JPH11139815A - Carbon nanotube device and its manufacture - Google Patents

Carbon nanotube device and its manufacture

Info

Publication number
JPH11139815A
JPH11139815A JP30551297A JP30551297A JPH11139815A JP H11139815 A JPH11139815 A JP H11139815A JP 30551297 A JP30551297 A JP 30551297A JP 30551297 A JP30551297 A JP 30551297A JP H11139815 A JPH11139815 A JP H11139815A
Authority
JP
Japan
Prior art keywords
carbon
substrate
carbon nanotube
carbon nanotubes
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30551297A
Other languages
Japanese (ja)
Other versions
JP3363759B2 (en
Inventor
Toru Den
透 田
Tatsuya Iwasaki
達哉 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30551297A priority Critical patent/JP3363759B2/en
Publication of JPH11139815A publication Critical patent/JPH11139815A/en
Application granted granted Critical
Publication of JP3363759B2 publication Critical patent/JP3363759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon nanotube device which is capable of efficiently allowing current to flow through the carbon nanotubes by joining one end or both ends of each of carbon nanotubes to the electrode on a substrate provided with an electrode and further, capable of controlling the amount of current flowing through the carbon nanotubes with a magnetic field. SOLUTION: This manufacture comprises heating a substrate 30 that has a surface layer in which catalyst hyperfine particles 33 each contg. Fe, Co or Ni are dispersed in a material consisting essentially of Cu, Ag, Au or Cr, to 400 to 800 deg.C in an atmosphere contg. ethylene, acetylene or gaseous carbon monoxide as a gaseous raw material, to subject the gaseous raw material to thermal decomposition and thereby to grow carbon nanotubes 35 on the surface of the substrate 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、量子効果デバイ
ス、電子デバイス、マイクロマシーンデバイス、バイオ
デバイスなどの機能性デバイスとして有効なカーボンナ
ノチューブデバイスおよびその製造方法に関し、特にカ
ーボンナノチューブに流れる電流を磁場で制御する電子
デバイスに最適なカーボンナノチューブデバイスおよび
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon nanotube device effective as a functional device such as a quantum effect device, an electronic device, a micromachine device, and a biodevice, and a method for manufacturing the same. The present invention relates to a carbon nanotube device optimal for an electronic device to be controlled and a method for manufacturing the same.

【0002】[0002]

【従来の技術】繊維状のカーボンを一般的にカーボンフ
ァイバーと呼んでいるが、直径数μm以上の太さの構造
材料として用いられるカーボンファイバーは、従来から
何種類もの製法が研究されてきている。その中で現在で
はPAN系やピッチ系の原料から作製される製法が主流
を占めている。この製法の概略は、PAN繊維や等方性
ピッチ、メソフェーズピッチから紡糸した原料を不融
化、耐炎化し800〜1400℃で炭素化、そして15
00〜3000℃で高速処理する方法である。こうして
得られたカーボンファイバーは強度や弾性率など機械的
特性に優れかつ軽量なのでスポーツ用品や断熱材、航空
宇宙関連や自動車関連の構造材などに複合材料としても
利用されている。
2. Description of the Related Art Fibrous carbon is generally referred to as carbon fiber, and many types of carbon fiber used as a structural material having a diameter of several μm or more have been studied. . At present, a production method made from a PAN-based or pitch-based raw material occupies the mainstream at present. The outline of this production method is as follows. The raw material spun from PAN fiber, isotropic pitch, and mesophase pitch is made infusible, flame-resistant, and carbonized at 800 to 1400 ° C.
This is a method of performing high-speed processing at 00 to 3000 ° C. The carbon fiber obtained in this way has excellent mechanical properties such as strength and elastic modulus and is lightweight, so that it is also used as a composite material for sports goods, heat insulating materials, aerospace-related and automobile-related structural materials, and the like.

【0003】これとは別に近年発見されたカーボンナノ
チューブは直径1μm以下の太さのチューブ状の材料で
あり、理想的なものとして炭素6角網目の面がチューブ
の軸に平行になって管を形成し、さらにこの管が多重に
なることもある。このカーボンナノチューブはカーボン
でできた6角網目の繋り方やチューブの太さにより金属
的になったり半導体的になったりすることが理論的に予
想され、将来の機能材料として期待されている。カーボ
ンナノチューブの合成にはアーク放電法を利用するのが
一般的になっているが、レーザー蒸発法や熱分解法、プ
ラズマ利用などが近年研究されてきている。
[0003] Separately, carbon nanotubes recently discovered are tube-shaped materials having a diameter of 1 μm or less, and ideally, the surface of a carbon hexagonal mesh is parallel to the axis of the tube to form a tube. Formed, and the tubes may be multiplexed. This carbon nanotube is theoretically expected to become metallic or semiconductive depending on the connection of hexagonal mesh made of carbon and the thickness of the tube, and is expected as a future functional material. It is common to use an arc discharge method for synthesizing carbon nanotubes, but a laser evaporation method, a thermal decomposition method, plasma utilization, and the like have been studied in recent years.

【0004】まず一般的なカーボンファイバーの従来技
術について以下に簡単にまとめる。
First, the prior art of general carbon fiber is briefly summarized below.

【0005】カーボンファイバーには多種類存在し、そ
の用途などにより合成方法を選択しなければならない。
合成されるファイバーの構造は合成方法やその条件によ
り大きく変化することが知られている。これらの詳細は
稲垣道夫著「ニューカーボン材料」(技術堂出版)に記
述されている。以下に主だった3種類の合成方法につい
て簡単に説明する。
[0005] There are many types of carbon fibers, and a synthesis method must be selected depending on the application and the like.
It is known that the structure of a fiber to be synthesized greatly changes depending on the synthesis method and its conditions. These details are described in "New Carbon Materials" by Michio Inagaki (published by Gijudo). Hereinafter, three main types of combining methods will be briefly described.

【0006】1)PAN系カーボンファイバー 原料にポリアクリロニトリルを用いて前駆体の紡糸、そ
の不融化処理、高温処理の3つの主なプロセスを経て合
成される。不融化処理、高温処理では環化と酸素による
脱水素化、さらに炭素6角網目形成を伴う脱炭化水素化
が行われる。またプロセスの途中でファイバーに延伸操
作を加えることにより炭素6角網目がファイバーの軸方
向に配列するようになり、特性が著しく向上することが
知られている。こうして得られるPAN系カーボンファ
イバーには汎用(General Purpose,GP) グレード、およ
び高強度(High Tensile Strength, HT)タイプがある。
1) PAN-based carbon fiber Synthesized using polyacrylonitrile as a raw material through three main processes: spinning a precursor, infusibilizing the precursor, and treating at a high temperature. In the infusibilization treatment and the high-temperature treatment, cyclization and dehydrogenation with oxygen, and further dehydrocarbonization accompanied by formation of a hexagonal carbon network are performed. It is also known that by applying a drawing operation to the fiber during the process, the hexagonal carbon network is arranged in the axial direction of the fiber, and the characteristics are remarkably improved. The PAN-based carbon fibers thus obtained include a general purpose (GP) grade and a high strength (High Tensile Strength, HT) type.

【0007】2)ピッチ系カーボンファイバー ピッチ系カーボンファイバは等方性ピッチからつくられ
る等方性ピッチ系炭素繊維と光学的に異方性を示すメゾ
フェーズ系ピッチ系炭素繊維の主に2種類に分けられ
る。製造プロセスは上記PAN系カーボンファイバーに
類似しており紡糸、不融化処理、高温処理による炭素化
からなっている。
2) Pitch-based carbon fiber Pitch-based carbon fiber is mainly classified into two types: an isotropic pitch-based carbon fiber made from isotropic pitch and a mesophase-based pitch-based carbon fiber showing optical anisotropy. Divided. The manufacturing process is similar to the above-mentioned PAN-based carbon fiber, and comprises spinning, infusibilization, and carbonization by high-temperature treatment.

【0008】メゾフェース系ピッチ系炭素繊維はPAN
系カーボンファイバーの場合のような延伸操作を加えな
くても軸方向の良好な配列が得られ、繊維断面の組織も
放射状(ラジアル)、ランダム、同軸円筒状(オニオ
ン)などがピッチの粘度で制御できる。メゾフェース系
ピッチ系炭素繊維は高弾性率(Hiogh Modulus, HM)タイ
プであり将来の複合材料として注目されている。等方性
ピッチ系炭素繊維はGPグレードに属しており断熱材な
どに利用されてきた。
The mesophase pitch carbon fiber is PAN
Good alignment in the axial direction can be obtained without the need for drawing operation as in the case of carbon fiber, and the texture of the fiber cross section is controlled by pitch viscosity such as radial (radial), random, and coaxial cylindrical (onion). it can. Mesoface pitch carbon fibers are of high elastic modulus (Hiogh Modulus, HM) type and are attracting attention as future composite materials. Isotropic pitch-based carbon fibers belong to the GP grade and have been used for heat insulating materials and the like.

【0009】3)気相成長系カーボンファイバー 代表的な1例を示すと、水素をキャリアガスにしてベン
ゼン蒸気を1050℃前後に保持した電気炉内に送り込
み、鉄微粒子を触媒として基板上に成長させる方法があ
る。成長過程には核形成、極めて細いファイバーの軸方
向の成長、ファイバーの径方向に太さを増す径方向成長
期の3種類が考えられている。触媒には10nm程度の
鉄の超微粒子が必要であり、ファイバーが得られた後で
はファイバーの先端にFe3 Cとして存在する。水素ガ
スには鉄の還元やベンゼンの熱分解の抑制の作用もある
と考えられている。得られたファイバーは中心から中空
チューブ、平坦で薄い網目層、軸にほぼ平行に配列し1
mm程度の網目を持つ厚い外周部からなっている。中心
付近の平坦で薄い網目層を持つ中空チューブは鉄触媒が
核になってできたもので、厚い外周部はベンゼンの熱分
解により得られたものと考えられる。このようなチュー
ブは鉄を触媒として一酸化炭素を気相熱分解した場合に
も見られる。G. G. Tibbetssはメタンガスを用いても同
様なファイバーが得られることをJ. Cryst. Growth, 73
(1985) 431 で説明している。
3) Vapor-grown carbon fiber As a typical example, hydrogen is used as a carrier gas, and benzene vapor is fed into an electric furnace maintained at about 1050 ° C., and is grown on a substrate using iron fine particles as a catalyst. There is a way to make it happen. Three types of growth processes are considered: nucleation, axial growth of extremely fine fibers, and radial growth phase in which the fibers increase in thickness in the radial direction. The catalyst needs ultrafine iron particles of about 10 nm, and after the fiber is obtained, it exists as Fe 3 C at the tip of the fiber. It is believed that hydrogen gas also has the effect of reducing iron and suppressing the thermal decomposition of benzene. The resulting fiber is a hollow tube from the center, a flat, thin mesh layer, arranged approximately parallel to the axis.
It has a thick outer peripheral portion having a mesh of about mm. It is considered that the hollow tube having a flat and thin mesh layer near the center was formed by using an iron catalyst as a core, and the thick outer peripheral portion was obtained by thermal decomposition of benzene. Such a tube is also observed when carbon monoxide is pyrolyzed in the gas phase using iron as a catalyst. GG Tibbetss reports that similar fibers can be obtained using methane gas, J. Cryst. Growth, 73
(1985) 431.

【0010】気相成長法では基板に触媒を付けておくシ
ーディング法(Seeding Catalyst Method) と、触媒を気
相中に浮遊させる流動触媒法(Floatong Catalyst Meth
od)がある。流動触媒法ではファイバーの径が細く折れ
曲がった形状になりやすい。またIshioka らはキャリア
ガスに水素と二酸化炭素一酸化炭素の混合ガスを用いる
ことによりファイバーの収率が向上すること、また触媒
としてフェロセンと金属アセチルアセトネイトの混合物
を用いることによりさらにファイバーの収率が向上する
ことをCarbon, 30 (1992) 859 およびCarbon, 30 (199
2) 865 において説明している。
[0010] In the vapor phase growth method, a seeding method (Seeding Catalyst Method) in which a catalyst is attached to a substrate, and a flow catalyst method (Floatong Catalyst Meth) in which the catalyst is suspended in a gas phase.
od). In the fluidized catalyst method, the diameter of the fiber tends to be small and bent. Also, Ishioka et al. Improved the fiber yield by using a mixed gas of hydrogen and carbon dioxide and carbon monoxide as the carrier gas, and further improved the fiber yield by using a mixture of ferrocene and metal acetylacetonate as a catalyst. That Carbon, 30 (1992) 859 and Carbon, 30 (1992)
2) As described in 865.

【0011】シーテイング法で得られたファイバーは熱
処理を加えることにより黒鉛的積層構造が発達する。す
なわち2000℃付近で網目構造が発達し、2500℃
付近から網目の積層構造が発達していく。流動触媒法で
作成したファイバーではあまり黒鉛的積層構造は発達し
ない。これらのファイバーを2800℃以上で熱処理す
るとファイバー外壁が多面体になるポリゴニゼイション
が発生する。
The fiber obtained by the sheeting method develops a graphite-like laminated structure by heat treatment. That is, a network structure develops around 2000 ° C., and 2500 ° C.
The lamination structure of the mesh develops from the vicinity. Graphite-like laminated structures do not develop much with fibers made by the fluid catalytic method. When these fibers are heat-treated at 2800 ° C. or more, polygonization in which the outer walls of the fibers become polyhedral occurs.

【0012】これらの製法を全体的にみると、PAN
系、ピッチ系では空気中150〜400℃の雰囲気で耐
炎化、不融化が必要であり、その後気相成長法も含め炭
素化、黒鉛化の熱処理が必要である。すなわち1300
℃付近の熱処理で炭素化された炭素質の材料と、280
0℃付近で黒鉛化された黒鉛質の材料がある。この加熱
処理に伴って密度は増加し抵抗率は減少する傾向にあ
る。材料別にみると概ね等方性ピッチ系、PAN系、メ
ソフェーズピッチ系、気相成長系の順に密度、引張強
度、引張弾性率は増大し、抵抗率は低下する。等方性カ
ーボンファイバーでは平均面間隔が0.344nm程度
で高温熱処理を施しても乱層構造が残っている。しかし
気相成長系カーボンファイバーでは2400℃以上で高
温熱処理を施すと平均面間隔が0.336nm程度にな
り理想的な積層構造が得られる。これは磁気抵抗値の測
定からも評価できる。
When these production methods are viewed as a whole, PAN
The system and the pitch system require flame resistance and infusibility in an atmosphere of 150 to 400 ° C. in air, and then require heat treatment for carbonization and graphitization, including vapor phase growth. That is, 1300
A carbonaceous material carbonized by heat treatment near
There is a graphitic material graphitized at around 0 ° C. With this heat treatment, the density tends to increase and the resistivity tends to decrease. When viewed by material, the density, tensile strength, and tensile modulus increase in the order of isotropic pitch system, PAN system, mesophase pitch system, and vapor phase growth system, and the resistivity decreases. The isotropic carbon fiber has an average interplanar spacing of about 0.344 nm, and the turbostratic structure remains even after high-temperature heat treatment. However, when a high-temperature heat treatment is performed at 2400 ° C. or higher in the vapor-grown carbon fiber, the average interplanar spacing becomes about 0.336 nm and an ideal laminated structure can be obtained. This can also be evaluated from the measurement of the magnetoresistance.

【0013】以上記載した製法で得られるカーボンファ
イバーの径は数μm以上であるが、これらの中で比較し
た場合、気相成長法が最も軸に平行な積層網目構造が得
られ易く、径も細いものが得られカーボンナノチューブ
に近い材料であるといえる。
Although the diameter of the carbon fiber obtained by the above-described production method is several μm or more, when compared among these, the vapor-phase growth method can easily obtain a laminated network structure most parallel to the axis, and the diameter is also small. A thin material can be obtained, and it can be said that the material is close to a carbon nanotube.

【0014】次に近年開発されたカーボンナノチューブ
について従来技術を説明する。
Next, the prior art of the recently developed carbon nanotube will be described.

【0015】直径がカーボンファイバーよりも細い、1
μm以下の材料は通称カーボンナノチューブと呼びカー
ボンファイバーとは区別しているが、明確な境界はな
い。本明細書中では直径数μm以上の太さで細長い形状
の材料をカーボンファイバー、直径1μm以下の太さで
細長い形状を有している材料をカーボンナノチューブと
呼ぶことにする。また狭義には、カーボンの6角網目の
面が軸とほぼ平行である材料をカーボンナノチューブと
呼び、カーボンナノチューブの周囲にアモルファス的な
カーボンが存在する場合もカーボンナノチューブに含め
ている。
[0015] 1
Materials of μm or less are commonly called carbon nanotubes and are distinguished from carbon fibers, but have no clear boundaries. In this specification, an elongated material having a diameter of several μm or more is referred to as carbon fiber, and a material having a thickness of 1 μm or less and having an elongated shape is referred to as carbon nanotube. In a narrow sense, a material in which the surface of a hexagonal mesh of carbon is substantially parallel to the axis is called a carbon nanotube, and the case where amorphous carbon exists around the carbon nanotube is also included in the carbon nanotube.

【0016】狭義のカーボンナノチューブをさらに分類
すると6角網目のチューブが1枚の構造のものをシング
ルウォールナノチューブ(SWNTと略称する)、一方
多層の6角網目のチューブから構成されているもののこ
とをマルチウォールナノチューブ(MWNTと略称す
る)と一般的に呼んでいる。どのような構造のカーボン
ナノチューブが得られるかは、合成方法や条件によって
ある程度決定されるが、同一の構造のカーボンナノチュ
ーブのみを生成することはできていない。
The carbon nanotube in a narrow sense is further classified into a single-walled tube having a structure of one hexagonal mesh tube (abbreviated as SWNT), and a tube formed of a multi-layered hexagonal mesh tube. It is generally called a multi-wall nanotube (abbreviated as MWNT). The structure of the carbon nanotube to be obtained is determined to some extent by the synthesis method and conditions, but it has not been possible to produce only the carbon nanotube having the same structure.

【0017】これらのカーボンナノチューブの構造を簡
単にまとめると図1に示すようになる。図1a〜d中、
図の左はカーボンナノチューブやカーボンファイバーを
横から見た簡略図であり、右側はその断面図である。カ
ーボンファイバーでは径が大きく、軸に平行で円筒状の
網目構造が発達していない図1a)のような形状を有
し、触媒を利用した気相熱分解法では図1b)のように
チューブの中心付近に軸に平行でかつチューブ状の網目
構造があるが、その周囲に乱れた構造の炭素が多く付着
している場合が多い。アーク放電法などでは図1c)の
ように中心に軸に平行でかつチューブ状の網目構造が発
達し、周囲のアモルファス状のカーボンの付着量も少な
いMWNTになる。またアーク放電法やレーザー蒸発法
では図1d)のように多重になっていないチューブ状網
目構造が発達し、いわゆるSWNTが得られ易い。
The structure of these carbon nanotubes is briefly summarized as shown in FIG. 1a to 1d,
The left side of the figure is a simplified view of a carbon nanotube or a carbon fiber as viewed from the side, and the right side is a cross-sectional view thereof. Carbon fiber has a large diameter, has a shape parallel to the axis and has no developed cylindrical network structure as shown in FIG. 1a), and a gas phase pyrolysis method using a catalyst has a tube shape as shown in FIG. 1b). There is a tubular network structure near the center that is parallel to the axis and often has a disordered structure of carbon attached around it. In the arc discharge method or the like, as shown in FIG. 1c), a tubular network structure is developed parallel to the axis at the center, and the amount of amorphous carbon around the MWNT is small. In the arc discharge method or the laser evaporation method, a tubular network structure that is not multiplexed as shown in FIG. 1d) develops, and so-called SWNT is easily obtained.

【0018】上記のカーボンナノチューブの製法には現
在主に3種類用いられている。それはカーボンファイバ
ーでの気相成長法と類似の方法、およびアーク放電法、
レーザー蒸発法である。またこの3種類以外にもプラズ
マ合成法や固相反応法が知られている。ここでは代表的
な3種類について以下に簡単に説明する。
At present, three types of carbon nanotubes are mainly used in the above-mentioned method. It is similar to the vapor deposition method on carbon fiber, and the arc discharge method,
This is a laser evaporation method. In addition to these three types, a plasma synthesis method and a solid phase reaction method are known. Here, three representative types will be briefly described below.

【0019】1)触媒を用いた熱分解法 この方法はカーボンファイバーの気相成長法とほぼ同じ
である。このような製法をC.E. SNYDER らがInternatio
nal Patent Applicationの Publication Number=WO
89/07163に記載している。反応容器の中にエチレンやプ
ロパンを水素とともに導入し、同時に金属超微粒子を導
入する。原料ガスはこれ以外にもメタン、エタン、プロ
パン、ブタン、ヘキサン、シクロヘキサンなどの飽和炭
化水素やエチレン、プロピレン、ベンゼン、トルエンな
どの不飽和炭化水素、アセトン、メタノール、一酸化炭
素など酸素を含む原料でもかまわないとしている。また
原料ガスと水素の比は1:20〜20:1が良好であ
り、触媒はFeやFeとMo,Cr,Ce,Mnの混合
物が推奨されており、それをfumed アルミナ上に付着さ
せておく方法も提唱されている。反応温度は550〜8
50℃の範囲で、ガスの流量は1インチ径当り水素が1
00sccm、炭素を含む原料ガスが200sccm程
度が好ましく、微粒子を導入して30分〜1時間程度で
カーボンナノチューブが成長する。
1) Pyrolysis method using catalyst This method is almost the same as the vapor growth method of carbon fiber. CE SNYDER et al.
nal Patent Application Publication Number = WO
89/07163. Ethylene and propane are introduced together with hydrogen into the reaction vessel, and at the same time, ultrafine metal particles are introduced. In addition, raw material gas containing saturated hydrocarbons such as methane, ethane, propane, butane, hexane, and cyclohexane, unsaturated hydrocarbons such as ethylene, propylene, benzene, and toluene, and raw materials containing oxygen such as acetone, methanol, and carbon monoxide However, he is not concerned. The ratio of the raw material gas to hydrogen is preferably 1:20 to 20: 1, and the catalyst is recommended to be Fe or a mixture of Fe and Mo, Cr, Ce, Mn, which is deposited on fumed alumina. It is also advocated a way to keep it. Reaction temperature is 550-8
In the range of 50 ° C, the gas flow rate is 1 hydrogen per inch diameter.
The source gas containing carbon is preferably about 200 sccm, and the carbon nanotubes grow in about 30 minutes to 1 hour after introducing the fine particles.

【0020】こうして得られるカーボンナノチューブの
形状は直径が3.5〜75nm程度であり、長さは直径
の5〜1000倍に達する。カーボンの網目構造はチュ
ーブの軸に平行になり、チューブ外側の熱分解カーボン
の付着は少ない。
The shape of the carbon nanotube thus obtained has a diameter of about 3.5 to 75 nm and a length of 5 to 1000 times the diameter. The carbon network is parallel to the axis of the tube, and there is little adhesion of pyrolytic carbon outside the tube.

【0021】また生成効率はよくないもののMoを触媒
核にし、一酸化炭素ガスを原料ガスにして1200℃で
反応させるとSWNTが生成されることがH. Daiらによ
ってChemical Physics Letters 260 (1996) p.471-474
に報告されている。
Although production efficiency is not good, H. Dai et al., Chemical Physics Letters 260 (1996) reported that SWNTs are formed when Mo is used as a catalyst nucleus and carbon monoxide gas is used as a raw material gas and reacted at 1200 ° C. p.471-474
Has been reported to.

【0022】2)アーク放電法 アーク放電法はIijimaらにより最初に見出され、詳細は
Nature Vol. 354 (1991) p.56-58に記載されている。ア
ーク放電法とは、アルゴン約100Torrの雰囲気中
で炭素棒電極を用いて直流アーク放電を行うという単純
な方法である。カーボンナノチューブは負の電極の表面
の一部分に5〜20nmの炭素微粒子とともに成長す
る。このカーボンナノチューブは直径4〜30nmで長
さ約1μm、2〜50のチューブ状のカーボン網目が重
なった層状構造であり、そのカーボンの網目構造は軸に
平行に螺旋状に形成されている。螺旋のピッチはチュー
ブごと、またチューブ内の層ごとに異なっており、また
多層チューブの場合の層間距離は0.34nmとグラフ
ァイトの層間距離にほぼ一致する。チューブの先端はや
はりカーボンのネットワークで閉じている。
2) Arc discharge method The arc discharge method was first discovered by Iijima et al.
Nature Vol. 354 (1991) p.56-58. The arc discharge method is a simple method of performing DC arc discharge using a carbon rod electrode in an atmosphere of about 100 Torr of argon. The carbon nanotube grows on a part of the surface of the negative electrode together with fine carbon particles of 5 to 20 nm. This carbon nanotube has a layered structure in which a tube-like carbon network of 4 to 30 nm in diameter, about 1 μm in length, and 2 to 50 is overlapped, and the carbon network is formed in a spiral shape parallel to the axis. The pitch of the helix is different for each tube and for each layer in the tube. In the case of a multilayer tube, the interlayer distance is 0.34 nm, which is almost equal to the graphite interlayer distance. The tip of the tube is still closed with a carbon network.

【0023】またT.W. Ebbesenらはアーク放電法でカー
ボンナノチューブを大量に生成する条件をNature Vol.
358 (1992) p.220-222に記載している。陰極に直径9m
m、陽極に直径6mmの炭素棒を用い、チャンバー中で
1mm離して対向するよう設置し、ヘリウム約500T
orrの雰囲気中で約18V、100Aのアーク放電を
発生させる。500Torr以下だとカーボンナノチュ
ーブの割合は少なく、500Torr以上でも全体の生
成量は減少する。最適条件の500Torrだと生成物
中のカーボンナノチューブの割合は75%に達する。投
入電力を変化させたり、雰囲気をアルゴンにしてもカー
ボンナノチューブの収集率は低下した。またナノチュー
ブは生成したカーボンロッドの中心付近に多く存在す
る。
Also, TW Ebbesen et al. Set conditions for producing a large amount of carbon nanotubes by the arc discharge method in Nature Vol.
358 (1992) pp. 220-222. 9m diameter for cathode
m, a carbon rod having a diameter of 6 mm was used as the anode, placed 1 mm apart in the chamber and opposed to each other.
An arc discharge of about 18 V and 100 A is generated in an atmosphere of orr. If it is less than 500 Torr, the ratio of carbon nanotubes is small, and if it is more than 500 Torr, the total production amount is reduced. At the optimum condition of 500 Torr, the ratio of carbon nanotubes in the product reaches 75%. Even if the input power was changed or the atmosphere was changed to argon, the collection rate of carbon nanotubes decreased. Many nanotubes exist near the center of the formed carbon rod.

【0024】3)レーザー蒸発法 レーザー蒸発法はT. GuoらによりChemical PhysicsL Le
tters 243 (1995) p.49-54に報告されて、さらにA. The
ssらがScience Vol. 273 (1996) p.483-487 にレーザー
蒸発法によるロープ状SWNTの生成を報告した。この
方法は概略は以下のとおりである。まず、石英管中にC
oやNiを分散させたカーボンロッドを設置し、石英管
中にArを約500Torr満たした後全体を1200
℃程度加熱する。そして石英管の上流側の端からNdY
AGレーザーを集光してカーボンロッドを加熱蒸発させ
る。そうすると石英管の下流側にカーボンナノチューブ
が堆積する。この方法はSWNTを選択的に作成する方
法としては有望であり、またSWNTが集まってロープ
状になり易いなどの特徴がある。
3) Laser evaporation method The laser evaporation method is described by T. Guo et al. In Chemical Physics L Le.
tters 243 (1995) pp. 49-54 and further
ss et al. reported the formation of rope-like SWNTs by the laser evaporation method in Science Vol. 273 (1996) p.483-487. The outline of this method is as follows. First, C
A carbon rod in which o and Ni are dispersed is placed, and after filling Ar in a quartz tube with about 500 Torr, the whole is 1200
Heat to about ° C. Then, from the upstream end of the quartz tube, NdY
The carbon rod is heated and evaporated by condensing the AG laser. Then, carbon nanotubes are deposited on the downstream side of the quartz tube. This method is promising as a method for selectively creating SWNTs, and has features such as that SWNTs are easily gathered to form a rope.

【0025】次にカーボンナノチューブの応用について
従来技術を説明する。
Next, a description will be given of a conventional technique for application of carbon nanotubes.

【0026】現時カーボンナノチューブの応用製品は出
ていないが、応用化へ向けた研究活動は活発である。そ
の中で代表的な例を以下に簡単に説明する。
At present, there are no applied products of carbon nanotubes, but research activities for application are active. Representative examples are briefly described below.

【0027】1)電子源 カーボンナノチューブは先端が先鋭で、かつ電気伝導性
があるため電子源としての研究例が多い。W.A. de Heer
らはScience Vol. 270 (1995) p.1179でアーク放電法で
得られたカーボンナノチューブを精製しフィルターを通
して基板上に立て電子源とした。この報告では電子源は
カーボンナノチューブの集団となっているが、1cm2
の面積から700V印加により100mA以上の放出電
流が安定して得られたとしている。またA.G. Rinzlerら
はScience Vol. 269 (1995) p.1550にてアーク放電法で
得られたカーボンナノチューブの1本を電極に取り付け
特性を評価したところ、約75Vの電圧印加により先端
の閉じたカーボンナノチューブからは約1nA、先端の
開いたカーボンナノチューブからは約0.5μAの放出
電流が得られたとしている。
1) Electron Source Since carbon nanotubes have a sharp tip and are electrically conductive, there have been many studies as electron sources. WA de Heer
Et al. Purified the carbon nanotubes obtained by the arc discharge method in Science Vol. 270 (1995) p. 1179 and set them on a substrate through a filter to use them as an electron source. Electron source in this report and has a population of carbon nanotubes but, 1cm 2
It is stated that an emission current of 100 mA or more was stably obtained by applying 700 V from the area of FIG. AG Rinzler et al., In Science Vol. 269 (1995) p. 1550, evaluated one electrode attached to one of the carbon nanotubes obtained by the arc discharge method. An emission current of about 1 nA was obtained from the nanotube, and about 0.5 μA was obtained from the open carbon nanotube.

【0028】2)STM,AFM H. DaiらはNature 384, (1996) p.147においてカーボン
ナノチューブのSTM,AFM応用について報告してい
る。カーボンナノチューブはアーク放電法で作製された
もので、先端部分は直径約5nmのSWNTになってい
る。tip が細く、しなやかであるため、試料の隙間部分
の底でも観察でき、先端のtip crash のない理想的なti
p が得られるといわれている。
2) STM, AFM H. Dai et al., In Nature 384, (1996) p. 147, reported STM and AFM applications of carbon nanotubes. The carbon nanotube is produced by an arc discharge method, and the tip portion is made of SWNT having a diameter of about 5 nm. Since the tip is thin and pliable, it can be observed even at the bottom of the gap between samples, and ideal ti without tip crash at the tip
It is said that p is obtained.

【0029】3)水素貯蔵材料 A.C. Dillon らはSWNTを用いることにより、ピッチ
系の原料から生成したカーボンと比較して数倍の水素分
子が貯蔵できることをNature Vo1. 386 (1997)p.377-37
9に報告している。また応用への検討が始まったばかり
ではあるが、従来的には水素自動車などの水素貯蔵材料
として期待されている。
3) Hydrogen storage material AC Dillon and colleagues have shown that using SWNTs can store several times as many hydrogen molecules as carbon produced from pitch-based raw materials. Nature Vo1. 386 (1997) p.377- 37
9 reports. In addition, although studies on applications have just begun, it has been conventionally expected as a hydrogen storage material for hydrogen vehicles and the like.

【0030】[0030]

【発明が解決しようとする課題】従来技術のカーボンナ
ノチューブの構成や製法では、得られるカーボンナノチ
ューブは太さも方向もかなりランダムなものであり、ま
た成長直後ではカボンナノチューブに電極は接合されて
いない。すなわち、カーボンナノチューブは利用に際し
て、合成後に回収して精製し、さらに利用する形態に合
わせて特定の形状に形成しなければならない。例えば電
子源として利用しようとする場合にはA.G.RinzlerらはS
CIENCE Vol. 269 (1995) p.1550-1553 に示されている
ようにカーボンファイバーの1本を取り出し、片方を電
極に接着する必要がある。またWaltA. de Heer らはSCI
ENCE Vol. 270 (1995) p.1179-1180 およびSCIENCE Vo
l. 268 (1995) p.845-847 に示されるように、アーク放
電で作製したカーボンナノチューブは精製して後セラミ
ックフィルターを用いて基板上にチューブを立たせる工
程が必要である。この場合には積極的に電極とカーボン
ナノチューブを接合してはいない。
In the structure and manufacturing method of the conventional carbon nanotubes, the obtained carbon nanotubes are quite random in thickness and direction, and the electrodes are not bonded to the carbon nanotube immediately after the growth. That is, the carbon nanotubes must be collected, purified after synthesis, and formed into a specific shape according to the form to be used. For example, when trying to use it as an electron source, AGRinzler et al.
As shown in CIENCE Vol. 269 (1995) p.1550-1553, it is necessary to take out one of the carbon fibers and glue one to the electrode. WaltA. De Heer et al.
ENCE Vol. 270 (1995) p.1179-1180 and SCIENCE Vo
As shown in l. 268 (1995) p. 845-847, it is necessary to purify the carbon nanotubes produced by arc discharge, and then use a ceramic filter to make a tube stand on the substrate. In this case, the electrode and the carbon nanotube are not actively joined.

【0031】シーディングの触媒を用いた熱分解法でも
基体上に直接カーボンナノチューブを成長させることが
できるが、基板温度も高く、また成長するカーボンナノ
チューブの方向は制御できず、太さも制御しずらくチュ
ーブの周壁にはアモルファス状のカーボンが成長し易か
った。また基体とカーボンナノチューブの接合も弱いも
のであった。
Although the carbon nanotubes can be grown directly on the substrate by the thermal decomposition method using a seeding catalyst, the substrate temperature is high, the direction of the growing carbon nanotubes cannot be controlled, and the thickness of the carbon nanotubes cannot be controlled. Amorphous carbon was easy to grow on the peripheral wall of the tube. Also, the bonding between the substrate and the carbon nanotube was weak.

【0032】さらにアーク放電では大電流が必要であ
り、かつカーボンナノチューブの成長部分の温度が極め
て高く、石英や金属の基板などのような基体上に直接カ
ーボンナノチューブを成長させることは不可能であっ
た。
In addition, the arc discharge requires a large current and the temperature of the growth portion of the carbon nanotube is extremely high, so that it is impossible to grow the carbon nanotube directly on a substrate such as a quartz or metal substrate. Was.

【0033】同様にレーザー蒸発法においても、カーボ
ンナノチューブは高温フレーム中で成長し、ガス下流の
低温部分にただ降り積もるだけなので、特定の基体上に
成長させることはできなかった。
Similarly, also in the laser evaporation method, carbon nanotubes could not be grown on a specific substrate because carbon nanotubes grew in a high-temperature flame and only deposited on a low-temperature portion downstream of the gas.

【0034】また磁場によりカーボンナノチューブに流
す電流量を制御する技術はなかった。
There is no technique for controlling the amount of current flowing through a carbon nanotube by a magnetic field.

【0035】以上の従来技術から理解されるように特定
の基体上に特定の方向にナノチューブを形成するのは非
常に困難であり、さらにカーボンナノチューブの片端、
もしくは両端を電極に接合した状態での成長は不可能で
あった。
As understood from the above prior art, it is very difficult to form a nanotube on a specific substrate in a specific direction, and it is also difficult to form a carbon nanotube at one end.
Alternatively, growth with both ends joined to the electrode was impossible.

【0036】本発明の目的はこれらの問題点を解決する
ことにある。
An object of the present invention is to solve these problems.

【0037】すなわち本発明の目的はカーボンナノチュ
ーブの片方、もしくは両端を基体上の電極に接合しカー
ボンナノチューブに電流を効率よく流すデバイスを提供
することである。
That is, an object of the present invention is to provide a device in which one or both ends of a carbon nanotube is bonded to an electrode on a substrate, and a current flows efficiently through the carbon nanotube.

【0038】また本発明の別の目的は基体上のカーボン
ナノチューブに流れる電流量を磁場で制御できるデバイ
スを提供することである。
Another object of the present invention is to provide a device capable of controlling the amount of current flowing through a carbon nanotube on a substrate by a magnetic field.

【0039】また本発明の別の目的は基体上のカーボン
ナノチューブに流れる電流量を磁場で制御できるデバイ
スの製造法を提供することである。
Another object of the present invention is to provide a method of manufacturing a device capable of controlling the amount of current flowing through a carbon nanotube on a substrate by a magnetic field.

【0040】また本発明の別の目的は基体上に特定の方
向性を有したカーボンナノチューブを成長させる製造法
を提供することである。
It is another object of the present invention to provide a method for growing carbon nanotubes having a specific orientation on a substrate.

【0041】[0041]

【課題を解決するための手段】上記の課題は本発明の以
下のデバイスおよびその製法により解決できる。すなわ
ち、本発明のデバイスはカーボンナノチューブを用いた
デバイスであって、少なくとも該カーボンナノチューブ
の片方が基体に接続してあり、かつその接合部分にF
e,Co,Niのうち1種類以上からなる金属を含有す
る触媒超微粒子があり、該触媒超微粒子がCu,Ag,
Au,Crのうち1種類以上からなる金属が主成分であ
る材料に分散されているカーボンナノチューブデバイス
である。
The above object can be solved by the following device of the present invention and its manufacturing method. That is, the device of the present invention is a device using carbon nanotubes, and at least one of the carbon nanotubes is connected to a base, and F
e, Co, and Ni include catalyst ultra-fine particles containing at least one metal selected from the group consisting of Cu, Ag,
This is a carbon nanotube device in which a metal composed of at least one of Au and Cr is dispersed in a material whose main component is Au.

【0042】また、本発明の製造法は、基体上に触媒を
用いた熱分解法によりカーボンナノチューブを成長させ
るカーボンナノチューブデバイスの製造法において、F
e,Co,Niのうち1種類以上からなる金属を含有す
る触媒超微粒子がCu,Ag,Au,Crのうち1種類
以上からなる金属が主成分である材料に分散されている
基体の表面からカーボンナノチューブを成長させ、その
際、該触媒超微粒子分散部分を有する基体を、エチレ
ン、アセチレン、一酸化炭素ガスのいずれか、または混
合されたガスを原料ガスとして含む雰囲気中で400℃
〜800℃の範囲で加熱して原料ガスの熱分解反応を起
こさせるカーボンナノチューブデバイスの製造方法であ
る。
The production method of the present invention is directed to a method for producing a carbon nanotube device in which carbon nanotubes are grown on a substrate by a thermal decomposition method using a catalyst.
from the surface of a substrate in which ultrafine catalyst particles containing at least one metal selected from the group consisting of Cu, Ag, Au, and Cr are dispersed in a material containing at least one metal selected from Cu, Ag, Au, and Cr. A carbon nanotube is grown, and at this time, the substrate having the catalyst ultrafine particle dispersed portion is heated at 400 ° C. in an atmosphere containing any of ethylene, acetylene, carbon monoxide gas, or a mixed gas as a source gas.
This is a method for producing a carbon nanotube device in which a thermal decomposition reaction of a raw material gas is caused by heating in a temperature range of up to 800 ° C.

【0043】本発明のカーボンナノチューブデバイス
は、カーボンナノチューブに流れる電流が外部磁場で変
調できる。
In the carbon nanotube device of the present invention, the current flowing through the carbon nanotube can be modulated by an external magnetic field.

【0044】[0044]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0045】本発明のデバイスにおいて、基体がSiで
あり、かつ触媒超微粒子がFe,Coの1種類以上から
なる金属であり、該触媒超微粒子がCuを主成分とする
材料に分散されているカーボンナノチューブデバイスが
特に好ましい。Fe,Coを含有する金属を触媒超微粒
子とし、その触媒微粒子が銅を主成分とする膜中に分散
されていることがSi基板を利用する上でも、カーボン
ナノチューブの低温成長や電流磁場制御、銅中への分散
の3点において好ましい。
In the device of the present invention, the base is Si, and the ultrafine catalyst particles are a metal composed of at least one of Fe and Co, and the ultrafine catalyst particles are dispersed in a material mainly composed of Cu. Carbon nanotube devices are particularly preferred. The use of a metal containing Fe and Co as ultrafine catalyst particles, and the fact that the fine catalyst particles are dispersed in a film containing copper as a main component makes it possible to control low-temperature growth of carbon nanotubes, control of current magnetic field, It is preferable in three points of dispersion in copper.

【0046】またしたがって、カーボンナノチューブを
用いたデバイスの製法においては、FeもしくはCoを
含有する触媒超微粒子が銅を主成分とする材料に分散さ
れているSi基体の表面からカーボンナノチューブを成
長させるのが、好ましい発明の実施形態である。その
際、該基体をエチレン、アセチレン、一酸化炭素ガスの
いずれか、または混合されたガスを原料ガスとして含む
雰囲気中で400℃〜800℃の範囲で加熱して原料ガ
スの熱分解を起こさせることが、カーボンナノチューブ
の特性上、また触媒超微粒子の分散から考えても好まし
い。もちろんこれらのガス以外にもシクロヘキサンやベ
ンゼンのように最初液体であるものを蒸発させて原料ガ
スとして用いてもかまわないが、低温成長の観点からエ
チレン、アセチレン、一酸化炭素ガスが好ましい。また
水素ガスを混合することが原料の脱水素作用には好まし
い場合もある。
Therefore, in a method of manufacturing a device using carbon nanotubes, the carbon nanotubes are grown from the surface of a Si substrate in which ultrafine catalyst particles containing Fe or Co are dispersed in a material mainly containing copper. Is a preferred embodiment of the invention. At this time, the substrate is heated in an atmosphere containing any of ethylene, acetylene, carbon monoxide gas, or a mixed gas as a source gas at a temperature in the range of 400 ° C. to 800 ° C. to cause thermal decomposition of the source gas. This is preferable from the viewpoint of the characteristics of the carbon nanotube and the dispersion of the ultrafine catalyst particles. Of course, in addition to these gases, it is also possible to evaporate the initially liquid material such as cyclohexane or benzene and use it as a raw material gas, but from the viewpoint of low-temperature growth, ethylene, acetylene, and carbon monoxide gas are preferable. In some cases, mixing hydrogen gas is preferable for the dehydrogenation of the raw material.

【0047】本発明における触媒超微粒子は径が数nm
〜数100nmの範囲のものが好ましい。
The ultrafine catalyst particles of the present invention have a diameter of several nm.
Those having a range of from to several hundred nm are preferred.

【0048】以下、本発明の作用の説明には微粒子分散
型のGMR膜を利用するので、まずこの微粒子分散型の
GMRについて説明する。
Since the operation of the present invention will be described using a fine particle-dispersed GMR film, the fine particle-dispersed GMR will be described first.

【0049】GMRとはGiant Managnetic Resistance
(巨大磁気抵抗)の略であり、磁場の印加により特定の
構成を有する膜の電気抵抗率が低下する現象である。一
般的には金属の積層薄膜を用いるが、それにはFe/C
rやCo/Cuなどの組み合わせが有効である。このよ
うなGMR効果は金属積層膜のみならず超微粒子分散膜
(グラニュラー合金膜)においてもみられる。このGM
R効果はFeやCoの金属薄膜層や微粒子の磁気モーメ
ントが外部磁場により平行になり、その結果伝導電子の
スピンに依存した散乱が減少することが原因と考えられ
ている。
GMR is Giant Managnetic Resistance
It is an abbreviation for (giant magnetoresistance), and is a phenomenon in which the electric resistivity of a film having a specific configuration is reduced by applying a magnetic field. Generally, a laminated thin film of metal is used.
Combinations such as r and Co / Cu are effective. Such a GMR effect is observed not only in a metal laminated film but also in an ultrafine particle dispersed film (granular alloy film). This GM
It is considered that the R effect is caused by the fact that the magnetic moment of the metal thin film layer or the fine particles of Fe or Co becomes parallel due to the external magnetic field, and as a result, the spin-dependent scattering of conduction electrons decreases.

【0050】上記超微粒子分散膜は同時スパッタリング
法やICB法(クラスターイオンビーム法)などの方法
により作製可能である。銅中に分散させたFeやCoの
微粒子径は成膜中の基板加熱や成膜後のアニールにより
ある程度制御可能であり、微粒子径は数nm〜数10n
mになる。このようにして得られた超微粒子分散膜の表
面にもFe,Coなどの超微粒子が存在し、カーボンナ
ノチューブ成長の成長核として利用できる。
The ultrafine particle dispersion film can be prepared by a method such as a simultaneous sputtering method or an ICB method (cluster ion beam method). The diameter of the fine particles of Fe or Co dispersed in copper can be controlled to some extent by heating the substrate during film formation or annealing after film formation.
m. Ultrafine particles such as Fe and Co also exist on the surface of the ultrafine particle dispersed film thus obtained, and can be used as a growth nucleus for growing carbon nanotubes.

【0051】この触媒超微粒子成長核を有する基体に、
カーボンナノチューブを成長させるには、基体を原料ガ
スの他、希釈ガスや成長促進ガスなどを加えたガス雰囲
気中で加熱処理する方法が有効である。原料ガスとして
は前述したようにカーボンを含むガスの多くが利用可能
である。例えば炭素と水素のみからなるメタン、エタ
ン、プロパン、ブタン、ペンタン、ヘキサン、エチレ
ン、アセチアレン、ベンゼン、トルエン、シクロヘキサ
ンなどのやその他の元素を含むベンゾニトリル、アセト
ン、エチルアルコール、メチルアルコール、一酸化炭素
などが挙げられる。これらの中で好ましい原料は基体の
種類や成長核などの組成や成長温度や圧力によって若干
異なるものの、炭素と水素および酸素からなる原料の方
が不純物が入りにくくてよい。またカーボンナノチュー
ブの低温から考えるとエチレン、アセチレン、一酸化炭
素が好ましい。また成長促進ガスとしては水素が挙げら
れるが、水素の有効性は原料ガスや反応温度、成長核の
組成などに依存するので、特になくてもかまわない。ま
た希釈ガスは成長が速すぎる場合や、原料ガスの毒性や
爆発性を緩和したい場合に有効であり、アルゴンやヘリ
ウムなどの不活性ガスや窒素などが挙げられる。
The substrate having the catalyst ultrafine particle growth nucleus is
In order to grow the carbon nanotubes, it is effective to heat the substrate in a gas atmosphere to which a diluent gas, a growth promoting gas, and the like are added in addition to the raw material gas. As the source gas, many gases containing carbon can be used as described above. For example, methane, ethane, propane, butane, pentane, hexane, ethylene, acetylene, benzene, toluene, cyclohexane, and other elements containing only carbon and hydrogen, benzonitrile, acetone, ethyl alcohol, methyl alcohol, carbon monoxide And the like. Among these, the preferable raw materials slightly vary depending on the type of the substrate, the composition of the growth nuclei, the growth temperature and the pressure, but the raw materials composed of carbon, hydrogen and oxygen may be less likely to contain impurities. Considering the low temperature of the carbon nanotube, ethylene, acetylene, and carbon monoxide are preferred. Hydrogen may be used as the growth promoting gas, but the effectiveness of hydrogen depends on the source gas, the reaction temperature, the composition of the growth nucleus, and the like, and may be omitted. The diluent gas is effective when the growth is too fast or when it is desired to reduce the toxicity or explosiveness of the raw material gas, and examples thereof include an inert gas such as argon and helium, and nitrogen.

【0052】こうして得られるカーボンナノチューブデ
バイスの作製プロセスの例を図2,4に示す。図2はプ
ロセスを説明するための簡略断面図であるが、図2にお
いて20は基体、21はアニール前超微粒子分散膜、2
2はアニール後超微粒子分散膜、23は触媒超微粒子、
24はCuなどを主元素とする超微粒子支持膜、25は
カーボンナノチューブである。この図を元にカーボンナ
ノチューブの製法の概念を説明すると以下のようにな
る。まず図2a)のように基体上にCu,Ag,Au,
Crを主成分とする膜にFe,Co,Niを主成分とす
る金属超微粒子が均質に分散した薄膜を作製しておく。
この成膜方法としては例えばCuとCoをターゲットと
した2元同時スパッタリング法が挙げられる。成膜後還
元雰囲気中400〜800℃でアニールすることにより
分散の均質性が壊れ、Cuなどを主成分とする超微粒子
支持膜24の中や表面にCoなどの触媒超微粒子23が
析出した微粒子分散膜22が得られる。この分散状態は
完全なものではなく、触媒微粒子中にCuが若干固溶し
たり、逆に微粒子支持膜であるCu膜中にFeやCoが
若干固溶している。
FIGS. 2 and 4 show an example of a process for producing the carbon nanotube device thus obtained. FIG. 2 is a simplified cross-sectional view for explaining the process. In FIG.
2 is an ultrafine particle dispersed film after annealing, 23 is a catalyst ultrafine particle,
Reference numeral 24 denotes an ultrafine particle support film mainly composed of Cu or the like, and reference numeral 25 denotes a carbon nanotube. The concept of the method for producing carbon nanotubes will be described below with reference to FIG. First, as shown in FIG. 2A), Cu, Ag, Au,
A thin film in which ultrafine metal particles mainly containing Fe, Co, and Ni are uniformly dispersed in a film mainly containing Cr is prepared.
As this film forming method, for example, a binary simultaneous sputtering method using Cu and Co as targets can be mentioned. Particles in which the uniformity of dispersion is broken by annealing at 400 to 800 ° C. in a reducing atmosphere after film formation, and ultrafine catalyst particles 23 such as Co are deposited in or on the ultrafine particle support film 24 mainly composed of Cu or the like. A dispersion film 22 is obtained. This dispersion state is not perfect, and Cu is slightly dissolved in the catalyst fine particles, and Fe and Co are slightly dissolved in the Cu film as the fine particle supporting film.

【0053】次に図4に示すような反応装置内でカーボ
ンナノチューブを成長させる。ここで、装置概略図であ
る図4について説明する。図4中41は反応容器であ
り、42は基体、43は赤外線吸収板であり基体ホルダ
ーの役割も担っている。44はエチレンなどの原料ガス
を導入する管であり、基体付近での原料ガス濃度が均一
になるよう配置されていることが好ましい。45は水素
などの反応促進ガスやヘリウムなどの希釈ガスを導入す
る管であり、赤外線透過窓49が原料ガスの分解で曇る
ことの防止にも役立つ。46はガスの排気ラインであ
り、ターボ分子ポンプやロータリーポンプへと接続され
ている。47は基板加熱用の赤外線ランプであり、48
は赤外線を効率よく赤外線吸収板へ集めるための集光ミ
ラーである。図では省略してあるが、この他容器内の圧
力をモニターする真空ゲージや基体の温度を測定する熱
電対などが組み込まれている。もちろんここで説明した
装置ばかりでなく、外部から全体を加熱する電気炉型の
装置であってもかまわない。実際のカーボンナノチュー
ブの成長では、例えば原料ガスにエチレンを44から1
0sccm導入し、45から水素を10sccm導入
し、容器内の圧力を1000パスカルにして、赤外線ラ
ンプにより基体を700℃にして60分間反応させる。
Next, carbon nanotubes are grown in a reactor as shown in FIG. Here, FIG. 4 which is a schematic diagram of the apparatus will be described. In FIG. 4, reference numeral 41 denotes a reaction vessel, reference numeral 42 denotes a substrate, and reference numeral 43 denotes an infrared absorbing plate, which also serves as a substrate holder. Reference numeral 44 denotes a pipe for introducing a raw material gas such as ethylene, which is preferably arranged so that the raw material gas concentration near the base becomes uniform. Reference numeral 45 denotes a tube for introducing a reaction promoting gas such as hydrogen or a diluent gas such as helium, and also serves to prevent the infrared transmission window 49 from fogging due to decomposition of the source gas. Reference numeral 46 denotes a gas exhaust line, which is connected to a turbo molecular pump or a rotary pump. 47 is an infrared lamp for heating the substrate,
Is a condenser mirror for efficiently collecting infrared rays on the infrared absorbing plate. Although not shown in the drawing, a vacuum gauge for monitoring the pressure in the container, a thermocouple for measuring the temperature of the base, and the like are incorporated. Of course, not only the device described here but also an electric furnace type device for heating the whole from the outside may be used. In the actual growth of carbon nanotubes, for example, ethylene is used as a raw material gas from 44 to
0 sccm is introduced, hydrogen is introduced at 10 sccm from 45, the pressure in the container is adjusted to 1000 Pascal, and the substrate is reacted at 700 ° C. for 60 minutes by an infrared lamp.

【0054】このようにして得られたものを図2c)に
示す。カーボンナノチューブの径は触媒超微粒子の径や
その他の反応条件に依存して、数nm〜サブミクロンの
直径を有し、長さは数10nm〜数10μmになる。ま
たチューブの片端、もしくは両端が既に基体と結合して
いるので電界電子放出やSTMなどの探針や量子デバイ
ス、マイクロマシンの振動子や各種電極などに用いる応
用の場合には特に都合がよい。またカーボンが化学的に
も安定でかつ高強度なため基体表面の改質法としても利
用可能である。
FIG. 2c) shows the thus obtained one. The diameter of the carbon nanotube has a diameter of several nm to submicron and a length of several tens nm to several tens μm, depending on the diameter of the ultrafine catalyst particles and other reaction conditions. In addition, since one end or both ends of the tube are already bonded to the substrate, it is particularly convenient for application to a probe such as field electron emission, an STM, a quantum device, a vibrator of a micromachine, various electrodes, and the like. Since carbon is chemically stable and has high strength, it can be used as a method for modifying the surface of a substrate.

【0055】[0055]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明するが、本発明はこれに限定されるもので
はなく、適宜本発明の範囲内で変更できるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. However, the present invention is not limited to these embodiments, and can be appropriately modified within the scope of the present invention.

【0056】実施例1 本発明に係るカーボンナノチューブデバイスとその製法
を、図3のプロセスを説明するための簡略断面図と図4
の装置概略図を用いて説明する。
Example 1 A simplified cross-sectional view for explaining a carbon nanotube device according to the present invention and a method for manufacturing the same according to the process shown in FIG. 3 and FIG.
This will be described with reference to the schematic diagram of the apparatus.

【0057】図4中41は反応容器であり、42は基
体、43はグラファイト製の赤外線吸収体であり基体ホ
ルダーの役割も担っている。44は原料ガスを導入する
管であり、基体付近での原料ガス濃度が均一になるよう
配置されている。45は水素ガスを導入する管であり、
赤外線透過窓49が原料ガスの分解で曇ることの防止に
も役立つように窓付近に配置されている。46はガスの
排気ラインであり、ターボ分子ポンプとロータリーポン
プへと接続されている。47は基板加熱用の赤外線ラン
プであり、48は赤外線を効率よく赤外線吸収板ヘ集め
るための集光ミラーである。この他容器内の圧力をモニ
ターする真空ゲージと基体の温度を測定する熱電対が組
み込まれている。
In FIG. 4, reference numeral 41 denotes a reaction vessel, reference numeral 42 denotes a substrate, and reference numeral 43 denotes an infrared absorber made of graphite, which also serves as a substrate holder. Reference numeral 44 denotes a pipe for introducing a source gas, which is arranged so that the source gas concentration near the substrate becomes uniform. 45 is a tube for introducing hydrogen gas,
The infrared transmission window 49 is arranged near the window so as to help prevent clouding due to decomposition of the source gas. Reference numeral 46 denotes a gas exhaust line, which is connected to a turbo molecular pump and a rotary pump. Reference numeral 47 denotes an infrared lamp for heating the substrate, and reference numeral 48 denotes a condenser mirror for efficiently collecting infrared rays to the infrared absorbing plate. In addition, a vacuum gauge for monitoring the pressure in the container and a thermocouple for measuring the temperature of the substrate are incorporated.

【0058】まずカーボンナノチューブを成長させる前
の基体の準備について説明する。
First, the preparation of the substrate before growing the carbon nanotube will be described.

【0059】最初に基体上に電極を作製する。基体とし
て清浄したサファイヤ基板、Siウエハー基板を用い、
RFスパッタリング法によりCoを100nm成膜し
た。スパッタリング条件はRF電力400W、Ar=5
mTorr雰囲気である。次に作製した電極上の一部に
超微粒子分散膜を作製するためにそれ以外の部分をメタ
ルマスクで覆い、CuとCo、CrとFe、AgとN
i、AuとCoとNiを電極成膜と同様な条件で同時ス
パッタリング、もしくは同時抵抗加熱法により約200
nm成膜した。このときA(Cu,Cr,Ag,A
u):B(Fe,Co,Ni)の比は5:1程度とし
た。この基体を図4に示した反応装置に設置して水素4
%、ヘリウム96%の雰囲気中で600℃で20分間ア
ニールすると、基体の表面には粒径数〜数10nmのF
e,Co,Niの触媒超微粒子33がCu,Cr,A
g,Auの超微粒子支持膜34中や表面にかなり高密度
に分散された超微粒子分散膜32の状態になった。
First, an electrode is formed on a substrate. Using a cleaned sapphire substrate and a Si wafer substrate as substrates,
100 nm of Co was deposited by an RF sputtering method. Sputtering conditions: RF power 400 W, Ar = 5
mTorr atmosphere. Next, in order to form an ultrafine particle dispersion film on a part of the prepared electrode, the other part is covered with a metal mask, and Cu and Co, Cr and Fe, Ag and N
i, Au, Co and Ni are simultaneously sputtered under the same conditions as the electrode film formation, or about 200 mm by the simultaneous resistance heating method.
nm. At this time, A (Cu, Cr, Ag, A
u): The ratio of B (Fe, Co, Ni) was about 5: 1. This substrate was placed in the reactor shown in FIG.
% And helium 96% in an atmosphere of 600 ° C. for 20 minutes, the surface of the substrate has a particle size of several to several tens of nm.
e, Co, Ni catalyst ultrafine particles 33 are Cu, Cr, A
The ultrafine particle dispersion film 32 was dispersed in the ultrafine particle support film 34 of g and Au and the surface thereof at a considerably high density.

【0060】次にこの触媒超微粒子を有する基体を同じ
反応装置中に設置したまま、まず45から水素ガスを1
0sccm導入して反応容器内の圧力を500パスカル
にした。そして赤外線ランプを点灯して基体温度を40
0〜800℃にした。温度が安定した後、44からメタ
ン、エチレン、アセチレン、一酸化炭素、ベンゼンの原
料ガスを約10sccm導入して反応容器内の圧力を1
000パスカルにして20分間保持した。そして赤外線
ランプを消して、ガス供給を遮断した後基板温度を室温
にしてから基体を大気中に取り出した。
Next, while the substrate having the ultrafine catalyst particles was placed in the same reactor, hydrogen gas was first introduced from 45.
The pressure in the reaction vessel was adjusted to 500 Pascal by introducing 0 sccm. Then, the infrared lamp is turned on to set the substrate temperature to 40.
0-800 ° C. After the temperature was stabilized, a raw material gas of methane, ethylene, acetylene, carbon monoxide, and benzene was introduced at about 10 sccm from 44, and the pressure in the reaction vessel was reduced to 1
000 Pascal and held for 20 minutes. Then, the infrared lamp was turned off, the gas supply was cut off, the substrate temperature was lowered to room temperature, and the substrate was taken out into the atmosphere.

【0061】取り出した基体の表面をFE−SEM(Fi
eld Emission-Scanning ElectronMicroscope: 電界放出
走査型電子顕微鏡)にて観察したところ、いずれの基体
も図3d)に示すように超微粒子分散膜上にのみカーボ
ンナノチューブが成長していた。カーボンナノチューブ
は原料ガスや触媒超微粒子に依存して直径数nm〜数1
0nmであり、基板にチューブの片側、もしくは両端を
接合させた状態で、基板からある程度垂直方向に成長し
ていた。ただしメタンがソースガスの場合にはカーボン
ナノチューブの成長は少なかった。またベンゼンがソー
スガスの場合にはカーボンナノチューブの径にはバラツ
キがあり、太いものは数100nmになっていた。カー
ボンナノチューブの成長最適温度は一酸化炭素、アセチ
レン、エチレン、ベンゼン、メタンの順に高くなった。
またSiウエハー基板では触媒超微粒子をCuに分散さ
せた場合が最もカーボンナノチューブの成長が進んでい
た。
The surface of the substrate taken out was cleaned with an FE-SEM (Fi
Observation with an eld-emission-scanning electron microscope (field emission scanning electron microscope) revealed that carbon nanotubes were grown only on the ultrafine particle-dispersed film in each substrate as shown in FIG. 3d). Carbon nanotubes have a diameter of several nm to several tens depending on the raw material gas and the catalyst ultrafine particles.
0 nm, and the tube was grown to some extent in the vertical direction from the substrate with one or both ends of the tube bonded to the substrate. However, when methane was the source gas, the growth of carbon nanotubes was small. Also, when benzene was the source gas, the diameter of the carbon nanotubes varied, and the diameter of the carbon nanotubes was several hundred nm. The optimum growth temperature of carbon nanotubes increased in the order of carbon monoxide, acetylene, ethylene, benzene, and methane.
In the case of Si wafer substrates, the growth of carbon nanotubes proceeded most when ultrafine catalyst particles were dispersed in Cu.

【0062】得られたカーボンナノチューブデバイスを
特性評価するため、基体の電極膜に電極を付けた後真空
チャンバー内に設置し、基板と平行でかつ基板と0.1
mm離した位置に対向電極を設置した。そしてチャンバ
ー内を10-8Torrに排気した後対向電極に正の電圧
を印加してゆき、カーボンナノチューブからの電子放出
量を測定した。その結果電流量はカーボンナノチューブ
を単に分散させた膜と比較して1桁ほど大きかった。こ
れはカーボンナノチューブが電極に十分接合されている
ことが効果となっていると考えられる。またこのデバイ
スの膜に平行に磁場を1000(Oe)印加したとこ
ろ、電子放出量が10%向上した。これはカーボンナノ
チューブに接合されているFe,Co,Niなどの超微
粒子のスピンが磁場により整列したことが原因と考えら
れる。電極上にカーボンナノチューブを分散させただけ
の膜では、磁場による電流変化は観測されなかった。こ
のことから本発明のデバイスは磁場によりアクティブに
応答することが確認された。
In order to evaluate the characteristics of the obtained carbon nanotube device, an electrode was attached to the electrode film of the substrate, and then placed in a vacuum chamber.
The counter electrode was set at a position separated by mm. After the chamber was evacuated to 10 -8 Torr, a positive voltage was applied to the opposite electrode, and the amount of electrons emitted from the carbon nanotube was measured. As a result, the amount of current was about one order of magnitude larger than that of a film in which carbon nanotubes were simply dispersed. This is considered to be due to the fact that the carbon nanotube is sufficiently bonded to the electrode. When a magnetic field of 1000 (Oe) was applied in parallel to the film of this device, the amount of emitted electrons was improved by 10%. This is considered to be due to the fact that the spins of ultrafine particles of Fe, Co, Ni, etc. joined to the carbon nanotubes were aligned by the magnetic field. In the film in which the carbon nanotubes were merely dispersed on the electrode, no current change due to the magnetic field was observed. This confirms that the device of the present invention actively responds to the magnetic field.

【0063】実施例2 次に横型のカーボンナノチューブデバイスの構成とその
製法の例を、図5の簡略図と図4の装置概略図を用いて
説明する。図5において、a)は上からみた平面略図、
b)は横断面略図である。
Embodiment 2 Next, the configuration of a horizontal carbon nanotube device and an example of a manufacturing method thereof will be described with reference to the simplified diagram of FIG. 5 and the schematic diagram of the apparatus of FIG. In FIG. 5, a) is a schematic plan view seen from above,
b) is a schematic cross section.

【0064】実施例1と同様にRF同時スパッタリング
法によりまずCo/Cu分散膜をメタルマスクを用いて
基本50上に膜厚200nm成膜した。このときのスパ
ッタリング条件はRF電力400W、Ar=5mTor
r雰囲気であり、Co:Cuの成分比は1:4程度であ
った。この基体を図4に示した反応装置に設置して10
-7Torrの真空中で450℃で20分間アニールする
と、分散膜中のCoが析出して粒径数〜数10nmのC
o超微粒子がかなり高密度に分散された状態が得られ、
触媒超微粒子分散膜53になった。次にこの触媒超微粒
子分散膜を有する基体を同じ反応装置中に設置したま
ま、まず45から水素ガスを20sccm導入して反応
容器内の圧力を500パスカルにした。そして赤外線ラ
ンプを点灯して基体温度を600℃にした。温度が安定
した後、窒素でアセチレンを10%まで希釈した混合原
料ガスを20sccm導入して反応容器内の圧力を10
00パスカルにして20分間保持した。ここでアセチレ
ンの流れが基体AからBに流れるよう設置した。そして
赤外線ランプを消して、ガス供給を遮断した後基板温度
を室温にしてから基体を大気中に取り出した。そしてメ
タルマスクでカバーした後スパッタリング法によりCo
電極51,52を膜厚100nmだけ成膜した。この際
カーボンナノチューブ54の先端の大部分は電極52に
よりカバーされ、電気的に接続された。
First, a Co / Cu dispersion film was formed to a thickness of 200 nm on the base 50 using a metal mask by the RF simultaneous sputtering method in the same manner as in Example 1. The sputtering conditions at this time were: RF power 400 W, Ar = 5 mTorr
r atmosphere, and the Co: Cu component ratio was about 1: 4. This substrate was placed in the reactor shown in FIG.
When annealing is performed at 450 ° C. for 20 minutes in a vacuum of -7 Torr, Co in the dispersed film precipitates and C having a particle size of several to several tens nm is deposited.
o A state in which ultrafine particles are dispersed at a considerably high density is obtained,
The catalyst ultrafine particle dispersion film 53 was obtained. Next, while keeping the substrate having the catalyst ultrafine particle dispersed film in the same reactor, hydrogen gas was introduced at 20 sccm from 45, and the pressure in the reaction vessel was raised to 500 Pascal. Then, the infrared lamp was turned on to set the substrate temperature to 600 ° C. After the temperature was stabilized, 20 sccm of a mixed source gas obtained by diluting acetylene to 10% with nitrogen was introduced to reduce the pressure in the reaction vessel to 10%.
00 Pascal and held for 20 minutes. Here, the acetylene was set so that the flow of acetylene would flow from the base A to the base B. Then, the infrared lamp was turned off, the gas supply was cut off, the substrate temperature was lowered to room temperature, and the substrate was taken out into the atmosphere. Then, after covering with a metal mask, Co is formed by sputtering.
The electrodes 51 and 52 were formed to a thickness of 100 nm. At this time, most of the tip of the carbon nanotube 54 was covered by the electrode 52 and was electrically connected.

【0065】得られた基体の表面をFE−SEMにて観
察したところ、図5a,b)に示すように超微粒子分散
膜53からカーボンナノチューブ54がソースガスの流
れに沿ってAからBの方向に成長しており、電極51,
52間はカーボンナノチューブで接合できていた。カー
ボンナノチューブ54の直径は数nm〜数10nmであ
った。
When the surface of the obtained substrate was observed by FE-SEM, as shown in FIGS. 5A and 5B, the carbon nanotubes 54 were dispersed from the ultrafine particle dispersion film 53 in the direction from A to B along the flow of the source gas. Electrode 51,
The region 52 was joined by carbon nanotubes. The diameter of the carbon nanotube 54 was several nm to several tens nm.

【0066】得られたカーボンナノチューブデバイスの
特性評価するため、基板の電極51,52に配線した後
電圧と磁場を印加してゆき、電流−電圧特性を測定し
た。このとき磁場は図5中A−Bに垂直方向に印加し
た。その結果同じ電圧の場合には1テスラでは最初の無
磁場に比較して約10%多い電流量が観測され、そのま
ま磁場をゼロにし戻しても最初の無磁場電流量より約3
%多かった。このことから本発明のデバイスは磁場のヒ
ステリシスを感知できるデバイスであることが確認され
た。また比較のためカーボンナノチューブを基体上に分
散させて、上から白金電極を作製した素子では、磁場に
応答する現象はみられなかった。
In order to evaluate the characteristics of the obtained carbon nanotube device, a voltage and a magnetic field were applied after wiring to the electrodes 51 and 52 of the substrate, and current-voltage characteristics were measured. At this time, the magnetic field was applied in the direction perpendicular to AB in FIG. As a result, in the case of the same voltage, at 1 Tesla, a current amount approximately 10% larger than that of the initial non-magnetic field is observed.
% More. This confirms that the device of the present invention is a device that can sense the hysteresis of the magnetic field. For comparison, in a device in which carbon nanotubes were dispersed on a substrate to form a platinum electrode from above, no response to a magnetic field was observed.

【0067】実施例3 次にTip型カーボンナノチューブデバイスの構成とそ
の製法の例を、図6のプロセスを説明するための簡略断
面図と図4の装置概略図を用いて説明する。
Embodiment 3 Next, a configuration of a tip type carbon nanotube device and an example of a manufacturing method thereof will be described with reference to a simplified cross-sectional view for explaining the process of FIG. 6 and a schematic diagram of the apparatus of FIG.

【0068】まず基体60であるSiウエハーをフォト
リソグラフィーにより図6a)のように梁状に形成し、
その上にCo電極61をスパッタリリング法により10
0nmの膜厚で成膜した。そして梁の一部に超微粒子分
散部分62を作製した。超微粒子分散部分62の作製に
は微小オリフィスを有する膜を電極61上に設け、Co
とCuを抵抗加熱法により斜め蒸着し、その後オリフィ
スを取り除く方法により行った。このときのCoとCu
の比は約1:4であった。この基体を図4に示した反応
装置に設置して10-7Torrの真空中で450℃で2
0分間アニールすると、分散膜中のCoが析出して粒径
数〜数10nmのCoの触媒超微粒子63がかなり高密
度に分散された状態が得られた。次にこの触媒超微粒子
分散膜を有する基体を同じ反応装置中に設置したまま、
まず45から水素ガスを20sccm導入して反応容器
内の圧力を500パスカルにした。そして赤外線ランプ
を点灯して基体温度を700℃にした。温度が安定した
後、エチレンガスを20sccm導入して反応容器内の
圧力を1000パルカルにして20分間保持した。そし
て赤外線ランプを消して、ガス供給を遮断した後基板温
度を室温にしてから基体を大気中に取り出した。
First, an Si wafer as the base 60 is formed in a beam shape by photolithography as shown in FIG.
A Co electrode 61 is formed thereon by sputtering to a thickness of 10.
The film was formed with a thickness of 0 nm. Then, an ultrafine particle dispersed portion 62 was formed on a part of the beam. To produce the ultrafine particle dispersion portion 62, a film having a fine orifice is provided on the electrode 61, and Co
And Cu were obliquely deposited by a resistance heating method, and then the orifice was removed. Co and Cu at this time
Was about 1: 4. The substrate was placed in the reactor shown in FIG. 4 and placed at 450 ° C. in a vacuum of 10 −7 Torr for 2 hours.
After annealing for 0 minutes, Co was precipitated in the dispersed film, and a state was obtained in which the ultrafine Co catalyst particles 63 having a particle size of several to several tens of nm were dispersed at a considerably high density. Next, while the substrate having the catalyst ultra-fine particle dispersed film is set in the same reactor,
First, 20 sccm of hydrogen gas was introduced from 45, and the pressure inside the reaction vessel was set to 500 Pascal. Then, the infrared lamp was turned on to set the substrate temperature to 700 ° C. After the temperature was stabilized, 20 sccm of ethylene gas was introduced, the pressure in the reaction vessel was set to 1,000 pcal, and the temperature was maintained for 20 minutes. Then, the infrared lamp was turned off, the gas supply was cut off, the substrate temperature was lowered to room temperature, and the substrate was taken out into the atmosphere.

【0069】得られた基体の表面をFE−SEMにて観
察したところ、図6c)に示すように超微粒子分散部分
62表面の触媒超微粒子63からカーボンナノチューブ
が成長しており、カーボンナノチューブの直径は数nm
〜数10nmであった。
When the surface of the obtained substrate was observed by FE-SEM, as shown in FIG. 6 c), carbon nanotubes grew from the catalyst ultrafine particles 63 on the surface of the ultrafine particle dispersed portion 62, and the diameter of the carbon nanotubes increased. Is a few nm
~ Several tens nm.

【0070】得られたカーボンナノチューブデバイスを
特性評価するため、基板をSTM,AFM評価装置に取
り付け、その際電極61も配線した。STM,AFM評
価の結果、カーボンナノチューブTipによる良好な画
像が得られた。またSTMでは着磁した膜のドメイン構
造が観測された。これはカーボンナノチューブがGMR
効果を有する膜に接続されている効果と考えられる。
In order to evaluate the characteristics of the obtained carbon nanotube device, the substrate was mounted on an STM / AFM evaluation apparatus, and the electrodes 61 were also wired. As a result of STM and AFM evaluation, a good image was obtained by the carbon nanotube Tip. In STM, the domain structure of the magnetized film was observed. This is because carbon nanotubes are GMR
This is considered to be an effect connected to the film having the effect.

【0071】[0071]

【発明の効果】以上説明したカーボンナノチューブの製
法を用いることにより以下の効果を達成できる。
The following effects can be achieved by using the carbon nanotube manufacturing method described above.

【0072】1)電極と電気的接合のよいカーボンナノ
チューブデバイスを提供できる。
1) It is possible to provide a carbon nanotube device having good electrical connection with an electrode.

【0073】2)磁場により電流量が制御できるカーボ
ンナノチューブデバイスを提供できる。
2) A carbon nanotube device whose current amount can be controlled by a magnetic field can be provided.

【0074】3)片側もしくは両端が電極に接合されて
いるカーボンナノチューブを成長できる。
3) A carbon nanotube having one or both ends joined to an electrode can be grown.

【0075】4)径や方向がある程度均一なカーボンナ
ノチューブが生成されうる。
4) Carbon nanotubes whose diameter and direction are somewhat uniform can be produced.

【0076】5)基板の任意の位置に直接カーボンナノ
チューブを成長できる。
5) Carbon nanotubes can be grown directly on any position on the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】カーボン細線の構造を示す簡略図で、a)は等
方的なカーボンファイバー、b)は周囲にアモルファス
カーボンの付いたカーボンナノチューブ、c)はマルチ
ウォール(カーボン)ナノチューブ、d)はシングルウ
ォール(カーボン)ナノチューブである。
FIG. 1 is a simplified diagram showing the structure of a fine carbon wire, a) isotropic carbon fiber, b) carbon nanotube with amorphous carbon around it, c) multi-wall (carbon) nanotube, d) Single-wall (carbon) nanotubes.

【図2】縦型カーボンナノチューブデバイスの製造プロ
セスを説明するための簡略断面図で、a)は基体上に超
微粒子分散膜(アニール前)を成膜したところ、b)は
その膜をアニールした後の状態、c)はカーボンナノチ
ューブ成長後のデバイスの状態である。
FIGS. 2A and 2B are simplified cross-sectional views for explaining a manufacturing process of a vertical carbon nanotube device. FIG. 2A shows a case where an ultrafine particle dispersed film (before annealing) is formed on a substrate, and FIG. The later state, c), is the state of the device after carbon nanotube growth.

【図3】実施例1のカーボンナノチューブデバイスの製
造プロセスを説明するための簡略断面図で、a)は基体
上に電極膜を成膜したところ、b)はその上に超微粒子
分散膜(アニール前)を成膜したところ、c)はその膜
をアニールした後の状態、d)はカーボンナノチューブ
成長後のデバイスの状態である。
FIGS. 3A and 3B are simplified cross-sectional views for explaining a manufacturing process of the carbon nanotube device of Example 1. FIG. 3A is a diagram in which an electrode film is formed on a substrate, and FIG. When the film was formed in the previous step, c) is the state after annealing the film, and d) is the state of the device after the growth of the carbon nanotube.

【図4】カーボンナノチューブの成長装置の概略図であ
る。
FIG. 4 is a schematic view of an apparatus for growing carbon nanotubes.

【図5】横型カーボンナノチューブデバイスの構成を説
明するための簡略図で、a)は上からみた平面図、b)
は横断面図である。
FIG. 5 is a simplified view for explaining the configuration of a lateral carbon nanotube device, wherein a) is a plan view seen from above, and b).
Is a cross-sectional view.

【図6】Tip型カーボンナノチューブデバイスの製造
プロセスを説明するための簡略断面図で、a)は基体上
に電極膜を成膜したところ、b)はその上の一部に超微
粒子分散部分を設けた状態、c)はその部分の表面にカ
ーボンナノチューブが成長した後のデバイスの状態であ
る。
FIG. 6 is a simplified cross-sectional view for explaining a manufacturing process of a Tip-type carbon nanotube device. FIG. 6A shows a case where an electrode film is formed on a substrate, and FIG. The state provided, c) is the state of the device after the carbon nanotubes have grown on the surface of that part.

【符号の説明】[Explanation of symbols]

20 基体 21 超微粒子分散膜(アニール前) 22 超微粒子分散膜(アニール後) 23 触媒超微粒子 24 超微粒子支持膜 25 カーボンナノチューブ 30 基体 31 電極膜 32 超微粒子分散膜 33 触媒超微粒子 34 超微粒子支持膜 35 カーボンナノチューブ 41 反応容器 42 基体 43 赤外線吸収板 44 原料ガス導入管 45 成長促進および希釈ガス導入管 46 排気系ライン 47 赤外線ランプ 48 赤外線集光ミラー 49 赤外線透過窓 50 基体 51 電極 52 電極 53 超微粒子分散膜 54 カーボンナノチューブ 60 基体 61 電極膜 62 超微粒子分散部分 63 触媒超微粒子 64 カーボンナノチューブ Reference Signs List 20 Substrate 21 Ultrafine particle dispersed film (before annealing) 22 Ultrafine particle dispersed film (after annealing) 23 Ultrafine catalyst particle 24 Ultrafine particle support film 25 Carbon nanotube 30 Substrate 31 Electrode film 32 Ultrafine particle dispersed film 33 Ultrafine catalyst particle 34 Ultrafine particle support Film 35 carbon nanotube 41 reaction vessel 42 substrate 43 infrared absorption plate 44 source gas introduction tube 45 growth promotion and dilution gas introduction tube 46 exhaust system line 47 infrared lamp 48 infrared condensing mirror 49 infrared transmission window 50 substrate 51 electrode 52 electrode 52 electrode 53 super Fine particle dispersed film 54 Carbon nanotube 60 Substrate 61 Electrode film 62 Ultrafine particle dispersed portion 63 Ultrafine catalyst particle 64 Carbon nanotube

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 カーボンナノチューブを用いたデバイス
であって、少なくとも該カーボンナノチューブの片方が
基体に接続してあり、かつその接合部分にFe,Co,
Niのうち1種類以上からなる金属を含有する触媒超微
粒子があり、該触媒超微粒子がCu,Ag,Au,Cr
のうち1種類以上からなる金属が主成分である材料に分
散されていることを特徴とするカーボンナノチューブデ
バイス。
1. A device using carbon nanotubes, wherein at least one of the carbon nanotubes is connected to a substrate, and a joint portion thereof is made of Fe, Co,
There are catalytic ultrafine particles containing at least one metal of Ni, and the catalytic ultrafine particles are Cu, Ag, Au, Cr.
A carbon nanotube device, wherein a metal composed of at least one of the above is dispersed in a material whose main component is a metal.
【請求項2】 前記基体がSiであり、前記触媒超微粒
子がFe,Coのうち1種類以上からなる金属を含有す
るものであり、かつそれがCuを主成分とする材料に分
散されている、請求項1に記載のカーボンナノチューブ
デバイス。
2. The method according to claim 1, wherein the base is Si, and the catalyst ultrafine particles contain a metal composed of at least one of Fe and Co, and the metal is dispersed in a material containing Cu as a main component. The carbon nanotube device according to claim 1.
【請求項3】 前記カーボンナノチューブに流れる電流
が外部磁場で変調されている、請求項1または2に記載
のカーボンナノチューブデバイス。
3. The carbon nanotube device according to claim 1, wherein a current flowing through the carbon nanotube is modulated by an external magnetic field.
【請求項4】 基体上に触媒を用いた熱分解法によりカ
ーボンナノチューブを成長させるカーボンナノチューブ
デバイスの製造法において、Fe,Co,Niのうち1
種類以上からなる金属を含有する触媒超微粒子がCu,
Ag,Au,Crのうち1種類以上からなる金属が主成
分である材料に分散されている基体の表面からカーボン
ナノチューブを成長させ、その際、該触媒超微粒子分散
部分を有する基体を、エチレン、アセチレン、一酸化炭
素ガスのいずれか、または混合されたガスを原料ガスと
して含む雰囲気中で400℃〜800℃の範囲で加熱し
て原料ガスの熱分解反応を起こさせることを特徴とする
カーボンナノチューブデバイスの製造方法。
4. A method for producing a carbon nanotube device in which carbon nanotubes are grown on a substrate by a thermal decomposition method using a catalyst, wherein one of Fe, Co, and Ni is used.
Catalyst ultrafine particles containing a metal of at least one kind
Carbon nanotubes are grown from the surface of a substrate in which a metal containing at least one of Ag, Au, and Cr is dispersed as a main component. A carbon nanotube characterized by causing a thermal decomposition reaction of a raw material gas by heating in a range of 400 ° C. to 800 ° C. in an atmosphere containing any one of acetylene and carbon monoxide gas or a mixed gas as a raw material gas. Device manufacturing method.
【請求項5】 前記基体がSiであり、前記触媒超微粒
子がFe,Coのうち1種類以上からなる金属を含有す
るものであり、かつそれがCuを主成分とする材料に分
散されている、請求項4に記載のカーボンナノチューブ
デバイスの製造方法。
5. The substrate is made of Si, and the ultrafine catalyst particles contain a metal composed of at least one of Fe and Co, which is dispersed in a material containing Cu as a main component. A method for manufacturing a carbon nanotube device according to claim 4.
【請求項6】 前記カ−ボンナノチュブに流れる電流を
外部磁場で変調する、請求項4または5に記載のカボー
ンナノチューブデバイスの製造法。
6. The method for manufacturing a carbon nanotube device according to claim 4, wherein a current flowing through the carbon nanotube is modulated by an external magnetic field.
JP30551297A 1997-11-07 1997-11-07 Carbon nanotube device and method of manufacturing the same Expired - Fee Related JP3363759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30551297A JP3363759B2 (en) 1997-11-07 1997-11-07 Carbon nanotube device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30551297A JP3363759B2 (en) 1997-11-07 1997-11-07 Carbon nanotube device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11139815A true JPH11139815A (en) 1999-05-25
JP3363759B2 JP3363759B2 (en) 2003-01-08

Family

ID=17946057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30551297A Expired - Fee Related JP3363759B2 (en) 1997-11-07 1997-11-07 Carbon nanotube device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3363759B2 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073205A1 (en) * 1999-06-02 2000-12-07 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes and catalysts therefor
EP1100297A2 (en) * 1999-11-10 2001-05-16 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Releasably contacting a contactlead onto a conductive path of a circuit board
JP2001240403A (en) * 2000-02-25 2001-09-04 Futaba Corp Carbon material, method for manufacturing the same, and electron discharging element
GB2364933A (en) * 2000-07-18 2002-02-13 Lg Electronics Inc Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
JP2002115059A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Method for controlling diameter of graphite nanofiber
JP2002115072A (en) * 2000-10-10 2002-04-19 Ulvac Japan Ltd Thermal cvd system for depositing graphite nanofiber thin film
JP2002115060A (en) * 2000-10-10 2002-04-19 Ulvac Japan Ltd Thermal cvd system for depositing graphite nanofiber thin film
JP2002115057A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Process for selectively depositing graphite nanofiber thin film by thermal cvd process
JP2002115070A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Method for depositing graphite nanofiber thin film by thermal cvd method
WO2001085612A3 (en) * 2000-05-11 2002-04-25 Ca Minister Nat Defence Process for preparing carbon nanotubes
JP2002121676A (en) * 2000-10-13 2002-04-26 Ulvac Japan Ltd Thermal cvd apparatus for forming graphite nano-fiber thin film
JP2002180253A (en) * 2000-12-14 2002-06-26 Ulvac Japan Ltd Thermal cvd system for depositing graphite nanofiber thin film
KR100372332B1 (en) * 1999-06-11 2003-02-17 일진나노텍 주식회사 Massive synthesis method of purified carbon nanotubes vertically aligned on large-area substrate using the thermal chemical vapor deposition
KR100372333B1 (en) * 1999-07-27 2003-02-17 일진나노텍 주식회사 Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition
KR100372335B1 (en) * 1999-11-05 2003-02-17 일진나노텍 주식회사 Synthesis method for controlling diameter of carbonnanotubes using catalytic metal fine patterns
KR100374042B1 (en) * 2001-07-11 2003-03-03 엘지전자 주식회사 Semiconductor device fabrication method using selective excluding process of carbon nanotube having various characteristics
KR100376197B1 (en) * 1999-06-15 2003-03-15 일진나노텍 주식회사 Low temperature synthesis of carbon nanotubes using metal catalyst layer for decompsing carbon source gas
KR100376768B1 (en) * 2000-08-23 2003-03-19 한국과학기술연구원 Parallel and selective growth and connection method of carbon nanotubes on the substrates for electronic-spintronic device applications
JP2003090788A (en) * 2001-09-19 2003-03-28 Olympus Optical Co Ltd Spm cantilever and method of manufacturing the same
KR100382879B1 (en) * 2000-09-22 2003-05-09 일진나노텍 주식회사 Method of synthesizing carbon nanotubes and apparatus being used therein.
KR100388433B1 (en) * 2001-10-15 2003-06-25 한국과학기술연구원 Fabricating method of metallic nanowires
WO2002099845A3 (en) * 2001-06-06 2003-08-21 Infineon Technologies Ag Electronic chip and electronic chip assembly
WO2003073440A1 (en) * 2002-02-27 2003-09-04 Hitachi Zosen Corporation Conductive material using carbon nano-tube, and manufacturing method thereof
KR100405974B1 (en) * 2001-06-15 2003-11-14 엘지전자 주식회사 Method for developing carbon nanotube horizontally
JP2004074116A (en) * 2002-08-22 2004-03-11 Denso Corp Catalyst body
US6737668B2 (en) 2000-07-03 2004-05-18 Canon Kabushiki Kaisha Method of manufacturing structure with pores and structure with pores
KR100434272B1 (en) * 2001-06-28 2004-06-05 엘지전자 주식회사 Method for developing carbon nanotube horizontally
JP2004163192A (en) * 2002-11-12 2004-06-10 National Institute Of Advanced Industrial & Technology Combustible gas sensor
JP2004161996A (en) * 2002-11-14 2004-06-10 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat-conductive interface material and method for producing the same
KR100445419B1 (en) * 2002-02-25 2004-08-25 삼성에스디아이 주식회사 Cold cathode emission source
EP1361608A3 (en) * 2002-05-10 2004-11-24 Texas Instruments Incorporated Providing electrical connection between an active region and a conductive layer in a semiconductor device using carbon nanotubes
WO2005007564A1 (en) * 2003-07-18 2005-01-27 Nec Corporation Method for fixing metal particle, and method for producing metal particle-containing substrate, method for producing carbon nanotube-containing substrate and method for producing semiconductor crystalline rod-containing substrate respectively using such fixing method
JP2005503007A (en) * 2001-07-25 2005-01-27 ナンテロ,インク. Nanotube films and products
WO2005032711A1 (en) * 2003-10-06 2005-04-14 Carbon Nano-Material Technology Co., Ltd. Method of making catalyst for carbon nanotubes and carbon nanofibers and catalyst for carbon nanotubes and nanofibers thereof
WO2006005234A1 (en) * 2004-07-09 2006-01-19 Beijing University Of Chemical Technology Catalyst for growth of carbon nanotubes and the preparing method of same
WO2006011468A1 (en) * 2004-07-27 2006-02-02 Dainippon Screen Mfg. Co., Ltd. Carbon nanotube device and process for producing the same
JP2006083486A (en) * 2004-09-15 2006-03-30 National Institute For Materials Science Carbon fiber body, member containing the same and method for producing them
JP2006247758A (en) * 2005-03-08 2006-09-21 Nagoya Institute Of Technology Method of manufacturing carbon nano-structural material, field emission display and scanning probe microscope
JP2006255817A (en) * 2005-03-16 2006-09-28 Sonac Kk Metal structure and its manufacturing method
JP2006527459A (en) * 2003-06-06 2006-11-30 エレクトロバック ファブリカツィオン エレクトロテクニッシャー スペツィアラールティケル ゲーエムベーハー Electron emitter and manufacturing process
US7147533B2 (en) 2002-09-26 2006-12-12 Canon Kabushiki Kaisha Method of producing electron emitting device using carbon fiber, electron source and image forming apparatus, and ink for producing carbon fiber
JP2007012619A (en) * 2005-07-02 2007-01-18 Samsung Electronics Co Ltd Planar light source device, manufacturing method of the same, liquid crystal display device including planar light source device, and method of manufacturing same
KR100684823B1 (en) 2000-11-23 2007-02-20 삼성에스디아이 주식회사 The method for growing carbonnanotube for field emitter of Field Emission Display
KR100697515B1 (en) * 2001-01-03 2007-03-20 엘지전자 주식회사 FED using carbon nanotube and manufacturing method thereof
JP2007117881A (en) * 2005-10-27 2007-05-17 Sonac Kk Catalyst support substrate and manufacturing method of the same
JP2007203180A (en) * 2006-02-01 2007-08-16 Sumitomo Electric Ind Ltd Manufacturing method of carbon nanostructure, catalytic metal particle composite material and its manufacturing method
JP2007523822A (en) * 2004-01-15 2007-08-23 ナノコンプ テクノロジーズ インコーポレイテッド Systems and methods for the synthesis of elongated length nanostructures
CN100335170C (en) * 2004-12-31 2007-09-05 厦门大学 Promoting cobalt-copper base catalyst for preparation of low carbon mixed alcohol-carbon nano tube from synthetic gas and preparing method thereof
KR100759547B1 (en) * 2002-07-29 2007-09-18 삼성에스디아이 주식회사 Carbon nanotube for fuel cell, method for preparing the same and fuel cell using the carbon nanotube
JP2007246317A (en) * 2006-03-14 2007-09-27 National Institute For Materials Science Nanocarbon material composite and its manufacturing method
US7319069B2 (en) 1999-09-22 2008-01-15 Canon Kabushiki Kaisha Structure having pores, device using the same, and manufacturing methods therefor
US7321097B2 (en) 2000-02-16 2008-01-22 Infineon Technologies Ag Electronic component comprising an electrically conductive connection consisting of carbon nanotubes and a method for producing the same
US7348591B2 (en) * 2005-08-12 2008-03-25 Kabushiki Kaisha Toshiba Switch element, memory element and magnetoresistive effect element
JP2008509540A (en) * 2003-06-06 2008-03-27 エレクトロバック アーゲー Field emission backlight for LCD TV
US7354881B2 (en) 1999-06-02 2008-04-08 The Board Of Regents Of The University Of Oklahoma Method and catalyst for producing single walled carbon nanotubes
AU2005203047B2 (en) * 1999-06-02 2008-04-17 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes and catalysts therefor
JP2008178805A (en) * 2007-01-25 2008-08-07 Hitachi Zosen Corp Fluid stirring method and fluid stirring device
CN100413010C (en) * 2004-09-03 2008-08-20 北京大学 Nano carbon tube based field emitting cathode and its preparing method
US7459138B2 (en) 2000-06-02 2008-12-02 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
CN100444953C (en) * 2007-04-20 2008-12-24 北京化工大学 Heterostructure material of hydrotalcite and carbon nanotube and its prepn process
JP2009062670A (en) * 2001-08-03 2009-03-26 Showa Denko Kk Fine carbon fiber and composition thereof
US7518247B2 (en) 2002-11-29 2009-04-14 Nec Corporation Semiconductor device and its manufacturing method
FR2925761A1 (en) * 2007-12-20 2009-06-26 Commissariat Energie Atomique METHOD FOR MAKING AN ELECTRICAL CONNECTION, BASED ON NANOTUBES, BETWEEN TWO SURFACES IN LOOK AND INTEGRATED CIRCUIT COMPRISING IT
US7585482B2 (en) 2000-06-02 2009-09-08 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
JP2009234844A (en) * 2008-03-26 2009-10-15 Ulvac Japan Ltd Substrate for growing carbon nanotube, its producing method and method for producing carbon nanotube
KR100932974B1 (en) * 2003-04-08 2009-12-21 삼성에스디아이 주식회사 Method for producing carbon-based composite particles for electron emission
US7635503B2 (en) * 2006-02-21 2009-12-22 Intel Corporation Composite metal films and carbon nanotube fabrication
US7635867B2 (en) 2001-05-16 2009-12-22 Infineon Technologies Ag Nanotube array and method for producing a nanotube array
US7683528B2 (en) 2004-10-14 2010-03-23 Canon Kabushiki Kaisha Structure, electron emitting device, secondary battery, electron source, and image display device
KR100982330B1 (en) * 2003-11-29 2010-09-15 삼성에스디아이 주식회사 A composition for forming a electron emitter of flat panel display and an electron emitter prepared therefrom
US7829622B2 (en) 2002-06-19 2010-11-09 The Board Of Regents Of The University Of Oklahoma Methods of making polymer composites containing single-walled carbon nanotubes
JP2010540263A (en) * 2007-10-02 2010-12-24 プレジデント アンド フェロウズ オブ ハーバード カレッジ Carbon nanotube synthesis for nanopore devices
JP4627863B2 (en) * 2000-10-13 2011-02-09 株式会社アルバック Thermal CVD equipment for forming graphite nanofiber thin films
JP4644345B2 (en) * 2000-10-06 2011-03-02 株式会社アルバック Method for forming graphite nanofiber thin film by thermal CVD
JP4644347B2 (en) * 2000-10-06 2011-03-02 株式会社アルバック Method for forming graphite nanofiber thin film by thermal CVD
US20110064645A1 (en) * 2009-09-14 2011-03-17 National Cheng Kung University Carbon nanotube and method for producing the same
KR101050546B1 (en) 2009-12-31 2011-07-19 연세대학교 산학협력단 Movable electric connection actuator using carbon nanotube, micro position sensor using the same, and manufacturing method thereof
JP2011200939A (en) * 2010-03-24 2011-10-13 Toppan Printing Co Ltd Method for manufacturing nanocarbon material composite substrate and nanocarbon material composite substrate
US8163647B2 (en) 2003-03-20 2012-04-24 Fujitsu Limited Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof
JP2012519643A (en) * 2009-03-03 2012-08-30 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー System and method for surface treatment and barrier coating of in situ CNT growth fibers
KR101192478B1 (en) 2011-06-01 2012-10-18 연세대학교 산학협력단 Switching device of micro electro mechanical switch, micro electro mechanical switch based on aligned carbon nanotube arrays as contact material and method for fabrication thereof
JP2013530111A (en) * 2010-04-23 2013-07-25 海洋王照明科技股▲ふん▼有限公司 Method for producing copper oxide nanowires
US8728430B2 (en) 2008-06-19 2014-05-20 Honda Motor Co., Ltd. Low temperature single-wall carbon nanotube synthesis
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
US8845996B2 (en) 2008-07-29 2014-09-30 Honda Motor Co., Ltd. Preferential growth of single-walled carbon nanotubes with metallic conductivity
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
JP2015030928A (en) * 2013-08-01 2015-02-16 積水化学工業株式会社 Metal-carbon fiber composite, method of producing the composite, carbon fiber and method of producing the same
US8969225B2 (en) 2009-08-03 2015-03-03 Applied Nano Structured Soultions, LLC Incorporation of nanoparticles in composite fibers
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
JP2015525670A (en) * 2012-07-12 2015-09-07 北京大学Peking University Catalyst for preparing single-walled carbon nanotubes with chirality selectivity and electrical conductivity selectivity, and its preparation method and application

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777518B2 (en) * 1999-06-02 2011-09-21 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティー オブ オクラホマ Method and catalyst for producing carbon nanotubes
US7354881B2 (en) 1999-06-02 2008-04-08 The Board Of Regents Of The University Of Oklahoma Method and catalyst for producing single walled carbon nanotubes
AU2005203047B2 (en) * 1999-06-02 2008-04-17 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes and catalysts therefor
US7563428B2 (en) 1999-06-02 2009-07-21 The Board Of Regents Of The University Of Oklahoma Method of making carbon nanotubes
WO2000073205A1 (en) * 1999-06-02 2000-12-07 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes and catalysts therefor
US7094386B2 (en) * 1999-06-02 2006-08-22 The Board Of Regents Of The University Of Oklahoma Method of producing single-walled carbon nanotubes
JP2003500326A (en) * 1999-06-02 2003-01-07 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティー オブ オクラホマ Methods and catalysts for producing carbon nanotubes
KR100372332B1 (en) * 1999-06-11 2003-02-17 일진나노텍 주식회사 Massive synthesis method of purified carbon nanotubes vertically aligned on large-area substrate using the thermal chemical vapor deposition
KR100376197B1 (en) * 1999-06-15 2003-03-15 일진나노텍 주식회사 Low temperature synthesis of carbon nanotubes using metal catalyst layer for decompsing carbon source gas
KR100372333B1 (en) * 1999-07-27 2003-02-17 일진나노텍 주식회사 Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition
US7319069B2 (en) 1999-09-22 2008-01-15 Canon Kabushiki Kaisha Structure having pores, device using the same, and manufacturing methods therefor
KR100372335B1 (en) * 1999-11-05 2003-02-17 일진나노텍 주식회사 Synthesis method for controlling diameter of carbonnanotubes using catalytic metal fine patterns
EP1100297A3 (en) * 1999-11-10 2002-04-17 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Releasably contacting a contactlead onto a conductive path of a circuit board
EP1100297A2 (en) * 1999-11-10 2001-05-16 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Releasably contacting a contactlead onto a conductive path of a circuit board
US7321097B2 (en) 2000-02-16 2008-01-22 Infineon Technologies Ag Electronic component comprising an electrically conductive connection consisting of carbon nanotubes and a method for producing the same
JP2001240403A (en) * 2000-02-25 2001-09-04 Futaba Corp Carbon material, method for manufacturing the same, and electron discharging element
WO2001085612A3 (en) * 2000-05-11 2002-04-25 Ca Minister Nat Defence Process for preparing carbon nanotubes
US7459138B2 (en) 2000-06-02 2008-12-02 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
US7585482B2 (en) 2000-06-02 2009-09-08 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6737668B2 (en) 2000-07-03 2004-05-18 Canon Kabushiki Kaisha Method of manufacturing structure with pores and structure with pores
GB2364933B (en) * 2000-07-18 2002-12-31 Lg Electronics Inc Method of horizontally growing carbon nanotubes
GB2364933A (en) * 2000-07-18 2002-02-13 Lg Electronics Inc Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
KR100376768B1 (en) * 2000-08-23 2003-03-19 한국과학기술연구원 Parallel and selective growth and connection method of carbon nanotubes on the substrates for electronic-spintronic device applications
KR100382879B1 (en) * 2000-09-22 2003-05-09 일진나노텍 주식회사 Method of synthesizing carbon nanotubes and apparatus being used therein.
JP4644345B2 (en) * 2000-10-06 2011-03-02 株式会社アルバック Method for forming graphite nanofiber thin film by thermal CVD
JP2002115059A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Method for controlling diameter of graphite nanofiber
JP4644347B2 (en) * 2000-10-06 2011-03-02 株式会社アルバック Method for forming graphite nanofiber thin film by thermal CVD
JP2002115057A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Process for selectively depositing graphite nanofiber thin film by thermal cvd process
JP4644346B2 (en) * 2000-10-06 2011-03-02 株式会社アルバック Method for forming graphite nanofiber thin film by thermal CVD
JP2002115070A (en) * 2000-10-06 2002-04-19 Ulvac Japan Ltd Method for depositing graphite nanofiber thin film by thermal cvd method
JP4627860B2 (en) * 2000-10-10 2011-02-09 株式会社アルバック Thermal CVD equipment for forming graphite nanofiber thin films
JP2002115072A (en) * 2000-10-10 2002-04-19 Ulvac Japan Ltd Thermal cvd system for depositing graphite nanofiber thin film
JP2002115060A (en) * 2000-10-10 2002-04-19 Ulvac Japan Ltd Thermal cvd system for depositing graphite nanofiber thin film
JP4627863B2 (en) * 2000-10-13 2011-02-09 株式会社アルバック Thermal CVD equipment for forming graphite nanofiber thin films
JP4677087B2 (en) * 2000-10-13 2011-04-27 株式会社アルバック Thermal CVD equipment for forming graphite nanofiber thin films
JP2002121676A (en) * 2000-10-13 2002-04-26 Ulvac Japan Ltd Thermal cvd apparatus for forming graphite nano-fiber thin film
KR100684823B1 (en) 2000-11-23 2007-02-20 삼성에스디아이 주식회사 The method for growing carbonnanotube for field emitter of Field Emission Display
JP2002180253A (en) * 2000-12-14 2002-06-26 Ulvac Japan Ltd Thermal cvd system for depositing graphite nanofiber thin film
KR100697515B1 (en) * 2001-01-03 2007-03-20 엘지전자 주식회사 FED using carbon nanotube and manufacturing method thereof
US7635867B2 (en) 2001-05-16 2009-12-22 Infineon Technologies Ag Nanotube array and method for producing a nanotube array
WO2002099845A3 (en) * 2001-06-06 2003-08-21 Infineon Technologies Ag Electronic chip and electronic chip assembly
US7301779B2 (en) 2001-06-06 2007-11-27 Infineon Technologies Ag Electronic chip and electronic chip assembly
KR100405974B1 (en) * 2001-06-15 2003-11-14 엘지전자 주식회사 Method for developing carbon nanotube horizontally
KR100434272B1 (en) * 2001-06-28 2004-06-05 엘지전자 주식회사 Method for developing carbon nanotube horizontally
KR100374042B1 (en) * 2001-07-11 2003-03-03 엘지전자 주식회사 Semiconductor device fabrication method using selective excluding process of carbon nanotube having various characteristics
US7357907B2 (en) 2001-07-23 2008-04-15 The Board Of Regents Of The University Of Oklahoma Method for producing single walled carbon nanotubes
JP2005503007A (en) * 2001-07-25 2005-01-27 ナンテロ,インク. Nanotube films and products
JP2009062670A (en) * 2001-08-03 2009-03-26 Showa Denko Kk Fine carbon fiber and composition thereof
JP2003090788A (en) * 2001-09-19 2003-03-28 Olympus Optical Co Ltd Spm cantilever and method of manufacturing the same
KR100388433B1 (en) * 2001-10-15 2003-06-25 한국과학기술연구원 Fabricating method of metallic nanowires
KR100445419B1 (en) * 2002-02-25 2004-08-25 삼성에스디아이 주식회사 Cold cathode emission source
WO2003073440A1 (en) * 2002-02-27 2003-09-04 Hitachi Zosen Corporation Conductive material using carbon nano-tube, and manufacturing method thereof
EP1361608A3 (en) * 2002-05-10 2004-11-24 Texas Instruments Incorporated Providing electrical connection between an active region and a conductive layer in a semiconductor device using carbon nanotubes
US7829622B2 (en) 2002-06-19 2010-11-09 The Board Of Regents Of The University Of Oklahoma Methods of making polymer composites containing single-walled carbon nanotubes
KR100759547B1 (en) * 2002-07-29 2007-09-18 삼성에스디아이 주식회사 Carbon nanotube for fuel cell, method for preparing the same and fuel cell using the carbon nanotube
JP2004074116A (en) * 2002-08-22 2004-03-11 Denso Corp Catalyst body
US7147533B2 (en) 2002-09-26 2006-12-12 Canon Kabushiki Kaisha Method of producing electron emitting device using carbon fiber, electron source and image forming apparatus, and ink for producing carbon fiber
JP2004163192A (en) * 2002-11-12 2004-06-10 National Institute Of Advanced Industrial & Technology Combustible gas sensor
JP2004161996A (en) * 2002-11-14 2004-06-10 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat-conductive interface material and method for producing the same
US7518247B2 (en) 2002-11-29 2009-04-14 Nec Corporation Semiconductor device and its manufacturing method
US8163647B2 (en) 2003-03-20 2012-04-24 Fujitsu Limited Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof
KR100932974B1 (en) * 2003-04-08 2009-12-21 삼성에스디아이 주식회사 Method for producing carbon-based composite particles for electron emission
US8057596B2 (en) 2003-04-08 2011-11-15 Samsung Sdi Co., Ltd. Carbon-based composite particle for electron emission device, and method for preparing
JP2008509540A (en) * 2003-06-06 2008-03-27 エレクトロバック アーゲー Field emission backlight for LCD TV
JP2006527459A (en) * 2003-06-06 2006-11-30 エレクトロバック ファブリカツィオン エレクトロテクニッシャー スペツィアラールティケル ゲーエムベーハー Electron emitter and manufacturing process
WO2005007564A1 (en) * 2003-07-18 2005-01-27 Nec Corporation Method for fixing metal particle, and method for producing metal particle-containing substrate, method for producing carbon nanotube-containing substrate and method for producing semiconductor crystalline rod-containing substrate respectively using such fixing method
KR100850650B1 (en) * 2003-07-18 2008-08-07 닛본 덴끼 가부시끼가이샤 Method for fixing metal particle, and method for producing metal particle-containing substrate, method for producing carbon nanotube-containing substrate and method for producing semiconductor crystalline rod-containing substrate respectively using such fixing method
US7658798B2 (en) 2003-07-18 2010-02-09 Nec Corporation Method for fixing metal particles and method for manufacturing substrate containing metal particles, method for manufacturing substrate containing carbon nanotube, and method for manufacturing substrate containing semiconductor-crystalline rod, employing thereof
WO2005032711A1 (en) * 2003-10-06 2005-04-14 Carbon Nano-Material Technology Co., Ltd. Method of making catalyst for carbon nanotubes and carbon nanofibers and catalyst for carbon nanotubes and nanofibers thereof
KR100982330B1 (en) * 2003-11-29 2010-09-15 삼성에스디아이 주식회사 A composition for forming a electron emitter of flat panel display and an electron emitter prepared therefrom
JP2007523822A (en) * 2004-01-15 2007-08-23 ナノコンプ テクノロジーズ インコーポレイテッド Systems and methods for the synthesis of elongated length nanostructures
WO2006005234A1 (en) * 2004-07-09 2006-01-19 Beijing University Of Chemical Technology Catalyst for growth of carbon nanotubes and the preparing method of same
JPWO2006011468A1 (en) * 2004-07-27 2008-07-31 大日本スクリーン製造株式会社 Carbon nanotube device and manufacturing method thereof
KR100845653B1 (en) * 2004-07-27 2008-07-10 다이니폰 스크린 세이조우 가부시키가이샤 Carbon nanotube device and process for producing the same
WO2006011468A1 (en) * 2004-07-27 2006-02-02 Dainippon Screen Mfg. Co., Ltd. Carbon nanotube device and process for producing the same
JP4558735B2 (en) * 2004-07-27 2010-10-06 大日本スクリーン製造株式会社 Carbon nanotube device and manufacturing method thereof
US8642126B2 (en) 2004-07-27 2014-02-04 Dainippon Screen Mfg. Co., Ltd. Carbon nanotube device and process for producing the same
CN100413010C (en) * 2004-09-03 2008-08-20 北京大学 Nano carbon tube based field emitting cathode and its preparing method
JP2006083486A (en) * 2004-09-15 2006-03-30 National Institute For Materials Science Carbon fiber body, member containing the same and method for producing them
US7683528B2 (en) 2004-10-14 2010-03-23 Canon Kabushiki Kaisha Structure, electron emitting device, secondary battery, electron source, and image display device
CN100335170C (en) * 2004-12-31 2007-09-05 厦门大学 Promoting cobalt-copper base catalyst for preparation of low carbon mixed alcohol-carbon nano tube from synthetic gas and preparing method thereof
JP2006247758A (en) * 2005-03-08 2006-09-21 Nagoya Institute Of Technology Method of manufacturing carbon nano-structural material, field emission display and scanning probe microscope
JP2006255817A (en) * 2005-03-16 2006-09-28 Sonac Kk Metal structure and its manufacturing method
JP2007012619A (en) * 2005-07-02 2007-01-18 Samsung Electronics Co Ltd Planar light source device, manufacturing method of the same, liquid crystal display device including planar light source device, and method of manufacturing same
US7348591B2 (en) * 2005-08-12 2008-03-25 Kabushiki Kaisha Toshiba Switch element, memory element and magnetoresistive effect element
JP2007117881A (en) * 2005-10-27 2007-05-17 Sonac Kk Catalyst support substrate and manufacturing method of the same
JP2007203180A (en) * 2006-02-01 2007-08-16 Sumitomo Electric Ind Ltd Manufacturing method of carbon nanostructure, catalytic metal particle composite material and its manufacturing method
US7635503B2 (en) * 2006-02-21 2009-12-22 Intel Corporation Composite metal films and carbon nanotube fabrication
JP2007246317A (en) * 2006-03-14 2007-09-27 National Institute For Materials Science Nanocarbon material composite and its manufacturing method
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9574300B2 (en) 2007-01-03 2017-02-21 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9573812B2 (en) 2007-01-03 2017-02-21 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
JP2008178805A (en) * 2007-01-25 2008-08-07 Hitachi Zosen Corp Fluid stirring method and fluid stirring device
CN100444953C (en) * 2007-04-20 2008-12-24 北京化工大学 Heterostructure material of hydrotalcite and carbon nanotube and its prepn process
JP2010540263A (en) * 2007-10-02 2010-12-24 プレジデント アンド フェロウズ オブ ハーバード カレッジ Carbon nanotube synthesis for nanopore devices
FR2925761A1 (en) * 2007-12-20 2009-06-26 Commissariat Energie Atomique METHOD FOR MAKING AN ELECTRICAL CONNECTION, BASED ON NANOTUBES, BETWEEN TWO SURFACES IN LOOK AND INTEGRATED CIRCUIT COMPRISING IT
JP2009234844A (en) * 2008-03-26 2009-10-15 Ulvac Japan Ltd Substrate for growing carbon nanotube, its producing method and method for producing carbon nanotube
US8728430B2 (en) 2008-06-19 2014-05-20 Honda Motor Co., Ltd. Low temperature single-wall carbon nanotube synthesis
US8845996B2 (en) 2008-07-29 2014-09-30 Honda Motor Co., Ltd. Preferential growth of single-walled carbon nanotubes with metallic conductivity
US10138128B2 (en) 2009-03-03 2018-11-27 Applied Nanostructured Solutions, Llc System and method for surface treatment and barrier coating of fibers for in situ CNT growth
JP2012519643A (en) * 2009-03-03 2012-08-30 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー System and method for surface treatment and barrier coating of in situ CNT growth fibers
US8969225B2 (en) 2009-08-03 2015-03-03 Applied Nano Structured Soultions, LLC Incorporation of nanoparticles in composite fibers
US20110064645A1 (en) * 2009-09-14 2011-03-17 National Cheng Kung University Carbon nanotube and method for producing the same
KR101050546B1 (en) 2009-12-31 2011-07-19 연세대학교 산학협력단 Movable electric connection actuator using carbon nanotube, micro position sensor using the same, and manufacturing method thereof
JP2011200939A (en) * 2010-03-24 2011-10-13 Toppan Printing Co Ltd Method for manufacturing nanocarbon material composite substrate and nanocarbon material composite substrate
JP2013530111A (en) * 2010-04-23 2013-07-25 海洋王照明科技股▲ふん▼有限公司 Method for producing copper oxide nanowires
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
KR101192478B1 (en) 2011-06-01 2012-10-18 연세대학교 산학협력단 Switching device of micro electro mechanical switch, micro electro mechanical switch based on aligned carbon nanotube arrays as contact material and method for fabrication thereof
JP2015525670A (en) * 2012-07-12 2015-09-07 北京大学Peking University Catalyst for preparing single-walled carbon nanotubes with chirality selectivity and electrical conductivity selectivity, and its preparation method and application
JP2015030928A (en) * 2013-08-01 2015-02-16 積水化学工業株式会社 Metal-carbon fiber composite, method of producing the composite, carbon fiber and method of producing the same

Also Published As

Publication number Publication date
JP3363759B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP3363759B2 (en) Carbon nanotube device and method of manufacturing the same
Dai Nanotube growth and characterization
JP3441923B2 (en) Manufacturing method of carbon nanotube
JP3740295B2 (en) Carbon nanotube device, manufacturing method thereof, and electron-emitting device
Avigal et al. Growth of aligned carbon nanotubes by biasing during growth
Singh et al. Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method
US7011884B1 (en) Carbon nanotube with a graphitic outer layer
Cui et al. Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition
Wang et al. Bamboo-like carbon nanotubes produced by pyrolysis of iron (II) phthalocyanine
US8529862B2 (en) Method for preparing single walled carbon nanotubes from a metal layer
JPH10203810A (en) Production of carbon nanotube
US20090068461A1 (en) Carbon nanotubes on carbon nanofiber substrate
Mann Synthesis of carbon nanotubes
Komarov et al. Carbon nanotubes: present and future
JP3453378B2 (en) Radial aggregate of sharp-end multi-walled carbon nanotubes and method for producing the same
JP3913583B2 (en) Method for producing carbon nanotube
Yao et al. Synthesis of single-wall carbon nanotubes and long nanotube ribbons with Ho/Ni as catalyst by arc discharge
Kichambare et al. Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene
Jou et al. Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane
JP3524542B2 (en) Manufacturing method of carbon nanotube
JP2006219358A (en) Nanocarbon and method for producing the nanocarbon
Subramoney Carbon nanotubes: A status report
Li et al. Oriented carbon microfibers grown by catalytic decomposition of acetylene and their field emission properties
JP3958330B2 (en) Carbon nanotube device and manufacturing method thereof
Raghavan Synthesis of multi-walled carbon nanotubes by plasma enhanced microwave CVD using colloidal form of iron oxide as a catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees