AU2005203047B2 - Method of producing carbon nanotubes and catalysts therefor - Google Patents

Method of producing carbon nanotubes and catalysts therefor Download PDF

Info

Publication number
AU2005203047B2
AU2005203047B2 AU2005203047A AU2005203047A AU2005203047B2 AU 2005203047 B2 AU2005203047 B2 AU 2005203047B2 AU 2005203047 A AU2005203047 A AU 2005203047A AU 2005203047 A AU2005203047 A AU 2005203047A AU 2005203047 B2 AU2005203047 B2 AU 2005203047B2
Authority
AU
Australia
Prior art keywords
carbon
group
carbon nanotubes
metal
group viii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2005203047A
Other versions
AU2005203047A1 (en
Inventor
Walter Alvarez
Jeffrey H. Harwell
Boonyarach Kitiyanan
Daniel E. Resasco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Oklahoma
Original Assignee
University of Oklahoma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/389,553 external-priority patent/US6333016B1/en
Application filed by University of Oklahoma filed Critical University of Oklahoma
Priority to AU2005203047A priority Critical patent/AU2005203047B2/en
Publication of AU2005203047A1 publication Critical patent/AU2005203047A1/en
Application granted granted Critical
Publication of AU2005203047B2 publication Critical patent/AU2005203047B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

P/00/011 Regulation 3.2 Australia Patents Act 1990 ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Name(s) of Applicant(s): Title of Invention: The Board of Regents of the University of Oklahoma 'Method of manufacturing carbon nanotubes and catalysts therefor' The following is a full description of this invention, including the best method known to the Applicant(s) of performing the invention: WO 00/73205 PCT/US00/15362 j METHOD OF PRODUCING CARBON NANOTUBES AND CATALYSTS THEREFOR This application is a continuation-in-part of U.S.
Application No. 09/389,553 (filed 3 September 1999) and U.S.
Application No. 60/137,206 (filed 2 June 1999).
BACKGROUND OF THE INVENTION This invention is related to the field of producing carbon nanotubes, and catalysts therefor, and more C- particularly, but not by way of limitation, to methods and catalysts for producing single-walled carbon nanotubes.
Carbon nanotubes (also referred to as carbon fibrils) are seamless tubes of graphite sheets with full fullerene caps which were first discovered as multi-layer concentric tubes or multi-walled carbon nanotubes and subsequently as singlewalled carbon nanotubes in the presence of transition metal catalysts. Carbon nanotubes have shown promising applications including nanoscale electronic devices, high strength materials, electron field emission, tips for scanning probe microscopy, and gas storage.
Generally, single-walled carbon nanotubes are preferred over multi-walled carbon nanotubes for use in these applications because they have fewer defects and are therefore stronger and more conductive than multi-walled carbon nanotubes of similar diameter. Defects are less likely to occur in single-walled carbon nanotubes than in multi-walled carbon nanotubes because multi-walled carbon nanotubes can survive occasional defects by forming bridges between unsaturated carbon valances, while single-walled carbon nanotubes have no neighboring walls to compensate for defects.
l(a)
I
WO nnnt In r .rv vu, I, V r I UUU I jo^L iI- SHowever, the availability of these new single-walled carbon nanotubes in quantities necessary for practical technology is still problematic. Large scale processes for the production of high quality single-walled carbon nanotubes are still needed.
Cc 5 Presently, there are three main approaches for synthesis of carbon nanotubes. These include the laser ablation of carbon (Thess, A. et al., Science 273, 483 (1996)), the electric arc discharge of graphite rod (Journet, C. et al., Nature 388,756 (1997)), and the chemical vapor deposition of hydrocarbons (Ivanov, V. et al., Chem. Phys. Lett 223, 329 (1994); Li A. et al., Science 274, 1701 (1996)). The production of multi-walled carbon nanotubes by catalytic hydrocarbon cracking is now on a commercial scale Patent No. 5,578,543) while the production of single-walled carbon nanotubes is still in a gram scale by laser (Rinzler, A.G.
et al., Appl. Phys. A. 67, 29 (1998)) and arc (Haffner, J.H. et al., Chem. Phys. Lett. 296, 195 (1998)) techniques.
Unlike the laser and arc techniques, carbon vapor deposition over transition metal catalysts tends to create multi-walled carbon nanotubes as a main product instead of single-walled carbon nanotubes. However, there has been some success in producing single-walled carbon nanotubes from the catalytic hydrocarbon cracking process. Dai et al. (Dai, H. et al., Chem. Phys. Lett 260, 471 (1996)) demonstrate web-like single-walled carbon nanotubes resulting from disproportionation of carbon monoxide (CO) WO 00/73205 PCT/US00/15362 Swith a molybdenum (Mo) catalyst supported on alumina heated to 1200°C. From the reported electron microscope images, the Mo metal obviously attaches to nanotubes at their tips. The reported diameter of single-walled carbon nanotubes generally varies from 1 S 5 nm to 5 nm and seems to be controlled by the Mo particle size.
Catalysts containing iron, cobalt or nickel have been used at temperatures between 850°C to 1200 0 C to form multi-walled carbon nanotubes Patent No. 4,663,230). Recently, rope-like bundles of single-walled carbon nanotubes were generated from the thermal cracking of benzene with iron catalyst and sulfur additive at temperatures between 1100-1200°C. (Cheng, H.M. et al., Appl. Phys.
Lett. 72, 3282 (1998); Cheng, H.M. et al., Chem. Phys. Lett. 289, 602 (1998)). The synthesized single-walled carbon nanotubes are roughly aligned in bundles and woven together similarly to those obtained from laser vaporization or electric arc method. The use of laser targets comprising one or more Group VI or Group -VIII transition metals to form single-walled carbon nanotubes has been proposed (W098/39250). The use of metal catalysts comprising iron and at least one element chosen from Group V Nb and Ta), VI (Cr, Mo and VII (Mn, Tc and Re) or the lanthanides has also been proposed Patent No. 5,707,916). However, methods using these catalysts have not been shown to produce quantities of nanotubes having a high ratio of single-walled carbon nanotubes to multi-walled carbon nanotubes.
WO 00/73205 PCT/US00/15362 In addition, the separation steps which precede or follow the $3 reaction step represent the largest portion of the capital and operating costs required for production of the carbon nanotubes.
Therefore, the purification of single-walled carbon nanotubes from multi-walled carbon nanotubes and contaminants amorphous and graphitic carbon) may be substantially more time consuming and Sexpensive than the actual production of the carbon nanotubes.
C( Further, one of the greatest limitations in the current technology is the inability to obtain a simple and direct quantification of the different forms of carbon obtained in a particular synthesis. Currently, transmission electron microscopy (TEM) is the characterization technique most widely employed to determine the fraction of single-walled carbon nanotubes present in a particular sample. However, transmission electron microscopy can only provide a qualitative description of the type of carbon species produced. It is hard to determine how representative of the overall production a given transmission electron microscopic image can be. Obtaining semi-quantitative determinations of the distribution of different carbon species in a sample with any statistical significance is time consuming, and the method employing transmission electron microscopy could not be applied as a routine quality control to large-scale operations.
Therefore, new and improved methods of producing nanotubes which enable synthesis of commercial quantities of substantially 00 0 pure single-walled carbon nanotubes and at lower temperatures than previously reported, as well as methods C to directly quantify the different forms of carbon obtained in a particular synthesis, are being sought. It is to such methods of producing nanotubes and quantifying synthesis products that the present invention is directed.
SUMMARY OF THE INVENTION According to the present invention, catalysts and VS3 i0 methods for producing carbon nanotubes are provided which Savoids the defects and disadvantages of the prior art.
In a first aspect, the present invention provides a method for producing carbon nanotubes, comprising the steps of: contacting, in a reactor cell, catalytic particles comprising at least one Group VIII metal, excluding iron, and at least on Group VIb metal with an effective amount of a carbon-containing gas at a temperature sufficient to catalytically produce carbon nanotubes, wherein the catalytic particles are reduced by exposure to reducing conditions prior to production of the carbon nanotubes.
In a second aspect, the present invention provides a catalytic particle for producing carbon nanotubes in a method wherein the catalytic particle is exposed to a carbon-containing gas, the catalytic particle comprising at least one Group VIII metal, excluding iron, and at least one Group VIb metal and wherein the catalytic particle has been reduced by exposure to reducing conditions.
In a third aspect, the present invention provides a carbon nanotube product, comprising: a catalytic particle comprising: at least one Group VIII metal, excluding iron, and at least one Group VIb metal, and a support material, wherein the Group VIII metal, the Group VIb metal, and the support material are combined to have a particulate form wherein the catalytic particle was reduced by exposure to reducing conditions; and a solid N ASydney\Cascs\Patenl\76OO.76999\P7654O AU I\Specis\P76540.AU I Specification 2008-i-14.1.doc 601/08 00 0 carbon product deposited on the catalytic particle, the solid carbon product primarily comprising carbon Cnanotubes.
In a fourth aspect, the present invention s provides a carbon nanotube product produced by the method of the invention.
Described herein is a method for determining Scatalyst composition and reaction conditions for Soptimizing production of single-walled carbon nanotubes.
iV Broadly, the method includes contacting, in a reactor Scell, a samle of a product containing carbon nanotubes with an effective amount of an oxygen-containing gas to oxidize carbon present in the sample while increasing the temperature within the reactor cell. The amount of carbon dioxide released by the sample is measured, and the specific carbon species present in the sample is determined by the release of carbon dioxide from the sample at specific temperatures. The catalyst composition and/or reaction conditions are altered until single-walled carbon nanotubes are present in substantially higher quantities than all other carbon species in the sample of the product containing nanotubes.
In one embodiment of the invention, the cartalytic particle is a bimetallic catalyst deposited on a support such as silica. The ratio of the Group VIII metal to the Group VIb metal in the bimetallic catalyst is in the range of from about 1:5 to about 2:1.
It would be advantageous if at least preferred embodiments of the present invention were to provide a method for producing single-walled carbon nanotubes in greater quantities and at lower temperatures.
It would also be advantageous if at least preferred embodiments of the present invention were to provide methods for determining quantitatively the different forms of carbon, including single-walled carbon nanotubes, multi-walled carbon nanotubes, and amorphous carbon, present in a sample, and thereby determine the N \Sydney\Cases\Patent\16000-76999\P76540AU I\Specis\P76540AU I Specification 2008-1-1k I doc 16101/08 00 selectivity of a particular catalyst and optimize reaction conditions for producing carbon nanotubes.
Other features and advantages of the present invention will become apparent from the following detailed N \Sydney\Cases\Patent\76000-76999\P76540.AU~ I \Specis\P76540 AU I Specificationi 2008-1 -14. doc 16101/08 WO 00/73205 PCT/US00/15362 description when read in conjunction with the accompanying figures and appended claims.
DESCRIPTION OF DRAWINGS Figure 1 is a transmission electron microscopic image of single-walled carbon nanotubes from CO disproportionation Scatalyzed by a Co/Mo catalyst on SiO 2 at about 700 0 C (about CAl 100,000 magnification).
Figure 2 is a transmission electron microscopic image of the sample employed in Figure 1 at higher resolution (about 400,000 magnification) showing bundles of single-walled carbon nanotubes (SWNTs).
Figure 3 is a transmission electron microscopic image of the sample employed in Figure 1 showing aligned single-walled carbon nanotubes growing in bundles.
Figure 4 is a transmission electron microscopic image-of the sample employed in Figure 1 showing an end view of a single-walled carbon nanotube bundle.
Figure 5 is a scanning electron microscopic image of the sample employed in Figure 1 showing a single-walled carbon nanotube bundle growing out from the catalytic surface.
Figure 6 is a Temperature Programmed Oxidation profile of products from CO disproportionation catalyzed by a Co:Mo/SiO, catalyst at about 700*C.
WO 00/73205 PCT/US00/15362 C- Figure 7 is a Temperature Programmed Oxidation profile of Sproducts from CO disproportionation catalyzed by a Co catalyst _on SiO 2 a Mo catalyst on SiO 2 and a Co:Mo catalyst on SiO, at about 700 0
C.
Figure 8 is a Temperature Programmed Oxidation profile of Sproducts from CO disproportionation catalyzed by Co:Mo Scatalysts on SiO, at about 700°C in which the molar ratio of Co 0 to Mo is varied.
Figure 9 is a Temperature Programmed Oxidation profile of products from CO disproportionation catalyzed by Co:Mo/SiO, catalyst in which the reaction temperature is varied.
Figure 10 is a Temperature Programmed Oxidation profile of products from CO disproportionation catalyzed by Co:Mo/SiO, catalyst at about 700 0 C in which the percentage of CO in the carbon-containing gas used in CO disproportionation is varied.
Figure 11 is a Temperature Programmed Oxidation profile of products from CO disproportionation catalyzed by Co:Mo/SiO, catalyst at about 700°C in which the reaction time of CO disproportionation is varied.
WO 00/73205 PCT/US00/15362 DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to catalysts and methods for producing quantities of single-walled carbon nanotubes by passing an effective amount of a carboncontaining gas over catalytic particular comprising at least one Group VIII metal and at least one Group VIb metal at relatively low temperatures. A method for obtaining a reliable quantitative measurement of the yield of single-walled carbon nanotubes present in a product containing carbon nanotubes is Ialso described.
Broadly, the method for producing single-walled carbon nanotubes comprises contacting catalytic particles comprising a Group VIII and a Group VIb metal with an effective amount of a carbon-containing gas in a reactor heated to a temperature of from about 500 0 C to about 1200 0
C,
preferably from about 600 0 C to about 850 0 C, and more preferably from about 6500 to about 750 0 C and most preferably about 700 0 C. The carbon-containing gas may be supplied to a reactor continuously, or the carbon-containing gas may be maintained in the reactor in a stagnant atmosphere.
The phrase "an effective amount of a carbon-containing gas" as used herein means a gaseous carbon species present in sufficient amounts to result in deposition of carbon on the metallic catalytic particles at elevated temperatures such as those described hereinbefore, resulting in formation of carbon nanotubes.
WO 00/73205 PCT/US00/15362 00
O
O
p The catalytic particles as described herein include a catalyst component. The catalyst as provided and employed in the present invention is bimetallic. The bimetallic catalyst contains at least one metal from Group VIII including Co, Ni, Ru, Rh, Pd, Ir, Pt, and mixtures thereof, and excluding Fe, and at least one metal from Group VIb including Cr, W, Mo, and mixtures thereof.
Specific examples of bimetallic catalysts which may be employed by the present invention include Co-Cr, Co-W, Co-Mo, Ni-Cr, Ni-W, Ni- Mo, Ru-Cr, Ru-W, Ru-Mo, Rh-Cr, Rh-W, Rh-Mo, Pd-Cr, Pd-W, Pd-Mo, Ir- Cr, Ir-W, Ir-Mo, Pt-Cr, Pt-W, and Pt-Mo. Especially preferred catalysts of the present invention comprise Co-Mo, Co-W, Ni-Mo and Ni-W.
A synergism exists between the two metal components of the bimetallic catalyst in that metallic catalytic particles containing the bimetallic catalyst are much more effective catalysts for the production of single-walled carbon nanotubes than metallic catalytic particles containing either a Group VIII metal or a Group VIb metal as the catalyst. This synergistic effect observed with the bimetallic catalyst will be described in more detail hereinafter.
The ratio of the Group VIII metal to the Group VIb metal in the metallic catalytic particles also affects the selective production of single-walled carbon nanotubes by the method of the present invention. The ratio of the Group VIII metal to the Group WO 00/73205 PCT/US00/15362 00 VIb metal is preferably from about 1:10 to about 15:1, and more preferably about 1:5 to about 2:1. Generally, the concentration of the Group VIb metal Mo) will exceed the concentration of the Group VIII metal Co) in catalytic particles employed for O the selective production of single-walled carbon nanotubes.
SThe catalytic particles may comprise more than one l metal from each of Groups VIII and VIb as long as at least one O metal from each Group is present. For example, the catalytic particles may comprise more than one Group VIII metal and a single Group VIb metal, a single Group VIII metal and more 0 than one Group VIb metal, or more than one Group VIII metal and more than one Group VIb metal.
The bimetallic catalyst may be prepared by simply mixing the two metals. The bimetallic catalyst can also be formed in situ through decomposition of a precursor compound such as bis (cyclopentadienyl) cobalt or bis (cyclopentadienyl) molybdenum chloride.
The catalyst is preferably deposited on a support such as silica (SiO 2 MCM-41 (Mobil Crystalline Material-41), alumina (A1 2 0 3 MgO, Mg(Al)O (aluminum-stabilized magnesium oxide), ZrO molecular sieve zeolites, or other oxidic supports known in the art.
WO 00/73205 PCT/USOO/15362 00 The catalytic particle, that is, the catalyst C deposited on the support, may be prepared by evaporating the metal mixtures over flat substrates such as quartz, glass, silicon, and oxidized silicon surfaces in a manner well known to persons of ordinary skill in the art.
Z The total amount of bimetallic catalyst deposited on the support may vary widely, but is generally in an amount of from about 1% to about 20% of the total weight of the metallic r' catalytic particle, and more preferably from about 3% to about 10% by weight of the metallic catalytic particle.
In an alternative version of the invention the catalyst may not be deposited on a support, in which case the metal components comprise substantially about 100% of the catalytic particle.
Examples of suitable carbon-containing gases include aliphatic hydrocarbons, both saturated and unsaturated, such as methane, ethane, propane, butane, hexane, ethylene and propylene; carbon monoxide; oxygenated hydrocarbons such as acetone, acetylene and methanol; aromatic hydrocarbons such as toluene, benzene and naphthalene; and mixtures of the above, for example carbon monoxide and methane. Use of acetylene promotes formation of multi-walled carbon nanotubes, while CO and methane are preferred feed gases for formation of singlewalled carbon nanotubes. The carbon-containing WO 00/73205 PCT/US00/! 5362 00 gas may optionally be mixed with a diluent gas such as helium, argon or hydrogen.
In a preferred version of the invention the bimetallic catalytic particles are disposed within a reactor cell, such as a quartz tube, which is disposed within a furnace or oven, and the carbon-containing gas is passed into the reactor cell.
(Ni Alternatively, the sample can be heated by microwave radiation.
The process may be continuous, wherein the catalytic particles and carbon-containing gas are continuously fed and mixed within the reactor, or the process may be a batch process wherein the carbon-containing gas and catalytic particles are disposed within the reactor cell and held therein for the duration of the reaction period.
Alternatively, the catalytic particles may be mixed with electrodues in an arc discharge system to produce singlewalled carbon nanotubes and/or multi-walled carbon nanotubes.
Alternatively, the catalytic particles may be used in a system exposed to a plasma discharge induced by microwaves. After the catalytic process has been completed, the catalytic particles and the nanotubes are removed from the reactor. The nanotubes are separated from the catalytic particles by methods known to those of ordinary skill in the art. Further discussion of such methods of separating the carbon nanotubes from the catalytic particles is not deemed necessary herein.
WO 00/73205 PCT/US00/15362
(N
The single-walled carbon nanotubes produced herein generally c have an external diameter of from about 0.7 nm to about 5 nm.
Multi-walled carbon nanotubes produced herein generally have an external diameter of from about 2 nm to about 50 nm.
The method of obtaining a reliable quantitative measurement of the yield of single-walled carbon nanotubes is direct and easy to conduct, so that changes in selectivity or steady-state production can be readily detected, facilitating reproducibility and quality control. This method is based on the Temperature Programmed Oxidation (TPO) technique (Krishnankutty, N. et al. Catalysis Today, 37, 295 (1997)). This technique is frequently used to assess the crystallinity of carbon and is based on the concept that highly graphitic materials will be more resistant to oxidation than those possessing a short range crystalline order. In the present invention, this technique is adapted to provide a method to determine the selectivity of the production of single-walled carbon nanotubes over multi-walled carbon nanotubes, as well as the percentages of total solid product constituted by each carbon species, including not only single-walled and multi-walled carbon nanotubes but also amorphous and graphitic carbon species.
Therefore, this method, in combination with the method for production of carbon nanotubes as described in detail hereinbefore, will allow for the controlled production of single-walled carbon nanotubes. However, it will be understood that this method can WO 00/73205 PCT/USOO00/1 5362 also be used for analysis of any sample containing carbon nanotubes.
Broadly, the method includes passing a continuous flow of a gas containing oxygen dispersed in a carrier gas, such as 5% oxygen in helium, over a sample containing carbon nanotubes, such as a C1 catalyst containing carbon deposits, while the temperature is linearly increased from ambient temperature to about 800 0 C. The oxygen-containing gas is provided in an amount effective to oxidize carbon species present in the sample. Oxidation of a carbon species results in the evolution of carbon dioxide, and each carbon species, such as single-walled or multi-walled carbon nanotubes, amorphous carbon, or graphite, is oxidized at a different temperature. The evolution of CO 2 produced by the oxidation of each carbon species present in the sample is monitored by a mass spectrometer. The evolved carbon dioxide is quantified by calibrating with pulses of known amounts of pure carbon dioxide and oxidation of known amounts of graphite, thereby yielding a direct measurement of the amount of carbon which is oxidized at each temperature. That is, each mol of carbon dioxide detected by the mass spectrometer corresponds to one mol of carbon of the particular species which is oxidized at a given temperature.
This quantitative method which incorporates the use of Temperature Programmed Oxidation, referred to hereinafter as the Temperature Programmed Oxidation method, is particularly suitable WO 00/73205 PCT/US00/15362 00 C[ for the quantitative characterization of single-walled carbon C nanotubes because single-walled carbon nanotubes are oxidized in a relatively narrow temperature range, which lies above the temperature of oxidation of amorphous carbon and below the temperature of oxidation of multi-walled carbon nanotubes and graphitic carbon. For instance, the oxidation temperature of Ssingle-walled carbon nanotubes has been shown to be about 100 0
C
Shigher than that of fullerenes and about 100 0 C lower than N that of multi-walled carbon nanotubes by this method. A similar result has been obtained by the thermo-gravimetric analysis (TGA) method (Rinzler, A.G. et al., Appl. Phys. A, 67, 29 (1998)), confirming the suitability of this method for the quantitation of single-walled carbon nanotubes.
The method of Temperature Programmed Oxidation analysis as described herein can be used to quickly test different catalyst formulations and operating conditions of nanotube production methods to optimize the production of single-walled carbon nanotubes. For example, the optimum bimetallic catalyst present in the catalytic particles, as well as the optimum molar ratio of the two metals, can be determined by Temperature Programmed Oxidation. Temperature Programmed Oxidation can also be used to optimize the reaction conditions, such as temperature, time and concentration of carbon in the carbon-containing gas. For instance, Temperature Programmed Oxidation results from products WO 00/73205 PCT/USOO/15362 run at different reaction temperatures illustrate that the c. amount of carbon deposited increases as the temperature decreases, but the selectivity to produce single-walled carbon nanotubes is lower at low temperatures. Therefore, Temperature Programmed Oxidation can be used to find the Cc optimum reaction temperature for any particular catalyst.
tfl Now it will be understood that although optimization of O single-walled carbon nanotube production has been discussed in detail herein, the same method may be used to optimize production of multi-walled carbon nanotubes.
The amount of graphite, amorphous carbon'and other carbon residues formed during the catalytic process are minimized due to the reduced temperatures that are employed. The amount by weight of graphite or amorphous carbon produced is less than about 40% by weight of the total solid material formed during the process, and more preferably less than about 10%. Most preferably, the amount of graphite, amorphous carbon, and other solid carbon residue make up less than about 5% of the total solid product of the catalytic process.
The Temperature Programmed Oxidation method as described herein appears to be the first method described which has the ability to not only determine which carbon species is present in a sample but also determine the percent of each carbon species present in the sample. This is particularly helpful in determining what purification steps, if any, should be undertaken before use of WO 00/73205 PCT/US00/15362 the single-walled carbon nanotubes in various applications. Since the purification steps can be more time consuming and expensive than the actual carbon nanotube production itself, the value of the Temperature Programmed Oxidation method is clearly evident.
C 5 The nanotubes produced herein may be used in a variety of Sapplications. For example, they can be used as reinforcements in fiber-reinforced composite structures or hybrid composite structures composites containing reinforcements such as continuous fibers in addition to nanotubes). The composites may further contain fillers such as carbon black, silica, and mixtures thereof. Examples of reinforceable matrix materials include inorganic and organic polymers, ceramics Portland cement), carbon, and metals lead or copper). When the matrix is an organic polymer, it may be a thermoset resin such as epoxy, bismaleimide, polyimide, or polyester resin; a thermoplastic resin; or a reaction injection molded resin. The nanotubes can also be used to reinforce continuous fibers. Examples of continuous fibers that can be reinforced or included in hybrid composites are aramid, carbon, glass fibers, and mixtures thereof. The continuous fibers can be woven, knit, crimped, or straight.
The invention will be more fully understood by reference to the following examples. However, the examples are merely intended to illustrate desirable aspects of the invention and are not to be construed to limit the scope of the invention.
WO 00/73205 PCT/US00/15362 Example 1: Bimetallic catalytic particles containing about 10 wt% of mixed cobalt and molybdenum (about a 1:1 ratio) on a silica substrate were prepared by the incipient wetness impregnation method, in which an appropriate amount of Cobalt Nitrate and Ammonium Heptamolybdate Tetrahydrate were dissolved together in deionized water and gradually dropped on the silica. Ceramic mortar and pestle were utilized to disperse the metals on silica. The resulting bimetallic catalytic particles were then left to dry at ambient conditions for a few hours. The partially dried bimetallic catalytic particles were then dried in an oven at about 80 0
C
for about 12 hours. The dry bimetallic catalytic particles were then calcined in flowing air at about 450°C.
For production of nanotubes, about 0.1 g of calcined bimetallic catalytic particles was placed in a vertical quartz tube reactor having an arc inside diameter of about 8 mm. .The vertical quartz tube reactor containing the calcined bimetallic catalytic particles was disposed inside a furnace which was equipped with a thermocouple and temperature control. Hydrogen gas (about 85 cm'/min) was passed into the reactor from the top of the reactor. The furnace temperature was linearly raised at a rate of about 20OC/min from room temperature to about 450 0 C. After about 450°C was reached, hydrogen flow passed into the reactor for an additional approximately 30 min. The reactor temperature was then increased to about 600-700 0 C in helium gas. Subsequently, carbon monoxide gas (about 50% carbon monoxide/50% helium) was introduced into WO 00/73205 PCT/USOO/15362 C1 the reactor at a flowrate of about 100 cm 3 /min. The contact time of CO with the calcined bimetallic catalytic particles was varied between about 15 minutes and about 2 hours. After contacting for the prescribed period of time, the furnace was turned off and the product was cooled down in helium to room temperature.
V) After reaction, the color of the sample had turned to a 0 deep black. For transmission electron microscopic analysis of the product, a portion of the product was suspended in distilled water by sonication with ultra-sound. A few drops of such suspension were deposited on lacey carbon supported on a copper grid. The portion of the product was then dried and inspected in a transmission electron microscope, model JEOL JEM-2000FX at about 200 kV. As shown in the transmission electron microscopic images (Figures the amount of single-walled carbon nanotubes produced is clearly seen in large quantities. It is observed that these single-walled carbon nanotubes lay together, roughly aligned as bundles.
The transmission electron microscopic images also reveal that the bundles of single-walled carbon nanotubes are coated with amorphous carbon as from other methods. Most tubes are about 1 nm in diameter, with a few having larger diameters, up to about 3.2 nm.
Following transmission electron microscopic analysis, the product was scanned using a scanning electron microscope, model JEOL JSM-880. The scanning electron microscopic image represented WO 00/73205 PCT/US00/15362 CN in Figure 5 shows the bundles of single-walled carbon nanotubes on the surface of silica.
Example 2: Metallic catalytic particles containing the monometallic catalysts of Ni, Co or Mo supported on silica were also prepared by the same methodology described in r) Example 1, and their catalytic properties were compared to l that of metallic catalytic particles containing the bimetallic 0 catalyst. After conducting the same treatment in CO at about 700°C as described in Example 1, and doing the same transmission electron microscopic analysis, no single-walled carbon nanotubes were observed on these samples. This result indicates that there is a synergism between Co and Mo that makes the combination of two metals, which separately cannot produce Single-walled carbon nanotubes at this temperature, a very effective formulation.
Example 3: A series of metallic catalytic particles containing about 6 wt Co-Mo bimetallic catalysts were prepared on different supports (SiO2, MCM-41, A 2 Mg(Al)0, and ZrO 2 and their nanotube production abilities were compared, following the same CO disproportionation methodology as employed in Example 1. Table 1 summarizes the results of these experiments.
Example 4: Following the same procedure as that in Example 1, it was observed that metallic catalytic particles containing a Co-W bimetallic catalyst deposited on SiO, with a Co/W molar ratio of about 1.0 gave similar production of single-walled carbon nanotubes as WO 00/73205 PCT/US00/15362 that of the Co-Mo/SiO, metallic catalytic particles. As in the case of the Co-Mo series, it was observed that metallic catalytic particles containing only W/SiO, without Co did not form single-walled carbon nanotubes.
Example 5: Carbon species produced by using metallic catalytic particles containing about a 6 wt% Co-Mo bimetallic catalyst (about a 1:2 ratio) TABLE I. Effect of Catalyst Support on Carbon Deposit Morphology Catalyst Observed Morphology of Carbon Deposits Co:Mo/SiO, major amount of single-walled carbon nanotubes, minor amounts of multi-walled carbon nanotubes and graphite Co:Mo/MCM-41 major amount of single-walled carbon nanotubes, minor amounts of multi-walled carbon nanotubes and graphite Co:Mo/Al 2 O, minor amounts of single- and multi-walled carbon nanotubes and graphite Co:Mo/Mg(Al) minor amount of graphite, small amount of 0 single-walled carbon nanotubes Co:Mo/ZrO 2 minor amount of graphite, small amount of single-walled carbon nanotubes supported on silica by the same CO disproportion methodology as described in Example 1 were analyzed by the Temperature Programmed Oxidation method, as shown in FIG. 6.
WO 00/73205 PCT/US00/ 5362 CN For Temperature Programmed Oxidation analysis, about Smg of sample obtained from the product of CO treatment at about 700°C was placed in a quartz tube reactor similar to that employed in Example 1. A continuous flow of about oxygen/95% helium was passed into the reactor, and the
C
r c temperature of the furnace was increased from ambient Stemperature to about 800 0 C at a rate of about 11°C per minute, O and then held at about 800°C for about 1 hour. CO, evolution was measured by mass spectrometry to determine the amount of carbon species oxidized at each temperature.
Mass spectrometry measures the partial pressure of CO, in the quartz tube, which gives an arbitrary value. This value was then normalized by subtracting the background level, which was calculated following calibration with about 100 pl pulses of CO, and oxidation of known amounts of graphite. The adjusted value was directly proportional to the mol CO, oxidized at a particular temperature, which is directly proportional to the mol of a particular carbon species which is present in the sample. From these values, the percentage of the total solid product of the catalytic process represented by single-walled carbon nanotubes can be calculated.
The Temperature Programmed Oxidation profile of the carbon species produced on the Co:Mo/SiO, metallic catalytic particles (labeled "Co:Mo presented a small oxidation peak centered at about 330°C, which is ascribed to the oxidation of amorphous WO 00/73205 PCT/US00/15362 CN carbon, and a major peak centered at about 510°C, which is Smarked in the figure with an arrow and ascribed to the _oxidation of single-walled carbon nanotubes.
Two reference samples were also investigated by the Temperature Programmed Oxidation method and their profiles Sincluded in FIG. 6. The first reference (labeled "Graphite") l/ was a graphite powder physically mixed with the Co:Mo/SiO 0 metallic catalytic particles. The oxidation of this form of carbon occurred at very high temperatures, starting at about 700°C, and completed after holding about 30 minutes at about 800 0
C.
The second reference sample was a commercial sample of purified single-walled carbon nanotubes, obtained from Tubes@Rice (Rice University, Houston, Texas). This sample was provided in a liquid suspension of about 5.9 grams/liter, containing a non-ionic surfactant Triton X-100. For Temperature Programmed Oxidation analysis, the Co:Mo/SiO 2 metallic catalytic particles were impregnated with the singlewalled carbon nanotube suspension in a liquid/catalyst ratio of about 1:1 by weight, in order to obtain approximately 0.6 wt% single-walled carbon nanotubes on the sample. The Temperature Programmed Oxidation profile of this impregnated sample (labeled "Tubes@Rice") exhibited two peaks, a low temperature peak that corresponds to the oxidation of the surfactant, and a second peak at about 510°C, which corresponds exactly to the position ascribed to the oxidation of singlewalled WO 00/73205 PCT/USOO/15362 C carbon nanotubes. To determine that the first peak was indeed Sdue to the oxidation of the surfactant, an identical sample Swith a blank solution containing only the surfactant in the same concentration was prepared. The Temperature Programmed Oxidation profile (labeled "Blank solution") matched the first m peak of the "Tubes@Rice" profile, demonstrating that indeed n this peak corresponds to the surfactant Triton.
0 The quantification of the amount of single-walled carbon nanotubes in the "Tubes@Rice" reference sample from the CO, produced by the Temperature Programmed Oxidation method gave a value of about 0.64 wt%, which is in good agreement with the amount of single-walled carbon nanotubes loaded in the sample (about 0.6 This result demonstrates that the Temperature Programmed Oxidation method of the present invention can be used to directly quantify the percentage of a particular carbon species, such as single-walled carbon nanotubes, multi-walled carbon nanotubes, and amorphous carbon, present in a product obtained by the nanotube production method. Currently, no other method of directly quantifying the fraction of a total solid product of nanotube production represented by a particular carbon species exists.
Example 6: Temperature Programmed Oxidation profiles of the products from CO disproportionation catalyzed by metallic catalytic particles containing the monometallic catalysts of Co or Mo supported on silica were generated by the method employed in WO 00/73205 PCT/USOO/15362 eC Example 5 and were compared to the Temperature Programmed SOxidation profile of products from CO disproportionation catalyzed by the bimetallic catalyst. The Temperature Programmed Oxidation method clearly demonstrates the synergistic effect exhibited by Co and Mo, which was also c observed by transmission electron microscopy as described in tr Example 2.
O As shown in FIG. 7, the Temperature Programmed Oxidation profile of the sample containing Mo/SiO, metallic catalytic particles (labeled indicates that Mo alone does not produce carbon nanotubes; the "Mo" Temperature Programmed Oxidation profile only contains a small low-temperature peak corresponding to amorphous carbon. Similarly, the Temperature Programmed Oxidation profile of the sample containing Co/SiO, metallic catalytic particles (labeled "Co") indicates that Co alone is not selective for the production of single-walled carbon nanotubes and generates mainly graphitic carbon and multi-walled carbon nanotubes, which, as described above, are oxidized at higher temperatures than single-walled carbon nanotubes. By contrast, the combination of the two metals results in high selectivity for single-walled carbon nanotubes, and the sample containing Co:Mo/SiO, metallic catalytic particles (labeled "Co:Mo wherein the Co:Mo ratio was about exhibits a large peak centered at about 510 0 C and is ascribed to single-walled carbon nanotubes.
Because no other peaks are evident, it can be assumed that single-walled carbon nanotubes are WO 00/73205 PCT/US00/15362 C provided as a large percentage of the total solid product of nanotube production.
c The percentages of single-walled carbon nanotubes, amorphous carbon, and multi-walled carbon nanotubes and graphite present in the catalytic products are listed in Table 0C II, wherein all of the numbers and measurements are approximations.
TABLE II. Synergistic Effect Exhibited by Co and Mo Catalyst Amorphous Single-Walled Multi-Walled Carbon Carbon Carbon Nanotubes Nanotubes and Graphite Co 38 11 51 Mo 95 5 0 Co:Mo 8 88 4 Example 7: Temperature Programmed Oxidation profiles of the products from CO disproportionation catalyzed by metallic catalytic particles containing Co:Mo bimetallic catalysts at Co:Mo ratios of about 1:4, about 1:2, about 1:1 and about 2:1 were compared to determine the effect of varying the Co:Mo molar ratio in the Co:Mo/SiO, metallic catalytic particles.
The Temperature Programmed Oxidation profiles were generated by the same methodology as described in Example 5. As shown in FIG. 8, the Co:Mo/SiO, metallic catalytic particles containing Co:Mo molar ratios of about 1:2 and about 1:4 exhibited the highest WO 00/73205 PCT/US00/15362 selectivities towards single-walled carbon nanotubes. The arrow indicates the center of the peak corresponding to the c oxidation of single-walled carbon nanotubes. The Temperature Programmed Oxidation profile of these samples indicate that 5 these catalysts produced mostly single-walled carbon Ce) nanotubes, with a small amount of amorphous carbon. An increase in the Co:Mo ratio did not enhance the production of O single-walled carbon nanotubes, but it did accelerate the formation of multi-walled carbon nanotubes and graphitic carbon, as shown by the increasing size of the peaks in the region of about 600°C to about 700 0 C of the Temperature Programmed Oxidation profile labeled "Co:Mo 2:1".
From the Temperature Programmed Oxidation profiles of FIG. 8, selectivity values for each of the catalysts were estimated, and are listed in Table III, wherein all of the numbers and measurements are approximations.
WO 00/73205 PCT/1JS00/1 5362 mr 5 0
(N)
TABLE III. Effect of Co:Mo Molar Ratio on Production of Single-walled Carbon Nanotubes Co:Mo Amorphous Single-Walled Multi-Walled Catalyst Carbon Carbon Carbon Molar Ratio Nanotubes Nanotubes and Graphite 2:1 12 57 31 1:1 16 80 4 1:2 8 88 4 1:4 5 94 1 Example 8: FIGS. 9-11 demonstrate the use of the Temperature Programmed Oxidation technique to optimize reaction conditions. CO disproportionation was catalyzed by Co:Mo/SiO 2 metallic catalytic particles (about a 1:1 molar ratio), and the methodology used was similar to that desciibed in Example 1, with the exceptions that in FIG. 9 the reaction temperature varied, in FIG. 10 the concentration of CO varied, and in FIG. 11 the reaction time varied. The products of CO disproportionation were analyzed by the Temperature Programmed Oxidation method described in Example In FIG. 9, Temperature Programmed Oxidation profiles of carbon species produced when the temperature of the reactor was about 600 0 C, about 700C and about 800 0 C are shown. These profiles demonstrate that the amount of carbon deposited increases as the temperature decreases; WO 00/73205 PCT/US00/15362 C\ however, the selectivity to single-walled carbon nanotubes is Slower at lower temperatures. The Temperature Programmed Oxidation technique can be used to identify the optimum reaction temperature for any particular catalyst, and in this case, the optimum temperature is about 700 0 C. The percentages of the catalytic products represented'by single-walled carbon V, nanotubes, amorphous carbon, and multi-walled carbon nanotubes O and graphite are listed in Table IV, wherein all of the numbers and measurements are approximations.
In FIG. 10, Temperature Programmed Oxidation profiles of carbon species produced when the concentratiof of CO in the carbon-containing gas is about about 20%, about 35% and about 50% are shown. These profiles indicate that the amount of single-walled carbon nanotubes produced is a strong function of the concentration of CO in the carbon-containing gas.
TABLE IV. Effect of Reaction Temperature on Production of Single-Walled Carbon Nanotubes Temperature Amorphous Single-Walled Multi-Walled Carbon Carbon Carbon Nanotubes Nanotubes and Graphite 600°C 16 55 29 7000C 16 80 4 800 0 C 25 61 14 WO 00/73205 PCT/US00/1 5362 SIn FIG. 11, Temperature Programmed Oxidation profiles of carbon species produced when the reaction time was about 3 Cc minutes, about 10 minutes and about 1 hour are shown. The reaction time refers to the time in which the reactor was held at about 700 0 C and the CO was in contact with the metallic CC catalytic particles. These Temperature Programmed Oxidation profiles demonstrate that the yield of single-walled carbon nanotubes significantly increases with time during the first approximately 10 minutes, but the growth is much less pronounced beyond that time.
Now it will be understood that the Temperature Programmed Oxidation method is a catalytic process in which the metals present in the sample catalyze the oxidation of the carbon species. Therefore, if the nature of the catalyst is significantly changed, the position of the oxidation peaks may appear shifted from the peaks described in the previous examples, even though the carbon structures represented by the peaks are the same. For example, it has been observed that modification of the catalyst support may result in such shifts. Therefore, for each catalyst used in the methods of the present invention, a complete Temperature Programmed Oxidation analysis of the catalyst as well as operating conditions should be performed with the appropriate references to identify peak shifts as well as optimum operating conditions.
Example 9 In an especially preferred embodiment of the method claimed herein, the catalyst formulation is a Co-Mo/silica catalyst, with a Co:Mo molar ratio of about 1:2. Monometallic 31 WO 00/73205 PCT/US00/1 5362 Co catalysts or those with a higher Co:Mo ratio tend to result in low selectivity with significant production of defective multi-walled nanotubes and graphite. In the temperature range investigated, without Co, Mo is essentially inactive for.
nanotube production. The catalyst is pre-treated in hydrogen, 0 for example, at about 500 0 C in order to partially reduce Mo, but not Co. Without this pre-reduction step, or with pre- C\ reduction at higher temperatures not enough reduction or too much reduction) the catalyst is not effective and produces less SWNT. Other supports such as alumina may result in a poor Co-Mo interaction, resulting in losses of selectivity and yield.
A high space velocity (above about 30,000 is preferred to minimize the concentration of CO, a by-product of the reaction, which inhibits the conversion to nanotubes. A high CO concentration is preferred to minimize the formation of amorphous carbon deposits, which occur at low CO concentrations. The preferred temperature range is characterized in that below about 650 0 C the selectivity towards SWNT is low; and above about 8500C, the conversion is low due to the reversibility of the reaction (exothermic) and the deactivation of the catalyst. Therefore, the optimal temperature is between about 700 0 C and about 800oC; more preferably between about 725 0 C and about 775 0 C and most preferably around about 7500C.
The production process has been designed in such a way to effect a rapid contact of the preferred catalyst formulation with a flow of highly concentrated CO at around about 7500C.
Otherwise, the yield and selectivity are greatly affected.
32 WO 00/73205 PCT/USOO/1 5362 The quality of the SWNT produced by this method may be determined by a combination of characterization techniques involving Raman Spectroscopy, Temperature Programmed Oxidation (TPO) and Electron Microscopy (TEM).
The preferred methodology therefore comprises contacting a flow of CO gas (in a high concentration) over the catalytic Sparticles at about 750 0 C for about 1 hour at a high space 0 velocity (above about 30,000/h) under high pressure (above about 4826322.99 Pa above about 4826322.99 N-m- 2 psi))).
If the conditions indicated above are followed, a high yield of SWNT (about 20-25 grams of SWNT per about 100 grams of initial catalyst loaded in the reactor) and high selectivity (greater than about 90%) is obtained.
Changes may be made in the construction and the operation of the various components, elements and assemblies described herein or in the steps or the sequence of steps of the methods described herein without departing from the spirit and scope of the invention as defined in the following claims.
The invention illustratively disclosed herein suitably may be practiced in the absence of any element which is not specifically disclosed herein.
The following claims are entitled to the broadest possible scope consistent with this application. The claim shall not necessarily be limited to the preferred embodiments or to the embodiments shown in the examples.
00 Interpretation of this specification It will therefore be understood that the invention could take many forms and be put to many different uses. All such forms and uses are embodied within the spirit and scope of the invention, which is to be understood as not being limited to the particular constructional details of the embodiments discussed above, but which extends to each Snovel feature and combination of features disclosed in or evident from this specification and the accompanying claims abnd drawings. All of these different combinations S io constitute various alternative aspects of the invention.
(Ni It is also to be understood that in this specification, the entire disclosure (including the disclosure of the description, claims, abstract and drawings) of Australian patent application No. 54622/00 as filed, is expressly incorporated into this specification by reference.
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
It is to be understood that a reference herein to a prior art document does not constitute an admission that the document forms part of the common general knowledge in the art in Australia or any other country.
.N 1 ,n \Plte,,,\76'1)0.76Q9\P71,(40 \I1 I\Sp,,,ck\P7640A U I Specification 2008-1-14 1. doc 28/03(08

Claims (68)

1. A method for producing carbon nanotubes, comprising the steps of: m contacting, in a reactor cell, catalytic particles comprising at on least one Group VIII metal, excluding iron, and at least cl one Group VIb metal with an effective amount of a carbon-containing gas at a temperature sufficient to catalytically produce carbon nanotubes, wherein the catalytic particles are reduced by exposure to reducing conditions prior to production of the carbon nanotubes.
2. The method of claim 1 wherein the Group VIII metal is selected from the group consisting of Co, Ni, Ru, Rh, Pd, Ir, Pt, and mixtures thereof.
3. The method of claim 1 or 2 wherein the Group VIb metal is selected from the group consisting of Cr, Mo, W, and mixtures thereof. N \Sydncy\Cases\Paten\76000-76999\P76540AU I\Spccis\P76540AU. I Specificalion 2008-I-14.doc 16/01/08
4. The method of any one of claims 1-3 wherein said catalytic particle further comprises a support upon which the metals are deposited.
5. The method of claim 4 wherein the support is selected from the group consisting of silica, MCM-41, alumina, MgO, aluminum- stabilized magnesium oxide, ZrO 2 and molecular sieve zeolites.
6. The method of any one of claims 1-5 wherein a ratio of the Group VIII metal to the Group VIb metal is from about 1:10 to about 15:1.
7. The method of any one of claims 1-5 wherein a ratio of the Group VIII metal to the Group VIb metal is from about 1:5 to about 2:1.
8. The method of any one of claims 1-7, wherein the catalytic particle has a concentration of the Group VIb metal and a concentration of the Group VIII metal, and wherein the concentration of the Group VIb metal exceeds the concentration of the Group VIII metal in the catalytic particle. N:ASydney\Cases\Patent\76000-76999\P76540 AU. I\Specis\P76540.AU I Specificaion 2008-I-14.d o 16/0 1/09 -36- 00 0
9. The method of any one of claims 1-8 wherein the catalytic particle comprises from about 1% to about 20% by weight of metal.
The method of any one of claims 1-9 wherein the carbon- containing gas is selected from the group consisting of saturated hydrocarbons, alcohols, aliphatic hydrocarbons, oxygenated Shydrocarbons, aromatic hydrocarbons, carbon monoxides, and Smixtures thereof.
11. The method of any one of claims 1-10 wherein the carbon- containing gas further comprises a diluent gas.
12. The method of any one of claims 1-11 wherein the temperature is sufficiently below a thermal decomposition temperature of said carbon-containing gas to avoid substantial formation of pyrolytic carbon.
13. The method of any one of claims 1-12 wherein the temperature is in a range of from about 500 0 C to about 1200 0 C.
14. The method of any one of claims 1-12 wherein the temperature is in a range of from about 600 0 C to about 850 0 C. N:\Sydney\CascsUicn\76DOO-76999\P7654.AU. I\Specis\P76540.AU. I Specification 2008-I-14.doc 16/01/08 -37- 00 0
15. The method of any one of claims 1-12 wherein the temperature Sis in a range of from about 650 0 C to about 750 0 C.
16. The method of any one of claims 1-15 wherein the catalytically produced carbon nanotubes further comprise multi-walled carbon Snanotubes.
17. The method of any one of claims 1-16 wherein single-walled (N carbon nanotubes comprise at least about 60% to at least about 9 5 of the catalytically produced carbon nanotubes.
18. The method of any one of claims 1-17 wherein the Group VIII metal is Co.
19. The method of any one of claims 1-17 wherein the Group VIII metal is Ni.
The method of any one of claims 1-17 wherein the Group VIII metal is Ru.
21. The method of any one of claims 1-17 wherein the Group VIII metal is Rh. N.\Sydncy\Cases\Patent\76000-76999\P7654OAU 1\Specis\P76540AU, I Specificahion 2008I--4.doc 16/01/08 -38- 00 0
22. The method of any one of claims 1-17 wherein the Group VIII Smetal is Pd.
23. The method of any one of claims 1-17 wherein the Group VIII metal is Ir.
24. The method of any one of claims 1-17 wherein the Group VIII metal is Pt.
25. The method of any one of claims 1-24 wherein the Group VIb metal is Cr.
26. The method of any one of claims 1-24 wherein the Group VIb metal is Mo.
27. The method of any one of claims 1-24 wherein the Group VIb metal is W.
28. The method of any one of claims 1-17 wherein the Group VIII metal is Co and the Group VIb metal is Mo, and wherein the Co and the Mo are in a ratio of one part Co to at least two parts Mo. N \Sydney\Cases\Paent76OO-76999\P76540 AU. I\Spccis\P76540AU.I Specifcation 2008-I-14.doe 16/01108 -39-
29. The method of any one of claims 1-28 wherein the catalytic particle comprises at least one additional Group VIII metal.
The method of any one of claims 1-29 particle comprises at least one additional Group
31. The method of any one of claims 1-30 particles are 30 substantially continuously fed carbon-containing gas. wherein the catalytic VIb metal. wherein the catalytic into a stream of the
32. The method of any one of claims 1-31 wherein the carbon- containing gas is fed into the reactor cell having the catalytic particles disposed therein.
33. The method of any one of claims 1-32 wherein the step of contacting the catalytic particles with the carbon-containing gas occurs at a high space velocity above about 30,000/hour.
34. The method of any one of claims 1-33 wherein the carbon nanotubes comprise at least 80% single-walled carbon nanotubes. The method of any one of claims 1-33 wherein the carbon nanotubes comprise at least 88% single-walled carbon nanotubes.
N:\Sydney\Cascs\Paten1\7600O-76999\P7654AU I\Spccis\P76540,AU. Specifcaion 2008-1-14 doc 16/0/08 00 O O
36. The method of any one of claims 1-33 wherein the carbon nanotubes comprise at least 94% single-walled carbon nanotubes.
37. A catalytic particle for producing carbon nanotubes in a method wherein the catalytic particle is exposed to a carbon-containing gas, Ni3 Sthe catalytic particle comprising at least one Group VIII metal, excluding iron, and at least one Group VIb metal and wherein the catalytic particle has been reduced by exposure to reducing conditions.
38. The catalytic particle of claim 37 wherein the Group VIII metal is selected from the group consisting of Co, Ni, Ru, Rh, Pd, Ir, Pt, and mixtures thereof.
39. The catalytic particle of claim 37 or 38 wherein the Group VIb metal is selected from the group consisting of Cr, Mo, W, and mixtures thereof.
40. The catalytic particle of any one of claims 37-39 wherein the catalytic article has a concentration of the Group VIb metal and a concentration of the Group VIII metal, and wherein the concentration N:\Sydncy\Case\PatnlV7600-76999\P164O AU I\Sp-cir\P7654O AU I Sp.c6fic-on 2008.1-14.d- 16101/08 -41- 00 8 of the Group VIb metal exceeds the concentration of the Group VIII (N Smetal. c,
41. The catalytic particle of claims 40 comprising Co and Mo in a l- ratio of one part Co to at least two parts Mo. i/h 0
42. The catalytic particle of any one of claims 37-41 wherein said particle further comprises a support material upon which the metals are deposited.
43. The catalytic particle of claim 42 wherein the support material is selected from the group consisting of silica, MCM-41, alumina, MgO, aluminum-stabilized magnesium oxide, Zr02 and molecular sieve zeolites.
44. The catalytic particle of any one of claims 37-43 wherein a ratio of the Group VIII metal to the Group VIb metal is from about 1:10 to about 15:1.
45. The catalytic particle of any one of claims 37-44 wherein a ratio of the Group VIII metal to the Group VIb metal is from about 1:5 to about 2:1. N \Sydncy\Cases\Pateni\76000-76999\P76540AU I\Spects\P76540 AU I Speciication 2008.1-14doc 16101/08 -42- 00 0
46. The catalytic particle of any one of claims 37-45 wherein the a catalytic particle comprises from about 1% to about 20% by weight of metal.
47. The catalytic particle of any one of claims 37-46 wherein the Scatalytic particle comprises at least one additional Group VIII metal.
48. The catalytic particle of any one of claims 37-47 wherein the catalytic particle comprises at least one additional Group VIb metal.
49. A carbon nanotube product, comprising: a catalytic particle comprising: at least one Group VIII metal, excluding iron, and at least one Group VIb metal, and a support material, wherein the Group VIII metal, the Group VIb metal, and the support material are combined to have a particulate form wherein the catalytic particle was reduced by exposure to reducing conditions; and a solid carbon product deposited on the catalytic particle, the solid carbon product primarily comprising carbon nanotubes. N \Sydney\Cas\Paten\760OO-76999\P7654O.AU 1\Specis\P76540 AU I Specification 2008-I-14.doc 16/01/08 -43- 00 0
50. The carbon nanotube product of claim 49 wherein the Group SVIII metal is selected from the group consisting of Co, Ni, Ru, Rh, Pd, Ir, Pt, and mixtures thereof.
51. The carbon nanotube product of claims 49 or 50 where the VIb Smetal is selected from the group consisting of Cr, Mo, W, and (i Smixtures thereof. (N
52. The carbon nanotube product of any one of claims 49-51 wherein the catalytic particle has a concentration of the Group VIb metal and a concentration of the Group VIII metal, and wherein the concentration of the Group VIb metal exceeds the concentration of the Group VIII metal.
53. The carbon nanotube product of any one of claims 49-52 wherein the Group VIII metal and the Group VIb metal are in a ratio of one part Group VIII metal to at least two parts Group VIb metal.
54. The carbon nanotube product of any one of claims 49-53 wherein the support material is silica. N.\Sydney\CasesPalenz760OO.76999\P7654O AU. I'Specis\P76540AU.I Specifcation 2008-I-14.doc 16/01/08 -44- 00 0
55. The carbon nanotube product of any one of claims 49-54 Swherein the solid carbon product is primarily single-walled carbon nanotubes.
56. The carbon nanotube product of any one of claims 49-55 wherein at least 80% of the solid carbon product is single-walled Scarbon nanotubes. (N
57. The carbon nanotube product of any one of claims 49-56 wherein at least 88% of the solid carbon product is single-walled carbon nanotubes.
58. The carbon nanotube product of any one of claims 49-57 wherein at least 9 4 of the solid carbon product is single-walled carbon nanotubes.
59. The carbon nanotube product of any one of claims 49-58 wherein the solid carbon product comprises multi-walled carbon nanotubes. The carbon nanotube product of any one of claims 49-59 wherein the Group VIII metal is Co and the Group VIb metal is Mo.
N \Sydney\Cases\'alent\76000-76999\J76540AU I\Specis\P76540 AU. I Specification 2008. I- 14doc 16/01/08 00 0
61. The carbon nanotube product of claim 60 wherein the Co and SMo are in a ratio of one part Co to at least two parts Mo.
62. The carbon nanotube product of claim 60 or 61 wherein the metallic catalytic particle comprises from about 1% to about 20% by Sweight of the Co and the Mo. Ni
63. The carbon nanotube product of any one of claims 49-62 wherein the metallic catalytic particle comprises at least one additional Group VIII metal.
64. The carbon nanotube product of any one of claims 49-63 wherein the metallic catalytic particle comprises at least one additional Group VIb metal.
A carbon nanotube product produced by the method of any one of claims 1-36.
66. A method for producing carbon nanotubes as claimed in claim 1, substantially as described in this specification, and with reference to the accompanying drawings and the examples given. N ASydney\Cases\Patent\76000-76999\P7654OAU4 I\Specis\P76540.A.I Specifiction 2008-I-14.doc (6/0108 -46- 00 0
67. A catalytic particle for producing carbon nanotubes in a method wherein the catalytic particle is exposed to a carbon-containing gas, as claimed in claim 37, substantially as described in this specification, and with reference to the accompanying drawings and the examples given.
68. A carbon nanotube product, as claimed in claim 49, (N substantially as described in this specification, and with reference to the accompanying drawings and the examples given. N \Sydney\Cases\Patent76000.7699\P76540 AU I\Specis\P76540AU I Spcification 2003-1-14 doc 16/01/08
AU2005203047A 1999-06-02 2005-07-13 Method of producing carbon nanotubes and catalysts therefor Ceased AU2005203047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005203047A AU2005203047B2 (en) 1999-06-02 2005-07-13 Method of producing carbon nanotubes and catalysts therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13720699P 1999-06-02 1999-06-02
US60/137206 1999-06-02
US09/389553 1999-09-03
US09/389,553 US6333016B1 (en) 1999-06-02 1999-09-03 Method of producing carbon nanotubes
PCT/US2000/015362 WO2000073205A1 (en) 1999-06-02 2000-06-01 Method of producing carbon nanotubes and catalysts therefor
AU2005203047A AU2005203047B2 (en) 1999-06-02 2005-07-13 Method of producing carbon nanotubes and catalysts therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU54622/00A Division AU780726B2 (en) 1999-06-02 2000-06-01 Method of producing carbon nanotubes and catalysts therefor

Publications (2)

Publication Number Publication Date
AU2005203047A1 AU2005203047A1 (en) 2005-08-11
AU2005203047B2 true AU2005203047B2 (en) 2008-04-17

Family

ID=34841300

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005203047A Ceased AU2005203047B2 (en) 1999-06-02 2005-07-13 Method of producing carbon nanotubes and catalysts therefor

Country Status (1)

Country Link
AU (1) AU2005203047B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture
WO2000017102A1 (en) * 1998-09-18 2000-03-30 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture
WO2000017102A1 (en) * 1998-09-18 2000-03-30 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles

Also Published As

Publication number Publication date
AU2005203047A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
AU780726B2 (en) Method of producing carbon nanotubes and catalysts therefor
Grobert Carbon nanotubes–becoming clean
Wang et al. Bamboo-like carbon nanotubes produced by pyrolysis of iron (II) phthalocyanine
Ando et al. Growing carbon nanotubes
Kitiyanan et al. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts
CA2424969C (en) Double-walled carbon nanotubes and methods for production and application
EP1694891B1 (en) Rhenium catalysts and methods for production of single-walled carbon nanotubes
WO2006137942A2 (en) Methods for controlling the quality of metal nanocatalyst for growing high yield carbon nanotubes
WO2006055678A2 (en) Catalyst for synthesis of carbon single-walled nanotubes
WO2010036394A2 (en) Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes
Mordkovich et al. Synthesis of carbon nanotubes by catalytic conversion of methane: Competition between active components of catalyst
WO2007035241A2 (en) Methods for synthesis of high quality carbon single-walled nanotubes
AU2005203047B2 (en) Method of producing carbon nanotubes and catalysts therefor
Malekimoghadam et al. Carbon nanotubes processing
Fei et al. Preparation of carbon nanotubes by ethanol catalytic combustion technique using nickel salt as catalyst precursor

Legal Events

Date Code Title Description
MK7 Application lapsed reg. 3.2a(3) - applicant did not comply with formalities direction within prescribed time
NB Applications allowed - extensions of time section 223(2)

Free format text: THE TIME IN WHICH TO COMPLY WITH A DIRECTION UNDER REG. 3.2(4) HAS BEEN EXTENDED TO 15 DEC 2005.

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired