WO2018051433A1 - 電力供給システム - Google Patents

電力供給システム Download PDF

Info

Publication number
WO2018051433A1
WO2018051433A1 PCT/JP2016/077129 JP2016077129W WO2018051433A1 WO 2018051433 A1 WO2018051433 A1 WO 2018051433A1 JP 2016077129 W JP2016077129 W JP 2016077129W WO 2018051433 A1 WO2018051433 A1 WO 2018051433A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
load
power supply
supply system
Prior art date
Application number
PCT/JP2016/077129
Other languages
English (en)
French (fr)
Inventor
篤男 河村
モハメド バニ シャムセー
吉野 輝雄
Original Assignee
国立大学法人横浜国立大学
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学, 東芝三菱電機産業システム株式会社 filed Critical 国立大学法人横浜国立大学
Priority to EP16916217.9A priority Critical patent/EP3514942B1/en
Priority to PCT/JP2016/077129 priority patent/WO2018051433A1/ja
Priority to US16/331,877 priority patent/US10581338B2/en
Priority to ES16916217T priority patent/ES2944136T3/es
Priority to CN201680089270.1A priority patent/CN109716641B/zh
Priority to JP2018539007A priority patent/JP6802278B2/ja
Publication of WO2018051433A1 publication Critical patent/WO2018051433A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/081Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source

Definitions

  • the present invention relates to a power supply system in which a plurality of AC output converters that perform power conversion from DC to AC are connected in parallel to supply power to a load.
  • a power supply system that connects a plurality of AC output converters that perform power conversion from DC to AC in parallel and supplies power to a load is known.
  • Japanese Patent Laid-Open No. 4-217822 discloses a power supply system in which a plurality of AC output converters such as inverters are connected in parallel and operated in parallel with respect to a common load.
  • the detection signals from the output currents of the plurality of AC output converters are respectively obtained, and each AC output converter is obtained according to the difference signal.
  • a configuration for controlling the output voltage is shown.
  • the power supply system in the above publication is a method for controlling a current balance by acquiring a detection signal from the output current of each AC output converter, it is necessary to acquire information from other AC output converters. Therefore, a signal transmission means is necessary. Therefore, there is a possibility that correct control cannot be performed if the signal transmission means fails.
  • An object of the present invention is to solve the above-described problem, and can control currents among a plurality of AC output converters while independently controlling each AC output converter. Realize power supply system.
  • a power supply system includes a plurality of AC output converters connected in parallel to supply power to an AC load.
  • Each AC output converter includes an output impedance connected to an AC load, a PWM converter that converts DC power into AC power, and a control device that outputs a voltage command value to the PWM converter.
  • the control device includes a vector adder that adds a part of a voltage drop caused by the current flowing through the output impedance and the voltage command value of the AC load, and a voltage command value for the PWM converter based on the vector sum obtained by the vector addition.
  • Output converter includes a vector adder that adds a part of a voltage drop caused by the current flowing through the output impedance and the voltage command value of the AC load, and a voltage command value for the PWM converter based on the vector sum obtained by the vector addition.
  • the output impedance is constituted by a reactor.
  • the output impedance comprises a transformer leakage inductance.
  • control device includes a vector multiplier.
  • the vector multiplier calculates a part of the voltage drop by multiplying the product of the output impedance value and the current flowing through the output impedance by a coefficient smaller than about 1.
  • control device includes a detector that detects a current flowing through the output impedance, and a reference phase signal generation circuit that generates a reference phase signal synchronized with an AC system voltage for detecting a current component from a detection result of the detector. Including.
  • control device Preferably, the control device generates a reference phase signal synchronized with a voltage of a bus connected to a detector that detects a current flowing through the output impedance and an AC load for detecting a current component from the detection result of the detector.
  • a phase signal generation circuit is included.
  • a power supply system includes a plurality of AC output converters connected in parallel to supply power to an AC load.
  • Each AC output converter includes an LCL filter connected to an AC load, a PWM converter that converts DC power into AC power, and a control device that outputs a voltage command value to the PWM converter.
  • the control device adds a detector that detects the voltage of the capacitor of the LCL filter, a part of the voltage drop caused by the current flowing through the reactor provided on the AC load side of the LCL filter, and the voltage command value of the AC load. And a voltage control device that outputs a voltage command value to the PWM converter so that the voltage reference signal matches the voltage of the capacitor detected by the detector.
  • the reactor provided on the AC load side of the LCL filter is constituted by a leakage inductance of the transformer.
  • the signal generation circuit adds the vector product of the vector product of the impedance of the reactor connected to the AC load of the LCL filter and the current flowing through the reactor, and the voltage command value of the AC load.
  • control device includes a detector that detects a current flowing through the reactor, and a reference phase signal generation circuit that generates a reference phase signal synchronized with an AC system voltage for detecting a current component from a detection result of the detector. .
  • control device Preferably, the control device generates a reference phase signal synchronized with a voltage of a bus connected to a detector that detects a current flowing through the output impedance and an AC load for detecting a current component from the detection result of the detector.
  • a phase signal generation circuit is included.
  • the power supply system of the present invention can control each AC output converter independently and can balance current among a plurality of AC output converters.
  • FIG. 1 is a schematic diagram of an uninterruptible power supply system 1 based on Embodiment 1.
  • FIG. 3 is a diagram illustrating an equivalent circuit based on the first embodiment. It is a figure explaining the initial state of the uninterruptible power supply system 1 based on Embodiment 1.
  • FIG. It is a figure explaining the state immediately after closing the switch of the uninterruptible power supply system 1 based on Embodiment 1.
  • FIG. 1 It is a figure explaining the simulation result of the uninterruptible power supply system 1 based on Embodiment 1.
  • FIG. It is a figure explaining the structure of the uninterruptible power supply system 1P based on the modification 1 of Embodiment 1.
  • FIG. It is a figure explaining the structure of the uninterruptible power supply system 1Q based on the modification 2 of Embodiment 1.
  • FIG. It is a figure explaining the structure of the uninterruptible power supply system 1 # based on Embodiment 2.
  • FIG. It is a figure explaining the structure of the capacitor voltage command value preparation circuit 52A based on Embodiment 2.
  • FIG. It is a figure explaining the structure of the capacitor voltage control circuit 55A based on Embodiment 2.
  • FIG. 6 is a diagram illustrating another equivalent circuit of the second embodiment.
  • FIG. It is a figure explaining the simulation result of the uninterruptible power supply system 1 # based on Embodiment 2.
  • FIG. It is a figure explaining the structure of uninterruptible power supply system 1 # P based on the modification 1 of Embodiment 2.
  • FIG. It is a figure explaining the structure of uninterruptible power supply system 1 # Q based on the modification 2 of Embodiment 2.
  • FIG. It is the figure which schematized the structure of the uninterruptible power supply system based on Embodiment 3.
  • FIG. It is a figure explaining the simulation result of uninterruptible power supply system 1 # based on Embodiment 3.
  • FIG. It is a figure explaining the simulation result of uninterruptible power supply system 1 # based on Embodiment 3.
  • UPS Uninterruptible Power Supply
  • FIG. 1 is a diagram illustrating a configuration of an uninterruptible power supply system 1 based on the first embodiment.
  • uninterruptible power supply system 1 includes an AC output converter (first AC output converter) 10A and an AC output converter (second AC output converter) 10B.
  • AC output converters 10 ⁇ / b> A and 10 ⁇ / b> B are connected to AC power supply 2 and operate in parallel with a common load 3.
  • the AC output converters 10A and 10B based on the first embodiment autonomously control without input of signal transmission means from the other AC output converter.
  • the AC output converter 10A includes a transformer 12A, a forward converter 14A that converts an AC voltage into a DC voltage, a DC capacitor 15A, a PWM (Pulse Width Modulation) converter 16A, an output impedance 17A, and a control device 20A. Including.
  • a DC capacitor 15A is provided at the subsequent stage of the forward converter 14A so as to maintain the DC voltage substantially constant. Forward converter 14A and DC capacitor 15A form a DC circuit.
  • the DC circuit is connected to the battery. This makes it possible to supply power from the battery to the load when the AC power supply is lost.
  • the forward converter 14A obtains electric power from the AC power source 2 and converts it into DC voltage.
  • the PWM converter 16A is connected to the subsequent stage of the DC capacitor 15A.
  • PWM converter 16A converts DC power into AC power in accordance with a gate signal from control device 20A.
  • the main circuit of the AC output converter is simplified, but in reality, it is often composed of a three-phase circuit.
  • the configuration of the AC output converter 10B is basically the same as the configuration of the AC output converter 10A.
  • AC output converter 10B includes a transformer 12B, a forward converter 14B that converts an AC voltage into a DC voltage, a DC capacitor 15B, a PWM converter 16B, an output impedance 17B, and a control device 20B.
  • FIG. 2 is a diagram illustrating the configuration of the AC output converter 10 of the three-phase circuit based on the first embodiment.
  • a plurality (six) of switching elements for example, IGBTs and semiconductor elements composed of diodes connected in reverse parallel thereto are provided.
  • the switching element is bridge-connected.
  • the PWM converter 16A is provided with a plurality of (six) switching elements, for example, IGBTs and semiconductor elements composed of diodes connected in reverse parallel thereto.
  • the switching element is ON / OFF controlled according to a gate signal from the control device 20A.
  • a gate signal from the control device 20A.
  • description will be made using a single-line connection diagram and a phasor (vector) diagram that can collectively represent a three-phase circuit.
  • the control device 20A includes a voltage detector 21A, a reference phase signal generation circuit 22A (PLL circuit), a dq converter 23A, a vector multiplier 24A, a gain multiplier 25A, a vector An adder 26A, a dq inverse converter 27A, a PWM pulse generator 28, registers 29A and 30A, and a current detector 31A are included.
  • the reference phase signal creation circuit 22A creates a reference phase signal according to the voltage detection signal from the voltage detector 21A.
  • the reference phase signal creation circuit 22A outputs the reference phase signal to the dq converter 23A.
  • the dq converter 23A receives the current detection signal input from the current detector 31A.
  • the dq converter 23A calculates the amplitude and phase of the current according to the reference phase signal from the current detection signal from the current detector 31A, and obtains current vector information.
  • the dq conversion method is a conversion method for obtaining a d-axis current component synchronized with the reference phase signal and a q-axis current component shifted by 90 ° from the current instantaneous value signal.
  • the load voltage reference is a voltage required by the load and is usually the rated voltage, but is not limited to this, and may be set to a value higher or lower than that voltage.
  • the configuration using the register 30A will be described.
  • the present invention is not limited to the register, and any storage means capable of storing information may be used, and a configuration for storing in the memory is also possible. The same applies to other configurations.
  • the vector adder 26A outputs a vector sum obtained by vector addition as a load voltage command.
  • the dq inverse converter 27A performs dq inverse conversion on the load voltage command from the vector adder 26A to generate a voltage reference.
  • the PWM pulse generator 28A controls the output voltage of the PWM converter 16A according to a voltage reference by dq inverse conversion.
  • control device 20B is similar to control device 20A, detailed description thereof will not be repeated.
  • FIG. 3 is a diagram schematically showing the uninterruptible power supply system 1 based on the first embodiment.
  • the uninterruptible power supply system 1 has AC output converters 10 ⁇ / b> A and 10 ⁇ / b> B connected in parallel to a common load 3.
  • FIG. 4 is a diagram illustrating an equivalent circuit based on the first embodiment. Referring to FIG. 4, an equivalent circuit based on the above equations (7) and (8) is shown.
  • FIG. 5 is a diagram illustrating an initial state of the uninterruptible power supply system 1 based on the first embodiment.
  • FIG. 5A shows an equivalent circuit diagram in an initial state.
  • FIG. 5B shows a vector diagram (phasor diagram) in the initial state.
  • a reactor is assumed, and a vector diagram is described assuming that the output impedance is mainly composed of inductance.
  • the load is represented by a resistance R having a power factor of 1.
  • the equation for the current voltage before the switch SW is closed is as follows.
  • the voltage reference of the AC output converter is expressed by the following equation because the output current is 0.
  • FIG. 6 is a diagram for explaining a state immediately after the switch of the uninterruptible power supply system 1 based on the first embodiment is closed.
  • FIG. 6A shows an equivalent circuit diagram in a state immediately after the switch is closed.
  • FIG. 6B shows a vector diagram (phasor diagram) when the switch is closed.
  • FIG. 7 is a diagram for explaining a simulation result of the uninterruptible power supply system 1 based on the first embodiment.
  • FIG. 7A shows instantaneous values of output currents of the AC output converters 10A and 10B.
  • FIG. 7B shows a waveform of a component parallel to the load reference voltage of the output current of the AC output converters 10A and 10B.
  • FIG. 7C shows the output voltage and load voltage of the AC output converters 10A and 10B.
  • the simulation assumes a control delay of about several hundred ms, so it is shown that the currents of the two AC output converters gradually balance in about several hundred ms. Thus, the simulation also shows that there is an action as described in the calculation formula.
  • the AC output converters 10A and 10B perform control using only signals that can be observed by individual devices, and control current sharing or current balance between the AC output converters 10A and 10B. be able to. Moreover, since control is possible only with the control devices 20A and 20B that the AC output converters 10A and 10B individually have, a control device common to a plurality of AC output converters and signal exchange means between the AC output converters are unnecessary. Is possible.
  • FIG. 8 is a diagram illustrating the configuration of an uninterruptible power supply system 1P based on the first modification of the first embodiment.
  • the uninterruptible power supply system 1 ⁇ / b> P replaces the AC output converter 10 ⁇ / b> A with the AC output converter 10 ⁇ / b> PA and converts the AC output converter 10 ⁇ / b> B to the AC output converter as compared with the uninterruptible power supply system 1.
  • the difference is that it is replaced with the vessel 10PB.
  • the AC output converter 10PA is different from the AC output converter 10A in that a transformer 18A is provided instead of the impedance 17A.
  • the current detector 31A is provided between the PWM converter 16A and the transformer 18A. Since other configurations are the same as those described in FIG. 1, detailed description thereof will not be repeated.
  • the AC output converter 10PB is different from the AC output converter 10B in that a transformer 18B is provided instead of the impedance 17B.
  • the current detector 31B is provided between the PWM converter 16B and the transformer 18B. Since other configurations are the same as those described in FIG. 1, detailed description thereof will not be repeated.
  • the current detectors 31A and 31B can be provided between the AC load 3 and the transformers 18A and 18B.
  • FIG. 9 is a diagram illustrating the configuration of an uninterruptible power supply system 1Q based on the second modification of the first embodiment.
  • uninterruptible power supply system 1Q replaces AC output converter 10A with AC output converter 10QA and replaces AC output converter 10B with an AC output converter as compared with uninterruptible power supply system 1. The difference is that it is replaced with 10QB.
  • the AC output converter 10QA is different from the AC output converter 10A in that the reference phase is obtained from the bus voltage to which the load 3 is connected. Since other configurations are the same, detailed description thereof will not be repeated.
  • the AC output converter 10QB is different from the AC output converter 10B in that the reference phase is obtained from the bus voltage to which the load 3 is connected. Since other configurations are the same, detailed description thereof will not be repeated. This configuration also has the same effect as that of the first embodiment.
  • the voltage of the bus connected to the load is also information common to the two AC output converters, and is information that can be detected independently by each of the two AC output converters. It is possible to obtain
  • FIG. 10 is a diagram illustrating a configuration of uninterruptible power supply system 1 # based on the second embodiment.
  • uninterruptible power supply system 1 # includes an AC output converter 11A and an AC output converter 11B.
  • AC output converters 11 ⁇ / b> A and 11 ⁇ / b> B are connected to AC power supply 2 and operate in parallel with respect to common load 3.
  • an LCL filter reduces the carrier frequency component of the PWM converter and supplies a fundamental AC voltage to the load.
  • this embodiment is different from the first embodiment in that the reference phase signal is obtained from the bus voltage to which the load 3 is connected.
  • the AC output converters 11A and 11B based on the second embodiment autonomously control without input of signal transmission means from the other AC output converter.
  • the AC output converter 11A includes a transformer 12A, a forward converter 14A that converts an AC voltage into a DC voltage, a DC capacitor 15A, a PWM converter 16A, an LCL filter 18A, and a control device 50A.
  • the control device 50A includes a voltage detector 21A, a reference phase signal generation circuit 22A (PLL circuit), a dq converter 23A, a capacitor voltage command value generation circuit 52A, a capacitor voltage control circuit 55A, and a voltage detector 53A.
  • the capacitor voltage control circuit 55A of the control device 50A controls the capacitor voltage in the LCL filter 18A.
  • the voltage detector 53A detects the capacitor voltage.
  • the current detector 54A detects the capacitor current flowing through the capacitor.
  • the current detector 31A measures the output current of the AC output converter 11A and inputs it to the control device 50A.
  • the capacitor voltage control circuit 55A is configured to obtain a capacitor voltage through the voltage detector 53A and perform feedback control so that the value matches the voltage reference signal.
  • the capacitor voltage signal is converted into a d-axis component and a q-axis component by dq conversion.
  • the output voltage of the PWM converter 16A is controlled so that the difference between these signals and the d-axis component E refd and q-axis component E refq of the voltage reference signal becomes zero.
  • FIG. 11 is a diagram illustrating the configuration of the capacitor voltage command value creation circuit 52A based on the second embodiment.
  • the capacitor voltage command value creation circuit 52A includes a vector multiplier 60 and a vector adder 70.
  • the control device 50A uses the current signal measured by the current detector 31A to create a capacitor voltage command value by the calculation represented by the following equation, and controls the capacitor voltage based on the capacitor voltage command value.
  • the dq converter 23A receives the current detection signal input from the current detector 31A.
  • the dq converter 23A calculates the current amplitude and phase of the current detection signal from the current detector 31A in accordance with the reference phase signal, and obtains current vector information.
  • the vector multiplier 60 multiplies the dq-axis component of the current vector information by the impedance ⁇ L 1 due to the inductance of the load-side reactor of the LCL filter 18A and the resistance component R 1 by a vector multiplier to obtain a vector product.
  • FIG. 12 is a diagram illustrating the configuration of the capacitor voltage control circuit 55A based on the second embodiment.
  • the capacitor voltage control circuit 55A includes dq converters 86 and 87, gain multipliers (coefficients k 1 ) 80 and 81, transfer function multipliers 82 and 83, and transfer function multiplier 90. , 91, dq inverse converter 92, PWM pulse generator 93, differentiators 84, 85, and adders 88, 89.
  • the difference unit 84 calculates the difference between the d-axis component voltage reference signal and the d-axis component capacitor voltage signal, and outputs the difference to the transfer function multiplier 82.
  • the error of the difference unit 84 is amplified by the transfer function multiplier 82 and output to the adder 88.
  • the adder 88 adds the voltage reference signal proportional to the coefficient k 1 and the output of the transfer function multiplier 82, calculates the difference between the capacitor current signal of the d-axis component, and sends it to the transfer function multiplier 90. Output.
  • the error of the adder 88 is amplified by the transfer function multiplier 90 and output to the dq inverse converter 92.
  • the difference unit 85 calculates the difference between the q-axis component voltage reference signal and the q-axis component capacitor voltage signal and outputs the difference to the transfer function multiplier 83.
  • the error of the difference unit 85 is amplified by the transfer function multiplier 83 and output to the adder 89.
  • the adder 89 adds the voltage reference signal proportional to the coefficient k 1 and the output of the transfer function multiplier 83, calculates the difference between the capacitor current signal of the q-axis component, and sends it to the transfer function multiplier 91. Output.
  • the error of the adder 89 is amplified by the transfer function multiplier 91 and output to the dq inverse converter 92.
  • the dq inverse converter 92 converts the output into a three-phase signal and outputs it to the PWM pulse generator 93.
  • the PWM pulse generator 93A controls the output voltage of the PWM converter 16A according to the voltage reference by dq inverse conversion.
  • control device 50B is similar to control device 50A, detailed description thereof will not be repeated.
  • FIG. 13 is a schematic diagram of an uninterruptible power supply system 1 # based on the second embodiment.
  • the uninterruptible power supply system 1 # has AC output converters 11A and 11B connected in parallel to a common load 3.
  • FIG. 14 is a diagram illustrating an equivalent circuit based on the second embodiment.
  • Equation (30) indicates that the voltage sources of the equivalent circuits of the two AC output converters are equal in size if the relationship of Equation (29) is established.
  • Equation (31) indicates that the equivalent impedance of the second AC output converter is h times that of the first AC output converter.
  • FIG. 15 is a diagram for explaining another equivalent circuit of the second embodiment.
  • the current sharing of the two AC output converters can be adjusted by appropriately adjusting the circuit impedance, the control gain, and the transfer function.
  • FIG. 16 is a diagram for explaining a simulation result of the uninterruptible power supply system 1 # based on the second embodiment.
  • FIG. 16A shows the effective value and phase of the representative phase of the output current of the AC output converters 11A and 11B. It is shown that the current sharing becomes equal in about 0.3 to 0.4 seconds after the two units start up with zero time axis. Furthermore, after that, even if the load is lightened in 0.5 seconds, or the load is changed back to the original value in 0.8 seconds, the current sharing is maintained.
  • FIG. 16B shows the effective value and phase of the load voltage. In a steady state, it is shown that the load voltage is maintained at a substantially constant voltage even when there is a load fluctuation.
  • the AC output converters 11A and 11B are operated by the same capacitor voltage command because the same capacitor voltage control circuit is provided, so the capacitor voltages of the two AC output converters 11A and 11B match. To be controlled. Even if the output currents from the two AC output converters 11A and 11B become unbalanced due to some factor, the output current is finally controlled to be balanced.
  • bus voltage to which the load is connected is information common to the two AC output converters and can be detected independently. With the reference phase thus obtained, it is possible to obtain the same operations and effects as in the first embodiment.
  • FIG. 17 is a diagram illustrating the configuration of an uninterruptible power supply system 1 # P based on the first modification of the second embodiment.
  • uninterruptible power supply system 1 # P replaces AC output converter 11A with AC output converter 11 # PA as compared with uninterruptible power supply system 1 #, and AC output converter The difference is that 11B is replaced with an AC output converter 11 # PB.
  • the AC output converter 11 # PA differs from the AC output converter 11A in that the reactor of the LCL filter 18A is deleted and a transformer 18A is provided instead of the reactor.
  • the current detector 31A is provided between the filter and the transformer 18A. Since other configurations are the same as those described in FIG. 1, detailed description thereof will not be repeated.
  • the AC output converter 11 # PB differs from the AC output converter 11B in that the reactor of the LCL filter 18B is deleted and a transformer 18B is provided instead of the reactor.
  • the current detector 31B is provided between the filter and the transformer 18B. Since other configurations are the same as those described in FIG. 1, detailed description thereof will not be repeated.
  • the current detectors 31A and 31B can be provided between the AC load 3 and the transformers 18A and 18B.
  • FIG. 18 is a diagram illustrating the configuration of an uninterruptible power supply system 1 # Q based on the second modification of the second embodiment.
  • uninterruptible power supply system 1 # Q replaces AC output converter 11A with AC output converter 11 # QA as compared with uninterruptible power supply system 1 # of FIG. The difference is that the converter 11B is replaced with an AC output converter 11 # QB.
  • the AC output converter 11 # QA differs from the AC output converter 11A in that the reference phase is obtained from the bus voltage to which the load 3 is connected. Since other configurations are the same, detailed description thereof will not be repeated.
  • the AC output converter 11 # QB is different from the AC output converter 11B in that the reference phase is obtained from the bus voltage to which the load 3 is connected. Since other configurations are the same, detailed description thereof will not be repeated. This configuration also has the same effect as that of the first embodiment.
  • This configuration also has the same effect as that of the second embodiment.
  • the voltage of the bus connected to the load is also information common to the two AC output converters, and is information that can be detected independently by each of the two AC output converters.
  • FIG. 19 is a diagram schematically showing the configuration of the uninterruptible power supply system based on the third embodiment.
  • FIG. 19 shows a case where it is schematically shown when applied to three different AC output converters. For example, the case where AC output converter 11A, 11B, 11C is provided is demonstrated.
  • each AC output converter It is possible to control the current distribution according to the current distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Catching Or Destruction (AREA)
  • Vehicle Body Suspensions (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

電力供給システムは、交流負荷に電力を供給する並列接続した複数の交流出力変換器を備える。各交流出力変換器は、交流負荷と接続される出力インピーダンスと、直流電力を交流電力に変換するPWM変換器と、PWM変換器に対して電圧指令値を出力する制御装置とを含む。制御装置は、出力インピーダンスを流れる電流により発生する電圧降下の一部と交流負荷の電圧指令値とをベクトル加算するベクトル加算器と、ベクトル加算したベクトル和に基づいてPWM変換器に対する電圧指令値を出力する変換器とを含む。

Description

電力供給システム
 本発明は、直流から交流に電力変換を行う交流出力変換器を複数並列に接続し、負荷に電力を供給する電力供給システムに関する。
 直流から交流に電力変換を行う交流出力変換器を複数並列に接続し、負荷に電力を供給する電力供給システムが知られている。
 この点で、特開平4-217822号公報においては、インバータのような交流出力変換器を複数台並列に接続し、共通の負荷に対して並列運転する電力供給システムが開示されている。
 当該電力供給システムにおいては、交流出力変換器間の電流バランスを制御する方式として、複数台の交流出力変換器の出力電流からの検出信号をそれぞれ取得し、その差分信号に従って各々の交流出力変換器の出力電圧を制御する構成が示されている。
特開平4-217822号公報
 一方で、上記公報における電力供給システムは、それぞれの交流出力変換器の出力電流からの検出信号を取得して電流バランスを制御する方式であるため他の交流出力変換器からの情報を取得する必要があるため、信号伝達手段が必要である。したがって、当該信号伝達手段が故障すると正しい制御ができなくなる可能性がある。
 また、1台の交流出力変換器をメンテナンスのために切り離したり、増設するため追加したりする際には、当該信号伝達手段を切り離して、再び接続する必要等の煩雑な工程が必要であり、システム全体を停止させる必要がある。
 本発明の目的は、上記の課題を解決するためのものであって、各々の交流出力変換器を独立に制御しつつ、かつ、複数の交流出力変換器間で電流バランスをとることが可能な電力供給システムを実現する。
 ある局面に従う電力供給システムは、交流負荷に電力を供給する並列接続した複数の交流出力変換器を備える。各交流出力変換器は、交流負荷と接続される出力インピーダンスと、直流電力を交流電力に変換するPWM変換器と、PWM変換器に対して電圧指令値を出力する制御装置とを含む。制御装置は、出力インピーダンスを流れる電流により発生する電圧降下の一部と交流負荷の電圧指令値とをベクトル加算するベクトル加算器と、ベクトル加算したベクトル和に基づいてPWM変換器に対する電圧指令値を出力する変換器とを含む。
 好ましくは、出力インピーダンスは、リアクトルで構成される。
 好ましくは、出力インピーダンスは、変圧器の漏れインダクタンスで構成される。
 好ましくは、制御装置は、ベクトル乗算器を含む。ベクトル乗算器は、出力インピーダンスの値と出力インピーダンスに流れる電流との積に、略1より小さい係数を乗算して電圧降下の一部を算出する。
 好ましくは、制御装置は、出力インピーダンスを流れる電流を検出する検出器と、検出器の検出結果から電流成分を検出するための交流系統電圧に同期した基準位相信号を生成する基準位相信号生成回路を含む。
 好ましくは、制御装置は、出力インピーダンスを流れる電流を検出する検出器と、検出器の検出結果から電流成分を検出するための交流負荷が接続する母線の電圧に同期した基準位相信号を生成する基準位相信号生成回路を含む。
 別の局面に従う電力供給システムは、交流負荷に電力を供給する並列接続した複数の交流出力変換器を備える。各交流出力変換器は、交流負荷と接続されるLCLフィルタと、直流電力を交流電力に変換するPWM変換器と、PWM変換器に対して電圧指令値を出力する制御装置とを含む。制御装置は、LCLフィルタのコンデンサの電圧を検出する検出器と、LCLフィルタの交流負荷側に設けられたリアクトルを流れる電流により発生する電圧降下の一部と交流負荷の電圧指令値とをベクトル加算して電圧基準信号を生成する信号生成回路と、電圧基準信号と、検出器で検出されたコンデンサの電圧とが一致するようにPWM変換器に対して電圧指令値を出力する電圧制御装置とを含む。
 好ましくは、LCLフィルタの交流負荷側に設けられるリアクトルは、変圧器の漏れインダクタンスで構成される。
 好ましくは、信号生成回路は、LCLフィルタの交流負荷に接続されるリアクトルのインピーダンスとリアクトルを流れる電流とのベクトル積と、交流負荷の電圧指令値とをベクトル加算する。
 好ましくは、制御装置は、リアクトルを流れる電流を検出する検出器と、検出器の検出結果から電流成分を検出するための交流系統電圧に同期した基準位相信号を生成する基準位相信号生成回路を含む。
 好ましくは、制御装置は、出力インピーダンスを流れる電流を検出する検出器と、検出器の検出結果から電流成分を検出するための交流負荷が接続する母線の電圧に同期した基準位相信号を生成する基準位相信号生成回路を含む。
 本発明の電力供給システムは、各々の交流出力変換器を独立に制御しつつ、かつ、複数の交流出力変換器間で電流バランスをとることが可能である。
実施形態1に基づく無停電電源システム1の構成を説明する図である。 実施形態1に基づく3相回路の交流出力変換器10の構成を説明する図である。 実施形態1に基づく無停電電源システム1を模式化した図である。 実施形態1に基づく等価回路を説明する図である。 実施形態1に基づく無停電電源システム1の初期状態を説明する図である。 実施形態1に基づく無停電電源システム1のスイッチを閉じた直後の状態を説明する図である。 実施形態1に基づく無停電電源システム1のシミュレーション結果を説明する図である。 実施形態1の変形例1に基づく無停電電源システム1Pの構成を説明する図である。 実施形態1の変形例2に基づく無停電電源システム1Qの構成を説明する図である。 実施形態2に基づく無停電電源システム1#の構成を説明する図である。 実施形態2に基づくコンデンサ電圧指令値作成回路52Aの構成を説明する図である。 実施形態2に基づくコンデンサ電圧制御回路55Aの構成を説明する図である。 実施形態2に基づく無停電電源システム1#を模式化した図である。 実施形態2に基づく等価回路を説明する図である。 実施形態2の別の等価回路を説明する図である。 実施形態2に基づく無停電電源システム1#のシミュレーション結果を説明する図である。 実施形態2の変形例1に基づく無停電電源システム1#Pの構成を説明する図である。 実施形態2の変形例2に基づく無停電電源システム1#Qの構成を説明する図である。 実施形態3に基づく無停電電源システムの構成を模式化した図である。 実施形態3に基づく無停電電源システム1#のシミュレーション結果を説明する図である。
 以下、実施形態について図に基づいて説明する。本例においては、一例として電力供給システムとして、無停電電源システム(以降、UPS(Uninterruptible Power Supply))について説明する。
 (実施形態1)
 本実施形態においては、無停電電源システムにおいて、2つの交流出力変換器の並列構成を用いて説明する。
 図1は、実施形態1に基づく無停電電源システム1の構成を説明する図である。
 図1を参照して、無停電電源システム1は、交流出力変換器(第1の交流出力変換器)10Aと、交流出力変換器(第2の交流出力変換器)10Bとを含む。交流出力変換器10A,10B(総称して交流出力変換器10とも称する)は、交流電源2と接続されるとともに、共通の負荷3に対して並列運転する。
 本実施形態1に基づく交流出力変換器10A,10Bは、他方の交流出力変換器からの信号伝達手段の入力無しに自律的に制御する。
 以下、各交流出力変換器10A,10Bの構成について説明する。
 交流出力変換器10Aは、変圧器12Aと、交流電圧を直流電圧に変換する順変換器14Aと、直流コンデンサ15Aと、PWM(Pulse Width Modulation)変換器16Aと、出力インピーダンス17Aと、制御装置20Aとを含む。
 順変換器14Aの後段には、直流コンデンサ15Aが設けられ、直流電圧を略一定に維持する構成となっている。順変換器14Aと直流コンデンサ15Aとは直流回路を形成する。
 また、本例においては、図示しないが直流回路はバッテリーに接続される。これにより、交流電源喪失時にはバッテリーから負荷に電力を供給することが可能となる。
 通常時は、順変換器14Aにより交流電源2からの電力を得て、直流電圧に変換する。
 また、PWM変換器16Aは、直流コンデンサ15Aの後段に接続される。
 PWM変換器16Aは、制御装置20Aからのゲート信号に従って、直流電力を交流電力に変換する。
 本例においては、交流出力変換器の主回路を簡略化しているが、実際には3相回路で構成される場合が多い。
 交流出力変換器10Bの構成についても交流出力変換器10Aの構成と基本的に同様である。交流出力変換器10Bは、変圧器12Bと、交流電圧を直流電圧に変換する順変換器14Bと、直流コンデンサ15Bと、PWM変換器16Bと、出力インピーダンス17Bと、制御装置20Bとを含む。
 出力インピーダンスは、リアクトルで構成される。
 図2は、実施形態1に基づく3相回路の交流出力変換器10の構成を説明する図である。
 図2には、順変換器14Aとして複数個(6個)のスイッチング素子例えばIGBTとこれと逆並列接続されたダイオードからなる半導体素子が設けられる。当該スイッチング素子はブリッジ接続されている。
 また、PWM変換器16Aは、複数個(6個)のスイッチング素子例えばIGBTとこれと逆並列接続されたダイオードからなる半導体素子が設けられる。
 スイッチング素子は、制御装置20Aからのゲート信号に従ってオンオフ制御される。
 なお、本例においては説明を簡易にするため、三相回路を一括して表現できる単線結線図およびフェーザ(ベクトル)図を用いて説明する。
 再び図1を参照して、制御装置20Aは、電圧検出器21Aと、基準位相信号作成回路22A(PLL回路)と、dq変換器23Aと、ベクトル乗算器24Aと、ゲイン乗算器25Aと、ベクトル加算器26Aと、dq逆変換器27Aと、PWMパルス生成器28と、レジスタ29A,30Aと、電流検出器31Aとを含む。
 基準位相信号作成回路22Aは、電圧検出器21Aからの電圧検出信号に従って基準位相信号を作成する。
 基準位相信号作成回路22Aは、基準位相信号をdq変換器23Aに出力する。
 dq変換器23Aは、電流検出器31Aからの電流検出信号の入力を受ける。
 dq変換器23Aは、電流検出器31Aからの電流検出信号を基準位相信号に従って、電流の振幅と位相を計算し、電流のベクトル情報を取得する。
 dq変換法は、電流瞬時値信号から、基準位相信号に同期したd軸電流成分と90°ずれたq軸電流成分とを得る変換法である。
Figure JPOXMLDOC01-appb-M000001
 負荷電圧基準は、負荷の必要とする電圧であり、通常はその定格電圧であるが、これに限られず、その電圧より高めあるいは低めの値に設定するようにしても良い。
 なお、本例においては、レジスタ30Aを用いた構成について説明するがレジスタに限られず情報を格納することが可能な記憶手段であれば良く、メモリに格納する構成とすることも可能である。他の構成についても同様である。
 ベクトル加算器26Aは、ベクトル加算したベクトル和を負荷電圧指令として出力する。
 dq逆変換器27Aは、ベクトル加算器26Aからの負荷電圧指令をdq逆変換して、電圧基準を生成する。PWMパルス生成器28Aは、dq逆変換による電圧基準に従ってPWM変換器16Aの出力電圧を制御する。
 制御装置20Bについても制御装置20Aと同様であるのでその詳細な説明については繰り返さない。
 次に、実施形態1に基づく交流出力変換器の作用について説明する。
 図3は、実施形態1に基づく無停電電源システム1を模式化した図である。
 図3に示されるように、無停電電源システム1は、交流出力変換器10A,10Bが共通の負荷3に対して並列接続されたものである。
Figure JPOXMLDOC01-appb-M000002
 図4は、実施形態1に基づく等価回路を説明する図である。
 図4を参照して、上式(7),(8)に基づく等価回路が示されている。
Figure JPOXMLDOC01-appb-M000003
 初期状態として、交流出力変換器10Aが負荷3にすべての電流を供給している状態から、交流出力変換器10BがスイッチSWを閉じて接続されると、交流出力変換器10Aの出力電流が徐々に増加し、電流がバランスする状況について説明する。
 図5は、実施形態1に基づく無停電電源システム1の初期状態を説明する図である。
 図5(A)には、初期状態の等価回路図が示されている。
 図5(B)には、初期状態におけるベクトル図(フェーザー図)が示されている。
 出力インピーダンスとしては、リアクトルを想定し、出力インピーダンスは、主にインダクタンスで構成されているとしてベクトル図を記載する。
 また、負荷は力率1の抵抗Rで表されるものとする。
 スイッチSWが閉じられる前の電流電圧の方程式は、次式のようになる。
 交流出力変換器の電圧基準は、出力電流が0なので、次式で表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 
 式(14),(15)を加算すると、次式が得られる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 図6は、実施形態1に基づく無停電電源システム1のスイッチを閉じた直後の状態を説明する図である。
 図6(A)には、スイッチを閉じた直後の状態の等価回路図が示されている。
 図6(B)には、スイッチを閉じた状態におけるベクトル図(フェーザー図)が示されている。
Figure JPOXMLDOC01-appb-M000009
 図7は、実施形態1に基づく無停電電源システム1のシミュレーション結果を説明する図である。
 図7(A)には、交流出力変換器10A,10Bの出力電流の瞬時値が示されている。
 図7(B)には、交流出力変換器10A,10Bの出力電流の負荷基準電圧に平行な成分の波形が示されている。
 図7(C)には、交流出力変換器10A,10Bの出力電圧と負荷電圧とが示されている。
 本例においては、簡単なシステムとして、制御装置20A,20Bが計算する電圧基準値を出力する単相電圧源を2つ用いたモデルでシミュレーションを行った。出力インピーダンスとしてリアクトルを想定し、シミュレーション結果の波形が示されている。
Figure JPOXMLDOC01-appb-M000010
 そのようにしても、出力インピーダンスによる電圧降下の一部を使って計算していることに変わりは無い。
 シミュレーションでは、数百ms程度の制御遅れを想定しているので、数百ms程度で、徐々に2つの交流出力変換器の電流がバランスすることが示されている。このようにシミュレーションによっても、計算式で説明したとおりの作用があることが示されている。
 本例においては、2つの交流出力変換器の並列構成について説明したが、3台以上の場合についても同様に適用可能である。
 本実施形態1の構成によれば、交流出力変換器10A,10Bが個々の装置で観測できる信号だけを用いて制御を行い、交流出力変換器10A,10B間の電流分担あるいは電流バランスを制御することができる。また、交流出力変換器10A,10Bが個々に有する制御装置20A,20Bだけで制御可能であるので、複数の交流出力変換器に共通の制御装置、交流出力変換器間の信号授受手段を不要にすることが可能である。
 したがって、個々の交流出力変換器の独立性が高くなり、交流出力変換器の部分停止や、増設などの際にシステム全体へ与える影響も小さくすることが可能である。
 (実施形態1の変形例1)
 上記においては、出力インピーダンスとしてリアクトルを用いた構成について説明したが、出力側に変圧器を設けた構成である場合でも、出力変圧器の短絡インピーダンス(漏れインピーダンス)がリアクトルと等価であることから、同様な作用を得ることが可能である。
 図8は、実施形態1の変形例1に基づく無停電電源システム1Pの構成を説明する図である。
 図8に示されるように、無停電電源システム1Pは、無停電電源システム1と比較して、交流出力変換器10Aを交流出力変換器10PAに置換するとともに、交流出力変換器10Bを交流出力変換器10PBに置換した点が異なる。
 交流出力変換器10PAは、交流出力変換器10Aと比較して、インピーダンス17Aの代わりに、変圧器18Aを設けた点が異なる。電流検出器31Aは、PWM変換器16Aと変圧器18Aとの間に設けられる。その他の構成については図1で説明したのと同様であるのでその詳細な説明については繰り返さない。
 また、交流出力変換器10PBは、交流出力変換器10Bと比較して、インピーダンス17Bの代わりに、変圧器18Bを設けた点が異なる。電流検出器31Bは、PWM変換器16Bと変圧器18Bとの間に設けられる。その他の構成については図1で説明したのと同様であるのでその詳細な説明については繰り返さない。
 当該構成においても、実施形態1と同様の効果を得ることが可能である。
 なお、電流検出器31A,31Bを交流負荷3と変圧器18A,18Bとの間に設ける構成とすることも可能である。
 (実施形態1の変形2)
 図9は、実施形態1の変形例2に基づく無停電電源システム1Qの構成を説明する図である。
 図9を参照して、無停電電源システム1Qは、無停電電源システム1と比較して、交流出力変換器10Aを交流出力変換器10QAに置換するとともに、交流出力変換器10Bを交流出力変換器10QBに置換した点が異なる。
 交流出力変換器10QAは、交流出力変換器10Aと比較して、基準位相を負荷3が接続される母線電圧から得ている点が異なる。その他の構成については同様であるのでその詳細な説明については繰り返さない。
 また、交流出力変換器10QBは、交流出力変換器10Bと比較して、基準位相を負荷3が接続される母線電圧から得ている点が異なる。その他の構成については同様であるのでその詳細な説明については繰り返さない。当該構成においても実施形態1と同様の作用となる。
 また、負荷が接続する母線の電圧も、2つの交流出力変換器に共通な情報であり、また、2つの交流出力変換器それぞれで独立に検出可能な情報であり、実施形態1と同様の効果を得ることが可能である。
 (実施形態2)
 実施形態2においては別の無停電電源システム1#について説明する。
 図10は、実施形態2に基づく無停電電源システム1#の構成を説明する図である。
 図10を参照して、無停電電源システム1#は、交流出力変換器11Aと、交流出力変換器11Bとを含む。交流出力変換器11A,11B(総称して交流出力変換器11とも称する)は、交流電源2と接続されるとともに、共通の負荷3に対して並列運転する。
 本例においては、出力インピーダンスとして、LCLフィルタを設けた構成が示されている。LCLフィルタは、PWM変換器のキャリア周波数成分を低減し、負荷に基本波交流電圧を供給する。
 なお、本例においては、基準位相信号を負荷3が接続する母線電圧から得ている点が実施形態1とは異なる。
 本実施形態2に基づく交流出力変換器11A,11Bは、他方の交流出力変換器からの信号伝達手段の入力無しに自律的に制御する。
 以下、各交流出力変換器11の構成について説明する。
 交流出力変換器11Aは、変圧器12Aと、交流電圧を直流電圧に変換する順変換器14Aと、直流コンデンサ15Aと、PWM変換器16Aと、LCLフィルタ18Aと、制御装置50Aとを含む。
 制御装置50Aは、電圧検出器21Aと、基準位相信号作成回路22A(PLL回路)と、dq変換器23Aと、コンデンサ電圧指令値作成回路52Aと、コンデンサ電圧制御回路55Aと、電圧検出器53Aと、電流検出器54Aと、レジスタ56Aとを含む。
 制御装置50Aのコンデンサ電圧制御回路55Aは、LCLフィルタ18Aの中のコンデンサ電圧を制御する。
 電圧検出器53Aは、コンデンサ電圧を検出する。また、電流検出器54Aは、コンデンサを流れるコンデンサ電流を検出する。
 電流検出器31Aは、交流出力変換器11Aの出力電流を計測し、制御装置50Aに入力される。
 コンデンサ電圧制御回路55Aは、電圧検出器53Aを通じてコンデンサ電圧を得て、その値が電圧基準信号に一致するようフィードバック制御する構成である。
 コンデンサ電圧信号は、dq変換により、d軸成分、q軸成分に変換される。これらの信号と、電圧基準信号のd軸成分Erefd、q軸成分Erefqとの差がゼロになるように、PWM変換器16Aの出力電圧を制御する。
 図11は、実施形態2に基づくコンデンサ電圧指令値作成回路52Aの構成を説明する図である。
 図11に示されるように、コンデンサ電圧指令値作成回路52Aは、ベクトル乗算器60と、ベクトル加算器70とを含む。
 制御装置50Aは、電流検出器31Aで計測された電流信号を用い、次式で示される演算でコンデンサ電圧指令値を作成し、それに基づいてコンデンサ電圧を制御する。
Figure JPOXMLDOC01-appb-M000011
 dq変換器23Aは、電流検出器31Aからの電流検出信号の入力を受ける。
 dq変換器23Aは、電流検出器31Aからの電流検出信号を基準位相信号に従って、電流の振幅と位相を計算し、電流のベクトル情報を取得する。
 ベクトル乗算器60は、電流のベクトル情報のdq軸成分に、LCLフィルタ18Aの負荷側リアクトルのインダクタンスによるインピーダンスωL1と抵抗分R1をベクトル乗算器で乗算し、ベクトル積を得る。
Figure JPOXMLDOC01-appb-M000012
 図12は、実施形態2に基づくコンデンサ電圧制御回路55Aの構成を説明する図である。
 図12に示されるように、コンデンサ電圧制御回路55Aは、dq変換器86,87と、ゲイン乗算器(係数k1)80,81と、伝達関数乗算器82,83と、伝達関数乗算器90,91と、dq逆変換器92と、PWMパルス発生器93と、差分器84,85と、加算器88,89とを含む。
 差分器84は、d軸成分の電圧基準信号とd軸成分のコンデンサ電圧信号との差分を演算して、伝達関数乗算器82に出力する。伝達関数乗算器82により差分器84の誤差が増幅されて、加算器88に出力される。
 加算器88は、係数k1に比例した電圧基準信号と、伝達関数乗算器82の出力とを加算するとともに、d軸成分のコンデンサ電流信号との差分を演算して、伝達関数乗算器90に出力する。伝達関数乗算器90により加算器88の誤差が増幅されて、dq逆変換器92に出力される。
 q軸成分についても同様である。
 具体的には、差分器85は、q軸成分の電圧基準信号とq軸成分のコンデンサ電圧信号との差分を演算して、伝達関数乗算器83に出力する。伝達関数乗算器83により差分器85の誤差が増幅されて、加算器89に出力される。
 加算器89は、係数k1に比例した電圧基準信号と、伝達関数乗算器83の出力とを加算するとともに、q軸成分のコンデンサ電流信号との差分を演算して、伝達関数乗算器91に出力する。伝達関数乗算器91により加算器89の誤差が増幅されて、dq逆変換器92に出力される。
 dq逆変換器92は、出力を三相の信号に逆変換してPWMパルス発生器93に出力する。
 PWMパルス生成器93Aは、dq逆変換による電圧基準に従ってPWM変換器16Aの出力電圧を制御する。
 制御装置50Bについても制御装置50Aと同様であるのでその詳細な説明については繰り返さない。
 次に、実施形態2に基づく交流出力変換器の作用について説明する。
 図13は、実施形態2に基づく無停電電源システム1#を模式化した図である。
 図13に示されるように、無停電電源システム1#は、交流出力変換器11A,11Bが共通の負荷3に対して並列接続されたものである。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 図14は、実施形態2に基づく等価回路を説明する図である。
Figure JPOXMLDOC01-appb-M000015
 式(30)は、式(29)の関係が成立すれば、2つの交流出力変換器の等価回路の電圧源の大きさは等しくなることを示す。
 また、式(31)は、2つ目の交流出力変換器の等価インピーダンスは、1つ目の交流出力変換器のh倍になることを示す。
 図15は、実施形態2の別の等価回路を説明する図である。
Figure JPOXMLDOC01-appb-M000016
 したがって、回路インピーダンスと制御ゲイン・伝達関数を適宜調整することで、2つの交流出力変換器の電流分担を調整することが可能である。
 図16は、実施形態2に基づく無停電電源システム1#のシミュレーション結果を説明する図である。
 図16(A)には、交流出力変換器11A,11Bの出力電流の代表相の実効値と位相が示されている。時間軸ゼロで、2台が起動した後、0.3~0.4秒程度で電流分担が均等になる様子が示されている。さらに、その後、0.5秒に負荷を軽くしたり、0.8秒で負荷を再び元の値に変化しても、電流分担が保たれることが示される。
 図16(B)には、負荷電圧の実効値と位相が示されている。定常状態では、負荷電圧は負荷変動があってもほぼ一定の電圧に保たれていることが示されている。
 本シミュレーションでは、交流出力変換器11A,11Bには、同じコンデンサ電圧制御回路が設けられているため同じコンデンサ電圧指令により動作するので、2台の交流出力変換器11A,11Bのコンデンサ電圧は一致するように制御される。仮に、2台の交流出力変換器11A,11Bからの出力電流が何らかの要因によりアンバランスになっても、最終的には出力電流がバランスするよう制御される。
 なお、負荷が接続する母線の電圧は、2つの交流出力変換器に共通な情報であり、それぞれ独立に検出できる情報である。そのようにして得られた基準位相により、実施形態1と同様の作用、効果を得ることが可能である。
 したがって、本実施形態においても、交流出力変換器が個々の装置で観測できる信号だけを用いて制御を行い、交流出力変換器間の電流バランスを制御することが可能である。また、交流出力変換器が個々に有する制御装置だけで制御するため複数の交流出力変換器に共通の制御装置、交流出力変換器間の信号授受手段を不要にすることが可能である。
 (実施形態2の変形例1)
 上記においては、出力インピーダンスとしてLCLフィルタの負荷側リアクトルを用いた構成について説明したが、負荷側リアクトルの代わりに変圧器を設けた構成である場合でも、出力変圧器の短絡インピーダンス(漏れインピーダンス)がリアクトルと等価であることから、同様な作用を得ることが可能である。
 図17は、実施形態2の変形例1に基づく無停電電源システム1#Pの構成を説明する図である。
 図17に示されるように、無停電電源システム1#Pは、無停電電源システム1#と比較して、交流出力変換器11Aを交流出力変換器11#PAに置換するとともに、交流出力変換器11Bを交流出力変換器11#PBに置換した点が異なる。
 交流出力変換器11#PAは、交流出力変換器11Aと比較して、LCLフィルタ18Aのリアクトルを削除して、リアクトルの代わりに、変圧器18Aを設けた点が異なる。電流検出器31Aは、フィルタと変圧器18Aとの間に設けられる。その他の構成については図1で説明したのと同様であるのでその詳細な説明については繰り返さない。
 また、交流出力変換器11#PBは、交流出力変換器11Bと比較して、LCLフィルタ18Bのリアクトルを削除して、リアクトルの代わりに、変圧器18Bを設けた点が異なる。電流検出器31Bは、フィルタと変圧器18Bとの間に設けられる。その他の構成については図1で説明したのと同様であるのでその詳細な説明については繰り返さない。
 当該構成においても、実施形態1と同様の効果を得ることが可能である。
 なお、電流検出器31A,31Bを交流負荷3と変圧器18A,18Bとの間に設ける構成とすることも可能である。
 (実施形態2の変形2)
 図18は、実施形態2の変形例2に基づく無停電電源システム1#Qの構成を説明する図である。
 図18を参照して、無停電電源システム1#Qは、図10の無停電電源システム1#と比較して、交流出力変換器11Aを交流出力変換器11#QAに置換するとともに、交流出力変換器11Bを交流出力変換器11#QBに置換した点が異なる。
 交流出力変換器11#QAは、交流出力変換器11Aと比較して、基準位相を負荷3が接続される母線電圧から得ている点が異なる。その他の構成については同様であるのでその詳細な説明については繰り返さない。
 また、交流出力変換器11#QBは、交流出力変換器11Bと比較して、基準位相を負荷3が接続される母線電圧から得ている点が異なる。その他の構成については同様であるのでその詳細な説明については繰り返さない。当該構成においても実施形態1と同様の作用となる。
 当該構成においても実施形態2と同様の作用となる。
 また、負荷が接続する母線の電圧も、2つの交流出力変換器に共通な情報であり、また、2つの交流出力変換器それぞれで独立に検出可能な情報である。
 したがって、実施形態2と同様の効果を得ることが可能である。
 (実施形態3)
 図19は、実施形態3に基づく無停電電源システムの構成を模式化した図である。
 図19には、3台の異なる交流出力変換器に適用した場合について模式化した場合が示されている。たとえば、交流出力変換器11A,11B、11Cを設けた場合について説明する。
Figure JPOXMLDOC01-appb-M000017
 したがって、本実施形態においても、交流出力変換器が個々の装置で観測できる信号だけを用いて制御を行い、交流出力変換器間の電流バランスを制御することが可能である。
 さらに、交流出力変換器の負荷側リアクトルのインピーダンスの値が異なる場合でも、それに応じた電圧指令値を作ることで、異なる容量の交流出力変換器が並列された場合でも、それぞれの交流出力変換器に応じた電流配分となるよう制御することが可能である。
 以上、本発明の実施形態について説明したが、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
1,1P,1#,1#P 無停電電源システム、2 交流電源、3 負荷、10,10A,10B,11,11A,11B 交流出力変換器、12A,12B 変圧器、14A,14B 順変換器、15A,15B 直流コンデンサ、16A,16B PWM変換器、17A,17B 出力インピーダンス、18A,18B LCLフィルタ、20A,20B,50A,50B 制御装置、21A,21B,53A,53B 電圧検出器、22A,22B 基準位相信号作成回路、23A,23B dq変換器、24A,24B,60 ベクトル乗算器、25A,25B ゲイン乗算器、26A,26B,70 ベクトル加算器、27A,27B,92 dq逆変換器、28A,28B,93 PWMパルス生成器、29A,29B,30A,30B,56A,56B レジスタ、31A,31B,54A,54B 電流検出器、52A,52B コンデンサ電圧指令値作成回路、55A,55B コンデンサ電圧制御回路。

Claims (11)

  1.  交流負荷に電力を供給する並列接続した複数の交流出力変換器を備え、
     各前記交流出力変換器は、
     前記交流負荷と接続される出力インピーダンスと、
     直流電力を交流電力に変換するPWM変換器と、
     前記PWM変換器に対して電圧指令値を出力する制御装置とを含み、
     前記制御装置は、
     前記出力インピーダンスを流れる電流により発生する電圧降下の一部と交流負荷の電圧指令値とをベクトル加算するベクトル加算器と、
     前記ベクトル加算したベクトル和に基づいて前記PWM変換器に対する電圧指令値を出力する変換器とを含む、電力供給システム。
  2.  前記出力インピーダンスは、リアクトルで構成される、請求項1記載の電力供給システム。
  3.  前記出力インピーダンスは、変圧器の漏れインダクタンスで構成される、請求項1記載の電力供給システム。
  4.  前記制御装置は、ベクトル乗算器を含み、
     前記ベクトル乗算器は、前記出力インピーダンスの値と前記出力インピーダンスに流れる電流との積に、略1より小さい係数を乗算して前記電圧降下の一部を算出する、請求項1記載の電力供給システム。
  5.  前記制御装置は、
     前記出力インピーダンスを流れる電流を検出する検出器と、
     前記検出器の検出結果から電流成分を検出するための交流系統電圧に同期した基準位相信号を生成する基準位相信号生成回路を含む、請求項1記載の電力供給システム。
  6.  前記制御装置は、
     前記出力インピーダンスを流れる電流を検出する検出器と、
     前記検出器の検出結果から電流成分を検出するための前記交流負荷が接続する母線の電圧に同期した基準位相信号を生成する基準位相信号生成回路を含む、請求項1記載の電力供給システム。
  7.  交流負荷に電力を供給する並列接続した複数の交流出力変換器を備え、
     各前記交流出力変換器は、
     前記交流負荷と接続されるLCLフィルタと、
     直流電力を交流電力に変換するPWM変換器と、
     前記PWM変換器に対して電圧指令値を出力する制御装置とを含み、
     前記制御装置は、
     前記LCLフィルタのコンデンサの電圧を検出する検出器と、
     前記LCLフィルタの前記交流負荷側に設けられたリアクトルを流れる電流により発生する電圧降下の一部と前記交流負荷の電圧指令値とをベクトル加算して電圧基準信号を生成する信号生成回路と、
     前記電圧基準信号と、前記検出器で検出された前記コンデンサの電圧とが一致するように前記PWM変換器に対して電圧指令値を出力する電圧制御装置とを含む、電力供給システム。
  8.  前記LCLフィルタの前記交流負荷側に設けられるリアクトルは、変圧器の漏れインダクタンスで構成される、請求項7記載の電力供給システム。
  9.  前記信号生成回路は、前記LCLフィルタの前記交流負荷に接続されるリアクトルのインピーダンスと前記リアクトルを流れる電流とのベクトル積と、前記交流負荷の電圧指令値とをベクトル加算する、請求項7記載の電力供給システム。
  10.  前記制御装置は、
     前記リアクトルを流れる電流を検出する検出器と、
     前記検出器の検出結果から電流成分を検出するための交流系統電圧に同期した基準位相信号を生成する基準位相信号生成回路を含む、請求項7記載の電力供給システム。
  11.  前記制御装置は、
     前記出力インピーダンスを流れる電流を検出する検出器と、
     前記検出器の検出結果から電流成分を検出するための前記交流負荷が接続する母線の電圧に同期した基準位相信号を生成する基準位相信号生成回路を含む、請求項7記載の電力供給システム。
PCT/JP2016/077129 2016-09-14 2016-09-14 電力供給システム WO2018051433A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16916217.9A EP3514942B1 (en) 2016-09-14 2016-09-14 Power supply system
PCT/JP2016/077129 WO2018051433A1 (ja) 2016-09-14 2016-09-14 電力供給システム
US16/331,877 US10581338B2 (en) 2016-09-14 2016-09-14 Power supply system
ES16916217T ES2944136T3 (es) 2016-09-14 2016-09-14 Sistema de suministro de energía
CN201680089270.1A CN109716641B (zh) 2016-09-14 2016-09-14 电力供给***
JP2018539007A JP6802278B2 (ja) 2016-09-14 2016-09-14 電力供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077129 WO2018051433A1 (ja) 2016-09-14 2016-09-14 電力供給システム

Publications (1)

Publication Number Publication Date
WO2018051433A1 true WO2018051433A1 (ja) 2018-03-22

Family

ID=61619887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077129 WO2018051433A1 (ja) 2016-09-14 2016-09-14 電力供給システム

Country Status (6)

Country Link
US (1) US10581338B2 (ja)
EP (1) EP3514942B1 (ja)
JP (1) JP6802278B2 (ja)
CN (1) CN109716641B (ja)
ES (1) ES2944136T3 (ja)
WO (1) WO2018051433A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106257A1 (de) * 2019-03-12 2020-09-17 Sma Solar Technology Ag Batterie-Wechselrichtersystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238263A (ja) * 2001-02-14 2002-08-23 Railway Technical Res Inst 零相電流制御機能付きpwm変換器の制御装置
JP2007236083A (ja) * 2006-02-28 2007-09-13 Origin Electric Co Ltd 三相電圧型交直変換装置
WO2013105382A1 (ja) * 2012-01-12 2013-07-18 株式会社明電舎 Pwm電力変換器の並列運転装置
JP2015070654A (ja) * 2013-09-27 2015-04-13 株式会社ダイヘン インバータ回路を制御する制御回路、当該制御回路を備えたインバータ装置、当該インバータ装置を備えた電力システム、および、制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679411B2 (ja) 1990-12-19 1997-11-19 三菱電機株式会社 交流出力変換器の並列運転制御装置
JPH08280192A (ja) * 1995-04-07 1996-10-22 Meidensha Corp インバータの並列運転方法およびその装置
JPH09331682A (ja) * 1996-06-12 1997-12-22 Meidensha Corp 電力変換器
JP3389072B2 (ja) 1997-09-05 2003-03-24 芝府エンジニアリング株式会社 電力変換装置
JP3590735B2 (ja) * 1999-03-15 2004-11-17 東芝三菱電機産業システム株式会社 電力変換装置の制御回路
JP2009022094A (ja) * 2007-07-11 2009-01-29 Fuji Electric Systems Co Ltd 三相交流−交流変換装置
JP5217397B2 (ja) * 2007-12-04 2013-06-19 富士電機株式会社 電力変換装置の並列運転制御システム
JP5453729B2 (ja) * 2008-04-14 2014-03-26 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置
US8379416B1 (en) * 2011-08-29 2013-02-19 General Electric Company Power conversion system and method
JP6058884B2 (ja) * 2011-11-15 2017-01-11 株式会社コンピュータシステム研究所 建築物品質評価装置、その方法、プログラムおよび記憶媒体
CN103280999B (zh) * 2013-04-24 2015-06-10 浙江大学 一种多模块逆变器有线并联数字控制方法
JP6586723B2 (ja) 2014-10-15 2019-10-09 株式会社明電舎 電力変換装置の横流電流抑制方法
CN104466963A (zh) * 2014-12-11 2015-03-25 湖南大学 一种电力感应调控滤波装置及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238263A (ja) * 2001-02-14 2002-08-23 Railway Technical Res Inst 零相電流制御機能付きpwm変換器の制御装置
JP2007236083A (ja) * 2006-02-28 2007-09-13 Origin Electric Co Ltd 三相電圧型交直変換装置
WO2013105382A1 (ja) * 2012-01-12 2013-07-18 株式会社明電舎 Pwm電力変換器の並列運転装置
JP2015070654A (ja) * 2013-09-27 2015-04-13 株式会社ダイヘン インバータ回路を制御する制御回路、当該制御回路を備えたインバータ装置、当該インバータ装置を備えた電力システム、および、制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514942A4 *

Also Published As

Publication number Publication date
EP3514942A4 (en) 2020-04-29
ES2944136T3 (es) 2023-06-19
US10581338B2 (en) 2020-03-03
CN109716641A (zh) 2019-05-03
EP3514942B1 (en) 2023-03-08
JPWO2018051433A1 (ja) 2019-06-27
JP6802278B2 (ja) 2020-12-16
CN109716641B (zh) 2021-05-04
US20190214918A1 (en) 2019-07-11
EP3514942A1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP5280107B2 (ja) 単相電圧型交直変換装置及び単相電圧型交直変換回路の制御方法
JP6700102B2 (ja) 電力変換装置
JP2009219263A (ja) 単相電圧型交直変換装置
JP2011045210A (ja) 電力供給装置及び無効電力補償装置
JP6593843B2 (ja) 三相インバータの並列運転制御方法及び並列運転制御装置
WO2018051433A1 (ja) 電力供給システム
US20230006535A1 (en) Controlling a cascaded multilevel converter
Gulbudak et al. Finite control set model predictive control of dual-output four-leg indirect matrix converter under unbalanced load and supply conditions
JPH0515070A (ja) 並列運転制御装置
JPH0515069A (ja) 3相交流出力変換器の並列運転制御装置
WO2014050935A1 (ja) 単相電圧型交直変換装置
WO2014050759A1 (ja) 単相電圧型交直変換装置
JPWO2020245916A1 (ja) 電力変換装置及び電力変換制御装置
JP7126631B1 (ja) 電力変換装置及び制御装置
JP5616412B2 (ja) 単相電圧型交直変換装置
Tashakor et al. Compensated state-space model of diode-clamped mmcs for sensorless voltage estimation
WO2014050934A1 (ja) 単相電圧型交直変換装置
JP2730383B2 (ja) 交流出力変換器の並列運転制御装置
Brodatzki et al. Decoupled circulating-and output-current control of parallel inverter systems
JP5497941B2 (ja) 分散電源用インバータ及び分散電源用インバータの制御方法
CN115989625A (zh) 用于操作转换器的方法、转换器以及计算机程序产品
JP2023174013A (ja) 電力変換装置
JP5967832B2 (ja) 半導体電力変換装置
CN113615029A (zh) 用于三相馈入到交流电压网络中的方法和三相逆变器
JP2020078210A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016916217

Country of ref document: EP

Effective date: 20190415