WO2015008759A1 - 離型フィルム - Google Patents

離型フィルム Download PDF

Info

Publication number
WO2015008759A1
WO2015008759A1 PCT/JP2014/068811 JP2014068811W WO2015008759A1 WO 2015008759 A1 WO2015008759 A1 WO 2015008759A1 JP 2014068811 W JP2014068811 W JP 2014068811W WO 2015008759 A1 WO2015008759 A1 WO 2015008759A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
release film
mold
resin
heat
Prior art date
Application number
PCT/JP2014/068811
Other languages
English (en)
French (fr)
Inventor
正志 中野
芳樹 明星
西松 英明
友彦 小田川
晴紀 安田
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to KR1020167000984A priority Critical patent/KR102218811B1/ko
Priority to JP2015527305A priority patent/JP6307078B2/ja
Priority to CN201480040329.9A priority patent/CN105358308B/zh
Publication of WO2015008759A1 publication Critical patent/WO2015008759A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • B29C37/0075Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other using release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • the present invention relates to a release film, particularly a polystyrene-type release film excellent in transferability.
  • a plastic film is interposed as a release film.
  • a thin film layer such as a thermosetting resin, thermoplastic resin, ceramic, metal, etc.
  • a thin film layer is laminated on a plastic film for the purpose of supporting and protecting the thin film layer.
  • a plastic film may be peeled and removed as a release film. As described above, the plastic film is used for various purposes.
  • heat is often applied to a plastic film, and the case where a higher temperature is applied is increasing. Furthermore, with the recent demand for higher performance, the heat resistance required for plastic films has become severe. Specifically, for example, when a plastic film is used as a release film and interposed between a mold and a molding material to prevent fusion during press molding, the plastic film is usually stretched. Therefore, when dimensional variation (heat shrinkage) occurs in the plastic film due to heat, the film does not sufficiently follow the unevenness of the mold molding surface, and good shaping by the mold molding surface is not performed. For this reason, particularly good heat-resistant dimensional stability is required for the film.
  • Patent Document 1 discloses that mechanical strength and heat shrinkage in the longitudinal direction and the transverse direction are performed by performing specific sequential biaxial stretching on an unstretched amorphous film made of a syndiotactic polystyrene film.
  • a technique for producing a syndiotactic polystyrene film having an excellent balance of rates is disclosed.
  • the release film is required to be subjected to a surface treatment such as a matte treatment in order to further improve the releasability and / or to impart a matte property to the molded body.
  • the mat processing is a processing for forming fine irregularities on the film surface by applying heat and pressure with a mold made of metal or rubber having a desired surface shape while applying tension to the film.
  • a curl phenomenon occurs in the obtained release film in which the film is wound alone from the end.
  • a release film having a large curl in other words, a release film having a high curl rate, not only causes inconvenience in production when installed between the mold and the molding material, but also sufficiently extends the curl.
  • the release film is inferior in heat-resistant dimensional stability, the fine uneven shape on the film surface cannot be accurately transferred to the molded product, and a thick thin film can be formed where there is sufficient transfer and sweet transfer. So-called unevenness occurs.
  • the present invention is a release film composed of a biaxially oriented polystyrene film containing a syndiotactic polystyrene resin, wherein at least one surface is matted, and the curl rate of the release film is 80% or less.
  • the present invention relates to a release film.
  • heat-resistant dimensional stability means a film characteristic that sufficiently prevents film shrinkage even when the film is heated.
  • the curl resistance means a film characteristic that sufficiently prevents the occurrence of a curling phenomenon even if the film is matted.
  • the release film of the present invention is sufficiently excellent in heat-resistant dimensional stability.
  • the release film of the present invention is further excellent in curl resistance.
  • the release film of the present invention can achieve the transfer onto the finely concavo-convex shaped molded body with sufficient accuracy.
  • the polystyrene-based release film according to the present invention (hereinafter simply referred to as “PS-based release film”) is a biaxially oriented film containing a syndiotactic polystyrene-based resin.
  • Biaxial orientation means that the polymer molecules constituting the film are oriented mainly in two directions different from each other in the in-plane direction of the film, preferably in two directions substantially perpendicular to each other. For example, it can be achieved by simultaneous biaxial stretching described later.
  • the syndiotactic polystyrene resin (hereinafter simply referred to as “SPS resin”) contained in the PS release film of the present invention is a styrene polymer having a so-called syndiotactic structure.
  • the syndiotactic structure is a syndiotactic structure, that is, a three-dimensional structure in which phenyl groups or substituted phenyl groups that are side chains with respect to the main chain formed from carbon-carbon bonds are alternately located in opposite directions. It means structure.
  • the tacticity (stereoregularity) of the SPS resin can be quantified by an isotope carbon nuclear magnetic resonance method ( 13 C-NMR method).
  • the tacticity of the SPS resin measured by the 13 C-NMR method is the ratio of the presence of a plurality of consecutive structural units, for example, a dyad for two, a triad for three, a pentad for five.
  • the SPS resin in the present invention is usually 75% or more, preferably 85% or more, racemic triad, 60% or more, preferably 75% or more, or 30% or more, preferably 50%, racemic pentad. It is a styrenic polymer having the above syndiotacticity.
  • Styrenic polymers as SPS resins include polystyrene, poly (alkyl styrene), poly (aryl styrene), poly (halogenated styrene), poly (halogenated alkyl styrene), poly (alkoxy styrene), poly (alkoxy styrene). Vinyl benzoate ester), hydrogenated polymers thereof and the like, and mixtures thereof, or copolymers based on these.
  • poly (alkyl styrene) examples include poly (methyl styrene), poly (ethyl styrene), poly (isopropyl styrene), poly (tertiary butyl styrene), poly (vinyl styrene), and the like.
  • poly (aryl styrene) examples include poly (phenyl styrene) and poly (vinyl naphthalene).
  • poly (halogenated styrene) examples include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene), and the like.
  • poly (halogenated alkylstyrene) examples include poly (chloromethylstyrene).
  • examples of poly (alkoxystyrene) include poly (methoxystyrene) and poly (ethoxystyrene).
  • the weight average molecular weight of the SPS resin constituting the PS release film according to the present invention is 10,000 to 3,000,000, preferably 30,000 to 1,500,000, particularly preferably 50,000 to 500,000.
  • the glass transition temperature of the SPS resin is 60 to 140 ° C., preferably 70 to 130 ° C.
  • the melting point of the SPS resin is 200 to 320 ° C., preferably 220 to 280 ° C.
  • the SPS resin can be obtained as a commercial product or can be produced by a known method.
  • it can be obtained as “Zarek” (142ZE, 300ZC, 130ZC, 90ZC) manufactured by Idemitsu Kosan Co., Ltd.
  • the SPS resin is within the above-mentioned range. It may be contained.
  • the PS-type release film of the present invention is not limited to the above SPS-based resin, as long as it does not adversely affect the heat-resistant dimensional stability, curl resistance, heat-resistant deformation, film-forming property, heat-resistant strength stability, etc. It may contain.
  • polystyrene resins such as polystyrene resins other than the SPS resins, styrene-butadiene block copolymers (SBR), hydrogenated styrene-butadiene-styrene block copolymers (SEBS), and the like.
  • Synthetic rubber such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate; polyphenylene sulfite; polyarylate; polyether sulfone; polyphenylene ether .
  • the polystyrene resin other than the SPS resin includes a so-called isotactic polystyrene resin and an atactic polystyrene resin.
  • the content of the SPS resin relative to the total amount in the PS release film is preferably 60% by weight or more, more preferably 80% by weight or more, and most preferably 95% by weight from the viewpoint of further improving the heat-resistant dimensional stability. % Or more.
  • the total ratio thereof may be within the above range.
  • the PS release film of the present invention may contain additives such as a lubricant, an antioxidant, an ultraviolet absorber, a light stabilizer, an antistatic agent, an inorganic filler, a colorant, a crystal nucleating agent and a flame retardant.
  • the PS release film of the present invention preferably further contains a lubricant and an antioxidant.
  • the lubricant examples include hydrocarbon resins, fatty acids, fatty acid amides, fatty acid esters, fatty alcohols, partial esters of fatty acids and polyhydric alcohols, and composite lubricants.
  • hydrocarbon resins fatty acids, fatty acid amides, fatty acid esters, fatty alcohols, partial esters of fatty acids and polyhydric alcohols, and composite lubricants.
  • the content of the lubricant is preferably from 0.01 to 3.0% by weight, particularly from 0.02 to 1.0% by weight, based on the SPS resin in the PS film, from the viewpoint of the release property of the release film. .
  • the total amount thereof may be within the above range.
  • an antioxidant used for the purpose of preventing yellowing in the field of PS release film can be used.
  • a phenolic antioxidant, a phosphorus antioxidant, a sulfur antioxidant Agents and the like can be used.
  • the antioxidant preferably contains at least a phenolic antioxidant.
  • an antioxidant, particularly a phenolic antioxidant the heat-resistant dimensional stability and the curl resistance can be further improved.
  • a phenolic antioxidant is an organic compound containing a phenol skeleton, and a phenol skeleton-containing organic compound conventionally used as a phenolic antioxidant in the field of PS film can be used.
  • the phenolic antioxidant can be obtained as a commercial product.
  • Commercially available phenolic antioxidants include, for example, Sumilizer GA-80 (manufactured by Sumitomo Chemical Co., Ltd.), Adekastab AO-60, Adekastab AO-80, Adekastab AO-330 (both manufactured by ADEKA), Irganox 245 (BASF) Product), Sianox 1790 (manufactured by CYTEC), and the like.
  • the phosphorus antioxidant is an organic compound containing a phosphorus atom, and a phosphorus atom-containing organic compound conventionally used as a phosphorus antioxidant in the field of PS film can be used.
  • Phosphorous antioxidants can be obtained as commercial products. Examples of commercially available phosphorus antioxidants include Sumilizer GP (manufactured by Sumitomo Chemical Co., Ltd.), Adekastab PEP-36 (manufactured by ADEKA), Irgafos 38, Irgafos 168 (both manufactured by BASF), and the like.
  • the sulfur-based antioxidant is an organic compound containing a sulfur atom, and a sulfur atom-containing organic compound conventionally used as a sulfur-based antioxidant in the field of PS film can be used.
  • the sulfur-based antioxidant can be obtained as a commercial product. Examples of commercially available sulfur-based antioxidants include Sumilyzer MB (manufactured by Sumitomo Chemical Co., Ltd.) and Adeka Stub AO-412S (manufactured by ADEKA).
  • the content of the antioxidant is 0.01 to 3.0% by weight, particularly 0.02 to 1.0% by weight, based on the SPS resin in the PS film, from the viewpoint of heat-resistant dimensional stability and curl resistance. % Is preferred.
  • the total amount thereof may be within the above range.
  • the content of the phenolic antioxidant is preferably within the above range from the viewpoint of further improving the heat-resistant dimensional stability and curling resistance.
  • the PS release film of the present invention can be produced by the following method. For example, the SPS and other polymers and additives contained as desired are mixed in a predetermined ratio, melted and kneaded to produce a precursor film (unstretched film), and then the obtained precursor film is simultaneously used. Sequentially used for biaxial stretching and mat processing.
  • Precursor film production A well-known method can be employ
  • the thickness of the precursor film is not particularly limited, and is, for example, 20 to 2000 ⁇ m, preferably 30 to 1000 ⁇ m.
  • the heat setting treatment is usually performed after simultaneous biaxial stretching treatment.
  • the glass transition temperature of the film can be increased, the thermal expansion coefficient can be decreased, or the absolute value of the thermal shrinkage ratio can be decreased.
  • the stretching method includes a sequential biaxial stretching method and a simultaneous biaxial stretching method, and a simultaneous biaxial stretching method is performed.
  • simultaneous biaxial stretching instead of simultaneous biaxial stretching, after performing stretching in one of the MD and TD directions, and then performing sequential biaxial stretching in which stretching is performed in the other direction, thermal expansion in the direction in which stretching was performed first The rate of decrease in the rate becomes smaller, the thermal shrinkage rate becomes worse, and the heat-resistant dimensional stability is lowered.
  • uniaxial stretching is performed instead of biaxial stretching, the coefficient of thermal expansion in the non-stretched direction is not reduced, and the heat-resistant dimensional stability is lowered.
  • the MD direction is a so-called flow direction, and means the direction (longitudinal direction) of the precursor film taken from the extruder.
  • the TD direction is a so-called width direction and means a direction orthogonal to the MD direction.
  • the stretching ratio, stretching temperature, and stretching speed are not particularly limited as long as the object of the present invention is achieved, but the following ranges are preferable. This is because the thermal shrinkage rate is further improved.
  • the draw ratio is within a range in which breakage of 2.0 times or more does not occur in both the MD direction and the TD direction, and is particularly preferably 2.0 to 5.0 times, more preferably 2.2 to 4.0 times. .
  • the draw ratios in the MD direction and the TD direction are preferably approximated. Specifically, when the draw ratio in the MD direction is P MD and the draw ratio in the TD direction is P TD , “P TD ⁇ P MD ” is preferably ⁇ 0.6 to +0.6, more preferably ⁇ 0 .3 to +0.3.
  • the draw ratio of MD direction is a ratio based on MD direction length just before extending
  • the stretching ratio in the TD direction is a ratio based on the length in the TD direction immediately before stretching.
  • the stretching temperature is Tg P or more and Tg P + 30 ° C. or less, where Tg P (° C.) is the glass transition temperature of the SPS resin constituting the film, and is preferably from the viewpoint of further improving the heat-resistant dimensional stability. Tg P ° C or higher and Tg P + 25 ° C or lower. If the stretching temperature is too low or too high, the heat-resistant dimensional stability is lowered.
  • the stretching temperature is the atmospheric temperature at which stretching is performed.
  • the Tg P of the SPS resin is the sum of the values obtained by multiplying the glass transition temperature of each polymer by the content ratio of the polymer.
  • the stretching speed is 50 to 10,000% / min in both the MD direction and the TD direction, preferably 100 to 5000% / min, and more preferably 100 to 3000% / min.
  • the stretching speed is a value calculated by ⁇ (dimension after stretching / dimension before stretching) -1 ⁇ ⁇ 100 (%) / stretching time.
  • the heat setting treatment is a treatment for fixing the orientation of the polymer molecules by holding the stretched film at a temperature equal to or higher than the stretching temperature.
  • the heat setting treatment temperature is Tg P + 70 ° C. or higher and Tm P or lower when the glass transition temperature of the SPS resin constituting the film is Tg P (° C.) and the melting point is Tm P (° C.). From the viewpoint of further improving the stability, Tg P + 75 ° C. or higher and Tm P ⁇ 20 ° C. or lower are preferable. If the heat setting treatment temperature is too low or too high, the heat shrinkage rate becomes high and the heat-resistant dimensional stability is lowered.
  • the heat setting treatment temperature is an atmospheric temperature for holding the film.
  • the Tm P of the SPS resin is the sum of values obtained by multiplying the melting point of each polymer by the content ratio of the polymer.
  • the heat setting process may be a tension type heat setting process in which the heat setting process is performed while maintaining the tension during the biaxial stretching process, or the heat setting process is performed by relaxing the tension simultaneously with the process.
  • the heat fixing process may be performed, or after performing the heat fixing process (first heat fixing process) while maintaining the tension, the tension is relaxed and the heat fixing process (second heat fixing process). You may implement the composite heat setting process which performs.
  • a relaxation heat setting process is performed.
  • the heat setting temperature is set within the above range.
  • the relaxation magnification is 0 in both the MD direction and the TD direction from the viewpoint of reducing the absolute value of the heat shrinkage rate, further improving the heat-resistant dimensional stability, and flatness of the film. It is preferably 0.8 to 1.00 times, more preferably 0.85 to 1.00 times, and most preferably 0.90 to 0.98 times.
  • the relaxation magnifications in the MD direction and the TD direction are preferably approximated.
  • Q MD is the relaxation factor in the MD direction
  • Q TD is the relaxation factor in the TD direction
  • “Q TD ⁇ Q MD ” is preferably ⁇ 0.1 to +0.1, more preferably ⁇ 0.
  • the relaxation magnification in the MD direction is a magnification based on the MD direction length immediately after stretching.
  • the relaxation magnification in the TD direction is a magnification based on the length in the TD direction immediately after stretching.
  • Matting refers to transferring the surface shape of a mold to the film surface by applying heat and pressure between a set of molds having a desired surface shape while applying tension to the film. This is a process for forming fine irregularities for matting.
  • the film to be matted is a film that has undergone a biaxial stretching process by the method described above.
  • the curling phenomenon can be sufficiently prevented, and the release property of the release film can be reduced during press molding using the release film. While further improving, it is possible to accurately transfer the fine concavo-convex shape on the surface of the release film to the molded body.
  • a mold pressing method in which two heated flat plate upper and lower molds are pressed, and passing between two hot rolls while pressing.
  • a roll press method or the like can be used.
  • One set of molds can be used in combination with one flat mold and one roll.
  • the mold may be made of any material as long as the surface shape of the mold can be transferred to the film.
  • the mold may be made of metal, rubber, or film. Only the surface portion having the contact surface may be made of metal or rubber.
  • embodiments for performing the above-described mold pressing method or roll pressing method will be described. Instead of heating the film with the mold or roll in the above-described mold pressing method or roll pressing method, immediately before pressing with the mold or roll. Alternatively, the film itself may be directly heated with an IR heater or the like.
  • Matting is performed on at least one side of the film, and is preferably performed on both sides of the film from the viewpoint of curling resistance.
  • the mat processing being performed on both sides of the film means that a mold having a matte property described later is used as both molds in a set of molds. Thereby, the matte property is provided to both surfaces of the film. Matting is performed on one side of the film when one of a set of molds has a matte type described below and the other has no matte type. It means to do. Thereby, matte property is provided only to one side of the film.
  • a matte mold is used as at least one of the set of molds, preferably both molds.
  • the mold having a matte property is a mold in which a surface roughness is given to the contact surface with the film so that the matted film surface has a surface roughness (Ra) described later.
  • the surface roughness of the contact surface with the film is the same as or greater than the surface roughness (Ra) described later of the matted film surface.
  • the temperature that a set of molds gives to both sides of the film is independently 100 ° C. to 250 ° C., preferably 120 ° C. to 220 ° C.
  • the pressing pressure is 0.5 to 300 kgf / cm 2 , preferably 1 to 200 kgf / cm 2 .
  • the pressure is 0.1 to 500 kgf / cm, preferably 1 to 100 kgf / cm.
  • the film tension is usually 1 to 300 N, preferably 10 to 200 N.
  • the tension is a tension applied to a 1 m wide film.
  • the film speed is usually 0.1 to 10 m / min, preferably 0.2 to 5 m / min.
  • the curling rate can be controlled by adjusting the mat processing conditions while adjusting the surface roughness of the mold, the processing temperature of the film, the pressing pressure, and the film tension within the above ranges.
  • the curl rate can be reduced by reducing the difference in surface roughness and / or temperature difference that a set of molds imparts to the film.
  • the curl rate is made more effective.
  • the curl rate is made more effective.
  • a temperature difference between a pair of molds on both sides of the film for example, a set temperature difference between the upper mold and the lower mold, particularly 30 ° C.
  • the curling rate can be reduced by reducing the press pressure and / or the film tension.
  • the curling rate can be further effectively reduced by setting the pressing pressure to 1 to 100 kgf / cm 2 , preferably 1 to 50 kgf / cm 2 .
  • the tension of the film can be further effectively reduced.
  • the curl rate of the PS release film of the present invention is 80% or less, preferably 60% or less, more preferably 30% or less. If the curl rate is too large, the end part will be bent during press molding, and a streak-like pattern will be generated in the molded product due to the end part bend, and the surface shape of the release film will be sufficiently transferred around it. Not.
  • the curl rate is the ratio of the projected area that decreases due to the occurrence of curling when a test piece (200 mm ⁇ 200 mm) is allowed to stand for 30 minutes at an atmospheric temperature of 180 ° C. It is measured by the method. The higher the curl rate, the greater the warp of the film, and the lower the curl rate, the smaller the warp of the film.
  • the projected area of the test piece can be calculated from an image obtained by taking a photograph from directly above the test piece.
  • the PS-type release film of the present invention usually has an absolute value of heat shrinkage at 180 ° C. of 8% or less, preferably 6% or less, more preferably 3% or less.
  • the absolute value of the heat shrinkage rate is within the above range for both the MD direction and the TD direction.
  • the absolute value of the heat shrinkage rate is too large, the heat-resistant dimensional stability is lowered, and when used as a release film for press molding, the molding surface of the mold cannot be formed sufficiently.
  • the heat shrinkage rate is a heat shrinkage rate in each of the MD direction and the TD direction when the test piece (200 mm ⁇ 200 mm) is left at an ambient temperature of 180 ° C. for 30 minutes, and will be described in detail later. Measured by the method.
  • a positive value means shrinkage
  • a negative value means expansion.
  • the PS release film of the present invention has at least one surface matted, and as a result, has a surface roughness (Ra) of 0.5 ⁇ m to 8.0 ⁇ m, particularly 0.6 ⁇ m to 5.0 ⁇ m. preferable.
  • the PS release film of the present invention is preferably matted on both sides from the viewpoint of curling resistance, and as a result, each surface independently has a surface roughness (Ra) within the above range. From the viewpoint of curling resistance, in the most preferred embodiment, the difference in surface roughness between both surfaces is 1.5 ⁇ m or less, preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the surface roughness of the film in the present invention is a value measured according to JIS B-0601: 1994.
  • the thickness of the PS release film of the present invention is not particularly limited, and is, for example, 10 to 150 ⁇ m, preferably 25 to 75 ⁇ m, and particularly preferably 35 to 60 ⁇ m.
  • the PS release film of the present invention is particularly useful as a release film (transfer film) that requires transferability.
  • the mold and the molding material are formed by interposing the film between the mold and the molding material during press molding.
  • the surface shape of the film can be accurately transferred while preventing fusion with the film.
  • the mold release film of the present invention is sufficiently prevented from changing in dimensions, for example, even when the mold forming surface has irregularities with a depth of 1 mm, the forming surface can be accurately shaped.
  • the type of plastic constituting the molding material is not particularly limited.
  • epoxy resin, phenol resin, silicon resin, melamine resin, urea resin, alkyd resin, polyimide resin, polyester resin, polyurethane resin, acrylic resin, etc. can be used. It is.
  • the mold temperature during pressing is usually 80 to 200 ° C.
  • the press pressure is usually 1 to 150 kg / cm 2 .
  • the pressing time is usually 0.5 to 60 minutes.
  • Examples 1 to 5 / Comparative Examples 1 to 2 A mixture of the following components was melt extruded from a T die at a resin temperature of 280 ° C. with an extruder, and then cooled to obtain an unstretched film (precursor film). The unstretched film was subjected to a stretching process under the conditions described below.
  • the stretching step consisted of stretching treatment and heat setting treatment, and the heat setting treatment was a relaxation type heat setting treatment at a predetermined temperature and a relaxation ratio.
  • the stretching process is simultaneous biaxial stretching.
  • syndiotactic polystyrene resin As a mixture component, syndiotactic polystyrene resin, antioxidant and lubricant were used in both Examples and Comparative Examples.
  • syndiotactic polystyrene resin “Zarek 142ZE” (manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature 95 ° C., melting point 247 ° C.) was used.
  • the antioxidant a phenolic antioxidant was used, and as the lubricant, an amide lubricant was used.
  • the blending ratio was 0.2 parts by weight of ADK STAB AO-60 and 0.2 parts by weight of lubricant with respect to 100 parts by weight of syndiotactic polystyrene resin.
  • the stretching conditions are as follows in both Examples and Comparative Examples.
  • the draw ratio is 3.3 x 3.4 times (MD x TD)
  • Stretching temperature 115 ° C
  • Stretching speed 500% / min
  • Heat setting temperature 215 ° C
  • Relaxation magnification 0.92 ⁇ 0.92 (MD ⁇ TD)
  • the stretched film obtained above was cut to a width of 1 m, and then subjected to mat processing by pressing with two flat molds to obtain a release film.
  • the processing conditions are as shown in Table 1.
  • the upper mold uses the mold itself with a given surface roughness
  • the lower mold gives a silicon rubber layer with a given surface roughness to the mold surface. We used what we did.
  • the curl rate 200mm ⁇ 200mm cut film is left in a hot air circulation oven set at 180 ° C in a hot air circulation oven for 30 minutes in a suspended state, then taken out and placed on a flat surface.
  • the total area of the film after heating is measured by stretching the curled film.
  • the surface roughness of the film is an arithmetic average height (Ra) measured according to JIS B-0601: 1994.
  • the upper surface is a film surface that comes into contact with the upper die during mat processing, and the lower surface is a fill surface that comes into contact with the lower die.
  • a positive value for heat shrinkage means shrinkage. It should be noted that if the absolute value of the heat shrinkage is 3% or less, a very preferable level ( ⁇ ), a preferable level ( ⁇ ) if it is 6% or less, a level ( ⁇ ) that causes no practical problem if it is 8% or less, If it exceeds 8%, it is a practically problematic level (x).
  • the transfer films release films having transfer properties obtained in Examples 1 to 5, Comparative Example 1 and Comparative Example 2 were used. Specifically, as shown in FIG. 1, when the epoxy resin flake 1 is hot press-molded by the upper and lower molds 2, 3, the transfer film 4 is interposed between the flake 1 and the molds 2, 3. The transfer film 4 was held and fixed outside the mold. The transfer film 4 was arranged so that the surface to which the roughness was given by the silicon rubber layer was on the upper and lower molds 2 and 3 side. During pressing, the approach of the dies 2 and 3 was limited by the spacer 5. The press conditions were as follows.
  • A The transfer surface of the epoxy molding was free from streaks and unevenness, and the surface of the transfer film was transferred as it was; ⁇ : The transfer surface of the epoxy molded body had almost no streak-like pattern or unevenness, and the surface of the transfer film was almost transferred; ⁇ : The transfer surface of the epoxy molded product had a slight streak pattern and unevenness, and the transfer of the transfer film surface was slightly insufficient (no problem in practical use); X: The transfer film bent on the transfer surface of the epoxy molding was transferred as a step, resulting in transferability having a practical problem.
  • the release film of the present invention is sufficiently excellent in heat-resistant dimensional stability, has a good curl rate, is excellent in moldability (following property) and releasability, and imparts good matte properties to the molded product. I can do it.
  • the release film of the present invention is more useful as a release film used in such a single wafer system.
  • the mold release film of the present invention is a mold such as a flat plate mold or a molding roll when manufacturing a printed circuit board, a ceramic electronic component, a semiconductor package, a lens component, a thermosetting resin product, a thermoplastic resin product, a decorative plate, and the like. It is useful as a release film interposed between the film and the molding material.
  • the release film of the present invention is a so-called transfer film, and is useful as a film for transferring a matte tone provided on the surface of the film to the surface of a molding material.
  • the release film of the present invention is laminated for the purpose of supporting and protecting the thin film layer in the process of forming a thin film layer such as a thermosetting resin, thermoplastic resin, ceramic, metal, or a predetermined processing process. It is useful as a process film to be peeled and removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 本発明は、耐熱寸法安定性および耐カール性に十分に優れたポリスチレン系離型フィルムを提供する。本発明は、シンジオタクチックポリスチレン系樹脂を含有する二軸配向ポリスチレン系フィルムからなる離型フィルムであって、少なくとも片面がマット加工されてなり、当該離型フィルムのカール率が80%以下であること特徴とする離型フィルムに関する。

Description

離型フィルム
 本発明は離型フィルム、特に転写性に優れたポリスチレン系離型フィルムに関する。
 プリント基板、セラミック電子部品、半導体パッケージ、レンズ部品、熱硬化性樹脂製品、熱可塑性樹脂製品、化粧板等を製造する際、成形金型や成形ロールと被成形材料が融着しないように、その間にプラスチックフィルムを離型フィルムとして介在させる場合がある。また、熱硬化性樹脂、熱可塑性樹脂、セラミック、金属等の薄膜層の形成工程や所定の処理工程において、その薄膜層の支持や保護を目的としてプラスチックフィルムに薄膜層を積層し、最終的にはプラスチックフィルムを離型フィルムとして剥離・除去する場合もある。このようにプラスチックフィルムの用途は多岐にわたっている。
 プラスチックフィルムには一般的に熱が付与される場合が多く、より高い温度が付与される場合が増えている。さらに近年の高性能化ニーズに伴い、プラスチックフィルムに求められる耐熱性は厳しくなっている。具体的には、例えばプラスチックフィルムを離型フィルムとしてプレス成形時の融着防止のために金型と被成形材料との間に介在させて使用する場合、プラスチックフィルムは通常、延伸処理されているので、熱によりプラスチックフィルムに寸法変動(熱収縮)が起こると、当該フィルムが金型成形面の凹凸に十分に追随せず、金型成形面による良好な付形が行われない。このため、当該フィルムには特に良好な耐熱寸法安定性が求められている。
 寸法安定性に優れたプラスチックフィルムの一例として、シンジオタクチックポリスチレン系フィルムが知られている。例えば、特許文献1には、シンジオタクチックポリスチレン系フィルムよりなる未延伸非晶のフィルムに対して、特定の逐次二軸延伸を行うことにより、縦方向と横方向における、機械的強度や熱収縮率のバランスに優れたシンジオタクチックポリスチレン系フィルムを製造する技術が開示されている。
 一方、離型フィルムには、離型性を更に向上させるため、かつ/又は成形体に艶消し性を付与するために、マット加工のような表面加工を行うことが要求されている。マット加工は、フィルムに張力をかけながら、所望の表面形状を備えた金属又はゴム等からなる型で熱および圧力を付与することにより、フィルム表面に微細な凹凸を形成する加工処理である。被成形材料の成形に際し、マット加工を行った離型フィルムを用いることにより、離型フィルムが表面に有する微細な凹凸を成形体に転写させることができ、結果として当該成形体に艶消し性を付与できる。
特開平9-201873号公報
 しかしながら、上記のシンジオタクチックポリスチレン系フィルムに対してマット加工を行うと、得られる離型フィルムにおいて、フィルムが端部から独りでに巻いた状態になるカール現象が発生した。特にカールの大きな離型フィルム、言いかえればカール率の高い離型フィルムは、金型と被成形材料との間への設置時に生産上の不便さをもたらすだけでなく、当該カールを十分に伸ばしながら、離型フィルムを介在させることが困難で、端部に折れ曲がりが生じた。このため、成形体に、離型フィルムの端部折れに起因するスジ状の模様が発生し、結果的にフィルム表面の微細凹凸形状の転写不良が生じる。また離型フィルムが耐熱寸法安定性に劣ると、成形体に、フィルム表面の微細凹凸形状を精確に転写することができず、転写の十分なところと転写の甘いところで濃い薄いができるような、いわゆるムラが生じる。
 本発明は、耐熱寸法安定性および耐カール性に十分に優れたポリスチレン系離型フィルムを提供することを目的とする。すなわち、本発明は、金型成形面の凹凸に十分に追随するとともに、マット加工によるカール現象の発生を十分に防止することにより、金型成形面による成形体への付形および離型フィルム表面の成形体への転写を精度よく達成するポリスチレン系離型フィルムを提供することを目的とする。
 本発明は、シンジオタクチックポリスチレン系樹脂を含有する二軸配向ポリスチレン系フィルムからなる離型フィルムであって、少なくとも片面がマット加工されてなり、当該離型フィルムのカール率が80%以下であること特徴とする離型フィルムに関する。
 本明細書中、耐熱寸法安定性とは、フィルムを加熱しても、フィルムの収縮が十分に防止されるフィルム特性を意味するものとする。
 耐カール性とは、フィルムをマット加工しても、カール現象の発生が十分に防止されるフィルム特性を意味するものとする。
 本発明の離型フィルムは耐熱寸法安定性に十分に優れている。
 本発明の離型フィルムはさらに、耐カール性に十分に優れている。
 本発明の離型フィルムは、表面の微細凹凸形状の成形体への転写を十分に精度よく達成することができる。
本発明の離型フィルムを使用するときの使用方法を説明するための概略断面図である。
 本発明に係るポリスチレン系離型フィルム(以下、単に「PS系離型フィルム」という)はシンジオタクチックポリスチレン系樹脂を含有する二軸配向フィルムである。二軸配向とは、当該フィルムを構成するポリマー分子が当該フィルムの面内方向において、主として、互いに異なる2方向、好ましくは略直角をなす2方向で配向していることを意味するものであり、例えば後述する同時二軸延伸により達成することができる。
<シンジオタクチックポリスチレン系樹脂>
 本発明のPS系離型フィルムに含有されるシンジオタクチックポリスチレン系樹脂(以下、単に「SPS系樹脂」という)は、いわゆるシンジオタクチック構造を有するスチレン系ポリマーである。シンジオタクチック構造とは、立体化学構造がシンジオタクチック構造、即ち、炭素-炭素結合から形成される主鎖に対して側鎖であるフェニル基または置換フェニル基が交互に反対方向に位置する立体構造を意味するものである。
 SPS系樹脂のタクティシティー(立体規則性)は同位体炭素による核磁気共鳴法(13C-NMR法)により定量することができる。13C-NMR法により測定されるSPS系樹脂のタクティシティーは、連続する複数個の構成単位の存在割合、例えば、2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドによって示すことができる。本発明におけるSPS系樹脂は、通常、ラセミダイアッドで75%以上、好ましくは85%以上、若しくはラセミトリアッドで60%以上、好ましくは75%以上、若しくはラセミペンタッドで30%以上、好ましくは50%以上のシンジオタクティシティーを有するスチレン系ポリマーである。
 SPS系樹脂としてのスチレン系ポリマーの種類としては、ポリスチレン、ポリ(アルキルスチレン)、ポリ(アリールスチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体等及びこれらの混合物、又はこれらを主成分とする共重合体が挙げられる。
 ポリ(アルキルスチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(ターシャリーブチルスチレン)、ポリ(ビニルスチレン)等が挙げられる。
 ポリ(アリールスチレン)としては、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)等が挙げられる。)
 ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(フルオロスチレン)等が挙げられる。
 ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等が挙げられる。
 ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)、ポリ(エトキシスチレン)等が挙げられる。
 本発明に係るPS系離型フィルムを構成するSPS系樹脂の重量平均分子量は、10,000~3,000,000、好ましくは30,000~1,500,000、特に好ましくは50,000~500,000である。SPS系樹脂のガラス転移温度は60~140℃、好ましくは70~130℃である。SPS系樹脂の融点は200~320℃、好ましくは220~280℃である。
 SPS系樹脂は市販品として入手することもできるし、公知の方法によって製造することもできる。
 例えば出光興産(株)社製「ザレック」(142ZE、300ZC、130ZC、90ZC)等として入手できる。
 PS系離型フィルム中、SPS系樹脂は上記した範囲内で、タクティシティー(ラセミダイアッド、ラセミトリアッドまたはラセミペンタッド)、種類、ガラス転移温度および/または融点が異なる2種類以上のSPS系樹脂が含有されてもよい。
 本発明のPS系離型フィルムは、耐熱寸法安定性、耐カール性、耐熱変形性、製膜性および耐熱強度安定性等に悪影響を与えない範囲で、上記SPS系樹脂以外に、他のポリマーを含有してもよい。
 他のポリマーの具体例としては、例えば、前記SPS系樹脂以外のポリスチレン系樹脂、スチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)等のポリスチレン系合成ゴム;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート等のポリエステル樹脂;ポリフェニレンサルファイト;ポリアリレート;ポリエーテルサルホン;ポリフェニレンエーテル等が挙げられる。
 前記SPS系樹脂以外のポリスチレン系樹脂とは、いわゆるアイソタクチックポリスチレン系樹脂およびアタクチックポリスチレン系樹脂を包含して意味するものである。
 PS系離型フィルム中の全量に対するSPS系樹脂の含有割合は、耐熱寸法安定性のさらなる向上の観点から、60重量%以上が好ましく、より好ましくは80重量%以上であり、最も好ましくは95重量%以上である。2種類以上のSPS系樹脂が含有される場合、それらの合計割合が上記範囲内であればよい。
<他の添加剤>
 本発明のPS系離型フィルムは、滑剤、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、無機フィラー、着色剤、結晶核剤、難燃剤等の添加剤を含有してもよい。本発明のPS系離型フィルムは特に、滑剤及び酸化防止剤をさらに含有することが好ましい。
 滑剤としては、例えば、炭化水素樹脂、脂肪酸、脂肪酸アミド、脂肪酸エステル、脂肪アルコール、脂肪酸と多価アルコールの部分エステル、複合系滑剤等が挙げられる。滑剤を含むことにより、本発明の離型フィルムの離型性をさらに向上させることができる。
 滑剤の含有割合は、離型フィルムの離型性の観点から、PS系フィルム中のSPS系樹脂に対して0.01~3.0重量%、特に0.02~1.0重量%が好ましい。2種類以上の滑剤が含有される場合はそれらの合計量が上記範囲内であればよい。
 酸化防止剤としては、PS系離型フィルムの分野で黄変防止を目的として使用される酸化防止剤が使用可能であり、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。耐熱寸法安定性および耐カール性のさらなる向上の観点からは、酸化防止剤は、少なくともフェノール系酸化防止剤を含むことが好ましい。酸化防止剤、特にフェノール系酸化防止剤を含有させることにより、耐熱寸法安定性および耐カール性をさらに向上させることができる。
 フェノール系酸化防止剤はフェノール骨格を含有する有機化合物であり、従来よりPS系フィルムの分野でフェノール系酸化防止剤として使用されているフェノール骨格含有有機化合物が使用できる。フェノール系酸化防止剤は市販品として入手することができる。
 フェノール系酸化防止剤の市販品として、例えば、スミライザーGA-80(住友化学社製)、アデカスタブAO-60、アデカスタブAO-80、アデカスタブAO-330(ともにADEKA社製)、イルガノックス245(BASF社製)、サイアノックス1790(CYTEC社製)等が挙げられる。
 リン系酸化防止剤はリン原子を含有する有機化合物であり、従来よりPS系フィルムの分野でリン系酸化防止剤として使用されているリン原子含有有機化合物が使用できる。リン系酸化防止剤は市販品として入手することができる。
 リン系酸化防止剤の市販品として、例えば、スミライザーGP(住友化学社製)、アデカスタブPEP-36(ADEKA社製)、Irgafos38、Irgafos168(ともにBASF社製)等が挙げられる。
 硫黄系酸化防止剤は硫黄原子を含有する有機化合物であり、従来よりPS系フィルムの分野で硫黄系酸化防止剤として使用されている硫黄原子含有有機化合物が使用できる。硫黄系酸化防止剤は市販品として入手することができる。
 硫黄系酸化防止剤の市販品として、例えば、スミライザーMB(住友化学社製)、アデカスタブAO-412S(ADEKA社製)等が挙げられる。
 酸化防止剤の含有割合は、耐熱寸法安定性および耐カール性の観点から、PS系フィルム中のSPS系樹脂に対して0.01~3.0重量%、特に0.02~1.0重量%が好ましい。2種類以上の酸化防止剤が含有される場合はそれらの合計量が上記範囲内であればよい。特にフェノール系酸化防止剤の含有割合は、耐熱寸法安定性および耐カール性のさらなる向上の観点から、上記範囲内であることが好ましい。
<PS系離型フィルムの製造方法>
 本発明のPS系離型フィルムは以下の方法により製造できる。
 例えば、前記SPSおよび所望により含有される他のポリマーおよび添加剤を所定の割合で混合し、溶融・混練して前駆体フィルム(未延伸フィルム)を製造した後、得られた前駆体フィルムを同時二軸延伸処理およびマット加工に順次、供する。
(前駆体フィルムの製造)
 前駆体フィルムの製造方法は公知の方法を採用できる。例えば、所望の成分からなる混合物を押出機により溶融・混練し、混練物をTダイより押し出した後、冷却すればよい。
 前駆体フィルムの厚みは特に制限されるものではなく、例えば、20~2000μmであり、好ましくは30~1000μmである。
(二軸延伸処理)
 二軸延伸処理工程では通常、同時二軸延伸処理を行った後、熱固定処理を行う。このような二軸延伸処理工程によって、フィルムのガラス転移温度を上昇させたり、熱膨張率を減少させたり、熱収縮率の絶対値を減少させたりすることができる。
 二軸延伸処理は、MD方向およびTD方向について延伸を行う。延伸方式は、逐次二軸延伸方式と同時二軸延伸方式があるが、同時二軸延伸方式を行う。同時二軸延伸の代わりに、MD方向もしくはTD方向のうち一方の方向に延伸を行った後、他方の方向に延伸を行う逐次二軸延伸を行うと、最初に延伸を行った方向の熱膨張率の減少幅が小さくなり、かつ熱収縮率も悪くなり耐熱寸法安定性が低下する。二軸延伸の代わりに、一軸延伸を行うと、延伸していない方向の熱膨張率が減少せず、耐熱寸法安定性が低下する。本明細書中、MD方向とは、いわゆる流れ方向であって、押出機からの前駆体フィルムの引き取り方向(縦方向)を意味するものとする。TD方向とは、いわゆる幅方向であって、当該MD方向に対する直交方向を意味するものとする。
 二軸延伸を行うに際して、延伸倍率、延伸温度および延伸速度は本発明の目的が達成される限り特に制限されるものではないが、以下の範囲が好ましい。熱収縮率がより一層、向上するためである。
 延伸倍率は、MD方向およびTD方向ともに2.0倍以上の破断が起こらない範囲内であり、特に2.0~5.0倍が好ましく、より好ましくは2.2~4.0倍である。MD方向およびTD方向の延伸倍率は近似していることが好ましい。具体的には、MD方向の延伸倍率をPMD、TD方向の延伸倍率をPTDとしたとき、「PTD-PMD」は-0.6~+0.6が好ましく、より好ましくは-0.3~+0.3である。なお、MD方向の延伸倍率は延伸直前のMD方向長さに基づく倍率である。TD方向の延伸倍率は延伸直前のTD方向長さに基づく倍率である。
 延伸温度は、当該フィルムを構成するSPS系樹脂のガラス転移温度をTg(℃)としたとき、Tg以上、Tg+30℃以下であり、耐熱寸法安定性のさらなる向上の観点から好ましくはTg℃以上、Tg+25℃以下である。延伸温度が低すぎても、高すぎても、耐熱寸法安定性が低下する。なお、延伸温度は、延伸を行う雰囲気温度である。SPS系樹脂が2種類以上のポリマーからなる場合、SPS系樹脂のTgは、各ポリマーのガラス転移温度に当該ポリマーの含有比率を乗じた値の和である。
 延伸速度は、MD方向およびTD方向ともに50~10000%/分であり、好ましくは100~5000%/分、より好ましくは100~3000%/分である。
 延伸速度とは、{(延伸後寸法/延伸前寸法)-1}×100(%)/延伸時間で算出される値である。
 熱固定処理は、延伸フィルムを延伸温度以上の温度で保持することにより、ポリマー分子の配向を固定する処理である。熱固定処理温度は、当該フィルムを構成するSPS系樹脂のガラス転移温度をTg(℃)、融点をTm(℃)としたとき、Tg+70℃以上、Tm以下であり、耐熱寸法安定性のさらなる向上の観点から好ましくはTg+75℃以上、Tm-20℃以下である。熱固定処理温度が低すぎても、高すぎても、熱収縮率が高くなり、耐熱寸法安定性が低下する。なお、熱固定処理温度は、フィルム保持を行う雰囲気温度である。SPS系樹脂が2種類以上のポリマーからなる場合、SPS系樹脂のTmは、各ポリマーの融点に当該ポリマーの含有比率を乗じた値の和である。
 熱固定処理は、二軸延伸処理時の張力を維持したまま熱固定処理を行う緊張式熱固定処理を実施してもよいし、当該処理と同時に当該張力を弛緩させて熱固定処理を行う弛緩式熱固定処理を実施してもよいし、または当該張力を維持して熱固定処理(第1熱固定処理)を行った後、当該張力を弛緩させて熱固定処理(第2熱固定処理)を行う複合式熱固定処理を実施してもよい。好ましくは弛緩式熱固定処理を実施する。熱固定処理を上記いずれの方式で実施するに際しても、熱固定処理温度は前記範囲内に設定される。
 熱固定処理を上記した弛緩式または複合式で行う場合、熱収縮率の絶対値の低減、耐熱寸法安定性のさらなる向上、フィルムの平坦性の観点から、弛緩倍率はMD方向およびTD方向ともに0.8~1.00倍が好ましく、より好ましくは0.85~1.00倍、最も好ましくは0.90~0.98倍である。MD方向およびTD方向の弛緩倍率は近似していることが好ましい。具体的には、MD方向の弛緩倍率をQMD、TD方向の弛緩倍率をQTDとしたとき、「QTD-QMD」は-0.1~+0.1が好ましく、より好ましくは-0.05~+0.05であり、最も好ましくは-0.02~+0.02である。なお、MD方向の弛緩倍率は延伸直後のMD方向長さに基づく倍率である。TD方向の弛緩倍率は延伸直後のTD方向長さに基づく倍率である。
(マット加工)
 マット加工とは、フィルムに対して、張力を付与しながら、所望の表面形状を備えた一組の型の間で、熱および圧力を付与することにより、フィルム表面に型の表面形状を転写させ、艶消しのための微細な凹凸を形成する処理である。マット加工されるフィルムは上記した方法で二軸延伸処理工程を経たフィルムである。本発明において、離型フィルムを特定条件でマット加工することにより、カール現象を十分に防止することができ、また当該離型フィルムを用いて行うプレス成形時において、離型フィルムの離型性を更に向上させつつ、成形体に離型フィルム表面に有する微細凹凸形状を精度よく転写させることができる。
 一組の型の間で熱および圧力を付与する方法としては、加熱された2枚の平板状の上下金型によりプレスする金型プレス法、2本の熱ロールの間でプレスしながら通過させるロールプレス法等を用いることができる。一組の型として、1枚の平板状金型と1本のロールとを組み合わせて使用することもできる。型は、当該型の表面形状をフィルムに転写させることができる限り、あらゆる材料から構成されていてよく、例えば、金属からなっていてもよいし、ゴムからなっていてもよいし、またはフィルムとの接触面を有する表面部分のみが金属またはゴムからなっていてもよい。以下、上記金型プレス法またはロールプレス法を行う実施態様について説明するが、上記金型プレス法またはロールプレス法において金型またはロールによりフィルムを加熱する代わりに、金型またはロールによるプレスの直前にフィルム自体を直接、IRヒーター等で加熱してもよい。
 マット加工はフィルムの少なくとも片面に行われ、耐カール性の観点から好ましくはフィルムの両面に行われる。マット加工がフィルムの両面に行われるとは、一組の型のうちの両方の型として後述の艶消し性を有する型を使用することを意味する。これにより、フィルムの両面に艶消し性が付与される。マット加工がフィルムの片面に行われるとは、一組の型のうちの一方の型として後述の艶消し性を有する型を使用し、かつ他方の型として艶消し性を有さない型を使用することを意味する。これにより、フィルムの片面のみに艶消し性が付与される。
 マット加工条件としては以下の条件が採用される。
 一組の型のうち少なくとも一方、好ましくは両方の型として艶消し性を有する型を使用する。艶消し性を有する型とは、マット加工されたフィルム面が後述する表面粗さ(Ra)を有するように、フィルムとの接触面に表面粗さを付与された型のことである。そのような型は、フィルムとの接触面の表面粗さが、マット加工されたフィルム面が有する後述の表面粗さ(Ra)と同一か、または当該表面粗さより大きな値である。
 一組の型がフィルムの両面に付与する温度をそれぞれ独立して100℃~250℃、好ましくは120℃~220℃とする。
 プレス圧力は、金型プレス法の場合、0.5~300kgf/cm、好ましくは1~200kgf/cmである。ロールプレス法の場合は、0.1~500kgf/cm、好ましくは1~100kgf/cmである。
 フィルムの張力は通常、1~300N、好ましくは10~200Nである。当該張力は1m幅のフィルムに付与される張力である。特にロールプレス法を採用する場合においてフィルム速度は通常、0.1~10m/分、好ましくは0.2~5m/分である。
 マット加工条件として、型の表面粗さ、フィルムの処理温度、プレス圧力およびフィルム張力をそれぞれ上記の範囲内としながら、それらの値を調整することにより、カール率を制御することができる。
 例えば、一組の型がフィルムに与える表面粗さの差および/または温度差を小さくすることにより、カール率を低減することができる。具体的には、一組の型がフィルムに与える表面粗さの差、すなわちマット加工されたフィルムの両面における表面粗さの差を後述の範囲内にすることにより、カール率をより一層有効に低減することができる。一組の型がフィルム両面に与える温度の差、例えば上型と下型との設定温度差を、特に30℃以下、好ましくは20℃以下、より好ましくは10℃以下とすることにより、カール率をより一層有効に低減することができる。
 また例えば、プレス圧および/またはフィルム張力を小さくすることにより、カール率を低減することができる。具体的には、金型プレス法の場合、プレス圧力を特に1~100kgf/cm、好ましくは1~50kgf/cmとすることにより、カール率をより一層有効に低減することができる。フィルムの張力を特に10~100N、好ましくは10~50Nとすることにより、カール率をより一層有効に低減することができる。
<PS系離型フィルム>
 本発明のPS系離型フィルムのカール率は80%以下、好ましくは60%以下、より好ましくは30%以下である。カール率が大きすぎると、プレス成形時において端部に折れ曲がりが生じ、成形体に、当該端部折れに起因するスジ状の模様が発生し、その周辺において離型フィルムの表面形状が十分に転写されない。
 本明細書中、カール率は、試験片(200mm×200mm)を雰囲気温度180℃で30分間放置したときに、カールが発生することにより減小する投影面積の割合であり、具体的には後述する方法により測定される。カール率が高いほどフィルムの反りが大きく、カール率が低いほどフィルムの反りが小さいことを意味する。試験片の投影面積は、当該試験片を載置した真上から写真撮影を行い、その画像から算出することができる。
 本発明のPS系離型フィルムは通常、180℃での熱収縮率の絶対値が8%以下であり、好ましくは6%以下、より好ましくは3%以下である。熱収縮率の絶対値は、MD方向およびTD方向のいずれの方向についても、上記範囲内である。熱収縮率の絶対値が大きすぎると、耐熱寸法安定性が低下し、プレス成形用離型フィルムとして使用された場合、金型の成形面を十分に付形することができない。
 本明細書中、熱収縮率は、試験片(200mm×200mm)を雰囲気温度180℃で30分間放置したときのMD方向およびTD方向の各方向における熱収縮率であり、具体的には後述する方法により測定される。熱収縮率の値は正の値が収縮を意味し、負の値が膨張を意味する。
 本発明のPS系離型フィルムは、少なくとも片面がマット加工されており、結果として0.5μm以上8.0μm以下、特に0.6μm以上5.0μm以下の表面粗さ(Ra)を有することが好ましい。本発明のPS系離型フィルムは、耐カール性の観点から、好ましくは両面がマット加工されており、結果としてそれぞれの面が独立して上記範囲内の表面粗さ(Ra)を有する。耐カール性の観点から、最も好ましい実施態様において、両面における表面粗さの差は1.5μm以下、好ましくは1.0μm以下、より好ましくは0.5μm以下である。本発明におけるフィルムの表面粗さは、JIS B-0601:1994により測定された値を示している。
 本発明のPS系離型フィルムの厚みは特に制限されるものではなく、例えば、10~150μmであり、好ましくは25~75μmであり、特に好ましくは35~60μmである。
 本発明のPS系離型フィルムは、特に転写性を必要とする離型フィルム(転写フィルム)として有用である。
 具体的には、本発明のPS系離型フィルムを離型フィルムとして使用する場合、プレス成形時において当該フィルムを金型と被成形材料との間に介在させることにより、金型と被成形材料との融着を防止しながらも、当該フィルムの表面形状を精度よく転写させることができる。しかも本発明の離型フィルムは寸法変動が十分に防止されるので、例えば金型成形面に深さ1mmの凹凸がある場合でも、当該成形面を精度よく付形することができる。
 被成形材料を構成するプラスチックの種類は特に制限されず、例えば、エポキシ樹脂、フェノール樹脂、シリコン樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂等が使用可能である。
 本発明のPS系離型フィルムを用いてプレス成形する時の金型温度、圧力および処理時間はプラスチック成形の分野で公知の条件が使用可能である。例えば、プレス時の金型温度は通常、80~200℃である。プレス圧は通常、1~150kg/cmである。プレス時間は通常、0.5~60分間である。
 実施例1~5/比較例1~2
 下記成分の混合物を押出機により樹脂温度280℃でTダイより溶融押し出した後、冷却し、未延伸フィルム(前駆体フィルム)を得た。未延伸フィルムを、後述の条件で延伸工程に供した。延伸工程は延伸処理および熱固定処理からなり、熱固定処理は所定の温度および弛緩倍率にて弛緩式熱固定処理を行った。なお、延伸処理は同時二軸延伸である。
 混合物成分として、実施例及び比較例共に、シンジオタクチックポリスチレン樹脂、酸化防止剤および滑剤を使用した。
 シンジオタクチックポリスチレン樹脂は「ザレック142ZE」(出光興産(株)社製、ガラス転移温度95℃、融点247℃)を使用した。
 酸化防止剤はフェノール系酸化防止剤を使用し、滑剤はアマイド系滑剤を使用した。
 その配合割合は、シンジオタクチックポリスチレン樹脂100重量部に対して、アデカスタブAO-60を0.2重量部、滑剤を0.2重量部とした。
 延伸条件としては、実施例及び比較例共に、以下のとおりである。
 延伸倍率は3.3×3.4倍(MD×TD)
 延伸温度:115℃
 延伸速度:500%/分
 熱固定温度:215℃
 弛緩倍率:0.92×0.92(MD×TD)
 上記で得られた延伸フィルムを1m幅にカットし、その後2枚の平板状金型にてプレスを行うことによりマット加工を行い、離型フィルムを得た。加工条件(金型の表面粗さ、金型温度、プレス圧力、フィルム張力)は表1に記載のとおりである。なお、2枚の金型の内、上型は金型自体に所定の表面粗さを付与したものを使用し、下型は所定の表面粗さを付与したシリコンゴム層を金型表面に付与したものを使用した。
 評価
 各実施例/比較例で得られたマット加工済みの離型フィルムを、以下に示す項目について評価した。その結果を表1に示す。なお、具体的な評価方法は以下のとおりである。
 カール率
 200mm×200mmにカットしたフィルムを、180℃の雰囲気に設定された熱風循環式オーブン内で一角を支持した宙吊り状態にて30分間放置した後、取り出して平らな面に置き、真上から見た際のカールした部分の面積(mm)を測定した。この面積に基づき、下記式よりカール率(%)を算出した。
 カール率(%)=(カールした部分の面積)/(加熱後のフィルムの総面積)×100
なお、加熱後のフィルムの総面積は、フィルムがカールした場合、カールしたフィルムを引き伸ばして測定する。
 表面粗さ
 フィルムの表面粗さはJIS B-0601:1994に準拠して測定した算術平均高さ(Ra)である。上面はマット加工時に上型と接触するフィルム面であり、下面は下型と接触するフィル面である。
 熱収縮率
 まず、長さ150mmの2本の直線をそれぞれ、MD方向およびTD方向に対して平行に、かつ互いに中点で交わるように、試験片(フィルム;200mm×200mm)上に描いた。この試験片を、標準状態(温度23℃×湿度50%)に2時間放置し、その後試験前の直線の長さを測定した。続いて180℃の雰囲気に設定された熱風循環式オーブン内で一角を支持した宙吊り状態にて30分間放置した後、取り出して、標準状態に2時間放置冷却した。その後各方向の直線の長さを測定し、試験前の長さからの変化量を求め、当該試験前の長さに対する変化量の割合として熱収縮率を求めた。熱収縮率について正の値は収縮したことを意味する。なお、熱収縮率の絶対値が3%以下であれば非常に好ましいレベル(◎)、6%以下であれば好ましいレベル(○)、8%以下であれば実用上問題ないレベル(△)、8%超であれば実用上問題あるレベル(×)である。
 離型フィルム評価
 エポキシ樹脂フレークを熱プレス成型するに際し、実施例1~5、比較例1及び比較例2のそれぞれにおいて得られた転写フィルム(転写性を有する離型フィルム)を用いた。詳しくは図1に示すように、エポキシ樹脂フレーク1を上下金型2,3により熱プレス成型するに際し、フレーク1と金型2,3との間に前記転写フィルム4を介在させた。転写フィルム4は金型より外側で把持し固定した。なお、前記転写フィルム4は、シリコンゴム層により粗さを付与した面が、上下金型2,3側になるように配置した。プレス時において、金型2,3の接近はスペーサー5により制限された。プレス条件は次のとおりであった。金型2,3の温度;180℃、プレス圧;100kg/cm、スペーサー厚み0.5mm、プレス時間;10分間、凹部の深さ(凸部の高さ);1mm。
 プレス成形後、成形体を取り出し、放置冷却した後、フィルム4を成形体から剥離した。成形体の表面に転写された転写面を目視により観察し、転写性について評価した。
 ◎;エポキシ成型体の転写面には、スジ状の模様やムラがなく、転写フィルムの表面がそのまま良好に転写されていた;
 ○;エポキシ成型体の転写面には、ほぼスジ状の模様やムラがなく、転写フィルムの表面がほぼ転写されていた;
 △;エポキシ成型体の転写面には、少しスジ状の模様やムラがあり、転写フィルムの表面の転写がやや不十分であった(実用上問題なし);
 ×;エポキシ成型体の転写面に折れ曲った転写フィルムが段差となって転写し、実用上問題がある転写性であった。
Figure JPOXMLDOC01-appb-T000001
 本発明の離型フィルムは、耐熱寸法安定性に十分優れ、良好なカール率を有し、成形性(追随性)および離型性に優れるとともに、成形体に良好な艶消し性を付与することが出来る。なお、離型フィルムの使い方にはロール状のまま使う方法(ロールtoロール方式)と、長手方向にも裁断して1枚ものとして使う方法(枚葉方式)があり、特に枚葉方式で用いる場合に耐カール性はより問題となる。本発明の離型フィルムはそのような枚葉方式で用いられる離型フィルムとして、より有用である。
 本発明の離型フィルムは、プリント基板、セラミック電子部品、半導体パッケージ、レンズ部品、熱硬化性樹脂製品、熱可塑性樹脂製品、化粧板等を製造する際、平板状金型や成形ロールなどの型と被成形材料との間に介在させる離型フィルムとして有用である。また、本発明の離型フィルムは、いわゆる転写フィルムであり、当該フィルムの表面に設けられたマット調を被成形材料の表面に転写するフィルムとして有用である。また、本発明の離型フィルムは、熱硬化性樹脂、熱可塑性樹脂、セラミック、金属等の薄膜層の形成工程や所定の処理工程において、薄膜層の支持や保護を目的とし積層し、最終的には剥離・除去される工程フィルムとして有用である。

Claims (5)

  1.  シンジオタクチックポリスチレン系樹脂を含有する二軸配向ポリスチレン系フィルムからなる離型フィルムであって、
     少なくとも片面がマット加工されてなり、
     当該離型フィルムのカール率が80%以下である、
    ことを特徴とする離型フィルム。
  2.  前記カール率が60%以下であることを特徴とする請求項1に記載の離型フィルム。
  3.  前記シンジオタクチックポリスチレン系樹脂がシンジオタクチックポリスチレンである請求項1又は2に記載の離型フィルム。
  4.  前記二軸配向ポリスチレン系フィルムが、シンジオタクチックポリスチレン系樹脂を含有する前駆体フィルムを、同時二軸延伸処理およびマット加工に供してなるフィルムである請求項1~3のいずれかに記載の離型フィルム。
  5.  前記離型フィルムの熱収縮率が8%以下であることを特徴とする請求項1~4のいずれかに記載の離型フィルム。
PCT/JP2014/068811 2013-07-16 2014-07-15 離型フィルム WO2015008759A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167000984A KR102218811B1 (ko) 2013-07-16 2014-07-15 이형 필름
JP2015527305A JP6307078B2 (ja) 2013-07-16 2014-07-15 離型フィルム
CN201480040329.9A CN105358308B (zh) 2013-07-16 2014-07-15 脱模膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013147831 2013-07-16
JP2013-147831 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015008759A1 true WO2015008759A1 (ja) 2015-01-22

Family

ID=52346211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068811 WO2015008759A1 (ja) 2013-07-16 2014-07-15 離型フィルム

Country Status (4)

Country Link
JP (1) JP6307078B2 (ja)
KR (1) KR102218811B1 (ja)
CN (1) CN105358308B (ja)
WO (1) WO2015008759A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851371B1 (ko) * 2016-03-04 2018-06-07 (주)엘켐 패턴 형성 방법
KR20210018185A (ko) 2018-06-08 2021-02-17 구라시키 보세키 가부시키가이샤 이형 필름 및 이형 필름 제조 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738672B2 (ja) * 2016-07-04 2020-08-12 倉敷紡績株式会社 離型フィルムおよび半導体パッケージの製造方法
JP7029973B2 (ja) * 2018-02-16 2022-03-04 日本電産サンキョー株式会社 ゲル状部材の製造方法
JP6667836B1 (ja) * 2019-03-20 2020-03-18 株式会社コバヤシ 金型と離型フィルムとの組合せ、離型フィルム、金型、及び成形体の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234664B1 (ja) * 1976-03-05 1977-09-05
JPS61114823A (ja) * 1984-11-08 1986-06-02 Toppan Printing Co Ltd 使い捨て体温計用シートの凹部形成方法
JPH03124427A (ja) * 1989-10-09 1991-05-28 Idemitsu Kosan Co Ltd スチレン系重合体フィルムの製造方法
JPH0416315A (ja) * 1990-05-09 1992-01-21 Kuraray Co Ltd 光学部品の製造方法
JP2001246635A (ja) * 2000-03-03 2001-09-11 Mitsubishi Plastics Ind Ltd 離形用フィルム及びプリント基板の製造方法
JP2005310286A (ja) * 2004-04-22 2005-11-04 Meiki Co Ltd 光学製品の転写成形装置および転写成形方法
JP2009090647A (ja) * 2007-09-21 2009-04-30 Sekisui Chem Co Ltd 離型フィルム
JP2010006024A (ja) * 2008-06-30 2010-01-14 National Institute Of Advanced Industrial & Technology 高撥水性或いは超撥水性材料及びその製造方法
WO2010143542A1 (ja) * 2009-06-11 2010-12-16 株式会社クレハ 二軸延伸ポリアリーレンスルフィド樹脂フィルムとその製造方法
JP2011088387A (ja) * 2009-10-23 2011-05-06 Idemitsu Kosan Co Ltd フレキシブルプリント基盤製造用積層体
JP2011094268A (ja) * 2009-10-30 2011-05-12 Idemitsu Kosan Co Ltd 合成皮革製造用剥離フィルム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175117A (ja) * 1990-11-08 1992-06-23 Aisin Chem Co Ltd 樹脂製意匠品の製造方法
JP3065787B2 (ja) * 1992-05-06 2000-07-17 昭和電工株式会社 シボ付きシートの製造方法および装置
JPH09201873A (ja) 1996-01-30 1997-08-05 Konica Corp シンジオタクチックポリスチレン系フイルムの製造方法
JP5506011B2 (ja) * 2007-03-02 2014-05-28 日東電工株式会社 粘着剤層付き透明導電性フィルムおよびその製造方法
WO2010023907A1 (ja) * 2008-08-28 2010-03-04 三井化学株式会社 半導体樹脂パッケージ製造用金型離型フィルム、およびそれを用いた半導体樹脂パッケージの製造方法
SG10201807671QA (en) * 2014-03-07 2018-10-30 Agc Inc Mold release film, process for its production and process for producing semiconductor package

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234664B1 (ja) * 1976-03-05 1977-09-05
JPS61114823A (ja) * 1984-11-08 1986-06-02 Toppan Printing Co Ltd 使い捨て体温計用シートの凹部形成方法
JPH03124427A (ja) * 1989-10-09 1991-05-28 Idemitsu Kosan Co Ltd スチレン系重合体フィルムの製造方法
JPH0416315A (ja) * 1990-05-09 1992-01-21 Kuraray Co Ltd 光学部品の製造方法
JP2001246635A (ja) * 2000-03-03 2001-09-11 Mitsubishi Plastics Ind Ltd 離形用フィルム及びプリント基板の製造方法
JP2005310286A (ja) * 2004-04-22 2005-11-04 Meiki Co Ltd 光学製品の転写成形装置および転写成形方法
JP2009090647A (ja) * 2007-09-21 2009-04-30 Sekisui Chem Co Ltd 離型フィルム
JP2010006024A (ja) * 2008-06-30 2010-01-14 National Institute Of Advanced Industrial & Technology 高撥水性或いは超撥水性材料及びその製造方法
WO2010143542A1 (ja) * 2009-06-11 2010-12-16 株式会社クレハ 二軸延伸ポリアリーレンスルフィド樹脂フィルムとその製造方法
JP2011088387A (ja) * 2009-10-23 2011-05-06 Idemitsu Kosan Co Ltd フレキシブルプリント基盤製造用積層体
JP2011094268A (ja) * 2009-10-30 2011-05-12 Idemitsu Kosan Co Ltd 合成皮革製造用剥離フィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851371B1 (ko) * 2016-03-04 2018-06-07 (주)엘켐 패턴 형성 방법
KR20210018185A (ko) 2018-06-08 2021-02-17 구라시키 보세키 가부시키가이샤 이형 필름 및 이형 필름 제조 방법

Also Published As

Publication number Publication date
KR102218811B1 (ko) 2021-02-22
JPWO2015008759A1 (ja) 2017-03-02
CN105358308B (zh) 2018-11-09
CN105358308A (zh) 2016-02-24
JP6307078B2 (ja) 2018-04-04
KR20160032105A (ko) 2016-03-23

Similar Documents

Publication Publication Date Title
JP6307078B2 (ja) 離型フィルム
JP5918604B2 (ja) 離型フィルムを用いた転写フィルム
JP5907786B2 (ja) 転写フィルム
JP4332204B2 (ja) 離型フィルム
JP5896753B2 (ja) 離型フィルムの製造方法
CN107531006B (zh) 空心构造板及其制造方法
TW200838721A (en) Production process of embossed resin sheet material
JP2006312263A (ja) 積層マット調ポリエステルフィルム
JP2013103368A (ja) 多層フィルム
JP2007185898A (ja) 二軸延伸ポリエステルフィルムおよびその製造方法
JP6207268B2 (ja) ポリスチレン系フィルムおよびその製造方法
JP6777508B2 (ja) ポリスチレン系フィルムおよび多層フィルム
WO2015008334A1 (ja) プラスチックフィルムおよびその製造方法
JP5898925B2 (ja) 多層フィルム
JP5469364B2 (ja) エンボス転写用熱可塑性樹脂シート、熱可塑性樹脂製エンボスシート、および、熱可塑性樹脂製エンボスシートの製造方法
JP6508884B2 (ja) 粗面を有するポリスチレン系離型フィルムおよびその製造方法
JP6404604B2 (ja) 粗面を有するポリスチレン系フィルムおよびその製造方法
JP2008246753A (ja) 成形同時転写用二軸延伸ポリエステルフィルム
WO2010064606A1 (ja) フレキシブルプリント配線板補強用シート及びそれを用いたフレキシブルプリント配線板
WO2010035746A1 (ja) 光学シートの製造方法、光学シート、および当該光学シートを含む光源ユニット、表示装置
JP2013158928A (ja) 延伸フィルムの製造方法
JP2022150240A (ja) 板状樹脂成形体の製造方法、製造装置及び板状樹脂成形体
JP2009255376A (ja) 二軸延伸ポリエチレンテレフタレート系樹脂フィルム
JP2008239843A (ja) 離型用ポリエステルフィルム
WO2015190386A1 (ja) 粗面を有するポリスチレン系離型フィルムおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040329.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527305

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167000984

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825732

Country of ref document: EP

Kind code of ref document: A1