WO2015146043A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2015146043A1
WO2015146043A1 PCT/JP2015/001381 JP2015001381W WO2015146043A1 WO 2015146043 A1 WO2015146043 A1 WO 2015146043A1 JP 2015001381 W JP2015001381 W JP 2015001381W WO 2015146043 A1 WO2015146043 A1 WO 2015146043A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetoresistive element
magnetic sensor
magnetic
sensor according
Prior art date
Application number
PCT/JP2015/001381
Other languages
English (en)
French (fr)
Inventor
和弘 尾中
一宮 礼孝
清高 山田
吉内 茂裕
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/121,021 priority Critical patent/US20170016745A1/en
Publication of WO2015146043A1 publication Critical patent/WO2015146043A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor having a bias magnet.
  • Patent Documents 1 and 2 Conventional magnetic sensors are disclosed in Patent Documents 1 and 2, for example.
  • Patent Document 1 discloses a structure in which one bias magnet is arranged immediately below four magnetoresistive elements.
  • Patent Document 2 discloses a structure in which a bias magnet is disposed so as to cover an upper portion of a magnetoresistive element.
  • the present invention provides a magnetic sensor that can be made smaller and more accurate.
  • the magnetic sensor of the present invention has a substrate, a magnetoresistive element group, and a magnet group.
  • the substrate has a first surface and a second surface opposite to the first surface.
  • the magnetoresistive element group includes a first magnetoresistive element and a second magnetoresistive element.
  • the first magnetoresistive element and the second magnetoresistive element are disposed on the first surface of the substrate.
  • the magnet group includes a first magnet facing the first magnetoresistive element and a second magnet facing the second magnetoresistive element.
  • This configuration makes it possible to provide a magnetic sensor with even smaller size and higher accuracy.
  • FIG. 1 Schematic diagram of magnetic sensor according to Embodiment 1 Schematic top view of a substrate having a magnetoresistive element arranged in the magnetic sensor according to the first embodiment Schematic which shows the state which has arrange
  • wire of the 1st magnetoresistive element shown to FIG. 4A The figure which shows the 1st example of the magnetic bias direction of each magnet which comprises a magnet group The figure which shows the 2nd example of the magnetic bias direction of each magnet which comprises a magnet group.
  • FIG. 7A Schematic top view of a substrate having a magnetoresistive element arranged in a magnetic sensor according to a first modification of the second embodiment Explanatory drawing of the magnetic bias direction of each magnet which comprises the magnet group arrange
  • FIG. 8A Schematic top view of a substrate having a magnetoresistive element arranged in a magnetic sensor according to a second modification of the second embodiment Explanatory drawing of the magnetic bias direction of each magnet which comprises the magnet group arrange
  • FIG. Sectional view taken along line 9C-9C shown in FIG. 9A Schematic sectional view of a structure in which a magnetic sensor according to an embodiment is arranged The perspective view of the magnetic sensor which concerns on Embodiment 3 of this invention.
  • 11A is a top view of the magnetic sensor shown in FIG. 11A.
  • FIG. 12A is a top view of the magnetic sensor shown in FIG. 12A.
  • Top view of the magnetic sensor shown in FIG. 13A The perspective view and back view of the 1st board
  • FIG. 13C The back view of the other 1st substrate in the magnetic sensor concerning the 2nd modification of Embodiment 3 of the present invention.
  • Front view of wear for forming a magnetic sensor according to Embodiment 3 of the present invention Sectional view taken along line 14B-14B shown in FIG. 14A
  • Patent Documents 1 and 2 Prior to the description of the embodiments of the present invention, problems in conventional magnetic sensors disclosed in Patent Documents 1 and 2 will be described.
  • a conventional magnetic sensor one bias magnet is arranged for a metal pattern such as one or a plurality of magnetoresistive elements. With such a structure, it is not possible to achieve high accuracy while further reducing the size.
  • each drawing shows an example of a preferable form, and it is not necessarily limited to each structure, shape, and numerical value. Moreover, it is possible to combine suitably each element technology demonstrated in embodiment in the range without a contradiction.
  • FIG. 1 is a schematic top view of the magnetic sensor 100A.
  • the magnetic sensor 100A has a die pad 20, a substrate 1, and a plurality of external terminals 19. On the first surface of the substrate 1, a plurality of pads 30, a plurality of magnetoresistive elements to be described later, and a first magnet 5, a second magnet 6, and a third magnet 7 facing the respective magnetoresistive elements are arranged. .
  • Each pad 30 is electrically connected to each magnetoresistive element.
  • One of the pads 30 is provided to read the output from each magnetoresistive element.
  • the other one of the pads 30 is provided for applying a voltage to each magnetoresistive element.
  • the other one of the pads 30 is provided for grounding each magnetoresistive element.
  • the first magnet 5 and the second magnet 6 constitute a magnet group.
  • the magnet group preferably further includes a third magnet 7.
  • Each external terminal 19 is electrically connected to each of the pads 30 via the wiring 18.
  • the second surface of the substrate 1 is preferably mounted on the die pad 20.
  • the die pad 20 is made of metal, and by disposing the die pad 20 on the ground pattern, it is possible to remove noise from the outside with respect to the entire magnetic sensor 100A.
  • FIG. 2 is a schematic top view showing the first surface of the substrate 1.
  • FIG. 2 shows the magnetoresistive element pattern, the wiring pattern, the pads, etc. on the substrate 1 as the center, and the area where the magnet group is arranged is indicated by a dotted line.
  • the substrate 1 and the plurality of magnetoresistive elements provided on the substrate 1 and the magnets facing the magnetoresistive elements constitute the basic structure of the magnetic sensor 100A. That is, the magnetic sensor 100A includes the substrate 1, the magnetoresistive element group, and the magnet group.
  • the substrate 1 has a first surface and a second surface opposite to the first surface.
  • the magnetoresistive element group includes a first magnetoresistive element 2 and a second magnetoresistive element 3.
  • the first magnetoresistive element 2 and the second magnetoresistive element 3 are disposed on the first surface of the substrate 1.
  • the magnet group includes a first magnet 5 that faces the first magnetoresistive element 2 and a second magnet 6 that faces the second magnetoresistive element 3.
  • FIG. 3A shows a case where the magnetic sensor 100A is arranged on the side of the detection target magnet 200
  • FIG. 3B shows a case where the magnetic sensor 100A is arranged above the detection target magnet 200.
  • the detection target magnet 200 has a rotatable structure, but may have other configurations.
  • the detection target magnet 200 may be configured by a linear plate in which N poles and S poles are alternately arranged.
  • the magnetic sensor 100A is arranged so as to be relatively movable with respect to the direction from the north pole to the south pole (or from the south pole to the north pole) of the detection target magnet 200 having the north and south poles.
  • the magnetic sensor 100A and the detection target magnet 200 are arranged.
  • a magnetic sensor is, for example, a sensor having a property that a resistance value changes according to the strength of a magnetic field in a specific direction. Therefore, the magnetic sensor 100A can read the change in magnetoresistance corresponding to the change from the N pole to the S pole and the change from the S pole to the N pole, and detects the rotation angle of the measurement target having the detection target magnet 200. It becomes possible.
  • the magnetic bias direction of the first magnet 5 applied to the first magnetoresistive element 2 and the magnetic bias direction of the second magnet 6 applied to the second magnetoresistive element 3 are 90 degrees. Assume a case of deviation. In this case, the direction of the magnetic field applied from the detection target magnet 200 to the magnetoresistive elements 2 and 3 is shifted 90 degrees by the magnets 5 and 6. Therefore, the output characteristics of the first magnetoresistive element 2 and the second magnetoresistive element 3 corresponding to the change of the detection target magnet 200 from the N pole to the S pole and from the S pole to the N pole are respectively sine waves (sin ⁇ ). Cosine wave (cos ⁇ ). This output characteristic is a resistance value change characteristic when time is plotted on the horizontal axis and resistance value changes are plotted on the vertical axis.
  • Tan ⁇ can be calculated from the sine wave and cosine wave, and the rotation angle ⁇ can be calculated. In this way, the rotation angle of the measurement object can be detected.
  • the resistance value change characteristic of the third magnetoresistive element 4 is changed.
  • the third output V3 can be expressed by the following equation.
  • V 12 between the output V 1 and the output V 2 can be expressed by the following equation.
  • V 34 between the output V 3 and the output V 4 can be expressed by the following equation.
  • the magnetoresistive element group includes a third magnetoresistive element 4, and the magnet group includes a third magnet 7 facing the third magnetoresistive element 4. It is preferable.
  • the second magnetoresistive element 3 and the third magnetoresistive element 4 are arranged line-symmetrically with the first axis 50A as the axis of symmetry, and the first magnetoresistive element 2 is arranged on the first axis. It is preferable.
  • the first magnetoresistive element 2 is preferably connected to the voltage application pad 11, the ground pad 12, the first output terminal 13, and the fourth output terminal 16.
  • the second magnetoresistive element 3 is preferably connected to the voltage application pad 11, the ground pad 12, and the second output terminal 14.
  • the third magnetoresistive element 4 is preferably connected to the voltage application pad 11, the ground pad 12, and the third output terminal 15.
  • the third magnetoresistive element 4 and the ground pad 12 are indirectly connected via the first magnetoresistive element 2 or the second magnetoresistive element 3.
  • FIG. 4A is an enlarged view of the first magnetoresistive element 2.
  • 4B is a cross-sectional view taken along line 4B-4B of FIG. 4A.
  • FIG. 5A shows a first example of the magnetic bias direction of each magnet constituting the magnet group
  • FIG. 5B shows a second example of the magnetic bias direction of the magnets 5 to 7 constituting the magnet group. Yes.
  • the arrows shown in each of the magnets 5, 6, 7 indicate the direction of the magnetic field (magnetic bias direction). That is, the magnetic poles of the magnets 5 to 7 are formed on the opposite side surfaces.
  • the first magnetoresistive element 2 has meander-shaped patterns 2A, 2B, 2C, and 2D having a plurality of turns.
  • Each of the patterns 2A, 2B, 2C, and 2D has linear portions 2E, 2F, 2G, and 2H having the maximum length.
  • the linear shape portion 2E and the linear shape portion 2H are arranged so as to be shifted by 90 degrees
  • the linear shape portion 2F and the linear shape portion 2G are arranged so as to be shifted by 90 degrees
  • the linear shape portion 2G and the linear shape portion 2E are shifted by 90 degrees. Is arranged.
  • the linear portions 2E, 2F, 2G, and 2H are disposed so as to be inclined by 45 degrees with respect to the magnetic bias direction of the first magnet 5.
  • the relationship between the pattern of the magnetoresistive elements 3 and 4 and the magnets 6 and 7 facing the magnetoresistive elements 3 and 4, respectively, is the same as that of the first magnetoresistive element 2 and the pattern of the first magnetoresistive element 2. This is similar to the relationship with the magnet 5. With this arrangement, the reliability of the sensing function of the magnetic sensor 100A can be ensured.
  • positioning portions 9 corresponding to the respective corners of the magnets 5 to 7 are arranged on the first surface of the substrate 1. For example, if the position of the first magnet 5 is displaced, the magnetic bias direction from the first magnet 5 is displaced, and reliability may be impaired. Therefore, by disposing the first magnet 5 while confirming the positional relationship between the corner of the first magnet 5 and the positioning portion 9 with an optical microscope, the positional deviation of the first magnet 5 is suppressed and the reliability is improved. Can be made.
  • the positioning part 9 is comprised with the metal. And it is preferable that the material of the positioning part 9 is the same as the material of the wiring 10 extended from a magnetoresistive element group. In the case of this configuration, the positioning portion 9 can be formed using the same process as the process of forming the wiring 10, which is desirable in terms of cost. The above is the same as the first magnet 5 for the magnets 6 and 7.
  • the first magnet 5 is disposed on the first magnetoresistive element 2 via an adhesive portion 8 formed of a thermosetting adhesive or a UV curable adhesive. preferable.
  • the adhesive portion 8 preferably covers a part of the side surface of the first magnet 5. If the position of the first magnet 5 is deviated, the magnetic bias direction from the first magnet 5 is deviated, and reliability may be impaired. Then, after confirming the position of the 1st magnet 5, the adhesive part 8 suppresses the position shift of the 1st magnet 5 by hardening a thermosetting adhesive or UV curable adhesive, and improves reliability. Can do.
  • the above is the same as the first magnet 5 for the magnets 6 and 7. Note that two or more of the magnets 5 to 7 may be fixed to the corresponding magnetoresistive elements 2 to 4 by a single bonding portion 8.
  • a protective film 17 having a silicon oxide film or a fluorine-based resin film is disposed on the magnetoresistive element group.
  • the bonding portion 8 may be formed directly on the magnetoresistive element group, the reliability of the product can be ensured through the protective film 17.
  • the magnetoresistive elements 2, 3, and 4 constituting the magnetoresistive element group are preferably artificial lattice films in which a magnetic layer containing Ni, Co, and Fe and a nonmagnetic layer containing Cu are stacked. Moreover, it is preferable to use an anisotropic magnetoresistive element whose resistance value changes according to the strength of the magnetic field in a specific direction as the magnetoresistive elements 2, 3, and 4.
  • the magnetoresistive element group can be disposed on the substrate 1 via a base film such as a silicon oxide film.
  • the direction of the magnetic field at the center of the third magnet 7 is parallel to the direction of the magnetic field at the center of the second magnet 6, and the direction of the magnetic field at the center of the second magnet 6 is The direction of the magnetic field at the center of the first magnet 5 is preferably perpendicular.
  • the magnets 5, 6, and 7 are apart by a sufficient distance so that the magnetic field by the first magnet 5, the magnetic field by the second magnet 6, and the magnetic field by the third magnet 7 do not interfere with each other. . By doing in this way, the rotation angle of a measuring object can be detected with high accuracy.
  • the direction of the magnetic field at the center of the third magnet 7 may be opposite to the direction of the magnetic field at the center of the second magnet 6.
  • the magnetic field at the center of the third magnet 7 and the magnetic field at the center of the second magnet 6 may be directed outward.
  • it is necessary to magnetize each magnet.
  • all magnets must be magnetized together. it can.
  • a processing circuit 21 that processes a signal from the magnetoresistive element group is disposed between the second magnetoresistive element 3 and the third magnetoresistive element 4 on the first surface of the substrate 1. It is preferable.
  • the processing circuit 21 can amplify a signal from the magnetoresistive element group. By disposing the processing circuit 21 in the space between the second magnetoresistive element 3 and the third magnetoresistive element 4, the entire magnetic sensor 100A can be reduced in size.
  • the 1st magnet 5, the 2nd magnet 6, and the 3rd magnet 7 contain resin and the rare earth magnet powder disperse
  • resin contains thermosetting resin and rare earth magnet powder is SmFeN magnet powder. SmFeN is advantageous in terms of the manufacturing process because it has the property that resin molding is easy.
  • the size of the second magnetoresistive element 3 and the third magnetoresistive element 4 is preferably smaller than the size of the first magnetoresistive element 2.
  • the second magnetoresistive element 3 and the third magnetoresistive element 4 have two miranda-like patterns, whereas the first magnetoresistive element 2 has four miranda-like patterns. It is preferable. However, as many dummy patterns as the first magnetoresistive element 2 may be formed on the second magnetoresistive element 3 and the third magnetoresistive element 4.
  • FIG. 6 is a schematic top view of the magnetic sensor 100B.
  • the magnetic sensor 100B includes a die pad 20, a substrate 1, and a plurality of external terminals 19.
  • the first magnet 36 and the second magnet 37 constitute a magnet group.
  • the magnet group preferably further includes a third magnet 38 and a fourth magnet 39.
  • the second surface of the substrate 1 is preferably mounted on the die pad 20. This is the same as in the first embodiment.
  • FIG. 7A is a schematic top view showing the first surface of the substrate 1.
  • FIG. 7A mainly shows a magnetoresistive element pattern, a wiring pattern, an output terminal, and the like on the substrate 1, and a region where the magnet group is arranged is indicated by a dotted line.
  • FIG. 7B shows an arrangement relationship between the magnet group arranged in the magnetic sensor 100 ⁇ / b> B and the substrate 1. The arrow in FIG. 7B represents the direction of the applied magnetic field.
  • 7C is a cross-sectional view taken along line 7C-7C in FIG. 7A.
  • the substrate 1, the plurality of magnetoresistive elements provided on the substrate 1, and the magnets facing the magnetoresistive elements constitute the basic structure of the magnetic sensor 100B. That is, as shown in FIGS. 7A and 7C, the magnetic sensor 100B includes a substrate 1, a magnetoresistive element group, and a magnet group.
  • the substrate 1 has a first surface and a second surface opposite to the first surface.
  • the magnetoresistive element group includes a first magnetoresistive element 32 and a second magnetoresistive element 33.
  • the first magnetoresistive element 32 and the second magnetoresistive element 33 are disposed on the first surface of the substrate 1.
  • the magnet group includes a first magnet 36 that faces the first magnetoresistive element 32 and a second magnet 37 that faces the second magnetoresistive element 33.
  • the magnetic sensor 100B it is possible to apply a magnetic bias from separate magnets 36 and 37 to the magnetoresistive elements 32 and 33 constituting the magnetoresistive element group. Therefore, it is possible to improve the degree of freedom in design, such as not only applying the magnetic bias in the same direction to each of the magnetoresistive elements 32 and 33 but also applying the magnetic bias in different directions. Further, it is possible to manufacture a magnetic sensor that is smaller and more accurate.
  • the magnetic sensor 100A senses the detection target magnet 200 with reference to FIGS. 3A and 3B.
  • the magnetic sensor 100B is used instead of the magnetic sensor 100A.
  • the 1st magnetoresistive element 2, the 2nd magnetoresistive element 3, the 1st magnet 5, and the 2nd magnet 6 are made into the 1st magnetoresistive element 32, the 2nd magnetoresistive element 33, the 1st magnet 36, and the 2nd magnet, respectively. It should be read as 37.
  • the magnetoresistive element group further includes a third magnetoresistive element 34 and a fourth magnetoresistive element 35, and the magnet group is a first counter facing the third magnetoresistive element 34. It is preferable to further include three magnets 38 and a fourth magnet 39 that faces the fourth magnetoresistive element 35.
  • the direction of the magnetic field passing through the center of the first magnet 36 and the direction of the magnetic field passing through the center of the third magnet 38 are parallel, and the direction of the magnetic field passing through the center of the second magnet 37
  • the direction of the magnetic field passing through the center of the fourth magnet 39 is parallel.
  • the direction of the magnetic field passing through the center of the first magnet 36 and the direction of the magnetic field passing through the center of the second magnet 37 are perpendicular.
  • the second magnetoresistive element 33 and the fourth magnetoresistive element 35 are arranged line-symmetrically with the first axis 50B as the axis of symmetry, and the first magnetoresistive element 32 is arranged on the first axis 50B. More preferably. That is, the second magnet 37 and the fourth magnet 39 are arranged line-symmetrically with the first axis 50B as the axis of symmetry, and the first magnet 36 and the third magnet 38 are arranged on the first axis 50B. It is preferable.
  • the first magnetoresistive element 32 and the third magnetoresistive element 34 may be arranged in line symmetry with the first axis 50B as the axis of symmetry.
  • the 2nd magnetoresistive element 33 and the 4th magnetoresistive element 35 are arrange
  • the second magnet 37 and the fourth magnet 39 are disposed on the first shaft 50B.
  • the first magnetoresistive element 32 is electrically connected to the two pads 30 for voltage application and ground, and is connected to the first output terminal 51 and the fourth output terminal 54 via the wiring 42. It is preferable that they are electrically connected.
  • the second magnetoresistive element 33 is preferably connected to two pads 30 for voltage application and ground, the first output terminal 51 and the second output terminal 52.
  • the third magnetoresistive element 34 is preferably connected to the two pads 30 for voltage application and ground, the second output terminal 52, and the third output terminal 53.
  • the fourth magnetoresistive element 35 is preferably connected to the two pads 30 for voltage application and ground, the third output terminal 53, and the fourth output terminal 54.
  • the distance between the first magnetoresistive element 32 and the second magnetoresistive element 33 is the same as the distance between the third magnetoresistive element 34 and the fourth magnetoresistive element 35. More preferably it is. Further, it is more preferable that the distance between the first magnetoresistive element 32 and the third magnetoresistive element 34 is the same as the distance between the second magnetoresistive element 33 and the fourth magnetoresistive element 35. With these configurations, the rotation angle ⁇ can be detected with high accuracy. In this specification, “same” means substantially the same to the extent that a design error is allowed.
  • each of the first magnetoresistive element 32, the second magnetoresistive element 33, the third magnetoresistive element 34, and the fourth magnetoresistive element 35 has meander-shaped patterns A, B, C, D.
  • Each pattern A, B, C, D has a linear shape portion E, F, G, H having the maximum length, and the linear shape portion E and the linear shape portion F are arranged so as to be shifted by 90 degrees.
  • the linear shape portion F and the linear shape portion G are arranged so as to be shifted by 90 degrees, and the linear shape portion G and the linear shape portion H are shifted by 90 degrees.
  • the linear shape portions E, F, G, and H are the magnetic bias directions of the first magnet 36, the second magnet 37, the third magnet 38, and the fourth magnet 39, respectively. It is arrange
  • positioning portions 9 corresponding to the respective corners of the magnets 36 to 39 are disposed on the first surface of the substrate 1.
  • the configuration and effects of the positioning unit 9 are the same as those in the first embodiment.
  • the magnet group is preferably arranged on the magnetoresistive element group.
  • the 1st magnet 36 is arrange
  • FIG. The configuration and effects of the bonding portion 8 are the same as those in the first embodiment, and the magnets 37, 38, and 39 are preferably applied in the same manner as the first magnet 36.
  • a protective film 17 having a silicon oxide film or a fluorine-based resin film is disposed on the magnetoresistive element group.
  • the configuration and effects of the protective film 17 are the same as those in the first embodiment.
  • the preferred configuration of each magnetoresistive element constituting the magnetoresistive element group and the effect thereof are also the same as in the first embodiment.
  • the magnetoresistive element group can be disposed on the substrate 1 via a base film such as a silicon oxide film. This is the same as in the first embodiment.
  • FIG. 8A is a schematic top view of the substrate 1 having the magnetoresistive elements 32 to 35 arranged in the magnetic sensor according to the first modification of the present embodiment.
  • FIG. 8A the magnetoresistive element pattern, the wiring pattern, the output terminal and the like on the substrate 1 are mainly shown.
  • a region where the magnet group is arranged is indicated by a dotted line.
  • FIG. 8B shows an arrangement relationship between the magnet group arranged in the magnetic sensor and the substrate 1. The arrow in FIG. 8B represents the direction of the applied magnetic field.
  • FIG. 8C shows a cross-sectional view taken along line 8C-8C of FIG. 8A.
  • the direction of the magnetic field at the center of the first magnet 36 is parallel to the direction of the magnetic field at the center of the second magnet 37.
  • the direction of the magnetic field at the center of the third magnet 38 is perpendicular to the direction of the magnetic field at the center of the first magnet 36.
  • the direction of the magnetic field at the center of the fourth magnet 39 is parallel to the direction of the magnetic field at the center of the third magnet 38.
  • the direction of the magnetic field at the center of the first magnet 36 is opposite to the direction of the magnetic field at the center of the second magnet 37.
  • the direction of the magnetic field at the center of the fourth magnet 39 is opposite to the direction of the magnetic field at the center of the third magnet 38.
  • the magnets 36 to 39 are arranged at a sufficient distance from each other so that the magnetic field by the first magnet 36, the magnetic field by the second magnet 37, the magnetic field by the third magnet 38, and the magnetic field by the fourth magnet 39 do not interfere with each other. It is preferable to do. By doing in this way, the rotation angle of a measuring object can be detected with high accuracy.
  • parallel means substantially parallel to the extent that a design error is allowed.
  • vertical means substantially vertical to the extent that a design error is allowed.
  • FIG. 9A is a schematic top view of the substrate 1 having the magnetoresistive elements 32 to 35 arranged in the magnetic sensor according to the second modification of the present embodiment.
  • the magnetoresistive element pattern, the wiring pattern, the output terminal, and the like on the substrate are mainly shown.
  • a region where the magnet group is arranged is indicated by a dotted line.
  • FIG. 9B shows the positional relationship between the magnet group disposed in the magnetic sensor and the substrate. The arrow in FIG. 9B represents the direction of the applied magnetic field.
  • FIG. 9C shows a cross-sectional view taken along line 9C-9C of FIG. 9A.
  • the direction of the magnetic field at the center of the first magnet 36 is parallel to the direction of the magnetic field at the center of the third magnet 38.
  • the direction of the magnetic field at the center of the second magnet 37 is perpendicular to the direction of the magnetic field at the center of the first magnet 36.
  • the direction of the magnetic field at the center of the fourth magnet 39 is parallel to the direction of the magnetic field at the center of the second magnet 37.
  • the direction of the magnetic field at the center of the first magnet 36 is opposite to the direction of the magnetic field at the center of the third magnet 38.
  • the direction of the magnetic field at the center of the fourth magnet 39 is opposite to the direction of the magnetic field at the center of the second magnet 37.
  • the magnets 36 to 39 are arranged so that the magnetic field by the first magnet 36, the magnetic field by the second magnet 37, the magnetic field by the third magnet 38, and the magnetic field by the fourth magnet 39 do not interfere with each other. It is preferable to arrange them at a sufficient distance from each other. By doing in this way, the rotation angle of a measuring object can be detected with high accuracy.
  • a processing circuit for processing a signal from the magnetoresistive element group is disposed on the first surface of the substrate 1 as in the first embodiment.
  • the processing circuit in the first modification and the second modification, it is preferable to arrange the processing circuit so as to be surrounded by the magnetoresistive element group or the magnet group.
  • the processing circuit can amplify a signal from the magnetoresistive element group. Then, for example, by arranging the processing circuit in an empty space between any two pairs of the magnetoresistive elements 32, 33, 34, and 35, the entire magnetic sensor can be reduced in size. Furthermore, by arranging the processing circuit in an empty space surrounded by the magnetoresistive element group or the magnet group, it is possible to reduce the size of the entire magnetic sensor 100B.
  • FIG. 10 is a schematic cross-sectional view of a structure 600 including the magnetic sensor 100B.
  • the structural body 600 includes a cylindrical first member 300 having a magnetic sensor 100B provided on the outside, and a first member 300 disposed inside the first member 300 and operable in the extending direction of the first member 300.
  • a fifth magnet 500 is disposed on the second member 400.
  • the fifth magnet 500 is disposed so as to overlap the magnetic sensor 100B in a direction perpendicular to the planar direction of the magnetic sensor 100B.
  • the position of the 5th magnet 500 is detectable by each magnetoresistive element reading the change of a magnetic field. That is, the movement of the second member 400 relative to the first member 300 can be detected.
  • the cross section of the first member 300 can have various shapes such as a circle and a quadrangle depending on applications.
  • the magnetic sensor 100A in the first embodiment or the magnetic sensors 100C to 100E in the third embodiment described below may be used.
  • FIG. 11A to 11C are schematic views of a magnetic sensor 100C according to Embodiment 3 of the present invention.
  • 11A is a perspective view of the magnetic sensor 100C
  • FIG. 11B is a top view of FIG. 11A.
  • FIG. 11C is a perspective view of the first substrate 62 in the magnetic sensor 100C.
  • the arrows marked in the first magnetoresistive element 65 and the second magnetoresistive element 66 arranged on the first substrate 62 indicate the magnetization directions of the first magnetic medium 67 and the second magnetic medium 68, respectively. Is shown.
  • the magnetic sensor 100C includes a first substrate 62, a first magnetoresistive element 65, a second magnetoresistive element 66, a first magnetic medium 67, and a second magnetic medium 68. is doing.
  • the first substrate 62 has a first surface 63 and a second surface 64 opposite to the first surface 63.
  • the magnetoresistive elements 65 and 66 are disposed on the first surface 63 of the first substrate 62.
  • the magnetic media 67 and 68 are disposed on the second surface 64 of the first substrate 62.
  • the magnetic sensor 100 ⁇ / b> C further includes a die pad 79, a package 80, a support portion 81, a terminal 82, and a wiring 83.
  • the die pad 79 mounts the first substrate 62, and the support portion 81 protrudes from the die pad 79.
  • the terminal 82 is provided on a surface parallel to the direction in which the support portion 81 extends in the package 80.
  • the magnetoresistive elements 65 and 66 provided on the first substrate 62 are electrically connected to the terminal 82 by wiring 83.
  • the magnetic media 67 and 68 can apply a magnetic bias to the magnetoresistive elements 65 and 66. That is, the magnetic media 67 and 68 correspond to the magnets 5 and 6 in the first embodiment.
  • the magnetic sensor 100C includes the first substrate 62, the first magnetoresistive element 65 and the second magnetoresistive element 66, and the first magnetic medium 67 and the second magnetic medium 68.
  • the magnetoresistive elements 65 and 66 are disposed on the first surface 63 of the first substrate 62.
  • the first magnetic medium 67 corresponding to the first magnet 5 is disposed on the second surface 64 of the first substrate 62 and faces the first magnetoresistive element 65 with the first substrate 62 interposed therebetween.
  • the second magnetic medium 68 corresponding to the second magnet 6 is disposed on the second surface 64 of the first substrate 62 and faces the second magnetoresistive element 66 through the first substrate 62.
  • the first magnetic medium 67 is disposed immediately below the first magnetoresistive element 65, and the second magnetic medium 68 is disposed directly below the second magnetoresistive element 66. Is preferred. With this configuration, the influence of the magnetization bias from the magnetic media 67 and 68 is likely to be exerted on the respective magnetoresistive elements 65 and 66.
  • the first magnetic medium 67 is disposed in the first groove 69 formed on the second surface 64 of the first substrate 62, and the second magnetic medium 68 is formed on the second surface 64 of the first substrate 62.
  • the second groove 70 is preferably disposed. Although it is possible to bond the magnetic media 67 and 68 to the second surface 64 of the first substrate 62, embedding in the grooves 69 and 70 is advantageous in terms of downsizing and cost.
  • the first substrate 62 is preferably mounted on the die pad 79 and sealed with resin.
  • the first magnetic medium 67 and the second magnetic medium 68 are preferably arranged at a distance of 0.05 mm or more and 3.0 mm or less. This distance is, in FIG. 11C, indicated by the distance L 1.
  • the magnetization direction of the first magnetic medium 67 and the magnetization direction of the second magnetic medium 68 are preferably different. Specifically, as shown in FIG. 11C, the magnetization direction of the first magnetic medium 67 and the magnetization direction of the second magnetic medium 68 are preferably shifted by 90 degrees. Note that “90 degrees misalignment” also includes “substantially 90 degrees misalignment” allowing design errors. Further, as shown in FIG. 11C, the magnetization direction of the first magnetic medium 67 is deviated by 45 degrees from the longitudinal direction of the first substrate 62, and the magnetization direction of the second magnetic medium 68 is the magnetization direction of the first magnetic medium 67. It is preferably vertical (including “substantially vertical”).
  • the magnetization direction of the first magnetic medium 67 is parallel to the longitudinal direction of the first substrate 62 (including “substantially parallel”), and the magnetization direction of the second magnetic medium 68 is the first magnetic field. It may be perpendicular to the magnetization direction of the medium 67 (including “substantially perpendicular”).
  • the first magnetoresistive element 65 is composed of two series-connected magnetoresistive elements
  • the second magnetoresistive element 66 is composed of two series-connected magnetoresistive elements. It is preferable.
  • the number of the magnetoresistive elements 65 and 66 is not limited as long as it is composed of two or more magnetoresistive elements.
  • a processing circuit for processing an output signal output from the first substrate 62 is mounted on the die pad 79.
  • This processing circuit can also drive the first magnetoresistive element 65 and the second magnetoresistive element 66 on the first substrate 62.
  • this processing circuit also processes an output signal output from the second substrate 74 described later. Further, this processing circuit can drive a third magnetoresistive element 75 and a fourth magnetoresistive element 76 on the second substrate 74 described later.
  • the first magnetic medium 67 and the second magnetic medium 68 preferably have a structure in which rare earth magnet powder is dispersed in a resin. Furthermore, it preferably contains sulfur and nitrogen, and is preferably a hard magnetic material. More specifically, it is preferably made of a material such as SmFeN, and preferably has a structure in which SmFeN magnet powder is dispersed in a resin. In addition, for example, it is preferably configured with a material such as a molded resin. SmFeN has the property that resin molding is easy, and since the shape is stabilized, it is easy to be embedded in the grooves 69 and 70 of the first substrate 62.
  • the magnetic sensor 100A senses the detection target magnet 200 with reference to FIGS. 3A and 3B.
  • the magnetic sensor 100C is used with reference to these drawings. Explain the case.
  • the magnetization direction of the first magnetic medium 67 of the first substrate 62 and the magnetization direction of the second magnetic medium 68 are shifted by 90 degrees.
  • the output characteristics of the first magnetoresistive element 65 and the second magnetoresistive element 66 corresponding to the change from the N pole to the S pole of the magnet 200 to be detected and the change from the S pole to the N pole resistance value change characteristics
  • the horizontal axis: time and the vertical axis: resistance value change are respectively a sine waveform and a cosine waveform as in the first embodiment.
  • tan ⁇ can be calculated from the sine waveform and cosine waveform, and the rotation angle ⁇ can be calculated.
  • the magnetoresistive elements 65 and 66 are preferably, for example, an MR (Magneto Resistive Device) element or a GMR (Giant Magneto Resistive Device) element.
  • MR Magnetic Resistive Device
  • GMR Giant Magneto Resistive Device
  • the Hall element may be used, the MR element and the GMR element have an advantage that the number of signals can be doubled.
  • FIGS. 12A to 12C are schematic views of a magnetic sensor 100D according to a first modification of the present embodiment.
  • 12A is a perspective view of the magnetic sensor 100D
  • FIG. 12B is a top view of FIG. 12A
  • FIG. 12C is a perspective view of the first substrate 62 and the second substrate 74 in the magnetic sensor 100D.
  • differences from the magnetic sensor 100C will be mainly described.
  • the magnetic sensor 100D further includes a second substrate 74 in addition to the first substrate 62.
  • the magnetic sensor 100D further includes a second substrate 74, a third magnetoresistive element 75 and a fourth magnetoresistive element 76, and a third magnetic medium 77 and a fourth magnetic medium 78.
  • the second substrate 74 has a first surface 63 and a second surface 64 opposite to the first surface 63.
  • the magnetoresistive elements 75 and 76 are disposed on the first surface 63 of the second substrate 74, and the magnetic media 77 and 78 are disposed on the second surface 64 of the second substrate 74.
  • the first surface 63 of the first substrate 62 and the first surface 63 of the second substrate 74 face the same direction. From the viewpoint of miniaturization, it is preferable that the first substrate 62 and the second substrate 74 are arranged so that the lateral direction forms the same surface.
  • the arrows marked in the magnetoresistive elements 65 and 66 indicate the magnetization directions of the magnetic media 67 and 68, respectively.
  • arrows marked in the magnetoresistive elements 75 and 76 indicate the magnetization directions of the magnetic media 77 and 78, respectively.
  • the magnetoresistive elements 65, 66, 75, and 76 have the same performance.
  • the first substrate 62 and the second substrate 74 preferably have the same area in plan view. In this configuration, when any of the magnetoresistive elements 65 and 66 in the first substrate 62 fails, the magnetoresistive elements 75 and 76 in the second substrate 74 can exhibit a backup function.
  • the second substrate 74 is mounted on the die pad 79, and the longitudinal direction of the first substrate 62 and the longitudinal direction of the second substrate 74 are preferably parallel to each other. Then, it is preferable that the first substrate 62 and the second substrate 74 are arranged so as to be pointed with respect to the center of the magnetic sensor 100D because the center of gravity of the entire package 80 is stabilized.
  • FIGS. 13A to 13D are schematic views of a magnetic sensor 100E according to a second modification of the present embodiment.
  • 13A is a perspective view of the magnetic sensor 100E
  • FIG. 13B is a top view of FIG. 13A.
  • FIG. 13C shows a perspective view of the first substrate 62 in the magnetic sensor 100 ⁇ / b> E and a back view of the first substrate 62.
  • FIG. 13D is a cross-sectional view through the magnetoresistive elements 65 and 66 in the first substrate 62.
  • the magnetic sensor 100E is different from the magnetic sensor 100C in that the length of the first magnetic medium 67 in the extending direction is longer than the length of the first magnetoresistive element 65 in the plan view as shown in FIGS. 13C and 13D.
  • the length of the second magnetic medium 68 in the extending direction is shorter than the length of the second magnetoresistive element 66 in the extending direction.
  • arrows marked in the magnetoresistive elements 65 and 66 indicate the magnetization directions of the magnetic media 67 and 68.
  • the magnetic medium 67 is not formed by arranging the groove only in a part of the short direction instead of penetrating the short direction of the first substrate 62 in plan view.
  • 68 can be shortened in the extending direction.
  • a plurality of first magnetic media 67 may be arranged in the extending direction of the first magnetoresistive element 65. With such a configuration, it is possible to increase the degree of freedom of arrangement of the magnetic medium.
  • the first magnetoresistive element 65 is composed of a plurality of magnetoresistive elements connected in series, and the number of individual magnetoresistive elements connected in series is preferably larger than the number of first magnetic media 67. That is, it is possible to increase the degree of freedom of arrangement of the magnetic medium and the magnetoresistive element.
  • the first magnetoresistive element 65 is composed of two magnetoresistive elements connected in series, and only one first magnetic medium 67 is arranged. Although it is realizable, it is not limited to this form.
  • the first magnetoresistive element 65 is preferably composed of four or more magnetoresistive elements connected in series. This also applies to the relationship between the second magnetoresistive element 66 and the second magnetic medium 68.
  • FIG. 13C and FIG. 13D only one magnetic medium 67, 68 is formed, but a plurality of magnetoresistive elements 65, 66 may be arranged in the length direction. At this time, it is preferable that the magnetization directions of the plurality of first magnetic media 67 arranged immediately below the first magnetoresistive element 65 are the same. The same applies to the second magnetic medium 68 immediately below the second magnetoresistive element 66.
  • the magnetic media 67 and 68 have high fluidity such as rare earth magnet powder made of SmFeN in a groove formed in the silicon wafer and thermosetting resin (epoxy resin, silicone resin, urethane resin, etc.). It is preferable to fill the resin and cure it. There is an effect that it is suitable for mass production.
  • thermosetting resin epoxy resin, silicone resin, urethane resin, etc.
  • FIGS. 14A to 15B are views for explaining a process of forming the first substrate 62.
  • FIG. The method for forming the second substrate 74 is also the same.
  • the first substrate 62 is preferably a silicon substrate. Therefore, it is preferable to use a silicon wafer as the wafer 84.
  • a plurality of substantially parallel grooves 85 are formed on the wafer 84 by, for example, wet etching.
  • 14B is a cross-sectional view taken along line 14B-14B shown in FIG. 14A.
  • the grooves 85 preferably have a width of about 0.65 mm, a depth of about 0.3 mm, and a pitch between the grooves of about 2.0 mm. That is, as shown in FIG. 14B, the length a is 0.5 mm or more and 5.0 mm or less, the length b is 0.5 mm or more and 3.0 mm or less, and the length c is 0.2 mm or more and 4.0 mm or less.
  • the length d is preferably 0.25 mm or more and 2.0 mm or less. And as shown to FIG. 14B, it is preferable that the length c is shorter than the length d. That is, it is preferable that the first groove 69 and the second groove 70 in the first substrate 62 have a portion whose width is narrowed from the second surface 64 of the first substrate 62 toward the first surface 63.
  • the magnetic medium 86 having the first magnetic orientation and the magnetic medium 87 having the second magnetic orientation are alternately embedded in the grooves 85 of the wafer 84.
  • the wafer 84 is diced, and a first substrate having a first magnetic medium 67 that is part of the magnetic medium 86 and a second magnetic medium 68 that is part of the magnetic medium 87. 62 is formed. Thereafter, the first magnetic medium 67 and the second magnetic medium 68 are magnetized to form a magnetic medium 67 having an orientation along the first magnetic orientation and a magnetic medium 68 having an orientation along the second magnetic orientation. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 磁気センサは、基板と、磁気抵抗素子群と、磁石群とを有する。基板は、第1面と、この第1面とは反対側の第2面を有する。磁気抵抗素子群は、第1磁気抵抗素子と第2磁気抵抗素子とを含む。第1磁気抵抗素子と第2磁気抵抗素子とは、基板の第1面上に配置されている。磁石群は、第1磁気抵抗素子に対向する第1磁石と、第2磁気抵抗素子に対向する第2磁石とを含む。

Description

磁気センサ
 本発明は、バイアス磁石を有する磁気センサに関する。
 従来の磁気センサは、例えば、特許文献1、2に開示されている。特許文献1は、4つの磁気抵抗素子の直下に1つのバイアス磁石が配置された構造を開示している。また、特許文献2は、磁気抵抗素子の上方を覆うようにバイアス磁石が配置された構造を開示している。
特開2006-208025号公報 特開2013-024674号公報
 本発明は、より小型化、高精度化が可能な磁気センサを提供する。
 本発明の磁気センサは、基板と、磁気抵抗素子群と、磁石群とを有する。基板は、第1面と、この第1面とは反対側の第2面を有する。磁気抵抗素子群は、第1磁気抵抗素子と第2磁気抵抗素子とを含む。第1磁気抵抗素子と第2磁気抵抗素子とは、基板の第1面上に配置されている。磁石群は、第1磁気抵抗素子に対向する第1磁石と、第2磁気抵抗素子に対向する第2磁石とを含む。
 この構成により、さらに小型で、高精度の磁気センサを提供することが可能となる。
実施の形態1に係る磁気センサの概略図 実施の形態1に係る磁気センサ内に配置される磁気抵抗素子を有する基板の概略上面図 実施の形態1に係る磁気センサを検知対象磁石の側方に配置した状態を示す概略図 実施の形態1に係る磁気センサを検知対象磁石の上方に配置した状態を示す概略図 図2に示す第1磁気抵抗素子の拡大図 図4Aに示す第1磁気抵抗素子の4B-4B線における断面図 磁石群を構成する各磁石の磁気バイアス方向の第1の例を示す図 磁石群を構成する各磁石の磁気バイアス方向の第2の例を示す図 実施の形態2に係る磁気センサの概略図 実施の形態2に係る磁気センサ内に配置される磁気抵抗素子を有する基板の概略上面図 実施の形態2に係る磁気センサ内に配置される磁石群を構成する各磁石の磁気バイアス方向の説明図 図7Aに示す7C-7C線における断面図 実施の形態2の第1変形例に係る磁気センサ内に配置される磁気抵抗素子を有する基板の概略上面図 実施の形態2の第1変形例に係る磁気センサ内に配置される磁石群を構成する各磁石の磁気バイアス方向の説明図 図8Aに示す8C-8C線における断面図 実施の形態2の第2変形例に係る磁気センサ内に配置される磁気抵抗素子を有する基板の概略上面図 実施の形態2の第2変形例に係る磁気センサ内に配置される磁石群を構成する各磁石の磁気バイアス方向の説明図 図9Aに示す9C-9C線における断面図 実施の形態に係る磁気センサを内部に配置された構造体の概略断面図 本発明の実施の形態3に係る磁気センサの斜視図 図11Aに示す磁気センサの上面図 図11Aに示す磁気センサにおける第1基板の斜視図 本発明の実施の形態3に係る磁気センサにおける他の第1基板の上面図 本発明の実施の形態3の第1変形例に係る磁気センサの斜視図 図12Aに示す磁気センサの上面図 図12Aに示す磁気センサにおける第1基板、第2基板の斜視図 本発明の実施の形態3の第2変形例に係る磁気センサの斜視図 図13Aに示す磁気センサの上面図 図13Aに示す磁気センサにおける第1基板の斜視図と裏面図 図13Cに示す第1基板における磁気抵抗素子を通過する面を示す断面図 本発明の実施の形態3の第2変形例に係る磁気センサにおける他の第1基板の裏面図 本発明の実施の形態3に係る磁気センサを形成するためのウェアの正面図 図14Aに示す14B-14B線における断面図 本発明の実施の形態3に係る磁気センサの基板の形成工程を説明するための図 本発明の実施の形態3に係る磁気センサの基板の形成工程を説明するための図
 本発明の実施の形態の説明に先立ち、特許文献1、2に開示された従来の磁気センサにおける問題点を説明する。従来の磁気センサでは、1つ又は複数の磁気抵抗素子などの金属パターンに対して、1つのバイアス磁石が配置されている。このような構造では、さらに小型にしつつ、高精度化することはできない。
 以下、本発明の実施の形態に係る磁気センサについて、図面を参照しながら説明する。なお、各実施の形態において、先行する図面と同一部分には符号の付与を省略し、その説明を適宜省略することがある。また、先行する実施の形態と同一部分には同じ符号を付し、詳細な説明を省略する場合がある。また各図面は好ましい形態の一例を示すものであり、それぞれの構成・形状・数値に限定されるわけではない。また、実施の形態中で説明する各要素技術を矛盾の無い範囲で適宜組み合わせることは可能である。
 (実施の形態1)
 以下、本発明の実施の形態1に係る磁気センサ100Aについて説明する。まず、磁気センサ100Aの基本構成とセンシング方法について説明する。図1は磁気センサ100Aの概略上面図である。
 磁気センサ100Aは、ダイパッド20と、基板1と、複数の外部端子19とを有する。基板1の第1面上には複数のパッド30と後述する複数の磁気抵抗素子と、それぞれの磁気抵抗素子に対向する第1磁石5、第2磁石6、第3磁石7が配置されている。パッド30はそれぞれ、各磁気抵抗素子に電気的に接続されている。パッド30のうちの1つは各磁気抵抗素子からの出力を読み出すように設けられている。パッド30のうちの他の1つは、各磁気抵抗素子に対して電圧を印加するために設けられている。パッド30のうちのさらに他の1つは、各磁気抵抗素子をグランド接続させるために設けられている。第1磁石5、第2磁石6は磁石群を構成している。なお、この磁石群は第3磁石7をさらに含むことが好ましい。外部端子19はそれぞれ、パッド30の各々と、配線18を介して電気的に接続されている。
 なお、基板1の第2面がダイパッド20に実装されていることが好ましい。そして、ダイパッド20は金属であり、ダイパッド20をグランドパターン上に配置することで、磁気センサ100Aの全体に対する外部からのノイズを除去することも可能である。
 図2は、基板1の第1面を示す概略上面図である。図2は、基板1の上の磁気抵抗素子パターン、配線パターン、パッドなどを中心に示し、磁石群が配置される領域については、点線で示している。
 基板1と基板1上に設けられた複数の磁気抵抗素子、およびそれぞれの磁気抵抗素子に対向する磁石は磁気センサ100Aの基本構造を構成している。すなわち、磁気センサ100Aは、基板1と、磁気抵抗素子群と、磁石群とを有する。基板1は、第1面と、この第1面とは反対側の第2面を有する。磁気抵抗素子群は、第1磁気抵抗素子2と第2磁気抵抗素子3とを含む。第1磁気抵抗素子2と第2磁気抵抗素子3とは、基板1の第1面上に配置されている。磁石群は、第1磁気抵抗素子2に対向する第1磁石5と、第2磁気抵抗素子3に対向する第2磁石6とを含む。
 この構成では、磁気抵抗素子群を構成する磁気抵抗素子2、3のそれぞれに対して、別々の磁石5、6から磁気バイアスをかけることが可能である。したがって、それぞれの磁気抵抗素子2、3に対して、同じ方向の磁気バイアスをかけるだけでなく、異なる方向の磁気バイアスをかけることができるなど、設計自由度を向上させることが可能となる。そして、さらに小型で高精度な磁気センサを作製することが可能となる。
 ここで、図3A、図3Bを参照しながら、磁気センサ100Aが検知対象磁石200をどのようにセンシングするかを説明する。図3Aは、磁気センサ100Aを検知対象磁石200の側方に配置する場合を示しており、図3Bは、磁気センサ100Aを検知対象磁石200の上方に配置する場合を示している。なお、図3A、図3Bにおいては、検知対象磁石200は、回転可能な構造であるが、それ以外の構成でも構わない。例えば、N極とS極を交互に配置した直線状の板によって検知対象磁石200を構成しても構わない。
 まず、N極とS極を有する検知対象磁石200のN極からS極(又はS極からN極)に向かう方向に対し、磁気センサ100Aを相対的に移動可能となるように配置する。具体的には図3A、図3Bに示すように磁気センサ100Aと検知対象磁石200を配置する。これらの配置では、検知対象磁石200が回転することによって、磁気センサ100Aの下方又は側方を通過する検知対象磁石200の磁極がN極からS極に、S極からN極にと交互に入れ替わる。磁気センサとは、例えば、特定方向の磁界の強度に応じて抵抗値が変化する性質を有するセンサである。そのため、磁気センサ100AはN極からS極への変化、S極からN極への変化に対応した磁気抵抗変化を読み取ることが可能となり、検知対象磁石200を有する測定対象の回転角を検知することが可能となる。
 より具体的に説明すると、例えば、第1磁気抵抗素子2に印加される第1磁石5の磁気バイアス方向と第2磁気抵抗素子3に印加される第2磁石6の磁気バイアス方向とが90度ずれている場合を想定する。この場合、検知対象磁石200から磁気抵抗素子2、3に印加される磁界の方向は、磁石5、6により90度ずれる。そのため、検知対象磁石200のN極からS極への変化、S極からN極への変化に対応した第1磁気抵抗素子2と第2磁気抵抗素子3の出力特性はそれぞれ正弦波(sinθ)、余弦波(cosθ)となる。この出力特性とは、時間を横軸にして、縦軸に抵抗値変化をプロットした場合の抵抗値変化特性である。
 そして、正弦波、余弦波からtanθを算出し、回転角θを算出することが可能となる。このようにして、測定対象の回転角を検出することが可能となる。
 次に、上記構成によって、磁気センサ100Aがどのようにして検知対象磁石200を検知するかについて、具体的に説明する。まず、第1磁気抵抗素子2の抵抗値変化特性である第1出力V、第4出力Vが、以下の式で表せると仮定する。
 V=V=sinθ
 この時、第2磁石6の磁気バイアス方向を第1磁石5の磁気バイアス方向から90度ずらすと、第2磁気抵抗素子3の抵抗値変化特性である第2出力V2は、以下の式で表せる。
 V=sin(θ+90°)=cosθ
 また、第3磁石7の磁気バイアス方向を第2磁石6の磁気バイアス方向から180度ずらす(第1磁石の磁気バイアス方向から-90度ずらす)と、第3磁気抵抗素子4の抵抗値変化特性である第3出力V3は、以下の式で表せる。
 V=sin(θ-90°)=-cosθ
 そして、出力Vと出力Vの差分V12は、以下の式で表せる。
 V12=V-V=sinθ-cosθ=√2 sin(θ-45°)
 一方、出力Vと出力Vの差分V34は、以下の式で表せる。
 V34=V-V=sinθ-(-cosθ)=√2 sin(θ+45°)
 その結果、V34の位相はV12の位相に対し90度ずれる。そのため、V12を正弦波とすると、V34は余弦波となる。そして、正弦波、余弦波からtanθを算出し、回転角θを算出することが可能となる。このようにして、測定対象の回転角を検出することが可能となる。
 なお、図1、図2に示すように、磁気抵抗素子群は第3磁気抵抗素子4を有しており、磁石群は第3磁気抵抗素子4に対向する第3磁石7を有していることが好ましい。そして、平面視において、第2磁気抵抗素子3と第3磁気抵抗素子4は第1軸50Aを対称軸として線対称に配置されており、第1磁気抵抗素子2は第1軸上に配置されていることが好ましい。
 そして、第1磁気抵抗素子2は電圧印加用パッド11、グランド用パッド12、第1出力端子13、第4出力端子16に接続されていることが好ましい。そして、第2磁気抵抗素子3は電圧印加用パッド11、グランド用パッド12、第2出力端子14に接続されていることが好ましい。そして、第3磁気抵抗素子4は電圧印加用パッド11、グランド用パッド12、第3出力端子15に接続されていることが好ましい。
 なお、第3磁気抵抗素子4とグランド用パッド12とは、第1磁気抵抗素子2又は第2磁気抵抗素子3を介して間接的に接続されている。このような好ましい配置とすることで、後述するように、磁気センサ100Aのセンシング機能の信頼性を確保することができる。
 次に、磁気センサ100Aにおいて配置される磁気抵抗素子の平面構造及び断面構造を説明する。また、磁石群を構成する各磁石の磁気バイアス方向について説明する。
 図4Aは、第1磁気抵抗素子2の拡大図である。また、図4Bは、図4Aの4B-4B線における断面図である。また、図5Aは、磁石群を構成する各磁石の磁気バイアス方向の第1の例を示し、図5Bは、磁石群を構成する磁石5~7の磁気バイアス方向の第2の例を示している。磁石5、6、7のそれぞれの中に示す矢印は磁界の向き(磁気バイアス方向)を示している。すなわち、磁石5~7の磁極はそれぞれの相対する側面に形成されている。
 図4Aに示すように、第1磁気抵抗素子2は、複数の折り返しを有するミアンダ形状のパターン2A、2B、2C、2Dを有している。パターン2A、2B、2C、2Dはそれぞれ、最大の長さを有する直線形状部2E、2F、2G、2Hを有している。直線形状部2Eと直線形状部2Hは90度ずれるように配置され、直線形状部2Fと直線形状部2Gは90度ずれるように配置され、直線形状部2Gと直線形状部2Eは90度ずれるように配置されている。そして、図4A、図5A、図5Bからわかるように、直線形状部2E、2F、2G、2Hは第1磁石5の磁気バイアス方向に対して45度傾くように配置されている。
 なお、磁気抵抗素子3、4のパターンと磁気抵抗素子3、4にそれぞれ対向する磁石6、7との関係も、第1磁気抵抗素子2のパターンと第1磁気抵抗素子2に対向する第1磁石5との関係と同様である。このような配置とすることで、磁気センサ100Aのセンシング機能の信頼性を確保することができる。
 また、図4Aに示すように、基板1の第1面上には、磁石5~7のそれぞれのコーナーに対応した位置決め部9が配置されていることが好ましい。たとえば、第1磁石5の位置がずれると、第1磁石5からの磁気バイアス方向がずれて、信頼性が損なわれる可能性がある。そこで、第1磁石5のコーナーと位置決め部9との位置関係を光学顕微鏡などで確認しながら、第1磁石5を配置することにより、第1磁石5の位置ずれを抑制し、信頼性を向上させることができる。
 なお、位置決め部9は、金属で構成されていることが好ましい。そして、位置決め部9の材料は、磁気抵抗素子群から延びる配線10の材料と同一であることが好ましい。この構成の場合、配線10を形成するプロセスと同じプロセスを用いて位置決め部9を形成できるので、コスト面で望ましい。なお、上記のことは、磁石6、7についても第1磁石5と同様である。
 また、図4Bに示すように、第1磁石5は、第1磁気抵抗素子2上に熱硬化性接着剤又はUV硬化性接着剤で形成された接着部8を介して配置されていることが好ましい。そして、接着部8は、第1磁石5の側面の一部を覆っていることが好ましい。第1磁石5の位置がずれると、第1磁石5からの磁気バイアス方向がずれて、信頼性が損なわれる可能性がある。そこで、第1磁石5の位置を確認後、熱硬化性接着剤又はUV硬化性接着剤を硬化させることで、接着部8が第1磁石5の位置ずれを抑制し、信頼性を向上させることができる。なお、上記のことは、磁石6、7についても第1磁石5と同様である。なお、1つの接着部8で磁石5~7の2つ以上を、対応する磁気抵抗素子2~4に対し固定してもよい。
 また、図4Bに示すように、磁気抵抗素子群上には、シリコン酸化膜又はフッ素系樹脂膜を有する保護膜17が配置されていることが好ましい。磁気抵抗素子群上に直接に接着部8を形成しても構わないが、保護膜17を介することで、製品の信頼性を確保することができる。
 なお、磁気抵抗素子群を構成する磁気抵抗素子2、3、4は、Ni、Co、およびFeを含む磁性体層と、Cuを含む非磁性体層と積層した人工格子膜であることが好ましい。また、特定方向の磁界の強度に応じて抵抗値が変化する異方性磁気抵抗素子を磁気抵抗素子2、3、4として用いることが好ましい。
 また、図示していないが、磁気抵抗素子群は、基板1上にシリコン酸化膜などの下地膜を介して配置することができる。
 また、図5A、図5Bに示すように、第3磁石7の中心の磁界の向きは、第2磁石6の中心の磁界の向きと平行であり、第2磁石6の中心の磁界の向きは、第1磁石5の中心の磁界の向きと垂直であることが好ましい。
 なお、第1磁石5による磁界と第2磁石6による磁界と第3磁石7による磁界とが互いに干渉し合わないように、磁石5、6、7を十分な距離だけ離して配置することが好ましい。このようにすることで、測定対象の回転角を高精度に検出することができる。
 また、図5Aに示すように、第3磁石7の中心の磁界の向きは、第2磁石6の中心の磁界の向きと対向しても構わない。あるいは、図5Bに示すように、第3磁石7の中心の磁界、および、第2磁石6の中心の磁界が外側向きでも構わない。図5Aのような磁界を実現するには、それぞれの磁石ごとに印磁する必要があるのに対し、図5Bのような磁界を実現するには、全ての磁石をまとめて印磁することができる。
 また、図2に示すように、磁気抵抗素子群からの信号を処理する処理回路21が、基板1の第1面上における第2磁気抵抗素子3と第3磁気抵抗素子4の間に配置されていることが好ましい。処理回路21は、例えば、磁気抵抗素子群からの信号を増幅処理することができる。第2磁気抵抗素子3と第3磁気抵抗素子4との間の空いたスペースに処理回路21を配置することで、磁気センサ100A全体として小型化することができる。
 なお、第1磁石5、第2磁石6及び第3磁石7は、樹脂と、この樹脂中に分散した希土類磁石粉とを含むことが好ましい。そして、樹脂は熱硬化性の樹脂を含有し、希土類磁石粉はSmFeN磁石粉であることが好ましい。SmFeNは、樹脂成形が容易であるという性質を有するため、製造プロセス面で有利である。
 また、図2に示すように、第2磁気抵抗素子3及び第3磁気抵抗素子4の大きさは、第1磁気抵抗素子2の大きさよりも小さいことが好ましい。具体的には、第2磁気抵抗素子3及び第3磁気抵抗素子4は2つのミランダ状のパターンを有しているのに対し、第1磁気抵抗素子2は4つのミランダ状のパターンを有していることが好ましい。ただし、第2磁気抵抗素子3及び第3磁気抵抗素子4に対して、ダミーパターンとして、第1磁気抵抗素子2と同じ数だけミランダ状のパターンを形成しても構わない。
 (実施の形態2)
 以下、本発明の実施の形態2に係る磁気センサ100Bについて、図6~図10を参照しながら説明する。まず磁気センサ100Bの基本構成とセンシング方法について説明する。図6は磁気センサ100Bの概略上面図である。
 実施の形態1に係る磁気センサ100Aと同様に、磁気センサ100Bは、ダイパッド20と、基板1と、複数の外部端子19とを有する。基板1の第1面上には複数のパッド30と後述する複数の磁気抵抗素子と、それぞれの磁気抵抗素子に対向する第1磁石36、第2磁石37、第3磁石38、第4磁石39が配置されている。パッド30および配線18による外部端子19とパッド30との接続については実施の形態1と同様なので説明を省略する。
 第1磁石36、第2磁石37は磁石群を構成している。なお、磁石群は第3磁石38、第4磁石39をさらに有することが好ましい。
 なお、基板1の第2面がダイパッド20に実装されていることが好ましい。これについても実施の形態1と同様である。
 図7Aは基板1の第1面を示す概略上面図である。図7Aは、基板1の上の磁気抵抗素子パターン、配線パターン、出力端子などを中心に示し、磁石群が配置される領域については、点線で示している。図7Bは、磁気センサ100B内に配置される磁石群と基板1との配置関係を示している。図7Bにおける矢印は、印加されている磁界の方向を表している。図7Cは、図7Aの7C-7C線における断面図である。
 基板1と基板1上に設けられた複数の磁気抵抗素子、およびそれぞれの磁気抵抗素子に対向する磁石は磁気センサ100Bの基本構造を構成している。すなわち、図7A、図7Cに示すように、磁気センサ100Bは、基板1と、磁気抵抗素子群と、磁石群とを有する。基板1は、第1面と、この第1面とは反対側の第2面を有する。磁気抵抗素子群は、第1磁気抵抗素子32と第2磁気抵抗素子33とを含む。第1磁気抵抗素子32と第2磁気抵抗素子33とは、基板1の第1面上に配置されている。磁石群は、第1磁気抵抗素子32に対向する第1磁石36と、第2磁気抵抗素子33に対向する第2磁石37とを含む。
 磁気センサ100Bにおいても、磁気抵抗素子群を構成する磁気抵抗素子32、33のそれぞれに対して、別々の磁石36、37から磁気バイアスをかけることが可能である。したがって、それぞれの磁気抵抗素子32、33に対して、同じ方向の磁気バイアスをかけるだけでなく、異なる方向の磁気バイアスをかけることができるなど、設計自由度を向上させることが可能となる。そして、さらに小型で高精度な磁気センサを作製することが可能となる。
 なお、実施の形態1において、図3A、図3Bを参照しながら、磁気センサ100Aが検知対象磁石200をどのようにセンシングするかを説明したが、磁気センサ100Aに代えて磁気センサ100Bを用いた場合も同様である。すなわち、第1磁気抵抗素子2、第2磁気抵抗素子3、第1磁石5、第2磁石6をそれぞれ、第1磁気抵抗素子32、第2磁気抵抗素子33、第1磁石36、第2磁石37に読み替えればよい。
 また、図6、図7A、図7Bに示すように、磁気抵抗素子群は第3磁気抵抗素子34、第4磁気抵抗素子35をさらに含み、磁石群は第3磁気抵抗素子34に対向する第3磁石38と、第4磁気抵抗素子35に対向する第4磁石39とをさらに含むことが好ましい。この場合、図7Bに示すように、第1磁石36の中心を通る磁界の向きと第3磁石38の中心を通る磁界の向きは平行であり、第2磁石37の中心を通る磁界の向きと第4磁石39の中心を通る磁界の向きは平行である。また、第1磁石36の中心を通る磁界の向きと第2磁石37の中心を通る磁界の向きは垂直である。
 そして、平面視において、第2磁気抵抗素子33と第4磁気抵抗素子35は第1軸50Bを対称軸として線対称に配置されており、第1磁気抵抗素子32は第1軸50B上に配置されていることがさらに好ましい。すなわち、第2磁石37と第4磁石39とは第1軸50Bを対称軸として線対称に配置されており、第1磁石36と第3磁石38とは第1軸50B上に配置されていることが好ましい。
 なお、平面視において、第1磁気抵抗素子32と第3磁気抵抗素子34とが第1軸50Bを対称軸として線対称に配置されていてもよい。この場合には、第2磁気抵抗素子33、第4磁気抵抗素子35は第1軸50B上に配置されていることが好ましい。すなわち、平面視において、第1磁石36と第3磁石38とは第1軸50Bを対称軸として線対称に配置されていてもよい。この場合には、第2磁石37、第4磁石39は第1軸50B上に配置されている。
 そして、第1磁気抵抗素子32は電圧印加用および、グランド用の2つのパッド30と電気的に接続されているとともに、第1出力端子51と、第4出力端子54とに配線42を介して電気的に接続されていることが好ましい。そして、第2磁気抵抗素子33は電圧印加用よび、グランド用の2つのパッド30、第1出力端子51と、第2出力端子52とに接続されていることが好ましい。そして、第3磁気抵抗素子34は電圧印加用および、グランド用の2つのパッド30と、第2出力端子52と、第3出力端子53とに接続していることが好ましい。そして、第4磁気抵抗素子35は電圧印加用および、グランド用の2つパッド30と、第3出力端子53と、第4出力端子54とに接続していることが好ましい。このような好ましい配置とすることで、後述するように、磁気センサ100Bのセンシング機能の信頼性を確保することができる。
 なお、図7Aに示すように、第1磁気抵抗素子32と第2磁気抵抗素子33との間の距離は、第3磁気抵抗素子34と第4磁気抵抗素子35との間の距離と同じであることがさらに好ましい。また、第1磁気抵抗素子32と第3磁気抵抗素子34との間の距離は、第2磁気抵抗素子33と第4磁気抵抗素子35との間の距離と同じであることがさらに好ましい。これらの構成により、精度高く回転角θを検出することが可能となる。なお、本明細書中において、「同じ」とは設計誤差を許容する程度に実質的に同じことを意味する。
 次に、磁気センサ100Bにおいて配置される磁気抵抗素子の平面構造及び断面構造を説明する。また、磁石群を構成する各磁石の磁気バイアス方向について、図7A~図7Cを参照しながら説明する。
 図7Aに示すように、第1磁気抵抗素子32、第2磁気抵抗素子33、第3磁気抵抗素子34、第4磁気抵抗素子35はそれぞれ、複数の折り返しを有するミアンダ形状のパターンA、B、C、Dを有している。それぞれのパターンA、B、C、Dは、最大の長さを有する直線形状部E、F、G、Hを有しており、直線形状部Eと直線形状部Fは90度ずれるように配置され、直線形状部Fと直線形状部Gは90度ずれるように配置され、直線形状部Gと直線形状部Hは90度ずれている。そして、図7A、図7Bに示すように、直線形状部E、F、G、Hのそれぞれは第1磁石36、第2磁石37、第3磁石38、第4磁石39のそれぞれの磁気バイアス方向に対して45度傾くように配置されている。このような配置によって、磁気センサ100Bのセンシング機能の信頼性を確保することができる。
 また、図7Aに示すように、基板1の第1面上には、磁石36~39のそれぞれコーナーに対応した位置決め部9が配置されていることが好ましい。位置決め部9の構成、効果は実施の形態1と同様である。
 また、図7Cに示すように、磁石群は磁気抵抗素子群上に配置されていることが好ましい。また、第1磁石36は、第1磁気抵抗素子32上に熱硬化性接着剤又はUV硬化性接着剤で形成された接着部8を介して配置されていることが好ましい。なお、接着部8の構成、効果は、実施の形態1と同様であり、磁石37、38、39についても第1磁石36と同様に適用することが好ましい。
 また、図7Cに示すように、磁気抵抗素子群上には、シリコン酸化膜又はフッ素系樹脂膜を有する保護膜17が配置されていることが好ましい。保護膜17の構成、効果は、実施の形態1と同様である。磁気抵抗素子群を構成する各磁気抵抗素子の好ましい構成と、その効果も、実施の形態1と同様である。
 また、図示していないが、磁気抵抗素子群は、基板1上にシリコン酸化膜などの下地膜を介して配置することができる。これについても実施の形態1と同様である。
 次に、磁石群と磁気抵抗素子群の配置及び磁石群の磁気バイアス方向についての第1変形例について、図8A~図8Cを参照しながら説明する。図8Aは、本実施の形態の第1変形例に係る磁気センサ内に配置される磁気抵抗素子32~35を有する基板1の概略上面図である。図8Aにおいては、基板1上の磁気抵抗素子パターン、配線パターン、出力端子などを中心に示している。磁石群が配置される領域については、点線で示している。図8Bは、この磁気センサ内に配置される磁石群と基板1との配置関係を示している。図8Bにおける矢印は、印加されている磁界の方向を表している。図8Cは、図8Aの8C-8C線における断面図を表している。
 図8Bに示すように、第1磁石36の中心の磁界の向きは、第2磁石37の中心の磁界の向きと平行である。また、第3磁石38の中心の磁界の向きは、第1磁石36の中心の磁界の向きと垂直である。また、第4磁石39の中心の磁界の向きは、第3磁石38の中心の磁界の向きと平行である。そして、第1磁石36の中心の磁界の向きは、第2磁石37の中心の磁界の向きと逆向きである。また、第4磁石39の中心の磁界の向きは、第3磁石38の中心の磁界の向きと逆向きである。
 第1磁石36による磁界と第2磁石37による磁界と第3磁石38による磁界と第4磁石39による磁界とが互いに干渉し合わないように、磁石36~39を互いに十分な距離だけ離して配置することが好ましい。このようにすることで、測定対象の回転角を高精度に検出することができる。なお、本明細書において、「平行」とは、設計誤差を許容する程度に実質的に平行であることを意味する。また、本明細書において、「垂直」とは、設計誤差を許容する程度に実質的に垂直であることを意味する。
 次に、磁石群と磁気抵抗素子群の配置及び磁石群の磁気バイアス方向についての第2変形例について、図9A~図9Cを参照しながら説明する。図9Aは、本実施の形態の第2変形例に係る磁気センサ内に配置される磁気抵抗素子32~35を有する基板1の概略上面図である。図9Aにおいては、基板上の磁気抵抗素子パターン、配線パターン、出力端子などを中心に示している。磁石群が配置される領域については、点線で示している。図9Bは、この磁気センサ内に配置される磁石群と基板との配置関係を示している。図9Bにおける矢印は、印加されている磁界の方向を表している。図9Cは、図9Aの9C-9C線における断面図を表している。
 図9Bに示すように、第1磁石36の中心の磁界の向きは、第3磁石38の中心の磁界の向きと平行である。また、第2磁石37の中心の磁界の向きは、第1磁石36の中心の磁界の向きと垂直である。また、第4磁石39の中心の磁界の向きは、第2磁石37の中心の磁界の向きと平行である。そして、第1磁石36の中心の磁界の向きは、第3磁石38の中心の磁界の向きと逆向きである。また、第4磁石39の中心の磁界の向きは、第2磁石37の中心の磁界の向きと逆向きである。
 第1変形例と同様に、第1磁石36による磁界と第2磁石37による磁界と第3磁石38による磁界と第4磁石39による磁界とが互いに干渉し合わないように、磁石36~39を互いに十分な距離だけ離して配置することが好ましい。このようにすることで、測定対象の回転角を高精度に検出することができる。
 また、図示しないが、実施の形態1と同様に、磁気抵抗素子群からの信号を処理する処理回路が、基板1の第1面上に配置されていることが好ましい。そして、例えば、第1変形例、第2変形例においては、磁気抵抗素子群又は磁石群によって囲まれるように処理回路を配置することが好ましい。処理回路は、例えば、磁気抵抗素子群からの信号を増幅処理することができる。そして、例えば、磁気抵抗素子32、33、34、35のいずれか2組のペア間の空いたスペースに処理回路を配置することで、磁気センサ全体の小型化を実現することができる。さらに、磁気抵抗素子群又は磁石群によって囲まれる空いたスペースに処理回路を配置することで、磁気センサ100B全体の小型化を実現することができる。
 なお、磁石36~39の好ましい材料およびその効果は、実施の形態1と同様である。
 また、図10に示すように、磁気センサ100Bは構造体600内に配置されていることが好ましい。図10は磁気センサ100Bを含む構造体600の概略断面図である。
 具体的には、構造体600は、外側に磁気センサ100Bが設けられた筒状の第1部材300と、第1部材300の内部に配置され、第1部材300の延伸方向に動作可能な第2部材400とを有する。また第2部材400上には第5磁石500が配置されている。磁気センサ100Bの平面方向に垂直な方向において、第5磁石500は、磁気センサ100Bと重なるように配置されている。このような配置において、第2部材400を第1部材300の延伸方向(図10における矢印方向)に動作させると、磁気センサ100Bと第5磁石500との位置関係が変化する。位置関係が変化すると、各磁気抵抗素子に加わる磁界が変化する。そして、磁界の変化を各磁気抵抗素子が読み取ることによって、第5磁石500の位置を検知することができる。すなわち、第1部材300に対する第2部材400の動きを検知することができる。なお、第1部材300の断面は、円形、四角形など用途に応じて、様々な形状をなしうる。
 なお、磁気センサ100Bに代えて、実施の形態1における磁気センサ100Aや、以下に説明する実施の形態3における磁気センサ100C~100Eを用いてもよい。
 (実施の形態3)
 図11A~図11Cは、本発明の実施の形態3に係る磁気センサ100Cの概略図である。図11Aは磁気センサ100Cの斜視図であり、図11Bは図11Aの上面図である。また、図11Cは、磁気センサ100Cにおける第1基板62の斜視図である。なお、図11Cにおいて、第1基板62に配置された第1磁気抵抗素子65及び第2磁気抵抗素子66中に記された矢印はそれぞれ、第1磁気媒体67及び第2磁気媒体68の磁化方向を示している。
 図11A、図11Cに示すように、磁気センサ100Cは、第1基板62と、第1磁気抵抗素子65及び第2磁気抵抗素子66と、第1磁気媒体67及び第2磁気媒体68とを有している。第1基板62は、第1面63と、第1面63とは反対側の第2面64とを有する。磁気抵抗素子65、66は第1基板62の第1面63に配置されている。磁気媒体67、68は、第1基板62の第2面64に配置されている。
 磁気センサ100Cはさらに、ダイパッド79と、パッケージ80と、支持部81と、端子82と、配線83とを有する。ダイパッド79は第1基板62を搭載し、支持部81はダイパッド79から突出している。端子82はパッケージ80において支持部81が伸びる方向と平行な面に設けられている。第1基板62に設けられた磁気抵抗素子65、66は配線83によって端子82と電気的に接続されている。
 この構成では、磁気抵抗素子65、66にそれぞれ別々に磁気媒体67、68から磁気バイアスをかけることが可能である。したがって、磁気抵抗素子65、66に同じ磁化方向のバイアスをかけるだけでなく、異なる磁化方向のバイアスをかけることができる。このように、設計自由度を向上させることができるとともに、磁気センサ100Cは従来の磁気センサに比べて小型であるとともに、高い精度を有する。
 上述のように、磁気媒体67、68は磁気抵抗素子65、66に磁気バイアスをかけることが可能である。すなわち、磁気媒体67、68は実施の形態1における磁石5、6に相当する。言い換えれば、磁気センサ100Cは、第1基板62と、第1磁気抵抗素子65及び第2磁気抵抗素子66と、第1磁気媒体67及び第2磁気媒体68とを有する。磁気抵抗素子65、66は第1基板62の第1面63に配置されている。第1磁石5に相当する第1磁気媒体67は第1基板62の第2面64に配置され、第1基板62を介して第1磁気抵抗素子65に対向している。同様に、第2磁石6に相当する第2磁気媒体68は第1基板62の第2面64に配置され、第1基板62を介して第2磁気抵抗素子66に対向している。
 また、図11A、図11Cに示すように、第1磁気媒体67は第1磁気抵抗素子65の直下に配置され、第2磁気媒体68は第2磁気抵抗素子66の直下に配置されていることが好ましい。この構成により、磁気媒体67、68からの磁化バイアスの影響をそれぞれの磁気抵抗素子65、66に対して及ぼしやすい。
 また、第1磁気媒体67は、第1基板62の第2面64に形成された第1溝69内に配置され、第2磁気媒体68は、第1基板62の第2面64に形成された第2溝70内に配置されていることが好ましい。第1基板62の第2面64に磁気媒体67、68を貼り合わせることも可能であるが、溝69、70に埋め込む方が、小型化とコスト面で有利である。
 また、図11A、図11Bに示すように、第1基板62はダイパッド79の上に搭載され、樹脂封止されていることが好ましい。
 また、図11Cにおいて、第1磁気媒体67と第2磁気媒体68とは、0.05mm以上、3.0mm以下の距離離れて配置されていることが好ましい。この距離は、図11Cにおいては、距離Lで示される。
 また、図11Cに示すように、第1磁気媒体67の磁化方向と第2磁気媒体68の磁化方向は異なることが好ましい。具体的には、図11Cに示すように、第1磁気媒体67の磁化方向と第2磁気媒体68の磁化方向は90度ずれていることが好ましい。なお、「90度ずれている」とは、設計誤差を許容した「実質的に90度ずれている」ことも含む。さらに、図11Cに示すように、第1磁気媒体67の磁化方向は第1基板62の長手方向から45度ずれており、第2磁気媒体68の磁化方向は第1磁気媒体67の磁化方向に垂直(「略垂直」を含む)であることが好ましい。なお、「45度ずれている」は、設計誤差を許容した「実質的に45度ずれている」ことも含む。あるいは、図11Dに示すように、第1磁気媒体67の磁化方向は第1基板62の長手方向に平行(「略平行」を含む)であり、第2磁気媒体68の磁化方向は第1磁気媒体67の磁化方向に垂直(「略垂直」を含む)であっても構わない。
 また、図11Cに示すように、第1磁気抵抗素子65は2つの直列接続された磁気抵抗素子から構成され、第2磁気抵抗素子66は2つの直列接続された磁気抵抗素子から構成されていることが好ましい。ここで、磁気抵抗素子65、66はそれぞれ、2つ以上の磁気抵抗素子から構成されていれば個数は問わない。
 また、実施の形態1で説明したのと同様に、ダイパッド79の上には、第1基板62から出力される出力信号を処理する処理回路が搭載されていることが好ましい。なお、この処理回路は第1基板62における第1磁気抵抗素子65及び第2磁気抵抗素子66を駆動させることも可能である。
 また、この処理回路は、後述する第2基板74から出力される出力信号も処理することが好ましい。さらにこの処理回路は後述する第2基板74における第3磁気抵抗素子75及び第4磁気抵抗素子76を駆動させることも可能である。
 また、第1磁気媒体67、第2磁気媒体68としては、希土類磁石粉が樹脂中に分散した構造であることが好ましい。さらには、硫黄、窒素を含有することが好ましく、硬磁性体であることが好ましい。より具体的には、SmFeNなどの材料で構成されていることが好ましく、SmFeN磁石粉が樹脂中に分散した構造であることが好ましい。なお、他にも、例えば、成形樹脂などの材料とともに構成されていることが好ましい。SmFeNとは、樹脂成形が容易であるという性質を有し、形状が安定化するため第1基板62の溝69、70に埋め込みやすい。
 なお、実施の形態1において、図3A、図3Bを参照しながら、磁気センサ100Aが検知対象磁石200をどのようにセンシングするかを説明したが、これらの図を参照しながら磁気センサ100Cを用いた場合を説明する。
 例えば、第1基板62の第1磁気媒体67の磁化方向と第2磁気媒体68の磁化方向が90度ずれている場合を想定する。この場合、検知対象磁石200のN極からS極への変化、S極からN極への変化に対応した第1磁気抵抗素子65と第2磁気抵抗素子66の出力特性(抵抗値変化特性、横軸:時間、縦軸:抵抗値変化)はそれぞれ実施の形態1と同様に正弦波形、余弦波形となる。そして、正弦波形、余弦波形からtanθを算出し、回転角θを算出することが可能となる。
 ここで、磁気抵抗素子65、66としては、例えば、MR(Magneto Resistive Device)素子、GMR(Giant Magneto Resistive Device)素子であることが好ましい。ホール素子であっても構わないが、MR素子及びGMR素子の方が、2倍の信号数を取得できるという利点がある。
 次に、本実施の形態の第1変形例について説明する。図12A~図12Cは、本実施の形態の第1変形例に係る磁気センサ100Dの概略図である。図12Aは磁気センサ100Dの斜視図であり、図12Bは図12Aの上面図である。また、図12Cは、磁気センサ100Dにおける第1基板62、第2基板74の斜視図である。以下では、磁気センサ100Cとの相違点を主に説明する。
 図12A、図12Cに示すように、磁気センサ100Dは、第1基板62に加え、第2基板74をさらに有している。具体的には、磁気センサ100Dは第2基板74と、第3磁気抵抗素子75及び第4磁気抵抗素子76と、第3磁気媒体77及び第4磁気媒体78とをさらに有する。第2基板74は第1面63と、第1面63とは反対側の第2面64を有する。磁気抵抗素子75、76は第2基板74の第1面63に配置され、磁気媒体77、78は第2基板74の第2面64に配置されている。なお、図12A、図12Cに示すように、第1基板62の第1面63と第2基板74の第1面63とは同じ方向に面している。小型化の観点から、短手方向が同一面を形成するように第1基板62と第2基板74とが配置されていることが好ましい。
 なお、図11Cと同様に、図12Cにおいても、磁気抵抗素子65、66中に記された矢印はそれぞれ、磁気媒体67、68による磁化方向を示している。また、磁気抵抗素子75、76中に記された矢印はそれぞれ、磁気媒体77、78の磁化方向を示している。
 なお、磁気抵抗素子65、66、75、76が互いに同じ性能を有することが好ましい。そして、第1基板62と第2基板74とにおいて、平面視における面積は同一であることが好ましい。この構成では、第1基板62中の磁気抵抗素子65、66のいずれかが故障した際に、第2基板74中の磁気抵抗素子75、76がバックアップ機能を発揮することが可能である。
 また、図12A、図12Bに示すように、第2基板74はダイパッド79の上に搭載され、第1基板62の長手方向と第2基板74の長手方向は平行であることが好ましい。そして、磁気センサ100Dの中心に対して、点対象になるように、第1基板62と第2基板74が配置されていると、パッケージ80全体の重心が安定するため好ましい。
 次に、本実施の形態の第2変形例について説明する。図13A~図13Dは、本実施の形態の第2変形例に係る磁気センサ100Eの概略図である。図13Aは磁気センサ100Eの斜視図であり、図13Bは図13Aの上面図である。また、図13Cは、磁気センサ100E内の第1基板62の斜視図と、第1基板62の裏面図とを示している。また、図13Dは、第1基板62における磁気抵抗素子65、66を通過する断面図である。
 磁気センサ100Eが磁気センサ100Cと異なる点は、図13C、図13Dに示すように、平面視において、第1磁気媒体67の伸長方向の長さが第1磁気抵抗素子65の伸長方向の長さよりも短く、第2磁気媒体68の伸長方向の長さが第2磁気抵抗素子66の伸長方向の長さよりも短いことである。なお、図13Cにおいても、磁気抵抗素子65、66中に記された矢印は、磁気媒体67、68の磁化方向を示している。このように磁気媒体67、68の配置面積を減らすことで、コストダウンに貢献することができる。例えば、図13C、図13Dに示すように、平面視において第1基板62の短手方向を貫くように配置するのではなく、短手方向の一部にのみ溝を配置することで磁気媒体67、68の伸長方向の長さを短くすることができる。
 また、図13Eに示すように、第1磁気媒体67は、第1磁気抵抗素子65の伸長方向に複数配置されていても構わない。このような構成により磁気媒体の配置の自由度を高めることが可能となる。
 そして、第1磁気抵抗素子65は複数の直列接続された磁気抵抗素子から構成され、直列接続される個々の磁気抵抗素子の個数は第1磁気媒体67の個数よりも多いことが好ましい。すなわち、磁気媒体と磁気抵抗素子の配置の自由度を高めることが可能となる。例えば、図13C~図13Dに示すように、第1磁気抵抗素子65は2個の直列接続された磁気抵抗素子から構成され、第1磁気媒体67は1つだけ配置されているような構成で実現できるが、本形態に限定されることはない。図13Eに示すように、第1磁気媒体67が3つの場合、第1磁気抵抗素子65は4つ以上の直列接続された磁気抵抗素子から構成されていることが好ましい。なお、このことは、第2磁気抵抗素子66と第2磁気媒体68との関係においても同じである。
 なお、図13C、図13Dにおいては、磁気媒体67、68はそれぞれ1つしか形成されていないが、磁気抵抗素子65、66のそれぞれの長さ方向に複数配置していても構わない。その際、第1磁気抵抗素子65直下に配置される複数の第1磁気媒体67の磁化方向はそれぞれ同じであることが好ましい。第2磁気抵抗素子66直下の第2磁気媒体68においてもそれぞれ同様である。
 そして、磁気媒体67、68は、シリコンウェハ中に形成された溝内にSmFeNなどからなる希土類磁石粉と、熱硬化性の樹脂(エポキシ樹脂、シリコーン樹脂、ウレタン樹脂など)等の流動性の高い樹脂を満たし、硬化させることで形成することが好ましい。量産化に適しているという効果がある。
 次に、図14A~図15Bを参照しながら、磁気センサ100C、100Dにおける第1基板62の形成方法について説明する。図14A~図15Bは、第1基板62の形成工程を説明する図である。なお、第2基板74の形成方法も同様である。
 まず、図14Aに示すように、ウェハ84を用意する。なお、第1基板62は、シリコン基板であることが好ましい。そのため、ウェハ84として、シリコンウェハを利用することが好ましい。
 次に、図14Aに示すように、ウェハ84に例えば、ウェットエッチングにより、複数の略平行に配列された溝85を形成する。図14Bは、図14Aに示す14B-14B線における断面図である。溝85は、幅が約0.65mm、深さが約0.3mmであり、溝間のピッチが約2.0mmであることが好ましい。すなわち、図14Bに示すように、長さaは0.5mm以上、5.0mm以下、長さbは0.5mm以上、3.0mm以下、長さcは0.2mm以上、4.0mm以下、長さdは0.25mm以上、2.0mm以下であることが好ましい。そして、図14Bに示すように、長さcは長さdよりも短いことが好ましい。すなわち、第1基板62における第1溝69及び第2溝70は、第1基板62の第2面64から第1面63に向かって幅が狭まっている部分を有することが好ましい。
 次に、図15Aに示すように、ウェハ84の溝85の中に第1磁気配向を有する磁気媒体86と第2磁気配向を有する磁気媒体87とを交互に埋め込む。
 次に、図15Bに示すように、ウェハ84をダイシングし、磁気媒体86の一部である第1磁気媒体67と、磁気媒体87の一部である第2磁気媒体68とを有する第1基板62を形成する。その後、第1磁気媒体67、第2磁気媒体68に着磁を行い、第1磁気配向に沿った配向を有する磁気媒体67と第2磁気配向に沿った配向を有する磁気媒体68とを形成することができる。
 本発明によれば、小型化、高精度化に適した磁気センサを提供することが可能である。
1  基板
2,32,65  第1磁気抵抗素子(磁気抵抗素子)
A,B,C,D,2A,2B,2C,2D  パターン
E,F,G,H,2E,2F,2G,2H  直線形状部
3,33,66  第2磁気抵抗素子(磁気抵抗素子)
4,34,75  第3磁気抵抗素子(磁気抵抗素子)
5,36  第1磁石(磁石)
6,37  第2磁石(磁石)
7,38  第3磁石(磁石)
8  接着部
9  位置決め部
10,18,42,83  配線
11  電圧印加用パッド
12  グランド用パッド
13,51  第1出力端子
14,52  第2出力端子
15,53  第3出力端子
16,54  第4出力端子
17  保護膜
19  外部端子
20,79  ダイパッド
21  処理回路
30  パッド
35,76  第4磁気抵抗素子
39  第4磁石(磁石)
50A,50B  第1軸
62  第1基板
63  第1面
64  第2面
67  第1磁気媒体(磁気媒体)
68  第2磁気媒体(磁気媒体)
69  第1溝(溝)
70  第2溝(溝)
74  第2基板
77  第3磁気媒体(磁気媒体)
78  第4磁気媒体(磁気媒体)
80  パッケージ
81  支持部
82  端子
84  ウェハ
85  溝
86,87  磁気媒体
100A,100B,100C,100D,100E  磁気センサ
200  検知対象磁石
300  第1部材
400  第2部材
500  第5磁石
600  構造体

Claims (23)

  1. 第1面と、前記第1面とは反対側の第2面を有する基板と、
    前記基板の前記第1面上に配置された第1磁気抵抗素子と第2磁気抵抗素子とを含む磁気抵抗素子群と、
    前記第1磁気抵抗素子に対向する第1磁石と、前記第2磁気抵抗素子に対向する第2磁石とを含む磁石群と、を備えた、
    磁気センサ。
  2. 前記磁気抵抗素子群は第3磁気抵抗素子をさらに含み、
    前記磁石群は前記第3磁気抵抗素子に対向する第3磁石をさらに含み、
    平面視において、前記第2磁気抵抗素子と前記第3磁気抵抗素子は第1軸を対称軸として線対称に配置されており、
    前記第1磁気抵抗素子は前記第1軸上に配置されている、
    請求項1に記載の磁気センサ。
  3. 前記第3磁石の中心の磁界の向きは、前記第2磁石の中心の磁界の向きと平行であり、
    前記第2磁石の中心の磁界の向きは、前記第1磁石の中心の磁界の向きと垂直である、
    請求項2に記載の磁気センサ。
  4. 前記第2磁気抵抗素子及び前記第3磁気抵抗素子の大きさは、前記第1磁気抵抗素子の大きさよりも小さい、
    請求項2に記載の磁気センサ。
  5. 前記基板の前記第1面上における前記第2磁気抵抗素子と前記第3磁気抵抗素子の間に配置され、前記磁気抵抗素子群からの信号を処理する処理回路をさらに備えた、
    請求項2に記載の磁気センサ。
  6. 前記第1磁石の中心の磁界の向きは、前記第2磁石の中心の磁界の向きと対向している、
    請求項1に記載の磁気センサ。
  7. 前記第1磁石と前記第1磁気抵抗素子との間、および前記第2磁石と前記第2磁気抵抗素子との間にそれぞれ介在し、熱硬化性接着剤とUV硬化性接着剤のいずれかで形成された少なくとも1つの接着部をさらに備えた、
    請求項1に記載の磁気センサ。
  8. 前記接着部は、前記第1磁石の側面の一部を覆っている、
    請求項7に記載の磁気センサ。
  9. 前記基板の前記第1面上には、前記第1磁石および前記第2磁石のコーナーに対応した複数の位置決め部が配置されている、
    請求項1に記載の磁気センサ。
  10. 前記位置決め部は、金属で構成されている、
    請求項9に記載の磁気センサ。
  11. 前記位置決め部の材料は、前記磁気抵抗素子群から延びる配線の材料と同一である、
    請求項9に記載の磁気センサ。
  12. 前記第1磁石の中心を通る磁界の向きと前記第2磁石の中心を通る磁界の向きは平行又は垂直である、
    請求項1に記載の磁気センサ。
  13. 前記磁気抵抗素子群は、第3磁気抵抗素子及び第4磁気抵抗素子をさらに含み、
    前記磁石群は、前記第3磁気抵抗素子に対向する第3磁石及び前記第4磁気抵抗素子に対向する第4磁石をさらに含み、
    前記第1磁石の中心を通る磁界の向きと前記第3磁石の中心を通る磁界の向きは平行であり、
    前記第2磁石の中心を通る磁界の向きと前記第4磁石の中心を通る磁界の向きは平行であり、
    前記第1磁石の中心を通る磁界の向きと前記第2磁石の中心を通る磁界の向きは垂直である、
    請求項1に記載の磁気センサ。
  14. 前記第2磁石及び前記第4磁石は第1軸を対称軸として線対称になるように配置され、
    前記第1磁石及び前記第3磁石は前記第1軸上に配置されている、請求項13に記載の磁気センサ。
  15. 前記第1磁石の中心を通る磁界の向きと前記第3磁石の中心を通る磁界の向きは逆向きであり、
    前記第2磁石の中心を通る磁界の向きと前記第4磁石の中心を通る磁界の向きは逆向きである、
    請求項13に記載の磁気センサ。
  16. 前記第1磁気抵抗素子と前記第2磁気抵抗素子との間の距離は、前記第3磁気抵抗素子と前記第4磁気抵抗素子との間の距離と同じである、
    請求項13に記載の磁気センサ。
  17. 前記第1磁気抵抗素子と前記第3磁気抵抗素子との間の距離は、前記第2磁気抵抗素子と前記第4磁気抵抗素子との間の距離と同じである、
    請求項13に記載の磁気センサ。
  18. 前記磁石群は前記磁気抵抗素子群上に配置されている、
    請求項1に記載の磁気センサ。
  19. 前記第1磁石、前記第2磁石は、前記基板の前記第2面に配置されている、
    請求項1記載の磁気センサ。
  20. 前記第1磁石及び前記第2磁石は、樹脂と、前記樹脂中に分散した希土類磁石粉とを含む、
    請求項1に記載の磁気センサ。
  21. 前記樹脂は熱硬化性の樹脂を含有し、前記希土類磁石粉はSmFeN磁石粉である、
    請求項20に記載の磁気センサ。
  22. 前記磁気抵抗素子群を覆い、シリコン酸化膜又はフッ素系樹脂膜を有する保護膜をさらに備えた、
    請求項1に記載の磁気センサ。
  23. 前記基板の第2面が実装されたダイパッドをさらに備えた、
    請求項1に記載の磁気センサ。
PCT/JP2015/001381 2014-03-24 2015-03-12 磁気センサ WO2015146043A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/121,021 US20170016745A1 (en) 2014-03-24 2015-03-12 Magnetic sensor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014060152 2014-03-24
JP2014-060152 2014-03-24
JP2014132237 2014-06-27
JP2014-132237 2014-06-27
JP2014250070 2014-12-10
JP2014-250070 2014-12-10

Publications (1)

Publication Number Publication Date
WO2015146043A1 true WO2015146043A1 (ja) 2015-10-01

Family

ID=54194597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001381 WO2015146043A1 (ja) 2014-03-24 2015-03-12 磁気センサ

Country Status (2)

Country Link
US (1) US20170016745A1 (ja)
WO (1) WO2015146043A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6498261B1 (ja) * 2017-12-05 2019-04-10 昭和電工株式会社 磁気センサの製造方法及び磁気センサ集合体
US11162815B2 (en) * 2018-09-14 2021-11-02 Allegro Microsystems, Llc Angular magnetic field sensor and rotating target with stray field immunity
DE102022208562A1 (de) * 2022-08-18 2024-02-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum herstellen eines magnetfeldsensorchips mit einem integrierten back-bias magneten

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157639A (ja) * 2006-12-20 2008-07-10 Denso Corp 磁気センサの製造方法及び磁気センサ
JP2008304470A (ja) * 2008-07-10 2008-12-18 Asahi Kasei Electronics Co Ltd 磁気センサ
JP4244807B2 (ja) * 2001-12-27 2009-03-25 パナソニック株式会社 方位センサ
JP2009175073A (ja) * 2008-01-28 2009-08-06 Yaskawa Electric Corp 磁気式エンコーダ
JP2012204808A (ja) * 2011-03-28 2012-10-22 Asahi Kasei Electronics Co Ltd 半導体装置および半導体装置の製造方法
JP2013258169A (ja) * 2012-06-11 2013-12-26 Panasonic Corp ボンド磁石、ボンド磁石の製造方法、モータ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539153A (en) * 1994-08-08 1996-07-23 Hewlett-Packard Company Method of bumping substrates by contained paste deposition
US5631557A (en) * 1996-02-16 1997-05-20 Honeywell Inc. Magnetic sensor with encapsulated magnetically sensitive component and magnet
JP3246374B2 (ja) * 1997-01-13 2002-01-15 株式会社日立製作所 磁気抵抗効果型素子を用いた磁気記録装置
JPH10224039A (ja) * 1997-02-10 1998-08-21 Matsushita Electric Ind Co Ltd 多層プリント配線板の製造方法
US6441514B1 (en) * 1997-04-28 2002-08-27 Ultratech Stepper, Inc. Magnetically positioned X-Y stage having six degrees of freedom
US5972185A (en) * 1997-08-30 1999-10-26 United Technologies Corporation Cathodic arc vapor deposition apparatus (annular cathode)
JP3941082B2 (ja) * 1998-01-28 2007-07-04 株式会社安川電機 磁気式検出器
US6285097B1 (en) * 1999-05-11 2001-09-04 Nikon Corporation Planar electric motor and positioning device having transverse magnets
US6486659B1 (en) * 2001-05-21 2002-11-26 Delphi Technologies, Inc. Magnetoresistor sensor die with an array of MRs
JP2004281920A (ja) * 2003-03-18 2004-10-07 Seiko Epson Corp 半導体装置、電子デバイス、電子機器、半導体装置の製造方法および電子デバイスの製造方法
US7394086B2 (en) * 2003-07-18 2008-07-01 Yamaha Corporation Magnetic sensor and manufacturing method therefor
WO2005119374A1 (ja) * 2004-06-04 2005-12-15 Kaneka Corporation マグネットローラ
US7375357B2 (en) * 2004-08-23 2008-05-20 Avi Faliks Permanent magnet radiation dose delivery enhancement
US8241468B2 (en) * 2004-12-13 2012-08-14 United Technologies Corporation Method and apparatus for cathodic arc deposition of materials on a substrate
JP5426839B2 (ja) * 2008-04-24 2014-02-26 浜松光電株式会社 磁気センサの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244807B2 (ja) * 2001-12-27 2009-03-25 パナソニック株式会社 方位センサ
JP2008157639A (ja) * 2006-12-20 2008-07-10 Denso Corp 磁気センサの製造方法及び磁気センサ
JP2009175073A (ja) * 2008-01-28 2009-08-06 Yaskawa Electric Corp 磁気式エンコーダ
JP2008304470A (ja) * 2008-07-10 2008-12-18 Asahi Kasei Electronics Co Ltd 磁気センサ
JP2012204808A (ja) * 2011-03-28 2012-10-22 Asahi Kasei Electronics Co Ltd 半導体装置および半導体装置の製造方法
JP2013258169A (ja) * 2012-06-11 2013-12-26 Panasonic Corp ボンド磁石、ボンド磁石の製造方法、モータ

Also Published As

Publication number Publication date
US20170016745A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US10690515B2 (en) Dual Z-axis magnetoresistive angle sensor
EP2682773B1 (en) Separately packaged bridge magnetic-field angle sensor
CN107121057A (zh) 磁角位置传感器
US10338158B2 (en) Bias magnetic field sensor
EP1083407A2 (en) Analog angle encoder
CN109084811A (zh) 磁传感器和照相机模块
US11237229B2 (en) Magnetic field sensing apparatus
WO2009119471A1 (ja) 磁気センサ及び磁気エンコーダ
WO2016185676A1 (ja) 磁気センサ
JP2016223894A (ja) 磁気センサ
US11035913B2 (en) Magnetic field sensing device
WO2015146043A1 (ja) 磁気センサ
US9903920B2 (en) Magnetic field sensor device
WO2016021401A1 (ja) 磁気式リニアエンコーダ
WO2011074488A1 (ja) 磁気センサ
KR100658859B1 (ko) 자기 검출 장치
JP5006671B2 (ja) 磁気エンコーダ
JP5143714B2 (ja) ポジションセンサ素子およびポジション検出装置
JP6226447B2 (ja) 磁気センサ及びその磁気検出方法
US20230384125A1 (en) Position detection system
JP4742816B2 (ja) 回転検出装置
JP2017122645A (ja) 磁気センサ
JP2005221418A (ja) 圧力センサ
JP2012107914A (ja) 磁界検知装置
JP2008014954A (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15121021

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15768693

Country of ref document: EP

Kind code of ref document: A1