CN101194051A - 用于提炼熔融材料的方法及装置 - Google Patents

用于提炼熔融材料的方法及装置 Download PDF

Info

Publication number
CN101194051A
CN101194051A CNA2006800207320A CN200680020732A CN101194051A CN 101194051 A CN101194051 A CN 101194051A CN A2006800207320 A CNA2006800207320 A CN A2006800207320A CN 200680020732 A CN200680020732 A CN 200680020732A CN 101194051 A CN101194051 A CN 101194051A
Authority
CN
China
Prior art keywords
silicon
container
layer
plate
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800207320A
Other languages
English (en)
Inventor
K·弗里斯塔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REC Solar AS
Original Assignee
Elkem Solar AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Solar AS filed Critical Elkem Solar AS
Priority to CN201510342796.3A priority Critical patent/CN105088330A/zh
Publication of CN101194051A publication Critical patent/CN101194051A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1036Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1036Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die]
    • Y10T117/1044Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die] including means forming a flat shape [e.g., ribbon]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1072Seed pulling including details of means providing product movement [e.g., shaft guides, servo means]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/108Including a solid member other than seed or product contacting the liquid [e.g., crucible, immersed heating element]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/1088Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone including heating or cooling details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供一种用于使硅或其它材料定向固化的方法。使冷却板(19)下降入硅熔体(18)中并使固体硅锭(29)向下固化。

Description

用于提炼熔融材料的方法及装置
发明领域
本发明涉及对可熔融及固化的材料进行提炼或纯化。其特别适用于(但并非仅适用于)对金属、尤其是对硅进行纯化,例如对用于制造太阳能电池的硅原料进行提炼。
背景技术
定向固化在光电(PV)行业中广泛用于制造铸锭,这些铸锭被切割成晶片并随后加工成太阳能电池。在现有技术中占主导地位的***是在石英坩锅中使硅由底部至顶部进行定向固化。
可使用同一原理对硅进行提炼,以制成PV行业所用的原料。此时可使用定向固化、通过偏析而控制杂质,既可调节不同元素(Al,Ca,Fe,Ti,Mn,B,P等)的绝对浓度(level),也可调节其相对浓度。此外,该工艺须将在该工艺中所形成的微粒及来自进料硅的微粒考虑在内。
现有方法的缺点在于,石英坩锅只能使用一次,这是因为其会在硅锭(及坩锅)冷却过程中因坩锅材料的相变而遭到破坏。此外,为避免硅粘附于坩锅上,石英坩锅需要具有防粘层,例如一层Si3N4
本发明的一目的是提供一种能减轻对铸锭的污染的改良的固化工艺。
本发明的另一目的是提供一种无需在各铸锭的铸造之间更换熔融材料容器便可对例如硅等熔融材料进行提炼的***。
发明描述
根据本发明的一个方面,提供一种对材料进行提炼的方法,其包含下列步骤:在容器中形成所述材料的熔体;使冷却面接触所述熔体的表面,从而使所述熔融材料固化并粘附至所述冷却面上;以及,逐渐地向下固化所述熔融材料,以形成粘附至所述冷却面上的所述材料的固体锭。
尽管是将本发明界定为一种提炼方法,然而也可将本发明视为一种定向固化方法。
因此,本发明提供一种流水线式生产工艺,在该生产工艺中,对熔炉容器进行加热并进行铸锭,但在所述容器内不存在锭接触,因而可在将锭移出之后对所述容器进行重新填料。在各次铸锭之间,不需要对所述容器进行冷却。
较佳地,对所述容器的壁及底部进行加热。较佳地,使熔体保持处于惰性气体或受控气氛中。所述方法特别适用于对例如硅等金属进行提炼及纯化。
所述方法的优点是,在形成铸锭时,铸锭中的杂质浓度相对于熔体其余部分降低。然后,从所述容器或坩锅中移出铸锭并倾倒掉或重新处理具有高杂质含量的其余液体。所述容器不必得到破坏并可重新利用。成核位置从坩锅简化至一个板或并排设置的几个板的表面。这一个板或并排设置的这几个板是由呈分层结构的几个板组成。所述冷却表面可以不连续形成,以帮助确保粘附铸锭。
因此,通过采用本发明,使提炼工艺在几个方面得到优化。
使用偏析来提炼及控制金属杂质。这些杂质将从固体与液体硅之间的界面推移至液体主体中。可通过偏析及掺杂(在铸锭之前或铸锭过程中)而获得被提炼材料的所需电阻率。绝对电阻率值将取决于最终用户的工艺及要求。
密度高于熔融硅的微粒被移除。如果在定向固化过程中所带入或所形成的微粒的密度足够高于熔融硅,则其将沉降至底部。其可在熔融池的底部形成高密度层。
密度低于硅或稍高于硅的微粒也可得到移除。其将被推移至固体硅与熔融硅之间界面的前面。如果这些微粒被充分地推移至液体主体中,则其将在容器中遵循对流模式。
通过将使杂质随流动模式移动的力与沉降力相结合,可使所述固化过程得到优化。高密度杂质含量较高的熔融硅将从固化界面朝底部流动。较重的微粒将同样如此,而密度差别很小或不存在差别的微粒将在容器中跟随流动。如果固化是在池的顶部至底部进行,则可更容易对这些机理进行优化。
因此,与从熔融池底部开始进行生长相比,由顶部至底部进行定向固化更能够控制杂质。固化过程可一直进行,直到既定的部分得到固化为止(达到既定的锭高度或尺寸)。残留的液体硅中所含有的杂质及较重微粒的比例将高于起始材料,并可通过倾倒等手段而转移出容器。主要的微粒杂质往往是SiC、SixNy或SixOyNz
根据本发明的另一方面,提供一种用于对材料进行提炼的装置,其包含:容器,该容器具有底部及侧壁,用于容纳熔融态材料;以及冷却板,该冷却板可移入及移出所述容器的顶部。
较佳地,所述容器具有受热的壁和/或底部。较佳地,所述容器的壁和/或底部是由导热性、但在化学上呈惰性且耐高温的材料制成,例如由石墨、氮化硅、碳化硅、硅石、氧化铝、氮氧化硅或其它陶瓷质氧化物制成。
较佳地,所述冷却板包含多个层,包括与冷却装置进行工作接触的导热层及用于接触熔融材料的接触层。较佳地,所述接触层及任一中间层是由导热性、但在化学上呈惰性且耐高温的材料制成,例如由石墨、氮化硅、碳化硅、硅石、氮氧化硅、氧化铝或其它陶瓷质氧化物制成。所述导热层可以是金属,例如铜、铝或某种适宜的合金。此外,可在其它层之间纳入加热层,例如一层电阻加热元件或者感应加热层。此可更好地控制冷却过程。
所述板可包含中间层,所述中间层附着至导热层上并可与所述接触板形成滑动配合或卡扣配合。较佳地在容器上方具有气密性封盖,以维持惰性或受控气氛。
附图简述
本发明可通过各种方式实施,且下文将参照附图以举例方式对某些实施例进行说明,附图中:
图1为一种用于实施本发明的装置的垂直剖面图;
图2为在图1所示线AA上的剖面图;
图3为示意性剖面图,其显示熔融材料中的可能的对流图案;
图4为根据一实施例的温控板的示意性剖面图;以及
图5及图6为类似于图4的视图,其显示两个备选实施例。
发明详述
图1及2显示一种用于使熔融硅石定向固化的装置。该装置包含容器11,容器11具有受热的底部12、受热的端壁13及受热的侧壁14。容器11衬垫有外衬层15及内衬层16。这些衬层的材料应为导热性、但在化学上呈惰性且耐高温的材料,且适宜的材料包括石墨、碳化硅、氮化硅、硅石、氧化铝、氮氧化硅或其它陶瓷质氧化物。内衬层16界定外壳17,以用于容纳硅熔体18。
在外壳17及熔体18上面具有温控板19。板19悬挂于支架21上,并包含导热层22、中间隔离层23及接触层24。导热层22具有一系列冷却管25,且接触层24具有粗糙化的接触面26。
导热层22通常是由例如铜或铝等导热金属制成。管道25中的冷却介质是任何适宜的液体/气体,例如水或油。隔离层23及接触层24是由导热性、但耐热且在化学上呈惰性的材料制成,例如由石墨、碳化硅或氮化硅制成。
容器11及板19上盖有气密性封盖30。由此在熔体18上方容纳惰性气氛27。还具有两个隔离门28,其可在将封盖30移开时置于外壳17上方。
在使用中,将硅置于外壳17中并通过受热的底部12及壁13、14进行加热,直到其形成熔体18为止。或者,可将熔融的硅直接充注入外壳17中。将板19放低,使接触面26略微浸没于熔体18的表面以下。管道25对板19所施加的冷却效应使硅熔体18固化并粘附至接触面26上,从而形成固体硅锭29。
然后,提升板19,使其高于熔体18的液面、但硅锭29仍浸没于液体中。然后,通过进一步冷却而使更多的硅熔体18固化,结果使硅锭29向下生长。
当硅锭29已达到所要求尺寸时,将其提离外壳17并移出。在外壳17中重新充注硅并将隔离门28置于外壳上面,以使硅保持熔融状态。同时,将硅锭29及接触层24从板19上移开,以供用于进行进一步的制造,使硅锭重新熔化而制成用于制造太阳能电池晶片(wafer)的硅锭或者用于直接制造太阳能电池晶片。重新放上接触层24并重复进行上述过程。
应理解,重于熔融硅的杂质将在熔体18中从硅锭29上脱离,而较轻的污染物则会在对流力的作用下而在熔体内循环。通过这种方式,熔体18中所存在的杂质及污染物将趋于存留于熔体18中,而不会被捕获于硅锭29中。此将具有能纯化用于形成硅锭29的硅的作用。而这又将具有使杂质及污染物浓缩于残留熔体18中的作用。为此,可移除在取出硅锭29之后所残留的熔融硅并补充新鲜的硅。
熔融硅在熔体18中的循环方向显示于图3中。图中的箭头显示在对流力作用下进行的运动。受热壁13、14处的液体硅密度较小并朝上流动31。其在接触到硅锭29时冷却并在距加热源最远的熔体18的中间处向下流动32。而密度大的杂质往往下沉33并靠近壁13、14在底部22处形成涡流34。
图4显示板19的一种较佳形式。导热层22是由铜形成并包含冷却管25。中间层23沿每一纵向边形成有底切(undercut)轮廓41。接触层24沿每一纵向边形成有对应的悬垂(overhang)轮廓42。接触层24简便地滑入中间层23中,其中悬垂轮廓42支撑于底切轮廓41上。
应理解,由于是沿两条相对窄的线进行接触,因而此种布置形式几乎不会在这两个板之间进行热传递。因此,其可对硅锭提供缓慢的冷却效果,从而在材料固化时为在硅锭中得到所需的晶体取向提供时间。
图5显示一种备选布置形式,其中冷却管51位于上层52与中间层53之间。这两个层52、53均可由石墨、碳化硅、氮化硅或类似材料形成。
图6显示一种备选布置形式,其包含位于两个中间层62与63之间的受热层61。具有冷却管63的导热层64位于中间层62、63上方。此种布置形式可改善温度控制且还允许使接触层(未显示)在浸没之前升高至高于硅熔点的温度。此可避免在固化的开始阶段中硅熔体意外地急剧冷却。
应理解,尽管上文是参照硅来说明本发明的较佳实施例,然而,本发明也适用于其它材料的定向固化(及提炼)。

Claims (18)

1.一种用于对材料进行提炼的方法,其包含下列步骤:在容器中形成所述材料的熔体;使温控接触面接触所述熔体的表面,从而使所述熔融材料固化并粘附至所述温控接触面上;以及使熔融材料逐渐向下固化,以形成粘附至所述接触面上的所述材料的固体锭。
2.如权利要求1所述的方法,其特征在于,其中对所述温控接触面进行冷却。
3.如权利要求1或2所述的方法,其特征在于,其中对所述容器的壁及底部进行加热。
4.如前述权利要求中任一项所述的方法,其特征在于,其中使所述熔体保持处于惰性或受控气氛中。
5.如前述权利要求中任一项所述的方法,其特征在于,其中在所述锭固化之后所残留的液体材料含有比起始材料具有更高浓度的杂质并被从所述容器中移除。
6.如前述权利要求中任一项所述的方法,其特征在于,其中所述材料是硅。
7.如权利要求6所述的方法,其特征在于,其中对所述硅进行掺杂,以在最终的固化锭中提供所需的电阻率。
8.一种用于对材料进行提炼的装置,其包含容器及温控板,所述容器具有底部及侧壁且设置用于容纳处于熔融状态的所述材料,所述温控板可移入及移出所述容器的顶部。
9.如权利要求8所述的装置,其特征在于,其中所述容器具有受热的壁和/或底部。
10.如权利要求8或9所述的装置,其特征在于,其中所述容器被衬垫以氮化硅、石墨、碳化硅、硅石、氧化铝、氮氧化硅或陶瓷质氧化物。
11.如权利要求8至10中任一项所述的装置,其特征在于,其中所述板包含多个层,包括与冷却机构进行工作接触的导热层及用于接触所述熔融材料的接触层。
12.如权利要求11所述的装置,其特征在于,其中所述导热层是由铜、铝、或其中一种或两种所述金属的合金所构成。
13.如权利要求11或12所述的装置,其特征在于,其中所述接触层是由石墨、氮化硅、碳化硅、硅石、氧化铝、氮氧化硅或陶瓷质氧化物所构成。
14.如权利要求11至13中任一项所述的装置,其特征在于,还包含中间层,所述中间层附着至所述导热层上并与所述接触层形成滑动配合或卡扣配合。
15.如权利要求8至14中任一项所述的装置,其特征在于,其中所述板包含受热层。
16.如权利要求8至15中任一项所述的装置,其特征在于,其中所述板包含单个板或一系列并排的板。
17.如权利要求8至16中任一项所述的装置,其特征在于,其中所述板的在使用中接触所述熔融材料的表面是粗糙化的或者不连续形成。
18.如权利要求8至17中任一项所述的装置,其特征在于,其包含位于所述容器上方的气密性封盖,以实现受控的或惰性的气氛。
CNA2006800207320A 2005-06-10 2006-05-10 用于提炼熔融材料的方法及装置 Pending CN101194051A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510342796.3A CN105088330A (zh) 2005-06-10 2006-05-10 用于提炼熔融材料的方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20052832 2005-06-10
NO20052832A NO326797B1 (no) 2005-06-10 2005-06-10 Fremgangsmate og apparat for raffinering av smeltet materiale

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510342796.3A Division CN105088330A (zh) 2005-06-10 2006-05-10 用于提炼熔融材料的方法及装置

Publications (1)

Publication Number Publication Date
CN101194051A true CN101194051A (zh) 2008-06-04

Family

ID=35295069

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510342796.3A Pending CN105088330A (zh) 2005-06-10 2006-05-10 用于提炼熔融材料的方法及装置
CNA2006800207320A Pending CN101194051A (zh) 2005-06-10 2006-05-10 用于提炼熔融材料的方法及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510342796.3A Pending CN105088330A (zh) 2005-06-10 2006-05-10 用于提炼熔融材料的方法及装置

Country Status (12)

Country Link
US (2) US8580036B2 (zh)
EP (1) EP1922437B1 (zh)
JP (1) JP5039696B2 (zh)
KR (1) KR100984926B1 (zh)
CN (2) CN105088330A (zh)
AU (1) AU2006255886B2 (zh)
BR (1) BRPI0611809B1 (zh)
EA (1) EA011381B1 (zh)
ES (1) ES2723750T3 (zh)
NO (1) NO326797B1 (zh)
UA (1) UA86168C2 (zh)
WO (1) WO2006132536A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159754A (zh) * 2008-09-19 2011-08-17 Memc电子材料有限公司 用于减少熔体污染和减少晶片污染的定向固化炉
CN103221340A (zh) * 2010-11-29 2013-07-24 株式会社爱发科 硅精炼装置以及硅精炼方法
CN105705476A (zh) * 2013-09-16 2016-06-22 原子能与替代能源委员会 用于固化硅锭的衬底
US9724755B2 (en) 2012-06-25 2017-08-08 Silicor Materials, Inc. Controlled directional solidification of silicon
CN109056063A (zh) * 2018-08-29 2018-12-21 孟静 太阳能电池用多晶硅片的制备方法
CN110106546A (zh) * 2019-05-24 2019-08-09 浙江大学 一种高成品率铸造单晶硅生长方法和热场结构
CN110205672A (zh) * 2019-06-17 2019-09-06 常州常晶科技有限公司 一种类单晶硅晶体生长方法和热场结构

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748187B2 (ja) * 2007-12-27 2011-08-17 国立大学法人東北大学 Si結晶インゴットの製造方法
EP2116637A3 (en) * 2008-05-07 2012-03-21 Covalent Materials Corporation Crucible for melting silicon and release agent used to the same
US8545624B2 (en) * 2008-06-20 2013-10-01 Varian Semiconductor Equipment Associates, Inc. Method for continuous formation of a purified sheet from a melt
WO2010025397A2 (en) * 2008-08-31 2010-03-04 Inductotherm Corp. Directional solidification of silicon by electric induction susceptor heating in a controlled environment
JP3171560U (ja) * 2008-09-30 2011-11-10 スカルディン,ニコライ ニコラエヴィッチSKALDIN,Nikolay Nikolaevich 結晶化装置
DE102008051492A1 (de) * 2008-10-13 2010-04-15 Pva Tepla Ag Vorrichtung zum Kristallisieren von Nicht-Eisen-Metallen
NO20092797A1 (no) * 2009-07-31 2011-02-01 Nordic Ceramics As Digel
ES2575382T3 (es) * 2010-12-01 2016-06-28 1366 Technologies Inc. Fabricación de cuerpos semiconductores a partir de material fundido utilizando una chapa de interposición auto-sostenida
JP2013253298A (ja) * 2012-06-08 2013-12-19 Ulvac Japan Ltd ターゲットユニットの製造方法及びターゲットユニットの製造装置
BR102013032779A2 (pt) * 2013-12-19 2015-12-08 Cia Ferroligas Minas Gerais Minasligas processo e equipamento para purificação de silício por solidificação direcional
CN106591946A (zh) * 2016-12-20 2017-04-26 大连理工大学 一种逆向离心提高多晶硅定向凝固提纯得率的设备和方法
CN106757336A (zh) * 2016-12-20 2017-05-31 大连理工大学 一种横向提高多晶硅定向凝固提纯得率的设备和方法
CN107881555A (zh) * 2017-10-24 2018-04-06 佛山市三水兴达涂料有限公司 一种半导体材料的加工装置及加工工艺
CN112807733A (zh) * 2020-12-29 2021-05-18 华祥(中国)高纤有限公司 一种低熔点聚酯切片的水搅拌结晶设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190630A (en) * 1978-01-03 1980-02-26 Vsesojuzny Nauchno-Isslekovatelsky Institut Monokristallov Stsintillyatsionnykh Materialov I Osobo Chistykh Khimicheskikh Veschestv Apparatus for pulling single crystals from melt
US4659421A (en) * 1981-10-02 1987-04-21 Energy Materials Corporation System for growth of single crystal materials with extreme uniformity in their structural and electrical properties
DE3220343A1 (de) * 1982-05-28 1983-12-01 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen polykristalliner siliciumstaebe
CN1005625B (zh) * 1985-04-01 1989-11-01 复旦大学 一种定向凝固生长太阳能电池用的多晶硅锭工艺
JPH0753569B2 (ja) * 1986-08-07 1995-06-07 昭和アルミニウム株式会社 ケイ素の精製方法
GB8718643D0 (en) * 1987-08-06 1987-09-09 Atomic Energy Authority Uk Single crystal pulling
DE19503357A1 (de) * 1995-02-02 1996-08-08 Wacker Siltronic Halbleitermat Vorrichtung zur Herstellung eines Einkristalls
JP3211622B2 (ja) * 1995-04-25 2001-09-25 日本軽金属株式会社 アルミニウムスクラップの精製方法
EP0757013B1 (en) * 1995-08-04 2001-11-07 Sharp Kabushiki Kaisha Apparatus for purifying metal
JP3992800B2 (ja) * 1997-09-22 2007-10-17 Sumco Techxiv株式会社 単結晶製造装置および単結晶の製造方法
JP3531450B2 (ja) * 1997-12-10 2004-05-31 日本軽金属株式会社 アルミニウムの精製方法
JP3440802B2 (ja) * 1998-01-14 2003-08-25 信越半導体株式会社 シリコン単結晶の製造方法
JP2000001308A (ja) * 1998-06-15 2000-01-07 Sharp Corp 多結晶シリコン鋳塊の製造方法及びその製造装置
JP3656821B2 (ja) * 1999-09-14 2005-06-08 シャープ株式会社 多結晶シリコンシートの製造装置及び製造方法
JP3061057B1 (ja) * 1999-10-05 2000-07-10 住友金属工業株式会社 石英ルツボ再生方法
US6824611B1 (en) * 1999-10-08 2004-11-30 Cree, Inc. Method and apparatus for growing silicon carbide crystals
CN1109778C (zh) * 2000-08-16 2003-05-28 浙江大学 直拉硅单晶生长的重掺杂方法
JP2002308616A (ja) * 2001-04-06 2002-10-23 Kawasaki Steel Corp 多結晶シリコンの製造方法
DE10124423A1 (de) * 2001-05-18 2003-01-02 Schott Glas Züchten von orientierten Einkristallen mit wiederverwendbaren Kristallkeimen
JP4618944B2 (ja) * 2001-08-06 2011-01-26 シャープ株式会社 結晶シートの製造装置、および結晶シートの製造方法
JP2003128411A (ja) * 2001-10-18 2003-05-08 Sharp Corp 板状シリコン、板状シリコンの製造方法および太陽電池
JP4060106B2 (ja) * 2002-03-27 2008-03-12 三菱マテリアル株式会社 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板及びスパッタリング用ターゲット素材
JP4307142B2 (ja) * 2003-05-01 2009-08-05 シャープ株式会社 薄板製造装置および薄板製造方法
US7630395B2 (en) * 2004-05-24 2009-12-08 The United States Of America As Represented By The Secretary Of The Air Force Apparatus and method for providing a data interface to a plurality of radio transceivers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159754A (zh) * 2008-09-19 2011-08-17 Memc电子材料有限公司 用于减少熔体污染和减少晶片污染的定向固化炉
CN102159754B (zh) * 2008-09-19 2013-07-31 Memc电子材料有限公司 用于减少熔体污染和减少晶片污染的定向固化炉
US9222196B2 (en) 2008-09-19 2015-12-29 Memc Singapore Pte. Ltd. (Uen200614794D) Directional solidification furnace for reducing melt contamination and reducing wafer contamination
CN103221340A (zh) * 2010-11-29 2013-07-24 株式会社爱发科 硅精炼装置以及硅精炼方法
CN103221340B (zh) * 2010-11-29 2016-06-15 株式会社爱发科 硅精炼装置以及硅精炼方法
US9724755B2 (en) 2012-06-25 2017-08-08 Silicor Materials, Inc. Controlled directional solidification of silicon
CN104583466B (zh) * 2012-06-25 2017-09-05 希利柯尔材料股份有限公司 硅的受控的定向凝固
CN105705476A (zh) * 2013-09-16 2016-06-22 原子能与替代能源委员会 用于固化硅锭的衬底
US10023972B2 (en) 2013-09-16 2018-07-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Substrate for solidifying a silicon ingot
CN109056063A (zh) * 2018-08-29 2018-12-21 孟静 太阳能电池用多晶硅片的制备方法
CN110106546A (zh) * 2019-05-24 2019-08-09 浙江大学 一种高成品率铸造单晶硅生长方法和热场结构
CN110205672A (zh) * 2019-06-17 2019-09-06 常州常晶科技有限公司 一种类单晶硅晶体生长方法和热场结构

Also Published As

Publication number Publication date
AU2006255886A1 (en) 2006-12-14
BRPI0611809B1 (pt) 2020-11-03
KR20080015457A (ko) 2008-02-19
NO326797B1 (no) 2009-02-16
JP2008543565A (ja) 2008-12-04
UA86168C2 (uk) 2009-03-25
US20100034723A1 (en) 2010-02-11
CN105088330A (zh) 2015-11-25
JP5039696B2 (ja) 2012-10-03
US8580036B2 (en) 2013-11-12
EP1922437A1 (en) 2008-05-21
KR100984926B1 (ko) 2010-10-01
NO20052832D0 (no) 2005-06-10
EP1922437A4 (en) 2014-10-29
ES2723750T3 (es) 2019-08-30
AU2006255886B2 (en) 2010-03-25
EA200800009A1 (ru) 2008-04-28
EA011381B1 (ru) 2009-02-27
WO2006132536A1 (en) 2006-12-14
NO20052832L (no) 2006-12-11
US20080196209A1 (en) 2008-08-21
BRPI0611809A2 (pt) 2008-12-09
EP1922437B1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
CN101194051A (zh) 用于提炼熔融材料的方法及装置
CN1344189A (zh) 高纯度无氧铜的铸造
US7849912B2 (en) Process for electroslag remelting of metals and ingot mould therefor
EP3986637A1 (en) Apparatus and method for use in casting of metals and/ or metal alloys
US8303890B2 (en) Integrated quiescent processing of melts
US7852901B2 (en) Method and apparatus for manufacturing high-purity alloy
CN208167068U (zh) 区熔提纯高纯锗晶体材料的装料容器
EP2890636B1 (en) Method of directional solidification with reactive cover glass over molten silicon
JP4214340B2 (ja) アルミニウム分離回収用溶解装置
CN218539317U (zh) 一种用于工业硅浇注式定向凝固装置
CN218507564U (zh) 一种金属硅凝固提纯装置
TWI532888B (zh) 用於純化矽之作為耐火表面之襯裏
US20240208829A1 (en) Method for obtaining purified silicon metal
RU2573283C1 (ru) Способ производства металлургических заготовок, фасонного литья и устройство для его осуществления
JP2009113075A (ja) 鋳造方法、鋳型ユニット及び鋳造装置
UA55860A (uk) Плавильний тигель

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20080604