WO2008028852A2 - Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen - Google Patents

Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen Download PDF

Info

Publication number
WO2008028852A2
WO2008028852A2 PCT/EP2007/059007 EP2007059007W WO2008028852A2 WO 2008028852 A2 WO2008028852 A2 WO 2008028852A2 EP 2007059007 W EP2007059007 W EP 2007059007W WO 2008028852 A2 WO2008028852 A2 WO 2008028852A2
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor material
doped
mixtures
bismuth telluride
independently
Prior art date
Application number
PCT/EP2007/059007
Other languages
English (en)
French (fr)
Other versions
WO2008028852A3 (de
Inventor
Hans-Josef Sterzel
Frank Haass
Patrick Deck
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2008028852A2 publication Critical patent/WO2008028852A2/de
Publication of WO2008028852A3 publication Critical patent/WO2008028852A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to semiconductor materials containing dopants, bismuth and tellurium (doped bi-tellurides) and thermoelectric generators and Peltier devices containing them.
  • Thermoelectric generators and Peltier devices as such have long been known, p-type and n-type doped semiconductors, heated on one side and cooled on the other, carry electrical charges through an external circuit, electrical work being done to a load in the circuit can be performed.
  • the achieved conversion efficiency of heat into electrical energy is thermodynamically limited by the Carnot efficiency.
  • an efficiency of (1000 - 400): 1000 60% is possible.
  • efficiencies up to 10% are achieved.
  • Such a Peltier arrangement operates as a heat pump and is therefore suitable for cooling equipment parts, vehicles or buildings.
  • the heating via the Peltier principle is cheaper than a conventional heating, because more and more heat is transported than the supplied energy equivalent corresponds.
  • thermoelectric generators are used, for example, in modules for controlling the temperature of microprocessors or optoelectronic components, in space probes for generating direct currents, for the cathodic corrosion protection of pipelines, for the power supply of illuminated and radio buoys and for the operation of radios and television sets.
  • the advantages of the thermoelectric generators are in their utmost reliability. So they work regardless of atmospheric conditions such as humidity; there is no fault-susceptible mass transfer, but only a charge transport; the fuel is burned continuously - also catalytically without a free flame -; It can be used any fuel from hydrogen to natural gas, gasoline, kerosene, diesel fuel to biologically produced fuels such as rapeseed oil methyl ester.
  • the thermoelectric energy conversion fits extremely flexibly into future needs such as hydrogen economy or energy production from renewable energies.
  • thermoelectrically active materials are evaluated essentially on the basis of their efficiency. Characteristic of thermoelectric materials in this regard is the so-called Z factor (figure of merit):
  • thermoelectric materials which have the lowest possible thermal conductivity, the highest possible electrical conductivity and the largest possible Seebeck coefficient, so that the figure of merit as high as possible Takes value.
  • thermoelectric materials have maximum values of Z ⁇ T of about 1 at an optimum temperature. Beyond this optimum temperature, the values of Z • T are often lower than 1. Materials such as Bi 2 Te3, PbTe, and antimony ZnSb 3 and CoSb 3 are currently the best known in the art.
  • thermoelectrically active material which has the highest possible value for Z and a high temperature difference that can be achieved. From the point of view of solid-state physics many problems have to be overcome:
  • a high ⁇ requires a high electron mobility in the material, ie electrons (or holes in p-type materials) should not be strongly bound to the atomic hulls.
  • Materials with high electrical conductivity ⁇ usually have at the same time a high thermal conductivity (Wiedemann - Franz's Law), which means that Z can not be favorably influenced.
  • Currently used materials such as Bi 2 Te 3 , PbTe or SiGe are already compromises.
  • the electrical conductivity is reduced by alloying less than the thermal conductivity. Therefore, it is preferable to use alloys such as (Bi 2 Te 3 ) 9o (Sb 2 Te 3 ) 5 (Sb 2 Se 3 ) 5 or Bi 12 Sb 23 Te 6 S, as described in US Pat. No. 5,448,109.
  • Germanium-lead tellurides for thermoelectric generators and Peltier arrangements are described, for example, in DE-A-10 2004 043 787.
  • n-type bismuth telluride materials have compositions corresponding to Bi 2 Seo , sTe 2.5 , and p-type such as Bi o , 7Sbi, 3 Te 3 .
  • thermoelectric materials with high efficiency preferably further boundary conditions are to be met. Above all, they must be temperature-stable in order to be able to work at operating temperatures of up to 1,000 K or 1,500 K for years without significant loss of efficiency. This requires a high temperature stable phase per se, a stable phase composition and a negligible diffusion of alloying constituents into the adjacent contact materials.
  • the object of the present invention is to provide semiconductor materials (thermoelectrically active materials) which have a high degree of efficiency and exhibit a suitable property profile for different fields of application.
  • a preferred object of the invention is to provide a thermoelectrically active material based on Bi 2 Te 3 with better ZT values than in the prior art.
  • the object is achieved according to the invention by a p-type or n-type semiconductor material comprising a bismuth telluride doped with Ge, Co, Fe and / or Ni of the general formula (I) or (II)
  • bismuth tellurides of the formula (I) doped with Ge, Co, Se, Ni or mixtures thereof and Se are advantageous n-doped semiconductor materials which have an improved property profile as thermoelectrically active materials. It has also been found that bismuth tellurides of the formula (II) doped with Ge, Co, Fe, Ni or mixtures thereof and optionally Sb and / or Se give advantageous p-doped semiconductor materials which exhibit an improved property profile for thermoelectrically active materials.
  • the radicals or indices indicated have the meanings given for the respective formula. This means that the indices for the compounds of the formula (I) and (II) can have different meanings.
  • Particularly preferred semiconductor materials are characterized in that in the doped bismuth telluride of the general formula (I)
  • u, x are independently 0.01 to 0.03,
  • Particularly preferred semiconductor materials of the formula (II) are characterized in that in the doped bismuth telluride of the general formula (II)
  • u, x are independently 0.005 to 0.25.
  • one of the preferred ranges can be combined with the general ranges of the formulas (I) and (II) given above. This means that, according to the invention, individual ones of the preferred areas can also be realized, while the other areas remain in the generally defined area.
  • Dop means Ge, Co, Fe, Ni or mixtures thereof.
  • dop means only one of these metals in a compound of general formula (I) or (II).
  • Particularly preferred are combinations of elements, as indicated in the examples below. The proportions can be freely selected according to the above limits or preferred limits.
  • the materials of the invention are generally made by fusing together mixtures of the respective constituent elements or their compounds / alloys. In general, a reaction time of melting together of at least one hour has proven to be advantageous.
  • the melting together is preferably carried out for a period of at least 1 hour, more preferably at least 5 hours, in particular at least 10 hours.
  • the melting process can be carried out with or without mixing of the starting mixture.
  • the starting mixture is suitable for this purpose in particular a rotary kiln to ensure the homogeneity of the mixture. If no mixture is made, generally longer melt times of 2 to 100 hours, especially 30 to 100 hours, are required to obtain a homogeneous material. If a mixture is made, the homogeneity in the mixture is obtained earlier.
  • Melting generally occurs at a temperature at which at least one component of the mixture has already melted and the material is already in the molten state.
  • the melting temperature is at least 700 0 C, preferably at least 1000 0 C.
  • the melting temperature in a temperature range 700-1500 0 C, preferably 1000-1300 0 C. This ensures that the dopants are distributed homogeneously.
  • thermoelectric materials according to the invention is generally carried out in a heatable quartz tube.
  • a mixing of the components involved can be ensured by using a rotatable and / or tiltable furnace. After completion of the reaction, the furnace is cooled. Subsequently, the quartz tube is removed from the oven and the z. B. sliced in the form of blocks present semiconductor material. These discs are z. B. now cut into pieces of about 1 to 5 mm in length, from which thermoelectric modules can be produced.
  • tubes made of other materials for example tantalum, can also be used. This is preferred because the thermal conductivity of this material is higher than that of quartz.
  • tubes instead of tubes, other containers of suitable shape can be used. Other materials, such as graphite, can be used as container material.
  • the cooled material can be ground at a suitable temperature, so that the semiconductor material according to the invention is obtained in conventional particle sizes smaller than 50 ⁇ m.
  • the milled material according to the invention is then preferably pressed into shaped parts which have the desired shape.
  • the bulk density of the shaped parts pressed in this way should preferably be greater than 50%, particularly preferably greater than 80%, of the bulk density of the raw material in the unpressed and preferably unmilled state.
  • Compounds which improve the densification of the material according to the invention can be added in quantities of preferably 0.1 to 5% by volume, more preferably 0.2 to 2% by volume, based in each case on the powdered material according to the invention.
  • Additives which are added to the materials according to the invention should preferably be inert to the semiconductor material and preferably dissolve out of the material according to the invention during heating to temperatures below the sintering temperature of the materials according to the invention, if appropriate under inert conditions and / or vacuum. After pressing, the pressed parts are preferably placed in a sintering furnace in which they are heated to a temperature of preferably at most 100 0 C below the melting point.
  • the pressed parts are sintered at a temperature of generally at least 100 ° C., preferably at least 200 ° C., lower than the melting point of the resulting semiconductor material.
  • the sintering temperature is 200 to 500 0 C, preferably 300 to 450 0 C.
  • the sintering is carried out for a period of preferably at least 0.5 hours, particularly preferably at least 1 hour, in particular at least 2 hours. Normally, the annealing time is 0.5 to 5 hours, preferably 1 to 3 hours. In one embodiment of the present invention, the sintering is carried out at a temperature which is 100 to 300 ° C. lower than the melting temperature of the resulting semiconductor material. A preferred temperature range is 150 to 250 0 C lower than the melting point of the resulting Halbleiterma- terials.
  • the sintering is preferably carried out under hydrogen or a protective gas atmosphere, for example of argon.
  • the pressed parts are preferably sintered to 95 to 100% of their theoretical bulk density.
  • thermoelectrics as active semiconductors in thermoelectric modules.
  • Particularly advantageous is their use in modules for Peltier arrangements in tumble dryers, air conditioners or for cooling seats, as well as in electronic devices (such as CPU coolers) or mobile refrigerators.
  • thermoelectric products In thermoelectric products, p- and n-type materials are electrically connected in series to avoid thermal losses.
  • the present invention further relates to a p- or n-type semiconductor material of a compound of the general formula (I) or (II) which is prepared according to the method described above.
  • Another object of the present invention is the use of the above-described semiconductor material and the semiconductor material obtainable by the method described above as a thermoelectric generator or Peltier arrangement.
  • Another object of the present invention are thermoelectric generators or Peltier arrangements, which contain the semiconductor material described above and / or the semiconductor material obtainable by the method described above.
  • Another object of the present invention is a method for producing thermoelectric generators or Peltier arrangements, in which electrically connected in series thermoelectrically active blocks (“legs") are used with thin layers of the previously described thermoelectric materials.
  • thermoelectric generators or Peltier arrangements In a first embodiment of this method, the production of the thermoelectric generators or Peltier arrangements is carried out as follows:
  • the semiconductors of the invention according to a first conductivity type are applied to a substrate by means of conventional semiconductor fabrication techniques, in particular CVD, sputtering technique or molecular beam epitaxy.
  • the semiconductors according to the invention are likewise applied to a further substrate by means of sputtering technique or molecular beam epitaxy, but the conductivity type of this semiconductor material is inverse to the semiconductor material used first (n- or p-doped).
  • thermoelectrically active building blocks legss of a different charge type are alternately arranged.
  • thermoelectrically active building blocks have a diameter of preferably less than 100 .mu.m, more preferably less than 50 .mu.m, in particular less than 20 microns and a thickness of preferably 5 to 100 .mu.m, more preferably 10 to 50 .mu.m, in particular 15 to
  • the area occupied by a thermoelectrically active building block is preferably less than 1 mm 2 , particularly preferably less than 0.5 mm 2 , in particular less than 0.4 mm 2 .
  • thermoelectric generators or Peltier arrangements takes place in such a way that layers of inventive semiconductor materials of different charge type (p- and n-doped) are produced alternately on a substrate by suitable deposition methods, for example molecular beam epitaxy.
  • the layer thickness is in each case preferably 5 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, in particular 5 to 20 ⁇ m.
  • the semiconductor materials according to the invention can also be joined by methods to form thermoelectric generators or Peltier arrangements, which are known per se to the person skilled in the art and are described, for example, in WO 98/44562, US Pat. No. 5,448,109, EP-A-1 102 334 or US Pat. No. 5,439,528.
  • thermoelectric generators or Peltier arrangements according to the invention generally expand the available range of thermoelectric generators and Peltier arrangements. By varying the chemical composition of the thermoelectric generators or Peltier arrangements, it is possible to provide different Liehe systems that meet different requirements in a variety of applications. Thus, the thermoelectric generators or Peltier arrangements according to the invention expand the range of applications of these systems.
  • the present invention also relates to the use of a thermoelectric generator according to the invention or a Peltier arrangement according to the invention in a tumble dryer.
  • the present invention relates to a dryer comprising at least one thermoelectric generator according to the invention or a Peltier arrangement according to the invention, directly or indirectly heated via the or a material to be dried and directly or indirectly via the or the obtained during the drying water or solvent vapor is cooled indirectly.
  • the dryer is a clothes dryer and the material to be dried is laundry.
  • the components were filled in the indicated molar ratio in quartz tubes with 10 mm inner diameter. The total mass was 5 - 9 g. Subsequently, the quartz tubes were 5 min. heated to about 100 0 C in vacuo and then sealed in vacuo. The elements were used as granular granules with a purity of 99.995%.
  • the quartz tubes were heated from room temperature to temperatures of 1000 0 C within 5 h. This temperature was maintained for 7 h. During the entire heating period, the oven was in one period 2 minutes about a drive about the longitudinal axis tilted to achieve a good mixing of the melt.
  • the materials of the invention were compared to bismuth tellurides of the prior art.
  • specimens were a temperature difference of 100 K.
  • the product of no-load voltage and short-circuit current corresponds to a "power factor.”
  • the bismuth tellurides according to the prior art have anisotropic properties, the best combination of open circuit voltage and short-circuit current was selected as standard and the anisotropy is promoted by cooling the melt in a temperature gradient However, the isotropic property average is measured instead, which means that with the same relative "power factor" the material according to the invention is better.
  • Another advantage of the "isotropic" material of the invention is that it is mechanically much more stable than the known anisotropic, fracture-prone material.

Abstract

Ein p- oder n-leitendes Halbleitermaterial enthält ein mit Ge, Co, Fe und/oder Ni dotiertes Bismuttellurid der allgemeinen Formel (I) oder (II) Bi2-xDopuSeyTez (I) mit der Bedeutung Dop = Ge, Co, Fe, Ni oder Gemische davon u, x = unabhängig voneinander 0,001 bis 0,06 y = 0,01 bis 1,0 y+z = 3,00 bis 3,2 Bi2-xSb yDopuSezTev (II) mit der Bedeutung Dop = Ge, Co, Fe, Ni oder Gemische davon u, x = unabhängig voneinander 0,001 bis 0,4 y = 0 bis 1 z = 0 bis 1 z+v = 3,00 bis 3,3.

Description

Dotierte Bi-Te-Verbindungen für thermoelektrische Generatoren und Peltier- Anordnungen
Beschreibung
Die vorliegende Erfindung betrifft Halbleitermaterialien, enthaltend Dopanden, Bismut und Tellur (dotierte Bi-Telluride) sowie diese enthaltende thermoelektrische Generatoren und Peltier-Anordnungen.
Thermoelektrische Generatoren und Peltier-Anordnungen als solche sind seit langem bekannt, p- und n-dotierte Halbleiter, die auf einer Seite erhitzt und auf der anderen Seite gekühlt werden, transportieren elektrische Ladungen durch einen äußeren Stromkreis, wobei an einem Verbraucher im Stromkreis elektrische Arbeit verrichtet werden kann. Der dabei erzielte Wirkungsgrad der Konversion von Wärme in elek- trische Energie wird thermodynamisch durch den Carnot-Wirkungsgrad limitiert. Somit wäre bei einer Temperatur von 1000 K auf der heißen und 400 K auf der "kalten" Seite ein Wirkungsgrad von (1000 - 400) : 1000 = 60 % möglich. Bis heute werden jedoch nur Wirkungsgrade bis 10 % erzielt.
Legt man andererseits einen Gleichstrom an eine derartige Anordnung an, so wird Wärme von einer Seite zur anderen Seite transportiert. Eine derartige Peltier- Anordnung arbeitet als Wärmepumpe und eignet sich deshalb zur Kühlung von Apparateteilen, Fahrzeugen oder Gebäuden. Auch die Heizung über das Peltier-Prinzip ist günstiger als eine herkömmliche Heizung, weil immer mehr Wärme transportiert wird als dem zugeführten Energieäquivalent entspricht.
Gegenwärtig werden thermoelektrische Generatoren beispielsweise in Modulen zur Temperierung von Mikroprozessoren oder optoelektronischen Bauteilen, in Raumsonden zur Erzeugung von Gleichströmen, für den kathodischen Korrosionsschutz von Pipelines, zur Energieversorgung von Leucht- und Funkbojen und zum Betrieb von Radios und Fernsehapparaten eingesetzt. Die Vorteile der thermoelektrischen Generatoren liegen in ihrer äußersten Zuverlässigkeit. So arbeiten sie unabhängig von atmosphärischen Bedingungen wie Luftfeuchte; es erfolgt kein störungsanfälliger Stofftransport, sondern nur ein Ladungstransport; der Betriebsstoff wird kontinuierlich - auch katalytisch ohne freie Flamme - verbrannt; es sind beliebige Betriebsstoffe einsetzbar von Wasserstoff über Erdgas, Benzin, Kerosin, Dieselkraftstoff bis zu biologisch erzeugten Kraftstoffen wie Rapsölmethylester. Damit passt sich die thermoelektrische Energiewandlung äußerst flexibel in künftige Bedürfnisse wie Wasserstoffwirtschaft oder Energieerzeugung aus regenerativen Energien ein.
Thermoelektrisch aktive Materialien werden im Wesentlichen anhand ihres Wirkungsgrades bewertet. Kennzeichnend für thermoelektrische Materialien ist diesbezüglich der so genannte Z-Faktor (figure of merit):
z z - s2 K-σ
mit dem Seebeck-Koeffizienten S, der elektrischen Leitfähigkeit σ und der Wärmeleitfähigkeit K. Bevorzugt sind thermoelektrische Materialien, die eine möglichst geringe Wärmeleitfähigkeit, eine möglichst große elektrische Leitfähigkeit und einen möglichst großen Seebeck-Koeffizienten aufweisen, so dass der figure of merit einen möglichst hohen Wert annimmt.
Zu Vergleichszwecken wird darüber hinaus oftmals das dimensionslose Produkt Z T angegeben. Bisher bekannte thermoelektrische Materialien weisen maximale Werte von Z T von ungefähr 1 bei einer optimalen Temperatur auf. Jenseits dieser optimalen Temperatur sind die Werte von Z • T oft niedriger als 1. Den optimalen Stand der Technik verkörpern zurzeit Materialien wie Bi2Te3, PbTe sowie Antimonide ZnSb3 und CoSb3.
Eine genauere Analyse ergibt, dass der Wirkungsgrad η sich ergibt aus
^ hoch ~ * niedrig M ~ \ η =
T h1och niedrig
M +
1 hoch
mit
M = ^- ~"~ ~ \ hoch """ "* niedrig )
(siehe auch Mat. Sei. and Eng. B29 (1995) 228). Das Ziel ist damit, ein thermoelektrisch aktives Material bereitzustellen, welches einen möglichst hohen Wert für Z und eine hohe realisierbare Temperaturdifferenz aufweist. Aus der Sicht der Festkörperphysik sind hierbei viele Probleme zu bewältigen:
Ein hohes σ bedingt eine hohe Elektronenbeweglichkeit im Material, d.h. Elektronen (oder Löcher bei p-leitenden Materialien) dürfen nicht stark an die Atomrümpfe gebunden sein. Materialien mit hoher elektrischer Leitfähigkeit σ weisen meist gleichzeitig eine hohe Wärmeleitfähigkeit auf (Wiedemann - Franzsches Gesetz), wodurch Z nicht günstig beeinflusst werden kann. Gegenwärtig eingesetzte Materialien wie Bi2Te3, PbTe oder SiGe stellen schon Kompromisse dar. So wird die elektrische Leitfähigkeit durch Legieren weniger herabgesetzt als die Wärmeleitfähigkeit. Deshalb setzt man vorzugsweise Legierungen ein wie z.B. (Bi2Te3)9o(Sb2Te3)5(Sb2Se3)5 oder Bi12Sb23Te6S, wie sie in der US 5,448,109 beschrieben sind.
Germanium-Blei-Telluride für thermoelektrische Generatoren und Peltier-Anordnungen sind beispielsweise in der DE-A-10 2004 043 787 beschrieben.
Im Vordergrund der bereits bestehenden Anwendungen steht das Bismuttellurid, weil es von sich aus bereits eine niedrige Wärmeleitfähigkeit aufweist. Typische n-leitende Bismuttellurid-Materialien weisen Zusammensetzungen entsprechend Bi2Seo,sTe2,5 auf, und p-leitende Typen solche wie Bio,7Sbi,3Te3.
Für thermoelektrische Materialien mit hohem Wirkungsgrad sind vorzugsweise noch weitere Randbedingungen zu erfüllen. Vor allem müssen sie temperaturstabil sein, um bei Arbeitstemperaturen von bis zu 1.000 K oder 1.500 K über Jahre ohne wesentlichen Wirkungsgradverlust arbeiten zu können. Dies bedingt eine hochtemperaturstabi- Ie Phase an sich, eine stabile Phasenzusammensetzung und eine zu vernachlässigende Diffusion von Legierungsbestandteilen in die anliegenden Kontaktmaterialien.
Ausgehend von diesem Stand der Technik ist es die Aufgabe der vorliegenden Erfindung, Halbleitermaterialien (thermoelektrisch aktive Materialien), die einen hohen Wirkungsgrad aufweisen und für unterschiedliche Anwendungsbereiche ein geeignetes Eigenschaftsprofil zeigen, bereitzustellen.
Bevorzugtes Ziel der Erfindung ist es, auf der Basis von Bi2Te3 ein thermoelektrisch aktives Material mit besseren ZT-Werten als nach dem Stand der Technik bereitzustellen. Die Aufgabe wird erfindungsgemäß gelöst durch ein p- oder n-leitendes Halbleitermaterial, enthaltend ein mit Ge, Co, Fe und/oder Ni dotiertes Bismuttellurid der allgemeinen Formel (I) oder (II)
Bi2-χDopuSeyTez (I)
mit der Bedeutung
Dop = Ge, Co, Fe, Ni oder Gemische davon
u, x = unabhängig voneinander 0,001 bis 0,06
y = 0,01 bis 1 ,0
y + z = 3,00 bis 3,2
Bi2-χSbyDopuSezTev (II)
mit der Bedeutung
Dop = Ge, Co, Fe, Ni oder Gemische davon
u, x = unabhängig voneinander 0,001 bis 0,4
y = 0 bis 1
z = 0 bis 1
z + v = 3,00 bis 3,3
Es wurde erfindungsgemäß gefunden, dass mit Ge, Co, Se, Ni oder Gemischen davon und mit Se dotierte Bismuttelluride der Formel (I) vorteilhafte n-dotierte Halbleitermaterialien sind, die ein verbessertes Eigenschaftsprofil als thermoelektisch aktive Materialien aufweisen. Es wurde ebenfalls gefunden, dass mit Ge, Co, Fe, Ni oder Gemischen davon und gegebenenfalls Sb und/oder Se dotierte Bismuttelluride der Formel (II) vor- teilhafte p-dotierte Halbleitermaterialien ergeben, die ein verbessertes Eigenschaftsprofil für thermoelektrisch aktive Materialien zeigen.
Für die Formeln (I) und (II) haben die angegebenen Reste bzw. Indizes die nach der jeweiligen Formel angegeben Bedeutungen. Dies bedeutet, dass die Indizes für die Verbindungen der Formel (I) und (II) unterschiedliche Bedeutungen haben können. Besonders bevorzugte Halbleitermaterialien sind dadurch gekennzeichnet, dass im dotierten Bismuttellurid der allgemeinen Formel (I)
u, x unabhängig voneinander 0,01 bis 0,03,
y 0,1 bis 0,7 und
y + z 3,01 bis 3,1 bedeuten.
Besonders bevorzugte Halbleitermaterialien der Formel (II) sind dadurch gekennzeichnet, dass im dotierten Bismuttellurid der allgemeinen Formel (II)
u, x unabhängig voneinander 0,005 bis 0,25 bedeuten.
Dabei können erfindungsgemäß einzelne der bevorzugten Bereiche mit den allgemeinen Bereichen der vorstehend angegebenen Formeln (I) und (II) kombiniert werden. Dies bedeutet, dass erfindungsgemäß auch einzelne der bevorzugten Bereiche verwirklicht werden können, während die anderen Bereiche im allgemein definierten Be- reich verbleiben.
Dop bedeutet Ge, Co, Fe, Ni oder Gemische davon. Vorzugsweise bedeutet Dop jeweils nur eines dieser Metalle in einer Verbindung der allgemeinen Formel (I) oder (II). Besonders bevorzugt sind Elementkombinationen, wie sie in den nachstehenden Bei- spielen angegeben sind. Dabei können die Mengenverhältnisse entsprechend der vorstehenden Grenzen oder bevorzugten Grenzen frei gewählt werden.
Ferner ist zu beachten, dass die Summe aus Bi und Dop nicht notwendigerweise 2 ergeben muss. Entsprechend muss die Summe aus y und z in Formel (I) bzw. die Summe von y, z und v in der Formel (II) nicht notwendigerweise den Wert 3 ergeben.
Die erfindungsgemäßen Materialien werden im Allgemeinen durch Zusammenschmelzen von Mischungen der jeweiligen Elementbestandteile oder deren Verbindungen/Legierungen hergestellt. Dabei hat sich im Allgemeinen eine Reaktionszeit des Zusammenschmelzens von mindestens einer Stunde als vorteilhaft herausgestellt.
Das Zusammenschmelzen erfolgt vorzugsweise während einem Zeitraum von mindestens 1 Stunde, besonders bevorzugt mindestens 5 Stunden, insbesondere mindestens 10 Stunden. Der Schmelzprozess kann mit oder ohne Vermischung der Ausgangsmi- schung erfolgen. Wenn die Ausgangsmischung vermischt wird, so eignet sich hierfür insbesondere ein Drehofen, um die Homogenität der Mischung zu gewährleisten. Falls keine Mischung vorgenommen wird, so sind im Allgemeinen längere Schmelzzeiten von 2 bis 100 Stunden, insbesondere 30 bis 100 Stunden, erforderlich, um ein homogenes Material zu erhalten. Falls eine Mischung vorgenommen wird, so wird die Ho- mogenität in der Mischung bereits früher erhalten.
Das Zusammenschmelzen erfolgt im Allgemeinen bei einer Temperatur, bei der mindestens ein Bestandteil der Mischung bereits geschmolzen ist und sich das Material bereits im geschmolzenen Zustand befindet. Im Allgemeinen beträgt die Schmelztem- peratur mindestens 700 0C, vorzugsweise mindestens 1000 0C. Üblicherweise liegt die Schmelztemperatur in einem Temperaturbereich von 700 bis 1.500 0C, vorzugsweise 1000 bis 1.300 0C. Damit wird gewährleistet, dass die Dopanden homogen verteilt werden.
Die Herstellung der erfindungsgemäßen thermoelektrischen Materialien erfolgt im Allgemeinen in einem heizbaren Quarzrohr. Eine Vermischung der beteiligten Komponenten kann durch Verwendung eines dreh- und/oder kippbaren Ofens gewährleistet werden. Nach Vervollständigung der Umsetzung wird der Ofen abgekühlt. Im Anschluss wird das Quarzrohr aus dem Ofen entnommen und das z. B. in Form von Blöcken vor- liegende Halbleitermaterial in Scheiben geschnitten. Diese Scheiben werden z. B. nunmehr in Stücke von ungefähr 1 bis 5 mm Länge geschnitten, woraus thermoelektrischen Module erzeugt werden können.
Anstelle eines Quarzrohres können auch Rohre aus anderen Materialien, beispielswei- se aus Tantal, verwendet werden. Dieses ist bevorzugt, da die thermische Leitfähigkeit dieses Materials höher ist als diejenige von Quarz.
Anstelle von Rohren können auch andere Behälter geeigneter Form verwendet werden. Auch andere Materialien, beispielsweise Graphit, können als Behältermaterial verwendet werden.
Es ist auch möglich, die Schmelze abzuschrecken, indem man das Quarzrohr mit der Schmelze in eine Flüssigkeit wie Wasser oder Öl ablässt. Höhere Abschreckgeschwindigkeiten erhält man, indem man die Schmelze direkt unter einer Schutzgasatmosphä- re (N2, Ar) in die Abschreckflüssigkeit laufen lässt. Hierbei darf Wasser nicht verwendet werden, da es nicht inert genug ist. Bevorzugt wird ein Paraffinöl eingesetzt.
Mit dem Abschrecken der Schmelze erhält man den Vorteil, dass sich das Material während des Abkühlens bezüglich der Dotierstoffe nicht entmischen kann, sofern beim Abkühlprozess ein mehrphasiges Phasengebiet durchlaufen wird. Man erhält ein ho- mogenes Material, das anschließend noch einer Temperaturbehandlung von vorzugsweise bis zu 100 0C unterhalb des Schmelzpunktes unterworfen werden kann.
In einer Ausführungsform der vorliegenden Erfindung kann das abgekühlte Material bei geeigneter Temperatur gemahlen werden, so dass das erfindungsgemäße Halbleitermaterial in üblichen Partikelgrößen kleiner als 50 μm erhalten wird. Das gemahlene erfindungsgemäße Material wird dann vorzugsweise zu Formteilen verpresst, welche die gewünschte Form haben. Die Rohdichte der dergestalt gepressten Formteile sollte vorzugsweise größer als 50 %, besonders bevorzugt größer als 80 % der Rohdichte des Rohmaterials im ungepressten und vorzugsweise ungemahlenen Zustand sein. Verbindungen, welche die Verdichtung des erfindungsgemäßen Materials verbessern, können in Mengen von vorzugsweise 0,1 bis 5 Vol.-%, besonders bevorzugt 0,2 bis 2 Vol.-%, jeweils bezogen auf das gepulverte erfindungsgemäße Material, hinzu gegeben werden. Additive, welche zu den erfindungsgemäßen Materialien zugegeben wer- den, sollten vorzugsweise inert gegenüber dem Halbleitermaterial sein und vorzugsweise während des Erwärmens auf Temperaturen unterhalb der Sintertemperatur der erfindungsgemäßen Materialien, gegebenenfalls unter inerten Bedingungen und/oder Vakuum, sich aus dem erfindungsgemäßen Material herauslösen. Nach dem Pressen werden die gepressten Teile vorzugsweise in einen Sinterofen gegeben, in dem sie auf eine Temperatur von vorzugsweise maximal 100 0C unterhalb des Schmelzpunktes erwärmt werden.
Die gepressten Teile werden bei einer Temperatur von im Allgemeinen mindestens 100 0C, vorzugsweise mindestens 200 0C, niedriger als der Schmelzpunkt des resultieren- den Halbleitermaterials gesintert. Üblicherweise beträgt die Sintertemperatur 200 bis 500 0C, vorzugsweise 300 bis 450 0C.
Das Sintern wird während einem Zeitraum von vorzugsweise mindestens 0,5 Stunden, besonders bevorzugt mindestens 1 Stunde, insbesondere mindestens 2 Stunden, durchgeführt. Üblichweise beträgt die Glühzeit 0,5 bis 5 Stunden, vorzugsweise 1 bis 3 Stunden. In einer Ausführungsform der vorliegenden Erfindung wird das Sintern bei einer Temperatur durchgeführt, welche 100 bis 300 0C niedriger ist als die Schmelztemperatur des resultierenden Halbleitermaterials. Ein bevorzugter Temperaturbereich ist 150 bis 250 0C niedriger als der Schmelzpunkt des resultierenden Halbleiterma- terials. Bevorzugt wird das Sintern unter Wasserstoff oder einer Schutzgasatmosphäre, beispielsweise aus Argon, durchgeführt.
Man kann im Heißpressverfahren das Pressen auch unter den angegebenen Sintertemperaturen und gleichzeitiger Druckbeaufschlagung durchführen und erhält dabei generell höhere Dichten als beim Kaltpressen und nachfolgendem drucklosen Sintern. Somit werden die gepressten Teile vorzugsweise auf 95 bis 100 % ihrer theoretischen Bulkdichte gesintert.
Insgesamt ergibt sich damit als bevorzugte Ausführungsform des vorliegenden erfin- dungsgemäßen Verfahrens ein Verfahren, welches durch die folgenden Verfahrensschritte gekennzeichnet ist:
(1 ) Zusammenschmelzen von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen des dotierten Bismuttellurids; bzw. zu einem mit Ge, Co, Fe und/oder Ni dotierten Bismuttellurid
(2) Mahlen des in Verfahrensschritt (1 ) erhaltenen Materials;
(3) Pressen des in Verfahrensschritt (2) erhaltenen Materials zu Formkörpern und
(4) Sintern der in Verfahrensschritt (3) erhaltenen Formkörper.
Es ist auch möglich, die erfindungsgemäßen gemahlenen Materialien 50 bis 300 0C unterhalb ihres Schmelzpunktes in einem Fließpressverfahren kontinuierlich zu stan- genförmigen Profilen zu extrudieren. Diese Art der Verarbeitung führt zu Extrudaten mit besonders geringem Porenanteil und damit besonders hoher Leitfähigkeit.
Die erfindungsgemäßen Materialien eignen sich in hervorragender Weise für Anwendungen in der Thermoelektrik als aktive Halbleiter in thermoelektrischen Modulen. Besonders vorteilhaft ist ihr Einsatz in Modulen für Peltier-Anordnungen in Wäschetrocknern, Klimaanlagen oder zur Kühlung von Sitzen, sowie in elektronischen Geräten (wie CPU-Kühlern) oder mobilen Kühlgeräten.
In thermoelektrischen Produkten werden p- und n-leitende Materialien elektrisch in Serie geschaltet, um thermische Verluste zu vermeiden.
Die vorliegende Erfindung betrifft darüber hinaus auch ein p- oder n-leitendes Halbleitermaterial aus einer Verbindung der allgemeinen Formel (I) oder (II), welches gemäß dem zuvor beschriebenen Verfahren hergestellt wird.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des zuvor be- schriebenen Halbleitermaterials und des nach dem zuvor beschriebenen Verfahren erhältlichen Halbleitermaterials als thermoelektrischer Generator oder Peltier- Anordnung. Weiterer Gegenstand der vorliegenden Erfindung sind thermoelektrische Generatoren oder Peltier-Anordnungen, welche das zuvor beschriebene Halbleitermaterial und/oder das nach dem zuvor beschriebenen Verfahren erhältliche Halbleitermaterial enthalten.
Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung thermoelektrischer Generatoren oder Peltier-Anordnungen, bei denen elektrisch in Reihe geschaltete thermoelektrisch aktive Bausteine („legs") mit dünnen Schichten der zuvor beschriebenen thermoelektrischen Materialien verwendet werden.
In einer ersten Ausführungsform dieses Verfahrens erfolgt die Herstellung der thermoelektrischen Generatoren oder Peltier-Anordnungen wie folgt:
Die erfindungsgemäßen Halbleiter gemäß einem ersten Leitungstyp (p- oder n-dotiert) werden mittels herkömmlicher Halbleiter-Fertigungstechniken, insbesondere CVD, Sputter-Technik oder Molekularstrahlepitaxie, auf einem Substrat aufgetragen.
Auf einem weiteren Substrat werden ebenfalls mittels Sputter-Technik oder Molekularstrahlepitaxie ebenfalls die erfindungsgemäßen Halbleiter aufgetragen, wobei jedoch der Leitungstyp dieses Halbleitermaterials invers zu dem zuerst verwendeten Halblei- termaterial ist (n- oder p-dotiert).
Die beiden Substrate werden nunmehr sandwichartig aufeinander angeordnet, so dass thermoelektrisch aktive Bausteine („legs") aus jeweils einem unterschiedlichen Ladungstyp alternierend angeordnet sind.
Die einzelnen thermoelektrisch aktiven Bausteine („legs") haben dabei einen Durchmesser von vorzugsweise kleiner 100 μm, besonders bevorzugt kleiner 50 μm, insbesondere kleiner 20 μm und eine Dicke von vorzugsweise 5 bis 100 μm, besonders bevorzugt 10 bis 50 μm, insbesondere 15 bis 30 μm. Die eingenommene Fläche eines thermoelektrisch aktiven Bausteins ist vorzugsweise kleiner als 1 mm2, besonders bevorzugt kleiner als 0,5 mm2, insbesondere kleiner als 0,4 mm2.
In einer zweiten Ausführungsform erfolgt die Herstellung der thermoelektrischen Generatoren oder Peltier-Anordnungen derart, dass durch geeignete Abscheidemethoden, beispielsweise Molekularstrahlepitaxie, alternierend Schichten von erfindungsgemäßen Halbleitermaterialien unterschiedlichen Ladungstyps (p- und n-dotiert) auf einem Substrat erzeugt werden. Die Schichtdicke beträgt dabei jeweils vorzugsweise 5 bis 100 μm, besonders bevorzugt 5 bis 50 μm, insbesondere 5 bis 20 μm. Die erfindungsgemäßen Halbleitermaterialien können auch nach Methoden zu thermo- elektrischen Generatoren oder Peltier-Anordnungen zusammengefügt werden, welche dem Fachmann an sich bekannt sind und beispielsweise in WO 98/44562, US 5,448,109, EP-A- 1 102 334 oder US 5,439,528 beschrieben sind.
Die erfindungsgemäßen thermoelektrischen Generatoren oder Peltier-Anordnungen erweitern im Allgemeinen die vorhandene Bandbreite an thermoelektrischen Generatoren und Peltier-Anordnungen. Durch Variation der chemischen Zusammensetzung der thermoelektrischen Generatoren oder Peltier-Anordnungen ist es möglich, unterschied- liehe Systeme bereitzustellen, welche unterschiedlichen Anforderungen in einer Vielzahl an Anwendungsmöglichkeiten gerecht werden. Damit erweitern die erfindungsgemäßen thermoelektrischen Generatoren oder Peltier-Anordnungen das Anwendungsspektrum dieser Systeme.
Die vorliegende Erfindung betrifft auch die Verwendung eines erfindungsgemäßen thermoelektrischen Generators oder einer erfindungsgemäßen Peltier-Anordnung in einem Wäschetrockner.
Des Weiteren betrifft die vorliegende Erfindung einen Trockner, enthaltend mindestens einen erfindungsgemäßen thermoelektrischen Generator oder eine erfindungsgemäße Peltier-Anordnung, über den oder die ein zu trocknendes Material direkt oder indirekt aufgeheizt und über den oder die der bei der Trocknung anfallende Wasser- oder Lösungsmitteldampf direkt oder indirekt abgekühlt wird.
In einer bevorzugten Ausführungsform ist der Trockner ein Wäschetrockner und das zu trocknende Material ist Wäsche.
Die vorliegende Erfindung wird anhand der nachfolgend beschriebenen Beispiele näher erläutert.
Beispiele
Zur Herstellung der in der folgenden Tabelle angegebenen Materialien wurden die Komponenten im angegebenen, molaren Verhältnis in Quarzröhrchen mit 10 mm In- nendurchmesser gefüllt. Dabei betrug die Gesamtmasse 5 - 9 g. Anschließend wurden die Quarzröhrchen 5 min. auf ca. 100 0C im Vakuum erhitzt und sodann im Vakuum abgeschmolzen. Die Elemente wurden als körniges Granulat mit einer Reinheit von 99,995 % eingesetzt. In einem Rohrofen wurden die Quarzröhrchen innerhalb von 5 h von Raumtemperatur auf Temperaturen von 1.000 0C erhitzt. Diese Temperatur wurde noch 7 h gehalten. Während der gesamten Heizzeit wurde der Ofen mit einer Periode von ca. 2 min über einen Antrieb um die Längsachse gekippt, um eine gute Durchmischung der Schmelze zu erreichen.
Die gefundenen Seebeck-Koeffizienten im Temperaturbereich von 30 bis 130 0C sowie die mittlere elektrische Leitfähigkeit in diesem Temperaturbereich sind in der nachstehenden Tabelle angegeben.
Die erfindungsgemäßen Materialien wurden mit Bismuttelluriden nach dem Stand der Technik verglichen. Dazu wurden Probekörper einer Temperaturdifferenz von 100 K
(kalte Seite 30 0C, heiße Seite 130 0C) ausgesetzt. Die hochohmige Spannung ergibt durch 100 K dividiert einen mittleren Seebeck-Koeffizienten über die angelegte Tempe- raturdifferenz. Schließlich wurde sehr niederohmig der Kurzschlussstrom gemessen.
Das Produkt aus Leerlaufspannung und Kurzschlussstrom entspricht einem „Powerfaktor". Die Bismuttelluride nach dem Stand der Technik weisen anisotrope Eigenschaften auf, als Standard wurde die beste Eigenschaftskombination aus Leerlaufspannung und Kurzschlussstrom gewählt. Man fördert die Anisotropie durch Abkühlen der Schmelze in einem Temperaturgradienten. Darauf wurde bei den erfindungsgemäßen Materialien jedoch verzichtet. Man misst stattdessen den isotropen Eigenschaftsdurchschnitt, was bedeutet, dass mit dem gleichen relativen „Powerfaktor" das erfindungsgemäße Material besser ist.
Ein weiterer Vorteil des „isotropen" erfindungsgemäßen Materials besteht darin, dass es mechanisch wesentlich stabiler ist als das bekannte anisotrope, bruchanfällige Material.
Tabelle
Figure imgf000013_0001

Claims

Patentansprüche
1. p- oder n-leitendes Halbleitermaterial, enthaltend ein mit Ge, Co, Fe und/oder Ni dotiertes Bismuttellurid der allgemeinen Formel (I) oder (II)
Bi2-χDopuSeyTez (I)
mit der Bedeutung
Dop = Ge, Co, Fe, Ni oder Gemische davon
u, x = unabhängig voneinander 0,001 bis 0,06
y 0,01 bis 1 ,0
y + z = 3,00 bis 3,2
Bi2-χSbyDopuSezTev (II)
mit der Bedeutung
Dop = Ge, Co, Fe, Ni oder Gemische davon
u, x = unabhängig voneinander 0,001 bis 0,4
y = 0 bis 1
z = 0 bis 1
z + v = 3,00 bis 3,3.
2. Halbleitermaterial gemäß Anspruch 1 , dadurch gekennzeichnet, dass im dotierten Bismuttellurid der allgemeinen Formel (I)
u, x unabhängig voneinander 0,01 bis 0,03,
y 0,1 bis 0,7 und
y + z 3,01 bis 3,1 bedeuten.
B06/0655EP final 5. September 2006
3. Halbleitermaterial gemäß Anspruch 1 , dadurch gekennzeichnet, dass im dotierten Bismuttellurid der allgemeinen Formel (II)
u, x unabhängig voneinander 0,005 bis 0,25 bedeuten.
4. Verfahren zur Herstellung eines Halbleitermaterials gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein mit Ge, Co, Fe und/oder Ni dotiertes Bismuttellurid durch Zusammenschmelzen von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen hergestellt wird.
5. Verfahren nach Anspruch 4, gekennzeichnet durch die folgenden Verfahrensschritte:
(1 ) Zusammenschmelzen von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen zu einem mit Ge, Co, Fe und/oder Ni dotierten Bismuttellurid;
(2) Mahlen des in Verfahrensschritt (1 ) erhaltenen Materials;
(3) Pressen des in Verfahrensschritt (2) erhaltenen Materials zu Formkörpern und
(4) Sintern der in Verfahrensschritt (3) erhaltenen Formkörper.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass in Verfahrensschritt (3) das Pressen zu Formkörpern kalt erfolgt.
7. Halbleitermaterial, erhältlich nach einem Verfahren gemäß einem der Ansprüche 4 bis 6.
8. Verwendung eines Halbleitermaterials gemäß einem der Ansprüche 1 bis 3 oder 7 als thermoelektrischer Generator oder Peltier-Anordnung.
9. Thermoelektrischer Generator oder Peltier-Anordnung, enthaltend ein Halbleitermaterial gemäß einem der Ansprüche 1 bis 3 oder 7.
10. Trockner, enthaltend mindestens einen thermoelektrischen Generator oder eine Peltier-Anordnung gemäß Anspruch 9, über den oder die ein zu trocknendes Ma- terial direkt oder indirekt aufgeheizt und über den oder die der bei der Trocknung anfallende Wasser- oder Lösungsmitteldampf direkt oder indirekt abgekühlt wird.
PCT/EP2007/059007 2006-09-05 2007-08-29 Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen WO2008028852A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06120106 2006-09-05
EP06120106.7 2006-09-05

Publications (2)

Publication Number Publication Date
WO2008028852A2 true WO2008028852A2 (de) 2008-03-13
WO2008028852A3 WO2008028852A3 (de) 2008-11-27

Family

ID=38694810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/059007 WO2008028852A2 (de) 2006-09-05 2007-08-29 Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen

Country Status (2)

Country Link
TW (1) TW200822404A (de)
WO (1) WO2008028852A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946323B (zh) * 2008-08-29 2013-08-21 Lg化学株式会社 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
US20220102607A1 (en) * 2019-01-18 2022-03-31 Lg Electronics Inc. Thermoelectric material and preparation method therefor
CN115368136A (zh) * 2022-08-26 2022-11-22 武汉理工大学 一种适用于批量化制备多晶Bi2Te3基块体热电材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726381A (en) * 1994-10-11 1998-03-10 Yamaha Corporation Amorphous thermoelectric alloys and thermoelectric couple using same
JP2004235278A (ja) * 2003-01-28 2004-08-19 Yamaha Corp 熱電材料及びその製造方法
WO2005114756A2 (de) * 2004-05-18 2005-12-01 Basf Aktiengesellschaft Antimonide mit neuen eigenschaftskombinationen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726381A (en) * 1994-10-11 1998-03-10 Yamaha Corporation Amorphous thermoelectric alloys and thermoelectric couple using same
JP2004235278A (ja) * 2003-01-28 2004-08-19 Yamaha Corp 熱電材料及びその製造方法
WO2005114756A2 (de) * 2004-05-18 2005-12-01 Basf Aktiengesellschaft Antimonide mit neuen eigenschaftskombinationen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ALIDZHANOV, M. A. ET AL: "Preparation and physicomechanical properties of alloys based on the compound Bi2Te3" XP002495654 gefunden im STN Database accession no. 145:114491 & MARUZALAR - AZARBAYCAN MILLI ELMLAR AKADEMIYASI , 60(3-4), 93-96 CODEN: MAMEC4, 2004, *
DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SVECHNIKOVA, T.E. ET AL: "Thermoelectric properties of doped single crystal solid solutions based on bismuth telluride" XP002495653 gefunden im STN Database accession no. 127:116144 & PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THERMOELECTRICS , 14TH, 10-12 CODEN: PICTEM; ISSN: 1078-9642, 1995, *
DATABASE INSPEC [Online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; 1992, AGZAMOVA M K ET AL: "Thermoelectric properties of sintered powders of bismuth and antimony tellurides with additions of iron" XP002495656 Database accession no. 4388235 & Applied Solar Energy USA, Bd. 28, Nr. 3, 1993, Seiten 10-11, ISSN: 0003-701X *
DATABASE INSPEC [Online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; 1993, AGZAMOVA M KH ET AL: "Investigations of thermal electromotive forces for moulded powders of bismuth and antimony tellurides with admixtures of ferrum and boron" XP002495655 Database accession no. 4608311 & Applied Solar Energy USA, Bd. 29, Nr. 3, 1993, Seiten 88-90, ISSN: 0003-701X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946323B (zh) * 2008-08-29 2013-08-21 Lg化学株式会社 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
US20220102607A1 (en) * 2019-01-18 2022-03-31 Lg Electronics Inc. Thermoelectric material and preparation method therefor
CN115368136A (zh) * 2022-08-26 2022-11-22 武汉理工大学 一种适用于批量化制备多晶Bi2Te3基块体热电材料的方法
CN115368136B (zh) * 2022-08-26 2023-07-14 武汉理工大学 一种适用于批量化制备多晶Bi2Te3基块体热电材料的方法

Also Published As

Publication number Publication date
TW200822404A (en) 2008-05-16
WO2008028852A3 (de) 2008-11-27

Similar Documents

Publication Publication Date Title
EP2227834B1 (de) Extrusionsverfahren zur herstellung verbesserter thermoelektrischer materialien
WO2007104601A2 (de) Dotierte bleitelluride fuer thermoelektrische anwendungen
DE102007014499A1 (de) Mit Zinn-Antimon-Telluriden dotierte Pb-Te-Verbindungen für thermoelektrische Generatoren oder Peltier-Anordnungen
EP2411324A2 (de) Selbstorganisierende thermoelektrische materialien
EP1102334B1 (de) Thermoelektrisch aktive Materialien und diese enthaltende Generatoren
EP2308109B1 (de) Thermoelektrische materialien und chalcogenidverbindungen
WO2009098248A2 (de) Dotierte zinntelluride fuer thermoelektrische anwendungen
EP2460195B1 (de) Verfahren zur herstellung thermoelektrischer halbleitermaterialien und schenkel
EP2427589B1 (de) Verfahren zur herstellung von thermoelektrischen schichten
DE112012003038T5 (de) Thermoelektrisches Stapel-Wandlermodul
DE102011085828A1 (de) THERMOELEKTRISCHES MATERIAL AUS EINER VERBINDUNG AUF Mg2Si-BASIS UND HERSTELLUNGSVERFAHREN DAFÜR
DE10142634A1 (de) Thermoelektrisch aktive Materialien und diese enthaltende Generatoren und Peltier-Anordnungen
WO2008028852A2 (de) Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
WO2006089938A1 (de) Halbleitende bismutsulfide mit neuen eigenschaftskombinationen und deren verwendung in der thermoelektrik und photovoltaik
WO2007104603A2 (de) Blei-germanium-telluride fuer thermoelektrische anwendungen
DE112019006220T5 (de) Herstellungsverfahren für thermoelektrisches material
WO2005114755A2 (de) Telluride mit neuen eigenschaftskombinationen
DE102018117553B4 (de) Legierung, gesinterter Gegenstand, thermoelektrisches Modul und Verfahren zum Herstellen eines gesinterten Gegenstands
WO2005114756A2 (de) Antimonide mit neuen eigenschaftskombinationen
EP1289026A2 (de) Thermoelektrisch aktive Materialien und diese enthaltende Generatoren und Peltier-Anordnungen
EP1754266B1 (de) NEUE TERNÄRE HALBLEITENDE LEGIERUNGEN MIT BANDLÜCKEN KLEINER ALS 0,8 eV
WO2006089936A1 (de) Halbleitende kupfersulfide mit neuen eigenschaftskombinationen und deren verwendung in der thermoelektrik und photovoltaik
WO2006027232A2 (de) Pb-ge-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
DE4129867C2 (de) Thermoelektrischer Generator auf Halbleiterbasis und Verfahren zur Herstellung eines solchen Generators
DE102004043786A1 (de) Thermoelektrisch aktive Mischoxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803022

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07803022

Country of ref document: EP

Kind code of ref document: A2