JP2002121676A - Thermal cvd apparatus for forming graphite nano-fiber thin film - Google Patents

Thermal cvd apparatus for forming graphite nano-fiber thin film

Info

Publication number
JP2002121676A
JP2002121676A JP2000313027A JP2000313027A JP2002121676A JP 2002121676 A JP2002121676 A JP 2002121676A JP 2000313027 A JP2000313027 A JP 2000313027A JP 2000313027 A JP2000313027 A JP 2000313027A JP 2002121676 A JP2002121676 A JP 2002121676A
Authority
JP
Japan
Prior art keywords
substrate
gas
processed
chamber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000313027A
Other languages
Japanese (ja)
Other versions
JP4677087B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Hiroyuki Fukazawa
博之 深沢
Harukuni Furuse
晴邦 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000313027A priority Critical patent/JP4677087B2/en
Publication of JP2002121676A publication Critical patent/JP2002121676A/en
Application granted granted Critical
Publication of JP4677087B2 publication Critical patent/JP4677087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To constitute a thermal CVD apparatus for forming graphite nano-fiber thin film so that heating efficiency of a substrate to be treated is increased and a thin film having uniform film thickness distribution is formed regardless of the size and external shape of a substrate to be treated. SOLUTION: An infrared lamp 17 is arranged above a vacuum chamber 12 so as to face a substrate S to be treated, an inner wall 12a of the chamber is mirror finished so as to increase heating efficiency and to increase a growth speed of a graphite nano-fiber thin film, further, its outer wall 12b is constituted to be cooled. Further, introduction of a carbon containing gas and a hydrogen gas into the chamber is conducted through an injection nozzle means 19 which is positioned lower than a height position of the substrate to be treated and is arranged to encircle the substrate near its outer periphery. The nozzle means connected to a gas source outside the chamber has a gas passage 191 therein, plural gas injection ports 192 communicating with the gas passage are arrayed to its upper face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上にグラファ
イトナノファイバー薄膜を形成するためのCVD装置に
関する。
The present invention relates to a CVD apparatus for forming a graphite nanofiber thin film on a substrate.

【0002】[0002]

【従来の技術】グラファイトナノファイバー薄膜は、例
えば、平面ディスプレー(電界放出型ディスプレー)や
CRTの電子管球の代用として電子発光素子を必要とす
る部品上に形成される。グラファイトナノファイバー薄
膜を形成するには、例えば熱CVD(Chemical vapor d
eposition)装置が使用され、このような熱CVD装置
は特願2000−89468号明細書から知られてい
る。
2. Description of the Related Art A graphite nanofiber thin film is formed on a component requiring an electroluminescent element as a substitute for a flat panel display (field emission display) or an electron tube of a CRT, for example. To form a graphite nanofiber thin film, for example, thermal CVD (Chemical vapor d)
An eposition apparatus is used, and such a thermal CVD apparatus is known from Japanese Patent Application No. 2000-89468.

【0003】該熱CVD装置は真空雰囲気の形成を可能
とする真空チャンバー(成膜室)を備えている。該真空
チャンバー内部には、ガラスやSiなどの基板であって
FeやCo薄膜が形成されたものが装着される基板ホル
ダーが配設されている。また、真空チャンバーの上部壁
面には、被処理基板に対向して石英ガラスなどの耐熱性
ガラスからなる赤外線透過窓が設けられ、この透過窓の
外側には加熱手段である赤外線ランプが配設されてい
る。そして、該赤外線ランプによって被処理基板を加熱
しつつ、真空チャンバーの側壁に設けられた1箇所のガ
ス導入口から真空チャンバーに、例えば水素ガスと一酸
化炭素ガスとの混合ガスを導入することで該基板上にグ
ラファイトナノファイバー薄膜を成長させる。ここで、
真空チャンバーに導入される混合ガスは所定の反応温度
(450℃)以上に加熱されることなく被処理基板に到
達させる必要がある。他方で、グラファイトナノファイ
バーの成長速度を高めるには、被処理基板に到達した混
合ガスをその反応温度まで速く上昇させる必要がある。
この場合、真空チャンバーの底面、側壁に何枚かの反射
板を設けて混合ガスの加熱効率を高めることもできる
が、これでは、反射板にもグラファイトナノファイバー
薄膜が成長し、コンタミネーションの原因になるので反
射板のクリーニングを頻繁に行わなければならない。こ
のため、上記装置では、外壁が冷却可能な真空チャンバ
ーの内壁を鏡面仕上げし、加熱効率を高めている。
[0003] The thermal CVD apparatus is provided with a vacuum chamber (film forming chamber) which can form a vacuum atmosphere. Inside the vacuum chamber, there is provided a substrate holder on which a substrate made of glass, Si, or the like on which an Fe or Co thin film is formed is mounted. In addition, an infrared transmission window made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the vacuum chamber so as to face the substrate to be processed, and an infrared lamp serving as heating means is provided outside the transmission window. ing. Then, while heating the substrate to be processed by the infrared lamp, for example, a mixed gas of hydrogen gas and carbon monoxide gas is introduced into the vacuum chamber from one gas inlet provided on the side wall of the vacuum chamber. A graphite nanofiber thin film is grown on the substrate. here,
The mixed gas introduced into the vacuum chamber needs to reach the substrate to be processed without being heated to a predetermined reaction temperature (450 ° C.) or higher. On the other hand, in order to increase the growth rate of the graphite nanofiber, it is necessary to rapidly raise the mixed gas that has reached the substrate to be processed to its reaction temperature.
In this case, it is possible to increase the heating efficiency of the mixed gas by providing several reflectors on the bottom and side walls of the vacuum chamber, but in this case, a graphite nanofiber thin film grows on the reflectors as well, which causes contamination. Therefore, the reflector must be cleaned frequently. For this reason, in the above apparatus, the inner wall of the vacuum chamber whose outer wall can be cooled is mirror-finished to increase the heating efficiency.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記装
置では、真空チャンバー側壁に設けた1個所のガス導入
口から混合ガスを導入するため、グラファイトナノファ
イバー薄膜の膜厚分布を制御するのは困難である。この
場合、成膜室の側壁にガス導入口を複数設け、これらの
ガス導入口から混合ガスを真空チャンバー内に導入する
ことが考えられるが、これでは200mm×200mm
程度の略正方形基板やφ200mm程度の円形基板はと
もかく、例えば1m×1mサイズのような大きな被処理
基板やA4サイズのような矩形の被処理基板に対してグ
ラファイトナノファイバー薄膜の膜厚分布が均一になる
ようにガス導入口の配設位置を適切に設計することは困
難である。
However, in the above apparatus, it is difficult to control the film thickness distribution of the graphite nanofiber thin film because the mixed gas is introduced from one gas inlet provided on the side wall of the vacuum chamber. is there. In this case, it is conceivable to provide a plurality of gas inlets on the side wall of the film forming chamber and introduce a mixed gas into the vacuum chamber from these gas inlets.
Regardless of a substantially square substrate having a diameter of about 200 mm or a circular substrate having a diameter of about 200 mm, the thickness distribution of the graphite nanofiber thin film is uniform with respect to a large substrate having a size of 1 mx 1 m or a rectangular substrate having an A4 size. It is difficult to appropriately design the arrangement position of the gas inlet so that

【0005】そこで、本発明の課題は、加熱効率を高め
てグラファイトナノファイバーの成長速度を高めること
ができ、その上、被処理基板のサイズや外形に関係な
く、膜厚分布の均一なグラファイトナノファイバー薄膜
の形成が可能な熱CVD装置を提供することにある。
Accordingly, an object of the present invention is to increase the heating efficiency and increase the growth rate of graphite nanofibers, and furthermore, to obtain a graphite nanofiber having a uniform film thickness distribution irrespective of the size and outer shape of the substrate to be processed. An object of the present invention is to provide a thermal CVD apparatus capable of forming a fiber thin film.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明の熱CVD装置は、真空チャンバーの上部に、
被処理基板に対向して加熱手段が設けられ、該加熱手段
で被処理基板を加熱しつつ、真空チャンバーに炭素含有
ガスと水素ガスとの混合ガスを導入することで該基板上
にグラファイトナノファイバー薄膜を形成する熱CVD
装置において、該加熱手段からの熱線を反射するように
真空チャンバーの内壁が鏡面仕上げされていると共に、
真空チャンバーの壁面を冷却する冷却手段が真空チャン
バーに付設され、混合ガスの導入が、被処理基板の高さ
位置より下側であって、被処理基板をその外周の近傍で
囲繞するように設けられたガス噴射ノズル手段を介して
行われ、真空チャンバー外部のガス源に接続されたガス
噴出ノズル手段はその内部にガス流路を有すると共に、
その上面に、ガス流路に連通する複数のガス噴射口が列
設されていることを特徴とする。
In order to solve this problem, a thermal CVD apparatus according to the present invention comprises:
A heating means is provided opposite to the substrate to be processed, and while heating the substrate to be processed by the heating means, a mixed gas of a carbon-containing gas and a hydrogen gas is introduced into a vacuum chamber to form a graphite nanofiber on the substrate. Thermal CVD to form a thin film
In the apparatus, the inner wall of the vacuum chamber is mirror-finished so as to reflect heat rays from the heating means,
Cooling means for cooling the wall surface of the vacuum chamber is provided in the vacuum chamber, and the introduction of the mixed gas is provided below the height position of the substrate to be processed and surrounds the substrate to be processed in the vicinity of its outer periphery. It is performed through the provided gas injection nozzle means, the gas ejection nozzle means connected to a gas source outside the vacuum chamber has a gas flow path therein,
A plurality of gas injection ports communicating with the gas flow path are arranged on the upper surface thereof.

【0007】本発明によれば、成膜室内壁が鏡面加工さ
れているので、成膜室上部の加熱手段からの熱線が該内
壁で多重繰り返し反射され、成膜室内に反射板を配設し
ている場合と同様に被処理基板の加熱効率を高めること
ができる。他方で、被処理基板をその外周の近傍で囲繞
するように設けたガス噴出ノズル手段の上面に列設され
た複数のガス噴射口から一旦上方に向かって噴出された
混合ガスが、被処理基板の上方全体に亘って均一に拡散
し、次いで、下方に向かって均等に下降し、被処理基板
全体に亘って一様に到達するので、被処理基板が比較的
大きな寸法を有していたり、矩形の外形を有していて
も、被処理基板のサイズや外形に関係なく該被処理基板
上に膜厚分布の均一なグラファイトナノファイバー薄膜
を形成できる。また、鏡面仕上げは、研磨仕上げによっ
て、または熱伝導性が高くかつ熱線反射性を有する金属
材料の溶射で成膜室の内壁を被覆することによって行わ
れていることが好ましい。
According to the present invention, since the inner wall of the film forming chamber is mirror-finished, the heat rays from the heating means in the upper part of the film forming chamber are reflected multiple times repeatedly on the inner wall, and a reflector is provided in the film forming chamber. As in the case of the above, the heating efficiency of the substrate to be processed can be increased. On the other hand, the mixed gas which has been ejected upward from a plurality of gas ejection ports arranged in a row on the upper surface of the gas ejection nozzle means provided so as to surround the substrate to be processed in the vicinity of the outer periphery thereof, Diffuses uniformly over the entire area of the substrate, and then descends uniformly downward, and reaches uniformly over the entire substrate to be processed, so that the substrate to be processed has relatively large dimensions, Even if the substrate has a rectangular outer shape, a graphite nanofiber thin film having a uniform film thickness distribution can be formed on the substrate to be processed irrespective of the size and the outer shape of the substrate. Preferably, the mirror finish is performed by polishing or coating the inner wall of the film forming chamber with thermal spraying of a metal material having high heat conductivity and heat ray reflectivity.

【0008】[0008]

【発明の実施の形態】図1を参照して、例えば、A4サ
イズの矩形の被処理基板S上にグラファイトナノファイ
バー薄膜を形成する熱CVD装置1は、ロードロック室
11と成膜室12とを備え、ロードロック室11と成膜
室12とはゲートバルブ13を介して接続されている。
ロードロック室11は、ガラスやSiなどの被処理基板
Sであって、成膜面にFeやCoなどの金属薄膜が形成
されたものを一旦真空雰囲気に曝すことで、被処理基板
表面の水分等を除去する役割を果たす。このため、該ロ
ードロック室11には、真空ポンプ111が接続されて
いると共に、その真空度をモニターする真空計112が
配設されている。また、該ロードロック室11には、被
処理基板Sが装着された基板ホルダー16を搬送する搬
送アーム15が設けられている。該搬送アーム15は、
サーボモータ(図示せず)を備えた回転軸151の上端
に固着された第1アーム152と、各第1アーム152
の他端に枢支された第2アーム153と、該第2アーム
153の他端に枢支されると共に、被処理基板Sが装着
された基板ホルダー16を下側から支持するフォーク状
の支持部を備えた第3アーム154とからなる。そし
て、第2及び第3の各アーム153、154を旋回させ
ることで搬送アーム15は伸縮自在となる。また、被処
理基板Sを装着した基板ホルダー16の受渡等のため回
転軸151は短いストロークで昇降自在である。この搬
送アーム15によって外部から、基板ホルダー16に装
着された被処理基板Sをロードロック室11に収容し、
所定の真空度(例えば、0.01Torr程度)まで真
空排気した後、ゲートバルブ13を開けて、所定の真空
度(例えば、0.01Torr程度)に真空排気した成
膜室12に被処理基板Sを基板ホルダー16と共に搬送
する。そして、搬送アーム15を再びロードロック室1
1に戻して、ゲートバルブ13を閉じる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, for example, a thermal CVD apparatus 1 for forming a graphite nanofiber thin film on an A4-size rectangular substrate to be processed S includes a load lock chamber 11 and a film forming chamber 12. The load lock chamber 11 and the film formation chamber 12 are connected via a gate valve 13.
The load lock chamber 11 is a substrate S to be processed such as glass or Si, on which a metal thin film such as Fe or Co is formed on a film-forming surface, is exposed to a vacuum atmosphere once, so that the moisture on the surface of the substrate to be processed is reduced. Plays a role in removing the like. For this purpose, a vacuum pump 111 is connected to the load lock chamber 11 and a vacuum gauge 112 for monitoring the degree of vacuum is provided. The load lock chamber 11 is provided with a transfer arm 15 for transferring a substrate holder 16 on which the substrate S to be processed is mounted. The transfer arm 15 is
A first arm 152 fixed to an upper end of a rotary shaft 151 having a servomotor (not shown);
Arm 153 pivotally supported by the other end of the second arm 153, and a fork-shaped support pivotally supported by the other end of the second arm 153 and supporting the substrate holder 16 on which the substrate S to be processed is mounted from below. And a third arm 154 having a portion. By rotating the second and third arms 153 and 154, the transfer arm 15 can expand and contract. In addition, the rotary shaft 151 can be moved up and down with a short stroke for delivery of the substrate holder 16 on which the substrate S to be processed is mounted. The substrate S to be processed mounted on the substrate holder 16 is housed in the load lock chamber 11 from the outside by the transfer arm 15,
After evacuating to a predetermined degree of vacuum (for example, about 0.01 Torr), the gate valve 13 is opened, and the substrate S to be processed is placed in the film forming chamber 12 evacuated to a predetermined degree of vacuum (for example, about 0.01 Torr). Is transported together with the substrate holder 16. Then, the transfer arm 15 is again moved to the load lock chamber 1.
After returning to 1, the gate valve 13 is closed.

【0009】成膜室12の底面には、搬送アーム15に
よって搬送されてきた被処理基板Sを装着した基板ホル
ダー16を載置する3本の支柱121が、該基板ホルダ
ー16の面積に対応して略三角形を形成するように配設
されている。そして、該支柱121のうち、ロードロッ
ク室11側に位置するものが第3アーム154のフォー
ク状の支持部相互の間隙に位置して該搬送アーム15の
ガイドとしての役割を果たす。尚、本実施の形態では、
被処理基板Sが装着された基板ホルダー16を搬送する
こととしたが、成膜室12内の支柱121上に基板ホル
ダー16を固定しておき、被処理基板Sを搬送するよう
に構成することもできる。
On the bottom surface of the film forming chamber 12, three columns 121 for mounting a substrate holder 16 on which a substrate S to be processed transferred by the transfer arm 15 is mounted correspond to the area of the substrate holder 16. Are arranged so as to form a substantially triangular shape. Of the columns 121, the column located on the side of the load lock chamber 11 is located in the gap between the fork-shaped support portions of the third arm 154 and serves as a guide for the transport arm 15. In the present embodiment,
The substrate holder 16 on which the substrate S to be processed is mounted is transported. However, the substrate holder 16 is fixed on the column 121 in the film forming chamber 12 and the substrate S is transported. Can also.

【0010】また、成膜室12の上部壁面には、被処理
基板Sに対向して石英ガラスなどの耐熱性ガラスからな
る赤外線透過窓122が設けられている。この透過窓1
22の外側には、所定の配列を有してなる加熱手段であ
る複数本の赤外線ランプ17が配設され、被処理基板S
をその全面に亘って均等に加熱する。そして、該成膜室
12にもまた、ロードロック室11と同様に、真空雰囲
気の形成が可能であるように真空ポンプ123が設けら
れていると共に、その真空度をモニターする真空計12
4が配設されている。また、真空ポンプ123をバイパ
スする配管がバルブ123cを介在させて設けられてい
る。
An infrared transmitting window 122 made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the film forming chamber 12 so as to face the substrate S to be processed. This transmission window 1
A plurality of infrared lamps 17, which are heating means having a predetermined arrangement, are provided outside the substrate 22.
Is heated evenly over its entire surface. Similarly to the load lock chamber 11, the film formation chamber 12 is provided with a vacuum pump 123 so that a vacuum atmosphere can be formed, and a vacuum gauge 12 for monitoring the degree of vacuum.
4 are provided. Further, a pipe bypassing the vacuum pump 123 is provided with the valve 123c interposed.

【0011】さらに、成膜室12には混合ガス供給系1
8が接続されている。該混合ガス供給系18は、バルブ
181aからガス流量調節器181b、圧力調整器18
1c及びバルブ181dを介して一酸化炭素などの炭素
含有ガスボンベ181eにガス配管にて直列に連なって
いる炭素含有ガス供給系181と、バルブ182aから
ガス流量調節器182b、圧力調整器182c及びバル
ブ182dを介して水素ガスボンベ182eにガス配管
にて直列に連なっている水素ガス供給系182からな
る。そして、炭素含有ガス供給系181と水素ガス供給
系182とは、バルブ181a、182aと成膜室12
との間で合流し、成膜室12内に炭素含有ガスと水素ガ
スとの混合ガスが導入される。尚、グラファイトナノフ
ァイバー薄膜を形成するのに、炭素含有ガスの他に水素
ガスを用いるのは、気相反応における希釈及び触媒作用
のためである。
Further, the mixed gas supply system 1 is
8 are connected. The mixed gas supply system 18 includes a valve 181a, a gas flow controller 181b, a pressure controller 18
1c and a carbon-containing gas supply system 181 connected in series with a carbon-containing gas cylinder 181e such as carbon monoxide via a valve via a valve 181d, a valve 182a to a gas flow regulator 182b, a pressure regulator 182c, and a valve 182d. And a hydrogen gas supply system 182 connected in series to the hydrogen gas cylinder 182e via a gas pipe. Further, the carbon-containing gas supply system 181 and the hydrogen gas supply system 182 are connected to the valves 181a and 182a and the film forming chamber 12
And a mixed gas of a carbon-containing gas and a hydrogen gas is introduced into the film forming chamber 12. The reason why a hydrogen gas is used in addition to a carbon-containing gas to form a graphite nanofiber thin film is because of dilution and catalytic action in a gas phase reaction.

【0012】ここで、真空チャンバーに導入される混合
ガスは所定の反応温度(450℃)以上に加熱されるこ
となく被処理基板Sに到達させる必要があるが、グラフ
ァイトナノファイバー薄膜の成長速度を高めるには被処
理基板Sに到達した混合ガスをその反応温度まで速く昇
温させる必要がある。この場合、真空チャンバーの底面
に何枚かの反射板を設けて混合ガスの加熱効率を高める
こともできるが、これでは反射板にもグラファイトナノ
ファイバー薄膜が成長し、コンタミネーションの原因に
なるので反射板のクリーニングを頻繁に行わなばならな
いばかりでなく、反射板に成長したグラファイトナノフ
ァイバーが赤外線ランプ17からの熱線を吸収し、却っ
て加熱効率を低下させる。そこで、本実施の形態では、
赤外線ランプ17からの光を反射するように、金属製成
膜室12の内壁12aを鏡面仕上げした。この場合、該
内壁12aはホーミング加工などの研磨で鏡面仕上げす
ることもできるが、例えば、アルミナなどの熱伝導性が
高くかつ熱線反射性を有する金属材料の溶射によって成
膜室の内壁12aを被覆することで鏡面仕上げを行うこ
ともできる。そして、内壁12aの表面温度を所定の温
度以下に保持し、グラファイトナノファイバー薄膜が成
長しないように成膜室12の外壁12bの周囲に冷却水
ライン20を蛇行して配設し、グラファイトナノファイ
バー薄膜形成プロセスを行っている間、冷却水ライン2
0に冷却水を流すことで成膜室12の外壁を冷却可能と
した。尚、冷却ライン20によって、後述のガス噴射ノ
ズル手段も冷却される。なお、本実施の形態では、成膜
室12の外壁12bの周囲に冷却水ライン20を蛇行し
て配設したが、成膜室12の外壁12bを覆う水冷ジャ
ケットにしてもよい。
Here, the mixed gas introduced into the vacuum chamber needs to reach the substrate S without being heated to a predetermined reaction temperature (450 ° C.) or higher. To increase the temperature, it is necessary to quickly raise the temperature of the mixed gas that has reached the substrate S to be processed to the reaction temperature. In this case, it is possible to increase the heating efficiency of the mixed gas by providing several reflectors on the bottom surface of the vacuum chamber, but in this case, a graphite nanofiber thin film grows on the reflectors, causing contamination. Not only must the reflector be cleaned frequently, but also the graphite nanofibers that have grown on the reflector absorb the heat rays from the infrared lamp 17 and rather reduce the heating efficiency. Therefore, in the present embodiment,
The inner wall 12a of the metal film forming chamber 12 was mirror-finished so as to reflect the light from the infrared lamp 17. In this case, the inner wall 12a can be mirror-finished by polishing such as homing. However, for example, the inner wall 12a of the film forming chamber is coated by thermal spraying of a metal material having high heat conductivity and heat ray reflectivity such as alumina. By doing so, it is possible to perform mirror finishing. Then, the cooling water line 20 is meanderingly disposed around the outer wall 12b of the film forming chamber 12 so that the surface temperature of the inner wall 12a is maintained at a predetermined temperature or lower so that the graphite nanofiber thin film does not grow. Cooling water line 2 during the thin film forming process
By flowing cooling water to 0, the outer wall of the film forming chamber 12 could be cooled. The cooling line 20 also cools gas injection nozzle means described later. In the present embodiment, the cooling water line 20 is arranged in a meandering manner around the outer wall 12b of the film forming chamber 12, but may be a water-cooled jacket that covers the outer wall 12b of the film forming chamber 12.

【0013】また、混合ガス供給系18を介して混合ガ
スを成膜室12に導入する場合、従来の熱CVD装置の
ように、被処理基板Sの上方に位置して該成膜室12の
側壁に設けた1箇所のガス導入口から混合ガスを導入す
るのでは、比較的大きな基板や矩形の基板に対してグラ
ファイトナノファイバー薄膜の膜厚分布を均一にするの
は困難である。そこで、本実施の形態では、混合ガスの
導入を、被処理基板Sの高さ位置より下側であって、被
処理基板Sをその外周の近傍で囲繞するように設けたガ
ス噴射ノズル手段19を介して行なうこととした。
When a mixed gas is introduced into the film forming chamber 12 through the mixed gas supply system 18, the gas is located above the substrate S to be processed as in a conventional thermal CVD apparatus. If a mixed gas is introduced from one gas inlet provided on the side wall, it is difficult to make the film thickness distribution of the graphite nanofiber thin film uniform on a relatively large substrate or a rectangular substrate. Therefore, in the present embodiment, the introduction of the mixed gas is performed below the height position of the substrate S to be processed, and the gas injection nozzle means 19 provided so as to surround the substrate S near the outer periphery thereof. It was decided to do it through.

【0014】図2及び図3を参照して、環状のガス噴射
ノズル手段19はその内部に混合ガス流路191を備
え、その上面には、該ガス流路191に連通する複数個
のガス噴射口192が列設されている。また、ガス噴射
ノズル手段19の上面には、ガス流路191に通じる継
手を備えた混合ガス供給部193が開設され、該継手に
は混合ガス供給系18のガス配管の一端が接続されてい
る。ここで、このようにガス噴射ノズル手段19を形成
した場合、赤外線ランプ17によって被処理基板Sと共
にガス噴射ノズル手段19自体も加熱され得る。そし
て、該ガス噴射ノズル手段19の表面温度が所定の温度
以上になると、そこにグラファイトナノファイバー薄膜
が成長し得る。グラファイトナノファイバー膜が成長す
るとコンタミネーションの原因になるので、ガス噴射ノ
ズル手段19を頻繁にクリーニング或いは交換する必要
が生じる。このため、本実施の形態では、ガス噴射ノズ
ル手段19を、熱伝導率の高い金属材料である銅から形
成し、冷却可能な成膜室12の底面に面接触させて配設
した。なお、本実施の形態では、ガス噴射ノズル手段1
9を環状としたが、成膜室12内に混合ガスを均一に噴
射し得るものであればその外形は問わない。また、ガス
噴射ノズル手段19の配設位置に対応して基板ホルダー
16が載置される支柱121の高さ寸法は、ガス噴射ノ
ズル手段19のガス噴射口192から上方に向かって噴
出された混合ガスが赤外線ランプ17で所定温度以上に
加熱されることなく、被処理基板Sに到達するように定
寸されている。
Referring to FIGS. 2 and 3, the annular gas injection nozzle means 19 has a mixed gas flow path 191 therein, and a plurality of gas injection paths communicating with the gas flow path 191 on its upper surface. The mouths 192 are arranged. On the upper surface of the gas injection nozzle means 19, a mixed gas supply unit 193 having a joint communicating with the gas flow path 191 is opened, and one end of a gas pipe of the mixed gas supply system 18 is connected to the joint. . Here, when the gas injection nozzle means 19 is formed as described above, the gas injection nozzle means 19 itself can be heated together with the substrate S to be processed by the infrared lamp 17. Then, when the surface temperature of the gas injection nozzle means 19 becomes higher than a predetermined temperature, a graphite nanofiber thin film can grow thereon. Since the growth of the graphite nanofiber film causes contamination, it is necessary to frequently clean or replace the gas injection nozzle means 19. For this reason, in the present embodiment, the gas injection nozzle means 19 is formed from copper, which is a metal material having high thermal conductivity, and is arranged in surface contact with the bottom surface of the film forming chamber 12 which can be cooled. In the present embodiment, the gas injection nozzle means 1
Although the ring 9 is annular, any shape can be used as long as the mixed gas can be uniformly injected into the film forming chamber 12. The height of the column 121 on which the substrate holder 16 is placed corresponding to the disposition position of the gas injection nozzle means 19 is determined by the height of the mixing jet injected upward from the gas injection port 192 of the gas injection nozzle means 19. The size is set so that the gas reaches the target substrate S without being heated to a predetermined temperature or more by the infrared lamp 17.

【0015】次に、上記装置を使用したグラファイトナ
ノファイバー薄膜形成プロセスについて説明する。
Next, a process for forming a graphite nanofiber thin film using the above apparatus will be described.

【0016】被処理基板Sとして、EB蒸着法によりガ
ラス基板上にFeを100nmの厚さで蒸着したものを
使用する。このようにFeが蒸着された被処理基板Sを
基板ホルダー16上に装着したものを、ロードロック室
11の外側から搬送アーム15によって該ロードロック
室11に一旦収納し、真空ポンプ111を起動して真空
計112で測定しながら0.01Torr程度まで真空
排気を行う。それに併せて、成膜室も、真空ポンプ12
3を起動して真空計124で測定しながら0.01To
rr程度になるまで真空排気を行う。そして、ロードロ
ック室11及び成膜室12が所定の真空度に達した後、
所定の時間が経過するとゲートバルブ13を開けて成膜
室12の基板ホルダー用支柱121上に被処理基板Sが
装着された基板ホルダー16を載置する。この状態で、
一酸化炭素ガスボンベ181eと水素ガスボンベ182
eとの元栓を開き、圧力調整器181c、182cによ
り約1気圧(絶対圧力)に調整し、そしてバルブ181
a、182aを開き、ガス流量調節器181b、182
bにより、一酸化炭素ガスと水素ガスとの混合ガス(C
O:H2=30:70のガス比)を約1000sccm
程度に調整して、成膜室12内に、被処理基板ホルダー
16の下方から、ガス噴射ノズル手段19を介して導入
し、ガス置換を行った。この時、真空ポンプ123を停
止し、真空ポンプ123の前後に設けたバルブ123
a、123bを閉状態にしてバイパス配管のバルブ12
3cを開状態にしておき、成膜室12がほぼ大気圧(7
60Torr)となるようにした。この場合、赤外線ラ
ンプ17を付勢して被処理基板Sを500℃に加熱した
状態で混合ガスを導入した。
As the substrate S to be processed, a substrate obtained by vapor-depositing Fe to a thickness of 100 nm on a glass substrate by an EB vapor deposition method is used. The substrate S on which the substrate to be processed S on which Fe is deposited is mounted on the substrate holder 16 from the outside of the load lock chamber 11 and temporarily stored in the load lock chamber 11 by the transfer arm 15, and the vacuum pump 111 is started. The vacuum evacuation is performed to about 0.01 Torr while measuring with the vacuum gauge 112. At the same time, the film forming chamber is also equipped with a vacuum pump 12
3 and start measurement with the vacuum gauge 124
Evacuation is performed until the pressure becomes about rr. After the load lock chamber 11 and the film forming chamber 12 reach a predetermined degree of vacuum,
After a predetermined time has elapsed, the gate valve 13 is opened, and the substrate holder 16 on which the substrate S to be processed is mounted is placed on the substrate holder support 121 in the film forming chamber 12. In this state,
Carbon monoxide gas cylinder 181e and hydrogen gas cylinder 182
e, the main valve is opened, the pressure is adjusted to about 1 atm (absolute pressure) by pressure regulators 181c and 182c, and
a, 182a are opened and the gas flow controllers 181b, 182 are opened.
b, a mixed gas of carbon monoxide gas and hydrogen gas (C
O: H 2 = 30: 70 gas ratio) to about 1000 sccm
The gas was introduced into the film formation chamber 12 from below the substrate holder 16 to be processed through the gas injection nozzle means 19 to perform gas replacement. At this time, the vacuum pump 123 is stopped, and valves 123 provided before and after the vacuum pump 123 are provided.
a, 123b in the closed state and the valve 12 of the bypass pipe
3c is kept in an open state, and the film forming chamber 12 is almost at atmospheric pressure (7.
60 Torr). In this case, the mixed gas was introduced while the substrate S to be processed was heated to 500 ° C. by energizing the infrared lamp 17.

【0017】そして、成膜室12内の圧力が大気圧にな
った後、500℃で10分間にわたって、熱CVD法に
より該基板上でグラファイトナノファイバーの成長反応
を行った。一酸化炭素ガスが被処理基板S上に達する
と、一酸化炭素が解離し、被処理基板上に蒸着されたF
e薄膜上にグラファイトナノファイバー薄膜が形成し
た。この場合、環状のガス噴射ノズル手段を用いて混合
ガスの導入を行うことで、A4サイズの矩形基板に対し
てほぼ均一な膜厚分布を有するグラファイトナノファイ
バーを得ることができた。また、鏡面仕上げした成膜室
でグラファイトナノファイバー薄膜を成長させた場合、
鏡面仕上げなしの成膜室でグラファイトナノファイバー
を成長させた場合に比べて、加熱効率が向上し、赤外線
ランプへの投入電力は80%程度で済ませることができ
た。その上、冷却された成膜室の鏡面仕上げされた内壁
には、グラファイトナノファイバーの成長は見られなか
った。
After the pressure in the film forming chamber 12 became atmospheric pressure, a growth reaction of graphite nanofibers was performed on the substrate at 500 ° C. for 10 minutes by a thermal CVD method. When the carbon monoxide gas reaches the substrate to be processed S, the carbon monoxide is dissociated, and the F deposited on the substrate to be processed is removed.
A graphite nanofiber thin film was formed on the e thin film. In this case, by introducing the mixed gas using the annular gas injection nozzle means, it was possible to obtain a graphite nanofiber having a substantially uniform film thickness distribution on an A4-size rectangular substrate. Also, when growing a graphite nanofiber thin film in a mirror-finished deposition chamber,
As compared with the case where graphite nanofibers were grown in a film forming chamber without mirror finish, the heating efficiency was improved, and the input power to the infrared lamp could be reduced to about 80%. In addition, no growth of graphite nanofibers was observed on the mirror-finished inner wall of the cooled deposition chamber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCVD装置の構成を概略的に示す図FIG. 1 is a diagram schematically showing a configuration of a CVD apparatus of the present invention.

【図2】図1のII−II線に沿った断面図FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】ガス噴射ノズル手段の部分斜視図FIG. 3 is a partial perspective view of the gas injection nozzle means.

【符号の説明】[Explanation of symbols]

1 熱CVD装置 12 成膜室 12a 成膜室の内壁 17 赤外線ラ
ンプ 20 冷却水ライン 19 ガス噴射
ノズル手段 191 ガス流路 192 ガス噴
射口 S 被処理基板
DESCRIPTION OF SYMBOLS 1 Thermal CVD apparatus 12 Film formation room 12a Inner wall of film formation room 17 Infrared lamp 20 Cooling water line 19 Gas injection nozzle means 191 Gas flow path 192 Gas injection port S Substrate to be processed

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D01F 9/133 D01F 9/133 (72)発明者 古瀬 晴邦 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 4G046 CA01 CA02 CB03 CB08 CC06 CC09 4K030 AA14 AA17 BA27 CA06 CA17 EA05 EA06 FA10 HA04 JA02 KA22 KA23 KA26 KA46 4L037 CS04 FA03 FA20 PA03 PA06 PA17 PA28 UA02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) D01F 9/133 D01F 9/133 (72) Inventor Haruhuni Furuse 2500 Hagizono, Chigasaki City, Kanagawa Prefecture Japan Vacuum Technical Stock In-house F term (reference) 4G046 CA01 CA02 CB03 CB08 CC06 CC09 4K030 AA14 AA17 BA27 CA06 CA17 EA05 EA06 FA10 HA04 JA02 KA22 KA23 KA26 KA46 4L037 CS04 FA03 FA20 PA03 PA06 PA17 PA28 UA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバーの上部に、被処理基板に
対向して加熱手段が設けられ、該加熱手段で被処理基板
を加熱しつつ、真空チャンバーに炭素含有ガスと水素ガ
スとの混合ガスを導入することで該基板上にグラファイ
トナノファイバー薄膜を形成する熱CVD装置におい
て、 該加熱手段からの熱線を反射するように真空チャンバー
の内壁が鏡面仕上げされていると共に、真空チャンバー
の壁面を冷却する冷却手段が真空チャンバーに付設さ
れ、 該混合ガスの導入が、被処理基板の高さ位置より下側で
あって、被処理基板をその外周の近傍で囲繞するように
設けられたガス噴射ノズル手段を介して行われ、真空チ
ャンバー外部のガス源に接続されたガス噴出ノズル手段
はその内部にガス流路を有すると共に、その上面に、ガ
ス流路に連通する複数のガス噴射口が列設されているこ
とを特徴とする熱CVD装置。
A heating means is provided at an upper portion of a vacuum chamber so as to face a substrate to be processed, and a mixed gas of a carbon-containing gas and a hydrogen gas is supplied to the vacuum chamber while heating the substrate to be processed by the heating means. In a thermal CVD apparatus that forms a graphite nanofiber thin film on the substrate by introducing the same, the inner wall of the vacuum chamber is mirror-finished so as to reflect the heat rays from the heating means, and the wall of the vacuum chamber is cooled. A cooling means provided in the vacuum chamber, and a gas injection nozzle means provided to introduce the mixed gas below the height position of the substrate to be processed and to surround the substrate to be processed in the vicinity of the outer periphery thereof The gas ejection nozzle means connected to a gas source outside the vacuum chamber has a gas flow path therein and communicates with the gas flow path on its upper surface. Thermal CVD apparatus in which a plurality of gas injection holes is characterized in that it is the column set that.
【請求項2】 研磨仕上げによって、または熱伝導性が
高くかつ熱線反射性を有する金属材料の溶射で成膜室の
内壁を被覆することによって鏡面仕上げが行われている
ことを特徴とする請求項1記載のCVD装置。
2. The mirror finish is performed by polishing finish or by coating the inner wall of the film forming chamber with thermal spraying of a metal material having high heat conductivity and heat ray reflection. 2. The CVD apparatus according to 1.
JP2000313027A 2000-10-13 2000-10-13 Thermal CVD equipment for forming graphite nanofiber thin films Expired - Lifetime JP4677087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313027A JP4677087B2 (en) 2000-10-13 2000-10-13 Thermal CVD equipment for forming graphite nanofiber thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313027A JP4677087B2 (en) 2000-10-13 2000-10-13 Thermal CVD equipment for forming graphite nanofiber thin films

Publications (2)

Publication Number Publication Date
JP2002121676A true JP2002121676A (en) 2002-04-26
JP4677087B2 JP4677087B2 (en) 2011-04-27

Family

ID=18792510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313027A Expired - Lifetime JP4677087B2 (en) 2000-10-13 2000-10-13 Thermal CVD equipment for forming graphite nanofiber thin films

Country Status (1)

Country Link
JP (1) JP4677087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774879A (en) * 2022-05-19 2022-07-22 富芯微电子有限公司 Coating device and coating method for silicon carbide single crystal wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111997A (en) * 1982-12-14 1984-06-28 Kyushu Denshi Kinzoku Kk Device for epitaxial growth
JPH07176526A (en) * 1993-12-20 1995-07-14 Toray Ind Inc Thin film forming device
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111997A (en) * 1982-12-14 1984-06-28 Kyushu Denshi Kinzoku Kk Device for epitaxial growth
JPH07176526A (en) * 1993-12-20 1995-07-14 Toray Ind Inc Thin film forming device
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774879A (en) * 2022-05-19 2022-07-22 富芯微电子有限公司 Coating device and coating method for silicon carbide single crystal wafer

Also Published As

Publication number Publication date
JP4677087B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
US6340499B1 (en) Method to increase gas residence time in a reactor
US20110070370A1 (en) Thermal gradient enhanced chemical vapour deposition (tge-cvd)
JP2009503875A (en) Gas manifold valve cluster
JP2005064305A (en) Substrate processing device and method of manufacturing semiconductor device
EP2294244B1 (en) Thermal gradient enhanced chemical vapour deposition.
JP2670515B2 (en) Vertical heat treatment equipment
KR101361984B1 (en) METHOD FOR FORMING Ge-Sb-Te FILM, AND STORAGE MEDIUM
JP2002302770A (en) Substrate treating device
US4703718A (en) Vapor deposition apparatus and method of using same
JP4703844B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
US6194030B1 (en) Chemical vapor deposition velocity control apparatus
JP4677088B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP2002121676A (en) Thermal cvd apparatus for forming graphite nano-fiber thin film
JP2011100820A (en) Substrate treatment apparatus
WO2022004520A1 (en) Film forming method and film forming device
JP3738494B2 (en) Single wafer heat treatment equipment
JP4627860B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP4252142B2 (en) Gas processing device and purge mechanism of raw material supply system used therefor
JP4627861B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP2002121668A (en) Thermal cvd apparatus for forming graphite nanofiber thin film
CA1280055C (en) Vapor deposition apparatus
JP2006186015A (en) Substrate processor
JP3093716B2 (en) Vertical vacuum deposition equipment
JPH0521867Y2 (en)
KR20230166386A (en) Apparatus for processing substrate and method for processing substrate using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4677087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250