JP2002115060A - Thermal cvd system for depositing graphite nanofiber thin film - Google Patents

Thermal cvd system for depositing graphite nanofiber thin film

Info

Publication number
JP2002115060A
JP2002115060A JP2000308977A JP2000308977A JP2002115060A JP 2002115060 A JP2002115060 A JP 2002115060A JP 2000308977 A JP2000308977 A JP 2000308977A JP 2000308977 A JP2000308977 A JP 2000308977A JP 2002115060 A JP2002115060 A JP 2002115060A
Authority
JP
Japan
Prior art keywords
substrate
gas
processed
thin film
nozzle means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000308977A
Other languages
Japanese (ja)
Other versions
JP4627860B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Hiroyuki Fukazawa
博之 深沢
Harukuni Furuse
晴邦 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000308977A priority Critical patent/JP4627860B2/en
Publication of JP2002115060A publication Critical patent/JP2002115060A/en
Application granted granted Critical
Publication of JP4627860B2 publication Critical patent/JP4627860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermal CVD system by which a graphite nanofiber thin film having a uniform film thickness distribution can be deposited on the large and rectangular substrate. SOLUTION: This system is provided with a vacuum chamber 12, and an infrared ray lamp 17 is arranged oppositely to the substrate S to be treated. The gaseous mixture of a carbon-containing gas and gaseous hydrogen required for depositing a graphite nanofiber thin film is introduced through a gas jetting nozzle means 19 provided below the height position of the substrate S to be attached to a substrate holder 16 so as to surround the substrate S in the vicinity of its outer circumference. The nozzle means connected to a gas source at the outside of the chamber has a gas flow passage 191 at its inside, and plural gas injectors 192 communicating to the gas flow passage are provided in a row on its upper face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上にグラファ
イトナノファイバー薄膜を形成するための熱CVD装置
に関する。
[0001] The present invention relates to a thermal CVD apparatus for forming a graphite nanofiber thin film on a substrate.

【0002】[0002]

【従来の技術】グラファイトナノファイバー薄膜は、例
えば、平面ディスプレー(電界放出型ディスプレー)や
CRTの電子管球の代用として電子発光素子を必要とす
る部品上に形成される。グラファイトナノファイバー薄
膜を形成するには、例えば熱CVD(Chemical vapor d
eposition)装置が使用され、このような熱CVD装置
は特願2000−89468号明細書から知られてい
る。
2. Description of the Related Art A graphite nanofiber thin film is formed on a component requiring an electroluminescent element as a substitute for a flat panel display (field emission display) or an electron tube of a CRT, for example. To form a graphite nanofiber thin film, for example, thermal CVD (Chemical vapor d)
An eposition apparatus is used, and such a thermal CVD apparatus is known from Japanese Patent Application No. 2000-89468.

【0003】該熱CVD装置は真空雰囲気の形成を可能
とする真空チャンバーを備えている。該真空チャンバー
内部には、ガラスやSiなどの基板であってFeやCo
が形成されたものが装着される基板ホルダーが配設され
ている。また、真空チャンバーの上部壁面には、被処理
基板に対向して石英ガラスなどの耐熱性ガラスからなる
赤外線透過窓が設けられている。この透過窓の外側には
加熱手段である赤外線ランプが配設されている。そし
て、該赤外線ランプによって被処理基板を加熱しつつ、
真空チャンバーの側壁に設けられた1箇所のガス導入口
から真空チャンバーに、例えば水素ガスと一酸化炭素と
の混合ガスを導入することで該基板上にグラファイトナ
ノファイバー薄膜を成長させる。
[0003] The thermal CVD apparatus has a vacuum chamber capable of forming a vacuum atmosphere. Inside the vacuum chamber, a substrate made of glass, Si, or the like containing Fe or Co
A substrate holder on which the substrate having the pattern is formed is provided. An infrared transmission window made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the vacuum chamber so as to face the substrate to be processed. An infrared lamp, which is a heating means, is provided outside the transmission window. Then, while heating the substrate to be processed by the infrared lamp,
For example, a mixed gas of hydrogen gas and carbon monoxide is introduced into the vacuum chamber from one gas inlet provided on the side wall of the vacuum chamber to grow a graphite nanofiber thin film on the substrate.

【0004】[0004]

【発明が解決しようとする課題】ところで、真空チャン
バーに導入される混合ガスは所定の温度以上に加熱され
ることなく基板に到達させる必要がある。このため、上
述の装置では、真空チャンバー側壁に設け得るガス導入
口の位置を適宜設計しているが、1箇所からのガス導入
ではグラファイトナノファイバー薄膜の膜厚分布を制御
するのは困難である。この場合、成膜室の側壁にガス導
入口を複数設け、これらのガス導入口から混合ガスを真
空チャンバー内に導入することが考えられる。ところ
が、これでは、200mm×200mm程度の略正方形
基板やφ200mm程度の円形基板はともかく、例えば
1m×1mサイズのような大きな被処理基板やA4サイ
ズのような矩形の被処理基板に対してグラファイトナノ
ファイバー薄膜の膜厚分布が均一になるようにガス導入
口の配設位置を適切に設計することは困難である。
The mixed gas introduced into the vacuum chamber needs to reach the substrate without being heated to a predetermined temperature or higher. For this reason, in the above-mentioned apparatus, the position of the gas introduction port which can be provided in the vacuum chamber side wall is appropriately designed, but it is difficult to control the film thickness distribution of the graphite nanofiber thin film by introducing the gas from one place. . In this case, it is conceivable to provide a plurality of gas inlets on the side wall of the film formation chamber and to introduce a mixed gas into the vacuum chamber from these gas inlets. However, in this case, aside from a substantially square substrate having a size of about 200 mm × 200 mm and a circular substrate having a diameter of about 200 mm, for example, a graphite nanometer is used for a large substrate having a size of 1 m × 1 m or a rectangular substrate having a size of A4. It is difficult to appropriately design the position of the gas inlet so that the film thickness distribution of the fiber thin film becomes uniform.

【0005】そこで、本発明の課題は、被処理基板のサ
イズや外形に関係なく、膜厚分布の均一なグラファイト
ナノファイバー薄膜の形成を可能とする熱CVD装置を
提供することにある。
It is an object of the present invention to provide a thermal CVD apparatus capable of forming a graphite nanofiber thin film having a uniform film thickness distribution irrespective of the size and outer shape of a substrate to be processed.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明のCVD装置は、真空チャンバーの上部に、被
処理基板に対向して加熱手段が設けられ、該加熱手段で
被処理基板を加熱しつつ、真空チャンバー内に炭素含有
ガスと水素ガスとの混合ガスを導入することで該基板上
にグラファイトナノファイバー薄膜を形成する熱CVD
装置において、混合ガスの導入が、被処理基板の高さ位
置より下側であって、被処理基板をその外周の近傍で囲
繞するように設けられたガス噴射ノズル手段を介して行
われ、真空チャンバー外部のガス源に接続されたガス噴
出ノズル手段はその内部にガス流路を有すると共に、そ
の上面に、ガス流路に連通する複数のガス噴射口が列設
されていることを特徴とする。
In order to solve this problem, in a CVD apparatus according to the present invention, a heating means is provided above a vacuum chamber so as to face a substrate to be processed. Thermal CVD for forming a graphite nanofiber thin film on a substrate by introducing a mixed gas of carbon-containing gas and hydrogen gas into a vacuum chamber while heating
In the apparatus, the introduction of the mixed gas is performed through gas injection nozzle means provided below the height position of the substrate to be processed and surrounding the substrate to be processed in the vicinity of the outer periphery thereof, and The gas ejection nozzle means connected to a gas source outside the chamber has a gas flow path therein, and a plurality of gas injection ports communicating with the gas flow path are arranged on the upper surface thereof. .

【0007】本発明によれば、被処理基板をその外周の
近傍で囲繞するように設けたガス噴出ノズル手段の上面
に列設された複数のガス噴射口から一旦上方に向かって
噴出された混合ガスが、被処理基板の上方全体に亘って
均一に拡散し、次いで、下方に向かって均等に下降し、
被処理基板全体に亘って一様に到達するので、被処理基
板が比較的大きな寸法を有していたり、矩形の外形を有
していても、被処理基板のサイズや外形に関係なく該被
処理基板上に膜厚分布の均一なグラファイトナノファイ
バー薄膜を形成できる。
According to the present invention, the mixing once jetted upward from a plurality of gas jets arranged in the upper surface of the gas jet nozzle means provided so as to surround the substrate to be processed in the vicinity of the outer periphery thereof. The gas is diffused uniformly over the entire upper surface of the substrate to be processed, and then descends uniformly downward.
Since the processing reaches the entire processing target substrate uniformly, even if the processing target substrate has a relatively large dimension or a rectangular external shape, the processing target substrate does not matter regardless of the size or the external shape of the processing target substrate. A graphite nanofiber thin film having a uniform thickness distribution can be formed on a processing substrate.

【0008】ここで、真空チャンバー内にガス噴射ノズ
ル手段を配設した場合、被処理基板に対向して真空チャ
ンバー上部に設けた加熱装置で被処理基板と共に、該ガ
ス噴射ノズル手段も加熱され得る。そして、ガス噴射ノ
ズル手段の表面温度が所定の温度以上になると、その表
面においてグラファイトナノファイバー薄膜が成長し得
る。グラファイトナノファイバー薄膜が成長するとコン
タミネーションの原因になるので、ガス噴射ノズル手段
を頻繁にクリーニング或いは交換する必要が生じる。こ
の場合、前記ガス噴射ノズル手段を熱伝導率の高い金属
から形成し、外壁面の冷却が可能な真空チャンバーの側
壁及びまたは底壁に面接触させて配置しておけば、グラ
ファイトナノファイバー薄膜が成長し得る温度以下に、
ガス噴射ノズル手段の表面温度を保持でき、クリーニン
グや交換の頻度を少なくできる。
Here, when the gas injection nozzle means is provided in the vacuum chamber, the gas injection nozzle means can be heated together with the substrate to be processed by a heating device provided above the vacuum chamber so as to face the substrate to be processed. . Then, when the surface temperature of the gas injection nozzle means is equal to or higher than a predetermined temperature, a graphite nanofiber thin film can grow on the surface. Since the growth of the graphite nanofiber thin film causes contamination, it is necessary to frequently clean or replace the gas injection nozzle means. In this case, if the gas injection nozzle means is formed of a metal having a high thermal conductivity and is arranged in surface contact with the side wall and / or bottom wall of the vacuum chamber capable of cooling the outer wall surface, the graphite nanofiber thin film is formed. Below the temperature at which it can grow,
The surface temperature of the gas injection nozzle means can be maintained, and the frequency of cleaning and replacement can be reduced.

【0009】[0009]

【発明の実施の形態】図1を参照して、例えば、A4サ
イズの矩形の被処理基板S上にグラファイトナノファイ
バー薄膜を形成する熱CVD装置1は、ロードロック室
11と成膜室12とを備え、ロードロック室11と成膜
室12とはゲートバルブ13を介して接続されている。
ロードロック室11は、ガラスやSiなどの被処理基板
Sであって、成膜面にFeやCoなどの金属薄膜が形成
されたものを一旦真空雰囲気に曝すことで、被処理基板
表面の水分等を除去する役割を果たす。このため、該ロ
ードロック室11には、真空ポンプ111が接続されて
いると共に、その真空度をモニターする真空計112が
配設されている。また、該ロードロック室11には、被
処理基板Sが装着された基板ホルダー16を搬送する搬
送アーム15が設けられている。該搬送アーム15は、
サーボモータ(図示せず)を備えた回転軸151の上端
に固着された第1アーム152と、各第1アーム152
の他端に枢支された第2アーム153と、該第2アーム
153の他端に枢支されると共に、被処理基板Sが装着
された基板ホルダー16を下側から支持するフォーク状
の支持部を備えた第3アーム154とからなる。そし
て、第2及び第3の各アーム153、154を旋回させ
ることで搬送アーム15は伸縮自在となる。また、被処
理基板Sを装着した基板ホルダー16の受渡等のため回
転軸151は短いストロークで昇降自在である。この搬
送アーム15によって外部から、基板ホルダー16に装
着された被処理基板Sをロードロック室11に収容し、
所定の真空度(例えば、0.01Torr程度)まで真
空排気した後、ゲートバルブ13を開けて、所定の真空
度(例えば、0.01Torr程度)に真空排気した成
膜室12に被処理基板Sを基板ホルダー16と共に搬送
する。そして、搬送アーム15が再びロードロック室1
1に戻ると、ゲートバルブ13が閉じる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, for example, a thermal CVD apparatus 1 for forming a graphite nanofiber thin film on an A4-size rectangular substrate to be processed S includes a load lock chamber 11 and a film forming chamber 12. The load lock chamber 11 and the film formation chamber 12 are connected via a gate valve 13.
The load lock chamber 11 is a substrate S to be processed such as glass or Si, on which a metal thin film such as Fe or Co is formed on a film-forming surface, is exposed to a vacuum atmosphere once, so that the moisture on the surface of the substrate to be processed is reduced. Plays a role in removing the like. For this purpose, a vacuum pump 111 is connected to the load lock chamber 11 and a vacuum gauge 112 for monitoring the degree of vacuum is provided. The load lock chamber 11 is provided with a transfer arm 15 for transferring a substrate holder 16 on which the substrate S to be processed is mounted. The transfer arm 15 is
A first arm 152 fixed to an upper end of a rotary shaft 151 having a servomotor (not shown);
Arm 153 pivotally supported by the other end of the second arm 153, and a fork-shaped support pivotally supported by the other end of the second arm 153 and supporting the substrate holder 16 on which the substrate S to be processed is mounted from below. And a third arm 154 having a portion. By rotating the second and third arms 153 and 154, the transfer arm 15 can expand and contract. In addition, the rotary shaft 151 can be moved up and down with a short stroke for delivery of the substrate holder 16 on which the substrate S to be processed is mounted. The substrate S to be processed mounted on the substrate holder 16 is housed in the load lock chamber 11 from the outside by the transfer arm 15,
After evacuating to a predetermined degree of vacuum (for example, about 0.01 Torr), the gate valve 13 is opened, and the substrate S to be processed is placed in the film forming chamber 12 evacuated to a predetermined degree of vacuum (for example, about 0.01 Torr). Is transported together with the substrate holder 16. Then, the transfer arm 15 is moved to the load lock chamber 1 again.
When returning to 1, the gate valve 13 is closed.

【0010】成膜室12の底部壁面には、搬送アーム1
5によって搬送されてきた被処理基板Sを装着した基板
ホルダー16が載置される3本の支柱121を、該基板
ホルダー16の面積に対応して略三角形を形成するよう
に配設している。そして、該支柱121のうち、ロード
ロック室11側に位置するものが第3アーム154のフ
ォーク状の支持部相互の間隙に位置して該搬送アーム1
5のガイドとしての役割を果たす。尚、本実施の形態で
は、被処理基板Sが装着された基板ホルダー16を搬送
することとしたが、成膜室12内の支柱121上に基板
ホルダー16を固定しておき、被処理基板Sを搬送する
ように構成することもできる。
The transfer arm 1 is provided on the bottom wall of the film forming chamber 12.
The three columns 121 on which the substrate holder 16 on which the substrate S to be processed carried by the substrate 5 is mounted are placed so as to form a substantially triangular shape corresponding to the area of the substrate holder 16. . The column 121 located on the load lock chamber 11 side is located in the gap between the fork-shaped support portions of the third arm 154 and the transfer arm 1
5 serves as a guide. In this embodiment, the substrate holder 16 on which the substrate to be processed S is mounted is transported. However, the substrate holder 16 is fixed on the support 121 in the film forming chamber 12 and the substrate to be processed S Can be transported.

【0011】また、成膜室12の上部壁面には、被処理
基板Sに対向して石英ガラスなどの耐熱性ガラスからな
る赤外線透過窓122が設けられている。この透過窓1
22の外側には、所定の配列を有してなる加熱手段であ
る複数本の赤外線ランプ17が配設され、被処理基板S
をその全面に亘って均等に加熱する。そして、該成膜室
12にもまた、ロードロック室11と同様に、真空雰囲
気の形成が可能であるように真空ポンプ123が設けら
れていると共に、その真空度をモニターする真空計12
4が配設されている。また、真空ポンプ123をバイパ
スする配管がバルブ123cを介在させて設けられてい
る。
An infrared transmitting window 122 made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the film forming chamber 12 so as to face the substrate S to be processed. This transmission window 1
A plurality of infrared lamps 17, which are heating means having a predetermined arrangement, are provided outside the substrate 22.
Is heated evenly over its entire surface. Similarly to the load lock chamber 11, the film formation chamber 12 is provided with a vacuum pump 123 so that a vacuum atmosphere can be formed, and a vacuum gauge 12 for monitoring the degree of vacuum.
4 are provided. Further, a pipe bypassing the vacuum pump 123 is provided with the valve 123c interposed.

【0012】さらに、成膜室12には混合ガス供給系1
8が接続されている。該混合ガス供給系18は、バルブ
181aからガス流量調節器181b、圧力調整器18
1c及びバルブ181dを介して一酸化炭素などの炭素
含有ガスボンベ181eにガス配管にて直列に連なって
いる炭素含有ガス供給系181と、バルブ182aから
ガス流量調節器182b、圧力調整器182c及びバル
ブ182dを介して水素ガスボンベ182eにガス配管
にて直列に連なっている水素ガス供給系182からな
る。そして、炭素含有ガス供給系181と水素ガス供給
系182とは、バルブ181a、182aと成膜室12
との間で合流し、成膜室12内に炭素含有ガスと水素ガ
スとの混合ガスが導入される。ここで、グラファイトナ
ノファイバー薄膜を形成するのに、炭素含有ガスの他に
水素ガスを用いるのは、気相反応における希釈及び触媒
作用のためである。
Further, the mixed gas supply system 1 is
8 are connected. The mixed gas supply system 18 includes a valve 181a, a gas flow controller 181b, a pressure controller 18
1c and a carbon-containing gas supply system 181 connected in series with a carbon-containing gas cylinder 181e such as carbon monoxide via a valve via a valve 181d, a valve 182a to a gas flow regulator 182b, a pressure regulator 182c, and a valve 182d. And a hydrogen gas supply system 182 connected in series to the hydrogen gas cylinder 182e via a gas pipe. Further, the carbon-containing gas supply system 181 and the hydrogen gas supply system 182 are connected to the valves 181a and 182a and the film forming chamber 12
And a mixed gas of a carbon-containing gas and a hydrogen gas is introduced into the film forming chamber 12. Here, the reason why the hydrogen gas is used in addition to the carbon-containing gas to form the graphite nanofiber thin film is because of dilution and catalytic action in the gas phase reaction.

【0013】ところで、混合ガス供給系18を介して混
合ガスを成膜室12に導入する場合、従来の熱CVD装
置のように、被処理基板Sの上方に位置して該成膜室1
2の側壁に設けた1箇所のガス導入口から混合ガスを導
入するのでは、比較的大きな基板や矩形の基板に対して
グラファイトナノファイバー薄膜の膜厚分布を均一にす
るのは困難である。そこで、本実施の形態では、混合ガ
スの導入を、被処理基板Sの高さ位置より下側であっ
て、被処理基板Sをその外周の近傍で囲繞するように設
けたガス噴射ノズル手段19を介して行なうこととし
た。
When the mixed gas is introduced into the film forming chamber 12 through the mixed gas supply system 18, the film forming chamber 1 is located above the substrate S to be processed as in a conventional thermal CVD apparatus.
It is difficult to make the thickness distribution of the graphite nanofiber thin film uniform for a relatively large substrate or a rectangular substrate by introducing the mixed gas from one gas inlet provided on the side wall of the second. Therefore, in the present embodiment, the introduction of the mixed gas is performed below the height position of the substrate S to be processed, and the gas injection nozzle means 19 provided so as to surround the substrate S near the outer periphery thereof. It was decided to do it through.

【0014】図2及び図3を参照して、環状のガス噴射
ノズル手段19はその内部に混合ガス流路191を備
え、その上面には、該ガス流路191に連通する複数個
のガス噴射口192が列設されている。また、ガス噴射
ノズル手段19の上面には、ガス流路191に通じる継
手を備えた混合ガス供給部193が開設され、該継手に
は混合ガス供給系18のガス配管の一端が接続されてい
る。ここで、このようにガス噴射ノズル手段19を形成
した場合、赤外線ランプ17によって被処理基板Sと共
にガス噴射ノズル手段19自体も加熱され得る。そし
て、該ガス噴射ノズル手段19の表面温度が所定の温度
以上になると、そこにグラファイトナノファイバー薄膜
が成長し得る。グラファイトナノファイバー膜が成長す
るとコンタミネーションの原因になるので、ガス噴射ノ
ズル手段19を頻繁にクリーニング或いは交換する必要
が生じる。このため、本実施の形態では、ガス噴射ノズ
ル手段19を、熱伝導率の高い金属材料である銅から形
成し、成膜室12の底部壁面に面接触させて配設した。
そして、成膜室12の外壁の周囲に冷却水ライン20を
蛇行して配設し、グラファイトナノファイバー薄膜形成
プロセスを行っている間、冷却水ライン20に冷却水を
流すことで成膜室12の外壁を冷却可能とした。これに
より、ガス噴射ノズル手段19は、グラファイトナノフ
ァイバー膜が成長する温度以下の温度に保持される。な
お、本実施の形態では、ガス噴射ノズル手段19を環状
としたが、成膜室12内に混合ガスを均一に噴射し得る
ものであればその外形は問わない。また、ガス噴射ノズ
ル手段19の配設位置に対応して基板ホルダー16が載
置される支柱121の高さ寸法は、ガス噴射ノズル手段
19のガス噴射口192から上方に向かって噴出された
混合ガスが赤外線ランプ17で所定温度以上に加熱され
ることなく、被処理基板Sに到達するように定寸されて
いる。また、成膜室12の外壁の周囲に冷却水ライン2
0を蛇行して配設したが、成膜室12の外壁を覆う水冷
ジャケットにしてもよい。
Referring to FIGS. 2 and 3, the annular gas injection nozzle means 19 has a mixed gas flow path 191 therein, and a plurality of gas injection paths communicating with the gas flow path 191 on its upper surface. The mouths 192 are arranged. On the upper surface of the gas injection nozzle means 19, a mixed gas supply unit 193 having a joint communicating with the gas flow path 191 is opened, and one end of a gas pipe of the mixed gas supply system 18 is connected to the joint. . Here, when the gas injection nozzle means 19 is formed as described above, the gas injection nozzle means 19 itself can be heated together with the substrate S to be processed by the infrared lamp 17. Then, when the surface temperature of the gas injection nozzle means 19 becomes higher than a predetermined temperature, a graphite nanofiber thin film can grow thereon. Since the growth of the graphite nanofiber film causes contamination, it is necessary to frequently clean or replace the gas injection nozzle means 19. For this reason, in the present embodiment, the gas injection nozzle means 19 is formed from copper, which is a metal material having high thermal conductivity, and is disposed in surface contact with the bottom wall surface of the film forming chamber 12.
Then, a cooling water line 20 is meanderingly provided around the outer wall of the film forming chamber 12, and the cooling water flows through the cooling water line 20 during the execution of the graphite nanofiber thin film forming process. The outer wall of can be cooled. Thereby, the gas injection nozzle means 19 is maintained at a temperature lower than the temperature at which the graphite nanofiber film grows. In the present embodiment, the gas injection nozzle means 19 is annular, but the outer shape is not limited as long as the gas mixture can be uniformly injected into the film forming chamber 12. The height of the column 121 on which the substrate holder 16 is placed corresponding to the disposition position of the gas injection nozzle means 19 is determined by the height of the mixing jet injected upward from the gas injection port 192 of the gas injection nozzle means 19. The size is set so that the gas reaches the target substrate S without being heated to a predetermined temperature or more by the infrared lamp 17. A cooling water line 2 is provided around the outer wall of the film forming chamber 12.
Although 0 is arranged in a meandering manner, a water-cooled jacket covering the outer wall of the film forming chamber 12 may be used.

【0015】次に、上記装置を使用したグラファイトナ
ノファイバー薄膜形成プロセスについて説明する。
Next, a process for forming a graphite nanofiber thin film using the above apparatus will be described.

【0016】被処理基板Sとして、EB蒸着法によりガ
ラス基板上にFeを100nmの厚さで蒸着したものを
使用する。このようにFeが蒸着された被処理基板Sを
基板ホルダー16上に装着したものを、ロードロック室
11の外側から搬送アーム15によって該ロードロック
室11に一旦収納し、真空ポンプ111を起動して真空
計112で測定しながら0.01Torr程度まで真空
排気を行う。それに併せて、成膜室も、真空ポンプ12
3を起動して真空計124で測定しながら0.01To
rr程度になるまで真空排気を行う。そして、ロードロ
ック室11及び成膜室12が所定の真空度に達した後、
所定の時間が経過するとゲートバルブ13を開けて成膜
室12の基板ホルダー用支柱121上に被処理基板Sが
装着された基板ホルダー16を載置する。この状態で、
一酸化炭素ガスボンベ181eと水素ガスボンベ182
eとの元栓を開き、圧力調整器181c、182cによ
り約1気圧(絶対圧力)に調整し、そしてバルブ181
a、182aを開き、ガス流量調節器181b、182
bにより、一酸化炭素ガスと水素ガスとの混合ガス(C
O:H2=30:70のガス比)を約1000sccm
程度に調整して、成膜室12内に、被処理基板ホルダー
16の下方から、ガス噴射ノズル手段19を介して導入
し、ガス置換を行った。この時、真空ポンプ123を停
止し、真空ポンプ123の前後に設けたバルブ123
a、123bを閉状態にしてバイパス配管のバルブ12
3cを開状態にしておき、成膜室12がほぼ大気圧(7
60Torr)となるようにした。この場合、赤外線ラ
ンプ17を付勢して被処理基板Sを500℃に加熱した
状態で混合ガスを導入した。
As the substrate S to be processed, a substrate obtained by vapor-depositing Fe to a thickness of 100 nm on a glass substrate by an EB vapor deposition method is used. The substrate S on which the substrate to be processed S on which Fe is deposited is mounted on the substrate holder 16 from the outside of the load lock chamber 11 and temporarily stored in the load lock chamber 11 by the transfer arm 15, and the vacuum pump 111 is started. The vacuum evacuation is performed to about 0.01 Torr while measuring with the vacuum gauge 112. At the same time, the film forming chamber is also equipped with a vacuum pump 12
3 and start measurement with the vacuum gauge 124
Evacuation is performed until the pressure becomes about rr. After the load lock chamber 11 and the film forming chamber 12 reach a predetermined degree of vacuum,
After a predetermined time has elapsed, the gate valve 13 is opened, and the substrate holder 16 on which the substrate S to be processed is mounted is placed on the substrate holder support 121 in the film forming chamber 12. In this state,
Carbon monoxide gas cylinder 181e and hydrogen gas cylinder 182
e, the main valve is opened, the pressure is adjusted to about 1 atm (absolute pressure) by pressure regulators 181c and 182c, and the valve 181 is opened.
a, 182a are opened and the gas flow controllers 181b, 182 are opened.
b, a mixed gas of carbon monoxide gas and hydrogen gas (C
O: H 2 = 30: 70 gas ratio) to about 1000 sccm
The gas was introduced into the film forming chamber 12 from below the substrate holder 16 to be processed through the gas injection nozzle means 19 to perform gas replacement. At this time, the vacuum pump 123 is stopped, and valves 123 provided before and after the vacuum pump 123 are provided.
a, 123b in the closed state and the valve 12 of the bypass pipe
3c is kept in an open state, and the film forming chamber 12 is almost at atmospheric pressure (7.
60 Torr). In this case, the mixed gas was introduced while the substrate S to be processed was heated to 500 ° C. by energizing the infrared lamp 17.

【0017】そして、成膜室12内の圧力が大気圧にな
った後、500℃で10分間にわたって、熱CVD法に
より該基板上でグラファイトナノファイバーの成長反応
を行った。一酸化炭素ガスが被処理基板S上に達する
と、一酸化炭素が解離し、被処理基板上に蒸着されたF
e薄膜上にのみグラファイトナノファイバー薄膜が形成
した。
After the pressure in the film forming chamber 12 became atmospheric pressure, a growth reaction of graphite nanofibers was performed on the substrate at 500 ° C. for 10 minutes by a thermal CVD method. When the carbon monoxide gas reaches the substrate to be processed S, the carbon monoxide is dissociated, and the F deposited on the substrate to be processed is removed.
A graphite nanofiber thin film was formed only on the e thin film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCVD装置の構成を概略的に示す図FIG. 1 is a diagram schematically showing a configuration of a CVD apparatus of the present invention.

【図2】図1のII−II線に沿った断面図FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】ガス噴射ノズル手段の部分斜視図FIG. 3 is a partial perspective view of the gas injection nozzle means.

【符号の説明】[Explanation of symbols]

1 熱CVD装置 12 成膜室 16 基板ホルダー 17 赤外線ラン
プ 19 ガス噴射ノズル手段 191 ガス流路 192 ガス噴射口 S 被処理基
DESCRIPTION OF SYMBOLS 1 Thermal CVD apparatus 12 Film-forming chamber 16 Substrate holder 17 Infrared lamp 19 Gas injection nozzle means 191 Gas flow path 192 Gas injection port S Substrate to be processed

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古瀬 晴邦 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 4G046 CA01 CA02 CB03 CB08 CC06 CC09 4K030 AA14 AA17 BA27 BB12 BB14 CA06 CA17 EA05 EA06 FA10 HA04 4L037 CS04 FA03 FA20 PA03 PA06 PA17 PA28 UA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Harukuni Furuse 2500 Hagizono, Chigasaki-shi, Kanagawa Japan Vacuum Engineering Co., Ltd. F-term (reference) 4G046 CA01 CA02 CB03 CB08 CC06 CC09 4K030 AA14 AA17 BA27 BB12 BB14 CA06 CA17 EA05 EA06 FA10 HA04 4L037 CS04 FA03 FA20 PA03 PA06 PA17 PA28 UA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバーの上部に、被処理基板に
対向して加熱手段が設けられ、該加熱手段で被処理基板
を加熱しつつ、真空チャンバー内に炭素含有ガスと水素
ガスとの混合ガスを導入することで該基板上にグラファ
イトナノファイバー薄膜を形成する熱CVD装置におい
て、 混合ガスの導入が、被処理基板の高さ位置より下側であ
って、被処理基板をその外周の近傍で囲繞するように設
けられたガス噴射ノズル手段を介して行われ、真空チャ
ンバー外部のガス源に接続されたガス噴出ノズル手段は
その内部にガス流路を有すると共に、その上面に、ガス
流路に連通する複数のガス噴射口が列設されていること
を特徴とする熱CVD装置。
A heating means is provided at an upper portion of a vacuum chamber so as to face a substrate to be processed, and a mixed gas of a carbon-containing gas and a hydrogen gas is supplied into the vacuum chamber while heating the substrate to be processed by the heating means. In the thermal CVD apparatus for forming a graphite nanofiber thin film on the substrate by introducing the mixed gas, the introduction of the mixed gas is performed below the height position of the substrate to be processed and the substrate to be processed is positioned near the outer periphery thereof. This is performed through gas injection nozzle means provided so as to surround the gas injection nozzle means connected to a gas source outside the vacuum chamber. A thermal CVD apparatus, wherein a plurality of communicating gas injection ports are arranged in a row.
【請求項2】 前記ガス噴射ノズル手段を熱伝導率の高
い金属から形成し、外壁面の冷却が可能な真空チャンバ
ーの側壁及び/または底壁に面接触させて配設したこと
を特徴とする請求項1記載の熱CVD装置。
2. The gas injection nozzle means is formed of a metal having a high thermal conductivity, and is disposed in surface contact with a side wall and / or a bottom wall of a vacuum chamber capable of cooling an outer wall surface. The thermal CVD apparatus according to claim 1.
JP2000308977A 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films Expired - Lifetime JP4627860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308977A JP4627860B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308977A JP4627860B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Publications (2)

Publication Number Publication Date
JP2002115060A true JP2002115060A (en) 2002-04-19
JP4627860B2 JP4627860B2 (en) 2011-02-09

Family

ID=18789210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308977A Expired - Lifetime JP4627860B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Country Status (1)

Country Link
JP (1) JP4627860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050175A (en) * 2006-08-22 2008-03-06 Ulvac Japan Ltd Method of manufacturing carbon nanotube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176526A (en) * 1993-12-20 1995-07-14 Toray Ind Inc Thin film forming device
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176526A (en) * 1993-12-20 1995-07-14 Toray Ind Inc Thin film forming device
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050175A (en) * 2006-08-22 2008-03-06 Ulvac Japan Ltd Method of manufacturing carbon nanotube

Also Published As

Publication number Publication date
JP4627860B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
KR950012910B1 (en) Vapor phase growth apparatus
KR100688836B1 (en) Catalyst ehhanced chemical vapor depostion apparatus
JP3980840B2 (en) Vapor growth apparatus and vapor growth film forming method
JPH021116A (en) Heat treatment apparatus
JP2668687B2 (en) CVD device
KR101398949B1 (en) Substrate processing apparatus
JP2670515B2 (en) Vertical heat treatment equipment
CN111378959B (en) Film forming apparatus and film forming processing method
US6194030B1 (en) Chemical vapor deposition velocity control apparatus
JP4677088B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP2002115060A (en) Thermal cvd system for depositing graphite nanofiber thin film
KR101324208B1 (en) Substrate processing apparatue
JPH0786173A (en) Film deposition
JP4703844B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP2011100820A (en) Substrate treatment apparatus
JP2002121668A (en) Thermal cvd apparatus for forming graphite nanofiber thin film
JP4627861B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP2007165475A (en) Substrate treatment equipment
JPH04184923A (en) Heat-treating equipment
JP4252142B2 (en) Gas processing device and purge mechanism of raw material supply system used therefor
JP2006186015A (en) Substrate processor
JP2002121676A (en) Thermal cvd apparatus for forming graphite nano-fiber thin film
CA1280055C (en) Vapor deposition apparatus
TWI837254B (en) Film forming device and method
JP3093716B2 (en) Vertical vacuum deposition equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250