JP2006083486A - Carbon fiber body, member containing the same and method for producing them - Google Patents

Carbon fiber body, member containing the same and method for producing them Download PDF

Info

Publication number
JP2006083486A
JP2006083486A JP2004268950A JP2004268950A JP2006083486A JP 2006083486 A JP2006083486 A JP 2006083486A JP 2004268950 A JP2004268950 A JP 2004268950A JP 2004268950 A JP2004268950 A JP 2004268950A JP 2006083486 A JP2006083486 A JP 2006083486A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber body
producing
substrate
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004268950A
Other languages
Japanese (ja)
Inventor
Hisahiro Ando
寿浩 安藤
Kiyoharu Nakagawa
清晴 中川
Mika Gamo
美香 蒲生
Yosuke Takazawa
要介 高澤
Yoichi Sato
洋一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Sekisui Chemical Co Ltd
Original Assignee
National Institute for Materials Science
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Sekisui Chemical Co Ltd filed Critical National Institute for Materials Science
Priority to JP2004268950A priority Critical patent/JP2006083486A/en
Publication of JP2006083486A publication Critical patent/JP2006083486A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a carbon fiber body that is applicable to various electrode materials, etc., and a member comprising the same and to provide a method for producing them. <P>SOLUTION: The carbon fiber body has a shape in which a plurality of carbon fibers are twisted in a rope form and is produced by heating a catalyst in a liquid raw material. A hydrocarbon liquid at a normal temperature under normal pressure or a material composed of an alcohol and a boron-based compound may be cited as the raw material. In more detail, a substrate having a surface on which a catalyst exists is heated in the liquid raw material. The carbon fiber body grows from the catalyst on the substrate, namely the member in which one end of the carbon fiber body is bonded to the substrate is obtained by the production method. The member is usable as various electrode materials as it is. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭素繊維体およびそれを有する部材、それらの製造方法に関し、詳細には、電気二重層キャパシタ及び二次電池等に使用できる炭素繊維体およびそれを有する部材並びにそれらの製造方法に関する。   The present invention relates to a carbon fiber body, a member having the same, and a method for manufacturing the same, and more particularly to a carbon fiber body that can be used for an electric double layer capacitor, a secondary battery, and the like, and a member having the carbon fiber body.

炭素繊維体の一形態であるカーボンナノチューブは、その特異な電気的及び機械的性質により、電界放射電子源、ナノスケール電子デバイス、化学的貯蔵システム、機械的補強材などといった将来のナノテクノロジーに応用できる可能性が高い。   Carbon nanotubes, a form of carbon fiber body, can be applied to future nanotechnology such as field emission electron sources, nanoscale electronic devices, chemical storage systems, mechanical reinforcements, etc. due to their unique electrical and mechanical properties It is highly possible.

また、パーソナルコンピューターのメモリーバックアップ電源、二次電池の補助、代替などの用途、また、電気自動車あるいは燃料電池自動車のバッテリーのバックアップ電源、ハイブリッド用電源などに電気二重層キャパシタが用いられるようになってきている。   In addition, electric double layer capacitors have come to be used in applications such as memory backup power supplies for personal computers, subsidizing and substituting secondary batteries, battery backup power supplies for electric vehicles or fuel cell vehicles, and power supplies for hybrid vehicles. ing.

この電気二重層キャパシタは、電極を構成する導電体と、それに含浸させた電解質溶液とからなり、両電極の間に電圧が印加されると、分極性電極の界面に電解液中のイオン種が吸着され、これによって生じる電極と電解液界面の電気二重層に電荷を蓄積するものであり、それぞれ符号の異なる一対の電荷層(電気二重層)が生じることを利用するものであって、充放電に伴う劣化が生じないという特徴を有している。そのため、電気二重層キャパシタは、例えば、電源(電池、又は商用交流電源を直流に変換した電源)と並列に接続して電荷を蓄積させておき、電源の瞬断時にそこに蓄積された電荷を放出させることにより、種々の電気・電子機器(例えばD−RAM等)のバックアップをするという形で使用されている。   This electric double layer capacitor is composed of a conductor constituting an electrode and an electrolyte solution impregnated therein, and when a voltage is applied between both electrodes, the ionic species in the electrolyte is present at the interface of the polarizable electrode. Charges are accumulated in the electric double layer at the electrode-electrolyte interface that is adsorbed and generated by this, utilizing the fact that a pair of charge layers (electric double layers) with different signs are generated, and charging and discharging It has the characteristic that the deterioration accompanying this does not occur. Therefore, the electric double layer capacitor is connected in parallel with, for example, a power source (battery or a power source obtained by converting a commercial AC power source into a direct current), and charges are accumulated. By discharging, it is used in the form of backing up various electric / electronic devices (for example, D-RAM).

従来の電気二重層キャパシタでは、その電極用導電体(炭素繊維体)として、活性炭粉末等が用いられている。これは、電気二重層キャパシタの静電容量は、電気二重層に蓄えられる電荷量によって決まり、その電荷量は電極の表面積が大きければ大きいほど大きいからである。活性炭は、1000m/g以上という高い比表面積を有していることから、大きな表面積を必要とする電気二重層キャパシタの電極材料として適した材料である。 In the conventional electric double layer capacitor, activated carbon powder or the like is used as the electrode conductor (carbon fiber body). This is because the capacitance of the electric double layer capacitor is determined by the amount of charge stored in the electric double layer, and the amount of charge increases as the surface area of the electrode increases. Since activated carbon has a high specific surface area of 1000 m 2 / g or more, it is a material suitable as an electrode material for an electric double layer capacitor that requires a large surface area.

活性炭粉末を分極性電極として用いた電気二重層キャパシタとしては、活性炭粉末をフェノール樹脂等の熱硬化性樹脂と混合して固形化し、固体活性炭電極として利用している(例えば、特許文献1参照。)。
電気二重層キャパシタのうち、特に大容量のものは、パルスパワー用電源としての利用が期待できる。しかしながら、従来の電気二重層キャパシタは、瞬時に大電流を供給することができず、パルスパワー用電源として必要とされる機能を果たすことができない。これは、活性炭粉末のもつ直径数nmの微細な細孔の内部において、イオン種の移動が抑制されてしまうからである。詳述すると、活性炭粉末を用いた固体活性炭電極は、活性炭粉末のもつ直径数nmの細孔と、フェノール樹脂の炭化時に形成される直径100nm以上の細孔とを有している(例えば、特許文献2参照。)。
これらの細孔のうち、活性炭粉末のもつ直径数nmの微細な細孔の内部では、イオン種の移動が抑制されてしまう。従って、従来の電気二重層キャパシタには、大電流で放電を行うと、見かけ上、容量が減少し、十分な性能を発揮できないという問題点がある。このため、イオン種の保持および移動がより容易であるような微細な構造を有する電極の実現が望まれている。
As an electric double layer capacitor using activated carbon powder as a polarizable electrode, the activated carbon powder is mixed with a thermosetting resin such as a phenol resin to be solidified and used as a solid activated carbon electrode (see, for example, Patent Document 1). ).
Among electric double layer capacitors, those with particularly large capacities can be expected to be used as power sources for pulse power. However, the conventional electric double layer capacitor cannot supply a large current instantaneously and cannot perform a function required as a power source for pulse power. This is because the movement of ionic species is suppressed inside the fine pores with a diameter of several nm that the activated carbon powder has. More specifically, a solid activated carbon electrode using activated carbon powder has pores with a diameter of several nm that the activated carbon powder has and pores with a diameter of 100 nm or more that are formed when the phenol resin is carbonized (for example, patents). Reference 2).
Among these pores, the movement of ionic species is suppressed inside the fine pores with a diameter of several nm that the activated carbon powder has. Therefore, the conventional electric double layer capacitor has a problem that when discharging is performed with a large current, the capacity is apparently reduced and sufficient performance cannot be exhibited. Therefore, it is desired to realize an electrode having a fine structure that makes it easier to hold and move ionic species.

また、単位体積あたりの電極に流すことができる最大電流値は、その電極の単位体積あたりの静電容量に比例する。そのため、電極の単位体積あたりの静電容量は、より大きいことが望ましい。   In addition, the maximum current value that can be passed to the electrode per unit volume is proportional to the capacitance per unit volume of the electrode. Therefore, it is desirable that the capacitance per unit volume of the electrode is larger.

また、リチウム二次電池は、各種二次電池の中で、携帯電話やノートパソコンに代表される情報通信機器に必須の電源として使用され、モバイル機器の小型軽量化に寄与している。かかるリチウム二次電池の電極材(添加材)として、電極の強度付与、導電性付与等の目的で黒鉛や炭素繊維が用いられている。リチウム二次電池の正極材、負極材ともに層状構造を有しており、充電時には正極からリチウムイオンが引き抜かれ、負極の炭素六角網層間に挿入されてリチウム層間化合物を形成する。放電時には逆に炭素負極から正極へリチウムイオンが移動する反応が起こる。電極材の炭素材料は上記のように、リチウムイオンを吸蔵、放出する機能を有し、この吸蔵、放出機能の良否が充放電特性等の電池特性に大きな影響を与える。   A lithium secondary battery is used as an indispensable power source for information communication devices represented by mobile phones and notebook computers among various secondary batteries, and contributes to the reduction in size and weight of mobile devices. As an electrode material (additive) for such a lithium secondary battery, graphite or carbon fiber is used for the purpose of imparting strength and conductivity to the electrode. Both the positive electrode material and the negative electrode material of a lithium secondary battery have a layered structure, and during charging, lithium ions are extracted from the positive electrode and inserted between carbon hexagonal network layers of the negative electrode to form a lithium intercalation compound. Conversely, during discharge, a reaction occurs in which lithium ions move from the carbon negative electrode to the positive electrode. As described above, the carbon material of the electrode material has a function of occluding and releasing lithium ions, and the quality of the occluding and releasing functions greatly affects battery characteristics such as charge / discharge characteristics.

黒鉛、特に異方性グラファイトは典型的な層状構造を有し、種々の原子、分子を導入してグラファイト層間化合物(Graphite Intercalation Compounds;GIC)を形成する。この黒鉛の層間にリチウムイオンが挿入されると、層間が広がり、電極材(特に負極材)は膨張する。このような状態で充放電が繰り返されると、電極の変形がもたらしたり、金属リチウムの析出が起こりやすくなり、容量劣化や内部ショートの原因となる。また層間が伸縮を繰り返すと、黒鉛結晶構造の破壊原因となり、サイクル特性(寿命)に悪影響を与える。加えて、黒鉛は電極材として導電性に劣るという問題がある。一方、炭素材料には、気相成長法によって製造されるチューブ状の炭素繊維も知られている。この炭素繊維は複数の同心状の炭素六角網層が形成されたチューブ状をなし、負極材として用いられる場合、リチウムイオンの挿入口は繊維の端面でしかなく、十分なリチウム層間化合物が形成されず、電気エネルギー密度が小さく、十分な容量が得られないという課題がある。また炭素六角網層が同心状をなすため、リチウムイオンが挿入されると、同心状の炭素六角網層が無理に押し広げられ、ストレスが生じて、やはり結晶構造の破壊原因となるという問題がある。   Graphite, particularly anisotropic graphite, has a typical layered structure, and various atoms and molecules are introduced to form a graphite intercalation compound (GIC). When lithium ions are inserted between the graphite layers, the layers expand and the electrode material (particularly the negative electrode material) expands. If charging / discharging is repeated in such a state, the electrode is deformed or metal lithium is liable to be deposited, resulting in capacity deterioration and internal short circuit. Moreover, repeated expansion and contraction between layers causes destruction of the graphite crystal structure and adversely affects cycle characteristics (life). In addition, graphite has a problem of poor conductivity as an electrode material. On the other hand, a tubular carbon fiber manufactured by a vapor deposition method is also known as a carbon material. This carbon fiber has a tube shape in which a plurality of concentric carbon hexagonal network layers are formed, and when used as a negative electrode material, the insertion port of lithium ions is only the end face of the fiber, and a sufficient lithium intercalation compound is formed. However, there is a problem that the electric energy density is small and sufficient capacity cannot be obtained. Also, since the carbon hexagonal network layer is concentric, when lithium ions are inserted, the concentric carbon hexagonal network layer is forcibly spread and stress is generated, which also causes destruction of the crystal structure. is there.

特公平4−44407号公報Japanese Examined Patent Publication No. 4-44407 特開平4−288361号公報JP-A-4-288361

本発明の目的は、上記の課題を解決するために、イオン種の保持・移動を容易にするような微細な構造を有し、静電容量が大きくかつ瞬時に大電流を取り出すことができる電気二重層キャパシタの部材(電極材料)、または、寿命性能に優れ容量増加も図れる二次電池の負極材等に応用可能な炭素繊維体およびそれを有する部材並びにそれらの製造方法を提供することである。   An object of the present invention is to solve the above-mentioned problems by providing an electric structure that has a fine structure that facilitates the retention and movement of ionic species, has a large capacitance, and can instantaneously extract a large current. It is to provide a carbon fiber body applicable to a member of a double layer capacitor (electrode material) or a negative electrode material of a secondary battery which has excellent life performance and can also increase capacity, a member having the carbon fiber body, and a method for manufacturing the same. .

上記課題は、以下の構成により達成される。
即ち、本発明は以下の通りである。
(1)複数本の炭素繊維が縄状に捻れた形状を持つことを特徴とする炭素繊維体。
(2)1本の炭素繊維の直径が10〜40nmであることを特徴とする前記(1)記載の炭素繊維体。
(3)2〜5本の炭素繊維からなることを特徴とする前記(1)記載の炭素繊維体。
(4)直径が20〜200nmであることを特徴とする前記(1)記載の炭素繊維体。
(5)長さが1〜30μmであることを特徴とする前記(1)記載の炭素繊維体。
The above-mentioned subject is achieved by the following composition.
That is, the present invention is as follows.
(1) A carbon fiber body having a shape in which a plurality of carbon fibers are twisted like a rope.
(2) The carbon fiber body according to (1), wherein the diameter of one carbon fiber is 10 to 40 nm.
(3) The carbon fiber body according to (1), comprising 2 to 5 carbon fibers.
(4) The carbon fiber body according to (1), wherein the diameter is 20 to 200 nm.
(5) The carbon fiber body according to (1), wherein the length is 1 to 30 μm.

(6)前記(1)〜(5)のいずれかに記載の炭素繊維体の片末端が基板に結合したものであることを特徴とする部材。
(7)前記(1)〜(5)のいずれかに記載の炭素繊維体が基板から成長したものであることを特徴とする部材。
(8)炭素繊維体が基板上の触媒から成長したものであることを特徴とする前記(6)または(7)記載の部材。
(6) A member characterized in that one end of the carbon fiber body according to any one of (1) to (5) is bonded to a substrate.
(7) A member characterized in that the carbon fiber body according to any one of (1) to (5) is grown from a substrate.
(8) The member according to (6) or (7) above, wherein the carbon fiber body is grown from a catalyst on the substrate.

(9)液体原料中で触媒を加熱することを特徴とする前記(1)〜(5)のいずれかに記載の炭素繊維体の製造方法。
(10)原料が常温常圧で液状の炭化水素であることを特徴とする前記(9)記載の炭素繊維体の製造方法。
(11)炭化水素が、ヘキサン、ペプタン、オクタン、ベンゼン、トルエンおよびキシレンから選ばれる少なくとも一種からなることを特徴とする前記(10)記載の炭素繊維体の製造方法。
(9) The method for producing a carbon fiber body according to any one of (1) to (5), wherein the catalyst is heated in a liquid raw material.
(10) The method for producing a carbon fiber body as described in (9) above, wherein the raw material is a hydrocarbon which is liquid at normal temperature and pressure.
(11) The method for producing a carbon fiber body as described in (10) above, wherein the hydrocarbon is at least one selected from hexane, peptane, octane, benzene, toluene and xylene.

(12)原料がアルコール類とホウ素系化合物とからなることを特徴とする前記(9)記載の炭素繊維体の製造方法。
(13)アルコールに可溶なホウ素系化合物であることを特徴とする前記(12)記載の炭素繊維体の製造方法。
(14)ホウ素系化合物が、ボロン酸、カルボランまたはホウ酸エステルであることを特徴とする前記(13)記載の炭素繊維体の製造方法。
(15)ホウ素系化合物が、ジヒドロキシフェニルボラン、オルト−カルボラン、メタ−カルボランまたはホウ酸トリ−n−ブチルであることを特徴とする前記(14)記載の炭素繊維体の製造方法。
(12) The method for producing a carbon fiber body as described in (9) above, wherein the raw material comprises an alcohol and a boron-based compound.
(13) The method for producing a carbon fiber body as described in (12) above, which is a boron-based compound soluble in alcohol.
(14) The method for producing a carbon fiber body according to (13), wherein the boron-based compound is boronic acid, carborane, or boric acid ester.
(15) The method for producing a carbon fiber body as described in (14) above, wherein the boron-based compound is dihydroxyphenyl borane, ortho-carborane, meta-carborane or tri-n-butyl borate.

(16)前記触媒は、Fe、CoおよびNiからなるグループから選ばれる少なくとも一種の元素であることを特徴とする前記(9)記載の炭素繊維体の製造方法。
(17)触媒の加熱温度が700〜1100℃であることを特徴とする前記(9)記載の炭素繊維体の製造方法。
(18)加熱方法として抵抗加熱及び誘導加熱を用いることを特徴とする前記(9)または(17)に記載の炭素繊維体の製造方法。
(19)触媒として、基板の表面に存在するものを用いることを特徴とする前記(9)記載の炭素繊維体の製造方法。
(20)液体原料中で表面に触媒が存在する基板を加熱することを特徴とする前記(6)〜(8)のいずれかに記載の部材の製造方法。
(16) The method for producing a carbon fiber body according to (9), wherein the catalyst is at least one element selected from the group consisting of Fe, Co, and Ni.
(17) The method for producing a carbon fiber body as described in (9) above, wherein the heating temperature of the catalyst is 700 to 1100 ° C.
(18) The method for producing a carbon fiber body according to (9) or (17), wherein resistance heating and induction heating are used as a heating method.
(19) The method for producing a carbon fiber body as described in (9) above, wherein a catalyst existing on the surface of the substrate is used.
(20) The method for producing a member according to any one of (6) to (8), wherein the substrate having the catalyst on the surface thereof is heated in the liquid raw material.

本発明の炭素繊維体は、複数本の炭素繊維が縄状に捻れた形状を持つことにより、幾何学的空間が存在し、該空間により、半径0.05〜0.5nmのイオン種を保持することが期待できる。上記半径範囲のイオン種としては、BF4 -、ClO4 -、PF6 -、AsF6 -などが挙げられる。さらに本発明の炭素繊維体の製造方法によって得られた炭素繊維体およびそれを有する部材(炭素繊維体の片末端が基板に結合したもの)はそのまま電気二重層キャパシタの電極、二次電池の負極材等、多様な用途に使用可能である。 The carbon fiber body of the present invention has a shape in which a plurality of carbon fibers are twisted like a rope, so that a geometric space exists, and the space holds ionic species having a radius of 0.05 to 0.5 nm. Can be expected to do. Examples of the ion species in the radius range include BF 4 , ClO 4 , PF 6 , and AsF 6 . Furthermore, the carbon fiber body obtained by the carbon fiber body manufacturing method of the present invention and the member having the carbon fiber body (one end of the carbon fiber body bonded to the substrate) are used as they are for the electrode of the electric double layer capacitor and the negative electrode of the secondary battery. It can be used for various purposes such as materials.

以下、本発明の炭素繊維体およびそれを有する部材、それらの製造方法、並びにその応用について詳細に説明する。
本発明における炭素繊維とは、縄状体を構成する最小単位の繊維を意味し、炭素繊維体とは上記最小単位の炭素繊維から構成される縄状のものを意味するものとする。
Hereinafter, the carbon fiber body of the present invention, members having the same, methods for producing the same, and applications thereof will be described in detail.
The carbon fiber in the present invention means a minimum unit fiber constituting the rope-like body, and the carbon fiber body means a rope-like one constituted by the minimum unit carbon fiber.

本発明に係る炭素繊維体は、複数本の炭素繊維が縄状に捻れた形状を持つことを特徴としている。
このような炭素繊維の直径は、特に限定されないが、10〜40nmの範囲が好ましい。10nm以下であれば、捻れた隙間にイオンが入りにくくなり、40nm以上であれば、捻れた隙間が広すぎるため十分な比表面積が得られないためである。
1本の炭素繊維体を構成する炭素繊維の本数は、特に限定されないが、通常2〜5本より構成される。
本発明の炭素繊維体の直径は、特に限定されないが、20〜200nmの範囲が好ましい。また、本発明の炭素繊維体の長さは、特に限定されないが、1〜30μmの範囲が好ましい。1μm未満では、炭素繊維体が十分なイオンを保持することが難しく、30μm以上ではイオンを保持するための隙間が有効に活用されないためである。
The carbon fiber body according to the present invention is characterized in that a plurality of carbon fibers have a shape twisted in a rope shape.
The diameter of such a carbon fiber is not particularly limited, but a range of 10 to 40 nm is preferable. If it is 10 nm or less, it is difficult for ions to enter the twisted gap, and if it is 40 nm or more, the twisted gap is too wide to obtain a sufficient specific surface area.
The number of carbon fibers constituting one carbon fiber body is not particularly limited, but is usually composed of 2 to 5 carbon fibers.
Although the diameter of the carbon fiber body of this invention is not specifically limited, The range of 20-200 nm is preferable. Moreover, the length of the carbon fiber body of the present invention is not particularly limited, but a range of 1 to 30 μm is preferable. If it is less than 1 μm, it is difficult for the carbon fiber body to hold sufficient ions, and if it is 30 μm or more, the gap for holding ions is not effectively used.

上記のような特異な構造を有する縄状炭素繊維体は、非常に大きな表面積を有する。また、この縄状炭素繊維体を電気二重層キャパシタの分極性電極または二次電池の負極材の炭素材として用いる場合、得られた分極性電極または負極材は、縄状炭素繊維体が集合したものとなる。そして、それらの縄状炭素繊維体同士の間には、表面が縄状であるため数十nm程度までの細孔が存在する。即ち、縄状炭素繊維体の集合体を用いた分極性電極は、活性炭に比べて大きな径の細孔を有する多孔質構造となる。その結果、この部分でイオンの保持性及び移動性が活性炭を用いた場合よりも高まり、大電流の放電の際にも見かけ上の容量の低下が起こり難い。このように、本実施の形態では、特異な構造を有する縄状炭素繊維体を電気二重層キャパシタの分極性電極または二次電池の負極材に用いることにより、比表面積を大きくして静電容量を高めるとともに、イオンの移動性が高くなるような微細な構造を形成することができる。   The rope-like carbon fiber body having the unique structure as described above has a very large surface area. Further, when this rope-like carbon fiber body is used as a polarizable electrode of an electric double layer capacitor or a carbon material of a negative electrode material of a secondary battery, the obtained polarizable electrode or negative electrode material is a collection of rope-like carbon fiber bodies. It will be a thing. And between those rope-like carbon fiber bodies, since the surface is rope-like, pores up to about several tens of nanometers exist. That is, a polarizable electrode using an aggregate of rope-like carbon fiber bodies has a porous structure having pores having a larger diameter than activated carbon. As a result, the ion retention and mobility at this portion are higher than when activated carbon is used, and the apparent capacity is unlikely to decrease even during large current discharge. As described above, in the present embodiment, the specific surface area is increased by using the rope-like carbon fiber body having a unique structure for the polarizable electrode of the electric double layer capacitor or the negative electrode material of the secondary battery, thereby increasing the capacitance. In addition, it is possible to form a fine structure that increases ion mobility.

本発明の炭素繊維体の製造方法としては、特に限定されないが、例えば、液体原料中で炭素繊維体の生成を促進する触媒を加熱する方法が挙げられる。
より具体的には、基板の表面に触媒が存在するものを用い、該基板ごと原料(有機化合物)中で加熱する方法が挙げられる。
本発明の炭素繊維体およびその部材の製造方法に用いられる原料(有機化合物)は、触媒の作用を受けて、加熱により生じた熱により反応し、炭素繊維を生成できるものである。
本発明の縄状炭素繊維体の成長は、その製造方法、詳細には使用する液体原料に依存し、特徴ある縄状構造ができたと推測される。
本発明の炭素繊維体およびその部材の製造方法における液体原料としては下記の一成分系と二成分系とがある。
Although it does not specifically limit as a manufacturing method of the carbon fiber body of this invention, For example, the method of heating the catalyst which accelerates | stimulates the production | generation of a carbon fiber body in a liquid raw material is mentioned.
More specifically, there is a method in which a catalyst is present on the surface of the substrate and the substrate is heated in the raw material (organic compound).
The raw material (organic compound) used in the carbon fiber body and the method for producing the member of the present invention is capable of generating carbon fiber by receiving the action of a catalyst and reacting with heat generated by heating.
The growth of the rope-like carbon fiber body of the present invention depends on the production method, specifically the liquid raw material to be used, and it is presumed that a characteristic rope-like structure was formed.
The liquid raw material in the carbon fiber body and the method for producing the member of the present invention includes the following one-component system and two-component system.

一成分系原料としては、常温常圧で液体の炭化水素(ヘキサン、ペプタン、オクタン、ベンゼン、トルエンおよびキシレン等から選ばれる少なくとも一種からなる)で、OH基のない炭化水素(アルコールでないもの)を用いることができる。   As a one-component raw material, a hydrocarbon that is liquid at normal temperature and pressure (consisting of at least one selected from hexane, peptane, octane, benzene, toluene, xylene, etc.) and has no OH group (non-alcohol) Can be used.

二成分系原料としては、常温常圧で液体の有機液体とその他の不純物質からなり、不純物質としてはホウ素系化合物が挙げられ、これらのホウ素系化合物は有機液体に可溶である。
ホウ素系化合物としては、特に限定されないが、例えば、ボロン酸、カルボランまたはホウ酸エステル等が挙げられ、より詳細には、ジヒドロキシフェニルボラン(C65B(OH)2)、(オルト−又はメタ−カルボラン(C21210)、ホウ酸トリ−n−ブチル(〔CH3(CH23O〕3B)等が挙げられる。
ホウ素化合物の適切な濃度範囲は、その種類と用いる有機液体の種類によって異なり、適宜好ましい濃度を選択する。
有機液体としては、特に限定されないが、不純物質の溶解性の点で、アルコール類が挙げられ、エタノール、メタノール、オクタノール等が挙げられる。
The two-component raw material is composed of an organic liquid that is liquid at normal temperature and pressure and other impurities, and examples of the impurity include boron-based compounds, which are soluble in organic liquids.
As the boron compound is not particularly limited, for example, boronic acid, include such carborane or boric acid ester, and more particularly, dihydroxyphenyl borane (C 6 H 5 B (OH ) 2), ( ortho - or And meta-carborane (C 2 H 12 B 10 ), tri-n-butyl borate ([CH 3 (CH 2 ) 3 O] 3 B), and the like.
The appropriate concentration range of the boron compound varies depending on the type and the type of the organic liquid used, and a preferable concentration is selected as appropriate.
Although it does not specifically limit as an organic liquid, Alcohol is mentioned by the soluble point of an impurity substance, Ethanol, methanol, octanol, etc. are mentioned.

本発明の炭素繊維体の生成方法に用いられる触媒は、液体原料である有機化合物との加熱により、炭素繊維の生成反応の活性点となり、かつ該反応を促進するものであれば、特に限定されず、炭素繊維体の生成技術の分野において、公知公用であるもの、また、使用可能なもの、使用可能性が期待できるもの等を全て含むものである。例として、金属および金属酸化物等が挙げられる。また該金属の中でも遷移金属が好ましい。ここで遷移金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、タンタル、タングステン、レニウム、イリジウムまたは白金を指すものであるが、これらの内特に周期律表VIII族に属するもの、その内で特に鉄、ニッケル、コバルトが好適であって、鉄が最も好適である。   The catalyst used in the method for producing a carbon fiber body of the present invention is not particularly limited as long as it becomes an active point of a carbon fiber production reaction by heating with an organic compound that is a liquid raw material and accelerates the reaction. In addition, in the field of carbon fiber body production technology, it includes all those that are publicly known, those that can be used, and those that can be expected to be usable. Examples include metals and metal oxides. Of these metals, transition metals are preferred. Here, the transition metal refers to scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium or platinum. Among them, particularly those belonging to Group VIII of the Periodic Table, among which iron, nickel and cobalt are particularly preferred, and iron is most preferred.

また、本発明の炭素繊維体の製造方法に用いられる、上記触媒は、微細であることが好ましい。本発明で述べる微細とは、触媒同士が凝集、接触等していなく、独立して微粒子、基板上にスパッタ処理等で粒状、島状に付着、又は後述の合金からなる加熱対象の表面に極少面積で多数露出し存在した状態を意味するものである。またその独立して多数存在する微細な触媒の1つ1つの大きさは、所望の小径の炭素繊維に応じて適宜定義されるものであり、特に限定されるものではない。
さらに、上記の微細な触媒は、その大きさが揃っていることが好ましい。微細な触媒として大きさの揃っているものを用いることにより、均一な径の炭素繊維を生成することができる。
Moreover, it is preferable that the said catalyst used for the manufacturing method of the carbon fiber body of this invention is fine. The fineness described in the present invention means that the catalysts are not agglomerated or contacted with each other, and are minutely formed on the surface of the object to be heated consisting of fine particles independently, adhering to the substrate in a granular or island shape by sputtering or the like, or an alloy described later. It means that a large number of areas are exposed and exist. Further, the size of each of the independently present fine catalysts is appropriately defined according to the desired small-diameter carbon fiber, and is not particularly limited.
Furthermore, it is preferable that the fine catalysts have the same size. By using a catalyst having a uniform size as a fine catalyst, carbon fibers having a uniform diameter can be produced.

また、上記の微細な触媒は、その触媒間の間隔が揃っていることが好ましい。微細な触媒間の間隔が揃っていることにより、炭素繊維体を均一な密度に成長させることができる。   Moreover, it is preferable that the said fine catalyst has a uniform space | interval between the catalysts. Since the intervals between the fine catalysts are uniform, the carbon fiber body can be grown to a uniform density.

本発明の炭素繊維体の製造方法において、加熱方法として抵抗加熱または誘導加熱を用いることができる。
加熱温度は基板の表面に存在する触媒の温度が700〜1100℃の範囲になるように抵抗加熱または誘導加熱を行い、合成中もこの加熱温度に保つ。
In the method for producing a carbon fiber body of the present invention, resistance heating or induction heating can be used as a heating method.
The heating temperature is resistance heating or induction heating so that the temperature of the catalyst existing on the surface of the substrate is in the range of 700 to 1100 ° C., and this heating temperature is maintained during the synthesis.

本発明の炭素繊維体の製造方法における抵抗加熱とは、基板としてSi等の比較的に抵抗率が高いものに電流を流すことによって加熱する方式であり、前記したように、触媒金属を表面に付着した基板を用いるものである。   The resistance heating in the method for producing a carbon fiber body of the present invention is a system in which a substrate is heated by passing an electric current through a relatively high resistivity such as Si, and as described above, the catalytic metal is applied to the surface. An attached substrate is used.

本発明の炭素繊維体の製造方法における誘導加熱とは、電場の変化によって電気的導体内の生じる渦電流により加熱される原理である。より詳細に説明すると以下の通りである。
導線に交流電気を流すと、その周囲に磁力線が発生する。導線をコイル状に巻き、その中心部に金属のような電気的導体を置いてコイルに通電すると、磁力線の影響を受けて、電気的導体(金属等)の中に誘導電流(うず電流)が生じる。この誘導電流は、電気的導体(金属等)のもつ抵抗によりエネルギーを損失し、熱を発生させる。この発熱現象を熱源として加熱に利用したものである。
この誘導加熱によって加熱対象である基板を加熱する場合、殆どの電気的導体が基板となる。また、電流を流すための電極部分が必要なく構造が簡易かつ加熱対象である基板の形状も自由度が高くなる。また、抵抗加熱と異なる非接触加熱であり、温度制御がしやすい。特に大面積・大容量の加熱対象の場合でも加熱温度にムラを生じることなく緻密に温度制御可能となる。
Induction heating in the method for producing a carbon fiber body of the present invention is a principle of heating by an eddy current generated in an electrical conductor due to a change in electric field. This will be described in more detail as follows.
When AC electricity is passed through the conducting wire, lines of magnetic force are generated around it. When a conducting wire is wound in the shape of a coil and an electric conductor such as metal is placed in the center of the coil and the coil is energized, an induced current (eddy current) is generated in the electric conductor (metal, etc.) due to the influence of magnetic lines of force. Arise. This induced current loses energy due to the resistance of the electrical conductor (metal or the like) and generates heat. This exothermic phenomenon is used for heating as a heat source.
When the substrate to be heated is heated by this induction heating, most of the electrical conductors become the substrate. Further, there is no need for an electrode portion for flowing current, the structure is simple, and the shape of the substrate to be heated increases the degree of freedom. Moreover, it is non-contact heating different from resistance heating, and temperature control is easy. In particular, even in the case of a heating object having a large area and a large capacity, the temperature can be precisely controlled without causing unevenness in the heating temperature.

誘導加熱による炭素繊維体の製造方法に用いられる基板は、触媒が少なくとも表面に存在し、かつ誘導加熱を生じ得る基板であれば、特に限定されるものではない。なお、触媒が少なくとも表面に存在するということは、当然、触媒が少なくとも表面に露出している状態のものであり、本発明において、原料である有機化合物を適用した場合に、該有機化合物と接触し、炭素繊維体の生成反応の促進に寄与するものである。よって、該基板の具体的形態としては、例えば触媒が金属ならば、その金属単体、その微粒子、触媒金属が少なくとも表面に存在する他の金属が挙げられる。触媒金属が少なくとも表面に存在する他の金属のより具体的構成を述べると、例えば、触媒活性を有さないが誘導加熱を生じ得る金属の基板等上にスパッタ処理等で触媒活性を有する成分を附着させたもの等が挙げられる。また、触媒金属が少なくとも表面に存在する他の金属より具体的なものとしては、触媒活性を有する金属と触媒活性を有さない金属の合金等が挙げられる。合金としては、ステンレス等が挙げられる。   The substrate used in the method for producing a carbon fiber body by induction heating is not particularly limited as long as the catalyst is present at least on the surface and can generate induction heating. Incidentally, the presence of the catalyst at least on the surface naturally means that the catalyst is at least exposed on the surface, and in the present invention, when the organic compound as the raw material is applied, it is in contact with the organic compound. And contributes to the promotion of the formation reaction of the carbon fiber body. Therefore, as a specific form of the substrate, for example, if the catalyst is a metal, the metal simple substance, the fine particles, and other metals having the catalyst metal at least on the surface can be mentioned. To describe a more specific configuration of the other metal in which the catalytic metal is present at least on the surface, for example, a component having catalytic activity by sputtering or the like on a metal substrate that does not have catalytic activity but can cause induction heating. Attached ones are listed. Further, specific examples of the metal having a catalytic metal at least on the surface include an alloy of a metal having catalytic activity and a metal having no catalytic activity. Examples of the alloy include stainless steel.

本発明の炭素繊維体の製造方法においては、炭素繊維体の生成反応中に、所望しない酸素が副生し、原料有機化合物の燃焼を引き起こす。その問題を回避するために、上記誘導加熱によって反応系内に生成される酸素を、不活性ガスを導入することによって排出することが好ましい。   In the carbon fiber body manufacturing method of the present invention, undesired oxygen is by-produced during the carbon fiber body formation reaction, causing combustion of the raw organic compound. In order to avoid the problem, it is preferable to discharge oxygen generated in the reaction system by the induction heating by introducing an inert gas.

以下、実施例及び比較例を挙げ、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕
高純度オクタン(98%以上)を液体原料として用いた。体積抵抗率が0.02ΩcmのSi(100)面方位、寸法10×20×0.5mm3 の基板を用いた。Si基板は、アセトン中で超音波洗浄した。Si(100)基板表面に、Arガスによるスパッタ法で平均10nm厚のFe薄膜を堆積した。このSi基板を、基板ホルダーに配置し、セパラブルフラスコに入れたオクタンに浸漬した後、窒素ガスを導入して直流電流を流し、930℃に加熱した。Si基板表面はオクタンの蒸気(泡)で覆われ、フラスコのオクタンの温度は約60℃に上昇した。原料のオクタンを沸騰点よりも低くするためにオクタンの入ったフラスコを冷水で満たした冷却槽に入れた。また、蒸発したオクタンを回収するためにリービッヒコンデンサーを取り付けた。Si基板温度は、光学放射温度計を使用し、焦点を基板表面に合わせて測定した。Si基板に流す電流は成長中一定に保った。基板温度は、炭素繊維体の長さが長くなるに従ってゆっくりと減少することが観測された。
図1、図2は、合成した炭素繊維体のSEM(電子顕微鏡)及びTEM(透過型電子顕微鏡)像である。基板表面に図1のSEM写真に示すような、炭素繊維体が成長していることが観察され、さらに拡大したところ、該炭素繊維体は図2のTEM写真に示すような、炭素繊維が縄状に捻れた形状を有するものであった。なお、図2のTEM写真では、2本の炭素繊維からなる縄状捻れ形状が観られた。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.
[Example 1]
High-purity octane (98% or more) was used as the liquid raw material. A substrate having a volume resistivity of 0.02 Ωcm and a Si (100) plane orientation of 10 × 20 × 0.5 mm 3 was used. The Si substrate was ultrasonically cleaned in acetone. An Fe thin film having an average thickness of 10 nm was deposited on the Si (100) substrate surface by sputtering with Ar gas. The Si substrate was placed in a substrate holder and immersed in octane in a separable flask, and then nitrogen gas was introduced to flow a direct current and heated to 930 ° C. The Si substrate surface was covered with octane vapor (bubbles), and the temperature of the flask octane rose to about 60 ° C. In order to lower the octane of the raw material below the boiling point, the flask containing octane was placed in a cooling tank filled with cold water. A Liebig condenser was attached to collect the evaporated octane. The Si substrate temperature was measured by using an optical radiation thermometer and focusing on the substrate surface. The current passed through the Si substrate was kept constant during growth. The substrate temperature was observed to decrease slowly as the length of the carbon fiber body increased.
1 and 2 are SEM (electron microscope) and TEM (transmission electron microscope) images of the synthesized carbon fiber body. It is observed that the carbon fiber body is growing on the substrate surface as shown in the SEM photograph of FIG. 1, and when further enlarged, the carbon fiber body has no carbon fiber as shown in the TEM photograph of FIG. It had a shape twisted into a shape. In addition, in the TEM photograph of FIG. 2, a rope-like twisted shape composed of two carbon fibers was observed.

〔実施例2〕
液体原料としてオクタンを二成分系原料(オクタノール + 10wt%C65B(OH)2)に代えた以外は実施例1と同様の方法で製造し、図3の炭素繊維体の成長が観察された。図4のTEM写真に示すような、4〜5本の炭素繊維が縄状に捻れた形状も観られた。
〔実施例3〕
液体原料としてオクタンを(メタノール + 5wt%オルト−カルボラン)に代えた以外は実施例2と同様の方法で製造し、実施例2と同様の炭素繊維体の成長が観察された。
〔実施例4〕
10wt%C65B(OH)2を15wt%ホウ酸トリ−n−ブチルに代えた以外は実施例3と同様の方法で製造し、実施例2と同様の炭素繊維体の成長が観察された。
[Example 2]
Manufactured in the same manner as in Example 1 except that octane was replaced with a binary raw material (octanol + 10 wt% C 6 H 5 B (OH) 2 ) as the liquid raw material, and the growth of the carbon fiber body of FIG. 3 was observed. It was done. A shape in which 4 to 5 carbon fibers were twisted like a rope as shown in the TEM photograph of FIG. 4 was also observed.
Example 3
A carbon fiber body was grown in the same manner as in Example 2 except that octane was replaced with (methanol + 5 wt% ortho-carborane) as the liquid raw material.
Example 4
Manufactured in the same manner as in Example 3 except that 10 wt% C 6 H 5 B (OH) 2 was replaced with 15 wt% tri-n-butyl borate, and the growth of the carbon fiber body as in Example 2 was observed. It was done.

本発明の炭素繊維体またはそれを有する部材は、電気二重層キャパシタの部材(電極材料)、二次電池の負極材の他、FED・エミッタ、燃料電池用電極、電気化学電極、触媒担体、太陽電池電極等に適用可能である。   The carbon fiber body of the present invention or a member having the same includes an electric double layer capacitor member (electrode material), a negative electrode material for a secondary battery, an FED / emitter, an electrode for a fuel cell, an electrochemical electrode, a catalyst carrier, a solar cell It can be applied to battery electrodes and the like.

実施例1で得られた基板上に成長した炭素繊維体の電子顕微鏡(SEM)像である。2 is an electron microscope (SEM) image of a carbon fiber body grown on a substrate obtained in Example 1. FIG. 図1の一部分を拡大した炭素繊維体の透過型電子顕微鏡(TEM)像である。It is a transmission electron microscope (TEM) image of the carbon fiber body which expanded a part of FIG. 実施例2で得られた基板上に成長した炭素繊維体の電子顕微鏡(SEM)像である。4 is an electron microscope (SEM) image of a carbon fiber body grown on a substrate obtained in Example 2. FIG. 図3の一部分を拡大した炭素繊維体の透過型電子顕微鏡(TEM)像である。It is a transmission electron microscope (TEM) image of the carbon fiber body which expanded a part of FIG.

Claims (14)

複数本の炭素繊維が縄状に捻れた形状を持つことを特徴とする炭素繊維体。   A carbon fiber body having a shape in which a plurality of carbon fibers are twisted like a rope. 1本の炭素繊維の直径が10〜40nmであることを特徴とする請求項1記載の炭素繊維体。   The diameter of one carbon fiber is 10-40 nm, The carbon fiber body of Claim 1 characterized by the above-mentioned. 2〜5本の炭素繊維からなることを特徴とする請求項1記載の炭素繊維体。   The carbon fiber body according to claim 1, comprising 2 to 5 carbon fibers. 請求項1〜3のいずれかに記載の炭素繊維体の片末端が基板に結合したものであることを特徴とする部材。   The member characterized by what the one terminal of the carbon fiber body in any one of Claims 1-3 couple | bonded with the board | substrate. 炭素繊維体が基板上の触媒から成長したものであることを特徴とする請求項4記載の部材。   The member according to claim 4, wherein the carbon fiber body is grown from a catalyst on a substrate. 液体原料中で触媒を加熱することを特徴とする請求項1〜3のいずれかに記載の炭素繊維体の製造方法。   The method for producing a carbon fiber body according to any one of claims 1 to 3, wherein the catalyst is heated in a liquid raw material. 原料が常温常圧で液状の炭化水素であることを特徴とする請求項6記載の炭素繊維体の製造方法。   The method for producing a carbon fiber body according to claim 6, wherein the raw material is a hydrocarbon which is liquid at normal temperature and pressure. 炭化水素が、ヘキサン、ペプタン、オクタン、ベンゼン、トルエンおよびキシレンから選ばれる少なくとも一種からなることを特徴とする請求項7記載の炭素繊維体の製造方法。   The method for producing a carbon fiber body according to claim 7, wherein the hydrocarbon is at least one selected from hexane, peptane, octane, benzene, toluene and xylene. 原料がアルコール類とホウ素系化合物とからなることを特徴とする請求項6記載の炭素繊維体の製造方法。   The method for producing a carbon fiber body according to claim 6, wherein the raw material comprises an alcohol and a boron-based compound. アルコールに可溶なホウ素系化合物であることを特徴とする請求項9記載の炭素繊維体の製造方法。   The method for producing a carbon fiber body according to claim 9, wherein the carbon fiber body is a boron-based compound that is soluble in alcohol. ホウ素系化合物が、ボロン酸、カルボランまたはホウ酸エステルであることを特徴とする請求項10記載の炭素繊維体の製造方法。   The method for producing a carbon fiber body according to claim 10, wherein the boron-based compound is boronic acid, carborane, or borate ester. ホウ素系化合物が、ジヒドロキシフェニルボラン、オルト−カルボラン、メタ−カルボランまたはホウ酸トリ−n−ブチルであることを特徴とする請求項11記載の炭素繊維体の製造方法。   The method for producing a carbon fiber body according to claim 11, wherein the boron compound is dihydroxyphenyl borane, ortho-carborane, meta-carborane, or tri-n-butyl borate. 触媒の加熱温度が700〜1100℃であることを特徴とする請求項6記載の炭素繊維体の製造方法。   The method for producing a carbon fiber body according to claim 6, wherein the heating temperature of the catalyst is 700 to 1100 ° C. 液体原料中で表面に触媒が存在する基板を加熱することを特徴とする請求項4または5記載の部材の製造方法。   6. The method for producing a member according to claim 4, wherein the substrate having the catalyst on the surface thereof is heated in the liquid raw material.
JP2004268950A 2004-09-15 2004-09-15 Carbon fiber body, member containing the same and method for producing them Pending JP2006083486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268950A JP2006083486A (en) 2004-09-15 2004-09-15 Carbon fiber body, member containing the same and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268950A JP2006083486A (en) 2004-09-15 2004-09-15 Carbon fiber body, member containing the same and method for producing them

Publications (1)

Publication Number Publication Date
JP2006083486A true JP2006083486A (en) 2006-03-30

Family

ID=36162228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268950A Pending JP2006083486A (en) 2004-09-15 2004-09-15 Carbon fiber body, member containing the same and method for producing them

Country Status (1)

Country Link
JP (1) JP2006083486A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215120A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
JP2009215121A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Method for producing flaky nanocarbon composite
JP2009215122A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
JP2011063462A (en) * 2009-09-15 2011-03-31 National Institute For Materials Science Nanocarbon material composite and method for producing the same
JP2012017229A (en) * 2010-07-09 2012-01-26 Nitta Corp Cnt thin film, and electrode provided with the same
JP2013014484A (en) * 2011-07-06 2013-01-24 Sony Corp Method and apparatus for producing graphene
CN111554875A (en) * 2019-02-08 2020-08-18 三洋电机株式会社 Electrode for nonaqueous electrolyte secondary battery, and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus
JP2003292313A (en) * 2002-03-29 2003-10-15 Japan Science & Technology Corp Production method for single-layer carbon nanotube
JP2004244283A (en) * 2003-02-14 2004-09-02 Kanegafuchi Chem Ind Co Ltd Manufacturing method of carbon nanotube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus
JP2003292313A (en) * 2002-03-29 2003-10-15 Japan Science & Technology Corp Production method for single-layer carbon nanotube
JP2004244283A (en) * 2003-02-14 2004-09-02 Kanegafuchi Chem Ind Co Ltd Manufacturing method of carbon nanotube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215120A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
JP2009215121A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Method for producing flaky nanocarbon composite
JP2009215122A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
JP2011063462A (en) * 2009-09-15 2011-03-31 National Institute For Materials Science Nanocarbon material composite and method for producing the same
JP2012017229A (en) * 2010-07-09 2012-01-26 Nitta Corp Cnt thin film, and electrode provided with the same
JP2013014484A (en) * 2011-07-06 2013-01-24 Sony Corp Method and apparatus for producing graphene
CN111554875A (en) * 2019-02-08 2020-08-18 三洋电机株式会社 Electrode for nonaqueous electrolyte secondary battery, and method for producing same

Similar Documents

Publication Publication Date Title
Ramadan et al. 3D interconnected binder-free electrospun MnO@ C nanofibers for supercapacitor devices
Lee et al. Delicate structural control of Si–SiO x–C composite via high-speed spray pyrolysis for Li-ion battery anodes
Zhang et al. Radially aligned porous carbon nanotube arrays on carbon fibers: A hierarchical 3D carbon nanostructure for high‐performance capacitive energy storage
Zhang et al. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high‐performance electrodes for supercapacitors
Luo et al. Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors
Xiong et al. Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode
Chan et al. High capacity Li ion battery anodes using Ge nanowires
Xiong et al. Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability
JP5481748B2 (en) Carbon nanostructure, method for producing metal-encapsulated dendritic carbon nanostructure, and method for producing carbon nanostructure
Signorelli et al. Electrochemical double-layer capacitors using carbon nanotube electrode structures
Zhang et al. Supercapacitors based on reduced graphene oxide nanofibers supported Ni (OH) 2 nanoplates with enhanced electrochemical performance
Zhao et al. “Electron-sharing” mechanism promotes Co@ Co3O4/CNTs composite as the high-capacity anode material of lithium-ion battery
CN101425381B (en) Super capacitor and preparing method therefor
Yang et al. All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnO x nanospike and graphene electrodes
Dhibar et al. Morphological modulation of conducting polymer nanocomposites with nickel cobaltite/reduced graphene oxide and their subtle effects on the capacitive behaviors
CN101471184B (en) Super capacitor
Foo et al. High-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materials
CN103210530A (en) Branched nanostructures for battery electrodes
Xu et al. Hierarchical three-dimensional NiMoO 4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance
Sun et al. Novel bake-in-salt method for the synthesis of mesoporous Mn3O4@ C networks with superior cycling stability and rate performance
Wang et al. Enabling a high performance of mesoporous α-Fe2O3 anodes by building a conformal coating of cyclized-PAN network
JP2007194354A (en) Polarizable electrode, and electric double layer capacitor comprising same
Wang et al. Novel cuboid-like cobalt nickel phosphate/manganese dioxide/multi-walled carbon nanotubes composites as binder-free electrodes for high-performance supercapacitors
Poorahong et al. Nanoporous graphite-like membranes decorated with MoSe2 nanosheets for hydrogen evolution
Antiohos et al. Carbon nanotubes for energy applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019