Bまで延びている。ミアンダ部144の端144Bは磁気抵抗素子140の順方向X1と逆方向Y2の角部に位置する端140Bである。
 ミアンダ部143はミアンダ部141と同一形状を有する。ミアンダ部144はミアンダ部142と同一形状を有する。ミアンダ部141とミアンダ部142とは反転した関係にあり、形状自体は同一である。即ち、ミアンダ部141、142、143、144は同一形状を有する。磁気抵抗素子140は磁気抵抗素子120と同様に、第1型のパターンであるミアンダ部141、142、143、144がこの順で順方向X1に連続的に配置されたパターンを有する。
 図10に示すように、磁気抵抗素子150は端150Aから端150Bまで直列にこの順で接続されたミアンダ部151、152、153、154を有する。ミアンダ部151、152、153、154は磁気抵抗効果を有するパターンよりなる。磁気抵抗素子150の端150Aは磁気抵抗素子150での順方向X1と逆方向Y2での角部に位置し、端150Bは磁気抵抗素子150での順方向X1と順方向Y1での角部に位置する。
 ミアンダ部151の端151Aは磁気抵抗素子150の端150Aである。ミアンダ部151はミアンダ部151(磁気抵抗素子150)の順方向X1と逆方向Y2での角部である紙面右下方向の端部に位置する端151A(150A)から順方向Y1に延び、さらに逆方向X2に延び、さらに逆方向Y2に延びて、さらに逆方向X2に延びている。ミアンダ部151は、以下、同様に順方向Y1と逆方向X2と逆方向Y2と逆方向X2とにこの順で延びることを繰り返して端151Bまで延びている。これにより、ミアンダ部151は順方向Y1および逆方向Y2に折り返しながら逆方向X2に端151Aから端151Bまで延びている。ミアンダ部151の端151Bはミアンダ部151の逆方向X2と順方向Y1の角部に位置する。
 ミアンダ部152の端152Aはミアンダ部151の端151Bに接続されている。ミアンダ部152はミアンダ部152の逆方向X2と逆方向Y2での角部に位置する端152Aから順方向Y1に延び、さらに順方向X1に延び、さらに逆方向Y2に延びて、さらに順方向X1に延びている。ミアンダ部152は以下、同様に順方向Y1と順方向X1と逆方向Y2と順方向X1とにこの順で延びることを繰り返して端152Bまで延びている。これにより、ミアンダ部152は順方向Y1および逆方向Y2に折り返しながら順方向X1に端152Aから端152Bまで延びている。ミアンダ部152の端152Bはミアンダ部152の順方向X1と順方向Y1の角部に位置する。
 ミアンダ部153の端153Aはミアンダ部152の端152Bに接続されている。ミアンダ部153はミアンダ部153の順方向X1と逆方向Y2での角部に位置する端153Aから順方向Y1に延び、さらに逆方向X2に延び、さらに逆方向Y2に延びて、さらに逆方向X2に延びている。ミアンダ部153は、以下、同様に順方向Y1と逆方向X2と逆方向Y2と逆方向X2とにこの順で延びることを繰り返して端153Bまで延びている。これにより、ミアンダ部153は端153Aから順方向Y1および逆方向Y2に折り返しながら逆方向X2に端153Aから端153Bまで延びている。ミアンダ部153の端153Bはミアンダ部153の逆方向X2と順方向Y1の角部に位置する。
 ミアンダ部154の端154Aはミアンダ部153の端153Bに接続されている。ミアンダ部154はミアンダ部154の逆方向X2と逆方向Y2での角部に位置する端154Aから順方向Y1に延び、さらに順方向X1に延び、さらに逆方向Y2に延びて、さらに順方向X1に延びている。ミアンダ部154は、以下、同様に順方向Y1と順方向X1と逆方向Y2と順方向X1とにこの順で延びることを繰り返して端154Bまで延びている。これにより、ミアンダ部154は順方向Y1および逆方向Y2に折り返しながら順方向X1に端154Aから端154Bまで延びている。ミアンダ部154の端154Bはミアンダ部154の順方向X1と順方向Y1の角部に位置する。ミアンダ部154の端154Bは磁気抵抗素子150の順方向X1と順方向Y1の角部に位置する端150Bである。
 ミアンダ部153はミアンダ部151と同一形状を有する。ミアンダ部154はミアンダ部152と同一形状を有する。ミアンダ部151とミアンダ部152とは反転した関係にあり、形状自体は同一である。即ち、ミアンダ部151、152、153、154は同一形状を有する。磁気抵抗素子150は、磁気抵抗素子130と同様に、第2型のパターンであるミアンダ部151、152、153、154がこの順で順方向Y1に連続的に配置されたパターンを有する。
 磁気抵抗素子120、130、140、150は同一の形状を有し、さらに、同一の抵抗値を有する。
 磁気抵抗素子120、130、140、150は、磁気抵抗素子120、130、140、150から等距離にある点P0を基準にして点対称である。
 点P0を中心にした磁気抵抗素子120、130の角度間隔と、点P0を中心にした磁気抵抗素子130、140の角度間隔と、点P0を中心にした磁気抵抗素子140、150の角度間隔と、点P0を中心にした磁気抵抗素子150、120の角度間隔はそれぞれ90°である。
 以下に、磁気抵抗素子120、130、140、150への磁界の印加する方向と磁気抵抗素子120、130、140、150の抵抗値の変化について説明する。図11Aと図11Bは磁気抵抗素子180の模式図である。磁気抵抗素子180は磁気抵抗素子120、130、140、150に相当し、同様の材料よりなる。図11Aでは磁気抵抗素子180を流れる電流I180の方向に対して直角の方向の外部磁界183が磁気抵抗素子180に印加されている。図11Bでは電流I180の方向に対し平行な方向の外部磁界184が磁気抵抗素子180に印加されている。電流I180の方向は磁気抵抗素子180が延びている方向である。
 図11Aおよび図11Bにおいて磁気抵抗素子180の両端は両端に位置する電極181、182とそれぞれ電気的に接続されている。磁気抵抗素子180は巨大磁気抵抗素子である。
 図12Aは図11Aに示す磁気抵抗素子180のMagneto-Resistance(MR)比を示し、図12Bは図11Bに示す磁気抵抗素子180のMR比を示している。図12Aおよび図12Bにおいて、横軸は外部磁界183、184を示し、縦軸はMR比を示す。ある磁界が印加されたときの磁気抵抗素子180の抵抗値と磁界が印加されていない無磁界のときの磁気抵抗素子180の抵抗値との差を、無磁界のときの磁気抵抗素子180の抵抗値で除した値をその磁界でのMR比と定義する。無磁界のときのMR比は0である。印加される磁界183、184が大きくなると抵抗値は低下するので、MR比は負の値となる。磁界の変化に対するMR比の変化をMR特性と言う。
 図12Aおよび図12Bに示すように、磁気抵抗素子180に外部磁界183、184が印加されると、磁気抵抗素子180の抵抗値が減少してMR比は負でありその絶対値は大きくなる。図12Bに示すMR比は、図12Aに示すMR比に比べて、磁界の変化に対するMR比の変化が急峻である。図12Aに示すMR比は磁界の変化の方向に依存するヒステリシスが現れないが、図12Bに示すMR比にはヒステリシスが現れる。図12Aと図12Bに示すMR比の最大変化の値は同等である。
 図11A、図11B、図12Aおよび図12Bに示すように、電流I180の方向に対して垂直な外部磁界183が磁気抵抗素子180に印加されたときには、磁気抵抗素子180は磁界183の変化によるMR比の変化が比較的緩やかであり、ヒステリシスが現れない。電流I180の方向に対して平行な外部磁界184が磁気抵抗素子180に印加されたときには、磁気抵抗素子180は磁界184の変化に対するMR比の変化が比較的急峻であり、ヒステリシスが現れる。
 磁気抵抗素子のパターンと平行な磁界が印加されると、磁気抵抗素子が磁化される場合がある。磁気抵抗素子のパターンの直線部が長いとヒステリシスが大きく現れ、磁気抵抗素子のパターンの直線部が短いとヒステリシスが小さくなる、またはヒステリシスが現れなくなる。この影響により、磁気抵抗素子として、巨大磁気抵抗素子を用いた場合には、パターンの形状や外部磁界の印加方向などの条件によってはヒステリシスが現れる。
 磁気抵抗素子120、130、140、150では、折り返しのあるミアンダ形状のパターンが連続的に配置されているので、パターンの直線部が比較的短くなる。これによって、磁気抵抗素子120、130、140、150ではMR比にヒステリシスが現れないか、現れても非常に小さい。
 磁気抵抗素子120では、X軸の方向(順方向X1又は逆方向X2)に延びる部分の長さの合計がY軸の方向(順方向Y1又は逆方向Y2)に延びる部分の長さの合計の95%以上105%以下にしている。これにより、磁気抵抗素子120は印加される外部磁界の方向が、X軸の方向であるときとY軸の方向であるときのMR特性の差が小さくなる。磁界の方向がX軸とY軸とに直角である場合、磁気抵抗素子120は印加される外部磁界の方向によるMR特性の差が小さくなり、外部磁界の方向によらずMR特性がほぼ同等になる。
 磁気抵抗素子120のX軸の方向の延びる部分の長さの合計がY軸の方向に延びる部分の長さの合計と等しくすると、磁気抵抗素子120は印加される外部磁界の方向がX軸の方向であるときとY軸の方向であるときのMR特性の差がほぼなくなる。X軸がY軸に垂直な場合、磁気抵抗素子120は印加される外部磁界の方向によらずMR特性はほぼ同じとなる。
 磁気抵抗素子130、140、150も同様に、X軸の方向の延びる部分の長さの合計がY軸の方向に延びる部分の長さの合計の95%以上105%以下にすることで、外部磁界の方向がX軸の方向であるときとY軸の方向であるときのMR特性の差が略なくなる。さらに、X軸とY軸が互いに直角であるので、印加される外部磁界の方向によらず、MR特性はほぼ一定にすることができる。磁気抵抗素子120~150のそれぞれにおいてX軸の方向に延びる部分の長さの合計長がY軸の方向に延びる部分の長さの合計と等しくすることにより、印加される外部磁界の方向がX軸の方向であるときとY軸の方向であるときのMR特性の差が略なくなる。さらに、X軸とY軸が互いに直角であるので、磁気抵抗素子120~150のそれぞれでは印加される外部磁界の方向によるMR特性の差が略なくなる。磁気抵抗素子120、130、140、150は外部磁界の印加方向によらずMR特性が一定、即ち、磁気等方性を有する。磁気抵抗素子120、130、140、150は互いに同一のMR特性を有する。
 図13と図14と図15はそれぞれ実施の形態2における磁気センサ100の使用方法を示す斜視図と側面図と平面図である。なお、図13、図14においては、磁気抵抗素子120、130、140、150は外形のみ記載し、配線106~112、ジャンパー線113、配線114、115は省略している。
 基板101の面101Bにはバイアス磁石160が取り付けられている。バイアス磁石160はN極161およびS極162を有する。N極161およびS極162を結ぶ方向は基板101の面101Bに対して直角である。図14において、N極161が面101Bに接しているが、S極162が接してもよい。図15に示すように、バイアス磁石160は平面視にて磁気抵抗素子120、130、140、150のいずれとも重ならない。言い換えると、バイアス磁石160は平面視にて磁気抵抗素子群116とは重ならない。
 回転磁石170は回転軸175に回転可能に支持されており、これにより回転磁石170は点P0を通る中心軸170Cを中心に回動可能である。回転磁石170はN極171およびS極172を有する。N極171およびS極172を結ぶ線は基板101の面101Aに平行である。
 磁気抵抗素子120、130、140、150にはバイアス磁石160からの磁界と回転磁石170からの磁界を合成した磁界が印加される。回転磁石170は回転軸175(中心軸170C)を中心に回転周期で回転する。磁気センサ100の基板101上のある一点の磁界の強度の絶対値は回転周期で変化する。前述のように、磁気抵抗素子120、130、140、150は磁気等方性を有しており、磁界強度の絶対値に応じて変化する抵抗値を有するので、回転磁石170が一回転する回転周期でそれらの抵抗値は変化する。回転磁石170の回転角度に対する磁気抵抗素子120の抵抗値の変化を正弦波で近似した場合には、磁気抵抗素子120、140の抵抗値は互いに180°位相がずれて変化し、磁気抵抗素子130、150の抵抗値の変化も互いに180°位相がずれて変化する。さらに、磁気抵抗素子120、130の抵抗値は互いに90°位相がずれて変化する。
 印加電極102とグランド電極103間に電圧を印加すると、出力電極104は磁気抵抗素子120、140の抵抗値の変化に応じた電圧を生じる。同様に、出力電極105は磁気抵抗素子130、150の抵抗値の変化に応じた電圧を生じる。磁気抵抗素子120、140の抵抗値の変化の位相差は180°であるので、出力電極104からの出力は磁気抵抗素子120単独または磁気抵抗素子140単独の抵抗値の変化に基づき電圧を出力させる磁気センサに比べ、約2倍の出力を得ることができ、さらにその出力は回転磁石170の一回転を周期とする正弦波となる。同様に、磁気抵抗素子130、150の抵抗値の変化の位相差は180°であるので、出力電極105からの出力は磁気抵抗素子130単独または磁気抵抗素子150単独の抵抗値の変化に基づき電圧を出力する磁気センサに比べ、約2倍の出力を得ることができ、その出力は回転磁石170の一回転を周期とする正弦波となる。さらに、出力電極104からの出力と出力電極105からの出力とは互いに90°の位相差を有する。
 正弦波の1つの出力に対しては、90°と270°の場合を除き、対応する2つの角度が存在する。従って、位相が90°ずれている出力電極104、105からの出力により、回転磁石170の回転角度を特定することができる。即ち、磁気センサ100は回転磁石170の回転角度を求めることができる。回転する物体の回転角度は、この物体を回転磁石170と機械的に接続して回転磁石170の回転角度を測定することで求まる。
 なお、図13~図15に示す使用方法は一例であり、これ以外の使用方法を用いてもよい。
 本実施の形態においては、磁気抵抗素子群116は磁気抵抗素子120、130、140、150を有しているが、磁気抵抗素子120、130のみを有して磁気抵抗素子140、150を有していなくてもよい。この場合、磁気センサ100は磁気抵抗素子140、150の代わりに例えば、磁気抵抗素子120、130とブリッジ回路を構成する抵抗器を配置することで、出力電極104、105から回転磁石170の回転角度に応じた出力を得ることができる。
 なお、磁気センサ100は基板101と磁気抵抗素子群116とを備え、さらにバイアス磁石160を備えてもよい。磁気センサ100は基板101と磁気抵抗素子群116とを備え、さらに回転磁石170を備え、バイアス磁石160を備えていなくてもよい。磁気センサ100は基板101と磁気抵抗素子群116とを備え、さらにバイアス磁石160、および回転磁石170を備えてもよい。
 本実施の形態においては、X軸はY軸に対して直角であるが、X軸の方向はY軸の方向に対して平行ではなく、直角以外の方向に傾斜していてもよい。基板101の面101Aに平行な順方向X1と逆方向X2は互いに反対である。基板101の面101Aに平行な順方向Y1と逆方向Y2は互いに反対である。順方向X1と逆方向X2とは順方向Y1と逆方向Y2とに直角である。順方向X1と逆方向X2とは順方向Y1と逆方向Y2とに対して平行ではなく、かつ直角以外の方向に傾斜していてもよい。
 基板101はシリコン基板の代わりにアルミナ基板を用いてもよい。
 本実施の形態において、磁気抵抗素子120、130、140、150は同一の抵抗値と同一のMR特性を有するので、出力電極104、105からの出力電圧から回転角度を容易に求めることができる。しかし、磁気抵抗素子120~150では抵抗値が同一およびMR特性が同一の少なくとも一つが成立しなくてもよい。すなわち、磁気抵抗素子120~150は同一の抵抗値を有し、かつ異なるMR特性を有していてもよい。もしくは磁気抵抗素子120~150は同一のMR特性を有し、かつ異なる抵抗値を有していてもよい。
 本実施の形態において、磁気抵抗素子120、130、140、150は互いに形状が同一であるので、それぞれのMR特性を等しくできる。さらに、磁気抵抗素子120~150は点P0について互いに点対称であるので、回転磁石170の回転による抵抗値の変化を等しくできる。これにより、出力電極104、105からの出力電圧から回転角度を容易に求めることができる。点対称としたものを反転させた配置であっても同様の効果を得る。しかし、磁気抵抗素子120~150の形状は同一でなくてもよい。さらに、磁気抵抗素子120~150は点対称でなくてもよい。
 本実施の形態において、バイアス磁石160は基板101の面101Bに配置されているが、面101A側に配置されてもよい。この場合、バイアス磁石160は面101Aと磁気抵抗素子群116との間に配置してもよいし、磁気抵抗素子群116の上に配置されてもよい。
 本実施の形態において、N極161とS極162とを結ぶ線が基板101の面101Bに直角となるようにバイアス磁石160が配置されているが、N極161とS極162とを結ぶ線が基板101の面101Bに平行であってもよい。N極161とS極162とを結ぶ線が基板101の面101Bに平行である場合には、垂直である場合に比べて、磁界の変化がより大きくなるので、磁界の変化による磁気抵抗素子120~150の抵抗値の変化が実質的に飽和しないように気をつける必要がある。
 なお、本実施の形態で「等しい」および「同一」との語句は、それぞれ物理的に完全に等しいおよび完全に同一であることを意味するのではなく、誤差を含み、さらに実用上等しいまたは実用上同一と扱える程度の差を含む。
 本発明の磁気センサは磁界に対する感度が高く、車載など高感度が求められる機器に有用である。
1  基板
2  磁気抵抗素子(第1の磁気抵抗素子)
3  磁気抵抗素子(第2の磁気抵抗素子)
4  磁気抵抗素子(第3の磁気抵抗素子)
5  磁石(第1の磁石)
6  磁石(第2の磁石)
7  磁石(第3の磁石)
8  接着剤
9  位置決め部
10  配線
11  電圧印加用パッド
12  グランド用パッド
13~16  出力端子
17  保護膜
18  ワイヤ
19  外部端子
20  ダイパッド
30  パッド
95  磁気センサ
96  検知対象磁石
100  磁気センサ
101  基板
102  印加電極
103  グランド電極
104,105  出力電極
106~115  配線
113  ジャンパー線
116  磁気抵抗素子群
120  磁気抵抗素子
121~124  ミアンダ部
130  磁気抵抗素子
131~134  ミアンダ部
140  磁気抵抗素子
141~144  ミアンダ部
150  磁気抵抗素子
151~154  ミアンダ部
160  バイアス磁石
161,171  N極
162,172  S極
170  回転磁石
175  回転軸

Claims (16)

  1.  第1面を有する基板と、
     前記基板の前記第1面上に配置された第1の磁気抵抗素子と、前記基板の前記第1面上に配置された第2の磁気抵抗素子とを含む磁気抵抗素子群と、
     前記第1の磁気抵抗素子に対応する第1の磁石と、前記第2の磁気抵抗素子に対応する第2の磁石とを含む磁石群と、
    を備えた磁気センサ。
  2. 前記磁気抵抗素子群は第3の磁気抵抗素子をさらに有し、
    前記磁石群は前記第3の磁気抵抗素子に対応する第3の磁石をさらに有し、
    平面視において、前記第2の磁気抵抗素子と前記第3の磁気抵抗素子は第1の軸を対称軸として線対称に配置されており、前記第1の磁気抵抗素子は前記第1の軸上に配置されている、請求項1に記載の磁気センサ。
  3. 前記第2の磁石の中心の磁界の向きは、前記第3の磁石の中心の磁界の向きと平行であり、
    前記第1の磁石の中心の磁界の向きは、前記第2の磁石の中心の磁界の向きと直角である、請求項2に記載の磁気センサ。
  4. 前記第2の磁気抵抗素子と前記第3の磁気抵抗素子の大きさは、前記第1の磁気抵抗素子の大きさよりも小さい、請求項2又は3に記載の磁気センサ。
  5. 前記基板の前記第1面上における前記第2の磁気抵抗素子と前記第3の磁気抵抗素子の間に配置されて、前記磁気抵抗素子群からの信号を処理する処理回路をさらに備えた、請求項2に記載の磁気センサ。
  6. 前記第3の磁石の中心の磁界は、前記第2の磁石の中心の磁界と対向している、請求項1から5のいずれか1つに記載の磁気センサ。
  7. 前記第1の磁石を前記第1の磁気抵抗素子上に接着する熱硬化性接着剤又はUV硬化性接着剤からなる接着剤をさらに備えた、請求項1から6のいずれか1つに記載の磁気センサ。
  8. 前記接着剤は前記第1の磁石の側面の一部を覆っている、請求項7に記載の磁気センサ。
  9. 前記基板の前記第1面上に設けられて、前記第1の磁石のコーナーを位置決めする位置決め部をさらに備えた、請求項1から8のいずれか1つに記載の磁気センサ。
  10. 前記位置決め部は金属から構成されている、請求項9に記載の磁気センサ。
  11. 前記磁気抵抗素子群から延びて、かつ配線前記位置決め部の材料と同じ材料よりなる配線をさらに備えた、請求項9又は10に記載の磁気センサ。
  12. 前記第1の磁石と前記第2の磁石は、樹脂と、前記樹脂中に分散する希土類磁石粉よりなる、請求項1から11のいずれか1つに記載の磁気センサ。
  13. 前記樹脂は熱硬化性の樹脂を含有し、前記希土類磁石粉はSmFeN磁石粉である、請求項12に記載の磁気センサ。
  14. 前記磁気抵抗素子群上に配置されたシリコン酸化膜又はフッ素系樹脂膜を有する保護膜をさらに備えた、請求項1から13のいずれか1つに記載の磁気センサ。
  15. 前記基板は前記第1面の反対側の第2面をさらに有し、
    前記基板が実装されて、かつ前記基板の第2面に対して前記基板の前記第1面の反対側に位置するダイパッドをさらに備えた、請求項1から14のいずれか1つに記載の磁気センサ。
  16. 前記第1の磁石は前記第1の磁気抵抗素子に第1の磁気バイアスを印加し、前記第2の磁石は前記第2の磁気抵抗素子に第2の磁気バイアスを印加する、請求項1から15のいずれか1つに記載の磁気センサ。
PCT/JP2015/004721 2014-10-09 2015-09-16 磁気センサ WO2016056179A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/300,747 US10094890B2 (en) 2014-10-09 2015-09-16 Magnetic sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-207913 2014-10-09
JP2014207913 2014-10-09
JP2014250070 2014-12-10
JP2014-250070 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016056179A1 true WO2016056179A1 (ja) 2016-04-14

Family

ID=55652819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004721 WO2016056179A1 (ja) 2014-10-09 2015-09-16 磁気センサ

Country Status (2)

Country Link
US (1) US10094890B2 (ja)
WO (1) WO2016056179A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10224039A (ja) * 1997-02-10 1998-08-21 Matsushita Electric Ind Co Ltd 多層プリント配線板の製造方法
JPH11211409A (ja) * 1998-01-28 1999-08-06 Yaskawa Electric Corp 磁気式検出器
JP2001227985A (ja) * 2000-02-17 2001-08-24 Nippon Seiki Co Ltd 磁気ヘッド
JP2009264866A (ja) * 2008-04-24 2009-11-12 Hamamatsu Koden Kk 磁気センサ及び磁気センサの製造方法
JP2011180001A (ja) * 2010-03-02 2011-09-15 Denso Corp 回転センサ
JP2013207097A (ja) * 2012-03-28 2013-10-07 Asahi Kasei Electronics Co Ltd ホール素子

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426227A (ja) 1990-05-22 1992-01-29 Matsushita Electric Ind Co Ltd スイッチ回路
JPH04282480A (ja) 1991-03-11 1992-10-07 Matsushita Electric Ind Co Ltd 磁気センサ
JPH06310776A (ja) 1993-04-27 1994-11-04 Fujitsu Ltd 故障検出機能付き磁気検出素子
US5539153A (en) 1994-08-08 1996-07-23 Hewlett-Packard Company Method of bumping substrates by contained paste deposition
US5631557A (en) * 1996-02-16 1997-05-20 Honeywell Inc. Magnetic sensor with encapsulated magnetically sensitive component and magnet
JP3246374B2 (ja) * 1997-01-13 2002-01-15 株式会社日立製作所 磁気抵抗効果型素子を用いた磁気記録装置
US6441514B1 (en) * 1997-04-28 2002-08-27 Ultratech Stepper, Inc. Magnetically positioned X-Y stage having six degrees of freedom
US6064197A (en) 1997-07-26 2000-05-16 U.S. Philips Corporation Angle sensor having lateral magnetic field sensor element and axial magnetic field direction measuring element for determining angular position
US5972185A (en) * 1997-08-30 1999-10-26 United Technologies Corporation Cathodic arc vapor deposition apparatus (annular cathode)
JP3474096B2 (ja) 1998-02-09 2003-12-08 株式会社日立ユニシアオートモティブ 回動角検出装置
US6285097B1 (en) * 1999-05-11 2001-09-04 Nikon Corporation Planar electric motor and positioning device having transverse magnets
JP2002213944A (ja) 2001-01-18 2002-07-31 Niles Parts Co Ltd 回転角測定装置
US6486659B1 (en) * 2001-05-21 2002-11-26 Delphi Technologies, Inc. Magnetoresistor sensor die with an array of MRs
JP3961809B2 (ja) 2001-10-23 2007-08-22 株式会社エヌエー 磁気センサ素子
DE10158052A1 (de) * 2001-11-27 2003-06-05 Philips Intellectual Property Anordnung zum Bestimmen der Position eines Bewegungsgeberelements
WO2003056276A1 (fr) 2001-12-27 2003-07-10 Matsushita Electric Industrial Co., Ltd. Capteur de direction et procede de production
JP2004172430A (ja) 2002-11-21 2004-06-17 Toyota Central Res & Dev Lab Inc 磁気インピーダンス素子
KR100590211B1 (ko) 2002-11-21 2006-06-15 가부시키가이샤 덴소 자기 임피던스 소자, 그를 이용한 센서 장치 및 그 제조방법
JP2004281920A (ja) * 2003-03-18 2004-10-07 Seiko Epson Corp 半導体装置、電子デバイス、電子機器、半導体装置の製造方法および電子デバイスの製造方法
EP1498744B1 (en) * 2003-07-18 2011-08-10 Yamaha Corporation Magnetic sensor and manufacturing method therefor
JPWO2005119374A1 (ja) * 2004-06-04 2008-04-03 株式会社カネカ マグネットローラ
US7375357B2 (en) * 2004-08-23 2008-05-20 Avi Faliks Permanent magnet radiation dose delivery enhancement
US8241468B2 (en) * 2004-12-13 2012-08-14 United Technologies Corporation Method and apparatus for cathodic arc deposition of materials on a substrate
JP4319153B2 (ja) 2005-01-25 2009-08-26 浜松光電株式会社 磁気センサ
JP2007155668A (ja) 2005-12-08 2007-06-21 Asahi Kasei Electronics Co Ltd 回転角度センサ、および、回転角度検出方法
JP4904052B2 (ja) * 2005-12-27 2012-03-28 アルプス電気株式会社 磁気方位検出装置
JP4394076B2 (ja) * 2006-01-12 2010-01-06 三菱電機株式会社 電流センサ
JP2008157639A (ja) 2006-12-20 2008-07-10 Denso Corp 磁気センサの製造方法及び磁気センサ
JP4940965B2 (ja) 2007-01-29 2012-05-30 株式会社デンソー 回転センサ及び回転センサ装置
SG150396A1 (en) * 2007-08-16 2009-03-30 Micron Technology Inc Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods
JP4863953B2 (ja) 2007-08-30 2012-01-25 日立オートモティブシステムズ株式会社 物理量変換センサ及びそれを用いたモータ制御システム
JP5240429B2 (ja) 2008-01-28 2013-07-17 株式会社安川電機 磁気式エンコーダ
US8269491B2 (en) 2008-02-27 2012-09-18 Allegro Microsystems, Inc. DC offset removal for a magnetic field sensor
US7592803B1 (en) 2008-06-23 2009-09-22 Magic Technologies, Inc. Highly sensitive AMR bridge for gear tooth sensor
JP2008304470A (ja) 2008-07-10 2008-12-18 Asahi Kasei Electronics Co Ltd 磁気センサ
JP5620989B2 (ja) 2009-07-22 2014-11-05 アレグロ・マイクロシステムズ・エルエルシー 磁界センサの診断動作モードを生成するための回路および方法
JP5083281B2 (ja) 2009-07-28 2012-11-28 株式会社デンソー 回転センサ及び回転センサ装置
US8451003B2 (en) * 2009-07-29 2013-05-28 Tdk Corporation Magnetic sensor having magneto-resistive elements on a substrate
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
US20110246133A1 (en) 2010-03-02 2011-10-06 Denso Corporation Rotator sensor
DE102010010388B4 (de) * 2010-03-05 2013-02-21 Asm Automation Sensorik Messtechnik Gmbh Magnetverbund
JP2012063203A (ja) 2010-09-15 2012-03-29 Hamamatsu Koden Kk 磁気センサ
JP5638900B2 (ja) 2010-09-28 2014-12-10 株式会社東海理化電機製作所 磁気センサデバイス
JP5708986B2 (ja) 2010-12-27 2015-04-30 株式会社ジェイテクト 回転角検出装置
JP5651057B2 (ja) 2011-03-28 2015-01-07 旭化成エレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2013024674A (ja) 2011-07-20 2013-02-04 Denso Corp 磁気センサ
JP2013258169A (ja) 2012-06-11 2013-12-26 Panasonic Corp ボンド磁石、ボンド磁石の製造方法、モータ
WO2014148087A1 (ja) 2013-03-19 2014-09-25 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置およびパワーステアリング装置の制御装置
JP6215001B2 (ja) 2013-10-24 2017-10-18 日本電産サンキョー株式会社 磁気抵抗素子、磁気センサ装置および磁気抵抗素子の製造方法
JP2015108527A (ja) 2013-12-03 2015-06-11 株式会社東海理化電機製作所 磁気センサ
JP6419426B2 (ja) 2013-12-19 2018-11-07 日本電産エレシス株式会社 電動パワーステアリング用電子制御ユニット
US9324457B2 (en) * 2014-03-12 2016-04-26 Kabushiki Kaisha Toshiba Nonvolatile memory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10224039A (ja) * 1997-02-10 1998-08-21 Matsushita Electric Ind Co Ltd 多層プリント配線板の製造方法
JPH11211409A (ja) * 1998-01-28 1999-08-06 Yaskawa Electric Corp 磁気式検出器
JP2001227985A (ja) * 2000-02-17 2001-08-24 Nippon Seiki Co Ltd 磁気ヘッド
JP2009264866A (ja) * 2008-04-24 2009-11-12 Hamamatsu Koden Kk 磁気センサ及び磁気センサの製造方法
JP2011180001A (ja) * 2010-03-02 2011-09-15 Denso Corp 回転センサ
JP2013207097A (ja) * 2012-03-28 2013-10-07 Asahi Kasei Electronics Co Ltd ホール素子

Also Published As

Publication number Publication date
US20170242082A1 (en) 2017-08-24
US10094890B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
US8193805B2 (en) Magnetic sensor
JP6463789B2 (ja) 磁気角度位置センサ
US10690515B2 (en) Dual Z-axis magnetoresistive angle sensor
JP5752322B2 (ja) 磁気式位置検出装置
JP5801566B2 (ja) 回転角度検出装置
JP2016223894A (ja) 磁気センサ
WO2016185676A1 (ja) 磁気センサ
JP4028971B2 (ja) 磁気センサの組立方法
JP6460372B2 (ja) 磁気センサ及びその製造方法、並びにそれを用いた計測機器
JP2007051953A (ja) 磁気エンコーダ
JP4900838B2 (ja) 位置検出装置及び直線駆動装置
JP6034650B2 (ja) 回転角検出装置
CN114072636A (zh) 位置感测电路、位置感测***、磁体构件、位置感测方法和程序
JP7463593B2 (ja) 磁気センサシステムおよびレンズ位置検出装置
JP2012098190A (ja) 直線変位検出装置
JP5143714B2 (ja) ポジションセンサ素子およびポジション検出装置
JP6455314B2 (ja) 回転検出装置
WO2015146043A1 (ja) 磁気センサ
US20230384125A1 (en) Position detection system
WO2016056179A1 (ja) 磁気センサ
JP2010243232A (ja) 電流センサ
JP2008014954A (ja) 磁気センサ
JP6127271B2 (ja) 巨大磁気抵抗素子
JP7341454B2 (ja) 磁気センサ
JP6210596B2 (ja) 回転検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15300747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP