CN103178202A - 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件 - Google Patents

新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件 Download PDF

Info

Publication number
CN103178202A
CN103178202A CN2013100548990A CN201310054899A CN103178202A CN 103178202 A CN103178202 A CN 103178202A CN 2013100548990 A CN2013100548990 A CN 2013100548990A CN 201310054899 A CN201310054899 A CN 201310054899A CN 103178202 A CN103178202 A CN 103178202A
Authority
CN
China
Prior art keywords
thermo
converting material
electric converting
material according
bicuote
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100548990A
Other languages
English (en)
Other versions
CN103178202B (zh
Inventor
朴哲凞
孙世姬
权元钟
洪承泰
金兑训
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Corp
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN103178202A publication Critical patent/CN103178202A/zh
Application granted granted Critical
Publication of CN103178202B publication Critical patent/CN103178202B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/885Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明公开了一种由下面的化学式表示的新型热电转换材料:Bi1-xCu1-yO1-zTe。在上面的化学式1中:0≤x<1,0≤y<1,0≤z<1且x+y+z>0。使用该热电转换材料的热电转换器件具有优异的能量转换效率。

Description

新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
本申请是申请日为2009年8月31日,申请号为200980108016.1,发明名称为“新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件”的发明专利申请(国际申请号:PCT/KR2009/004883)的分案申请。
技术领域
本发明涉及一种热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件。
背景技术
热电转换器件被用于热电发电和热电制冷等。例如,热电发电是一种发电方式,其使用由在热电转换器件中的温度差异导致的温差电动势将热能转换为电能。
热电转换器件的能量转换效率取决于热电转换材料的塞贝克系数、电导率和热导率。更具体地说,热电转换材料的能量转换效率与塞贝克系数的平方和电导率成正比,且与热导率成反比。因此,需要开发出具有高塞贝克系数或高电导率或低热导率的热电转换材料以改进热电转换器件的能量转换效率。
发明内容
本发明的一个目的是提供一种具有优异热电转换性能的热电转换材料。
本发明的另一目的是提供一种制备所述热电转换材料的方法。
本发明的再一个目的是提供一种使用所述热电转换材料的热电转换器件。
在对热电转换材料进行反复研究后,本发明人成功合成了由以下化学式1表示的化合物半导体。并且,本发明人发现了此化合物可以用作热电转换器件的热电转换材料,并完成了本发明。
<化学式1>
Bi1-xCu1-yO1-zTe
其中0≤x<1,0≤y<1,0≤z<1且x+y+z>0。
在化学式1中,x、y和z分别优选为0≤x≤0.5、0≤y≤0.5和0≤z≤0.5,更分别优选为0≤x≤0.2、0≤y≤0.2和0≤z≤0.2。
本发明还提供了一种通过混合Bi2O3、Bi、Cu和Te的各个粉末并烧结该混合材料而制备由以上化学式1表示的所述热电转换材料的方法。
在本发明的制备方法中,烧结温度优选为400~570℃。
有益效果
根据本发明的热电转换材料具有优异的热电转换性能,且由此其可以取代常规热电转换材料或者与常规的热电转换材料一起有效应用于热电转换器件。
附图说明
附图说明了本发明的优选实施方式,并与本发明的详细说明一起用于进一步理解本发明的实质,因此,本发明不应解释为仅限于在附图中所示的内容。
图1是通过比较X射线衍射图与结构模型的理论图谱说明BiCuOTe的Rietveld精修图谱的图。
图2是说明BiCuOTe的晶体结构的图。
图3是说明根据本发明的实施例2、4和6的化合物的X射线衍射图的图。
图4是说明根据本发明的实施例1和2的化合物以及根据对比实施例的化合物的功率因数的图。
图5是说明根据本发明的实施例3~5的化合物以及根据对比实施例的化合物的功率因数的图。
图6是说明根据本发明的实施例1、2和6的化合物以及根据对比实施例的化合物的功率因数的图。
具体实施方式
根据本发明的热电转换材料由以下化学式1表示。
<化学式1>
Bi1-xCu1-yO1-zTe
其中0≤x<1,0≤y<1,0≤z<1且x+y+z>0。
在化学式1中,x、y和z分别优选为0≤x≤0.5、0≤y≤0.5和0≤z≤0.5,更分别优选为0≤x≤0.2、0≤y≤0.2和0≤z≤0.2。
换言之,根据本发明的热电转换材料的特征在于,在BiCuOTe中,Bi、Cu和O中的至少一种是相对缺位的。具体地说,在仅Bi缺位的情况下,在上述化学式1中的x、y和z可以分别为0<x≤0.1、y=0和z=0。在仅Cu缺位的情况下,x、y和z可以分别为x=0、0<y≤0.2和z=0。在Bi和O都缺位的情况下,x、y和z可以分别为0<x≤0.1、y=0和0<z≤0.1。
如上所述,塞贝克系数和电导率越高且热导率越低,热电转换性能就越高。虽然下文中将给出说明,但是BiCuOTe具有超晶格结构,其中Cu2Te2层和Bi2O2层沿c晶轴重复排列,因此其具有比Bi2Te3(一种常规商用热电转换材料)显著更低的热导率,并具有与Bi2Te3相似或比Bi2Te3更高的塞贝克系数。因此,BiCuOTe作为热电转换材料是非常有用的。然而,BiCuOTe具有相对较低的电导率。为了改进其电导率,它需要增加载流子(即空穴)的浓度。在本发明中,载流子浓度的增加是通过Bi、Cu和O中的至少一种元素的相对缺位来实现的。
因此,根据本发明的热电转换材料是一种新型材料,其不同于常规的热电转换材料。根据本发明的热电转换材料具有优异的热电转换性能,且由此其可以取代常规热电转换材料或者与常规的热电转换材料一起有效应用于热电转换器件。
上述化学式1的热电转换材料可以通过混合Bi2O3、Bi、Cu和Te的各个粉末并烧结该混合材料来制备,但本发明并不限于此。
根据本发明的化合物半导体可以通过在真空中烧结或通过在流动气体(如部分包括氢或不包括氢的Ar、He或N2)中烧结来制备。烧结温度优选为约400~750℃,更优选为400~570℃。
同时,虽然上述描述是以根据本发明的热电转换材料中的Te以化学计量上固定的量使用为基础进行描述的,但是Te可由另一种元素(如S、Se、As、Sb等)部分替代。这种情况遵循本发明的如下构想:Bi、Cu和O中的至少一种元素的部分缺位引起载流子浓度的增加,导致热电转换性能的改进。因此,应当解释为本发明的范围覆盖了除了具有部分缺位的元素以外的一种元素被另一种元素取代的情况。
以下,将参考以下实施例详述本发明。然而,本发明的实施例可以以不同方式修改和改变,且本发明的范围不应解释为限于以下实施例。本发明提供的实施例是为了使本领域的技术人员更全面地理解本发明。
<对比实施例>
BiCuOTe的合成
首先,为合成BiCuOTe,使用玛瑙研钵充分混合1.1198g的Bi2O3(Aldrich,99.9%,100目)、0.5022g的Bi(Aldrich,99.99%,<10m)、0.4581g的Cu(Aldrich,99.7%,3m)和0.9199g的Te(Aldrich,99.99%,约100目)。将混合的材料放入石英管中,真空密封并在510℃加热15小时,从而得到BiCuOTe粉末。
为进行X射线衍射分析,将测试部分充分粉碎,置于X射线衍射分析仪(Bruker D8-Advance XRD)的试样夹上,并通过扫描进行测量,其中,扫描间隔为0.02度,使用射线照射,施加电压为50KV且施加电流为40mA。
使用TOPAS程序(R.W.Cheary,A.Coelho,J.Appl.Crystallogr.25(1992)109-121;Bruker AXS,TOPAS3,Karlsruhe,Germany(2000))分析得到的材料的晶体结构,且分析结果示于下表1和图2中。
表1<由BiCuOTe的Rietveld精修得到的结晶学数据>[空间群I4/nmm(No.129),
Figure BDA00002845151300043
原子 位置 x y z 占有率 Beq
Bi 2c 0.25 0.25 0.37257(5) 1 0.56(1)
Cu 2a 0.75 0.25 0 1 0.98(3)
O 2b 0.75 0.25 0.5 1 0.26(12)
Te 2c 0.25 0.25 0.81945(7) 1 0.35(1)
图1是通过比较X射线衍射图与结构模型的理论图谱说明BiCuOTe的Rietveld精修图谱的图。参考图1,可以发现测得的图谱与根据表1的结果计算的图谱是一致的。因此,根据对比实施例得到的材料被鉴定为BiCuOTe。
如图2所示,BiCuOTe化合物半导体显示出天然超晶格结构,其中,Cu2Te2层和Bi2O2层沿c晶轴重复排列。
<实施例1和2>
Bi 1-x CuOTe的合成:
除了为了使BiCuOTe中的Bi部分缺位,根据下表2控制各种原料粉末的混合量以外,以与对比实施例相同的方式合成Bi1-xCuOTe。用于合成的各种原料粉末的混合量如下(单位:g)。
表2
类别 Bi2O3 Bi Cu Te
实施例1(x=0.01) 1.6881 0.7344 0.6907 1.3868
实施例2(x=0.04) 1.7141 0.6765 0.7013 1.4082
<实施例3~5>
BiCu 1-y OTe的合成:
除了为了使BiCuOTe中的Cu部分缺位,根据下表3控制各种原料粉末的混合量以外,以与对比实施例相同的方式合成BiCu1-yOTe。用于合成的各种原料粉末的混合量如下(单位:g)。
表3
类别 Bi2O3 Bi Cu Te
实施例3(y=0.01) 1.6822 0.7545 0.6814 1.3820
实施例4(y=0.04) 1.6900 0.7579 0.6638 1.3884
实施例5(y=0.1) 1.7057 0.7650 0.6281 1.4013
<实施例6>
Bi0.96CuO0.94Te的合成
除了相对减少Bi2O3的混合量以使Bi和O都部分缺位以外,以与对比实施例相同的方式合成Bi0.96CuO0.94Te。用于合成的各种原料粉末的混合量如下(单位:g)。
表4
类别 Bi2O3 Bi Cu Te
实施例6 1.6150 0.7706 0.7029 1.4115
而且,根据实施例2、4和6的化合物的测试部分以与对比实施例中相同的方式制备,并进行X射线衍射分析,且对各个材料进行鉴别,如图3所示。
<热电转换性能的评价>
将根据上述对比实施例和实施例得到的各个测试部分模压成直径为4mm且长度为15mm的圆柱体。使用CIP(冷等静压机)对该圆柱体施加200Mpa的压力。随后,将得到的产物放在石英管中在510℃下真空烧结10小时。
使用ZEM-2(Ulvac-Rico公司)在预定温度间隔下测量各个烧结的测试部分的电导率和塞贝克系数。计算出功率因数,其用于指示热电转换性能,且其被定义为塞贝克系数的平方与电导率的乘积。计算出的功率因数示于图4~6中。
参考图4~6,可以发现根据实施例1~6的热电转换材料与对比实施例的BiCuOTe相比具有显著改进的功率因数,因此根据本发明的热电转换材料具有优异的热电转换性能。

Claims (18)

1.具有天然超晶格结构的热电转换材料BiCuOTe,其中Cu2Te2层和Bi2O2层沿c晶轴交替排列,
其中,BiCuOTe的Bi、Cu和O中的至少一种是相对缺位的。
2.根据权利要求1所述的热电转换材料,
其中,当x、y和z各自为所述缺位的比例时,x、y和z分别为0≤x≤0.5、0≤y≤0.5和0≤z≤0.5,且x+y+z>0。
3.根据权利要求2所述的热电转换材料,
其中,所述x、y和z分别为0≤x≤0.2、0≤y≤0.2和0≤z≤0.2。
4.根据权利要求3所述的热电转换材料,
其中,所述x、y和z分别为0<x≤0.1、y=0和z=0。
5.根据权利要求3所述的热电转换材料,
其中,所述x、y和z分别为x=0、0<y≤0.2和z=0。
6.根据权利要求3所述的热电转换材料,
其中,所述x、y和z分别为0<x≤0.1、y=0和0<z≤0.1。
7.一种制备权利要求1中所述的热电转换材料的方法,该方法包括:
混合Bi2O3、Bi、Cu和Te的各个粉末;以及
烧结该混合材料以制备所述热电转换材料,
其中,所述烧结温度为400~750℃。
8.根据权利要求7所述的制备热电转换材料的方法,
其中,所述烧结温度为400~570℃。
9.一种热电转换器件,其包括权利要求1~6中任一项所述的热电转换材料。
10.具有天然超晶格结构的热电转换材料BiCuOTe,其中BiTeCu层和O层沿c晶轴交替排列,
其中,BiCuOTe的Bi、Cu和O中的至少一种是相对缺位的。
11.根据权利要求10所述的热电转换材料,
其中,当x、y和z各自为所述缺位的比例时,x、y和z分别为0≤x≤0.5、0≤y≤0.5和0≤z≤0.5,且x+y+z>0。
12.根据权利要求11所述的热电转换材料,
其中,所述x、y和z分别为0≤x≤0.2、0≤y≤0.2和0≤z≤0.2。
13.根据权利要求12所述的热电转换材料,
其中,所述x、y和z分别为0<x≤0.1、y=0和z=0。
14.根据权利要求12所述的热电转换材料,
其中,所述x、y和z分别为x=0、0<y≤0.2和z=0。
15.根据权利要求12所述的热电转换材料,
其中,所述x、y和z分别为0<x≤0.1、y=0和0<z≤0.1。
16.一种制备权利要求10中所述的热电转换材料的方法,该方法包括:
混合Bi2O3、Bi、Cu和Te的各个粉末;以及
烧结该混合材料以制备所述热电转换材料,
其中,所述烧结温度为400~750℃。
17.根据权利要求16所述的制备热电转换材料的方法,
其中,所述烧结温度为400~570℃。
18.一种热电转换器件,其包括权利要求10~15中任一项所述的热电转换材料。
CN201310054899.0A 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件 Active CN103178202B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20080085240 2008-08-29
KR10-2008-0085240 2008-08-29
KR10-2008-0097779 2008-10-06
KR20080097779 2008-10-06
KR20080111557 2008-11-11
KR10-2008-0111557 2008-11-11
CN2009801080161A CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009801080161A Division CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件

Publications (2)

Publication Number Publication Date
CN103178202A true CN103178202A (zh) 2013-06-26
CN103178202B CN103178202B (zh) 2016-06-01

Family

ID=41721647

Family Applications (6)

Application Number Title Priority Date Filing Date
CN201310309148.9A Active CN103400932B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN2008801266927A Active CN101946323B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN201310054899.0A Active CN103178202B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN2009801080161A Active CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN2009801103604A Active CN101977846B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件
CN201310021769.7A Active CN103130199B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201310309148.9A Active CN103400932B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN2008801266927A Active CN101946323B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN2009801080161A Active CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN2009801103604A Active CN101977846B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件
CN201310021769.7A Active CN103130199B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件

Country Status (7)

Country Link
US (7) US8173097B2 (zh)
EP (3) EP2319082B1 (zh)
JP (4) JP5414700B2 (zh)
KR (3) KR101117847B1 (zh)
CN (6) CN103400932B (zh)
TW (1) TWI472487B (zh)
WO (3) WO2010024500A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660165B2 (en) 2008-08-29 2017-05-23 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
EP2319082B1 (en) 2008-08-29 2017-11-15 LG Chem, Ltd. New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same
KR101114252B1 (ko) * 2010-05-21 2012-02-20 부경대학교 산학협력단 열전재료의 제조방법
CN102339946B (zh) * 2010-07-20 2014-06-18 中国科学院上海硅酸盐研究所 一种高性能热电复合材料及其制备方法
JP5774130B2 (ja) * 2011-04-28 2015-09-02 エルジー・ケム・リミテッド 新規な化合物半導体及びその活用
CN103502144B (zh) * 2011-04-28 2015-11-25 Lg化学株式会社 化合物半导体及其用途
EP2708498B1 (en) * 2011-05-13 2017-08-16 LG Chem, Ltd. Novel compound semiconductor and usage for same
KR101431771B1 (ko) * 2011-05-13 2014-08-19 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
EP2708496B1 (en) * 2011-05-13 2018-02-28 LG Chem, Ltd. Novel compound semiconductor and usage for same
WO2012157905A1 (ko) * 2011-05-13 2012-11-22 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
CN103517872B (zh) * 2011-05-13 2015-08-05 Lg化学株式会社 化合物半导体及其用途
CN103050618B (zh) * 2011-10-17 2015-08-12 中国科学院福建物质结构研究所 一种热电材料及其制备方法
KR102001062B1 (ko) 2012-01-16 2019-10-01 삼성전자주식회사 나노복합체형 열전재료, 이를 포함하는 열전모듈과 열전장치
KR101323321B1 (ko) * 2012-02-10 2013-10-29 한국전기연구원 Sb가 도핑된 MnTe계 열전재료 및 그 제조방법
KR20130126035A (ko) * 2012-05-10 2013-11-20 삼성전자주식회사 왜곡된 전자 상태 밀도를 갖는 열전소재, 이를 포함하는 열전모듈과 열전 장치
KR101995917B1 (ko) 2012-05-14 2019-07-03 삼성전자주식회사 파워팩터 증대된 열전소재 및 그 제조 방법
FR2996355B1 (fr) * 2012-09-28 2016-04-29 Rhodia Operations Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaique
KR101446424B1 (ko) * 2013-04-15 2014-10-30 서강대학교산학협력단 열전 변환 물질
CN103236493B (zh) * 2013-05-13 2017-10-24 中国科学院福建物质结构研究所 TmCuTe2化合物及其制备和用途
KR101612494B1 (ko) * 2013-09-09 2016-04-14 주식회사 엘지화학 열전 재료
US9705060B2 (en) 2013-09-09 2017-07-11 Lg Chem, Ltd. Thermoelectric materials
KR101612489B1 (ko) * 2013-09-27 2016-04-14 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
US9561959B2 (en) 2013-10-04 2017-02-07 Lg Chem, Ltd. Compound semiconductors and their applications
KR101629509B1 (ko) * 2013-10-17 2016-06-10 주식회사 엘지화학 열전 재료 및 그 제조 방법
KR101626933B1 (ko) * 2013-11-29 2016-06-02 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
KR102138527B1 (ko) * 2014-01-20 2020-07-28 엘지전자 주식회사 상분리를 이용한 열전소재, 상기 열전소재를 이용한 열전소자 및 그 제조방법
FR3019540A1 (fr) * 2014-04-04 2015-10-09 Rhodia Operations Oxydes et sulfures mixtes de bismuth et argent pour application photovoltaique
FR3019539B1 (fr) * 2014-04-04 2016-04-29 Rhodia Operations Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaique
CN104674046B (zh) * 2015-02-03 2017-11-03 河南理工大学 一种BiCuζO热电材料的制备方法
JP6704577B2 (ja) * 2015-02-23 2020-06-03 国立大学法人 奈良先端科学技術大学院大学 カーボンナノチューブ−ドーパント組成物複合体の製造方法およびカーボンナノチューブ−ドーパント組成物複合体
CN104831344A (zh) * 2015-04-29 2015-08-12 河南鸿昌电子有限公司 一种半导体晶棒的拉晶方法
KR101917914B1 (ko) 2015-08-26 2018-11-12 주식회사 엘지화학 화합물 반도체 및 그 제조방법
CN105552202B (zh) * 2015-12-08 2018-04-10 中国科学院福建物质结构研究所 晶体材料、制备方法以及含有该晶体材料的热电材料、其制备方法及热电转换器和应用
CN107146676B (zh) * 2016-03-01 2019-03-08 中国科学院物理研究所 镉基铁磁半导体材料及其制备方法
CN106601837B (zh) * 2016-11-23 2018-06-22 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
CN106784038B (zh) * 2017-01-05 2018-03-13 上海应用技术大学 一种组分可调光电薄膜的制备方法
KR102381761B1 (ko) * 2017-12-15 2022-03-31 주식회사 엘지화학 칼코겐 화합물, 이의 제조 방법 및 이를 포함하는 열전 소자
CN109776093B (zh) * 2018-04-04 2021-07-27 苏州普轮电子科技有限公司 纳米复合热电材料的制备方法
CN109273584B (zh) * 2018-07-16 2022-06-28 永康市天峰工具有限公司 一种汽车尾气温差发电装置用热电材料及发电装置
US20220033273A1 (en) * 2018-12-04 2022-02-03 Sumitomo Chemical Company, Limited Compound and Thermoelectric Conversion Material
CN110627502B (zh) * 2019-10-22 2020-12-22 中南大学 一种低温p型复合热电材料及制备方法
CN112397634B (zh) * 2020-11-16 2023-02-28 昆明理工大学 一种提升Bi-Sb-Te基热电材料性能的方法
CN114133245B (zh) * 2021-11-15 2022-12-20 清华大学 热电陶瓷材料及其制备方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366336A (en) * 1980-10-16 1982-12-28 Chevron Research Company Age and heat stabilized photovoltaic cells
US4661071A (en) * 1984-04-03 1987-04-28 Denpac Corp. Vacuum sintered powder alloy dental prosthetic device and oven to form same
US5336558A (en) * 1991-06-24 1994-08-09 Minnesota Mining And Manufacturing Company Composite article comprising oriented microstructures
WO1994012833A1 (en) * 1992-11-27 1994-06-09 Pneumo Abex Corporation Thermoelectric device for heating and cooling air for human use
KR960006241B1 (ko) * 1993-11-20 1996-05-11 국방과학연구소 p-n 전이방지 특성을 갖는 Bi₂Te₃계 열전재료 조성물
JP3092463B2 (ja) * 1994-10-11 2000-09-25 ヤマハ株式会社 熱電材料及び熱電変換素子
US6458319B1 (en) * 1997-03-18 2002-10-01 California Institute Of Technology High performance P-type thermoelectric materials and methods of preparation
JP3572939B2 (ja) * 1997-05-15 2004-10-06 ヤマハ株式会社 熱電材料及びその製造方法
CN1162920C (zh) * 1997-10-24 2004-08-18 住友特殊金属株式会社 热电转换材料及其制造方法
JP3484960B2 (ja) * 1997-12-22 2004-01-06 松下電工株式会社 熱電変換素子及び熱電変換素子の製造方法
WO1999066541A2 (en) * 1998-06-18 1999-12-23 Industrial Research Limited CRITICAL DOPING IN HIGH-Tc SUPERCONDUCTORS FOR MAXIMAL FLUX PINNING AND CRITICAL CURRENTS
JP2000261043A (ja) * 1999-03-10 2000-09-22 Sumitomo Special Metals Co Ltd 熱電変換材料とその製造方法
US6091014A (en) * 1999-03-16 2000-07-18 University Of Kentucky Research Foundation Thermoelectric materials based on intercalated layered metallic systems
DE19955788A1 (de) 1999-11-19 2001-05-23 Basf Ag Thermoelektrisch aktive Materialien und diese enthaltende Generatoren
US6251701B1 (en) * 2000-03-01 2001-06-26 The United States Of America As Represented By The United States Department Of Energy All-vapor processing of p-type tellurium-containing II-VI semiconductor and ohmic contacts thereof
JP3594008B2 (ja) 2000-11-30 2004-11-24 ヤマハ株式会社 熱電材料、その製造方法及びペルチェモジュール
US6384312B1 (en) * 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
EP1428243A4 (en) * 2001-04-16 2008-05-07 Bulent M Basol METHOD OF FORMING A THIN LAYER OF SEMICONDUCTOR COMPOUND FOR THE MANUFACTURE OF AN ELECTRONIC DEVICE, AND THIN LAYER PRODUCED THEREBY
US6660925B1 (en) * 2001-06-01 2003-12-09 Marlow Industries, Inc. Thermoelectric device having co-extruded P-type and N-type materials
US7166796B2 (en) * 2001-09-06 2007-01-23 Nicolaou Michael C Method for producing a device for direct thermoelectric energy conversion
WO2003105244A1 (ja) * 2002-01-01 2003-12-18 古河電気工業株式会社 熱電素子モジュール及びその作製方法
JP2004288841A (ja) * 2003-03-20 2004-10-14 Rikogaku Shinkokai オキシカルコゲナイドおよび熱電材料
EP1737053B1 (en) 2004-03-25 2012-02-29 National Institute of Advanced Industrial Science and Technology Thermoelectric conversion element and thermoelectric conversion module
CN1278941C (zh) * 2004-12-08 2006-10-11 浙江大学 一种Bi2Te3纳米囊及其制备方法
JP2007158191A (ja) * 2005-12-07 2007-06-21 Toshiba Corp 熱電材料およびこの材料を用いた熱電変換素子
JP2007258200A (ja) * 2006-03-20 2007-10-04 Univ Nagoya 熱電変換材料及びそれを用いた熱電変換膜
JP4967772B2 (ja) * 2006-08-24 2012-07-04 住友化学株式会社 熱電変換材料およびその製造方法
JP2008085309A (ja) * 2006-08-29 2008-04-10 Okano Electric Wire Co Ltd 熱電変換モジュールおよびその製造方法ならびに熱電変換モジュールに用いられる熱電変換材料
WO2008028852A2 (de) * 2006-09-05 2008-03-13 Basf Se Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
KR101008035B1 (ko) * 2007-06-14 2011-01-13 주식회사 엘지화학 신규한 화합물 반도체 물질 및 그 제조 방법과, 이를이용한 태양 전지
EP2319082B1 (en) * 2008-08-29 2017-11-15 LG Chem, Ltd. New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same

Also Published As

Publication number Publication date
CN101946323B (zh) 2013-08-21
KR101117845B1 (ko) 2012-03-16
CN103178202B (zh) 2016-06-01
EP2320485B1 (en) 2014-11-19
JP2011523394A (ja) 2011-08-11
US20110079751A1 (en) 2011-04-07
US8535637B2 (en) 2013-09-17
CN101960627B (zh) 2013-03-27
KR20100027081A (ko) 2010-03-10
JP2013145895A (ja) 2013-07-25
KR101117847B1 (ko) 2012-03-16
US8173097B2 (en) 2012-05-08
EP2316793A2 (en) 2011-05-04
EP2320485A4 (en) 2013-10-30
US8226843B2 (en) 2012-07-24
US8715538B2 (en) 2014-05-06
WO2010024637A3 (ko) 2010-07-01
JP5414700B2 (ja) 2014-02-12
CN101977846B (zh) 2013-03-13
US20110017935A1 (en) 2011-01-27
US20110079750A1 (en) 2011-04-07
JP5283713B2 (ja) 2013-09-04
US20140000671A1 (en) 2014-01-02
JP5537688B2 (ja) 2014-07-02
EP2316793B1 (en) 2014-11-05
CN101977846A (zh) 2011-02-16
EP2320485A2 (en) 2011-05-11
TWI472487B (zh) 2015-02-11
CN103400932A (zh) 2013-11-20
US8029703B2 (en) 2011-10-04
JP2011516370A (ja) 2011-05-26
US20120326100A1 (en) 2012-12-27
EP2319082A4 (en) 2013-12-04
TW201008877A (en) 2010-03-01
US9620696B2 (en) 2017-04-11
CN101960627A (zh) 2011-01-26
WO2010024500A1 (en) 2010-03-04
KR20100027080A (ko) 2010-03-10
CN101946323A (zh) 2011-01-12
JP5462858B2 (ja) 2014-04-02
US20140190544A1 (en) 2014-07-10
CN103130199A (zh) 2013-06-05
US20120211045A1 (en) 2012-08-23
KR20100027079A (ko) 2010-03-10
EP2319082A1 (en) 2011-05-11
CN103130199B (zh) 2015-03-18
JP2011513986A (ja) 2011-04-28
EP2316793A4 (en) 2013-11-20
WO2010024637A2 (ko) 2010-03-04
EP2319082B1 (en) 2017-11-15
KR101128304B1 (ko) 2012-03-23
WO2010024641A2 (ko) 2010-03-04
WO2010024641A3 (ko) 2010-07-01
CN103400932B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN101960627B (zh) 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
Chen et al. The effect of Te doping on the electronic structure and thermoelectric properties of SnSe
Isoda et al. Thermoelectric properties of p-type Mg 2.00 Si 0.25 Sn 0.75 with Li and Ag double doping
JP2008500451A (ja) 高性能熱電材料およびそれらの調製方法
CN102655204A (zh) 一种Sr掺杂氧化物BiCuSeO热电材料及制备方法
CN105671344B (zh) 一步制备高性能CoSb3基热电材料的方法
EP3026719B1 (en) Thermoelectric materials and their manufacturing method
EP3038175B1 (en) Thermoelectric materials and their manufacturing method
CN109650435A (zh) 一种硫化铜基热电复合材料及其制备方法
EP2854189B1 (en) Thermoelectric conversion module
CN103236493A (zh) TmCuTe2化合物及其制备和用途
CN110408989B (zh) 一种氧化物热电材料BiCuSeO单晶体及其制备方法
Xie et al. Solvothermal synthesis of nanosized CoSb3 skutterudite
EP3026720A1 (en) Thermoelectric material and method for manufacturing same
WO2015121932A1 (ja) 熱電変換材料およびそれを用いた熱電変換モジュール
Wei et al. Synthesis and transport properties of Fe2SnSe4
EP4181222A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, power generation method, and heat transfer method
Mallick et al. Thermoelectric properties of Fe-substituted layered compound, LiCo 1− x Fe x O 2
Funahashi et al. Thermoelectric properties of Ln-Ni-O (Ln: lanthanoid) systems
JP2020057727A (ja) 熱電材料、その製造方法およびそれを用いた熱電発電素子
Kawamura et al. Electrical resistivity and thermoelectric power of polyacrylonitrile-cuprous sulfide composite fibers
Isoda et al. Thermoelectric Properties of p-Type MgSiSn with Li and Ag Double Doping.
Himes Thermoelectric properties of cobalt doped perovskites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant