JP2002115072A - Thermal cvd system for depositing graphite nanofiber thin film - Google Patents

Thermal cvd system for depositing graphite nanofiber thin film

Info

Publication number
JP2002115072A
JP2002115072A JP2000308978A JP2000308978A JP2002115072A JP 2002115072 A JP2002115072 A JP 2002115072A JP 2000308978 A JP2000308978 A JP 2000308978A JP 2000308978 A JP2000308978 A JP 2000308978A JP 2002115072 A JP2002115072 A JP 2002115072A
Authority
JP
Japan
Prior art keywords
substrate
gas
processed
thin film
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000308978A
Other languages
Japanese (ja)
Other versions
JP4627861B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Hiroyuki Fukazawa
博之 深沢
Harukuni Furuse
晴邦 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000308978A priority Critical patent/JP4627861B2/en
Publication of JP2002115072A publication Critical patent/JP2002115072A/en
Application granted granted Critical
Publication of JP4627861B2 publication Critical patent/JP4627861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To constitute a thermal CVD system so that a graphite nanofiber thin film having uniform film-thickness distribution can be deposited independently of the size and appearance of a substrate. SOLUTION: This system has: a resistance heater (a first heating means) 121c provided inside a substrate holder 121 provided to the inside of a vacuum chamber 12; and a plurality of infrared lamps (a second heating means) 17 provided above the chamber in a manner to be opposed to a substrate S to be treated. The introduction of carbon-containing gas and gaseous hydrogen each necessary for the deposition of the graphite nanofiber thin film is performed via a gas injection nozzle means 19 which is located in a position at a height below the position of the substrate S in a manner to surround the substrate in the vicinity of its outside periphery. The nozzle means connected to a gas source outside the vacuum chamber has a gas passage 191 inside, and further, a plurality of gas injection holes 192 communicating with the gas passage are provided in line to the top surface of the nozzle means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上にグラファ
イトナノファイバー薄膜を形成するための熱CVD装置
に関する。
[0001] The present invention relates to a thermal CVD apparatus for forming a graphite nanofiber thin film on a substrate.

【0002】[0002]

【従来の技術】グラファイトナノファイバー薄膜は、例
えば、平面ディスプレー(電界放出型ディスプレー)や
CRTの電子管球の代用として電子発光素子を必要とす
る部品上に形成される。グラファイトナノファイバー薄
膜を形成するには、例えば熱CVD(Chemical vapor d
eposition)装置が使用され、このような熱CVD装置
は特願2000−89468号明細書から知られてい
る。
2. Description of the Related Art A graphite nanofiber thin film is formed on a component requiring an electroluminescent element as a substitute for a flat panel display (field emission display) or an electron tube of a CRT, for example. To form a graphite nanofiber thin film, for example, thermal CVD (Chemical vapor d)
An eposition apparatus is used, and such a thermal CVD apparatus is known from Japanese Patent Application No. 2000-89468.

【0003】該熱CVD装置は真空雰囲気の形成を可能
とする真空チャンバーを備えている。該真空チャンバー
内部には、ガラスやSiなどの基板であってFeやCo
が蒸着されたものが装着される基板ホルダーが配設され
ている。また、真空チャンバーの上部壁面には、被処理
基板に対向して石英ガラスなどの耐熱性ガラスからなる
赤外線透過窓が設けられている。この透過窓の外側には
加熱手段である複数本の赤外線ランプが配設されてい
る。そして、該赤外線ランプによって被処理基板を加熱
しつつ、真空チャンバーの側壁に設けられた1箇所のガ
ス導入口から真空チャンバーに、例えば水素ガスと一酸
化炭素との混合ガスを導入することで該基板上にグラフ
ァイトナノファイバー薄膜を成長させる。
[0003] The thermal CVD apparatus has a vacuum chamber capable of forming a vacuum atmosphere. Inside the vacuum chamber, a substrate made of glass, Si, or the like containing Fe or Co
A substrate holder on which a substrate on which is deposited is mounted is provided. An infrared transmission window made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the vacuum chamber so as to face the substrate to be processed. A plurality of infrared lamps as heating means are arranged outside the transmission window. Then, while heating the substrate to be processed by the infrared lamp, a mixed gas of, for example, hydrogen gas and carbon monoxide is introduced into the vacuum chamber from one gas inlet provided on the side wall of the vacuum chamber. A graphite nanofiber thin film is grown on a substrate.

【0004】[0004]

【発明が解決しようとする課題】ここで、被処理基板上
に膜厚分布が均一なグラファイトナノファイバー薄膜を
形成するには、被処理基板をその全面に亘って均等に加
熱すると共に、真空チャンバーに導入される混合ガスが
所定の温度以上に加熱されることなく被処理基板全体に
均等に到達させる必要がある。このため、上述の装置で
は、真空チャンバーの上部の赤外線ランプの他に、基板
ホルダーに抵抗加熱式ヒータを付設すると共に、真空チ
ャンバー側壁に設け得るガス導入口の位置を適宜設計し
ているが、1箇所からのガス導入ではグラファイトナノ
ファイバー薄膜の膜圧分布を制御するのは困難な場合が
多い。この場合、成膜室の側壁にガス導入口を複数設
け、これらのガス導入口から混合ガスを成膜室内に導入
することが考えられる。ところが、これでは、200m
m×200mm程度の略正方形基板やφ200mm程度
の円形基板はともかく、例えば1m×1mサイズのよう
な大きな被処理基板やA4サイズのような矩形の被処理
基板に対してグラファイトナノファイバー薄膜の膜厚分
布が均一になるようにガス導入口の配設位置を適切に設
計することは困難である。
Here, in order to form a graphite nanofiber thin film having a uniform film thickness distribution on a substrate to be processed, the substrate to be processed is uniformly heated over its entire surface and a vacuum chamber is formed. It is necessary that the mixed gas introduced into the substrate reaches the entire substrate to be processed uniformly without being heated to a predetermined temperature or higher. For this reason, in the above-described apparatus, in addition to the infrared lamp at the top of the vacuum chamber, a resistive heater is attached to the substrate holder, and the position of a gas inlet that can be provided on the side wall of the vacuum chamber is appropriately designed. It is often difficult to control the film pressure distribution of the graphite nanofiber thin film by introducing gas from one place. In this case, it is conceivable to provide a plurality of gas introduction ports on the side wall of the film formation chamber and to introduce a mixed gas into the film formation chamber from these gas introduction ports. However, in this case, 200m
Regardless of a substantially square substrate with a size of about 200 mm and a circular substrate with a diameter of about 200 mm, for example, the thickness of a graphite nanofiber thin film with respect to a large substrate to be processed such as 1 m x 1 m or a rectangular substrate such as A4 size. It is difficult to appropriately design the arrangement position of the gas inlet so that the distribution is uniform.

【0005】そこで、本発明の課題は、被処理基板のサ
イズや外形に関係なく、膜厚分布の均一なグラファイト
ナノファイバー薄膜の形成を可能とするCVD装置を提
供することにある。
An object of the present invention is to provide a CVD apparatus capable of forming a graphite nanofiber thin film having a uniform film thickness distribution irrespective of the size and outer shape of a substrate to be processed.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明のCVD装置は、真空チャンバー内に配設した
基板ホルダーに付設した第1加熱手段と、該基板ホルダ
ーに装着される被処理基板に対向して真空チャンバーの
上部に設けた第2加熱手段とを備え、第1及び第2の加
熱手段で被処理基板全体を均等に加熱しつつ、真空チャ
ンバー内に炭素含有ガスと水素ガスとの混合ガスを導入
することで該基板上にグラファイトナノファイバー薄膜
を形成するように構成され、混合ガスの導入が、基板ホ
ルダーに装着される被処理基板の高さ位置より下側であ
って、被処理基板をその外周の近傍で囲繞するように設
けられたガス噴射ノズル手段を介して行われ、真空チャ
ンバー外部のガス源に接続されたガス噴出ノズル手段は
その内部にガス流路を有すると共に、その上面に、ガス
流路に連通する複数のガス噴射口が列設されていること
を特徴とする。
According to the present invention, there is provided a CVD apparatus comprising: a first heating means attached to a substrate holder provided in a vacuum chamber; A second heating means provided on the upper part of the vacuum chamber so as to face the substrate, wherein the first and second heating means uniformly heat the entire substrate to be processed, and a carbon-containing gas and a hydrogen gas are introduced into the vacuum chamber. Is introduced to form a graphite nanofiber thin film on the substrate by introducing a mixed gas, and the introduction of the mixed gas is lower than the height position of the substrate to be mounted on the substrate holder. Is performed through gas injection nozzle means provided so as to surround the substrate to be processed in the vicinity of its outer periphery, and the gas injection nozzle means connected to a gas source outside the vacuum chamber has a gas flow nozzle therein. Together with a, in its upper surface, a plurality of gas injection port communicating with the gas passage, characterized in that it is the column set.

【0007】本発明によれば、真空チャンバーの上側の
第1加熱手段に加えて、第2加熱手段によって被処理基
板を加熱することで、その全体に亘って均等に加熱でき
る。そして、混合ガスは、被処理基板をその外周の近傍
で囲繞するように設けたガス噴出ノズル手段の上面に列
設された複数のガス噴射口から一旦上方に向かって噴出
され、被処理基板の上方全体に亘って均一に拡散し、次
いで、下方に向かって均等に下降し、被処理基板全体に
亘って一様に到達する。このため、被処理基板が比較的
大きな寸法を有していたり、矩形の外形を有していて
も、被処理基板のサイズや外形に関係なく該被処理基板
上に膜厚分布の均一なグラファイトナノファイバー薄膜
を形成できる。
According to the present invention, the substrate to be processed is heated by the second heating means in addition to the first heating means on the upper side of the vacuum chamber, so that the entire substrate can be uniformly heated. Then, the mixed gas is ejected upward once from a plurality of gas ejection ports arranged in a row on the upper surface of the gas ejection nozzle means provided so as to surround the substrate to be processed in the vicinity of the outer periphery thereof. It diffuses uniformly over the whole upper part, and then descends uniformly downward, and reaches uniformly over the whole substrate to be processed. For this reason, even if the substrate to be processed has a relatively large dimension or a rectangular outer shape, the graphite having a uniform film thickness distribution on the substrate to be processed regardless of the size or outer shape of the substrate to be processed. Nanofiber thin film can be formed.

【0008】[0008]

【発明の実施の形態】図1を参照して、例えば、A4サ
イズの矩形の被処理基板S上にグラファイトナノファイ
バー薄膜を形成する熱CVD装置1は、ロードロック室
11と成膜室12とを備え、ロードロック室11と成膜
室12とはゲートバルブ13を介して接続されている。
ロードロック室11は、ガラスやSiなどの被処理基板
Sであって、成膜面にFeやCoなどの金属薄膜が形成
されたものを一旦真空雰囲気に曝すことで、被処理基板
表面の水分等を除去する役割を果たす。このため、該ロ
ードロック室11には、真空ポンプ111が接続されて
いると共に、その真空度をモニターする真空計112が
配設されている。また、該ロードロック室11には、被
処理基板Sを搬送する搬送アーム15が設けられてい
る。該搬送アーム15は、サーボモータ(図示せず)を
備えた回転軸151の上端に固着された第1アーム15
2と、各第1アーム152の他端に枢支された第2アー
ム153と、該第2アーム153の他端に枢支されると
共に、被処理基板Sを下側から支持するフォーク状の支
持部を備えた第3アーム154とからなる。そして、第
2及び第3の各アーム153、154を旋回させること
で搬送アーム15は伸縮自在となる。また、被処理基板
Sの受渡等のため回転軸151は短いストロークで昇降
自在である。この搬送アーム15によって外部から被処
理基板Sをロードロック室11に収容し、所定の真空度
(例えば、0.01Torr程度)まで真空排気した
後、ゲートバルブ13を開けて、所定の真空度(例え
ば、0.01Torr程度)に真空排気した成膜室12
に被処理基板Sを搬送する。そして、搬送アーム15が
再びロードロック室11に戻ると、ゲートバルブ13が
閉じる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, for example, a thermal CVD apparatus 1 for forming a graphite nanofiber thin film on an A4-size rectangular substrate to be processed S includes a load lock chamber 11 and a film forming chamber 12. The load lock chamber 11 and the film formation chamber 12 are connected via a gate valve 13.
The load lock chamber 11 is a substrate S to be processed such as glass or Si, on which a metal thin film such as Fe or Co is formed on a film-forming surface, is exposed to a vacuum atmosphere once, so that the moisture on the surface of the substrate to be processed is reduced. Plays a role in removing the like. For this purpose, a vacuum pump 111 is connected to the load lock chamber 11 and a vacuum gauge 112 for monitoring the degree of vacuum is provided. The load lock chamber 11 is provided with a transfer arm 15 for transferring the substrate S to be processed. The transfer arm 15 includes a first arm 15 fixed to an upper end of a rotating shaft 151 having a servomotor (not shown).
2, a second arm 153 pivotally supported by the other end of each first arm 152, and a fork-shaped pivotally supported by the other end of the second arm 153 and supporting the substrate S to be processed from below. And a third arm 154 having a support. By rotating the second and third arms 153 and 154, the transfer arm 15 can expand and contract. In addition, the rotary shaft 151 can be moved up and down with a short stroke for delivery and the like of the substrate S to be processed. The substrate S to be processed is housed in the load lock chamber 11 from the outside by the transfer arm 15 and evacuated to a predetermined degree of vacuum (for example, about 0.01 Torr). Then, the gate valve 13 is opened to open the predetermined degree of vacuum ( For example, the film forming chamber 12 evacuated to about 0.01 Torr).
Is transferred to the substrate S. When the transfer arm 15 returns to the load lock chamber 11, the gate valve 13 is closed.

【0009】成膜室12の底面には、搬送アーム15に
よって搬送されてきた被処理基板Sが装着される基板ホ
ルダー121が設けられている。基板ホルダー121
は、被処理基板Sが装着される基板支持部121aであ
って、被処理基板Sより大きな面積を有するものと、該
基板支持部を支持する複数本の支柱121bとからな
る。ここで、被処理基板Sの均等な加熱を達成するた
め、基板支持部121aには、第1加熱手段である抵抗
加熱式ヒータ121cが組み込まれている。
On the bottom of the film forming chamber 12, a substrate holder 121 on which the substrate S to be processed transferred by the transfer arm 15 is mounted is provided. Substrate holder 121
Is a substrate supporting portion 121a on which the substrate to be processed S is mounted, which has a larger area than the substrate to be processed S, and a plurality of columns 121b for supporting the substrate supporting portion. Here, in order to achieve uniform heating of the substrate S to be processed, a resistance heating type heater 121c as a first heating unit is incorporated in the substrate support portion 121a.

【0010】また、成膜室12の上部壁面には、被処理
基板Sに対向して石英ガラスなどの耐熱性ガラスからな
る赤外線透過窓122が設けられている。この透過窓1
22の外側には、所定の配列を有してなる第2加熱手段
である複数本の赤外線ランプ17が配設され、抵抗加熱
式ヒータ121cと相俟って被処理基板Sをその全面に
亘って均等に加熱する。そして、該成膜室12にもま
た、ロードロック室11と同様に、真空雰囲気の形成が
可能であるように真空ポンプ123が設けられていると
共に、その真空度をモニターする真空計124が配設さ
れている。また、真空ポンプ123をバイパスする配管
がバルブ123cを介在させて設けられている。
An infrared transmitting window 122 made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the film forming chamber 12 so as to face the substrate S to be processed. This transmission window 1
A plurality of infrared lamps 17 as a second heating means having a predetermined arrangement are arranged outside the substrate 22, and the substrate S to be processed is spread over the entire surface thereof in cooperation with the resistance heater 121c. And heat evenly. Similarly to the load lock chamber 11, the film forming chamber 12 is provided with a vacuum pump 123 so that a vacuum atmosphere can be formed, and a vacuum gauge 124 for monitoring the degree of vacuum is provided. Has been established. Further, a pipe bypassing the vacuum pump 123 is provided with the valve 123c interposed.

【0011】さらに、成膜室12には混合ガス供給系1
8が接続されている。該混合ガス供給系18は、バルブ
181aからガス流量調節器181b、圧力調整器18
1c及びバルブ181dを介して一酸化炭素などの炭素
含有ガスボンベ181eにガス配管にて直列に連なって
いる炭素含有ガス供給系181と、バルブ182aから
ガス流量調節器182b、圧力調整器182c及びバル
ブ182dを介して水素ガスボンベ182eにガス配管
にて直列に連なっている水素ガス供給系182からな
る。そして、炭素含有ガス供給系181と水素ガス供給
系182とは、バルブ181a、182aと成膜室12
との間で合流し、成膜室12内に炭素含有ガスと水素ガ
スとの混合ガスが導入される。ここで、グラファイトナ
ノファイバー薄膜を形成するのに、炭素含有ガスの他に
水素ガスを用いるのは、気相反応における希釈及び触媒
作用のためである。
Further, the mixed gas supply system 1 is
8 are connected. The mixed gas supply system 18 includes a valve 181a, a gas flow controller 181b, a pressure controller 18
1c and a carbon-containing gas supply system 181 connected in series with a carbon-containing gas cylinder 181e such as carbon monoxide via a valve via a valve 181d, a valve 182a to a gas flow regulator 182b, a pressure regulator 182c, and a valve 182d. And a hydrogen gas supply system 182 connected in series to the hydrogen gas cylinder 182e via a gas pipe. Further, the carbon-containing gas supply system 181 and the hydrogen gas supply system 182 are connected to the valves 181a and 182a and the film forming chamber 12
And a mixed gas of a carbon-containing gas and a hydrogen gas is introduced into the film forming chamber 12. Here, the reason why the hydrogen gas is used in addition to the carbon-containing gas to form the graphite nanofiber thin film is because of dilution and catalytic action in the gas phase reaction.

【0012】ところで、混合ガス供給系18を介して混
合ガスを成膜室12に導入する場合、従来のCVD装置
のように、被処理基板Sの上方に位置して該成膜室12
の側壁に設けた1箇所のガス導入口から混合ガスを導入
するのでは、比較的大きな基板や矩形の基板に対してグ
ラファイトナノファイバー薄膜の膜厚分布を均一にする
のは困難である。そこで、本実施の形態では、混合ガス
の導入を、被処理基板Sの高さ位置より下側であって、
被処理基板Sをその外周の近傍で囲繞するように設けた
ガス噴射ノズル手段19を介して行なうこととした。
When a mixed gas is introduced into the film forming chamber 12 through the mixed gas supply system 18, the film forming chamber 12 is located above the substrate S to be processed as in a conventional CVD apparatus.
It is difficult to make the film thickness distribution of the graphite nanofiber thin film uniform with respect to a relatively large substrate or a rectangular substrate by introducing the mixed gas from one gas inlet provided on the side wall. Therefore, in the present embodiment, the introduction of the mixed gas is performed below the height position of the target substrate S,
The processing is performed via gas injection nozzle means 19 provided so as to surround the target substrate S in the vicinity of the outer periphery thereof.

【0013】図2及び図3を参照して、環状のガス噴射
ノズル手段19はその内部に混合ガス流路191を備
え、その上面には、該ガス流路191に連通する複数個
のガス噴射口192が列設されている。また、ガス噴射
ノズル手段19の上面には、ガス流路191に通じる継
手を備えた混合ガス供給部193が設けられ、混合ガス
供給系18のガス配管の一端が接続されている。ここ
で、このようにガス噴射ノズル手段19を形成した場
合、赤外線ランプ17によって被処理基板Sと共にガス
噴射ノズル手段19自体も加熱され得る。そして、該ガ
ス噴射ノズル手段19の表面温度が所定の温度以上にな
ると、そこにグラファイトナノファイバー薄膜が成長し
得る。グラファイトナノファイバー薄膜が成長するとコ
ンタミネーションの原因になるので、ガス噴射ノズル手
段19を頻繁にクリーニング或いは交換する必要が生じ
る。このため、本実施の形態では、ガス噴射ノズル手段
19を、熱伝導率の高い金属材料である銅から形成し、
成膜室12の底部壁面に面接触させて配設した。そし
て、成膜室12の外壁の周囲に冷却水ライン20を蛇行
して配設し、グラファイトナノファイバー薄膜形成プロ
セスを行っている間、冷却水ライン20に冷却水を流す
ことで成膜室12の外壁を冷却可能とした。これによ
り、ガス噴射ノズル手段19は、グラファイトナノファ
イバー薄膜が成長する温度以下の温度に保持される。な
お、本実施の形態では、ガス噴射ノズル手段19を環状
としたが、成膜室12内に混合ガスを均一に噴射し得る
ものであればその外形は問わない。また、ガス噴射ノズ
ル手段19の配設位置に対応して、成膜室12の底面か
ら基板ホルダー121の基板支持部121aまでの高さ
寸法は、ガス噴射ノズル手段19のガス噴射口192か
ら上方に向かって噴出された混合ガスが赤外線ランプ1
7で所定温度以上に加熱されることなく、被処理基板S
に到達するように定寸されている。また、成膜室12の
外壁の周囲に冷却水ライン20を蛇行して配設したが、
成膜室12の外壁を覆う水冷ジャケットにしてもよい。
Referring to FIGS. 2 and 3, the annular gas injection nozzle means 19 has a mixed gas flow path 191 therein, and a plurality of gas injection paths communicating with the gas flow path 191 on its upper surface. The mouths 192 are arranged. Further, on the upper surface of the gas injection nozzle means 19, a mixed gas supply section 193 having a joint communicating with the gas flow path 191 is provided, and one end of a gas pipe of the mixed gas supply system 18 is connected. Here, when the gas injection nozzle means 19 is formed as described above, the gas injection nozzle means 19 itself can be heated together with the substrate S to be processed by the infrared lamp 17. Then, when the surface temperature of the gas injection nozzle means 19 becomes higher than a predetermined temperature, a graphite nanofiber thin film can grow thereon. The growth of the graphite nanofiber thin film causes contamination, so that the gas injection nozzle means 19 needs to be frequently cleaned or replaced. For this reason, in the present embodiment, the gas injection nozzle means 19 is formed from copper, which is a metal material having high thermal conductivity,
It was arranged in surface contact with the bottom wall surface of the film forming chamber 12. Then, a cooling water line 20 is meanderingly provided around the outer wall of the film forming chamber 12, and the cooling water flows through the cooling water line 20 during the execution of the graphite nanofiber thin film forming process. The outer wall of can be cooled. Thereby, the gas injection nozzle means 19 is maintained at a temperature equal to or lower than the temperature at which the graphite nanofiber thin film grows. In the present embodiment, the gas injection nozzle means 19 is annular, but the outer shape is not limited as long as the gas mixture can be uniformly injected into the film forming chamber 12. Further, the height from the bottom surface of the film forming chamber 12 to the substrate support portion 121a of the substrate holder 121 is higher than the gas injection port 192 of the gas injection nozzle means 19, corresponding to the disposition position of the gas injection nozzle means 19. Mixed gas ejected toward the infrared lamp 1
7, the substrate S to be processed is not heated to a predetermined temperature or higher.
Is sized to reach. Further, the cooling water line 20 is arranged in a meandering manner around the outer wall of the film forming chamber 12,
A water cooling jacket that covers the outer wall of the film forming chamber 12 may be used.

【0014】次に、上記装置を使用したグラファイトナ
ノファイバー薄膜形成プロセスについて説明する。
Next, a process of forming a graphite nanofiber thin film using the above apparatus will be described.

【0015】被処理基板Sとして、EB蒸着法によりガ
ラス基板上にFeを100nmの厚さで蒸着したものを
使用する。このようにFeが蒸着された被処理基板S
を、ロードロック室11の外側から搬送アーム15によ
って該ロードロック室11に一旦収納し、真空ポンプ1
11を起動して真空計112で測定しながら0.01T
orr程度まで真空排気を行う。それに併せて、成膜室
12も、真空ポンプ123を起動して真空計124で測
定しながら0.01Torr程度になるまで真空排気を
行う。そして、ロードロック室11及び成膜室12が所
定の真空度に達した後、所定の時間が経過するとゲート
バルブ13を開けて成膜室12の基板ホルダー121の
基板支持部121a上に被処理基板Sを装着する。この
状態で、一酸化炭素ガスボンベ181eと水素ガスボン
ベ182eとの元栓を開き、圧力調整器181c、18
2cにより約1気圧(絶対圧力)に調整し、そしてバル
ブ181a、182aを開き、ガス流量調節器181
b、182bにより、一酸化炭素ガスと水素ガスとの混
合ガス(CO:H2=30:70のガス比)を約100
0sccm程度に調整して、成膜室12内に、被処理基
板ホルダー121の下方から、ガス噴射ノズル手段19
を介して導入し、ガス置換を行った。この時、真空ポン
プ123を停止し、真空ポンプ123の前後に設けたバ
ルブ123a、123bを閉状態にしてバイパス配管の
バルブ123cを開状態にしておき、成膜室12がほぼ
大気圧(760Torr)となるようにした。この場
合、赤外線ランプ17及び抵抗加熱式ヒータ121cを
付勢して被処理基板Sを500℃に均等に加熱した状態
で混合ガスを導入した。
As the substrate S to be processed, a substrate obtained by vapor-depositing Fe to a thickness of 100 nm on a glass substrate by an EB vapor deposition method is used. The substrate S on which Fe is deposited as described above
Is temporarily stored in the load lock chamber 11 from the outside of the load lock chamber 11 by the transfer arm 15, and the vacuum pump 1
Start 11 and measure 0.01T with vacuum gauge 112
Evacuate to about orr. At the same time, the film forming chamber 12 is evacuated to about 0.01 Torr while the vacuum pump 123 is activated and the vacuum gauge 124 is used for measurement. After a predetermined time elapses after the load lock chamber 11 and the film formation chamber 12 reach a predetermined degree of vacuum, the gate valve 13 is opened to process the substrate on the substrate supporting portion 121a of the substrate holder 121 in the film formation chamber 12. The substrate S is mounted. In this state, the main stoppers of the carbon monoxide gas cylinder 181e and the hydrogen gas cylinder 182e are opened, and the pressure regulators 181c and 181c are opened.
The pressure is adjusted to about 1 atmosphere (absolute pressure) by 2c, and the valves 181a and 182a are opened, and the gas flow controller 181 is opened.
b, 182b, the mixed gas of carbon monoxide gas and hydrogen gas (CO: H 2 = gas ratio of 30:70) to about 100
It is adjusted to about 0 sccm, and the gas injection nozzle means 19 is placed in the film forming chamber 12 from below the substrate holder 121 to be processed.
And gas exchange was performed. At this time, the vacuum pump 123 is stopped, the valves 123a and 123b provided before and after the vacuum pump 123 are closed, and the valve 123c of the bypass pipe is opened, so that the film forming chamber 12 is almost at atmospheric pressure (760 Torr). It was made to become. In this case, the mixed gas was introduced in a state where the substrate S was uniformly heated to 500 ° C. by energizing the infrared lamp 17 and the resistance heater 121c.

【0016】そして、成膜室12内の圧力が大気圧にな
った後、500℃で10分間にわたって、熱CVD法に
より該基板上でグラファイトナノファイバーの成長反応
を行った。一酸化炭素ガスが被処理基板S上に達する
と、一酸化炭素が解離し、被処理基板上に蒸着されたF
e薄膜上にのみグラファイトナノファイバー薄膜が形成
した。
After the pressure in the film forming chamber 12 became atmospheric pressure, a growth reaction of graphite nanofibers was performed on the substrate at 500 ° C. for 10 minutes by a thermal CVD method. When the carbon monoxide gas reaches the substrate to be processed S, the carbon monoxide is dissociated, and the F deposited on the substrate to be processed is removed.
A graphite nanofiber thin film was formed only on the e thin film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCVD装置の構成を概略的に示す図FIG. 1 is a diagram schematically showing a configuration of a CVD apparatus of the present invention.

【図2】図1のII−II線に沿った断面図FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】ガス噴射ノズル手段の部分斜視図FIG. 3 is a partial perspective view of the gas injection nozzle means.

【符号の説明】[Explanation of symbols]

1 熱CVD装置 11 成膜室 121 基板ホルダー 121c 抵抗加熱式ヒータ(第1加熱手段) 17 赤外線ランプ(第2加熱手段) 19 ガス噴射ノズル手段 191 ガス流路 192 ガス噴射口 S 被処理基板 DESCRIPTION OF SYMBOLS 1 Thermal CVD apparatus 11 Film-forming chamber 121 Substrate holder 121c Resistance heating type heater (1st heating means) 17 Infrared lamp (2nd heating means) 19 Gas injection nozzle means 191 Gas flow path 192 Gas injection port S Substrate to be processed

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D01F 9/133 D01F 9/133 (72)発明者 古瀬 晴邦 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 4G046 CA01 CA02 CB03 CB08 CC06 CC09 4K030 AA14 AA17 BA27 BB12 BB14 CA06 CA17 EA05 EA06 FA10 HA04 JA02 KA22 KA24 4L037 CS04 FA02 PA03 PA06 PA19──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) D01F 9/133 D01F 9/133 (72) Inventor Haruhuni Furuse 2500 Hagizono, Chigasaki City, Kanagawa Prefecture Japan Vacuum Technical Stock In-house F term (reference) 4G046 CA01 CA02 CB03 CB08 CC06 CC09 4K030 AA14 AA17 BA27 BB12 BB14 CA06 CA17 EA05 EA06 FA10 HA04 JA02 KA22 KA24 4L037 CS04 FA02 PA03 PA06 PA19

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱CVD装置において、真空チャンバー
内に配設した基板ホルダーに付設した第1加熱手段と、
該基板ホルダーに装着される被処理基板に対向して真空
チャンバーの上部に設けた第2加熱手段とを備え、第1
及び第2の加熱手段で被処理基板全体を均等に加熱しつ
つ、真空チャンバー内に炭素含有ガスと水素ガスとの混
合ガスを導入することで該基板上にグラファイトナノフ
ァイバー薄膜を形成するように構成され、 混合ガスの導入が、基板ホルダーに装着される被処理基
板の高さ位置より下側であって、被処理基板をその外周
の近傍で囲繞するように設けられたガス噴射ノズル手段
を介して行われ、真空チャンバー外部のガス源に接続さ
れたガス噴出ノズル手段はその内部にガス流路を有する
と共に、その上面に、ガス流路に連通する複数のガス噴
射口が列設されていることを特徴とする熱CVD装置。
1. A thermal CVD apparatus, comprising: a first heating means attached to a substrate holder disposed in a vacuum chamber;
A second heating means provided on an upper portion of a vacuum chamber opposite to a substrate to be processed mounted on the substrate holder;
And a method of forming a graphite nanofiber thin film on the substrate by introducing a mixed gas of a carbon-containing gas and a hydrogen gas into the vacuum chamber while uniformly heating the entire substrate to be processed by the second heating means. Gas injection nozzle means provided so that the introduction of the mixed gas is located below the height position of the substrate to be mounted on the substrate holder and surrounds the substrate to be processed in the vicinity of its outer periphery. The gas ejection nozzle means connected to a gas source outside the vacuum chamber has a gas flow path therein, and a plurality of gas injection ports communicating with the gas flow path are arranged on the upper surface thereof. A thermal CVD apparatus.
JP2000308978A 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films Expired - Lifetime JP4627861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308978A JP4627861B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308978A JP4627861B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Publications (2)

Publication Number Publication Date
JP2002115072A true JP2002115072A (en) 2002-04-19
JP4627861B2 JP4627861B2 (en) 2011-02-09

Family

ID=18789211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308978A Expired - Lifetime JP4627861B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Country Status (1)

Country Link
JP (1) JP4627861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182640A (en) * 2004-12-01 2006-07-13 Nissin Electric Co Ltd Method and apparatus for forming carbon nanotube
JP2007314908A (en) * 2006-05-25 2007-12-06 Ulvac Japan Ltd Method for forming graphite nanofiber, method for producing field electron emission display device, and method for forming carbon nanotube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176526A (en) * 1993-12-20 1995-07-14 Toray Ind Inc Thin film forming device
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176526A (en) * 1993-12-20 1995-07-14 Toray Ind Inc Thin film forming device
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182640A (en) * 2004-12-01 2006-07-13 Nissin Electric Co Ltd Method and apparatus for forming carbon nanotube
JP2007314908A (en) * 2006-05-25 2007-12-06 Ulvac Japan Ltd Method for forming graphite nanofiber, method for producing field electron emission display device, and method for forming carbon nanotube

Also Published As

Publication number Publication date
JP4627861B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
TWI661084B (en) Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
JP2013503464A (en) CVD method and CVD reactor
KR20100014643A (en) Cvd film-forming apparatus
JP2004047887A (en) Sheet-fed cvd device
JP2668687B2 (en) CVD device
JP5674645B2 (en) Temperature gradient chemical vapor deposition (TGE-CVD)
CN111378959B (en) Film forming apparatus and film forming processing method
JP2002115072A (en) Thermal cvd system for depositing graphite nanofiber thin film
JP4677088B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
US6194030B1 (en) Chemical vapor deposition velocity control apparatus
JPH0786173A (en) Film deposition
JP2002115064A (en) Method for cleaning cvd system for graphite nanofiber thin film deposition
WO2022004520A1 (en) Film forming method and film forming device
JP2002121668A (en) Thermal cvd apparatus for forming graphite nanofiber thin film
JP4703844B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP3738494B2 (en) Single wafer heat treatment equipment
JP4627860B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JPH05136087A (en) Method and apparatus for growing film
JPH05251359A (en) Vapor silicon epitaxial growth device
JPS5821025B2 (en) Vapor phase chemical vapor deposition equipment
JP3706510B2 (en) Temperature control method in plasma CVD apparatus
JP4252142B2 (en) Gas processing device and purge mechanism of raw material supply system used therefor
JP2008160081A (en) Substrate processing apparatus and substrate processing method
CA1280055C (en) Vapor deposition apparatus
JP2002121676A (en) Thermal cvd apparatus for forming graphite nano-fiber thin film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250