WO2014148087A1 - パワーステアリング装置およびパワーステアリング装置の制御装置 - Google Patents

パワーステアリング装置およびパワーステアリング装置の制御装置 Download PDF

Info

Publication number
WO2014148087A1
WO2014148087A1 PCT/JP2014/050988 JP2014050988W WO2014148087A1 WO 2014148087 A1 WO2014148087 A1 WO 2014148087A1 JP 2014050988 W JP2014050988 W JP 2014050988W WO 2014148087 A1 WO2014148087 A1 WO 2014148087A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
detection device
power
rotation
angle
Prior art date
Application number
PCT/JP2014/050988
Other languages
English (en)
French (fr)
Inventor
輝幸 大西
木村 誠
Original Assignee
日立オートモティブシステムズステアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズステアリング株式会社 filed Critical 日立オートモティブシステムズステアリング株式会社
Priority to JP2015506627A priority Critical patent/JPWO2014148087A1/ja
Publication of WO2014148087A1 publication Critical patent/WO2014148087A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle

Definitions

  • the present invention relates to a power steering apparatus and its control apparatus, and more particularly to a steering angle detection method for steering.
  • the sensor for detecting the steering angle of the steering wheel is omitted by converting the rotation angle of the motor detected by the motor rotation angle sensor into an absolute steering angle which is a steering angle from the neutral state of the steering.
  • the present invention has been made in view of such technical problems, and it is an object of the steering apparatus to reduce the power consumption when the ignition is off.
  • the present invention is provided with a steering operation detection device capable of detecting a steering operation of a steering wheel when ignition of the vehicle or accessory switch is off, and when the steering operation detection device detects steering operation of the steering wheel when ignition is off or accessory switch is off In the wake-up circuit, the steering angle detection device is energized to shift to the normal steering angle detection by the steering angle detection device.
  • the steering apparatus in the steering apparatus, it is possible to reduce the power consumption when the ignition is off.
  • FIG. 1 is a schematic view showing a power steering apparatus according to the present embodiment.
  • a basic steering mechanism is configured by a steering wheel SW, a steering shaft 1 as a steering shaft 1, a torsion bar (not shown), a pinion shaft 2 and a rack shaft 3.
  • the steering wheel SW when the steering wheel SW is turned by the driver, the steering shaft 1 is rotated and the torsion bar is twisted, and the elastic deformation of the torsion bar which is generated based on the torsion deformation of the torsion bar
  • the pinion shaft 2 rotates.
  • the rotational movement of the pinion shaft 2 is converted into the linear movement of the rack shaft 3, and the left and right steered wheels W, W connected to both ends of the rack shaft 3 are steered. That is, the rack shaft 3 is formed with rack teeth in which the pinion shaft 2 is engaged, and a conversion mechanism configured to convert the rotation of the steering shaft 1 into turning operation by meshing the rack teeth and the pinion shaft is configured. .
  • the housing of the pinion shaft 2 is provided with a torque sensor (not shown) for detecting the steering angle of the steering wheel SW, and a control device based on the output signal of the torque sensor and the output signal of the motor rotation sensor and vehicle speed information
  • the electric current control of the electric motor M is performed by an ECU 4 (hereinafter referred to as an ECU), and a steering assist force is applied to the rack shaft 3 from the electric motor M via a reduction gear (not shown).
  • the electric motor M is a brushless motor, and includes a rotor, a stator, and a motor rotation angle sensor that detects the rotational position of the rotor.
  • the motor rotation angle sensor includes a multipolar magnet 12 attached to the end of a motor shaft 11 which is a rotation shaft of the electric motor M, and a motor rotation angle sensor IC mounted on a substrate 15 (
  • the GMR element hereinafter referred to as a GMR element
  • the magnet 12 is configured of two poles, and configured such that the N pole 180 ° and the S pole 180 ° in the direction around the axis of the motor shaft 11.
  • the GMR element 13 (steering angle detection device) is mounted on the opposite side of the magnet 12 via an air gap.
  • the motor rotation angle sensor detects the rotational position of the motor shaft 11 based on the change of the magnetic field of the magnet 12.
  • the ECU 4 is provided with: rotation angle information of the motor shaft 11 which is an output signal of the GMR element 13; and rotation number information obtained by counting how many rotations of the motor shaft 11 have made in a clockwise direction or a counterclockwise direction. Based on this, an absolute steering angle which is a steering angle from the neutral state of the steering wheel SW is calculated.
  • the motor rotation angle sensor is also used as a steering angle detection device, and absolute angle information of the steering wheel SW can be obtained without providing a steering angle sensor capable of detecting an absolute steering angle.
  • first and second Hall switches 14a and 14b as a detection unit are mounted around the GMR element 13 of the substrate 15.
  • the first and second hall switches 14a and 14b are disposed around the axis of the motor shaft 11 with a magnetic angle of 90 degrees out of phase with each other.
  • the magnet 12 and the first and second hall switches 14a and 14b constitute a steering operation detection device.
  • the first and second Hall switches 14 a and 14 b output a high signal or a low signal according to a change in magnetic flux density, and detect the rotational position of the motor shaft 11.
  • the output signals of the first and second Hall switches 14a and 14b are 180 high and low signals. It is output alternately every °, and one cycle becomes 360 °.
  • first and second hall switches 14a and 14b are arranged with a phase difference of 90 degrees in magnetic angle, four combinations of high and low signals of the first and second hall switches 14a and 14b can be made. Therefore, it is possible to detect which area among the areas obtained by dividing the range of 360 degrees by 90 degrees by the output signals of the first and second Hall elements 14a and 14b.
  • the motor shaft 11 is produced based on both the rising of the high signal to the low signal and the falling of the low signal to the high signal. Since the rotational position is detected, the amount of information is doubled as compared to the case where only one of rising and falling is considered, and the rotational position of the motor shaft 11 can be detected finely. Furthermore, the rotation direction of the motor shaft 11 can also be detected by a combination of rising and falling of the output signals of the first and second hall switches 14a and 14b.
  • the first and second Hall switches 14a and 14b are intermittently operated by a pulse drive method.
  • the signals output from the first and second hall switches 14a and 14b maintain the output signal of the previous operation time even in the standby time in which sampling is not performed. Therefore, it is possible to obtain an output signal as a provisional value even in a standby time in which sampling is not performed.
  • the first and second hall switches 14a and 14b can detect 180 ° clockwise and counterclockwise, respectively, when the magnet 12 has two poles, Detection can be performed in a total range of 360 °.
  • the rotational position of the motor shaft 11 is 360 ° ( ⁇ 180 °) in the first and second hall switches 14a and 14b. It can not be determined if it has changed within the range or if it has changed 360 ° from there.
  • the waiting time is set to be shorter than the shortest possible time required for the motor shaft 11 to rotate 180 degrees.
  • the rotational position of the motor shaft 11 can be detected before the motor shaft 11 rotates 180 degrees or more.
  • the first and second Hall switches 14a and 14b are controlled so that the current value becomes large in a cycle shorter than the rotation of the rotary shaft by 90 degrees of magnetic angle. That is, by setting the standby time to the shortest possible period of time required for the motor shaft 11 to rotate 90 °, the motor shaft 11 may change in angle by 90 ° or more during the standby time. Thus, the change in the rotational position of the motor shaft 11 can be reliably reflected on the output signals of the first and second hall switches 14a and 14b.
  • the ECU 4 comprises a substrate 15, a power supply 21 for constantly supplying power even when the ignition is off, first and second hall switches 14a and 14b which are the steering operation detecting devices, and first and second hall switches 14a and 14b.
  • the power supply 21 and the power supply IC 22 constitute a power supply circuit.
  • the power supply 21 is for operating only the first and second hall switches 14a and 14b and the wakeup circuit 24 and has a small capacity.
  • the power is supplied from the power supply IC 22 to the MPU 25 and the GMR element 13.
  • the sleep mode is entered to turn off the power supply IC 22 of the ECU 4 to reduce power consumption.
  • the absolute steering angle based on the output signal of the GMR element 13 is stored in the storage circuit 26 of the MPU 25.
  • the power supply 21 supplies power to the first and second hall switches 14a and 14b and the wakeup circuit 24.
  • the wakeup circuit 24 activates the power supply IC 22, and the MPU 25 and GMR element The electric power is supplied to 13, and the rotational position detection of the motor shaft 11 by the GMR element 13 and the absolute steering angle calculation of the steering wheel SW are restarted.
  • the absolute steering angle of the steering shaft 11 stored in the storage circuit 26 of the MPU 25 when the ignition is off, and the rotation of the motor shaft 11 detected by the first and second hall switches 14a and 14b. Based on the corners, estimate the current steering angle.
  • the first and second hall switches 14a and 14b which consume relatively low power, are energized to perform steering operation.
  • the GMR element 13 By energizing the GMR element 13, it is possible to obtain steering angle information in consideration of the steering operation performed during the ignition off time while the power consumption is suppressed while the ignition is on.
  • the first and second hall switches 14a and 14b and the wakeup circuit 24 are supplied with power from a power supply 21 different from the power supply IC 22 for supplying power to the ECU 4.
  • a power supply 21 different from the power supply IC 22 for supplying power to the ECU 4.
  • first and second hall switches 14a and 14b used as the steering operation detection device in the embodiment are elements performing intermittent operation, power consumption can be suppressed for the standby time, which is significantly larger than that of the always-on type. Power consumption can be reduced.
  • the apparatus can be simplified. Furthermore, since the steering operation detection device is configured by at least two poles (one each of N and S) and a pair of Hall switches, the steering operation detection device can be configured inexpensively.
  • the magnet 12 having two poles has been described, but the number of poles of the magnet 12 is not limited to two.
  • the magnet 12 may be arranged in four poles around the axis of the motor shaft 11.
  • the S pole and the N pole are alternately arranged at every magnetic angle of 90 ° around the axis of the motor shaft 11.
  • the output signals of the first and second hall switches 14a and 14b have one cycle of 360 °, and the high signal and the low signal are repeated every 180 °
  • the output signals of the first and second Hall switches 14a and 14b have one cycle of 180 °, and repeat high and low signals every 90 °. Therefore, detection accuracy equal to or more than that of two Hall switches can be realized, and cost reduction can be expected by reducing the number of parts.
  • the GMR element 13 and the first and second hall switches 14a and 14b are disposed on the same surface (the magnet 12 side) of the substrate 15, the mountability (assembling ability) of the elements and sensors on the substrate 12 is improved. Do.
  • the GMR element 13 and the first and second Hall switches 14a and 14b may be disposed on the back surface of the substrate 15 (the opposite side of the magnet 12).
  • the GMR element 13 and the first and second Hall switches 14a and 14b may be disposed on different surfaces of the substrate 15. Thereby, the mounting range of the GMR element 13 and the first and second Hall switches 14a and 14b on the projection surface of the substrate 15 is suppressed without overlapping the mounting positions of the GMR element 13 and the first and second Hall switches 14a and 14b. can do. As a result, the magnet 12 can be miniaturized.
  • the timing of storing the absolute steering angle in the storage circuit 26 may be set as the time when the door of the vehicle is locked. Even after the ignition is turned off, the steering operation may be performed as long as the driver is in the vehicle, but after the door lock, the possibility of the steering operation is extremely low, so the absolute steering angle at this time. The accuracy of absolute steering angle information at reignition ON can be improved by storing
  • the timing at which the absolute steering angle is stored in the storage circuit 26 may be a time when there is no steering operation for a predetermined time after the ignition is turned off. If the steering operation is not performed for a predetermined time after the ignition is turned off, there is a high possibility that the steering operation will not be performed after that. Therefore, by storing the absolute steering angle at this time, Accuracy can be improved.
  • the absolute steering angle at ignition OFF and the motor rotation angle at ignition OFF in the storage circuit can be maintained even when the battery is removed.
  • the ECU 4 may store information of the steering angle detected by the GMR element 13 in the storage circuit 26.
  • the GMR element 13 activated by the wakeup circuit 24 is also deenergized when the steering operation is not performed for a predetermined time again, and power consumption can be suppressed.
  • both the GMR element (steering angle detection device) 13 and the first and second hall switches (steering operation detection device) 14a and 14b can detect the steering angle, an ignition switch or accessory switch of the vehicle is used.
  • the abnormality of the device can be detected by comparing the steering angles based on the output signals of the GMR element 13 and the first and second hall switches 14a and 14b when the switch is on. it can.
  • the first and second hall switches are applied to the steering operation detection device, but the present invention is also applicable to a GMR sensor, an AMR sensor, a TMR sensor, or a hall sensor.
  • a GMR sensor it is possible to detect one rotation of the rotating shaft.
  • AMR sensor it is possible to detect a half rotation of the rotation shaft.
  • the first and second hall switches 14a and 14b are provided in addition to the GMR element 13, and the steering operation at the time of ignition off is detected by the first and second hall switches 14a and 14b.
  • the GMR element 13 may detect a steering operation when the ignition is off. In this case, it is desirable to supply power to the GMR element 13 from a small-capacity power supply different from the power supply IC 22. Further, the steering shaft rotation angle is greatly decelerated from the relationship of the reduction ratio with respect to the motor rotation angle, and the angle change can be detected from the slight change of the steering shaft rotation angle.
  • an IC in which the first and second Hall switches 14a and 14b and the GMR element 13 are integrated may be used.
  • the layout can be improved, the number of parts can be reduced, and the cost can be reduced.
  • the ECU 4 of the present embodiment corrects the steering angle to 0 when it is determined that the vehicle is traveling straight.
  • a determination condition of the straight traveling state of the vehicle when the traveling speed of the vehicle is equal to or more than a predetermined speed, when the rotational speed difference between the left and right steered wheels W is equal to or less than a predetermined amount, or when the steering torque is equal to or less than a predetermined value Can be mentioned.
  • it can be determined whether or not the vehicle is traveling straight according to the traveling condition of the vehicle.
  • the steering angle when it is determined to be in the straight ahead state is equal to or more than a predetermined angle, the accuracy of the steering angle information can be enhanced by correcting the steering angle to the 0 side.
  • the steering angle information can be improved even if the power steering apparatus does not have a sensor capable of independently detecting the absolute steering angle.
  • the first and second hall switches 14a and 14b are not activated as well.
  • the steering angle can be set even when the steering operation is performed in the state where the battery is removed.
  • FIG. 11 is a schematic view showing a power steering apparatus for steering by wire. As shown in FIG. 11, in the steering-by-wire power steering apparatus, the steering wheel SW and the rack bar 3 are not connected, and the steering wheel SW and the steered wheels W and W operate independently.
  • the steering wheel SW When the steering wheel SW is rotationally steered, the steering angle of the steering wheel SW is detected by the torque sensor TS, and the ECU 4 controls the current of the electric motor M based on the output signal of the torque sensor TS.
  • the steering force is applied via (not shown).
  • the power steering device of this steering by wire applies a steering force only by the output from the electric motor M, and steers the steered wheels W, W.
  • the present invention is also applicable to such a steering by wire steering apparatus.
  • FIG. 12 is a schematic view showing a steering device of an electric and mechanical unit.
  • the steering device of the machine-electric separate unit is one in which the ECU 4 and the electric motor M are not integrally but separately provided.
  • the present invention is also applicable to such an electric and mechanical separate steering apparatus.
  • the steering operation detection device first and second hall switches 14a and 14b
  • the wakeup circuit 24 are mounted on the electric motor M side, there is no connection between the ECU 4 and the electric motor M
  • the wakeup mode can be activated by the steering angle fluctuation.
  • a motor rotation angle sensor may be applied to the steering operation detection device.
  • the steering shaft rotation angle is largely decelerated from the reduction ratio with respect to the motor rotation angle, so that it is possible to detect an angle change from a slight change in the rotation angle of the steering shaft.
  • the steering angle detection device (GMR element) 13 and the steering operation detection devices (first and second hall switches) 14a and 14b are provided in the electric motor M, but a configuration provided in the steering mechanism is also applicable It is.
  • the first and second Hall elements are drive-controlled such that the current value becomes larger in a cycle shorter than that when the rotary shaft rotates 90 degrees.
  • a power steering apparatus comprising: an abnormality detection unit configured to detect an abnormality of the device by comparing a steering angle based on an output signal of the detection device;
  • both the steering angle detection device and the steering operation detection device can detect a change in steering angle. By comparing the output signals of the two, if the difference is large, it is possible to detect an abnormality of the device.
  • the electric motor is a brushless motor including a rotor, a stator, and a motor rotation angle sensor for detecting a rotational position of the rotor.
  • the motor rotation angle sensor includes the magnet of the steering operation detection device, and a rotation angle sensor which is provided to face the magnet and detects the rotational position of the rotation shaft based on a change in the magnetic field of the magnet. Power steering apparatus characterized in that
  • the device can be simplified by combining the magnet of the steering operation detection device and the magnet of the motor rotation angle sensor.
  • the control device comprises a microcomputer for calculating a command signal for driving and controlling the electric motor, and a substrate on which the microcomputer is mounted.
  • the electric motor is a brushless motor including a rotor, a stator, and a motor rotation angle sensor that detects a rotational position of the rotor.
  • the motor rotation angle sensor is composed of a magnet provided on the rotation shaft, and a rotation angle sensor provided to face the magnet and detecting a rotation position of the rotation shaft based on a change in the magnetic field of the magnet.
  • a power steering apparatus, wherein the first and second Hall switches and the rotation angle sensor are disposed on the same side of the substrate.
  • the control device comprises a microcomputer for calculating a command signal for driving and controlling the electric motor, and a substrate on which the microcomputer is mounted.
  • the electric motor is a brushless motor including a rotor, a stator, and a motor rotation angle sensor that detects a rotational position of the rotor.
  • the motor rotation angle sensor is composed of a magnet provided on the rotation shaft, and a rotation angle sensor provided to face the magnet and detecting a rotation position of the rotation shaft based on a change in the magnetic field of the magnet.
  • a power steering apparatus wherein the first and second Hall switches and the rotation angle sensor are disposed on the opposite side of the substrate.
  • the steering operation detection device is a signal that changes from a high signal to a low signal among signals output from the first and second hall switches, and a low signal.
  • a power steering apparatus characterized by detecting which one of the four divided areas is located on the basis of both rising edges changing from a high signal to a high signal.
  • the steering operation detection apparatus is configured to be supplied with power from a power supply different from a power supply for supplying power to the control apparatus. Power steering device.
  • the rotation shaft of the steering operation detection device includes a magnet disposed around the rotation shaft so as to face the detection unit,
  • the detection unit of the steering operation detection device is a Hall switch that outputs a high signal or a low signal according to the magnetic flux density, and
  • the said steering operation detection apparatus detects the rotational position of the said rotating shaft based on the output signal of the said hall
  • the power steering apparatus characterized by the above-mentioned.
  • control device has a storage circuit that stores the value of the absolute steering angle when the door is locked when the door of the vehicle is locked. Power steering device that features.
  • the steering operation may be performed as long as the driver is in the vehicle, but the steering operation may be performed after the door is locked. Since the nature is extremely low, storing the absolute steering angle at this time makes it possible to improve the accuracy of the steering angle information when the reignition is on.
  • control device has a memory circuit for storing the value of the absolute steering angle when the predetermined time has elapsed when there is no steering operation for a predetermined time after the ignition is turned off.
  • control device is configured to cause the traveling speed of the vehicle to be a predetermined speed or more, the rotational speed difference between the left and right steered wheels to be a predetermined amount or less, or the steering torque to be a predetermined value or less.
  • a power steering apparatus which determines that the vehicle is in a straight traveling state based on the condition of and corrects a steering angle detected by the steering angle detection device.
  • (M) it can be determined whether the vehicle is in a straight ahead state according to the traveling condition of the vehicle, and when the steering angle at this time is a predetermined angle or more, the steering angle is 0
  • the correction to the side can increase the accuracy of the steering angle information. Therefore, for example, the steering angle information can be obtained even when the steering operation is performed in a state in which the battery is removed so that the steering operation detection device is not activated as well.
  • control device has a storage circuit for storing information of the steering angle detected by the steering angle detection device when the steering operation is performed while the ignition is off.
  • Power steering device characterized by
  • the steering angle detection device activated by the wakeup circuit is also deenergized when the steering operation is not performed for a predetermined time again, and power consumption can be suppressed.
  • the steering angle information at this time in the storage circuit, it is possible to obtain steering angle information in consideration of the steering operation amount during ignition off when the reignition is on.
  • the steering angle detection device is configured of a rotation shaft that rotates in response to a steering operation of a steering wheel, and a rotation angle sensor that detects a rotation angle of the rotation shaft.
  • the control device is information on the rotation angle which is an output signal of the rotation angle sensor of the steering angle detection device, and rotation number information obtained by counting how many rotations the rotation shaft rotates clockwise or counterclockwise. And an absolute steering angle which is a steering angle from a neutral state of a steering wheel based on and.
  • the electric motor is a brushless motor including a rotor stator and a motor rotation angle sensor for detecting a rotational position of the rotor
  • the motor rotation angle sensor includes the magnet of the steering operation detection device, and a rotation angle sensor which is provided to face the magnet and detects the rotational position of the rotation shaft based on a change in the magnetic field of the magnet.
  • a power steering apparatus wherein the control device detects a steering angle changed by a steering operation performed while the ignition is off by using the motor rotation angle sensor.
  • the motor rotation angle sensor has high angle detection accuracy to control the brushless motor, and therefore, by detecting the steering angle based on this information, highly accurate steering angle information You can get In addition, there is no need to provide a separate sensor.
  • the steering mechanism is configured such that a steering wheel and steered wheels can be operated independently
  • the power steering apparatus according to the present invention is characterized in that the steering angle detection device includes a rotation shaft that rotates in response to the turning operation of the steered wheels of the steered wheels, and a rotation angle sensor that detects the rotational position of the rotation shaft. .
  • the control device sets an initial absolute steering angle in consideration of the movement of the steering angle detected at the time of ignition on / off.
  • a steering angle is detected based on an initial absolute steering angle and a detection output of a motor rotation angle sensor when a microcomputer is started.
  • the absolute steering angle can be maintained even when the battery is removed.
  • T A power steering apparatus according to claim 1, wherein an IC in which a steering operation detecting device and a steering angle detecting device are integrated is used.
  • the wakeup mode can be activated by the steering angle fluctuation without connection between the control device and the electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 ステアリング装置において、イグニッションオフ時における消費電力を極力低減させる。 車両のイグニッションオフまたはアクセサリスイッチオフ時にステアリングホイールの操舵操作を検出可能な操舵操作検出装置(第1,第2ホールスイッチ)14a,14bを設け、イグニッションオフまたはアクセサリスイッチオフ時に操舵操作検出装置14a,14bがステアリングホイールの操舵操作を検出した場合には、ウェークアップ回路24において操舵角検出装置(モータ回転角センサ)13に通電して操舵角検出装置による通常の操舵角検出に移行する。

Description

パワーステアリング装置およびパワーステアリング装置の制御装置
 本発明は、パワーステアリング装置およびその制御装置に係り、特にステアリングの操舵角検出方法に関する。
 自動車におけるステアリングの操舵角検出のために、専用のセンサを新規に設けることなく、既存のセンサを利用して検出可能にしたシステムが構築されている。例えば、モータ回転角センサで検出されたモータの回転角をステアリングの中立状態からの操舵角である絶対操舵角に換算することにより、ステアリングホイールの操舵角検出用のセンサを省略している。
 モータ回転角センサを利用してステアリングホイールの絶対操舵角を検出する技術として、下記の特許文献1が公開されている。
特開2011-201451号公報
 しかしながら、モータ回転角を利用してステアリングホイールの絶対操舵角を換算する場合には、イグニッションオフの状態においても絶対操舵角を記憶すると共に、常時モータの回転角を検出できる機構でなければならない。そのため、イグニッションオフ時においてもモータ回転角センサを動作させる必要があり、電力を消費してしまう問題が生じていた。
 本発明はかかる技術的課題に鑑みて案出されたものであり、ステアリング装置において、イグニッションオフ時における消費電力を低減させることが課題となる。
 本願発明は、車両のイグニッションオフまたはアクセサリスイッチオフ時にステアリングホイールの操舵操作を検出可能な操舵操作検出装置を設け、イグニッションオフまたはアクセサリスイッチオフ時に操舵操作検出装置がステアリングホイールの操舵操作を検出した場合には、ウェークアップ回路において操舵角検出装置に通電して操舵角検出装置による通常の操舵角検出に移行することを特徴とする。
 本発明によれば、ステアリング装置において、イグニッションオフ時における消費電力を低減させることが可能となる。
実施形態におけるパワーステアリング装置を示す概略図である。 実施形態における操舵角検出装置と操舵操作検出装置を示す概略図である。 ホールスイッチの出力信号を示すグラフである。 ホールスイッチの間欠動作を表すグラフである。 ホールスイッチの出力信号のラッチ機能を示すグラフである。 ホールスイッチの検出可能範囲を示すグラフである。 実施形態におけるECUの回路ブロック図である。 磁石の他例を示す概略図である。 GMR素子とホールスイッチの配置方法の他例を示す概略図である。 GMR素子とホールスイッチの配置方法の他例を示す概略図である。 パワーステアリング装置の他例を示す概略図である。 パワーステアリング装置の他例を示す概略図である。
 以下、本発明に係るパワーステアリング装置およびその制御装置の実施形態を図1~図12に基づいて詳述する。
 [実施形態]
 図1は、本実施形態におけるパワーステアリング装置を示す概略図である。図1に示すパワーステアリング装置は、ステアリングホイールSW,操舵軸としてのステアリングシャフト1,トーションバー(図示省略),ピニオン軸2,ラック軸3により基本的な操舵機構が構成されている。この操舵機構は、運転者によってステアリングホイールSWが回転操作されると、ステアリングシャフト1が回転してトーションバーが捻られることとなり、このトーションバーの捻れ変形に基づいて生ずるトーションバーの弾性変形により、ピニオン軸2が回転する。このピニオン軸2の回転運動がラック軸3の直線運動に変換され、ラック軸3の両端に連結された左右の転舵輪W,Wが転舵するようになっている。つまり、ラック軸3には、ピニオン軸2が噛み合いするラック歯が形成されており、そのラック歯とピニオン軸との噛合をもってステアリングシャフト1の回転を転舵動作に変換する変換機構が構成される。
 また、ピニオン軸2のハウジングにはステアリングホイールSWの操舵角を検出するトルクセンサ(図示省略)が設けられており、トルクセンサの出力信号およびモータ回転センサの出力信号,車速情報に基づいて制御装置(以下、ECUと称する)4により電動モータMの電流制御を行い、電動モータMから減速機(図示省略)を介してラック軸3に対して操舵補助力を付与するように構成されている。
 前記電動モータMは、ブラシレスモータであり、ロータと、ステータと、前記ロータの回転位置を検出するモータ回転角センサと、から構成される。
     図2に示すように、前記モータ回転角センサは、電動モータMの回転軸であるモータシャフト11の先端に取り付けられた多極の磁石12と、基板15に実装されたモータ回転角センサIC(本実施形態では、GMR素子:以下、GMR素子と称する)13と、を備える。本実施形態では、磁石12は2極で構成されており、モータシャフト11の軸周り方向に、N極180°,S極180°構成されている。前記GMR素子13(操舵角検出装置)は、前記磁石12に対して、エアギャップを介して対面側に実装されている。このモータ回転角センサは、磁石12の磁界の変化に基づき、モータシャフト11の回転位置を検出する。
 前記ECU4は、前記GMR素子13の出力信号である前記モータシャフト11の回転角情報と、前記モータシャフト11が時計回り方向または反時計回り方向に何回転したかをカウントした回転数情報と、に基づき、ステアリングホイールSWの中立状態からの操舵角である絶対操舵角を演算する。これにより、モータ回転角センサは操舵角検出装置としても兼用され、絶対操舵角を検出可能な操舵角センサを設けることなく、ステアリングホイールSWの絶対角情報を得ることができる。
 また、図2に示すように、基板15のGMR素子13の周囲には、検出部としての第1,第2ホールスイッチ14a,14bが実装されている。この第1,第2ホールスイッチ14a,14bは、モータシャフト11の軸周りに互いに磁気角度90度位相をずらして配置されている。この磁石12と第1,第2ホールスイッチ14a,14bとで操舵操作検出装置が構成される。
 図3に示すように、この第1,第2ホールスイッチ14a,14bは、磁束密度の変化に応じて、ハイ信号またはロー信号を出力し、モータシャフト11の回転位置を検出する。本実施形態では、磁石12が2極でN極180°,S極180°で構成されているため、前記第1,第2ホールスイッチ14a,14bの出力信号は、ハイ信号とロー信号が180°毎に交互に出力され、1周期が360°となる。
 第1,第2ホールスイッチ14a,14bは磁気角度90度位相をずらして
配置されているため、第1,第2ホールスイッチ14a,14bのハイ信号
およびロー信号の組み合わせが4つできる。そのため、第1,第2ホール素子
14a,14bの出力信号により、モータシャフト11が360度の範囲を
90度ごとに分割した各領域のうち、どの領域に位置するのかを検出することができる。
 また、前記第1,第2ホールスイッチ14a,14bが出力する信号のうち、ハイ信号からロー信号に変化する立ち上がりと、ロー信号からハイ信号に変化する立ち下がりの両方に基づいてモータシャフト11の回転位置を検出しているため、立ち上がり,立ち下がりのうち一方のみを考慮する場合に比べ情報量が2倍となり、モータシャフト11の回転位置を細かく検出することができる。さらに、第1,第2ホールスイッチ14a,14bの出力信号における立ち上がりと立ち下がりの組み合わせにより、モータシャフト11の回転方向も検出することができる。
 図4に示すように、第1,第2ホールスイッチ14a,14bは、パルス駆動方式で間欠動作される。本実施形態における第1,第2ホールスイッチ14a,14bには、図4に示すように、磁束密度を検出することができる大きな電流値が動作時間としてtopの期間供給され、磁束密度のサンプリングが行われる。その後、待機時間としてtstbの期間小さな電流値が供給され、この待機期間においては磁束密度のサンプリングは行わない。その後も同様に、動作時間と待機時間を繰り返し、間欠動作が行われる。
 ただし、第1,第2ホールスイッチ14a,14bから出力される信号は、サンプリングを行わない待機時間であっても前回の動作時間の出力信号を維持する。そのため、サンプリングを行わない待機時間であっても、暫定値としての出力信号を得ることができる。
 その結果、図5に示すように、磁石の磁界(例えば、N極)が第1,第2ホールスイッチ14a,14bに近づき、磁束密度がBopを超えると、第1,第2ホールスイッチ14a,14bの出力VQはハイ信号からロー信号へ切り替わってロー信号の値を維持し、磁石の磁界(例えば、N極)が第1,第2ホールスイッチ14a,14bから遠ざかり、磁束密度がBrpより低くなると、第1,第2ホールスイッチ14a,14bの出力VQはロー信号からハイ信号へと切り替わってハイ信号を維持する。
 また、図6に示すように、前記第1,第2ホールスイッチ14a,14bは、磁石12が2極で構成されている場合、時計回りおよび半時計回り方向に各々180°検出可能であり、計360°の範囲で検出を行うことができる。一方、360°(±180°)の範囲を超えて回転位置が変化した場合には、第1,第2ホールスイッチ14a,14bでは、モータシャフト11の回転位置が360°(±180°)の範囲内で変化したのか、さらにそこから360°変化したのかを判別することができない。
 そこで、前記待機時間は、前記モータシャフト11が180°回転するのに必要な時間として想定される最も短い期間よりも短い期間に設定する。これにより、モータシャフト11が180°以上回転する前にモータシャフト11の回転位置を検出することができる。
 さらに、前記第1,第2ホールスイッチ14a,14bが、前記回転軸が磁気角度90°回転するよりも短い周期で前記電流値が大きい状態となるように駆動制御される。すなわち、前記待機時間をモータシャフト11が90°回転するのに必要な時間として想定される最も短い期間に設定することにより、待機時間中にモータシャフト11が90°以上角度変化してしまうことを防止し、確実にモータシャフト11の回転位置の変化を第1,第2ホールスイッチ14a,14bの出力信号に反映させることができる。
 ここで、図7のブロック図に基づいて本実施形態におけるステアリング装置のウェークアップ機能ついて説明する。前記ECU4は、基板15と、イグニッションオフ時にも常時電力を供給する電源21と、前記操舵操作検出装置である第1,第2ホールスイッチ14a,14bと、第1,第2ホールスイッチ14a,14bの信号に基づき電源IC22を起動させるウェークアップ回路24と、メイン電源であり、イグニッションオフ時には電力を供給しない電源IC22と、前記電動モータMを駆動制御する指令信号を演算するマイクロコンピュータ(以下、MPUと称する)25と、GMR素子(モータ回転角センサIC)13,13と、を備えている。この電源21,電源IC22により電力供給回路が構成される。前記電源21は第1,第2ホールスイッチ14a,14bとウェークアップ回路24のみを動作させるためもので小容量のものである。MPU25やGMR素子13は、電源IC22により電力が供給される。
 イグニッションオフ後、一定時間舵角変化がなく、第1,第2ホールスイッチ14a,14bの変化を検出しないとスリープモードに移行し、ECU4の電源IC22をオフにし消費電力を削減する。このとき、GMR素子13の出力信号に基づく絶対操舵角をMPU25の記憶回路26に記憶する。また、電源21は第1,第2ホールスイッチ14a,14b,ウェークアップ回路24に電力を供給している。
 スリープモード時に、ステアリングホイールSWの操舵等によりモータシャフト11が回転し、第1,第2ホールスイッチ14a,14bの出力信号が変化すると、ウェークアップ回路24において電源IC22を起動して、MPU25,GMR素子13に電力を供給し、GMR素子13によるモータシャフト11の回転位置検出およびステアリングホイールSWの絶対操舵角演算を再開させる。
 ステアリングホイールSWの絶対操舵角演算では、イグニッションオフ時にMPU25の記憶回路26に記憶されたステアリングシャフト11の絶対操舵角と、第1,第2ホールスイッチ14a,14bで検出されたモータシャフト11の回転角に基づいて、現在の操舵角を推定する。 
 以上示したように、本実施形態におけるパワーステアリング装置によれば、イグニッションオフ中は、比較的消費電力の小さい第1,第2ホールスイッチ14a,14bに通電を 行い、操舵操作が行われたときGMR素子13に通電を行うようにすることにより、消費電力を抑制しつつ、イグニッションオン時には、イグニッションオフ中に行われた操舵操作を考慮した操舵角情報を得ることができる。
  また、前記第1,第2ホールスイッチ14a,14b,ウェークアップ回路24は、ECU4に電力を供給する電源IC22とは別の電源21から電力が供給されている。大電流を消費するECU4と同じ電源を共有する場合、イグニッションオフ中に第1,第2ホールスイッチ14a,14bに電力を供給するために大電流を流す必要があるが、ECU4側とは別の電源21から第1,第2ホールスイッチ14a,14bに電力を供給することにより、イグニッションオフ中の消費電力を抑制することができる。
 また、実施形態で操舵操作検出装置として用いた第1,第2ホールスイッチ14a,14bは間欠動作を行う素子であるため、待機時間分は消費電力を抑えることができ、常時駆動タイプに比べ大幅に消費電力を抑制することができる。
 また、GMR素子13と第1,第2ホールスイッチ14a,14bは同じ磁石12を兼用しているため、装置の簡略化を図ることができる。さらに、操舵操作検出装置が、少なくとも2極(N,S各1極ずつ)の磁石と、1対のホールスイッチによって構成されるため、安価に操舵操作検出装置を構成することができる。
 また、本実施形態では、磁石12の極数が2つのものについて説明したが磁石12の極数は2つに限られるものではない。例えば、 図8に示すように、磁石12は、モータシャフト11の軸周りに4極配置してもよい。図8では、S極,N極がモータシャフト11の軸周りにおいて、磁気角度90°ごとに交互に配置されている。このように、磁石12が4極で構成された場合は、2極の場合と比べて、2倍の分解能を得ることができる。すなわち、磁石12が2極の場合は、第1,第2ホールスイッチ14a,14bの出力信号は、1周期は360°であり、180°ごとにハイ信号とロー信号を繰り返すこととなるが、磁石12が4極の場合、第1,第2ホールスイッチ14a,14bの出力信号は、1周期が180°であり、90°ごとにハイ信号とロー信号を繰り返す。そのため、ホールスイッチ1個でも2個の場合と同等以上の検出精度が実現でき、部品点数の削減によりコストダウンが期待できる。
 また、GMR素子13と第1,第2ホールスイッチ14a,14bは、基板15の同じ面(磁石12側)に配置されているため、基板12に対する素子やセンサの搭載性(組み付け性)が向上する。
 また、図9に示すように、GMR素子13と第1,第2ホールスイッチ14a,14bを、基板15の裏面(磁石12の反対側)に配置しても良い。
 さらに、図10に示すように、基板15の別々の面にGMR素子13と第1,第2ホールスイッチ14a,14bを配置してもよい。これにより、GMR素子13と第1,第2ホールスイッチ14a,14bとの搭載位置が重なることなく、基板15投影面におけるGMR素子13と第1,第2ホールスイッチ14a,14bの搭載範囲を抑制することができる。その結果、磁石12の小型化を図ることが可能となる。
 また、記憶回路26に絶対操舵角を記憶させるタイミングを車両のドアがロックされる時としてもよい。イグニッションオフ以降であっても、運転者が車内にいる限り操舵操作が行われる可能性があるが、ドアロック後であれば、操舵操作される可能性は極めて低いため、このときの絶対操舵角を記憶することにより、再イグニッションオン時の絶対操舵角情報の精度を高めることができる。
  また、記憶回路26に絶対操舵角を記憶するタイミングをイグニッションオフ後、所定時間操舵操作が無い時としてもよい。イグニッションオフ後、所定時間操舵操作が無いときは、それ以降も操舵操作が行われない可能性が高いため、この時の絶対操舵角を記憶することにより、再イグニッションオン時の絶対操舵角情報の精度を高めることができる。
 また、イグニッションオフ時の絶対操舵角,イグニッションオフ中のモータ回転角を記憶回路に記憶することにより、バッテリを外された時にも絶対操舵角を保持することができる。
 また、前記ECU4は、イグニッションオフ中に操舵操作が行われたとき、前記GMR素子13によって検出された操舵角の情報を記憶回路26に記憶してもよい。ウェークアップ回路24によって起動されたGMR素子13も、再度所定時間操舵操作が行われないときには通電が停止され消費電力の抑制が図られる。このときの操舵角情報を記憶回路26に保存しておくことにより、再イグニッションオン時においてイグニッションオフ中の操舵操作量を考慮した操舵角情報を得ることができる。    
 また、GMR素子(操舵角検出装置)13と第1,第2ホールスイッチ(操舵操作検出装置)14a,14bは、共に操舵角を検出することができるため、車両のイグニッションスイッチ,またはアクセサリスイッチがオンのとき、前記GMR素子13と第1,第2ホールスイッチ14a,14bの出力信号に基づく操舵角を比較することにより、両操舵角の差が大きい場合には装置の異常を検出することができる。
 また、実施形態では、操舵操作検出装置に第1,第2ホールスイッチを適用したが、GMRセンサまたはAMRセンサ,TMRセンサ,ホールセンサでも適用可能である。GMRセンサであれば、回転軸1回転分の検出が可能となる。AMRセンサであれば、回転軸1/2回転分の検出が可能となる。
 また、実施形態では、GMR素子13の他に第1,第2ホールスイッチ14a,14bを設け、この第1,第2ホールスイッチ14a,14bによりイグニッションオフ時における操舵操作を検出していたが、GMR素子13でイグニッションオフ時の操舵操作を検出してもよい。この場合、GMR素子13には、電源IC22とは別の小容量の電源から電力を供給することが望ましい。また、モータ回転角に対して、減速比の関係から操舵軸回転角は大きく減速され、操舵軸の僅かな回転角の変化から角度変化を検出することができる。
 また、第1,第2ホールスイッチ14a,14bとGMR素子13が一体となったICを使用してもよい。この場合、レイアウト性の向上,部品点数の削減,コストダウンを図ることが可能となる。
  また、本実施形態のECU4では、車両が直進状態であると判断した時、操舵角を0側に補正する。車両の直進状態の判断条件としては、車両の走行速度が所定速度以上の場合や、左右の転舵輪Wの回転速度差が所定量以下である場合、または、操舵トルクが所定値以下の場合等が挙げられる。このように、車両の走行条件によって車両が直進状態であるか否かを判断することができる。この直進状態と判断されたときの操舵角が所定角以上のときは、操舵角を0側に補正することにより、操舵角情報の精度を高めることができる。その結果、単独で絶対操舵角の検出が可能なセンサを有しないパワーステアリング装置であっても操舵角情報を向上させることができ、例えば、第1,第2ホールスイッチ14a,14bも起動しないようなバッテリが外さ れた状態において操舵操作が行われた場合であっても、操舵角を設定することができる。
 また、本実施形態のように、ECU4と電動モータMがー体となっている機電一体構造において、第1,第2ホールスイッチ14a,14bおよびウェークアップ回路24をECU4の制御基板15に一体構造にすることにより、部品点数削減,レイアウト性の向上を図ることができる。.
 図11は、ステアリングバイワイヤのパワーステアリング装置を示す概略図である。図11に示すように、ステアリングバイワイヤのパワーステアリング装置は、ステアリングホイールSWとラックバー3が連結されておらず、ステアリングホイールSWと転舵輪W,Wとが独立して作動するものである。ステアリングホイールSWが回転操舵された場合、ステアリングホイールSWの操舵角をトルクセンサTSで検出し、ECU4においてトルクセンサTSの出力信号に基づいて電動モータMの電流制御を行い、電動モータMから減速機(図示省略)を介して操舵力を付与する。このステアリングバイワイヤのパワーステアリング装置は、電動モータMからの出力のみによって操舵力を付与し、転舵輪W,Wを転舵するものである。本願発明は、このようなステアリングバイワイヤのステアリング装置に対しても適用可能である。
 図12は、機電別体のステアリング装置を示す概略図である。図12に示すように、機電別体のステアリング装置は、ECU4と電動モータMが一体ではなく別々に設けられたものである。本願発明は、このような機電別体のステアリング装置に対しても適用可能である。この機電別体のパワーステアリング装置においては、操舵操作検出装置(第1,第2ホールスイッチ14a,14b)とウェークアップ回路24を電動モータM側に搭載すれば、ECU4と電動モータM間の接続無しに、操舵角変動によりウェークアップモードを起動することができる。
 また、操舵操作検出装置にモータ回転角センサを適用してもよい。これにより、モータ回転角に対して、減速比から操舵軸回転角は大きく減速されるため、操舵軸の僅かな回転角の変化から角度変化を検出することが可能となる。
 また、本実施形態では、操舵角検出装置(GMR素子)13と操舵操作検出装置(第1,第2ホールスイッチ)14a,14bを電動モータMに設けたが、操舵機構に設ける構成も適用可能である。
 ここで、上述した各実施形態から把握される技術的思想であって、特許請求の範囲に記載したもの以外のものについて、その効果ともに以下に記載する。
 (a) 請求項4記載のパワーステアリング装置において、前記第1および第2のホール素子は、前記回転軸が90度回転するよりも短い周期で前記電流値が大きい状態となるように駆動制御されることを特徴とする請求項4記載のパワーステアリング装置。
 (a)記載の技術的思想によれば、電流値が小さい状態で回転軸が90度以上角度変化してしまうことを防止することができる。 
 (b)(a)記載のパワーステアリング装置において、前記第1および第2のホールスイッチは、前記電流値が小さい状態において、前記電流値が大きい状態の出力信号の前回値を維持して出力することを特徴とするパワーステアリング装置。
 (b)記載の技術的思想によれば、電流値が小さい状態においても、暫定値としての出力信号を継続して得ることができる。 
 (c)請求項3記載のパワーステアリング装置において、前記制御装置に設けられ、車両のイグニッションスイッチまたはアクセサリスイッチがオンのとき、前記操舵角検出装置の出力信号に基づいた操舵角と、前記操舵操作検出装置の出力信号に基づいた操舵角とを比較することにより、装置の異常を検出することを特徴とするパワーステアリング装置。
 (c)記載の技術的思想によれば、操舵角検出装置と操舵操作検出装置は、共に操舵角変化を検出することができる。両者の出力信号を比較し、その差が大きい場合、装置の異常を検出することができる。 
 (d)請求項3記載のパワーステアリング装置において、前記電動モータは、ロータと、ステータと、前記ロータの回転位置を検出するモータ回転角センサと、から構成されるブラシレスモータであって、
     前記モータ回転角センサは前記操舵操作検出装置の前記磁石と、前記磁石と対向するように設けられ、前記磁石の磁界の変化に基づき前記回転軸の回転位置を検出する回転角センサと、から構成されることを特徴とするパワーステアリング装置。
 (d)記載の技術的思想によれば、操舵操作検出装置の磁石とモータ回転角センサの磁石を兼用することにより、装置の簡素化を図ることができる。 
 (e)請求項3記載のパワーステアリング装置において、前記制御装置は、前記電動モータを駆動制御する指令信号を演算するマイクロコンピュータと、前記マイクロコンピュータが搭載される基板と、から構成され、
 前記電動モータは、ロータと、ステータと、前記ロータの回転位置を検出するモータ回転角センサと、から構成されるブラシレスモータであって、
 前記モータ回転角センサは前記回転軸に設けられた磁石と、前記磁石と対向するように設けられ、前記磁石の磁界の変化に基づき前記回転軸の回転位置を検出する回転角センサと、から構成され、
 前記第1および第2のホールスイッチと、前記回転角センサは、前記基板の同じ側に配置されることを特徴とするパワーステアリング装置。
 (e)記載の技術的思想によれば、基板に対する素子やセンサの搭載性(組み付け性)が向上する。
 (f)請求項3記載のパワーステアリング装置において、前記制御装置は、前記電動モータを駆動制御する指令信号を演算するマイクロコンピュータと、前記マイクロコンピュータが搭載される基板と、から構成され、
 前記電動モータは、ロータと、ステータと、前記ロータの回転位置を検出するモータ回転角センサと、から構成されるブラシレスモータであって、
 前記モータ回転角センサは前記回転軸に設けられた磁石と、前記磁石と対向するように設けられ、前記磁石の磁界の変化に基づき前記回転軸の回転位置を検出する回転角センサと、から構成され、
 前記第1および第2のホールスイッチと、前記回転角センサは、互いに前記基板の反対側に配置されることを特徴とするパワーステアリング装置。
   (f)記載の技術的思想によれば、基板における第1および第2のホールスイッチと、回転角センサの投影面における搭載範囲を抑制することができる。また、第1および第2のホール素子と回転角センサ同士で搭載位置が干渉することが無い。 
 (g)請求項3記載のパワーステアリング装置において、前記操舵操作検出装置は、前記第1および第2のホールスイッチが出力する信号のうち、ハイ信号からロー信号に変化する立ち下がりと、ロー信号からハイ信号に変化する立ち上がりの両方に基づき前記4分割した各領域のうちどの領域に位置するかを検出することを特徴とするパワーステアリング装置。
 (g)記載の技術的思想によれば、前記立ち上がりと立ち下がりの両方を考慮することにより、立ち下がりまたは立ち上がりのうち一方のみを考慮する場合に比べ情報量が2倍となると共に、回転軸の回転方向も検出することができる。 
 (h)請求項3記載のパワーステアリング装置において、前記操舵操作検出装置は、前記制御装置に電力を供給する電源とは別の電源から電力を供給されるように構成されることを特徴とするパワーステアリング装置。
 (h)記載の技術的思想によれば、大電流を消費する制御装置と同じ電源を共有する場合、イグニッションオフ中に操舵操作検出装置に電力を供給するために大電流を流す必要があるが、マイクロコンピュータ側とは別の電源を用いることにより、イグニッションオフ中の消費電力を抑制することができる。 
 (i)請求項2記載のパワーステアリング装置において、前記操舵操作検出装置の回転軸は、前記検出部と対向するように前記回転軸周りに4極配置された磁石を備え、
 前記操舵操作検出装置の検出部は、磁束密度に応じてハイ信号またはロー信号を出力するホールスイッチであって、
 前記操舵操作検出装置は、前記ホールスイッチの出力信号に基づき、前記回転軸の回転位置を検出することを特徴とするパワーステアリング装置。
 (i)記載の技術的思想によれば、磁石が2極の場合に比べ、2倍の分解能を得ることができる。    
 (j)請求項2記載のパワーステアリング装置において、前記操舵操作検出装置は、GMRセンサまたはAMRセンサ,TMRセンサ,ホールセンサによって構成されることを特徴とするパワーステアリング装置。
 (j)記載の技術的思想によれば、GMRセンサであれば、回転軸1回転分の検出が可能となる。AMRセンサであれば、回転軸1/2回転分の検出が可能となる。 
 (k)請求項1記載のパワーステアリング装置において、前記制御装置は、車両のドアがロックされるとき、前記ドアがロックされるときの前記絶対操舵角の値を記憶する記憶回路を有することを特徴とするパワーステアリング装置。
 (k)記載の技術的思想によれば、イグニッションオフ以降であっても、運転者が車内にいる限り操舵操作が行われる可能性があるが、ドアロック後であれば、操舵操作される可能性は極めて低いため、このときの絶対操舵角を記憶することにより、再イグニッションオン時の操舵角情報の精度を高めることができる。 
 (l)請求項1記載のパワーステアリング装置において、前記制御装置は、イグニッションオフ後、所定時間操舵操作が無いとき、前記所定時間経過時における前記絶対操舵角の値を記憶する記憶回路を有することを特徴とするパワーステアリング装置。
 (l)記載の技術的思想によれば、イグニッションオフ後、所定時間操舵操作が無いときは、それ以降も操舵操作が行われない可能性が高いため、この時の絶対操舵角を記憶することにより、再イグニッションオン時の操舵角情報の精度を高めることができる。 
 (m)請求項1記載のパワーステアリング装置において、前記制御装置は、車両の走行速度が所定速度以上、左右の転舵輪の回転速度差が所定量以下、または操舵トルクが所定値以下のいずれかの条件に基づき、車両が直進状態であると判断し、前記操舵角検出装置によって検出される操舵角を補正することを特徴とするパワーステアリング装置。
 (m)記載の技術的思想によれば、車両の走行条件によって車両が直進状態であるか否かを判断することができ、このときの操舵角が所定角以上のときは、操舵角を0側に補正することにより、操舵角情報の精度を高めることができる。よって、例えば、操舵操作検出装置も起動しないようなバッテリが外さ れた状態において操舵操作が行われた場合であっても、操舵角情報を得ることができる。 
 (n)請求項1記載のパワーステアリング装置において、前記制御装置は、イグニッションオフ中に操舵操作が行われたとき、前記操舵角検出装置によって検出された操舵角の情報を記憶する記憶回路を有することを特徴とするパワーステアリング装置。
 (n)記載の技術的思想によれば、ウェークアップ回路によって起動された操舵角検出装置も、再度所定時間操舵操作が行われないときには通電が停止され消費電力の抑制が図られる。このときの操舵角情報を記憶回路に保存しておくことにより、再イグニッションオン時においてイグニッションオフ中の操舵操作量を考慮した操舵角情報を得ることができる。 
 (o)請求項1記載のパワーステアリング装置において、前記操舵角検出装置は、ステアリングホイールの操舵操作に応じて回転する回転軸と、この回転軸の回転角を検出する回転角センサと、から構成され、
 前記制御装置は、前記操舵角検出装置の前記回転角センサの出力信号である前記回転角の情報と、前記回転軸が時計回り方向または反時計回り方向に何回転したかをカウントした回転数情報と、に基づき、ステアリングホイールの中立状態からの操舵角である絶対操舵角を演算することを特徴とするパワーステアリング装置。
 (o)記載の技術的思想によれば、絶対角を検出可能な操舵角センサを設けることなく、絶対角情報を得ることができる。その結果、装置の小型化、低コスト化を図ることができる。
 (p)請求項1記載のパワーステアリング装置において、前記電動モータは、ロータステータ、前記ロータの回転位置を検出するモータ回転角センサと、から構成されるブラシレスモータであって、
 前記モータ回転角センサは前記操舵操作検出装置の前記磁石と、前記磁石と対向するように設けられ、前記磁石の磁界の変化に基づき前記回転軸の回転位置を検出する回転角センサと、から構成され、
 前記制御装置は、イグニッションオフ中において行われた操舵操作によって変化した操舵角を、前記モータ回転角センサによって検出することを特徴とするパワーステアリング装   置。
 (p)記載の技術的思想によれば、モータ回転角センサはブラシレスモータを制御するために高い角度検出精度を有するため、この情報に基づき操舵角を検出することにより、精度の高い操舵角情報を得ることができる。また、別途センサを設ける必要がない。
 (q)請求項1記載のパワーステアリング装置において、前記操舵機構は、ステアリングホイールと転舵輪とが独立して作動可能に構成され、
 前記操舵角検出装置は、前記転舵輪の転舵輪の転舵動作に応じて回転する回転軸と、この回転軸の回転位置を検出する回転角センサによって構成されることを特徴とするパワーステアリング装置。
 (q)記載の技術的思想によれば、所謂ステアリングバイワイヤのパワーステアリング装置においても、転舵輪の転舵角である絶対角を検出可能とすることができる。
 (r)請求項1記載のパワーステアリング装置において、前記制御装置は、イグニッションオンオフ時に検出した操舵角の動きを考慮して初期の絶対操舵角を設定し、
 マイクロコンピュータ起動時は初期の絶対操舵角とモータ回転角センサの検出出力に基づき操舵角を検出することを特徴とするパワーステアリング装置。
 (r)記載の技術的思想によれば、 イグニッションオンオフ中、マイクロコンピュータを起動状態に維持することなく操舵角の変化を検出することができる。
 (s)請求項1記載のパワーステアリング装置において、 イグニッションオフ時の操舵角およびイグニッションオフ中の操舵角の動きを記憶回路に記憶することを特徴とするパワーステアリング装置。
  (s)記載の技術的思想によれば、バッテリを外された時にも絶対操舵角を保持することができる。
  (t)請求項1記載のパワーステアリング装置において、操舵操作検出装置と操舵角検出装置が一体となったICを使用することを特徴とするパワーステアリング装置。
 (t)記載の技術的思想によれば、レイアウト性向上,部品点数削減,コスト削減を図ることが可能となる。
 (u)請求項1記載のパワーステアリング装置において、制御装置と電動モータが一体となっており、操舵操作検出装置及びウェークアップ回路を制御装置の基板に設けたことを特徴とするパワーステアリング装置。
 (u)記載の技術的思想によれば、部品点数削減,レイアウト性向上を図ることができる。
 (v)請求項1記載のパワーステアリング装置において、制御装置と電動モータが別体となっており、操舵操作検出装置とウェークアップ回路がモータ側に搭載されていることを特徴とするパワーステアリング装置。
 (v)記載の技術的思想によれば、制御装置と電動モータ間の接続無しに、操舵角変動によりウェークアップモードを起動することができる。

Claims (22)

  1.  ステアリングホイールに接続される操舵軸を有し、ステアリングホイールの操舵操作を転舵輪に伝達する操舵機構と、
     前記操舵機構に操舵力を付与する電動モータと、
     前記操舵機構と前記電動モータの間に設けられ、前記電動モータの回転力を前記操舵機構に伝達する減速機と、
     前記操舵機構または前記電動モータに設けられ、ステアリングホイールの操舵角を検出する操舵角検出装置と、
     車両の走行状態に基づき、前記電動モータを駆動制御する制御装置と、
     前記操舵機構または前記電動モータに設けられ、ステアリングホイールの操舵操作を検出する操舵操作検出装置と、
     前記制御装置に設けられ、車両のイグニッションスイッチまたはアクセサリスイッチがオンのとき前記操舵角検出装置に通電し、オフのとき操舵角検出装置への通電を遮断すると共に、前記操舵操作検出装置への通電を行う電力供給回路と、
     前記制御装置に設けられ、車両のイグニッションスイッチまたはアクセサリスイッチがオフのときであって、前記操舵操作検出装置がステアリングホイールの操舵操作を検出するとき、前記操舵角検出装置に通電するように前記電力供給回路を制御するウェークアップ回路と、
     を有することを特徴とするパワーステアリング装置。
  2.  前記操舵操作検出装置は、ステアリングホイールの操舵操作に応じて回転する回転軸と、前記回転軸の回転位置が360度の範囲で検出可能な検出部と、から構成され、
     前記ウェークアップ回路は、前記回転軸が180度回転するまでの間に前記操舵角検出装置に通電可能なように構成されることを特徴とする請求項1記載のパワーステアリング装置。
  3.  前記操舵操作検出装置の回転軸は、前記検出部と対向するように設けられた磁石を備え、
     前記操舵操作検出装置の前記検出部は、前記回転軸周りに互いに磁気角度90度位相をずらして配置され、磁束密度に応じてハイ信号またはロー信号を出力する第1のホールスイッチおよび第2のホールスイッチであって、
     前記操舵操作検出装置は、前記第1のホールスイッチの出力信号と前記第2のホールスイッチの出力信号の組合せに基づき、前記回転軸が360度の範囲を90度毎に4分割した各領域のうち、どの領域に位置するかを検出可能なことを特徴とする請求項2記載のパワーステアリング装置。
  4.  前記第1および第2のホールスイッチは、供給される電流値が小さい状態と磁束密度を検出可能な程度に大きい状態とを繰り返すパルス駆動方式で駆動制御されることを特徴とする請求項3記載のパワーステアリング装置。
  5.   前記第1および第2のホール素子は、前記回転軸が90度回転するよりも短い周期で前記電流値が大きい状態となるように駆動制御されることを特徴とする請求項4記載のパワーステアリング装置。
  6.  前記第1および第2のホールスイッチは、前記電流値が小さい状態において、前記電流値が大きい状態の出力信号の前回値を維持して出力することを特徴とする請求項5記載のパワーステアリング装置。
  7.  前記制御装置に設けられ、車両のイグニッションスイッチまたはアクセサリスイッチがオンのとき、前記操舵角検出装置の出力信号に基づいた操舵角と、前記操舵操作検出装置の出力信号に基づいた操舵角とを比較することにより、装置の異常を検出することを特徴とする請求項3記載のパワーステアリング装置。
  8.  前記電動モータは、ロータと、ステータと、前記ロータの回転位置を検出するモータ回転角センサと、から構成されるブラシレスモータであって、
         前記モータ回転角センサは前記操舵操作検出装置の前記磁石と、前記磁石と対向するように設けられ、前記磁石の磁界の変化に基づき前記回転軸の回転位置を検出する回転角センサと、から構成されることを特徴とする請求項3記載のパワーステアリング装置。
  9.  前記制御装置は、前記電動モータを駆動制御する指令信号を演算するマイクロコンピュータと、前記マイクロコンピュータが搭載される基板と、から構成され、
     前記電動モータは、ロータと、ステータと、前記ロータの回転位置を検出するモータ回転角センサと、から構成されるブラシレスモータであって、
     前記モータ回転角センサは前記回転軸に設けられた磁石と、前記磁石と対向するように設けられ、前記磁石の磁界の変化に基づき前記回転軸の回転位置を検出する回転角センサと、から構成され、
     前記第1および第2のホールスイッチと、前記回転角センサは、前記基板の同じ側に配置されることを特徴とする請求項3記載のパワーステアリング装置。
  10.  前記制御装置は、前記電動モータを駆動制御する指令信号を演算するマイクロコンピュータと、前記マイクロコンピュータが搭載される基板と、から構成され、
     前記電動モータは、ロータと、ステータと、前記ロータの回転位置を検出するモータ回転角センサと、から構成されるブラシレスモータであって、
     前記モータ回転角センサは前記回転軸に設けられた磁石と、前記磁石と対向するように設けられ、前記磁石の磁界の変化に基づき前記回転軸の回転位置を検出する回転角センサと、から構成され、
     前記第1および第2のホールスイッチと、前記回転角センサは、互いに前記基板の反対側に配置されることを特徴とする請求項3記載のパワーステアリング装置。
  11.  前記操舵操作検出装置は、前記第1および第2のホールスイッチが出力する信号のうち、ハイ信号からロー信号に変化する立ち下がりと、ロー信号からハイ信号に変化する立ち上がりの両方に基づき前記4分割した各領域のうちどの領域に位置するかを検出することを特徴とする請求項3記載のパワーステアリング装置。
  12.  前記操舵操作検出装置は、前記制御装置に電力を供給する電源とは別の電源から電力を供給されるように構成されることを特徴とする請求項3記載のパワーステアリング装置。
  13.  前記操舵操作検出装置の回転軸は、前記検出部と対向するように前記回転軸周りに4極配置された磁石を備え、
     前記操舵操作検出装置の検出部は、磁束密度に応じてハイ信号またはロー信号を出力するホールスイッチであって、
     前記操舵操作検出装置は、前記ホールスイッチの出力信号に基づき、前記回転軸の回転位置を検出することを特徴とする請求項2記載のパワーステアリング装置。
  14.  前記操舵操作検出装置は、GMRセンサまたはAMRセンサ,TMRセンサ,ホールセンサによって構成されることを特徴とする請求項2記載のパワーステアリング装置。
  15.  前記制御装置は、車両のドアがロックされるとき、前記ドアがロックされるときの前記絶対操舵角の値を記憶する記憶回路を有することを特徴とする請求項1記載のパワーステアリング装置。
  16.  前記制御装置は、イグニッションオフ後、所定時間操舵操作が無いとき、前記所定時間経過時における前記絶対操舵角の値を記憶する記憶回路を有することを特徴とする請求項1記載のパワーステアリング装置。
  17.  前記制御装置は、車両の走行速度が所定速度以上、左右の転舵輪の回転速度差が所定量以下、または操舵トルクが所定値以下のいずれかの条件に基づき、車両が直進状態であると判断し、前記操舵角検出装置によって検出される操舵角を補正することを特徴とする請求項1記載のパワーステアリング装置。
  18.  前記制御装置は、イグニッションオフ中に操舵操作が行われたとき、前記操舵角検出装置によって検出された操舵角の情報を記憶する記憶回路を有することを特徴とする請求項1記載のパワーステアリング装置。
  19.  前記操舵角検出装置は、ステアリングホイールの操舵操作に応じて回転する回転軸と、この回転軸の回転角を検出する回転角センサと、から構成され、
     前記制御装置は、前記操舵角検出装置の前記回転角センサの出力信号である前記回転角の情報と、前記回転軸が時計回り方向または反時計回り方向に何回転したかをカウントした回転数情報と、に基づき、ステアリングホイールの中立状態からの操舵角である絶対操舵角を演算することを特徴とする請求項1記載のパワーステアリング装置。
  20.  前記電動モータは、ロータステータ、前記ロータの回転位置を検出するモータ回転角センサと、から構成されるブラシレスモータであって、
     前記モータ回転角センサは前記操舵操作検出装置の前記磁石と、前記磁石と対向するように設けられ、前記磁石の磁界の変化に基づき前記回転軸の回転位置を検出する回転角センサと、から構成され、
     前記制御装置は、イグニッションオフ中において行われた操舵操作によって変化した操舵角を、前記モータ回転角センサによって検出することを特徴とする請求項1記載のパワーステアリング装   置。
  21.  前記操舵機構は、ステアリングホイールと転舵輪とが独立して作動可能に構成され、
     前記操舵角検出装置は、前記転舵輪の転舵輪の転舵動作に応じて回転する回転軸と、この回転軸の回転位置を検出する回転角センサによって構成されることを特徴とする請求項1記載のパワーステアリング装置。
  22.  パワーステアリング装置を駆動制御する制御装置であって、
     ステアリングホイールに接続される操舵軸を有し、ステアリングホイールの操舵操作を転舵輪に伝達する操舵機構と、
     前記操舵機構に操舵力を付与する電動モータと、
     前記操舵機構と前記電動モータの間に設けられ、前記電動モータの回転力を前記操舵機構に伝達する減速機と、
     前記操舵機構または前記電動モータに設けられ、ステアリングホイールの操舵角を検出する操舵角検出装置と、
     車両の走行状態に基づき、前記電動モータを駆動制御する制御装置と、
     前記操舵機構または前記電動モータに設けられ、ステアリングホイールの操舵操作を検出する操舵操作検出装置と、
     前記制御装置に設けられ、車両のイグニッションスイッチまたはアクセサリスイッチがオンのとき前記操舵角検出装置に通電し、オフのとき操舵角検出装置への通電を遮断すると共に、前記操舵操作検出装置への通電を行う電力供給回路と、
     前記制御装置に設けられ、車両のイグニッションスイッチまたはアクセサリスイッチがオフのときであって、前記操舵操作検出装置がステアリングホイールの操舵操作を検出するとき、前記操舵角検出装置に通電するように前記電力供給回路を制御するウェークアップ回路と、
     を有することを特徴とするパワーステアリング装置。
PCT/JP2014/050988 2013-03-19 2014-01-20 パワーステアリング装置およびパワーステアリング装置の制御装置 WO2014148087A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015506627A JPWO2014148087A1 (ja) 2013-03-19 2014-01-20 パワーステアリング装置およびパワーステアリング装置の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013055863 2013-03-19
JP2013-055863 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148087A1 true WO2014148087A1 (ja) 2014-09-25

Family

ID=51579783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050988 WO2014148087A1 (ja) 2013-03-19 2014-01-20 パワーステアリング装置およびパワーステアリング装置の制御装置

Country Status (2)

Country Link
JP (1) JPWO2014148087A1 (ja)
WO (1) WO2014148087A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055802A1 (ja) * 2016-09-20 2018-03-29 日立オートモティブシステムズ株式会社 センサ装置
US10094890B2 (en) 2014-10-09 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor
DE112017001469T5 (de) 2016-03-22 2018-12-06 Panasonic Intellectual Property Management Co., Ltd. Drehdetektionsvorrichtung mit Korrekturverfahren
EP3396326A4 (en) * 2016-05-13 2018-12-19 NSK Ltd. Motor drive control device, electric power steering device, and vehicle
EP3422563A4 (en) * 2016-05-13 2019-04-03 NSK Ltd. ENGINE CONTROL DEVICE, ELECTRIC POWER STEERING DEVICE AND VEHICLE
DE112017003532T5 (de) 2016-07-12 2019-04-04 Panasonic Intellectual Property Management Co., Ltd. Magnetsensor und Detektionsvorrichtung, die ihn verwendet
WO2019097692A1 (ja) * 2017-11-17 2019-05-23 三菱電機株式会社 回転検出装置
WO2019163278A1 (ja) * 2018-02-23 2019-08-29 日立オートモティブシステムズ株式会社 後輪制御装置
KR102064570B1 (ko) * 2016-12-20 2020-01-09 이래에이엠에스 주식회사 조향각 검출방법 및 이에 의해 운용되는 조향각 검출장치
KR20220085316A (ko) * 2020-12-15 2022-06-22 현대오토에버 주식회사 모터 전기각 보정 방법 및 장치
CN116080745A (zh) * 2023-01-05 2023-05-09 北京汽车集团越野车有限公司 一种可提高电动调节转向管柱位置精度的控制方法及汽车

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235218B2 (ja) * 1992-10-22 2001-12-04 住友電気工業株式会社 車両用の副給電回路
JP2002213944A (ja) * 2001-01-18 2002-07-31 Niles Parts Co Ltd 回転角測定装置
JP2004196043A (ja) * 2002-12-16 2004-07-15 Koyo Seiko Co Ltd 操舵装置
JP2004322976A (ja) * 2003-04-28 2004-11-18 Koyo Seiko Co Ltd 車両用操舵装置
JP2005037254A (ja) * 2003-07-15 2005-02-10 Favess Co Ltd 回転角検出装置及び回転角検出方法
JP2008170162A (ja) * 2007-01-09 2008-07-24 Nsk Ltd ステアリング角度検出装置
JP2010096518A (ja) * 2008-10-14 2010-04-30 Panasonic Corp 回転角度検出装置
JP2011080841A (ja) * 2009-10-06 2011-04-21 Jtekt Corp 回転角検出装置及び電動パワーステアリング装置
JP2012231588A (ja) * 2011-04-26 2012-11-22 Mitsubishi Electric Corp モータ制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064197A (en) * 1997-07-26 2000-05-16 U.S. Philips Corporation Angle sensor having lateral magnetic field sensor element and axial magnetic field direction measuring element for determining angular position
JP5822108B2 (ja) * 2011-03-31 2015-11-24 Kyb株式会社 ステアリングシャフト回転角度検出装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235218B2 (ja) * 1992-10-22 2001-12-04 住友電気工業株式会社 車両用の副給電回路
JP2002213944A (ja) * 2001-01-18 2002-07-31 Niles Parts Co Ltd 回転角測定装置
JP2004196043A (ja) * 2002-12-16 2004-07-15 Koyo Seiko Co Ltd 操舵装置
JP2004322976A (ja) * 2003-04-28 2004-11-18 Koyo Seiko Co Ltd 車両用操舵装置
JP2005037254A (ja) * 2003-07-15 2005-02-10 Favess Co Ltd 回転角検出装置及び回転角検出方法
JP2008170162A (ja) * 2007-01-09 2008-07-24 Nsk Ltd ステアリング角度検出装置
JP2010096518A (ja) * 2008-10-14 2010-04-30 Panasonic Corp 回転角度検出装置
JP2011080841A (ja) * 2009-10-06 2011-04-21 Jtekt Corp 回転角検出装置及び電動パワーステアリング装置
JP2012231588A (ja) * 2011-04-26 2012-11-22 Mitsubishi Electric Corp モータ制御装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094890B2 (en) 2014-10-09 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor
US10571298B2 (en) 2016-03-22 2020-02-25 Panasonic Intellectual Property Management Co., Ltd. Rotation detecting device
DE112017001469T5 (de) 2016-03-22 2018-12-06 Panasonic Intellectual Property Management Co., Ltd. Drehdetektionsvorrichtung mit Korrekturverfahren
DE112017001473T5 (de) 2016-03-22 2018-12-06 Panasonic Intellectual Property Management Co., Ltd. Drehdetektionsvorrichtung
US10935396B2 (en) 2016-03-22 2021-03-02 Panasonic Intellectual Property Management Co., Ltd. Rotation detecting device
DE112017001511T5 (de) 2016-03-22 2018-12-27 Panasonic Intellectual Property Management Co., Ltd. Drehdetektionsvorrichtung
US10890464B2 (en) 2016-03-22 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Rotation detecting device and correction method therefor
US10634516B2 (en) 2016-03-22 2020-04-28 Panasonic Intellectual Property Management Co., Ltd. Rotation detecting device
EP3422563A4 (en) * 2016-05-13 2019-04-03 NSK Ltd. ENGINE CONTROL DEVICE, ELECTRIC POWER STEERING DEVICE AND VEHICLE
US11192578B2 (en) 2016-05-13 2021-12-07 Nsk Ltd. Motor drive control device, electric power steering device, and vehicle
EP3396326A4 (en) * 2016-05-13 2018-12-19 NSK Ltd. Motor drive control device, electric power steering device, and vehicle
US10501113B2 (en) 2016-05-13 2019-12-10 Nsk Ltd. Motor drive control device, electric power steering device, and vehicle
DE112017003532T5 (de) 2016-07-12 2019-04-04 Panasonic Intellectual Property Management Co., Ltd. Magnetsensor und Detektionsvorrichtung, die ihn verwendet
US10759276B2 (en) 2016-07-12 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor and detection device using same
CN109831921B (zh) * 2016-09-20 2021-08-20 日立安斯泰莫株式会社 传感器装置
WO2018055802A1 (ja) * 2016-09-20 2018-03-29 日立オートモティブシステムズ株式会社 センサ装置
US10933907B2 (en) 2016-09-20 2021-03-02 Hitachi Automotive Systems, Ltd. Sensor device
CN109831921A (zh) * 2016-09-20 2019-05-31 日立汽车***株式会社 传感器装置
JPWO2018055802A1 (ja) * 2016-09-20 2019-06-24 日立オートモティブシステムズ株式会社 センサ装置
KR102064570B1 (ko) * 2016-12-20 2020-01-09 이래에이엠에스 주식회사 조향각 검출방법 및 이에 의해 운용되는 조향각 검출장치
JPWO2019097692A1 (ja) * 2017-11-17 2020-04-02 三菱電機株式会社 回転検出装置
WO2019097692A1 (ja) * 2017-11-17 2019-05-23 三菱電機株式会社 回転検出装置
US11365985B2 (en) 2017-11-17 2022-06-21 Mitsubishi Electric Cornoration Rotation detection device
WO2019163278A1 (ja) * 2018-02-23 2019-08-29 日立オートモティブシステムズ株式会社 後輪制御装置
KR20220085316A (ko) * 2020-12-15 2022-06-22 현대오토에버 주식회사 모터 전기각 보정 방법 및 장치
KR102505813B1 (ko) * 2020-12-15 2023-03-06 현대오토에버 주식회사 모터 전기각 보정 방법 및 장치
CN116080745A (zh) * 2023-01-05 2023-05-09 北京汽车集团越野车有限公司 一种可提高电动调节转向管柱位置精度的控制方法及汽车

Also Published As

Publication number Publication date
JPWO2014148087A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014148087A1 (ja) パワーステアリング装置およびパワーステアリング装置の制御装置
US8558534B2 (en) Rotational angle detection device and electric power steering system
JP5941871B2 (ja) 電動パワーステアリング装置
JP4296936B2 (ja) 電動パワーステアリング装置
JP4766955B2 (ja) シフトレンジ切替装置
JP5339094B2 (ja) 電動パワーステアリング装置
JP6128013B2 (ja) 回転角検出装置、および、これを用いた電動パワーステアリング装置
US20120111658A1 (en) Vehicular steering control apparatus
JP2016191702A (ja) 回転検出装置、回転角検出装置および電動パワーステアリング装置
JP2008037398A (ja) 車両用操舵装置
US8224529B2 (en) Self powered steering wheel angle sensor
WO2017073202A1 (ja) センサ装置及び電動パワーステアリング装置
JP4281595B2 (ja) 角度検出装置
JP2018177005A (ja) 車両制御装置
JP2019196971A (ja) 角度演算装置
JP6945944B2 (ja) 回転検出装置
JP2008170162A (ja) ステアリング角度検出装置
JP2007269277A (ja) 電動パワーステアリング装置
JP6223714B2 (ja) 電動パワーステアリング装置
JP2004345412A (ja) 車両用操舵装置
JP2004058743A (ja) 車両用操舵装置
JP4148870B2 (ja) 伝達比可変操舵装置
JP2014172513A (ja) 電動パワーステアリング装置
JP2008285033A (ja) 車両用制御装置
JP2004064845A (ja) 車両用操舵制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770436

Country of ref document: EP

Kind code of ref document: A1