WO2000073366A1 - Procede de production de polymere de polymerisation hydrogene a chaine ouverte de cyclo-olefine - Google Patents

Procede de production de polymere de polymerisation hydrogene a chaine ouverte de cyclo-olefine Download PDF

Info

Publication number
WO2000073366A1
WO2000073366A1 PCT/JP2000/003520 JP0003520W WO0073366A1 WO 2000073366 A1 WO2000073366 A1 WO 2000073366A1 JP 0003520 W JP0003520 W JP 0003520W WO 0073366 A1 WO0073366 A1 WO 0073366A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
polymerization
catalyst
compound
hydrogenation
Prior art date
Application number
PCT/JP2000/003520
Other languages
English (en)
French (fr)
Inventor
Yasuo Tsunogae
Masato Sakamoto
Masaharu Tokoro
Kazunori Taguchi
Original Assignee
Nippon Zeon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26481525&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000073366(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Zeon Co., Ltd. filed Critical Nippon Zeon Co., Ltd.
Priority to EP00931629A priority Critical patent/EP1197509B1/en
Priority to US09/980,200 priority patent/US6486264B1/en
Priority to JP2001500690A priority patent/JP4691867B2/ja
Publication of WO2000073366A1 publication Critical patent/WO2000073366A1/ja
Priority to US10/265,244 priority patent/US6908970B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring

Definitions

  • the present invention relates to a method for efficiently producing a ring-opened polymer hydride of cyclic olefin.
  • a method of performing metathesis ring-opening polymerization of cyclic olefins using a polymerization catalyst comprising a tungsten compound, a molybdenum compound, a ruthenium compound, an osmium compound, and the like has been well known.
  • the ring-opened polymer obtained by this method has insufficient thermal stability due to a double bond in the main chain.
  • a method of hydrogenating a ring-opened polymer has been proposed.
  • a hydrogenation catalyst is added to hydrogenate the carbon-carbon double bonds present in the polymer main chain.
  • a hydrogenation catalyst There are known methods (Japanese Patent Application Laid-Open Nos. Hei 5-272713, Hei 9-197953, Hei 10-19583, etc.).
  • the ring-opening polymer was hydrogenated by adding a hydrogenation catalyst to the reaction system polymerized using a tungsten or molybdenum catalyst, the polymerization catalyst poisoned the hydrogenation catalyst, and the polymerization catalyst was removed. There was a problem that the power for performing the hydrogenation reaction later or a large amount of hydrogenation catalyst had to be used.
  • JP-A-10-1995182 discloses that after ring-opening polymerization of a cyclic olefin using a ruthenium carbene compound, a modified agent such as ethyl butyl ether is added and then modified.
  • a method for hydrogenating a ring-opened polymer as it is with a polymerization catalyst has been reported. According to this method, there is an advantage that the polymerization step and the hydrogenation step can be performed continuously. However, according to the study of the present inventors, it has been found that the reaction in the hydrogenation step often does not proceed sufficiently.
  • the polymerization catalyst is a homogeneous catalyst, there is a problem that the operation of separating and removing the obtained ring-opened polymer is complicated. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, a ring-opening obtained by ring-opening polymerization of cyclic olefin using a polymerization catalyst containing an organic ruthenium compound or an organic osmium compound as a main component.
  • a hydrogenation catalyst and hydrogen By supplying a hydrogenation catalyst and hydrogen into the reaction system after polymerization when hydrogenating the polymer, the hydrogenation reaction proceeds efficiently and a hydride can be obtained at a high hydrogenation rate.
  • the removal of the polymerization catalyst becomes easier when a supported heterogeneous catalyst is used as the hydrogenation catalyst to be supplied later.
  • a polymerization step of ring-opening polymerization of cyclic olefins in the presence of a polymerization catalyst containing an organic ruthenium compound or an organic osmium compound, and a hydrogenation catalyst and hydrogen added to the reaction system in the polymerization step To provide a method for producing a hydrogenated ring-opened polymer, which comprises a hydrogenation step of hydrogenating a carbon-carbon double bond in the ring-opened polymer by adding a hydrogen atom.
  • ring-opening polymerization of cyclic olefin is carried out in the absence of a solvent or in the presence of a non-halogen solvent, using a polymerization catalyst containing a ruthenium compound or an osmium compound and a heteroatom-containing carbene compound.
  • a method for producing a ring-opened polymer is provided.
  • Cyclic olefins used in the present invention include: (1) norbornenes, dicyclopentadiene , Polycyclic cyclic olefins having a norbornene ring, such as tetracyclododecenes, and (2) monocyclic cyclic olefins and cyclic diolefins.
  • These cyclic olefins may have a substituent such as an alkyl group, an alkenyl group, or an alkylidene group, may have a polar group, and may have a double bond other than the double bond of the norbornene ring. It may also have.
  • cyclic olefins it is preferable to use tricyclic to hexacyclic cyclic olefins having a norbornene ring in order to obtain a ring-opened polymer having excellent heat resistance and solubility.
  • tricyclic cyclic olefins such as dicyclopentadiene, and tetracyclic cyclic olefins such as tetracycline dodecenes.
  • the dicyclopentenes refer to tricyclic cyclic olefins having a norbornene ring, and may have a substituent such as an alkyl group, an alkenyl group, or an alkylidene group.
  • dicyclopentadiene examples include dicyclopentadiene and methyldicyclopentadiene.
  • Jishiku port of 5-membered ring portion of Pentajen double bonds were saturated tricyclo [4 3 I 2 '5 0 ...] - such as de force one 3-E emissions can also be mentioned.
  • Tetracyclododecenes are represented by the following formula [4].
  • R 5 to R 12 represent a hydrogen atom, a hydrocarbon group having 1 to 3 carbon atoms, or a halogen atom.
  • R 13 to R 16 each represent a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a substituent containing a halogen atom, a silicon atom, an oxygen atom or a nitrogen atom, and R 13 and R ie May combine to form a ring.
  • Tetracyclododecenes include ( a ) a compound having no double bond other than a norbornene ring, (b) a compound having a double bond other than a norbornene ring, (c) a compound having an aromatic ring, and (d) a polar group.
  • any monomer can be used.
  • Specific examples of those having no double bond other than the norbornene ring include tetracyclododecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, — Tetracyclododecenes such as cyclopentyltetracyclododecene; and those having a substituent in the above tetracyclododecenes.
  • Specific examples of those having a double bond other than the norbornene ring include 8-methylidenetetracyclododecene, 8-ethylidenetetracyclododecene, 8-bêttracyclododecene, and 8-propenyltetracyclodide Tetracyclododecenes having a double bond outside the ring, such as decene, 8-cyclohexenyl / tetracyclododecene, and 8-cyclopentenyltetracyclododecene.
  • Specific examples having a polar group include 8-methoxycarbonyltetracyclododecene, 8-methyl-18-methoxycarbyltetracyclododecene, 8-hydroxymethyltetracyclododecene, and 8-carboxytetrade.
  • Tetracyclododecenes having a substituent containing an oxygen atom such as cyclododecene, tetracyclododecene-18,9-dicarboxylic acid and tetracyclododecene-18,9-dicarboxylic anhydride; 8-cyano tetracyclododecene, tetracyclo Tetracyclododecenes having a substituent containing a nitrogen atom, such as dodecene-1,8-dicarboxylic acid imido; tetracyclododecenes having a substituent containing a halogen atom, such as 8-chlorotetracyclododecene; Contains silicon atoms such as trimethoxysilyltetracyclododecene Te having a substituent And tracyclododecene.
  • an oxygen atom such as cyclododecene,
  • cyclic olefins having a norbornene ring include bicyclic compounds having one norbornene ring, such as norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, and 5-butylnorbornene.
  • Norbornenes such as hexyl norbornene, 5-decyl norbornene, 5-cyclohexyl norbornene, and 5-cyclopentinolenorbornene;
  • Oxanorbornene 5-methyloxanorbornene, 5-ethyloxanorbornene, 5-butyloxanorbornene, 5-hexyloxanorbornene, 5-decyloxanorbonorenene, 5-cyclohex Oxanonorbornenes such as xyloxanorbornene and 5-cyclopentyloxanorbornene;
  • Norbornenes having a double bond outside the ring such as 5-ethylidene norbornene, 5-vinyl norbornene, 5-propenyl norbornene, 5-cyclohexenyl norbornene, and 5-cyclopentenino norbornorenene;
  • a compound having a double bond such as 5-ethylideneoxaxorbornene, 5-bieroxaxorbornene, 5-provenyloxaxorbornene, 5-cyclohexenyloxaxorbornene, 5-cyclopentyoxaxorbornene, etc. Xanorbornenes are mentioned.
  • Those having a polar group include 5-methoxycarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-1-methoxycarbonylnorbornene, 5-methyl-5-ethoxycarbonylnorbornene, norbornenyl-1-methylprobionate.
  • Norbornenyl-2-methyl octonate norbornene-5,6-dicarboxylic anhydride, 5-hydroxymethylnorbornene, 5,6-di (hydroxymethyl) norbornene, 5,5-di (hydroxymethyl) norbornene, Norbornenes having a polar group containing an oxygen atom, such as 5-hydroxy-1-i-propionnorebornene, 5,6-dicarboxynorbornene, and 5-methoxycarbonyl-6-carboxynorbornene;
  • cyclic olefins having a norbornene ring When the above “other cyclic olefins having a norbornene ring” are used, from the viewpoint of heat resistance and solubility, the ability to polymerize a polymer having a norbornene ring and an aromatic ring alone, or the aforementioned cyclopentane It is preferable to copolymerize with gem-tetracyclododecene or the like.
  • tetrahydrophnoleolenes such as 4-methano_1,4,4a, 9a-tetrahydrophnoleolene can be copolymerized with the above-mentioned cyclopentadienetetracyclododecene or the like.
  • Monocyclic cycloolefins and diolefins are C 4 -C 2 . And their substitution products, preferably C 4 -C 4 . And their derivatives and their derivatives.
  • monocyclic cyclic olefins and diolefins include, for example, JP-A-64-626216 such as cyclobutene, cyclopentene, methinolecyclopentene, cyclohexene, methinolecyclohexene, cycloheptene, and cyclooctene
  • monocyclic cyclic olefin monomers described in Japanese Patent Application Laid-Open No. 7-2 such as cyclohexadene, methylcyclohexadien, cyclooctadien, methylcyclooctadien, and phenylcyclooctadene.
  • Cyclic olefins can be used independently or in combination of two or more.
  • the copolymer composition is such that dicyclopentadiene or tetracyclododecene is composed of all monomers. 1% by weight to 100% by weight.
  • the organic ruthenium compound or organic osmium compound contained in the polymerization catalyst used in the present invention is a ruthenium compound or an osmium compound having an organic compound as a ligand, for example, the following formulas (1), (2), Includes those represented by [3].
  • M 2 represents a ruthenium atom or an osmium atom
  • R 2 independently of each other, are hydrogen, a halogen atom or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
  • L 2 and L 3 represent a hydrocarbon group of Ci Cz containing at least one selected from atoms, and 2 and 3 independently represent any anionic ligand. Denote any neutral electron-donating compound independently of each other, even if two or more of R 2 , X, X- ⁇ L 2 and L 3 combine with each other to form a polydentate chelating ligand Good.
  • OyoBishi 5 shows an electron-donating compound of any neutral. More than one of R 3 , R 4 , X 4 , X 5 , L 4 .L 5 may combine with each other to form a polydentate chelating ligand. )
  • the anionic ligand may be any ligand having a negative charge when separated from the central metal.
  • the neutral electron donating compound may be any ligand as long as it is a ligand having a neutral charge when separated from the central metal, that is, a Lewis base.
  • anionic ligands XX 2 , X 3 , X 4 and X 5 in the formulas [1], [2] and [3] include halogen atoms such as F, Br, C 1 and I; Hydrogen, acetylacetone, diketonate group, cyclopentagenenyl group, aryl group, alkenyl group, alkyl group, aryl group, alkoxy group, aryloxy group, anorecoxycarbonyl group, aryl carboxyl group, carboxyl group, alkyl Or an arylsulfonate group, an alkylthio group, an alkenylthio group, an arylthio group, an alkylsulfonyl group and an alkylsulfiel group.
  • a halogen atom, a cyclopentagenenyl group, an aryl group, an alkyl group and an aryl group are preferred in view of polymerization activity.
  • neutral electron donating compounds L 2 , L 3 , L 4 and L 5 in the formulas [1], [2] and [3] include oxygen, water, carbonyls, amines , Pyridines, ethers, nitriles, esters, phosphines, phosphinates, phosphites, stibines, sulfoxides, thioethers, amides, aromatics, cyclic diolefins, olefins , Isocyanides, thiosinates, carbene compounds containing a hetero atom, and the like.
  • pyridines, phosphines, aromatics, cyclic diolefins, and heteroatom-containing carbene compounds are preferred because of their high polymerization activity.
  • Polymerization catalysts in which at least one of 4 and at least one of L 5 and L 6 in the formula [3] are each a carbene compound containing a hetero atom show extremely high ring-opening polymerization activity.
  • the carbene compound is a general term for compounds having a methylene free radical, and refers to a compound having an uncharged divalent carbon atom represented by (> C :).
  • the carbene is generally present as an unstable intermediate generated during the reaction, but can be isolated as a relatively stable carbene compound having a hetero atom.
  • Heteroatoms are atoms of Groups 15 and 16 of the periodic table, and specific examples include N, O, P, S, As, and Se atoms. Among them, N, ⁇ , P, and S are preferable for obtaining a stable carbene compound, and N and P are particularly preferable.
  • heteroatom-containing carbene compound examples include compounds represented by the following formulas [5] and [6].
  • R 21 and R 22 independently include hydrogen or at least one selected from a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom. . Represents a hydrocarbon group.
  • hetero atom-containing carbene compound of the formula [5] examples include 1,3-diisopropylimidazolidine-12-ylidene, 1,3-dicyclohexylimidazolidine-12-ylidene, 1,3-diene (Methylphenyl) imidazolidine-1-ylidene, 1,3-di (2,4,6-trimethylphenyl) imidazolidine-1 2-ylidene, 1,3-di (methylnaphthyl) imidazolidine-1 2- ⁇ f Liden, 1, 3—Jadaman chilimi Examples include dazolidine-1-ylidene, 1,3-diphenylimidazolidine_2-ylidene, and 1,3,4,5-tetramethylimidazolidine_2 // Tlidene.
  • heteroatom-containing carbene compound of the formula (6) examples include 1,3-diisopropene pinoley 4 _imidazoline-12-ylidene, 1,3-dicyclohexynole-14-imidazoline-12-ylidene, 1,3-di (methylphenyl) 1-4-imidazoline 1-2-ylidene, 1,3-di (2,4,6-trimethylphenyl) 1-41-imidazoline 1-2-ylidene, 1,3-di (Methylnaphthyl) 14-Imidazoline- 2-ylidene, 1,3-Diadamantyl- 14-imidazoline- 12-ylidene, 1,3-diphenyl- 1-4-Imidazoline- 1- 2-ylidene, 1,3,4,5-tetra Methyl-1- 4-imidazoline
  • 1,3,4-triphenyl-1,2,3,4,5-tetrahydro-1 1 //-1, 2,4-triazole-1 5 —Ilidene, 3- (2,6-diisopropylphenyl) -2,3,4,5-tetrahydrothiazol — 2 _ylidene, 1,3-dicyclohexylhexahydropyrimidine-12-ylidene, N, N, N ', T' —tetraisopropylformamidinylidene, 1,3,4—triphenyl-1,4,5-dihydro-1 1 // — 1,2,4—triazole-5-ylidene,
  • hetero atom adjacent to the carbene has a bulky substituent, specifically 1,3-diisopropylimidazolidin-12-ylidene, 1,3-dicyclohexylimidazolidine-12_ylidene, 1,3-di (methylphenyl) imidazolidin-1-ylidene, 1,3-di (2,4,6-trimethylphenyl) imidazolidin-1-ylidene, 1,3-di (methylnaphthyl) imidazo Lysine-1 2 T-lidene, 1,3 diadamantyl imidazolidine 1-2-ylidene, 1,3-diphenylimidazolidin 1-2-ylidene, 1,3,4,5-tetraphenylimidazolidine 1-2 —Ilidene, 1,3-diisopropyl-14-imidazoline-12-ylidene, 1,3-dicyclohexyl-14-imidazoline-12-
  • R 13 , R 14 , R 15 and R 16 in the formula [2] or [3] include hydrogen, alkenyl group, alkynyl group, alkyl group, aryl group, carboxyl group, alkoxy group and alkenyl group.
  • Examples include an xy group, an alkynyloxy group, an aryloxy group, an alkoxycarbonyl group, an alkylthio group, an alkenylthio group, an arylthio group, an alkylsulfonyl group, and an alkylsulfiel group.
  • an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, and an arylthio group are preferable because of high activity.
  • polymerization catalyst examples include the following.
  • examples of the general formula [1] include bis (cyclopentagenenyl) ruthenium, chloro (cyclopentagenenyl) bis (triphenylphosphine) ruthenium, dichloro (1,5-cyclooctaneta) norethenium, Dichloro tris (tripheninolephosphine) ruthenium, cis dicrobis bis (2,2'-biviridyl) ruthenium 'dihydrate, dichlorobis [(p-cymene) chloroporous ruthenium)], dichloro (2,7-dimethylocta-1,2,6) —Gen-1,8-diyl) ruthenium, bis (cyclopentenyl) osmium, dichloro (p-cymene) osmium, [1,3-diisopropyl imidazolidine-1-ylidene] (p-cymene) ruthenium dichloride , [
  • Examples of the general formula [3] include bis (tricyclohexylphosphine) phenylvinylidene ruthenium dichloride, bis (triphenylphosphine) t-butylvinylidene ruthenium dichloride, bis (1,3-diisopropylpropyl) Imidazolidine-1—ylidene) phenylvinylidene ruthenium dichloride, bis (1,3-dicyclohexyl imidazolidine-12-ylidene) t-butylvinylidene ruthenium dichloride, bis (1,3— Diisopropyl-1-41-imidazoline-12-ylidene) phenylubiridene ruthenium dichloride, bis (1,3-dicyclohexyl-14-imidazoline-12-ylidene) t-butylvinylidene ruthenium dichloride Ruthenium compounds coordinated by two heteroatom-containing
  • the catalyst used in the present invention is usually a catalyst prepared from a compound containing ruthenium or a compound containing osmium, or a compound containing these compounds, a heteroatom-containing carbene compound and Z or other neutral electrons. It is prepared by mixing a donor compound. Generally, the components may be mixed at a predetermined ratio in the form of a solution in which the components are dissolved in a solvent. Mixing is carried out at room temperature in an inert gas, but may be carried out under heating.
  • the heteroatom-containing carbene compound having low stability can be converted into a predetermined carbene compound by mixing a precursor thereof with other components and heating the mixture.
  • the total content of the ruthenium-containing compound or osmium-containing compound, the heteroatom-containing carbene compound, and the neutral or electron-donating compound used in the mixing is not necessarily the above formula [1] or [2]. And / or is not considered to be involved in the formation of the compound represented by [3], but the mixture can be used as it is as a polymerization catalyst.
  • the ruthenium-containing compound or the osmium-containing compound and the heteroatom-containing carbene compound are separately added to a polymerization system and used as a polymerization catalyst. Can also be used.
  • a diazo compound, an acetylene compound, or a silyl compound is added to a ruthenium metal or an osmium metal in a weight ratio of 1 to 10 to increase polymerization activity. It can be added at a ratio of 100 times.
  • the method of ring-opening polymerization of cyclic olefins using an organic ruthenium compound or an organic osmium compound and a polymerization catalyst containing a heteroatom-containing carbene compound is considered to be novel. According to this, a very high polymerization activity can be obtained, which is preferable.
  • This preferred polymerization method can be carried out in the absence of a solvent, but is more preferably carried out in the presence of a non-halogen solvent.
  • the ratio of the polymerization catalyst to the cyclic olefin is (metal ruthenium or metal osmium in the polymerization catalyst: cyclic olefin), usually from 1: 100 to 1: 2,000,000. 000 (mol mol), preferably 1: 500 to: 1,000,000 (mol Z mol), more preferably 1: 1,000 to: 1:50.
  • the concentration of cyclic olefin is 1 to 50% by weight in the solution. / 0 is preferable, 2 to 45% by weight is more preferable, and 5 to 40% by weight is particularly preferable.
  • concentration of the monomer is less than 1% by weight, the productivity is poor, and when the concentration is more than 50% by weight, the solution viscosity after polymerization is too high, and the subsequent hydrogenation reaction becomes difficult.
  • the polymerization is preferably carried out in a solvent since a hydrogenation reaction is carried out after the polymerization.
  • the polymerization is preferably performed in a non-halogen solvent. This is because non-halogen solvents are effective because halogen solvents are not industrially common solvents and cause great harm to the environment.
  • the non-halogen solvent is not particularly limited as long as the polymer and the polymer hydride dissolve under predetermined conditions and do not affect the polymerization and the hydrogenation, but those generally used industrially are preferable.
  • non-halogen solvents include, for example, pentane, hexane, heptane, etc. Aliphatic hydrocarbon solvents; cyclopentane, cyclohexane, methylcyclohexane, dimethinolecyclohexane, trimethinolecyclohexane, ethylcyclohexane, getylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, to Alicyclic hydrocarbon solvents such as xahydroindenecyclohexane and cyclooctane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; nitrogen-containing hydrocarbon solvents such as nitromethane, nitrobenzene, and acetonitrile; Ether solvents such as ter and tetrahydrofuran; Among these solvents, aromatic hydrocarbon-based solvents, ali
  • the polymerization reaction is started by mixing the above-mentioned monomer and a polymerization catalyst.
  • the polymerization temperature is not particularly limited, it is generally 130 ° C. to 200 ° C., preferably 0 ° C. to 180 ° C.
  • the polymerization time is usually from 1 minute to 100 hours.
  • a molecular weight modifier can be used.
  • the molecular weight regulator include ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene, and 1-octene; styrenes such as styrene and butyltoluene; ethynolebininoleatenore; Ethers such as norebininoleatenore and arinoleglycidinoleatenole; halogen-containing bur compounds such as aryl chloride; oxygen-containing bur compounds such as aryl acetate, aryl alcohol and glycidyl methacrylate; nitrogen-containing butyl compounds such as acrylamide And the like.
  • the amount of the molecular weight modifier to be used can be arbitrarily selected from 0.1 to 10 mol% based on the cyclic olefin.
  • a ruthenium compound or an osmium compound may be released from the polymer molecular chain terminal by adding a compound such as the above-mentioned molecular weight regulator to improve the activity of the hydrogenation reaction. it can.
  • the molecular weight of the obtained polymer is determined by gel permeation chromatography (polystyrene conversion), taking into account the hydrogenation reaction.
  • the number average molecular weight (M n) is preferred. More preferably, it is from 1,000 to 500,000, more preferably from 5,000 to 200,000.
  • a hydrogenation catalyst and hydrogen are added to the reaction system in the ring-opening polymerization step to hydrogenate the carbon-carbon double bond in the ring-opened polymer. I do.
  • the hydrogenation catalyst used is not particularly limited as long as it is generally used for hydrogenation reactions of olefins and aromatic compounds. Specific examples thereof include: (1) palladium, platinum, nickel, rhodium, ruthenium Supported metal catalyst in which a transition metal such as titanium is supported on a carrier such as carbon, alumina, silica, or diatomaceous earth; (2) an organic transition metal compound such as titanium, cono-kort, or nickel, and lithium, magnesium, or aluminum And homogeneous metal catalysts composed of organometallic compounds such as tin and tin, and (3) metal complex catalysts such as rhodium and ruthenium.
  • the supported metal catalyst (1) include nickel silica, nickel Z diatomaceous earth, nickel Z alumina, palladium / carbon, palladium Z silica, palladium diatomaceous earth, palladium / alumina, platinum / silica, platinum alumina , Rhodium
  • Catalysts such as Z-silica, rhodium-z-alumina, ruthenium-z-silica, ruthenium / alumina.
  • the homogeneous catalysts of (2) include cobalt acetate Z triethylaluminum, nickel acetylacetonate Z triisobutylaluminum, titanocene dichloride Zn-butyllithium, zirconocene dichloride / sec-butyllithium, tetrabutoxy Cititanate Z dimethylmagnesium and the like.
  • metal complex catalyst (3) examples include dihydridotetra (triphenylphosphine) norethenium, dihydrido (acetonitrinole) tris (triphenylphosphine) norethenium, dihydrido (tetrahydrofuran) tris (triphenylphosphine) ) Ruthenium.
  • the supported metal catalyst (1) was used as a polymerization catalyst. It has the ability to adsorb organic ruthenium compounds or organic osmium compounds, and has the advantage that after the hydrogenation reaction, when the hydrogenation catalyst is separated and recovered by filtration, the polymerization catalyst can also be separated and recovered.
  • the timing of adding the hydrogenation catalyst is not particularly limited as long as it is after the ring-opening polymerization, and may be before, simultaneously with, or after the start of the supply of hydrogen. Even if it is added after the start of supply, hydrogenation may proceed slightly depending on the polymerization catalyst.
  • the suitable range of the hydrogenation reaction varies depending on the hydrogenation catalyst system used, but the hydrogenation temperature is usually from 20 to 250 ° C, preferably from 10 to 220 ° C, more preferably from 0 to 200 ° C. ° is C, hydrogen pressure is usually 0.:! ⁇ 100 k g / / cm 2, preferably 0. 5 ⁇ 70 kg / cm 2, more preferably:! ⁇ It is 50 kg / cm 2. If the hydrogenation temperature is too low, the reaction rate will be slow, and if it is too high, side reactions will occur. Also, if the hydrogen pressure is too low, the hydrogenation rate becomes slow, and if it is too high, a high pressure reactor is required.
  • the hydrogenation reaction is usually performed in an inert organic solvent.
  • the organic solvent can be arbitrarily selected depending on the solubility of the produced hydride.
  • the solvent for example, benzene, aromatic hydrocarbons such as toluene; n _ pentane, aliphatic carbon hydride such as hexane n-: cyclohexane, alicyclic hydrocarbons such as decalin; as tetrahydrofuran, E Ethers such as tylene glycol dimethyl ether; among these, hydrocarbon solvents or ethers are preferable as the solvent having excellent solubility of the hydrogenated cyclic olefin ring-opening polymer used in the present invention; Among the system solvents, alicyclic hydrocarbon solvents are more preferable.
  • the organic solvent may usually be the same as the polymerization reaction solvent, and the polymerization reaction solution may be reacted by adding a hydrogenation catalyst as it is.
  • the hydrogenation reaction time is generally 1 to 10 hours, and 70% or more, preferably 90% or more, more preferably 95% or more of the carbon-carbon double bonds of the main chain in the polymer is hydrogen.
  • the polymerization catalyst and the hydrogenation catalyst may be removed by using the above-mentioned water
  • the supported metal catalyst (1) can be removed by filtration with a filter.
  • the homogeneous catalyst of (2) the homogeneous catalyst of (2)
  • the metal complex catalyst (3) such as rhodium and ruthenium can be separated by a known method such as a method of adsorbing and separating with an adsorbent, a method of washing with water or a lower alcohol in the presence of an organic acid and Z or an inorganic acid. It is separated and recovered from the reaction solution.
  • the method of removing with an adsorbent usually requires a large amount of adsorbent, and the method of removing by washing is as follows:
  • the polymerization catalyst is adsorbed by a small amount of the hydrogenation catalyst, so it is filtered by a filter. This is particularly preferable because the polymerization catalyst and the hydrogenation catalyst can be removed simultaneously.
  • the number average molecular weight of the hydride of the obtained polymer is preferably 5,000 or more, more preferably 7,000 or more, particularly preferably 10 000 or more, preferably 1,000,000 or less, more preferably It is at most 500,000, particularly preferably at most 200,000. If the number average molecular weight is too small, the mechanical properties are poor, and if it is too high, the production becomes difficult.
  • the molecular weight of the ring-opened polymer was measured in terms of polystyrene by gel permeation gel chromatography (GPC) using tetrahydrofuran as a solvent.
  • the molecular weight of the ring-opened polymer hydride was measured as a polyisoprene conversion value by gel permeation 'chromatography (GPC) using hexane as a solvent.
  • Tripheninolephosphine 0.099 parts of ⁇ / tenium, 0.029 parts of tricyclohexynolephosphine and 0.124 parts of trimethylsilyldiazomethane were added to 10 parts of tosoleene and reacted to prepare a catalyst solution.
  • This catalyst solution was added to the autoclave and polymerized at 60 ° C. for 1 hour, and 2.76 parts of ethyl butyl ether was added thereto to terminate the polymerization reaction.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the polymer solution was poured into a large amount of isopropanol to precipitate a polymer, which was washed by filtration, and dried under reduced pressure at 80 ° C for 40 hours.
  • the hydrogenation rate was 90%.
  • the obtained polymer had a number average molecular weight (Mn) of 14,100 and a weight average molecular weight (Mw) of 32,200.
  • Example 3 Instead of bis (tricyclohexylphosphine) benzylidene ruthenium dichloride of Example 3, 0.053 parts of tungsten hexachloride, 0.13 parts of tetrabutyltin and 0.048 parts of dibutyl ether were used.
  • a polymerization reaction was carried out in the same manner as in Example 3 except for the above.
  • the molecular weight (in terms of polystyrene) of the obtained polymer was such that the number average molecular weight (Mn) was 7,300 and the weight average molecular weight (Mw) was 18,200.
  • a hydrogenation reaction was performed in the same manner as in Example 3.
  • the yield of the obtained ring-opened polymer hydride was 29.0 parts.
  • the hydrogenation rate was 10% because the amount of the hydrogenation catalyst added was small.
  • a hydrogenation reaction was performed at a hydrogen pressure of 1 Ok kgZcm 2 at a temperature of 150 ° C for 2 hours. At this stage, the hydrogenation rate was 65%.
  • 0.6 g of 5% Pd alumina was added as a hydrogenation catalyst, and a hydrogenation reaction was performed at a hydrogen pressure of 10 kgZcm 2 and a temperature of 150 ° C for 5 hours. After completion of the reaction, the mixture was cooled, and the reaction solution was filtered with a filter to remove the hydrogenation catalyst, thereby obtaining a colorless and transparent polymer solution.
  • Example 5 Ring-opening polymerization
  • cyclohexane To a 100 ml glass reactor equipped with a stirrer, 30 ml of cyclohexane, 3.97 g (3 Ommo 1) of dicyclopentagene, and 0.10 mmo 1 of 1-hexene as a chain transfer agent were added.
  • Bis (1,3-diisopropyl-14-imidazoline-12-ylidene) benzylidene ruthenium dichloride dissolved in 5 ml of toluene 0.01 ml Ommo 1 was added, and polymerization was carried out at 60 ° C. After the addition of the catalyst, the viscosity of the polymerization reaction solution gradually increased, but the polymer was not precipitated in the clear solution.
  • the polymerization reaction solution was poured into a large amount of isopropanol to precipitate a polymer.
  • the polymer was separated by filtration, washed, and dried under reduced pressure at 40 ° C for 40 hours.
  • This polymer was dissolved in toluene and THF at room temperature.
  • the molecular weight (in terms of polystyrene) of the polymer was such that the number average molecular weight (Mn) was 10,700 and the weight average molecular weight (Mw) was 23,900.
  • a hydrogenation reaction was carried out at 160 ° C. and a hydrogen pressure of 20 kgZcm 2 for 6 hours.
  • the hydrogenation rate is 99.9%
  • the molecular weight of the hydride in terms of polyisoprene
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Polymerization was carried out in the same manner as in Example 5, except that dicyclopentadiene was changed to tetracyclododecene. After the addition of the catalyst, the viscosity of the polymerization reaction solution gradually increased, but the polymer was not precipitated in a transparent solution. One hour later, the polymerization reaction solution was poured into a large amount of isopropanol to precipitate a polymer, which was separated by filtration, washed, and dried under reduced pressure at 40 ° C for 40 hours.
  • the yield of the obtained ring-opened polymer was 3.4 g, and the molecular weight (in terms of polystyrene) was such that the number average molecular weight (Mn) was 68,100 and the weight average molecular weight (Mw) was 154,200.
  • This polymer was dissolved in toluene, THF, and chloroform at room temperature.
  • Polymerization and hydrogenation were carried out in the same manner as in Example 7, except that dicyclopentadiene was changed to tetracyclododecene and the diatomaceous earth-supported nickel catalyst was changed to a palladium Z carbon catalyst.
  • the molecular weight (in terms of polystyrene) of the polymer was such that the number average molecular weight (Mn) was 8,400 and the weight average molecular weight (Mw) was 20,100.
  • the polymerization reaction solution was poured into a large amount of isopropanol to precipitate a polymer.
  • the polymer was separated by filtration, washed, and dried under reduced pressure at 40 ° C for 40 hours.
  • This polymer was dissolved in toluene and THF at room temperature.
  • Example 11 (Ring-opening polymerization) Bis (1,3-diisopropyl-14-imidazoline-12-ylidene) benzylidene Instead of ruthenium dichloride, [1,3-bis (1-phenylethyl) imidazoline-1 2- ⁇ f redene] (tricyclohexylphosphine)
  • the polymerization was carried out in the same manner as in Example 5, except that benzylidene ruthenium dichloride was added and kneaded, and 1-hexene was added to 0.3 mmol. After the catalyst was added, the viscosity of the polymerization reaction solution gradually increased, but the polymer was not precipitated in the clear solution.
  • the yield of the obtained ring-opened polymer was 3.9 g.
  • the molecular weight (in terms of polystyrene) was such that the number average molecular weight (Mn) was 25,100 and the weight average molecular weight (Mw) was 60,200. This polymer was dissolved in toluene and THF at room temperature.
  • cyclic olefins are subjected to ring-opening polymerization with higher activity, and a general-purpose solvent such as cyclohexane. Above all, no precipitation of polymer occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

明 細 書 環状ォレフィンの開環重合体水素化物の製造方法 技 術 分 野
本発明は、環状ォレフィンの開環重合体水素化物を効率よく製造する方法に関する。 背 景 技 術
タングステン化合物、 モリブデン化合物、 ルテニウム化合物、 オスミウム化合物な どからなる重合触媒を用いて環状ォレフィンをメタセシス開環重合する方法は、従来 からよく知られている。 この方法で得られる開環重合体は主鎖に二重結合があるため に熱的安定性が十分でない。 その改良方法として開環重合体を水素化する方法が提案 されている。
例えば、 タングステンまたはモリブデンを中心金属とする遷移金属化合物を用いて 環状ォレフインをメタセシス開環重合した後、水素化触媒を添加して重合体主鎖中に 存在する炭素一炭素二重結合を水素化する方法が知られている (特開平 5— 2 7 1 3 2 6号公報、 特開平 9一 7 7 8 5 3号公報、 特開平 1 0— 1 9 5 1 8 3など) 。 しか しながら、 タングステンまたはモリブデン系触媒を用いて重合した反応系に水素化触 媒を加えて開環重合体を水素化すると、 重合触媒が水素化触媒を被毒するため、 重合 触媒を除去した後に水素化反応を行う力 \ または多量の水素化触媒を使用しなければ ならないという問題点があつた。
特開平 1 0— 1 9 5 1 8 2号公報には、ルテニウムのカルベン化合物を用いて環状 ォレフィンを開環重合した後に、ェチルビュルエーテルなどの改質剤を添加した後、 改質された重合触媒で、 そのまま開環重合体を水素化する方法が報告されている。 こ の方法によれば、重合工程と水素化工程とを連続して実施できるという利点を有する。 し力 しながら、 本発明者らの検討によれば、 水素化工程での反応がしばしば十分に 進行しないことが判明した。 また、 上記重合触媒は均一系触媒であるために、 得られ た開環重合体から分離除去する操作が煩雑であるという問題があった。 発 明 の 開 示
本発明の目的は、環状ォレフィンの開環重合体の水素化物を製造する工程において、 重合触媒を除去しないでそのまま水素化反応ができ、使用する水素化触媒も少量にで きるという利点を有する環状ォレフィン開環重合体の水素化物の工業的に有利な製 造方法を提供することにある。
本発明者らは、 前記目的を達成するために鋭意研究を行った結果、 有機ルテニウム 化合物または有機ォスミゥム化合物を主成分とする重合触媒を用い、環状ォレフイン を開環重合して得られた開環重合体を水素化する際に、重合後の反応系中に水素化触 媒と水素とを供給することにより、水素化反応が効率良く進行して高水素化率で水素 化物が得られること、 さらには、 後から供給する水素化触媒に担持型の不均一系触媒 を用いた場合には、 重合触媒の除去が容易になることを見出した。 また、 重合触媒と して有機ルテニウム化合物または有機オスミウム化合物と、ヘテロ原子含有カルベン 化合物を含む重合触媒を用いると高活性で開環重合が行われることを見出した。発明 者らは、 これらの知見に基づいて本発明を完成するに至った。
力べ して、 本発明によれば、 有機ルテニウム化合物または有機オスミウム化合物を 含有する重合触媒の存在下に環状ォレフィン類を開環重合する重合工程、該重合工程 における反応系に水素化触媒および水素を添加して開環重合体中の炭素一炭素二重 結合を水素化する水素化工程を含む開環重合体水素化物の製造方法が提供される。 さらに、 本発明によれば、 ルテニウム化合物またはオスミウム化合物と、 ヘテロ原 子含有カルベン化合物を含む重合触媒を用いて、溶媒の非存在下または非ハロゲン系 溶媒の存在下に環状ォレフィンを開環重合することを特徴とする開環重合体の製造 方法が提供される。 発明を実施するための最良の形態
本発明の好ましい実施の形態について、 以下に項目に分けて説明する。
(環状ォレフィン)
本発明に用いる環状ォレフィンは、 (1 ) ノルボルネン類、 ジシクロペンタジェン 類、テトラシクロ ドデセン類などのノルボルネン環を有する多環の環状ォレフィン類、 および (2 ) 単環の環状ォレフィン類および環状ジォレフイン類の中から選ぶことが できる。 これらの環状ォレフィン類は、 アルキル基やアルケニル基、 アルキリデン基 などの置換基を有していてもよく、 極性基を有していてもよく、 ノルボルネン環の二 重結合以外に、 二重結合をさらに有していてもよい。
これらの環状ォレフィン類の中でも、 耐熱性、 溶解性に優れる開環重合体を得るた めには、 ノルボルネン環を有する 3環体〜 6環体の環状ォレフィン類を使用するのが 好ましく、 中でも、 ジシクロペンタジェン類などの 3環体の環状ォレフィン類、 およ びテトラシク口 ドデセン類などの 4環体の環状ォレフィン類が特に好ましい。
ノルボルネン環を有する多環の環状ォレフィン
( i ) ジシクロペンタジェン類
ジシク口ペンタジェン類とは、 ノルボルネン環を有する 3環体の環状ォレフィン類 のことをいい、 アルキル基やアルケニル基、 アルキリデン基などの置換基を有してい てもよい。
このようなジシクロペンタジェン類の具体例としては、 ジシクロペンタジェン、 メ チルージシク口ペンタジェンなどが挙げられる。 ジシク口ペンタジェンの 5員環部分 の二重結合を飽和させたトリシクロ [ 4 . 3 . I 2' 5. 0 ] —デ力一 3—ェンなども 挙げることができる。
( i i ) テ トラシクロ ドデセン類
テトラシクロ ドデセン類は、 下記式 [ 4 ] で示される。
Figure imgf000004_0001
(式中、 R 5〜R 1 2は水素原子、 炭素数 1〜 3の炭化水素基またはハロゲン原子を示 し、 R 1 3〜R 1 6は水素原子、 炭素数 1〜2 0の炭化水素基またはハロゲン原子、 ケ ィ素原子、 酸素原子もしくは窒素原子を含む置換基を示し、 R 1 3と R i eが結合して 環を形成してもよい。 )
テトラシクロドデセン類は、 (a ) ノルボルネン環以外に二重結合を有しないもの、 ( b ) ノルボルネン環以外に二重結合を有するもの、 (c )芳香環を有するもの、 (d ) 極性基を有するものなどに分類することができるが、いずれの単量体も使用すること ができる。
( a ) ノルボルネン環以外に二重結合を有しないものの具体例としては、 テトラシ クロドデセン、 8—メチルテトラシクロドデセン、 8—ェチルテトラシクロドデセン、 8—シクロへキシルテトラシクロドデセン、 8—シクロペンチルテトラシクロドデセ ンなどのテトラシクロ ドデセンおよび、上記のテトラシク ドデセン類に置換基を有す るものなどが挙げられる。
( b ) ノルボルネン環以外に二重結合を有するものの具体例としては、 8—メチリ デンテトラシクロドデセン、 8—ェチリデンテトラシクロ ドデセン、 8—ビエルテト ラシクロ ドデセン、 8—プロぺニルテトラシクロドデセン、 8—シクロへキセニ^/テ トラシクロ ドデセン、 8—シクロペンテ二ルテトラシクロ ドデセンなどの環外に二重 結合を有するテトラシクロドデセン類などが挙げられる。
( c ) 芳香環を有するものの具体例としては、 8—フエ二ルテトラシクロドデセン などが挙げられる。
( d ) 極性基を有するもの具体例としては、 8—メ トキシカルボ二ルテトラシクロ ドデセン、 8—メチル一 8—メ トキシカルボ二ルテトラシクロドデセン、 8—ヒ ドロ キシメチルテトラシクロ ドデセン、 8—カルボキシテトラシクロドデセン、 テトラシ クロドデセン一 8 , 9—ジカルボン酸、 テトラシクロドデセン一 8 , 9—ジカルボン 酸無水物などの酸素原子を含む置換基を有するテトラシクロドデセン類; 8—シァノ テトラシクロ ドデセン、 テトラシクロ ドデセン一 8 , 9 -ジカルボン酸ィミ ドなどの 窒素原子を含む置換基を有するテトラシク口 ドデセン類; 8—クロロテトラシクロ ド デセンなどのハロゲンを原子を含む置換基を有するテトラシクロ ドデセン類; 8—ト リメ トキシシリルテトラシクロ ドデセンなどのけい素原子を含む置換基を有するテ トラシクロドデセンが挙げられる。
(iii) その他のノルボルネン環を有する環状ォレフィン類
本発明においては、 上記の環状ォレフィン類以外に、 その他のノルボルネン環を有 する環状ォレフィン類を用いることもできる。
その他のノルボルネン環を有する環状ォレフィン類の具体例としては、 ノルボルネ ン環を一つ有する 2環体のものとしては、 ノルボルネン、 5 _メチルノルボルネン、 5—ェチルノルボルネン、 5—ブチルノルボルネン、 5—へキシルノルボルネン、 5 —デシルノルボルネン、 5—シクロへキシルノルボルネン、 5—シクロペンチノレノル ボルネンなどのノルボルネン類;
ォキサノルボルネン、 5—メチルォキサノルボルネン、 5—ェチルォキサノルボル ネン、 5—ブチルォキサノルボルネン、 5—へキシルォキサノルボルネン、 5—デシ ルォキサノルボノレネン、 5—シクロへキシルォキサノルボルネン、 5—シクロペンチ ルォキサノルボルネンなどのォキサノルボルネン類;
5 —ェチリデンノルボルネン、 5—ビニルノルボルネン、 5—プロぺニルノルボル ネン、 5—シクロへキセニルノルボルネン、 5—シクロペンテ二ノレノルボノレネンなど の環外に二重結合を有するノルボルネン類;
5 —ェチリデンォキサノルボルネン、 5—ビエルォキサノルボルネン、 5—プロべ ニルォキサノルボルネン、 5—シクロへキセニルォキサノルボルネン、 5—シクロぺ ンテュルォキサノルボルネンなどの二重結合を有するォキサノルボルネン類が挙げ られる。
ノルボルネン環と 6員環とを一つずつ有するものとして、へキサシク口ヘプタデセ ン、 1 2—メチルへキサシクロへプタデセン、 1 2—ェチルへキサシクロヘプタデセ ン、 1 2—ブチノレへキサシクロへプタデセン、 1 2—へキシルへキサシクロへプタデ セン、 1 2—デシルへキサシクロへプタデセン、 1 2—シクロへキシルへキサシクロ ヘプタデセン、 1 2—シクロペンチルへキサシクロへプタデセンなどのへキサシクロ
1 2—ェチリデンへキサシクロへプタデセン、 1 2—ビュルへキサシクロへプタデ セン、 1 2—プロぺニノレへキサシクロへプタデセン、 1 2—シクロへキセ二. シクロへプタデセン、 1 2—シクロペンテ二/レへキサシクロヘプタデセンなどのへキ サシク口へプタデセン類などが挙げられる。
ノルボルネン環と芳香環とを有するものとしては、 5一フエニルノルボルネン、 5 一フエニルォキサノルボルネン、 テトラシクロ [6. 5. I 2' 5. O 1' 6. 08' 13] トリデカ一 3, 8, 1 0, 12—テトラエン (1, 4—メタノ一 1, 4, 4 a , 9 a ーテトラヒ ドロフルオレンともいう) 、 テトラシクロ [6. 6. 12' 5. 0 6. 08 13] テトラデカ一 3, 8, 10, 12—テトラェン (1, 4—メタノ一 1, 4, 4 a 5, 1 0, 1 0 a—へキサヒ ドロアントラセンともいう) などが挙げられる。
極性基を有するものとしては、 5—メ トキシカルボニルノルボルネン、 5—ェトキ シカルボニルノルボルネン、 5—メチル一 5—メ トキシカルボニルノルボルネン、 5 —メチルー 5—ェトキシカルポニルノルボルネン、 ノルボルネニル一 2—メチルプロ ビオネイ ト、 ノルボルネニルー 2—メチルォクタネイ ト、 ノルボルネン一5, 6—ジ カルボン酸無水物、 5—ヒ ドロキシメチルノルボルネン、 5, 6—ジ (ヒ ドロキシメ チル) ノルボルネン、 5, 5—ジ (ヒ ドロキシメチル) ノルボルネン、 5—ヒ ドロキ シ一 i—プロビルノノレボルネン、 5, 6—ジカルボキシノルボルネン、 5—メ トキシ カルボ二ルー 6—カルボキシノルボルネンなどの酸素原子を含む極性基を有するノ ルボルネン類;
5—メ トキシカルボニルォキサノルボルネン、 5—エトキシカルボニルォキサノル ボルネン、 5—メチル _ 5—メ トキシカルボニルォキサノルボルネン、 5—メチルー
5—ェトキシカルボニルォキサノルボルネン、 ォキサノルボルネニル一 2—メチルプ 口ピオネィ ト、 ォキサノルボルネニルー 2—メチルォクタネィ ト、 ォキサノルボルネ ン一 5, 6—ジカルボン酸無水物、 5—ヒ ドロキシメチルォキサノルボルネン、 5,
6—ジ (ヒ ドロキシメチル) ォキサノルボルネン、 5, 5—ジ (ヒ ドロキシメチル) ォキサノルボルネン、 5—ヒ ドロキシ一 i一プロピノレオキサノルポルネン、 5, 6 - ジカルボキシォキサノルボルネン、 5—メ トキシカルボニル _ 6—カルボキシォキサ ノルボルネンなどの酸素原子を含む極性基を有するォキサノルボルネン類; 5—シ ァノノルボルネン、 ノルボルネン一 5, 6—ジカルボン酸イミ ドなどの窒素原子を含 む極性基を有するノルボルネン類; 5—シァノォキサノルボルネン、 ォキサノルボルネン一 5 , 6—ジカルボン酸イミ ドなどの窒素原子を含む極性基を有するォキサノルボルネン類などが挙げられる。 上記 「その他のノルボルネン環を有する環状ォレフィン類」 を用いる場合は、 なか でも、 耐熱性、 溶解性の観点から、 ノルボルネン環と芳香環を有するものを、 単独で 重合する力、 または前述のシクロペンタジェンゃテトラシクロドデセンなどと共重合 させることが好ましい。 具体例としては、 4ーメタノ _ 1, 4 , 4 a , 9 a—テトラ ヒ ドロフノレオレンなどのテトラヒ ドロフノレオレン類を、前述のシクロペンタジェンゃ テトラシクロドデセンなどと共重合させることができる。
単環の環状ォレフィン類およびジォレフイン類
単環の環状ォレフィン類およびジォレフィン類は、 C 4〜C 2。の環状ォレフィンお よびジォレフインとこれらの置換体であり、 好ましくは C 4〜C 。の環状ォレフィン 又はジォレフインとこれらの誘導体である。
単環の環状ォレフィン類およびジォレフイン類の具体例としては、 シクロブテン、 シクロペンテン、 メチノレシクロペンテン、 シクロへキセン、 メチノレシクロへキセン、 シク口ヘプテン、 シクロォクテンなどの特開昭 6 4 - 6 6 2 1 6などに記載されてい る単環の環状ォレフィン系単量体;および、 シクロへキサジェン、 メチルシクロへキ サジェン、 シクロォクタジェン、 メチルシクロォクタジェン、 フエニルシクロォクタ ジェンなどの特開平 7— 2 5 8 3 1 8などに記載されている環状ジォレフイン系単 量体を挙げることができる。
環状ォレフィンは、 それぞれ独立で、 または 2種以上を組み合わせて用いることが できる。 また、 ジシクロペンタジェン類またはテトラシクロドデセン類と、 これらと 共重合可能な環状ォレフィンとを共重合する場合、 共重合組成は、 ジシクロペンタジ ェン類またはテトラシクロドデセン類が全単量体重量中に、 1重量%〜 1 0 0重量。ん 含まれていれば特に限定されないが、 重合体の耐熱性と、 単量体の入手し易さの点か ら、 ジシクロペンタジェン類またはテトラシクロ ドデセン類が多い方が好ましく、 具 体的には、 これらの単量体が、 好ましくは 1 0重量%〜 1 0 0重量%、 より好ましく は 2 0重量%〜 1 0 0重量%用いられる。
(重合触媒) 本発明において使用される重合触媒に含まれる有機ルテニウム化合物または有機 ォスミゥム化合物は、有機化合物を配位子として有するルテニウム化合物またはォス ミゥム化合物であり、 例えば、 下記式 〔1〕 、 〔2〕 、 〔3〕 で表わされるものが含 まれる。
( (X , ) m ( L , ) η Μ , ) [ 1 ]
(式中、 はルテニウム原子またはオスミウム原子を、 X は互いに独立に任意のァ 二オン性配位子を示し、 L jは互いに独立に任意の中性の電子供与性化合物を示す。 X】および L の複数がお互いに結合して多座キレート化配位子を形成してもよい。 m は 0〜4の整数、 n、 zは:!〜 4の整数である。 )
Figure imgf000009_0001
(式中、 M2はルテニウム原子またはオスミウム原子を示し、 および R2は、 お互 いに独立に、 水素、 ハロゲン原子またはハロゲン原子、 酸素原子、 窒素原子、 硫黄原 子、 リン原子およびケィ素原子の中から選ばれた少くとも 1種を含む Ci Cz。の炭 化水素基を示し、 2ぉょび 3は、 お互いに独立に任意のァニオン性配位子を示す。 L2および L 3はお互いに独立に任意の中性の電子供与性化合物を示す。 R2、 X 、 X-^ L2、 L3の複数がお互いに結合して多座キレート化配位子を形成しても よい。 )
Figure imgf000009_0002
(式中、 はルテニウム原子またはオスミウム原子を示し、 1^3ぉょび1^4は、 お互 いに独立に、 水素、 ハロゲン原子またはハロゲン原子、 酸素原子、 窒素原子、 硫黄原 子、 リン原子およびケィ素原子の中から選ばれた少くとも 1種を含む C i〜C 2。の炭 化水素基を示し、 x 4および x 5は、お互いに独立に任意のァニオン性配位子を示す。
4ぉょびし5は、 任意の中性の電子供与性化合物を示す。 R 3、 R 4、 X 4、 X 5、 L 4. L 5の複数がお互いに結合して多座キレート化配位子を形成してもよい。 )
ここで、 ァニォン性配位子は中心金属から引き離されたときに負の電荷をもつ配位 子であればいかなるものでもよい。 中性の電子供与性化合物は中心金属から引き離さ れたときに中性の電荷を持つ配位子、すなわちルイス塩基であればいかなるものでも よい。
式 〔1〕 、 〔2〕 および 〔3〕 におけるァニオン性配位子 X X 2、 X 3、 X 4お よび X 5の具体例としては、 F、 B r、 C 1および Iなどのハロゲン原子;水素、 ァ セチルアセトン、 ジケトネート基、 シクロペンタジェニル基、 ァリル基、 アルケニル 基、 アルキル基、 ァリール基、 アルコキシ基、 ァリールォキシ基、 ァノレコキシカルボ ニル基、 ァリールカルボキシル基、 カルボキシル基、 アルキルまたはァリールスルフ ォネート基、 アルキルチオ基、 アルケニルチオ基、 ァリールチオ基、 アルキルスルホ ニル基およびアルキルスルフィエル基を挙げることができる。 なかでも、 ハロゲン原 子、 シクロペンタジェニル基、 ァリル基、 アルキル基およびァリール基が重合活性の 点で好ましい。
また、 式 〔1〕 、 〔2〕 および 〔3〕 における中性の電子供与性化合物 Lい L 2、 L 3、 L 4および L 5の具体例としては、 酸素、 水、 カルボニル類、 アミン類、 ピリジ ン類、 エーテル類、 二トリル類、 エステル類、 ホスフィン類、 ホスフィナイ ト類、 ホ スフアイ ト類、 スチビン類、 スルホキシド類、 チォエーテル類、 アミ ド類、 芳香族類、 環状ジォレフイン類、 ォレフィン類、 イソシアニド類、 チオシァネー ト類、 ヘテロ原 子含有カルベン化合物などが挙げられる。 なかでも、 ピリジン類、 ホスフィン類、 芳 香族類、 環状ジォレフイン類、 ヘテロ原子含有カルベン化合物が、 重合活性が高いの で好ましい。
中でも、 式 〔1〕 、 〔2〕 および 〔3〕 における中性電子供与性化合物の少くとも 一部がヘテロ原子含有カルベン化合物である重合触媒、 特に、 中性電子供与性化合物 のモル数の少くとも 1 / 2がへテロ原子含有カルベン化合物であるもの、すなわち、 式 〔1〕 中の 1^のモル数の少くとも 1 2、 式 〔2〕'中の L3および L4の少くとも 一方、 および式 〔3〕 中の L5および L6の少くとも一方が、 それぞれ、 ヘテロ原子を 含有するカルベン化合物である重合触媒は、 非常に高い開環重合活性.を示す。
カルベン化合物とは、 メチレン遊離基を有する化合物の総称であり、 (>C : ) で 表されるような電荷のない 2価の炭素原子をもつ化合物を指す。 カルベンは、 一般的 には反応中に生じる不安定な中間体として存在するが、ヘテロ原子を有すると比較的 安定なカルベン化合物として単離することができる。 ヘテロ原子とは、 周期律表第 1 5族および第 1 6族の原子のことで、 具体的には、 N, O, P, S, A s , S e原子 などを挙げることができる。 なかでも、 N, 〇, P, Sが安定なカルベン化合物を得 るためには好ましく、 N, Pが特に好ましい。
ヘテロ原子含有カルベン化合物の例としては、 下記式 〔5〕 および 〔6〕 で示され る化合物が挙げられる。 式中、 R21, R22は、 互いに独立に水素、 またはハロゲン 原子、 酸素原子、 窒素原子、 硫黄原子、 リン原子およびケィ素原子の中から選ばれた 少くとも 1種を含んでもよい Ci Cz。の炭化水素基を示す。
〔5〕
〔6〕
Figure imgf000011_0001
式 〔5〕 のへテロ原子含有カルベン化合物の具体例としては、 1, 3—ジイソプロ ピルイミダゾリジン一 2—イ リデン、 1, 3—ジシクロへキシルイミダゾリジン一 2 一イリデン、 1, 3—ジ (メチルフエニル) イミダゾリジン一 2—イリデン、 1, 3 —ジ (2, 4, 6— トリメチルフエニル) イミダゾリジン一 2—イ リデン、 1, 3— ジ (メチルナフチル) イミダゾリジン一 2—^ f リデン、 1, 3—ジァダマンチルイミ ダゾリジン一2 _イリデン、 1, 3—ジフエ二ルイミダゾリジン _ 2—イリデン、 1, 3, 4, 5—テトラメチルイミダゾリジン _ 2—/ Tリデンなどが挙げられる。
式 〔6〕 のへテロ原子含有カルベン化合物の具体例としては、 、 1, 3—ジイソプ 口ピノレー 4 _イミダゾリン一 2—イリデン、 1, 3—ジシクロへキシノレ一 4—イミダ ゾリン一 2—イリデン、 1, 3—ジ (メチルフエ二ル) 一 4—イミダゾリン一 2—ィ リデン、 1, 3—ジ (2, 4, 6—トリメチルフエニル) 一4一イミダゾリン一 2— イリデン、 1, 3—ジ (メチルナフチル) 一4一イミダゾリン— 2—イリデン、 1, 3—ジァダマンチル一 4—イミダゾリン一2—イリデン、 1, 3—ジフエニル一 4— イミダゾリン一 2—イリデン、 1, 3, 4, 5—テトラメチル一 4—イミダゾリン一
2—イリデン、 1, 3, 4, 5—テトラフエニル一 4—イミダゾリン一 2—イリデン などが挙げられる。
また、 式 〔5〕 、 〔6〕 で示される化合物以外にも、 1, 3, 4—トリフエニル一 2, 3, 4, 5—テトラヒ ドロ一 1 //ー 1 , 2, 4—トリァゾール一 5—イリデン、 3— (2, 6—ジイソプロピルフエニル) - 2, 3, 4, 5—テトラヒ ドロチアゾー ル _ 2 _イリデン、 1, 3—ジシクロへキシルへキサヒ ドロピリ ミジン一 2—イリデ ン、 N, N, N' , T ' —テトライソプロピルホルムアミジニリデン、 1, 3, 4— トリフエニル一 4, 5—ジヒ ドロ一 1 //— 1 , 2 , 4— トリァゾールー 5—イリデン、
3— (2, 6—ジイソプロピルフエニル) 一2, 3—ジヒ ドロチアゾール一 2 _イリ デンなどを挙げることができる。
なかでも、 カルベンに隣接するへテロ原子が嵩高い置換基を有するもの、 具体的に は 1, 3—ジイソプロピルイミダゾリジン一 2—イリデン、 1, 3—ジシクロへキシ ルイミダゾリジン一 2_イリデン、 1, 3—ジ (メチルフエニル) イミダゾリジン一 2—イ リデン、 1, 3—ジ (2, 4, 6— トリメチルフエニル) イミダゾリジン一 2 —イ リデン、 1, 3—ジ (メチルナフチル) イミダゾリジン一 2 Tリデン、 1, 3 ージァダマンチルイミダゾリジン一 2—イリデン、 1 , 3—ジフエ二ルイミダゾリジ ン一 2—イ リデン、 1, 3, 4, 5—テトラフエ二ルイミダゾリジン一 2—イリデン、 1, 3—ジイソプロピル一 4—イミダゾリン一 2—イリデン、 1, 3—ジシクロへキ シル一 4—イミダゾリン一 2—イリデン、 1, 3—ジ (メチルフエニル) 一 4—イミ ダゾリン一 2—イリデン、 1, 3—ジ (2, 4, 6—トリメチルフエ二ル) 一 4—ィ ミダゾリン一2—イリデン 1, 3, 4—トリフエ二ルー 2, 3, 4, 5—テトラヒ ド 口一 1H— 1, 2, 4—トリァゾール _ 5—イリデン、 3— (2, 6—ジイソプロピ ルフエニル) 一 2, 3, 4, 5—テトラヒ ドロチアゾール一2—イリデン、 1, 3— ジシク口へキシルへキサヒ ドロピリミジン— 2—ィリデンが特に好ましい。
さらに式 〔2〕 または 〔3〕 における R13、 R14、 R15および R16の具体例とし ては、 水素、 アルケニル基、 アルキニル基、 アルキル基、 ァリール基、 カルボキシル 基、 アルコキシ基、 アルケニルォキシ基、 アルキニルォキシ基、 ァリールォキシ基、 アルコキシカルボニル基、 アルキルチオ基、 アルケニルチオ基、 ァリールチオ基、 ァ ルキルスルホニル基、 アルキルスルフィエル基を挙げることができる。 なかでも、 ァ ルキル基、 ァリール基、 アルコキシ基、 ァリールォキシ基、 アルキルチオ基、 ァリー ルチオ基が高活性で好ましい。
上記重合触媒の具体例としては、 以下のものを挙げることができる。
すなわち、 一般式 [1] の例としては、 ビス (シクロペンタジェニル) ルテニウム、 クロ口 (シクロペンタジェニル) ビス (トリフエニルホスフィン) ルテニウム、 ジク ロロ ( 1, 5—シク口オタタジェン) ノレテニゥム、 ジクロロ トリス (トリフエニノレホ スフイン) ルテニウム、 シスージクロ口ビス (2, 2 ' —ビビリジル) ルテニウム ' 二水和物、 ジクロロビス 〔 (p—シメン) クロ口ルテニウム) 〕 、 ジクロロ (2, 7 —ジメチルォクタ一 2, 6—ジェン一 1, 8—ジィル) ルテニウム、 ビス (シクロべ ンタジェニル) オスミウム、 ジクロロ (p—シメン) オスミウム、 [1, 3—ジイソ プロピルイミダゾリジン一 2—イリデン] (p—シメン)ルテニウムジクロリ ド、 [1, 3—ジイソプロピルイミダゾリジン一 2—イリデン] (トリフエニルホスフィン) ル テニゥムジクロリ ド、 [1, 3—ジイソプロピル一 4一イミダゾリン一 2—イリデン] (p—シメン) ルテニウムジクロリ ド、 [1, 3—ジイソプロピル一 4—イミダゾリ ン一 2—ィリデン] (トリフエニルホスフィン) ルテニウムジク口リ ドなど; 一般式 [2] の例としては、 ビス (トリシクロへキシルホスフィン) ベンジリデン ルテニウムジクロリ ド、 ビス (トリフエ二ノレホスフィン) 一3, 3—ジフエニルプロ ぺニリデンルテニウムジクロリ ド、 ビス (1, 3—ジイソプロピルイミダゾリジン一 2—イリデン) ベンジリデンルテニウムジクロリ ド、 ビス (1 , 3—ジシクロへキシ ルイミダゾリジン一 2—イリデン) ベンジリデンルテニウムジクロリ ド、 ビス (1,
3—ジイソプロピル一 4ーィミダゾリンー 2—ィリデン) ベンジリデンルテニウムジ クロリ ド、 ビス (1, 3—ジシクロへキシル一4—イミダゾリン一 2—イリデン) ベ ンジリデンルテニウムジク口リ ドなどの 2つのへテロ原子含有カルベン化合物が配 位したルテニゥム化合物など、
( 1 , 3—ジシクロへキシルイミダゾリジン一 2—イリデン) (トリシクロへキシル ホスフィン) ベンジリデンルテニウムジクロリ ド、 (1, 3—ジシクロへキシル一4 —イミダゾリン一 2—イリデン) (トリシクロへキシルホスフィン) ベンジリデンル テニゥムジクロリ ド、 [ 1 , 3—ビス (2 , 4 , 6—トリメチルフエニル) イミダゾ リジン一 2—イリデン] (トリシクロへキシルホスフィン) ベンジリデンルテニウム ジクロリ ド、 [ 1 , 3—ビス ( 2, 4, 6— トリメチルフエニル) ィミダゾリジン一 2—イリデン] (ペンタメチルシクロペンタジェニル) ベンジリデンルテニウムジク 口リ ド、 [ 1, 3—ビス ( 2, 4 , 6—トリメチルフェニル) 一 4—イミダゾリン一 2 _イリデン] (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ド、 [ 1, 3—ビス (2, 4, 6 _トリメチルフエニル) 一4—イミダゾリン一 2— イリデン] (ペンタメチルシクロペンタジェニル) ベンジリデンルテニウムジクロリ ドなどのへテロ原子含有カルベン化合物と中性の電子供与性化合物が配位したルテ ニゥム化合物など;
一般式 [ 3 ] の例としては、 ビス (トリシクロへキシルホスフィン) フエ二ルビ二 リデンルテニウムジクロリ ド、 ビス (トリフエニルホスフィン) t—ブチルビニリデ ンルテ二ゥムジクロリ ド、 ビス ( 1 , 3—ジィソプロピルイミダゾリジン一 2—イリ デン) フエ二ルビ二リデンルテニウムジクロリ ド、 ビス (1 , 3—ジシクロへキシル ィミダゾリジン一 2—イ リデン) tーブチルビ二リデンルテニウムジク口リ ド、 ビス ( 1 , 3—ジイソプロピル一 4一イミダゾリン一 2—イリデン) フエ二ルビ二リデン ルテニウムジクロリ ド、 ビス (1, 3—ジシクロへキシル一4—イミダゾリン一 2— イリデン) t—ブチルビ二リデンルテニウムジクロリ ドなどの 2つのへテロ原子含有 カルベン化合物が配位したルテニゥム化合物など、 ( 1, 3—ジシクロへキシルイミダゾリジン一 2—イリデン) (トリシクロへキシル ホスフィン) t—ブチルビ二リデンルテニウムジクロリ ド、 (1 , 3—ジシクロへキ シル一 4—イミダゾリン一 2—イリデン) (トリシクロへキシルホスフィン) フエ二 ルビ二リデンルテニウムジクロリ ド、 [ 3—ビス (2 , 4, 6—トリメチルフエ ニル) イミダゾリジン一 2—イリデン] (トリシクロへキシルホスフィン) t—ブチ ルビ二リデンルテニウムジクロリ ド、 [ 1 , 3—ビス (2 , 4, 6—トリメチルフエ ニル) イミダゾリジン一 2—イリデン] (ペンタメチルシクロペンタジェニル) フエ 二ルビ二リデンルテニウムジクロリ ド、 [ 1, 3—ビス (2 , 4, 6— トリメチノレフ ェニル) —4一イミダゾリン一 2—イリデン] (トリシクロへキシルホスフィン) フ ェニルビ二リデンルテニウムジクロリ ド、 [ 3—ビス (2, 4 , 6—トリメチノレ フエニル) _ 4一イミダゾリン一 2—イリデン] (ペンタメチルシクロペンタジェ二 ル) t—ブチルビ二リデンルテニウムジクロリ ドなどのへテロ原子含有カルベン化合 物と中性の電子供与性化合物が配位したルテニウム化合物などを挙げることができ る。
本発明において使用される触媒は、 通常、 ルテニウムを含有する化合物またはォス ミゥムを含有する化合物から調製される力 \ または、 これらの化合物と、 ヘテロ原子 含有カルベン化合物および Zまたはその他の中性電子供与性化合物を混合すること によって調製される。 一般に、 それぞれの成分を溶媒に溶解した溶液の形態で所定の 割合で混合すればよい。 混合は不活性ガス中で常温で行われるが、 加温下でもよい。 安定性の低いヘテロ原子含有カルベン化合物は、 その前駆体を他の成分と混合し、 混 合物を加熱することによって所定のカルベン化合物に変換することもできる。
混合に用いられたルテニウム含有化合物またはオスミウム含有化合物および、へテ 口原子含有カルベン化合物およびノまたはその他の中性電子供与性化合物は、 それぞ れの全量が必ずしも前記式 [ 1 ] 、 [ 2」 および/または [ 3 ] で表わされる化合物 の形成に関与するものではないと考えられるが、 当該混合物はそのまま重合触媒とし て用いることができる。
また、 本発明においては、 上記ルテニウム含有化合物またはオスミウム含有化合物 と、 ヘテロ原子含有カルベン化合物を、 重合系内に別々に添加して重合触媒として使 用することもできる。
さらに、ヘテロ原子含有カルベン化合物を含まない重合触媒を使用する場合には、 重合活性を高めるために、 ジァゾ化合物、 アセチレン化合物またはシリル化合物を、 ルテニウム金属またはオスミウム金属に対して、重量比で 1〜100倍の割合で添加 することもできる。
本発明の方法において、 有機ルテニウム化合物または有機オスミウム化合物と、 へ テロ原子含有カルベン化合物を含有する重合触媒を用いて環状ォレフィンを開環重 合する方法は、 新規であると考えられ、 この方法によれば非常に高い重合活性が得ら れるので好ましい。 この好ましい重合方法は溶媒の非存在下に行うこともできるが、 非ハロゲン溶媒の存在下に行うことがより好ましい。
(重合方法)
本発明の環状ォレフィンの開環重合方法において、環状ォレフィンに対する重合触 媒の割合は、 (重合触媒中の金属ルテニウムまたは金属ォスミゥム:環状ォレフィン) で、 通常 1 : 1 00〜1 : 2, 000, 000 (モルノモル) 、 好ましくは 1 : 50 0〜: 1, 000, 000 (モル Zモル) 、 より好ましくは 1 : 1, 000〜: 1 : 50
0, 000 (モル zモル) である。 触媒量が多すぎると触媒除去が困難となり、 少な すぎると十分な重合活性が得られない。
重合を溶媒中で行う場合には、 環状ォレフィンの濃度は、 溶液中 1〜50重量。 /0が 好ましく、 2〜45重量%がより好ましく、 5〜40重量%が特に好ましい。 単量体 の濃度が 1重量%以下の場合は生産性が悪く、 50重量%以上の場合は重合後の溶液 粘度が高すぎて、 その後の水素化反応が困難となる。
開環重合反応は、 無溶媒で行うこともできるが、 重合後に水素化反応を行うので、 溶媒中で重合することが好ましい。 特に、 非ハロゲン溶媒中で重合するのが好ましい。 ハロゲン溶媒は、 工業的に汎用な溶媒ではなく、 環境への害も大きいため、 非ハロ ゲン溶媒を使用するのが有効だからである。 非ハロゲン溶媒は、 重合体および重合体 水素化物が所定の条件で溶解し、 重合および水素化に影響しないものであれば、 特に 限定されないが、 工業的に汎用なものが好ましい。
このような非ハロゲン溶媒としては、 例えば、 ペンタン、 へキサン、 ヘプタンなど の脂肪族炭化水素系溶媒; シクロペンタン、 シクロへキサン、 メチルシクロへキサ ン、 ジメチノレシクロへキサン、 トリメチノレシクロへキサン、 ェチルシクロへキサン、 ジェチルシクロへキサン、 デカヒ ドロナフタレン、 ビシクロヘプタン、 トリシクロデ カン、 へキサヒ ドロインデンシクロへキサン、 シクロオクタンなどの脂環族炭化水素 系溶媒; ベンゼン、 トルエン、 キシレンなどの芳香族炭化水素系溶媒; ニトロメ タン、 ニトロベンゼン、 ァセトニトリルなどの含窒素炭化水素系溶媒; ジェチルェ 一テル、 テトラヒ ドロフランなどのエーテル系溶媒などが挙げられる。 これらの溶媒 の中でも、 工業的に汎用な芳香族炭化水素系溶媒や脂肪族炭化水素系溶媒、 脂環族炭 化水素系溶媒が好ましく、 重合、 水素化反応時に不活性であること、 重合体の溶解性 に優れることなどの観点から、 シクロへキサンなどの脂環族炭化水素系溶媒を使用す るのが最も好ましい。
重合反応は、 上記単量体と重合触媒を混合することにより開始される。 重合温度は 特に制限はないが、 通常、 一 3 0 °C〜 2 0 0 °C、 好ましくは 0 °C〜 1 8 0 °Cである。 重合時間は、 通常 1分〜 1 0 0時間である。
環状ォレフィン重合体の分子量を調整するために、分子量調整剤を用レ、ることがで きる。 分子量調整剤の具体例としては、 1—ブテン、 1 _ペンテン、 1 一へキセン、 1—ォクテンなどの α—ォレフィン;スチレン、 ビュルトルエンなどのスチレン類; ェチノレビニノレエーテノレ、 i ーブチノレビニノレエーテノレ、 ァリノレグリシジノレエーテノレなど のエーテル類;ァリルクロライ ドなどのハロゲン含有ビュル化合物;酢酸ァリル、 ァ リルアルコール、 グリシジルメタクリレートなど酸素含有ビュル化合物;アクリルァ ミ ドなどの窒素含有ビュル化合物などを挙げることができる。
分子量調整剤の使用量は、 環状ォレフィンに対して、 0 . 1〜 1 0モル%の間で任 意に選択することができる。
さらに、 重合終了時に、 上記の分子量調節剤として例示したようなビュル化合物を 添加して、重合体分子鎖末端からルテニウム化合物またはオスミウム化合物を遊離さ せて、 水素化反応の活性を向上させることもできる。
得られる重合体の分子量は、 水素化反応を考慮して、 ゲルパーミエーシヨンクロマ トグラフィ一による測定 (ポリスチレン換算) で、 数平均分子量 (M n ) 、 好まし くは 1, 0 0 0〜 5 0 0, 0 0 0であり、 より好ましくは 5, 0 0 0〜 2 0 0, 0 0 0である。
(重合体の水素化)
本発明においては、 環状ォレフィンの開環重合を行った後、 開環重合工程における 反応系に水素化触媒および水素を添加して、 開環重合体中の炭素一炭素二重結合を水 素化する。
(水素化触媒)
使用される水素化触媒は、一般にォレフィン類や芳香族化合物の水素化反応に使用 されるものであれば格別の制限はなく、 その具体例として、 (1 ) パラジウム、 白金、 ニッケル、 ロジウム、 ルテニウムなどの遷移金属をカーボン、 アルミナ、 シリカ、 ケ イソゥ土などの担体に担持してなる担持型金属触媒、 (2 ) チタン、 コノくルト、 ニッ ケルなどの有機遷移金属化合物とリチウム、 マグネシウム、 アルミニウム、 スズなど の有機金属化合物からなる均一系触媒、 (3 ) ロジウム、 ルテニウムなどの金属錯体 触媒などを挙げることができる。
( 1 ) の担持型金属触媒の具体例としては、 ニッケル シリカ、 ニッケル Zケイソ ゥ土、 ニッケル Zアルミナ、 パラジウム/カーボン、 パラジウム Zシリカ、 パラジゥ ム ケイソゥ土、 パラジウム/アルミナ、 白金/シリカ、 白金 アルミナ、 ロジウム
Zシリカ、 ロジウム zアルミナ、 ルテニウム zシリカ、 ルテニウム/アルミナなどの 触媒が挙げられる。
( 2 ) の均一系触媒としては、 酢酸コバルト Zトリェチルアルミニウム、 ニッケル ァセチルァセトナート Zトリィソブチルアルミニウム、 チタノセンジク口リ ド Z n— ブチルリチウム、 ジルコノセンジクロリ ド / s e c—ブチルリチウム、 テトラブトキ シチタネート Zジメチルマグネシゥムなどの組み合わせが挙げられる。
( 3 ) の金属錯体触媒としては、 ジヒ ドリ ドテトラ (トリフエニルホスフィン) ノレ テニゥム、 ジヒ ドリ ド (ァセトニトリノレ) トリス (トリフヱニルホスフィン) ノレテニ ゥム、 ジヒ ドリ ド (テトラヒ ドロフラン) トリス (トリフエニルホスフィン) ルテニ ゥムなどが挙げられる。
これらの水素化触媒の中でも (1 ) の担持型金属触媒は、 重合触媒として使用した 有機ルテニウム化合物または有機オスミウム化合物を吸着する能力を有しており、水 素化反応後に、水添触媒をろ過で分離回収する際に重合触媒も合わせて分離回収でき るという利点を有する。
水素化触媒の添加時期は開環重合後であれば特に限定されず、水素の供給を開始す る前、 供給開始と同時、 又は供給開始後のいずれでもよい。 供給開始後に添加した場 合でも、 重合触媒によって水素化が僅かに進行する場合がある。
(水素化反応)
水素化反応は、 使用する水素化触媒系によっても適する条件範囲が異なるが、 水素 化温度は通常、 一 20°C〜250°C、 好ましくは一 10〜 220°C、 より好ましくは 0〜200°Cであり、 水素圧力は、 通常 0. :!〜 100 k g//cm2、 好ましくは 0. 5〜70 k g/cm2、 より好ましくは:!〜 50 k g/c m2である。水素化温度が低 すぎると反応速度が遅く、 高すぎると副反応が起こる。 また、 水素圧力が低すぎると 水素化速度が遅くなり、 高すぎると高耐圧反応装置が必要となる。
水素化反応は、 通常、 不活性有機溶媒中で実施する。 有機溶媒としては、 生成する 水素化物の溶解性により任意に選択することができる。 溶媒としては、 例えば、 ベン ゼン、 トルエンなどの芳香族炭化水素; n_ペンタン、 n—へキサンなどの脂肪族炭 化水素;シクロへキサン、 デカリンなどの脂環族炭化水素;テトラヒ ドロフラン、 ェ チレングリコールジメチルエーテルなどのエーテル類が挙げられ、 これらの中でも、 本発明で使用する環状ォレフィン系開環重合体水素化物の溶解性に優れる溶媒とし て、 炭化水素系溶媒またはエーテル類が好ましく、 炭化水素系溶媒の中でも脂環族炭 化水素溶媒がより好ましい。
有機溶媒は、 通常は、 重合反応溶媒と同じでよく、 重合反応液にそのまま水素添加 触媒を添加して反応させればよレ、。
水素化反応時間は、 通常 1〜1 0時間であり、 重合体中の主鎖の炭素一炭素二 重結合のうち、 70 %以上、 好ましくは 90 %以上、 より好ましくは 95 %以上を水 素化することができる。
(触媒除去)
水素化反応終了後、 重合触媒および水素化触媒を除去する方法としては、 上記の水 素化触媒のうち、 (1) の担持型金属触媒はフィルターでろ過することによって除去 することができる。 重合触媒および上記の水素化触媒のうち、 (2) の均一系触媒、
(3) のロジウム、 ルテニウムなどの金属錯体触媒は、 吸着剤により吸着させて分離 する方法、有機酸および Zまたは無機酸の存在下に水または低級アルコールによる洗 浄方法など、 公知の手段により、 反応溶液から分離回収される。 これらの除去方法の うち、 (2) 、 (3) の触媒を用いた場合に、 吸着剤により除去する方法は、 通常、 多量の吸着剤が必要であり、 また、 洗浄により除去する方法は、 何回も洗浄を繰り返 す必要があるのに対して、 (1) の担持型金属触媒で水素化反応を行うと、 重合触媒 が少量の水素化触媒に吸着されるため、 フィルターでろ過するだけで、 重合触媒と水 素化触媒が同時に除去できるので、 特に好ましい。
(重合体水素化物)
得られる重合体の水素化物の数平均分子量は、 好ましくは 5, 000以上、 より好 ましくは 7, 000以上、 特に好ましくは 1 0, 000以上、 好ましくは 1 , 000, 000以下、 より好ましくは 500, 000以下、 特に好ましくは 200, 000以 下である。 数平均分子量が小さすぎると機械的特性が劣り、 高すぎると製造が困難と なる。
以下に、 実施例および比較例を挙げて、 本発明をさらに具体的に説明する。 (1) 開環重合体の分子量はテトラヒ ドロフランを溶媒とするゲル 'パーミエーシヨン 'ク 口マトグラフィー (GPC) によるポリスチレン換算値として測定した。 開環重合体 水素化物の分子量はシク口へキサンを溶媒とするゲル ·パーミエ—シヨン'クロマト グラフィー (GPC) によるポリイソプレン換算値として測定した。
(2) 水素化率は、 — NMRスペク トルにより測定した。
(3) 重合触媒および水素化触媒残渣の残存量は、 重合体水素化物を湿式灰化し誘導 結合プラズマ発光分光分析法によつて測定した。
実施例中 「部」 は、 特に断りがない限り重量基準である。
実施例 1 (開環重合および水素化)
攪拌機付きォ一トクレーブに、 溶媒としてシクロへキサンを 1 1 0部、 環状ォレフ ィンとしてジシクロペンタジェン 21. 0部と 8—ェチルテトラシク口 ドデセン 9. 0部、 分子量調整剤として 1—へキセン 0. 17部を加えた。 次に、 ジクロロ トリス
(トリフエ二ノレホスフィン) ^/テニゥム 0. 099部、 トリシクロへキシノレホスフィ ン 0. 029部およびトリメチルシリルジァゾメタン 0. 124部をトゾレエン 10部 に加えて反応させて触媒溶液を調製した。 この触媒溶液を前記オートクレーブに添加 し、 60°Cで、 1時間重合した後、 ェチルビュルエーテル 2. 76部を添カ卩し、 重合 反応を終了した。 G PCにより分子量 (ポリスチレン換算) を測定したところ、 数平 均分子量 (Mn) = 12, 500、 重量平均分子量 (Mw) = 29, 500であった。 続いて、 ニッケル. ( I I) ァセチルァセトネート 0. 14部と トリイソブチルアル ミニゥム 0. 42部をシクロへキサン 10部に溶解した水素化触媒溶液を添加して、 水素圧力 10 k gZcm2、 温度 120°Cで 5時間水素化反応を行った。 反応終了後、 冷却し、 シクロへキサン 1 50部を添カ卩して希釈した。 次いで希塩酸で 3回、 続いて 水で 3回洗浄し、 無水硫酸マグネシウムを加えて一日放置した後、 フィルタ一により 反応溶液をろ過し、 無水硫酸マグネシウムを除去して、 無色透明の重合体溶液を得た。 得られた重合体溶液中の、重合触媒および水素化触媒由来の金属元素の含有量を測定 したところ、 Ruが 2 p pm、 ^^ 1が5 111でぁった。
次に、 この重合体溶液を多量のイソプロパノールに注いでポリマーを析出させ、 濾 別洗浄し、 80°Cで 40時間減圧乾燥した。 得られた開環重合体水素化物の収量は 2 9. 0部で、 分子量 (ポリイソプレン換算) は、 数平均分子量 (Mn) = 14, 30 0、 重量平均分子量 (Mw) =32, 200で、 水素化率は 90%であった。
実施例 2 (開環重合および水素化)
環状ォレフィンとしてテトラシクロ ドデセン 1 5. 0部とノルボルネン 1 5. 0部、 連鎖移動剤として 1—へキセン 0. 1 7部を加え、 次に、 ビス (1, 3—ジイソプロ ピル一イミダゾール _ 2—イリデン) ベンジリデンルテニウムジクロリ ド 0. 059 部をトルエン 1 0部に加えて反応させた触媒溶液を用いた以外は、実施例 1 と同様に 重合反応を行った。
得られた重合体は、 数平均分子量 (Mn) =14, 1 00、 重量平均分子量 (Mw) = 32, 200であった。
続いて、 水素化触媒として 5 %P dZアルミナ触媒 3. 0部を添加して、 水素圧力 l O k gZcm2、 温度 150°Cで 5時間水素化反応を行った。 反応終了後、 冷却し、 フィルタ一により反応溶液をろ過し、 水素化触媒を除去して、 無色透明の重合体溶液 を得た。 得られた重合体溶液中の、 重合触媒及び水素化触媒由来の金属元素の含有量 を測定したところ、 Ru、 P dとも検出限界 (lp pm) 以下であった。
その後、実施例 1と同様の方法によって得られた開環重合体水素化物の収量は 29. 0部で、 分子量 (ポリイソプレン換算) は、 数平均分子量 (Mn) =24, 100、 重量平均分子量 (Mw) =48, 100で、 水素化率は 96%であった。
実施例 3 (開環重合および水素化)
環状ォレフィンとしてジシクロペンタジェン 15. 0部とノルボルネン 15. 0部、 連鎖移動剤として 1—へキセン 0. 26部を加え、 ビス (トリシクロへキシルホスフ ィン) ベンジリジンルテニウムジクロリ ド 0. 017部をシク口へキサン 10部溶解 した触媒溶液を添カ卩した以外は、 実施例 1と同様の方法により重合体を得た。 得られ た重合体の数平均分子量 (Mn) =8, 400、 重量平均分子量 (Mw) =18, 2 00であった。
続いて、 水素化触媒として 40%N i Zケイソゥ土 0. 3部を添加して、 水素圧力 10 k g/cm2, 温度 150°Cで 5時間水素化反応を行った。 反応終了後、 冷却し て、 フィルタ一により反応溶液をろ過して水素化触媒を除去して、 無色透明の重合体 溶液を得た。 得られた重合体溶液中の、 重合触媒及び水素化触媒由来の金属元素の含 有量を測定したところ、 Ru、 N iとも検出限界 (lp pm) 以下であった。
その後、実施例 1と同様の方法により得られた開環重合体水素化物の収量は 29. O gで、 分子量 (ポリイソプレン換算) は、 数平均分子量 (Mn) =9, 300、 重 量平均分子量 (Mw) = 19, 300で、 水素化率は 99%以上であった。
比較例 1 (開環重合および水素化)
実施例 3と同様にして重合を行い、同様にしてェチルビニルエーテルを添加した後、 重合体溶液に新たに水素化触媒を加えることなく、 水素を供給して、 水素圧力 1 O k g/cm2, 150°Cで 5時間水素化反応を行った。
重合活性を向上させる目的で、 高温 (60°C) で重合反応を行ったために重合触媒 が失活し、 水素化率は 18%であった。 比較例 2 (開環重合および水素化)
実施例 3のビス (トリシクロへキシルホスフィン) ベンジリジンルテニウムジクロ リ ドに代えて、 六塩化タングステン 0. 05 3部、 テトラプチルスズ 0. 1 3部およ びジブチルエーテル 0· 048部を用いた以外は、 実施例 3と同様にして重合反応を 行った。 得られた重合体の分子量 (ポリスチレン換算) は、 数平均分子量 (Mn) = 7, 300、 重量平均分子量 (Mw) = 1 8, 200であった。 続いて、 実施例 3と 同様にして水素化反応を行った。 得られた開環重合体水素化物の収量は 29. 0部で、 分子量 (ポリイソプレン換算) は、 数平均分子量 (Mn) = 7, 700、 重量平均分 子量 (Mw) = 1 8, 300であった。
し力 し、 水素化触媒の添加量が少なかったために水素化率は 1 0%であった。
実施例 4 (開環重合および水素化)
シクロへキサンを 90 gに、 環状ォレフィンとしてジシクロペンタジェン 2 1. 0 部と 8—ェチルテトラシクロドデセン 9. 0部、 連鎖移動剤として 1—へキセン 0. 1 7部を加え、 ビス (トリシクロへキシルホスフィン) ベンジリジンルテニウムジク 口リ ド 0. 0 8 5部をシクロへキサン 1 0部に溶解した触媒溶液を添加した以外は実 施例 1と同様の方法により重合反応を行った。 得られた重合体は数平均分子量 (M n) = 1 3, 6 00、 重量平均分子量 (Mw) = 3 1, 1 00であった。
続いて、 水素圧力 1 O k gZcm2 温度 1 50°Cで 2時間水素化反応を行った。 この段階で、 水素化率は 6 5%であった。 次に、 水素化触媒として 5%P d アルミ ナ 0. 6 gを添加して、 水素圧力 1 0 k gZcm2、 温度 1 50°Cで 5時間水素化反 応を行った。 反応終了後、 冷却し、 フィルタ一により反応溶液をろ過して水素化触媒 を除去し、 無色透明の重合体溶液を得た。
得られた重合体溶液中の、重合触媒および水素化触媒由来の金属元素の含有量を測 定したところ、 Ru、 P dとも検出限界 (lp pm) 以下であった。
その後実施例 1と同様の方法により得られた開環重合体水素化物の収量は 2 9. 0 gで、 分子量 (ポリイソプレン換算) は、 数平均分子量 (Mn) = 1 4, 3 00、 重 量平均分子量 (Mw) = 3 3, 300で、 水素化率は 9 9%以上であった。
実施例 5 (開環重合) 100m lの攪拌機付きガラス反応器に、 シクロへキサン 30m 1 とジシクロペン タジェン 3. 97 g (3 Ommo 1 ) 、 連鎖移動剤として 1—へキセン 0. 10 mm o 1を加えた。 トルエン 5m 1に溶解したビス ( 1, 3—ジイソプロピル一 4—イミ ダゾリン一 2—ィリデン) ベンジリデンルテニウムジクロリ ド 0. 01 Ommo 1を 添加して、 60°Cで重合を行った。 触媒添加後、 次第に重合反応液の粘度は上昇して きたが、 透明な溶液で、 重合体が析出することはなかった。 1時間後、 重合反応液を 多量のイソプロパノールに注いでポリマーを析出させ、 濾別洗浄後、 40°Cで 40時 間減圧乾燥した。 得られた開環重合体の収量は 3. 6 gで、 分子量 (ポリスチレン換 算) は、 数平均分子量 (Mn) =55, 500、 重量平均分子量 (Mw) = 1 29, 500であった。 この重合体は、 室温でトルエン、 THFに溶解した。
実施例 6 (開環重合)
200m lの攪拌機付きォートクレーブに、 シク口へキサン 6 Om 1 とジシクロぺ ンタジェン 7. 94 g (6 Ommo 1 ) 、 連鎖移動剤として 1—へキセン 0. 90m mo 1を加えた。 次に、 トルエン 1 Om 1に溶解した [1, 3—ビス (2, 4, 6— トリメチルフエニル) 一4—イミダゾリン一 2—イリデン] (トリシクロへキシルホ スフイン)ベンジリデンルテニウムジクロリ ド 0. 01 Ommo 1を添カ卩して、 60°C で重合を行った。 重合体の分子量 (ポリスチレン換算) は、 数平均分子量 (Mn) = 1 0, 500、 重量平均分子量 (Mw) = 24, 500であった。
実施例 7 (開環重合および水素化)
200m lの攪拌機付きォートクレーブに、 シクロへキサン 2 Om l とジシクロぺ ンタジェン 7. 94 g (6 Ommo 1 ) 、 連鎖移動剤として 1一へキセン 0. 90m mo 1を加えた。 次に、 トルエン 1 Om 1に溶解したビス (1, 3—ジシクロへキシ ル一4—ィミダゾリンー 2—ィリデン) ベンジリデンルテニウムジクロリ ド 0. 01 Ommo 1を添加して、 60 °Cで 1時間重合を行った。 重合体の分子量 (ポリスチレ ン換算) は、 数平均分子量 (Mn) = 10, 700、 重量平均分子量 (Mw) =23, 900であった。次いで、ケイソゥ土担持ニッケル触媒 0. 8 gを加えた後、 1 60°C、 水素圧力 2 0 k gZc m2で、 6時間水素化反応を行つた。 水素化率は 99. 9 %で、 水素化物の分子量 (ポリイソプレン換算) は、 数平均分子量 (Mn) - 14, 600、 重量平均分子量 (Mw) =32, 100であった。
実施例 8 (開環重合)
ジシクロペンタジェンをテトラシクロドデセンに変更した以外は、実施例 5と同様 にして重合を行った。 触媒添加後、 次第に重合反応液の粘度は上昇してきたが、 透明 な溶液で、 重合体が析出することはなかった。 1時間後、 重合反応液を多量のィソプ ロバノールに注いでポリマ—を析出させ、 濾別洗浄後、 40°Cで 40時間減圧乾燥し た。 得られた開環重合体の収量は 3. 4 gで、 分子量 (ポリスチレン換算) は、 数平 均分子量 (Mn) =68, 100、 重量平均分子量 (Mw) = 1 54, 200であつ た。 この重合体は、 室温でトルエン、 THF、 クロ口ホルムに溶解した。
実施例 9 (開環重合および水素化)
ジシクロペンタジェンをテトラシクロ ドデセンに、 ケイソゥ土担持ニッケル触媒を パラジウム Zカーボン触媒に変更した以外は、実施例 7と同様にして重合および水添 を行った。 重合体の分子量 (ポリスチレン換算) は、 数平均分子量 (Mn) =8, 4 00、 重量平均分子量 (Mw) =20, 100であった。 水素化反応後の水素化率は 96%で、 水素化物の分子量 (ポリイソプレン換算) は、 数平均分子量 (Mn) = 1 2, 600、 重量平均分子量 (Mw) =29, 500であった。
実施例 10 (開環重合体)
ビス ( 1 , 3—ジィソプロピル一 4—イミダゾリン _ 2—イリデン) ベンジリデン ルテニウムジクロリ ド 0. 01 Ommo 1の代わりに [1, 3—ビス (2, 4, 6— トリメチルフエニル) イミダゾリジン一 2—イリデン] (トリシクロへキシルホスフ ィン) ベンジリデンルテニウムジクロリ ド 0. 00030 mm o lを添加した以外は、 実施例 5と同様に重合を行った。 触媒添加後、 次第に重合反応液の粘度は上昇してき たが、 透明な溶液で、 重合体が析出することはなかった。 1時間後、 重合反応液を多 量のィソプロパノールに注いでポリマーを析出させ、 濾別洗浄後、 40°Cで 40時間 減圧乾燥した。 得られた開環重合体の収量は 3. 8 gで、 分子量(ポリスチレン換算) は、 数平均分子量 (Mn) =46, 200、 重量平均分子量 (Mw) = 1 23, 20 0であった。 この重合体は、 室温でトルエン、 THFに溶解した。
実施例 1 1 (開環重合) ビス (1 , 3—ジイソプロピル一 4—イミダゾリン一 2—イリデン) ベンジリデン ルテニウムジクロリ ドの代わりに [1, 3—ビス (1—フエニルェチル) イミダゾリ ン一 2—^ f リデン] (トリシクロへキシルホスフィン) ベンジリデンルテニウムジク 口リ ドを添カ卩し、 1—へキセンを 0. 3 Omm o 1を添加した以外は、 実施例 5と同 様に重合を行った。 触媒添加後、 次第に重合反応液の粘度は上昇してきたが、 透明な 溶液で、 重合体が析出することはなかった。 1時間後、 重合反応液を多量のィソプロ パノールに注いでポリマーを析出させ、 濾別洗浄後、 40°Cで 40時間減圧乾燥した c 得られた開環重合体の収量は 3. 9 gで、 分子量 (ポリスチレン換算) は、 数平均分 子量 (Mn) = 2 5, 1 00、 重量平均分子量 (Mw) = 60, 200であった。 こ の重合体は、 室温でトルエン、 THFに溶解した。
実施例 1 2 (開環重合)
ビス (1 , 3—ジイソプロピル一 4—イミダゾリン一 2_イリデン) ベンジリデン ルテニウムジクロリ ド 0. 0 1 Ommo 1の代わりに [1 , 3 _ビス (2, 6—ジェ チルフエニル) イミダゾリジン一 2 _イリデン] (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ド 0. 0003 Ommo 1を添加し、 1—へキセン を 0. 3 Ommo 1を添カ卩した以外は、 実施例 5と同様に重合を行った。 触媒添加後、 次第に重合反応液の粘度は上昇してきたが、 透明な溶液で、 重合体が析出することは なかった。 1時間後、 重合反応液を多量のイソプロパノールに注いでポリマーを析出 させ、 濾別洗浄後、 40°Cで 40時間減圧乾燥した。 得られた開環重合体の収量は 3. 7 gで、 分子量 (ポリスチレン換算) は、 数平均分子量 (Mn) = 2 1 , 200、 重 量平均分子量 (Mw) =44, 800であった。 この重合体は、 室温でトルエン、 T HFに溶解した。 産業上の利用可能性
本発明に従って、有機ルテニウム化合物または有機オスミウム化合物を含有する重 合触媒を用いて環状ォレフィンを開環重合し、 さらに、 重合後の反応系中に水素化触 媒と水素とを供給する方法によれば、 開環重合触媒を除去しなくとも、 少量の水素化 触媒を使用して環状ォレフィンの開環重合体の水素化物を、 効率よく、 工業的に安定 に製造できる。 さらに、 水素化反応後に重合触媒および水素化触媒を効率的に除去す ることができ、 特に、 重合後に添加する水素化触媒として担持型の不均一系触媒を用 いた場合には重合触媒および水素化触媒の除去は一層容易になる。
また、 重合触媒として、 有機ルテニウム化合物または有機オスミウム化合物に加え て、 ヘテロ原子含有カルベン化合物を含む重合触媒を用いると、 環状ォレフィンは一 層高活性で開環重合され、 シクロへキサンなどの汎用溶媒中でも重合体の析出を生じ ない。

Claims

請 求 の 範 囲
1 . 有機ルテニウム化合物または有機ォスミゥム化合物を含有する重合触媒の存 在下に、 環状ォレフィンを開環重合する重合工程、 該重合工程における反応系に水素 化触媒および水素を添加して開環重合体中の炭素一炭素二重結合を水素化する水素 化工程を含む開環重合体水素化物の製造方法。
2 . 重合触媒が、 さらに、 ヘテロ原子含有カルベン化合物を含有するものである 請求項 1記載の開環重合体水素化物の製造方法。
3 . 環状ォレフィンが、 その全重量中にジシクロペンタジェン類およびテトラシ クロ ドデセン類の中から選ばれた少なくとも 1種を 1重量%以上含有するものであ る請求項 1または 2に記載の開環重合体水素化物の製造方法。
4 . 水素化触媒が担持型触媒である請求項 1〜 3のいずれかに記載の開環重合体 水素化物の製造方法。
5 . 水素化工程に続いて、 反応生成物から重合触媒および水素化触媒をろ過によ り分離除去する触媒除去工程を含む請求項 1〜 4いずれかに記載の開環重合体水素 化物の製造方法。
6 . 有機ルテニウム化合物または有機オスミウム化合物と、 ヘテロ原子含有カル ベン化合物を含有する重合触媒を用いて、溶媒の非存在下または非ハロゲン系溶媒の 存在下に環状ォレフィンを開環重合することを特徴とする開環重合体の製造方法。
7 . 環状ォレフィンが、 その全重量中にジシクロペンタジェン類およびテトラシ クロ ドデセン類の中から選ばれた少なくとも 1種を 1重量%以上含有するものであ る請求項 6に記載の開環重合体の製造方法。
8 . 開環重合後に、 反応系に水素化触媒および水素を添加して、 請求項 6または 7のいずれかに記載の方法により生成した開環重合体の炭素一炭素二重結合の少な くとも一部を水素化することを特徴とする開環重合体水素化物の製造方法。
9 . 水素化触媒が担持型触媒である請求項 8記載の開環重合体水素化物の製造方 法。
PCT/JP2000/003520 1999-05-31 2000-05-31 Procede de production de polymere de polymerisation hydrogene a chaine ouverte de cyclo-olefine WO2000073366A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00931629A EP1197509B1 (en) 1999-05-31 2000-05-31 Process for producing hydrogenated ring-opening polymerization polymer of cycloolefin
US09/980,200 US6486264B1 (en) 1999-05-31 2000-05-31 Process for producing hydrogenated ring-opening polymerization polymer of cycloolefin
JP2001500690A JP4691867B2 (ja) 1999-05-31 2000-05-31 環状オレフィンの開環重合体水素化物の製造方法
US10/265,244 US6908970B2 (en) 1999-05-31 2002-10-07 Process for producing hydrogenated product of cyclic olefin polymer prepared through ring-opening polymerization

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/152675 1999-05-31
JP15267599 1999-05-31
JP18437999 1999-06-29
JP11/184379 1999-06-29

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09980200 A-371-Of-International 2000-05-31
US09/980,200 A-371-Of-International US6486264B1 (en) 1999-05-31 2000-05-31 Process for producing hydrogenated ring-opening polymerization polymer of cycloolefin
US10/265,244 Division US6908970B2 (en) 1999-05-31 2002-10-07 Process for producing hydrogenated product of cyclic olefin polymer prepared through ring-opening polymerization

Publications (1)

Publication Number Publication Date
WO2000073366A1 true WO2000073366A1 (fr) 2000-12-07

Family

ID=26481525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003520 WO2000073366A1 (fr) 1999-05-31 2000-05-31 Procede de production de polymere de polymerisation hydrogene a chaine ouverte de cyclo-olefine

Country Status (4)

Country Link
US (2) US6486264B1 (ja)
EP (2) EP2270063B1 (ja)
JP (2) JP4691867B2 (ja)
WO (1) WO2000073366A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363263A (ja) * 2001-06-08 2002-12-18 Nippon Zeon Co Ltd 開環共重合体、開環共重合体水素化物、それらの製造方法および組成物
JP2002363265A (ja) * 2001-04-02 2002-12-18 Hitachi Chem Co Ltd 新規なブロック共重合体、その製造法及び用途
JP2003212955A (ja) * 2002-01-17 2003-07-30 Mitsubishi Chemicals Corp 脂環式エポキシ化合物の製造方法
EP1395616A2 (en) * 2001-04-16 2004-03-10 California Institute Of Technology Group 8 transition metal carbene complexes as enantioselective olefin metathesis catalysts
WO2008044640A1 (fr) 2006-10-11 2008-04-17 Yasuhara Chemical Co., Ltd. POLYMÈRE DE β-PINÈNE ET SON PROCÉDÉ DE PRODUCTION
JP2009030076A (ja) * 2001-08-29 2009-02-12 California Inst Of Technol 2個以上のヘテロ原子を含有する架橋された二環式および多環式のオレフィンの開環メタセシス重合
WO2009066511A1 (ja) 2007-11-21 2009-05-28 Zeon Corporation 重合体組成物およびその利用
JP2009167433A (ja) * 2009-05-07 2009-07-30 Nippon Zeon Co Ltd 開環共重合体、開環共重合体水素化物、それらの製造方法および組成物
US7622590B1 (en) 1998-09-10 2009-11-24 University Of New Orleans Foundation Catalyst complex with carbene ligand
US7820355B2 (en) * 2002-11-29 2010-10-26 Zeon Corporation Radiation sensitive resin composition
KR20160076518A (ko) 2013-10-21 2016-06-30 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 β-펠란드렌 중합체, 그의 제조 방법 및 성형품
CN116496446A (zh) * 2022-12-26 2023-07-28 杭州睿丰融创科技有限公司 一种降冰片烯类氢化开环聚合物及其制备方法和光学材料

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0606718A2 (pt) 2005-01-10 2009-07-14 Cargill Inc vela e cera para vela contendo produtos de metátese e semelhantes a metátese
JP5103177B2 (ja) * 2005-06-30 2012-12-19 三井化学株式会社 環状オレフィン系樹脂組成物の製造方法および環状オレフィン系樹脂組成物
WO2007081987A2 (en) * 2006-01-10 2007-07-19 Elevance Renewable Sciences, Inc. Method of making hydrogenated metathesis products
MX2008011524A (es) 2006-03-07 2009-02-03 Elevance Renewable Sciences Composiciones que comprenden esteres de poliol insaturados metatesizados.
CN101563434B (zh) 2006-07-12 2012-01-25 埃莱文斯可更新科学公司 包含复分解不饱和多元醇酯蜡的热熔性胶粘剂组合物
US8067610B2 (en) 2006-07-13 2011-11-29 Yann Schrodi Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
EP3281931A1 (en) * 2006-10-13 2018-02-14 Elevance Renewable Sciences, Inc. Methods of making organic compounds by metathesis
CN106083579A (zh) 2006-10-13 2016-11-09 埃莱文斯可更新科学公司 通过烯烃复分解由内烯烃合成末端烯烃的方法
WO2008063322A2 (en) * 2006-10-13 2008-05-29 Elevance Renewable Sciences, Inc. Metathesis methods involving hydrogenation and compositions relating to same
EP2076483A4 (en) * 2006-10-13 2013-12-04 Elevance Renewable Sciences METHODS FOR PRODUCING ORGANIC COMPOUNDS BY METATHESIS AND HYDROCYANATION
CN101889209A (zh) * 2007-10-22 2010-11-17 贝克顿·迪金森公司 评价在含有机基聚硅氧烷的悬浮液中蛋白质聚集的方法和用含蛋白质溶液的有机基聚硅氧烷涂布的医疗制品
JP5647126B2 (ja) * 2008-09-22 2014-12-24 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 光分解化学的気相堆積法および/または熱化学的気相堆積法を使用して容器の内部を被覆するシステム、装置および方法
US8092628B2 (en) * 2008-10-31 2012-01-10 Brewer Science Inc. Cyclic olefin compositions for temporary wafer bonding
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
US8802603B2 (en) 2010-06-17 2014-08-12 Becton, Dickinson And Company Medical components having coated surfaces exhibiting low friction and low reactivity
RU2482915C2 (ru) * 2010-08-13 2013-05-27 Открытое акционерное общество "СИБУР Холдинг"(ОАО "СИБУР Холдинг") Рутениевый катализатор селективного гидрирования ненасыщенных полимеров и способ гидрирования ненасыщенных полимеров
IN2014DN00290A (ja) 2011-06-17 2015-06-05 Materia Inc
WO2013056463A1 (en) 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Catalyst compositions and their use for hydrogenation of nitrile rubber
WO2013056459A1 (en) 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Catalyst compositions and their use for hydrogenation of nitrile rubber
WO2013056461A1 (en) 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Catalyst compositions and their use for hydrogenation of nitrile rubber
WO2013056400A1 (en) 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Catalyst compositions and their use for hydrogenation of nitrile rubber
KR101187549B1 (ko) 2011-10-27 2012-10-02 코오롱인더스트리 주식회사 테트라시클로도데센 유도체 및 디사이클로펜타디엔의 혼합물로부터 개환중합된 개환중합 고분자의 수소화 방법
CN104508101A (zh) 2011-12-28 2015-04-08 艾勒旺斯可再生科学公司 可再生脂肪酸蜡及其制造方法
US20150152283A1 (en) 2012-06-12 2015-06-04 Materia, Inc. Method and composition for improving adhesion of metathesis compositions to substrates
JP2015523440A (ja) 2012-06-20 2015-08-13 エレヴァンス リニューアブル サイエンシズ インコーポ 天然油メタセシス組成物及びその方法
US9527982B2 (en) 2012-12-19 2016-12-27 Materia, Inc. Storage stable adhesion promoter compositions for cyclic olefin resin compositions
US9598531B2 (en) 2013-02-27 2017-03-21 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
CN105189573B (zh) 2013-03-15 2019-01-22 马特里亚公司 Romp聚合物的模内涂覆
EA201690078A1 (ru) 2013-06-24 2016-06-30 Материа, Инк. Термоизоляционные материалы
WO2015003147A1 (en) 2013-07-03 2015-01-08 Materia, Inc. Liquid molding compositions
TWI558727B (zh) * 2013-09-30 2016-11-21 陶氏全球科技有限責任公司 製備聚烯烴反應性遙爪預聚合物之方法、聚烯烴反應性遙爪預聚合物及交聯彈性體以及高分子量彈性體
US10633484B2 (en) 2014-01-10 2020-04-28 Materia, Inc. Method and composition for improving adhesion of metathesis compositions to substrates
WO2015108642A1 (en) * 2014-01-14 2015-07-23 Dow Global Technologies Llc A process to produce polyolefin ionomers and ionomers produced thereby
EP2933274A1 (de) 2014-04-16 2015-10-21 Evonik Degussa GmbH Verfahren zur Herstellung von Polymeren mittels ringöffnender Polymerisation
US9593217B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (Va)
US9616395B2 (en) 2014-05-30 2017-04-11 Pall Corportaion Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (Ic)
US9592476B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (IIb)
US9193835B1 (en) 2014-05-30 2015-11-24 Pall Corporation Self-assembling polymers—IV
US9592477B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (Ib)
US9441078B2 (en) * 2014-05-30 2016-09-13 Pall Corporation Self-assembling polymers—I
US9328206B2 (en) 2014-05-30 2016-05-03 Pall Corporation Self-assembling polymers—III
US9765171B2 (en) 2014-05-30 2017-09-19 Pall Corporation Self-assembling polymers—V
US9598543B2 (en) 2014-05-30 2017-03-21 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (VIa)
US9469733B2 (en) * 2014-05-30 2016-10-18 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IVa)
US9593218B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IIIa)
US9604181B2 (en) 2014-05-30 2017-03-28 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (IIc)
US9593219B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (IIa)
CN107063940B (zh) 2016-02-10 2019-10-18 贝克顿迪金森法国公司 用于评价基于蛋白质的制剂的稳定性的方法
US11491179B2 (en) 2017-04-12 2022-11-08 Urigen Pharmaceuticals, Inc. Article of manufacture comprising local anesthetic, buffer, and glycosaminoglycan in syringe with improved stability
CN112194744B (zh) * 2020-10-12 2023-05-05 广东华锦达新材科技有限公司 一种氢化环烯烃聚合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258318A (ja) 1993-05-21 1995-10-09 Asahi Chem Ind Co Ltd 重合触媒
WO1996004289A1 (en) * 1992-04-03 1996-02-15 California Institute Of Technology High activity ruthenium or osmium metal carbene complexes for olefin metathesis reactions and synthesis thereof
JPH10195182A (ja) 1996-12-23 1998-07-28 Bayer Ag 水素化開環メタセシスポリマーの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599882A (en) * 1986-12-06 1997-02-04 Nippon Zeon Co., Ltd. Ring-opening polymer and a process for production thereof
DE3726325A1 (de) 1987-08-07 1989-02-16 Hoechst Ag Verfahren zur herstellung eines olefinpolymers
US5198511A (en) * 1991-12-20 1993-03-30 Minnesota Mining And Manufacturing Company Polymerizable compositions containing olefin metathesis catalysts and cocatalysts, and methods of use therefor
JP3326772B2 (ja) 1992-01-29 2002-09-24 ジェイエスアール株式会社 オレフィン性不飽和重合体の水素化方法および水素添加触媒
JPH072929A (ja) * 1993-06-16 1995-01-06 Japan Synthetic Rubber Co Ltd 開環重合体水素化物の製造方法
JP3522009B2 (ja) * 1995-07-21 2004-04-26 三井化学株式会社 環状オレフィン系開環メタセシス重合体水素添加物及びその製造方法
JP3526668B2 (ja) 1995-09-13 2004-05-17 三井化学株式会社 環状オレフィン系開環メタセシス重合体水素添加物及びその製造方法
US5939504A (en) * 1995-12-07 1999-08-17 Advanced Polymer Technologies Method for extending the pot life of an olefin metathesis polymerization reaction
US6020443A (en) * 1996-02-08 2000-02-01 Advanced Polymer Technologies, Inc. Polymerization of low grade DCPD monomers using an olefin metathesis catalyst
AU2506897A (en) * 1996-04-04 1997-10-29 Ciba Specialty Chemicals Holding Inc. Catalyst mixture and polymerisable composition
US6060570A (en) * 1996-08-12 2000-05-09 Bp Amoco Corporation Process for preparation of addition products of difunctional telechelic polyolefins from cyclic olefins by olefin metathesis reaction
US6310121B1 (en) * 1996-12-02 2001-10-30 Cymetech, Llc Polymeric composites including dicyclopentadiene and related monomers
DE19654076A1 (de) 1996-12-23 1998-06-25 Bayer Ag Transparente Werkstoffe aus hydrierten Produkten von ringgeöffneten Metathesepolymeren mit polaren Substituenten
JP3696388B2 (ja) * 1997-11-26 2005-09-14 三井化学株式会社 環状オレフイン系開環メタセシス重合体水素添加物の製造方法
JP3693484B2 (ja) * 1998-02-20 2005-09-07 三井化学株式会社 開環メタセシス共重合体の水素添加物及びその製造方法
DE19815275B4 (de) * 1998-04-06 2009-06-25 Evonik Degussa Gmbh Alkylidenkomplexe des Rutheniums mit N-heterozyklischen Carbenliganden und deren Verwendung als hochaktive, selektive Katalysatoren für die Olefin-Metathese
TWI237646B (en) * 1998-05-14 2005-08-11 Hitachi Chemical Co Ltd Resin composition and process for producing cured article using the same
JPH11322953A (ja) * 1998-05-22 1999-11-26 Hitachi Chem Co Ltd 架橋重合体成形物の製造方法
AU777357B2 (en) * 1999-05-24 2004-10-14 California Institute Of Technology Imidazolidine-based metal carbene metathesis catalysts
JP2001151869A (ja) * 1999-11-30 2001-06-05 Nippon Zeon Co Ltd 環状オレフィン開環メタセシス重合体水素化物の製造方法
JP4096487B2 (ja) * 2000-02-29 2008-06-04 日本ゼオン株式会社 開環メタセシス重合体水素化物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004289A1 (en) * 1992-04-03 1996-02-15 California Institute Of Technology High activity ruthenium or osmium metal carbene complexes for olefin metathesis reactions and synthesis thereof
JPH07258318A (ja) 1993-05-21 1995-10-09 Asahi Chem Ind Co Ltd 重合触媒
JPH10195182A (ja) 1996-12-23 1998-07-28 Bayer Ag 水素化開環メタセシスポリマーの製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622590B1 (en) 1998-09-10 2009-11-24 University Of New Orleans Foundation Catalyst complex with carbene ligand
US9339805B2 (en) 1998-09-10 2016-05-17 Materia, Inc. Catalyst complex with carbene ligand
US9233365B2 (en) 1998-09-10 2016-01-12 Materia, Inc. Catalyst complex with carbene ligand
US8859779B2 (en) 1998-09-10 2014-10-14 Materia, Inc. Catalyst complex with carbene ligand
US7902389B2 (en) 1998-09-10 2011-03-08 Nolan Steven P Catalyst complex with carbene ligand
JP2002363265A (ja) * 2001-04-02 2002-12-18 Hitachi Chem Co Ltd 新規なブロック共重合体、その製造法及び用途
EP1395616A4 (en) * 2001-04-16 2006-11-22 California Inst Of Techn GROUP 8 TRANSITION METAL CARBENE COMPLEXES AS ENANTIOSELECTIVE OLEFIN METATHESIS CATALYSTS
EP1395616A2 (en) * 2001-04-16 2004-03-10 California Institute Of Technology Group 8 transition metal carbene complexes as enantioselective olefin metathesis catalysts
JP2002363263A (ja) * 2001-06-08 2002-12-18 Nippon Zeon Co Ltd 開環共重合体、開環共重合体水素化物、それらの製造方法および組成物
JP2009030076A (ja) * 2001-08-29 2009-02-12 California Inst Of Technol 2個以上のヘテロ原子を含有する架橋された二環式および多環式のオレフィンの開環メタセシス重合
JP2003212955A (ja) * 2002-01-17 2003-07-30 Mitsubishi Chemicals Corp 脂環式エポキシ化合物の製造方法
US7820355B2 (en) * 2002-11-29 2010-10-26 Zeon Corporation Radiation sensitive resin composition
WO2008044640A1 (fr) 2006-10-11 2008-04-17 Yasuhara Chemical Co., Ltd. POLYMÈRE DE β-PINÈNE ET SON PROCÉDÉ DE PRODUCTION
WO2009066511A1 (ja) 2007-11-21 2009-05-28 Zeon Corporation 重合体組成物およびその利用
JP2009167433A (ja) * 2009-05-07 2009-07-30 Nippon Zeon Co Ltd 開環共重合体、開環共重合体水素化物、それらの製造方法および組成物
KR20160076518A (ko) 2013-10-21 2016-06-30 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 β-펠란드렌 중합체, 그의 제조 방법 및 성형품
US10007029B2 (en) 2013-10-21 2018-06-26 National University Corporation Nagoya University β-phellandrene polymer, production method for same, and molded article
CN116496446A (zh) * 2022-12-26 2023-07-28 杭州睿丰融创科技有限公司 一种降冰片烯类氢化开环聚合物及其制备方法和光学材料
CN116496446B (zh) * 2022-12-26 2024-03-22 杭州睿丰融创科技有限公司 一种降冰片烯类氢化开环聚合物及其制备方法和光学材料

Also Published As

Publication number Publication date
EP1197509A4 (en) 2002-09-18
EP2270063A3 (en) 2013-10-30
US20030050406A1 (en) 2003-03-13
US6486264B1 (en) 2002-11-26
EP2270063B1 (en) 2016-03-23
JP4691867B2 (ja) 2011-06-01
EP2270063A2 (en) 2011-01-05
JP2009287042A (ja) 2009-12-10
US6908970B2 (en) 2005-06-21
EP1197509B1 (en) 2011-07-06
JP4692668B2 (ja) 2011-06-01
EP1197509A1 (en) 2002-04-17

Similar Documents

Publication Publication Date Title
JP4691867B2 (ja) 環状オレフィンの開環重合体水素化物の製造方法
JP5708538B2 (ja) 開環共重合体水素化物
KR100948708B1 (ko) 노보넨계 개환중합체, 노보넨계 개환중합체 수소화물 및이들의 제조방법
KR100883765B1 (ko) 개환 공중합체, 개환 공중합체 수소화물, 이들의 제조방법및 조성물
JP7120764B2 (ja) シンジオタクチック-ノルボルネン系開環重合体水素化物
JP5862299B2 (ja) 結晶性ノルボルネン系開環重合体水素化物の製造方法
JP2007137935A (ja) テトラシクロドデセン開環重合体水素化物、その製造方法及び光学材料
JP4096487B2 (ja) 開環メタセシス重合体水素化物の製造方法
US7084222B2 (en) Ruthenium complexes, process for preparation thereof, and processes for producing open-ring polymer of cycloolefins and hydrogenation products thereof by using the complex as catalyst
JP4944787B2 (ja) 有機遷移金属錯体化合物およびメタセシス触媒の製造方法
JP2002105180A (ja) 開環重合体水素化物の製造方法
JP2003089689A (ja) ルテニウム錯体化合物、その製造方法、メタセシス反応用触媒及び水素化反応用触媒
JP3928407B2 (ja) 開環重合体および開環重合体水素化物の製造方法
JP2005104922A (ja) ルテニウム錯体化合物およびその製造方法、ならびにメタセシス反応用触媒および水素化反応用触媒
JP2001151869A (ja) 環状オレフィン開環メタセシス重合体水素化物の製造方法
JP2001122885A (ja) ルテニウム錯体、その製造方法、重合触媒および環状オレフィン重合体の製造方法
JP2006063141A (ja) 重合体水素化物の製造方法
JP2006183001A (ja) ランダム共重合体およびその製造方法
JP2009167433A (ja) 開環共重合体、開環共重合体水素化物、それらの製造方法および組成物
JP2001097988A (ja) ルテニウム錯体、重合触媒および環状オレフィン重合体の製造方法
JP2004002795A (ja) ノルボルネン系開環重合体、ノルボルネン系開環重合体水素化物及びそれらの製造方法
JP2004043396A (ja) ルテニウム錯体化合物、その製造方法、メタセシス反応用触媒及び水素化反応用触媒
JP2006143642A (ja) 遷移金属イミド錯体、環状オレフィン開環重合用触媒および環状オレフィン開環重合体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 500690

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09980200

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000931629

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000931629

Country of ref document: EP