WO2017037921A1 - ループヒートパイプ及びその製造方法並びに電子機器 - Google Patents

ループヒートパイプ及びその製造方法並びに電子機器 Download PDF

Info

Publication number
WO2017037921A1
WO2017037921A1 PCT/JP2015/075081 JP2015075081W WO2017037921A1 WO 2017037921 A1 WO2017037921 A1 WO 2017037921A1 JP 2015075081 W JP2015075081 W JP 2015075081W WO 2017037921 A1 WO2017037921 A1 WO 2017037921A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
liquid
plate
steam
pipe
Prior art date
Application number
PCT/JP2015/075081
Other languages
English (en)
French (fr)
Inventor
塩賀 健司
阿部 知行
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/075081 priority Critical patent/WO2017037921A1/ja
Priority to JP2017537160A priority patent/JP6451860B2/ja
Publication of WO2017037921A1 publication Critical patent/WO2017037921A1/ja
Priority to US15/895,232 priority patent/US10881021B2/en
Priority to US17/104,386 priority patent/US11536518B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/09Heat pipes

Definitions

  • the present invention relates to a loop heat pipe, a manufacturing method thereof, and an electronic device.
  • sheet-like heat conducting members such as metal plates and heat diffusion sheets are widely used to cool heat-generating components.
  • a metal plate copper, aluminum, magnesium alloy, a thin plate obtained by laminating these, and the like are used, but the heat conduction is restricted by the physical property values of the material.
  • a graphite sheet is used as the thermal diffusion sheet, but the thermal conductivity is about 500 to about 1500 W / mK. With this level of thermal conductivity, the amount of heat generated by the heat-generating component increases. There is a risk that it will not be possible.
  • a heat pipe that is a heat transfer device using latent heat transport by gas-liquid two-phase flow.
  • a heat pipe having a diameter of about 3 to about 4 mm corresponds to a thermal conductivity of about 1500 to about 2500 W / mK, and shows a larger value than that of a sheet-like heat conductive member.
  • it is effective to increase the diameter of the pipe, which is a heat transport pipe, and this is an obstacle in mounting, and application to mobile electronic devices has not progressed.
  • the shape of the heat pipe is flattened, but by flattening, the flow of the working fluid in the pipe is hindered, the heat transport capability is lowered, and the thermal conductivity is about 500. It decreases to about 1000 W / mK.
  • the flow paths of the gas-phase working fluid and the liquid-phase working fluid are independent, and the working fluid flows in one direction. Compared with a heat pipe in which the working fluid reciprocates in the pipe, the flow resistance of the working fluid can be reduced, and efficient heat transport is possible.
  • This loop heat pipe is composed of an evaporator for evaporating the liquid-phase working fluid, a condenser for condensing the gas-phase working fluid, a vapor pipe through which the vapor-phase working fluid flows and connecting the evaporator and the condenser.
  • the evaporator includes a liquid inlet to which the liquid pipe is connected and a vapor outlet to which the steam pipe is connected.
  • a plurality of vapor passages provided between the plurality of portions and extending in the lengthwise direction through which the vapor-phase working fluid flows; Provided on the outlet side, extending in the width direction, connected to a plurality of vapor flow paths, and having a vapor outlet side vapor flow path through which a gas-phase working fluid flows.
  • channel which connects two adjacent steam flow paths among the paths is provided.
  • the electronic apparatus includes a heat generating component and a loop heat pipe that cools the heat generating component, and the loop heat pipe is configured as described above.
  • the manufacturing method of this loop heat pipe processes the area
  • a first groove capable of generating a capillary force is formed so as to communicate, and a third groove capable of generating a capillary force is formed in a region serving as a liquid inflow side portion, extending in the width direction, Forming a first wide groove wider than the first groove and the third groove in a region serving as a steam flow channel and a region serving as a steam outlet side steam flow channel; and an evaporator of a second plate-shaped member; Process the region to be extended into the length of the region to become a plurality of parts to generate capillary force
  • a fourth groove which forms a second groove and extends in the length direction to a region connected to the liquid inlet and a region connected to each of the plurality of portions included in the region serving as the liquid inlet side portion, and can generate a capillary force.
  • FIG. 1 It is a schematic diagram for demonstrating the structure of the wick provided in the inside of the evaporator with which the loop heat pipe using six sheets of metal plates is equipped. It is a schematic diagram for demonstrating the movement of the working fluid in the inside of the evaporator with which the loop heat pipe using 6 sheets of metal plates is equipped.
  • (A) to (C) are diagrams showing infrared thermography images when heat is input to an evaporator provided in a loop heat pipe using six metal thin plates. It is a figure which shows the temperature profile of each part of a loop heat pipe when the loop heat pipe using six metal thin plates starts.
  • FIG. 1 It is a schematic diagram which shows the structural example of the evaporator with which the loop heat pipe concerning this embodiment is equipped. It is a schematic diagram which shows the structural example of the evaporator with which the loop heat pipe concerning this embodiment is equipped. It is a schematic diagram which shows the structural example of the evaporator with which the loop heat pipe concerning this embodiment is equipped. It is a schematic diagram which shows the structural example in case the liquid pipe with which the loop heat pipe concerning this embodiment is provided with a groove
  • FIG. 20 is a schematic diagram illustrating a configuration example when the liquid pipe provided in the loop heat pipe according to the present embodiment includes a groove, and is a cross-section along the length direction of the liquid pipe at the position indicated by the line AA ′ in FIG. 19.
  • FIG. (A), (B) is a schematic diagram for demonstrating the specific structural example of the loop heat pipe concerning this embodiment, and its manufacturing method. It is a schematic diagram which shows the structural example in case the liquid pipe with which the loop heat pipe concerning this embodiment is provided with a groove
  • the loop heat pipe according to the present embodiment is provided in a small and thin mobile electronic device such as a smartphone or a tablet terminal, and moves heat generated by a heat generating component (for example, an LSI chip) provided in the electronic device, It is a thin loop heat pipe that cools heat-generating components that are heat sources.
  • a small and thin electronic device for mobile use is also referred to as a mobile device.
  • the heat generating component is also referred to as an electronic component or a heat generating element.
  • the loop heat pipe of the present embodiment includes an evaporator 2 that evaporates a liquid-phase working fluid, a condenser 3 that condenses a gas-phase working fluid, an evaporator 2, and a condenser 3.
  • the vapor pipe 4 through which the gas-phase working fluid flows, and the condenser 3 and the evaporator 2 are connected to each other, and a liquid pipe 5 through which the liquid-phase working fluid flows.
  • the condenser 3 includes a condensing tube 3A and a heat diffusion plate (heat radiating plate) 3B.
  • the loop heat pipe 1 configured as described above is configured so that the evaporator 2 is thermally connected to a heat generating component 7 provided in the mobile device 6 as shown in FIGS. 6 is housed.
  • the working fluid is, for example, water, ethanol, acetone, methanol, or chlorofluorocarbons.
  • the evaporator 2 has one liquid inlet and one vapor outlet
  • the condenser 3 has one vapor inlet and one liquid outlet.
  • the vapor outlet of the evaporator 2 and the vapor inlet of the condenser 3 are connected via a vapor pipe 4, and the liquid outlet of the condenser 3 and the liquid inlet of the evaporator 2 are connected via a liquid pipe 5.
  • the evaporator 2, the vapor pipe 4, the condenser 3, and the liquid pipe 5 are connected in a loop shape, and the working fluid sealed in these flows in one direction.
  • the working fluid changes from the liquid phase to the gas phase by the heat supplied from the heat-generating component 7 to the evaporator 2, moves with heat to the condenser 3 through the vapor pipe 4, and in the condenser 3.
  • the gas phase changes from the gas phase to the liquid phase due to heat dissipation, and returns to the evaporator 2 through the liquid pipe 5.
  • the flow resistance of the working fluid can be reduced, and efficient heat transport is possible.
  • the evaporator 2 has a liquid inflow port 8 to which the liquid pipe 5 is connected, a vapor outlet 9 to which the steam pipe 4 is connected, and a liquid working fluid. And a liquid inlet side portion 10 and a plurality of portions 11 which are gas phase working fluid, and a plurality of vapor flow paths 12 and vapor outlet side vapor flow paths 13 through which the gas phase working fluid flows.
  • the liquid inlet side portion 10 is provided on the liquid inlet 8 side, extends in the width direction intersecting the length direction from the liquid inlet 8 side toward the vapor outlet 9 side, and the capillary force is increased. It is a part that is generated and permeated with a liquid-phase working fluid to become a gas-phase working fluid.
  • the length direction is also referred to as the length direction of the evaporator 2.
  • the width direction is also referred to as the width direction of the evaporator 2.
  • the liquid inlet side portion 10 is provided with a structure, it is also referred to as a liquid inlet side structure.
  • the plurality of portions 11 are connected to the liquid inlet side portion 10 and extend in the length direction, generate capillary force, penetrate the liquid-phase working fluid, and become a gas-phase working fluid.
  • the plurality of portions 11 are comb-shaped portions, that is, a plurality of comb-shaped portions.
  • the plurality of vapor flow paths 12 are provided between the plurality of portions 11 and extend in the length direction so that a gas-phase working fluid flows.
  • the plurality of vapor flow paths 12 and the plurality of portions 11 are alternately arranged in the in-plane direction, whereby the evaporator 2 is thinned.
  • the steam channel 12 is also referred to as a steam discharge channel because it is a channel for discharging the vapor-phase working fluid flowing inside the evaporator 2 to the steam pipe 4.
  • the steam outlet side steam channel 13 is provided on the side of the steam outlet 9, extends in the width direction, is connected to the plurality of steam channels 12, and allows a gas-phase working fluid to flow.
  • each of the plurality of portions 11 includes a first groove 14 that communicates two adjacent steam channels 12 among the plurality of steam channels 12.
  • the evaporator 2 includes a first groove 14, a wide groove 15 wider than the first groove 14, and a part of the plurality of steam flow paths 12 and the steam outlet side steam flow paths 13. What is necessary is just to provide the 1st plate-shaped member 16 which has.
  • the 1st plate-shaped member 16 is a metal plate (metal thin plate), specifically, a copper plate (copper thin plate).
  • the 1st plate-shaped member 16 shall have the 1st groove
  • the first groove 14 a plurality of grooves extending in the width direction are provided in parallel in the length direction.
  • the first groove 14 extends in a direction orthogonal to the direction in which the plurality of steam channels 12 extend, and the direction in which the plurality of steam channels 12 extends and the direction in which the first groove 14 extends intersect. It is provided as follows.
  • the loop heat pipe 1 includes an evaporator 2, a condenser 3, a steam pipe 4 and a liquid pipe 5 that connect the evaporator 2 and the condenser 3. It is sealed at a constant pressure.
  • the working fluid changes from a liquid phase to a gas phase by heat supplied to the evaporator 2 from an exothermic component 7 provided outside, and moves to the condenser 3 through the vapor pipe 4 with heat. Due to heat radiation in the condenser 3, the working fluid changes from the gas phase to the liquid phase, and returns to the evaporator 2 through the liquid pipe 5.
  • a member (not shown) called a wick having fine pores (pores) is accommodated, and when the working fluid permeates the wick, capillary force is generated in the fine pores, This is the pumping force for fluid movement.
  • the evaporator 2 is heated by the heat generated by the heat generating component 7, the liquid-phase working fluid that has permeated into the wick evaporates on the surface of the wick to generate a gas-phase working fluid. Since the heat generated by the heat generating component 7 is used for the phase change in the evaporator 2, the heat is removed from the heat generating component 7.
  • the vapor-phase working fluid generated in the evaporator 2 moves to the condenser 3 through the vapor pipe 4, and changes to a liquid-phase working fluid in the condenser 3.
  • the heat generated by the heat generating component 7 is continuously transferred.
  • a gas-phase working fluid (steam) generated by receiving heat in the evaporator 2 passes through the steam pipe 4 and reaches the condenser 3.
  • the loop heat pipe 1 when the loop heat pipe 1 is applied to the mobile device 6, it is necessary to reduce the thickness of the components of the loop heat pipe 1. For example, if the evaporator 2, the steam pipe 4, the condenser 3 and the liquid pipe 5 which are components of the loop heat pipe 1 are individually manufactured and connected by brazing or welding, the thickness is reduced. It ’s difficult.
  • a plurality of thin metal plates are patterned by etching, and these are diffusion-bonded to form the evaporator 2, the steam pipe 4, the condenser 3 and the liquid pipe 5 at a time, and housed in the mobile device 6. It is conceivable to realize a thin loop heat pipe 1 that can be formed. For example, as shown in FIG. 5, six thin metal plates, that is, two surface sheets 17, 18 and four inner layer sheets 19 are laminated and diffusion-bonded to form a thin loop heat pipe 1. be able to.
  • openings are provided in the four inner layer sheets 19 by etching, and the upper and lower sides of the four inner layer sheets 19 having these openings are sandwiched between the two surface sheets 17 and 18.
  • the upper and lower sides of the space formed by the openings of the four inner layer sheets 19 are closed, and the flow path of the condensation pipe 3A provided in the steam pipe 4, the liquid pipe 5, and the condenser 3 is formed. It will be.
  • the wick 20 provided inside the evaporator 2 and having a structure for generating a capillary force for driving the fluid is etched into each of the four inner layer sheets 19 by, for example, diameter.
  • a plurality of fine holes of about 0.2 mm are provided, and the holes provided in each inner layer sheet 19 are shifted in position between the inner layer sheets 19 adjacent to each other in the vertical direction, and at least partially overlap and communicate with each other.
  • a simple channel is formed by extending in three dimensions.
  • the wick 20 provided inside the evaporator 2 by patterning as shown in FIG.
  • the wick 20 includes a portion (connecting portion) 20A to which the liquid pipe 5 of the evaporator 2 is connected, and a plurality of branch portions (rib-like portions) 20B branched from the portion 20A. Become.
  • the part in which the wick 20 inside the evaporator 2 is provided becomes the liquid inlet side part 10 and the plurality of parts 11, and the part in which the wick 20 is not provided is the plurality of steam flow paths 12 and the steam outlet side. It becomes the steam flow path 13.
  • the four-layer inner layer sheet 19 has a portion having a plurality of holes to be the liquid inlet side portion 10 and a plurality of portions 11, respectively, and an opening to be the steam discharge flow paths 12, 13.
  • the evaporator 2 having the wick 20 and the steam discharge passages 12 and 13 can be formed.
  • the working fluid flowing into the evaporator 2 from the liquid pipe 5 permeates into the wick 20, and when the working fluid evaporates due to heat from the heat source, The steam is discharged to the steam pipe 4 through the steam discharge passages 12 and 13 provided between the wicks 20.
  • the wick 20 includes seven branch portions (comb-like portions) 20B, and six steam discharge passages 12 (reference numerals (1) to (1) in FIG. 8) are provided between these branch portions 20B.
  • the movement of the working fluid in the evaporator 2 provided with (6) is illustrated.
  • the flow of the working fluid is shown by a broken line
  • the flow of the steam is shown by a solid line.
  • FIGS. 9A to 9C show infrared thermography images when heat is input to the evaporator 2. Note that FIGS. 9A to 9C show that a thin region is a high temperature and a dark region is a low temperature. In an actual infrared thermographic image, a thin area is a white area and a dark area is a red area. The behavior of the working fluid in the evaporator 2 can be estimated from the temperature distribution in these infrared thermographic images.
  • a heat source (heat generation source) is disposed below the evaporator 2, and immediately after the heat is input from the heat source to the evaporator 2, the heat of the metal thin plate (here, the copper plate) constituting the evaporator 2. Because the entire evaporator is warmed by conduction, it appears light (white).
  • the working fluid in the evaporator 2 begins to evaporate, first, as shown in FIG. 9A, the steam passes through the steam discharge passage 12 indicated by reference numeral (1) in FIG. 9A. By flowing toward the tube 4 and taking heat away at this time, the region of the steam discharge flow path 12 indicated by reference numeral (1) in FIG. 9A becomes cooler and darker (red).
  • the steam is discharged to the steam pipe 4 from the steam discharge passage 12 indicated by reference numeral (3) in FIG. 9B, and in FIG.
  • the portions of the steam discharge flow path 12 shown in (1) and (3) are cooler than the surroundings and become darker (red).
  • FIG. 9 (C) the steam is discharged from the steam discharge flow path 12 indicated by reference numeral (2) in FIG. 9 (C), and in FIG. 9 (C), reference numeral (1), The region of the steam discharge flow path 12 shown in (3) and (2) becomes cooler and darker (red) than the surroundings.
  • the steam is discharged from the steam discharge passage 12 indicated by reference numeral (5), and in FIG. 9C, the reference numerals (1), (3), (2), and (5).
  • steam discharge flow path 12 shown becomes colder than the circumference
  • the steam discharge flow path 12 indicated by reference numeral (1) the steam discharge flow path 12 indicated by reference sign (3), the steam discharge flow path 12 indicated by reference sign (2), and the steam discharge flow path 12 indicated by reference sign (5).
  • the steam discharge flow path 12 indicated by reference numeral (4) and the steam discharge flow path 12 indicated by reference numeral (6) are performed with a time difference in this order.
  • the order of the steam discharge is considered to be caused by temperature and pressure fluctuations in the steam discharge flow path 12 accompanying the evaporation of the working fluid in the evaporator 2.
  • a temperature rise in each part of the loop heat pipe 1 is observed.
  • the time from when heat is transported until the temperature decreases can be regarded as the startup time of the loop heat pipe 1.
  • FIG. 10 shows a temperature profile of each part of the loop heat pipe 1 when the loop heat pipe 1 is activated.
  • the solid line A indicates the result of measuring the temperature at the location indicated by EVP in FIG. 11, that is, the temperature EVP of the evaporator 2 of the loop heat pipe 1.
  • a solid line B indicates the result of measuring the temperature at the location indicated by EVP-OUT in FIG. 11, that is, the temperature EVP-OUT at the outlet (vapor outlet) of the evaporator 2.
  • the solid line C indicates the result of measuring the temperature at the position indicated by V ⁇ b> 1 in FIG. 11, that is, the temperature V ⁇ b> 1 on the evaporator 2 side of the steam pipe 4.
  • V ⁇ b> 1 in FIG. 11
  • the solid line D indicates the result of measuring the temperature at the position indicated by V ⁇ b> 2 in FIG.
  • the solid line E indicates the result of measuring the temperature at the position indicated by V ⁇ b> 3 in FIG. 11, that is, the temperature V ⁇ b> 3 on the condenser 3 side of the steam pipe 4.
  • the solid line F indicates the result of measuring the temperature CND-IN at the location indicated by CND-IN in FIG. 11, that is, the temperature CND-IN at the inlet (steam inlet) of the condenser 3.
  • the start time of the loop heat pipe 1 becomes about 190 seconds as shown in FIG. 10, and the start of the loop heat pipe 1 (that is, the evaporator 2). It has been found that it takes a long time for the heat transfer to the condenser 3.
  • Each of the plurality of portions 11 includes a first groove 14 that communicates two adjacent steam channels 12 among the plurality of steam channels 12.
  • the evaporator 2 provided in the above-described thin loop heat pipe 1 in which the wick 20 patterned as shown in FIG. 7 is provided inside the evaporator 2 as shown in FIG. 11 is provided with the 1st groove
  • six thin metal plates that is, two surface sheets 17 and 18 and four inner layer sheets 19 are laminated and diffusion-bonded to form a thin loop heat pipe 1.
  • a depth smaller than the plate thickness is obtained by processing such as half-etching in a region to be a plurality of portions 11 of at least one evaporator 2 of the two surface sheets 17 and 18.
  • the first groove 14 a plurality of grooves extending in the width direction are provided parallel to each other in the length direction, and a region that becomes the plurality of steam flow paths 12 and the steam outlet side steam flow paths 13.
  • the first wide groove 15 may be provided in the first.
  • the number of thin metal plates, the number of the first grooves 14 and the first wide grooves 15, the distance, and the shape are not limited to those exemplified here.
  • the evaporator 2 is wider than the first groove 14 and the first groove 14, and the first wide groove 15 that becomes a part of the plurality of steam flow paths 12 and the steam outlet side steam flow paths 13.
  • a first plate-like member 16 (here, one of the two surface sheets 17, 18), a portion having a plurality of holes, and a plurality of steam passages 12 and one of the steam outlet side steam passages 13. It has a structure in which a plurality of third plate-like members (here, four inner layer sheets 19) having openings serving as parts are joined.
  • the plurality of portions 11 and the liquid inlet side flow path 10 include a wick 20 (see FIG.
  • the plurality of third plate-like members are metal plates (metal thin plates), specifically, copper plates (copper thin plates).
  • the first groove 14 may be a groove that can generate a capillary force.
  • each of the plurality of portions 11 includes a second groove 21 extending in the length direction, and the second groove 21 is also a groove capable of generating a capillary force. preferable.
  • the second groove 21 the liquid-phase working fluid can easily flow in the length direction. That is, when the first groove 14 capable of generating the capillary force described above is provided, the liquid-phase working fluid easily spreads in the width direction and hardly flows in the length direction, so that the capillary force can be generated. By providing the second groove 21, the liquid-phase working fluid can easily flow in the length direction.
  • the evaporator 2 is used for the first plate member 16 (see FIG. 1; one of the surface sheets 17 and 18 in FIG. 5) and the third plate member (four inner layer sheets 19 in FIG. 5).
  • a second plate-like shape having a second groove 21 and a second wide groove 22 which is wider than the second groove 21 and becomes a part of the plurality of steam channels 12 and the steam outlet side steam channel 13.
  • the member 23 is also provided, and the first groove 14 and the second groove 21 may be grooves that can generate a capillary force.
  • the 2nd plate-shaped member 23 is a metal plate (metal thin plate), specifically, a copper plate (copper thin plate).
  • the second plate-like member 23 includes a second groove 21 and a second wide groove 22 provided to have a depth smaller than the plate thickness by processing such as half etching.
  • the second groove 21 a plurality of grooves extending in the length direction are provided in parallel in the width direction.
  • channel 21 are provided so that it may orthogonally cross.
  • the number, interval, and shape of the second grooves 21 and the second wide grooves 22 are not limited to those exemplified here.
  • a thin metal plate that is, two surface sheets 17 and 18 and four inner layer sheets 19 are laminated and diffusion-bonded to form a thin loop heat pipe 1. 1 (see FIGS. 5 to 7), as shown in FIG. 1, a region to be a plurality of portions 11 of the evaporator 2 of one of the two top sheets 17 and 18 (here, the first plate member 16)
  • a plurality of grooves extending in the width direction and capable of generating capillary force are formed in parallel with each other in the length direction so as to have a depth smaller than the plate thickness by processing such as half etching.
  • the first wide groove 15 is provided in a region that becomes the plurality of steam flow paths 12 and the steam outlet side steam flow paths 13, and the other of the two top sheets 17, 18 as shown in FIG. (Here, the second plate-like member 23)
  • a plurality of grooves extending in the length direction and capable of generating a capillary force are formed as the second groove 21 so that the depth becomes smaller than the plate thickness by processing such as half etching in the region to be the portion 11 of
  • the second wide grooves 22 may be provided in regions that are parallel to each other and arranged in the width direction and that are to be the plurality of steam flow paths 12 and the steam outlet side steam flow paths 13.
  • the liquid inlet side portion 10 and the plurality of portions 11 of the evaporator 2 are configured to include the wick 20 (see FIG. 7) configured as described above, but this is not limitative.
  • the liquid inlet side portion 10 and the plurality of portions 11 of the evaporator 2 may be portions where a capillary force is generated and the liquid-phase working fluid permeates and becomes a gas-phase working fluid.
  • the liquid inlet side portion 10 and the plurality of portions 11 of the evaporator 2 may be configured not to include the wick 20 configured as described above.
  • the plurality of portions 11 of the evaporator 2 are respectively connected to the first grooves 14 communicating with the two adjacent steam channels 12 among the plurality of steam channels 12, and
  • the second groove 21 extending in the length direction is provided, and the liquid inlet side portion 10 of the evaporator 2 is further provided with a third groove 24 extending in the width direction, a region continuous with the liquid inlet 8, and a plurality of the grooves.
  • Each of the portions 11 may be provided in a continuous region, and may include a fourth groove 25 extending in the length direction.
  • the first groove 14, the second groove 21, the third groove 24, and the fourth groove 25 may be grooves that can generate a capillary force.
  • interval, and a shape are not restricted to what is illustrated here.
  • the third groove 24 may be provided in the first plate member 16 described above. That is, the first plate-like member 16 has the first groove 14, the first wide groove 15, and the third groove 24 provided to have a depth smaller than the plate thickness by processing such as half etching. It should be.
  • the third groove 24 a plurality of grooves extending in the width direction are provided in parallel in the length direction.
  • the first plate-like member 16 has a portion extending in the length direction of the first groove 14, the third groove 24, and the first wide groove 15 (a portion that becomes a part of the plurality of steam flow paths 12). Are provided so that the extending directions thereof are orthogonal to each other.
  • the first plate-like member 16 includes a portion extending in the width direction of the first groove 14, the third groove 24 and the first wide groove 15 (a portion which becomes a part of the steam outlet side steam flow path 13. ) Are provided so that the extending directions thereof are parallel to each other.
  • a fourth groove 25 may be provided in the second plate-like member 23 described above. That is, the second plate-like member 23 has the second groove 21, the second wide groove 22, and the fourth groove 25 provided to have a depth smaller than the plate thickness by processing such as half etching. It should be.
  • the fourth groove 25 a plurality of grooves extending in the length direction are provided in parallel to each other in the width direction in a region continuous with the liquid inlet 8 and a region where each of the plurality of portions 11 is continuous.
  • the second plate-like member 23 includes portions extending in the length direction of the second groove 21, the fourth groove 25, and the second wide groove 22 (portions that become a part of the plurality of steam channels 12). However, these are provided so that the extending directions thereof are parallel to each other. That is, the second plate-like member 23 includes portions extending in the length direction of the plurality of second grooves 21, the plurality of fourth grooves 25, and the second wide grooves 22 along the width direction (a plurality of steam flow paths. 12 are alternately provided. Further, here, the second plate-like member 23 has a portion extending in the width direction of the second groove 21, the fourth groove 25 and the second wide groove 22 (a portion which becomes a part of the steam outlet side steam flow path 13. ) Are provided so that the extending directions thereof are orthogonal to each other.
  • the first wide groove 15 and the second wide groove 22 may be grooves having a size that can form a flow path through which the gas-phase working fluid flows and discharge the gas-phase working fluid to the vapor pipe 4. Also called.
  • the grooves 26, 27 are also formed in the inlets of the evaporator 2 of the first plate member 16 and the second plate member 23, that is, in the region that becomes the liquid inlet 8.
  • FIGS. 13 and 14 show that the grooves 26, 27 are also formed in the inlets of the evaporator 2 of the first plate member 16 and the second plate member 23, that is, in the region that becomes the liquid inlet 8.
  • a plurality of grooves 26 extending in the width direction are provided in the inlet of the evaporator 2 of the first plate-like member 16, i.e., the region serving as the liquid inlet 8.
  • a plurality of grooves 28 extending in the length direction may be provided.
  • the evaporator 2 is wider than the first groove 14, the third groove 24, the first groove 14, and the third groove 24, and a part of the plurality of steam channels 12 and the steam outlet side steam channels 13.
  • the first plate-like member 16 having the first wide groove 15 and the second groove 21, the fourth groove 25, the second groove 21, and the fourth groove 25 are wider than the plurality of steam flow paths 12 and steam.
  • the second plate-like member 23 having the second wide groove 22 that becomes a part of the outlet side steam flow path 13 is connected to the side having the first groove 14, the third groove 24, and the first wide groove 15, and the second.
  • the groove 21, the fourth groove 25, and the side having the second wide groove 22 may be opposed to each other and bonded to each other.
  • the evaporator 2 is constituted by the two plate-like members of the first plate-like member 16 and the second plate-like member 23, so that the cost can be reduced. That is, the loop heat pipe 1 can be thinned, the startup time can be shortened, and the cost can be reduced.
  • the plurality of portions 11 of the evaporator 2 are provided so that the first groove 14 capable of generating a capillary force and the second groove 21 capable of generating a capillary force intersect each other (here, orthogonal). It communicates and constitutes a fine channel. Further, the liquid inlet side portion 10 of the evaporator 2 is provided so that the third groove 24 capable of generating a capillary force and the fourth groove 25 capable of generating a capillary force intersect with each other (here, orthogonal). Communicate with each other to form a fine channel.
  • the grooves 14, 24, 21, and 25 provided in these portions are provided inside the evaporator of a general loop heat pipe. It functions in the same way as the wick, and capillary force is generated, and the liquid-phase working fluid penetrates to become a gas-phase working fluid.
  • the second groove 21 and the fourth groove 25 extend along the length direction of the evaporator 2, that is, the direction in which the liquid-phase working fluid flows.
  • the first groove 14, the second groove 21, the third groove 24, and the fourth groove 25 cause the liquid-phase working fluid to flow in a plane. Further, two adjacent steam channels 12 among the plurality of steam channels 12 are communicated by the first groove 14, so that there is no pressure difference between the plurality of steam channels 12, and the gas-phase working fluid is The steam pipe 4 is uniformly discharged, and the start-up time of the loop heat pipe 1 can be shortened.
  • the plurality of vapor flow paths 12 of the evaporator 2 are each configured by a portion extending in the length direction of the first wide groove 15 and a portion extending in the length direction of the second wide groove 22.
  • the steam outlet side steam flow path 13 of the evaporator 2 is constituted by a portion extending in the width direction of the first wide groove 15 and a portion extending in the width direction of the second wide groove 22. Specifically, for example, half-etching or the like is performed on a region to be one evaporator 2 of the two metal thin plates (two surface sheets) as the first plate-like member 16 and the second plate-like member 23.
  • the first groove 14, the first wide groove 15, and the third groove 24 are provided so as to have a depth smaller than the plate thickness, and, for example, half etching is performed in a region that becomes the other evaporator 2 of the two metal thin plates.
  • the second groove 21, the second wide groove 22 and the fourth groove 25 are provided so as to have a depth smaller than the plate thickness by processing such as, and further, the regions to be the respective steam pipes 4 of the two metal thin plates In the region to be the condensing tube 3A provided in the condenser 3 and the region to be the liquid pipe 5, the concavities constituting the respective flow paths of the steam pipe 4, the condensing tube 3A provided in the condenser 3 and the liquid pipe 5, respectively.
  • These two thin metal plates are provided with grooves and recesses. It is opposed to surfaces between which kicked contacts, and diffusion bonding may be a loop heat pipe 1 thin.
  • the evaporator 2, the steam pipe 4, the condenser 3, and the liquid pipe 5 are integrally formed by joining the two plate-like members of the first plate-like member 16 and the second plate-like member 23.
  • the evaporator 2, the steam pipe 4, the condenser 3 and the liquid pipe 5 are made of the same material (here, copper).
  • the concave portion provided in the region of the first plate-like member 16 and the second plate-like member 23 that becomes the condensing tube 3A increases the efficiency of heat exchange with the outside air, and the liquefaction by condensation can be sufficiently performed. It is provided meandering.
  • the loop heat pipe 1 constituted by the two plate-like members of the first plate-like member 16 and the second plate-like member 23 can be manufactured as follows. First, a region of the first plate-like member 16 that becomes the evaporator 2 is half-etched, and a plurality of portions extending in the length direction from the liquid inlet 8 side to the vapor outlet 9 side of the region that becomes the evaporator 2 are extended.
  • the first groove 14 capable of generating a capillary force is formed so that the regions to communicate with each other, and the third groove 24 that extends in the width direction to the region serving as the liquid inlet side portion 10 and can generate the capillary force.
  • the first wide groove 15 having a width wider than the first groove 14 and the third groove 24 is formed in a region to be a plurality of steam flow paths 12 and a region to be the steam outlet side steam flow path 13 ( For example, see FIGS. 13, 15, and 17).
  • the second plate member 23 is half-etched in the region to be the evaporator 2 to form the second groove 21 that extends in the length direction and can generate capillary force in the region to be the plurality of portions 11.
  • a fourth groove 25 extending in the length direction and capable of generating a capillary force is formed in a region connected to the liquid inlet 8 included in a region serving as the liquid inlet side portion 10 and a region connected to each of the plurality of portions 11.
  • the second wide groove 22 having a width wider than the second groove 21 and the fourth groove 25 is formed in a region to be the plurality of steam channels 12 and a region to be the steam outlet side steam channel 13 (for example, FIG. 14). FIG. 16).
  • the first plate-like member 16 and the second plate-like member 23 are connected to the side having the first groove 14, the third groove 24, and the first wide groove 15, and the second groove 21, the fourth groove 25, and the second wide width.
  • the side having the groove 22 is opposed to be joined. In this way, the loop heat pipe 1 can be manufactured.
  • the steam pipe 4, the condenser pipe 3A, and the liquid pipe 5 are not provided with grooves, but the present invention is not limited to this.
  • the liquid tube 5 may have a liquid tube groove 29 capable of generating a capillary force.
  • the liquid pipe 5 may be provided with a liquid pipe groove 29A that extends in the length direction of the liquid pipe 5 and can generate a capillary force.
  • the first plate-like member 16 is provided with a first liquid tube groove 29A that extends in the length direction of the region that becomes the liquid tube 5 and can generate a capillary force in the region that becomes the liquid tube 5, and the second plate.
  • a second liquid tube groove 29A that extends in the length direction of the region that becomes the liquid tube 5 and can generate a capillary force is provided in the region that becomes the liquid tube 5 of the member 23, and the liquid tube 5 is connected to the first plate member.
  • 16 and the second plate-like member 23 may be provided with a structure in which the side having the first liquid pipe groove 29A and the side having the second liquid pipe groove 29A are opposed to each other.
  • the region that becomes the liquid pipe 5 of the first plate-like member 16 is half-etched, and the region that becomes the liquid pipe 5
  • the region that becomes the liquid tube 5 of the second plate-like member 23 is half-cut. Etching is performed to form a second liquid tube groove 29A that extends in the length direction of the region to be the liquid tube 5 and can generate a capillary force, and joins the first plate member 16 and the second plate member 23.
  • first plate-like member 16 and the second plate-like member 23 are connected to the side having the first groove 14, the third groove 24, the first wide groove 15 and the first liquid pipe groove 29A and the second groove 21, Fourth groove 25, second wide groove 22, and second liquid pipe groove 2 Is opposed to the side having the A, it may be to join.
  • the liquid pipe 5 extends in the length direction of the liquid pipe 5, and the first liquid pipe groove 29 ⁇ / b> A that can generate a capillary force, and in the width direction of the liquid pipe 5.
  • a second liquid tube groove 29B that extends and can generate a capillary force may be provided.
  • the first liquid tube groove 29 ⁇ / b> A that extends in the length direction of the region to be the liquid tube 5 in the region to be the liquid tube 5 of the first plate-like member 16 and can generate a capillary force.
  • FIG. 19 the first liquid tube groove 29 ⁇ / b> A that extends in the length direction of the region to be the liquid tube 5 in the region to be the liquid tube 5 of the first plate-like member 16 and can generate a capillary force.
  • the second liquid pipe groove 29 ⁇ / b> B extends in the width direction of the area to be the liquid pipe 5 in the area to be the liquid pipe 5 of the second plate member 23 and can generate a capillary force.
  • the liquid pipe 5 is joined to the first plate member 16 and the second plate member 23 with the side having the first liquid pipe groove 29A and the side having the second liquid pipe groove 29B facing each other. What is necessary is just to provide the structure which did.
  • the region that becomes the liquid pipe 5 of the first plate-like member 16 is half-etched, and the region that becomes the liquid pipe 5
  • the region that becomes the liquid tube 5 of the second plate-like member 23 is half-cut.
  • the first plate-like member 16 and the second plate-like member 23 are connected to the side having the first groove 14, the third groove 24, the first wide groove 15 and the first liquid pipe groove 29A, the second groove 21, 4 grooves 25, second wide grooves 22, and second liquid pipe grooves 29 Is opposed to the side having may be to join.
  • the liquid pipe 5 may be provided with a wick instead of the liquid pipe groove 29.
  • a wick having the same configuration as the wick 20 provided in the above-described evaporator 2 may be provided in the liquid pipe 5.
  • the liquid pipe groove 29 and the wick may be provided over the entire liquid pipe 5 or may be provided in a part of the liquid pipe 5. Further, the number, interval, and shape of the liquid pipe grooves 29 are not limited to those illustrated here.
  • the liquid pipe 5 is also provided with the liquid pipe groove 29 and the wick that can generate the capillary force in the case where the mobile device is oriented vertically and the position of the heat generating component 7 that is the heat source is on the upper side. Even in such a case, the capillary force acts so that the liquid-phase working fluid flows inside the liquid tube 5 and flows into the evaporator 2, and the loop heat pipe 1 is stabilized. This is to make it work.
  • a thin copper plate having a thickness of about 3 mm is used, and this is patterned with a resist so as to have a shape as shown in FIG.
  • the width of the steam pipe 4 and the condensation pipe 3A provided in the condenser 3 is about 8 mm
  • the width of the liquid pipe 5 is about 6 mm.
  • Each flow path of the steam pipe 4, the condenser pipe 3A, and the liquid pipe 5 is formed by half-etching a copper thin plate to a depth of about 0.15 mm.
  • the inside of the evaporator 2 is formed by half etching so as to form a pattern as shown in FIG.
  • channel 24 (for example, refer FIG.13, FIG.15, FIG.17) is about 0.1 mm, and the depth is about 0.12 mm.
  • the width of the groove, which is the first wide groove 15 (see, for example, FIGS. 13, 15, and 17) is about 1 mm and the depth is about 0.15 mm.
  • FIG. 21A a pattern is given to the region where the first groove 14 and the third groove 24 are provided.
  • a thin copper plate having a thickness of about 3 mm is used, and this is patterned with a resist so as to have a shape as shown in FIG.
  • processing is performed so that the evaporator 2, the steam pipe 4, the condenser 3, and the liquid pipe 5 are arranged at symmetrical positions with respect to what is processed into a shape as shown in FIG.
  • the width of the steam pipe 4 and the condensation pipe 3A provided in the condenser 3 is about 8 mm
  • the width of the liquid pipe 5 is about 6 mm.
  • Each flow path of the steam pipe 4, the condenser pipe 3A, and the liquid pipe 5 is formed by half-etching a copper thin plate to a depth of about 0.15 mm.
  • the inside of the evaporator 2 is formed by half etching so as to form a pattern as shown in FIG.
  • channel 25 (for example, refer FIG. 14, FIG. 16) is about 0.1 mm, and the depth is about 0.12 mm.
  • the width of the groove which is the second wide groove 22 (see, for example, FIGS. 14 and 16) is about 1 mm, and the depth is about 0.15 mm.
  • a region is provided in the area where the second groove 21 and the fourth groove 25 are provided.
  • the loop heat pipe 1 can be produced by injecting water (or ethanol or chlorofluorocarbon) as a working fluid.
  • the liquid pipe groove 29 capable of generating a capillary force is formed in the liquid pipe 5
  • the liquid of each copper thin plate is formed. What is necessary is just to form the groove
  • a liquid pipe groove 29A extending in the length direction of the liquid pipe 5 may be formed in the area of the both copper thin plates that will be the liquid pipe 5, or the liquid pipe may be formed in the area of the one copper thin plate that will be the liquid pipe 5 5 may be formed, and a liquid pipe groove 29 ⁇ / b> B extending in the width direction of the liquid pipe 5 may be formed in a region that becomes the liquid pipe 5 of the other copper thin plate.
  • the width of the liquid tube groove 29 may be about 0.1 mm, and the depth may be about 0.12 mm.
  • a pattern is given to a region where the first groove 14 and the third groove 24 are provided and a region where the liquid pipe groove 29 is provided.
  • the shape and piping pattern of the loop heat pipe 1 are not limited to those described above.
  • a copper thin plate is used as the metal thin plate, but it is sufficient that the metal thin plate can be collectively formed by diffusion bonding.
  • the material of the metal thin plate is not limited to copper, and pattern formation and diffusion by etching or the like. Any material suitable for bonding may be used.
  • the dimensions of the loop heat pipe 1 are not limited to those described above, and may be optimized as appropriate according to the required heat transport amount, heat transport distance, pipe height, and pipe width.
  • FIG. 23 shows a profile of the inlet temperature of the condenser 3 at the time of start-up in the loop heat pipe 1 of the above-described embodiment and the comparative example.
  • a solid line A is configured by the loop heat pipe 1 of the above-described embodiment, that is, the two thin metal plates as described above, and the evaporator 2 has the first groove 14 and the second groove 21.
  • channel 25 is shown.
  • a solid line B is constituted by a loop heat pipe of a comparative example, that is, six metal thin plates, provided with a wick on the evaporator, and has a first groove, a second groove, a third groove, and a fourth groove.
  • the profile of the inlet temperature of the condenser of the loop heat pipe which is not provided is shown.
  • the loop heat pipe 1 of the above-mentioned embodiment it is shortened to about 120 seconds.
  • the startup time can be shortened as compared with the loop heat pipe of the comparative example.
  • the loop heat pipe 1 in which the evaporator 2 is thinned has an advantage that the startup time for heat transfer can be shortened.
  • the first groove 14 extends in a direction orthogonal to the direction in which the plurality of steam channels 12 extend, and the direction in which the plurality of steam channels 12 extends and the direction in which the first groove 14 extends. (See, for example, FIG. 13), but is not limited to this, and the first groove 14 communicates two adjacent steam channels 12 among the plurality of steam channels 12. As long as it is provided. For example, as shown in FIG.
  • the first groove 14 extends obliquely with respect to the direction in which the plurality of steam channels 12 extend, and the direction in which the plurality of steam channels 12 extend and the direction in which the first groove 14 extends are defined. You may be provided so that it may cross.
  • a plurality of grooves 14 extending in the width direction are provided in parallel in the length direction (see, for example, FIG. 13).
  • a plurality of grooves 14X extending in the length direction are arranged in parallel with each other in the width direction as shown in FIG. Also good. That is, as the first groove provided in each of the plurality of portions 11, a plurality of grooves 14 extending in the width direction and a plurality of grooves 14X extending in the length direction may be provided.
  • the plurality of grooves 14 extending in the width direction and the plurality of grooves 14X extending in the length direction are provided so as to be orthogonal to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

ループヒートパイプの蒸発器を、液管(5)が接続されている液流入口(8)と、蒸気管(4)が接続されている蒸気流出口(9)と、液流入口の側に設けられ、液流入口の側から蒸気流出口の側へ向かう長さ方向に交差する幅方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる液流入口側部分(10)と、液流入口側部分に連なり、長さ方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる複数の部分(11)と、複数の部分の間に設けられ、長さ方向へ延び、気相の作動流体が流れる複数の蒸気流路(12)と、蒸気流出口の側に設けられ、幅方向へ延び、複数の蒸気流路に連なり、気相の作動流体が流れる蒸気流出口側蒸気流路(13)とを備えるものとし、複数の部分を、それぞれ、複数の蒸気流路のうち隣り合う2つの蒸気流路を連通する第1溝(14)を備えるものとする。

Description

ループヒートパイプ及びその製造方法並びに電子機器
 本発明は、ループヒートパイプ及びその製造方法並びに電子機器に関する。
 例えばスマートフォンやタブレット端末等の小型、薄型のモバイル用途の電子機器では、発熱部品を冷却するのに、例えば金属板や熱拡散シートなどのシート状の熱伝導部材が広く使用されている。例えば、金属板としては、銅、アルミ、マグネシウム合金、及び、これらを積層した薄板などが使用されているが、その熱伝導は材料の物性値の制約を受ける。また、例えば、熱拡散シートとしては、グラファイトシートが使用されているが、熱伝導率が約500~約1500W/mK程度であり、この程度の熱伝導率では発熱部品の発熱量が多くなると対応できなくなるおそれがある。
 そこで、より大きな熱量を効率的に移動・拡散させるために、気液2相流による潜熱輸送を用いた熱移動デバイスであるヒートパイプを利用することが考えられる。例えば、直径約3~約4mmのヒートパイプでは、熱伝導率が約1500~約2500W/mK程度に相当し、シート状の熱伝導部材と比較して大きな値を示す。
 しかしながら、効率的な熱輸送には、熱輸送管であるパイプの直径を大きくすることが有効であり、これが実装上の障害となって、モバイル用途の電子機器への適用は進んでいない。
 この場合、ヒートパイプのパイプ形状を扁平にすることが考えられるが、扁平にすることで、パイプ内での作動流体の流動が阻害され、熱輸送の能力が低下し、熱伝導率は約500~約1000W/mK相当程度にまで低下してしまう。
 これに対し、ループヒートパイプは、気相の作動流体と液相の作動流体の流路が独立しており、作動流体が流れる方向が一方向になるため、液相の作動流体と気相の作動流体とが管内を往復するヒートパイプと比較して、作動流体の流動抵抗を小さくすることができ、効率的な熱輸送が可能である。
 そこで、モバイル用途の電子機器にループヒートパイプを用いることが考えられる。
特開2003-185369号公報 特開2004-063684号公報
 ところで、モバイル用途の小型、薄型の電子機器の中にループヒートパイプを設ける場合、ループヒートパイプの構成部品を薄型化することになる。
 しかしながら、ループヒートパイプを薄型化すると、ループヒートパイプの構成部品である蒸発器の中で温度と圧力が不均一になる事態が生じてしまい、蒸発器からの気相の作動流体の排出が均一とならず、ループヒートパイプの起動(即ち、蒸発器から凝縮器までの熱移動)に時間がかかってしまうことがわかった。
 そこで、薄型化したループヒートパイプにおいて、熱移動のための起動時間を短縮できるようにしたい。
 本ループヒートパイプは、液相の作動流体が蒸発する蒸発器と、気相の作動流体が凝縮する凝縮器と、蒸発器と凝縮器とを接続し、気相の作動流体が流れる蒸気管と、凝縮器と蒸発器とを接続し、液相の作動流体が流れる液管とを備え、蒸発器は、液管が接続されている液流入口と、蒸気管が接続されている蒸気流出口と、液流入口の側に設けられ、液流入口の側から蒸気流出口の側へ向かう長さ方向に交差する幅方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる液流入口側部分と、液流入口側部分に連なり、長さ方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる複数の部分と、複数の部分の間に設けられ、長さ方向へ延び、気相の作動流体が流れる複数の蒸気流路と、蒸気流出口の側に設けられ、幅方向へ延び、複数の蒸気流路に連なり、気相の作動流体が流れる蒸気流出口側蒸気流路とを備え、複数の部分は、それぞれ、複数の蒸気流路のうち隣り合う2つの蒸気流路を連通する第1溝を備える。
 本電子機器は、発熱部品と、発熱部品を冷却するループヒートパイプとを備え、ループヒートパイプは、上述のように構成される。
 本ループヒートパイプの製造方法は、第1板状部材の蒸発器となる領域を加工して、蒸発器となる領域の液流入口の側から蒸気流出口の側へ向かう長さ方向へ延びる複数の部分となる領域に、長さ方向に交差する幅方向へ延び、複数の部分となる領域の間に設けられる複数の蒸気流路となる領域のうち隣り合う2つの蒸気流路となる領域が連通するように、毛細管力を発生させうる第1溝を形成し、液流入口側部分となる領域に、幅方向へ向けて延び、毛細管力を発生させうる第3溝を形成し、複数の蒸気流路となる領域及び蒸気流出口側蒸気流路となる領域に、第1溝及び第3溝よりも幅が広い第1幅広溝を形成する工程と、第2板状部材の蒸発器となる領域を加工して、複数の部分となる領域に、長さ方向へ延び、毛細管力を発生させうる第2溝を形成し、液流入口側部分となる領域に含まれる液流入口に連なる領域及び複数の部分のそれぞれが連なる領域に、長さ方向へ延び、毛細管力を発生させうる第4溝を形成し、複数の蒸気流路となる領域及び蒸気流出口側蒸気流路となる領域に、第2溝及び第4溝よりも幅が広い第2幅広溝を形成する工程と、第1板状部材と第2板状部材とを、第1溝、第3溝及び第1幅広溝を有する側と第2溝、第4溝及び第2幅広溝を有する側とを対向させて、接合する工程とを含む。
 したがって、本ループヒートパイプ及びその製造方法並びに電子機器によれば、薄型化したループヒートパイプにおいて、熱移動のための起動時間を短縮できるという利点がある。
本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。 本実施形態にかかるループヒートパイプを備える電子機器の構成を示す模式図である。 本実施形態にかかるループヒートパイプを備える電子機器の構成を示す模式図である。 ループヒートパイプの構成及び動作を説明するための模式図である。 6枚の金属薄板を用いたループヒートパイプの構成を示す模式図である。 6枚の金属薄板を用いたループヒートパイプに備えられる蒸気管、液管、凝縮器に備えられる凝縮管の各流路の構成を説明するための模式図である。 6枚の金属薄板を用いたループヒートパイプに備えられる蒸発器の内部に設けられるウィックの構成を説明するための模式図である。 6枚の金属薄板を用いたループヒートパイプに備えられる蒸発器の内部における作動流体の移動について説明するための模式図である。 (A)~(C)は、6枚の金属薄板を用いたループヒートパイプに備えられる蒸発器に熱が入力された時の赤外線サーモグラフィ画像を示す図である。 6枚の金属薄板を用いたループヒートパイプが起動する時のループヒートパイプの各部の温度プロファイルを示す図である。 6枚の金属薄板を用いたループヒートパイプが起動する時のループヒートパイプの各部の温度プロファイルを求める際の温度測定部位を示す図である。 本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。 本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。 本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。 本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。 本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。 本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。 本実施形態にかかるループヒートパイプに備えられる液管が溝を備える場合の構成例を示す模式図である。 本実施形態にかかるループヒートパイプに備えられる液管が溝を備える場合の構成例を示す模式図であって、液管の幅方向に沿う断面図である。 本実施形態にかかるループヒートパイプに備えられる液管が溝を備える場合の構成例を示す模式図であって、図19のA-A′線で示す位置の液管の長さ方向に沿う断面図である。 (A)、(B)は、本実施形態にかかるループヒートパイプの具体的な構成例及びその製造方法を説明するための模式図である。 本実施形態にかかるループヒートパイプに備えられる液管が溝を備える場合の構成例を示す模式図である。 本実施形態にかかる2枚の金属薄板を用いたループヒートパイプが起動する時のループヒートパイプの凝縮器の入口の温度プロファイルを示す図である。 本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。 本実施形態にかかるループヒートパイプに備えられる蒸発器の構成例を示す模式図である。
 以下、図面により、本発明の実施の形態にかかるループヒートパイプ及びその製造方法並びに電子機器について説明する。
 まず、本実施形態にかかるループヒートパイプについて、図1~図25を参照しながら説明する。
 本実施形態にかかるループヒートパイプは、例えばスマートフォンやタブレット端末等の小型、薄型のモバイル用途の電子機器に備えられ、電子機器に備えられる発熱部品(例えばLSIチップ)が発生した熱を移動させ、熱源である発熱部品を冷却する薄型のループヒートパイプである。なお、モバイル用途の小型、薄型の電子機器をモバイル機器ともいう。また、発熱部品を電子部品又は発熱素子ともいう。
 本実施形態のループヒートパイプは、図2に示すように、液相の作動流体が蒸発する蒸発器2と、気相の作動流体が凝縮する凝縮器3と、蒸発器2と凝縮器3とを接続し、気相の作動流体が流れる蒸気管4と、凝縮器3と蒸発器2とを接続し、液相の作動流体が流れる液管5とを備える。ここでは、凝縮器3は、凝縮管3Aと、熱拡散プレート(放熱プレート)3Bとを備える。そして、このように構成されるループヒートパイプ1は、図2、図3に示すように、モバイル機器6に備えられる発熱部品7に蒸発器2が熱的に接続されるようにして、モバイル機器6の内部に収納される。なお、作動流体は、例えば、水、エタノール、アセトン、メタノール、フロン類などである。
 ここでは、蒸発器2は1つの液流入口と1つの蒸気流出口を有し、凝縮器3は1つの蒸気流入口と1つの液流出口を有する。そして、蒸発器2の蒸気流出口と凝縮器3の蒸気流入口が蒸気管4を介して接続されており、凝縮器3の液流出口と蒸発器2の液流入口が液管5を介して接続されている。つまり、蒸発器2、蒸気管4、凝縮器3、液管5がループ状に連結されており、これらの内部に封入された作動流体が一方向に流れるようになっている。ここでは、作動流体は、発熱部品7から蒸発器2に供給される熱で液相から気相へ変化し、熱を伴って蒸気管4を通って凝縮器3へ移動し、凝縮器3における放熱によって気相から液相へ変化し、液管5を通って蒸発器2へ戻るようになっている。このため、液相の作動流体と気相の作動流体とが管内を往復するヒートパイプと比較して、作動流体の流動抵抗を小さくすることができ、効率的な熱輸送が可能である。
 また、蒸発器2は、図7に示すように、液管5が接続されている液流入口8と、蒸気管4が接続されている蒸気流出口9と、液相の作動流体が浸透し、気相の作動流体となる液流入口側部分10及び複数の部分11と、気相の作動流体が流れる複数の蒸気流路12及び蒸気流出口側蒸気流路13とを備える。
 ここで、液流入口側部分10は、液流入口8の側に設けられ、液流入口8の側から蒸気流出口9の側へ向かう長さ方向に交差する幅方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる部分である。なお、長さ方向を蒸発器2の長さ方向ともいう。また、幅方向を蒸発器2の幅方向ともいう。また、液流入口側部分10には、構造体が設けられているため、液流入口側構造体ともいう。
 また、複数の部分11は、液流入口側部分10に連なり、長さ方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる部分である。ここでは、複数の部分11は、くし歯状の部分、即ち、くし歯状の複数の部分である。なお、複数の部分11には、構造体が設けられているため、複数の構造体ともいう。
 また、複数の蒸気流路12は、複数の部分11の間に設けられ、長さ方向へ延び、気相の作動流体が流れるようになっている。つまり、複数の蒸気流路12と複数の部分11が、面内方向に交互に配置されており、これにより、蒸発器2の薄型化が図られている。なお、蒸気流路12は、蒸発器2の内部を流れる気相の作動流体を蒸気管4へ排出する流路であるため、蒸気排出流路ともいう。
 また、蒸気流出口側蒸気流路13は、蒸気流出口9の側に設けられ、幅方向へ延び、複数の蒸気流路12に連なり、気相の作動流体が流れるようになっている。
 特に、図1に示すように、複数の部分11は、それぞれ、複数の蒸気流路12のうち隣り合う2つの蒸気流路12を連通する第1溝14を備える。このように、隣り合う蒸気流路12同士が、第1溝14によって連通しているため、蒸気流路12間の圧力差がなくなり、蒸気発生に伴う蒸発器2内の圧力分布がなくなって、熱源である発熱部品7からの熱によって発生した気相の作動流体が均一に蒸気管4に排出されることになる。これにより、ループヒートパイプ1の起動時間を短縮することができる。
 具体的には、蒸発器2を、第1溝14と、第1溝14よりも幅が広く、複数の蒸気流路12及び蒸気流出口側蒸気流路13の一部となる幅広溝15とを有する第1板状部材16を備えるものとすれば良い。ここでは、第1板状部材16は、金属板(金属薄板)であり、具体的には、銅板(銅薄板)である。また、第1板状部材16は、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように設けられた第1溝14及び幅広溝15を有するものとする。ここでは、第1溝14として、幅方向へ延びる複数の溝が、互いに平行に長さ方向に並べて設けられている。また、ここでは、第1溝14は、複数の蒸気流路12が延びる方向に対して直交する方向に延び、複数の蒸気流路12が延びる方向と第1溝14が延びる方向とが交差するように設けられている。
 ところで、上述のように構成しているのは、以下の理由による。
 ループヒートパイプ1は、図4に示すように、蒸発器2、凝縮器3、蒸発器2と凝縮器3とを連結する蒸気管4及び液管5を備え、これらの内部には作動流体が一定圧力で封入されている。
 作動流体は、外部に設けられた発熱部品7から蒸発器2に供給される熱で液相から気相へと変化し、熱を伴って蒸気管4を通って凝縮器3に移動する。凝縮器3における放熱によって、作動流体は気相から液相へ変化し、液管5を通って蒸発器2に戻る。
 蒸発器2の内部には、微細孔(細孔)をもつウィックと呼ばれる部材(図示せず)が収納されており、ウィックに作動流体が浸透する際に、微細孔において毛細管力が発生し、これが流体移動のためのポンピング力となる。
 蒸発器2が、発熱部品7が発生した熱によって加熱されると、ウィック内に浸透した液相の作動流体が、ウィックの表面で蒸発して気相の作動流体が発生する。この蒸発器2内における相変化に発熱部品7が発生した熱が使われるため、発熱部品7から熱が奪われることになる。そして、蒸発器2で発生した気相の作動流体は蒸気管4を通って凝縮器3へ移動し、凝縮器3で液相の作動流体に変化する。このような作動流体の循環が繰り返されることで、発熱部品7が発生した熱の移動が連続して行われる。
 ループヒートパイプ1は、蒸発器2における受熱によって発生した気相の作動流体(蒸気)が、蒸気管4を通過して凝縮器3へと至る。このとき、凝縮器3の液管5側から蒸発器2にかけては、理想的には液相の作動流体(作動液)が存在し、蒸発器2内のウィックには作動液が浸透している状態になっている。そして、ウィックの微細孔内に毛細管力が働くことで、蒸発器2から液管5の方向への蒸気の侵入を防いでおり、ウィックにおける毛細管力が逆止弁として作用している。
 ところで、図2に示すように、このようなループヒートパイプ1をモバイル機器6に適用する場合、ループヒートパイプ1を、熱源である発熱部品7と接触する蒸発器2、蒸気管4、凝縮管3Aと熱拡散プレート3Bを備える凝縮器3及び液管5から構成されるものとし、蒸発器2に接触する発熱部品7の熱を、モバイル機器6内の比較的低温の領域に輸送することで、モバイル機器における熱の集中を防止することができる。
 しかしながら、ループヒートパイプ1をモバイル機器6に適用する場合、ループヒートパイプ1の構成部品を薄型化する必要がある。
 例えば、ループヒートパイプ1の構成部品である蒸発器2、蒸気管4、凝縮器3及び液管5を個別に製造し、これらをろう付けや溶接などで接続したのでは、薄型化を実現することは難しい。
 そこで、複数の金属薄板(例えば銅板)をエッチング加工によってパターニングし、これらを拡散接合することで、蒸発器2、蒸気管4、凝縮器3及び液管5を一括形成し、モバイル機器6に収納できる薄型のループヒートパイプ1を実現することが考えられる。
 例えば、図5に示すように、6枚の金属薄板、即ち、2枚の表面シート17、18と4枚の内層シート19を積層し、拡散接合して、薄型のループヒートパイプ1の構成することができる。
 この場合、図6に示すように、4枚の内層シート19にエッチングによって開口部を設け、これらの開口部を有する4枚の内層シート19の上下を2枚の表面シート17、18で挟んで積層することで、4枚の内層シート19の開口部によって形成された空間の上下が閉じられて、蒸気管4、液管5、凝縮器3に備えられる凝縮管3Aの流路が形成されることになる。
 また、図7に示すように、蒸発器2の内部に設けられ、流体駆動のための毛細管力を発生させる構造であるウィック20は、4枚の内層シート19のそれぞれに、エッチングによって、例えば直径約0.2mm程度の複数の微細な孔を設け、各内層シート19に設けられた孔が、上下に隣接する内層シート19間で位置がずれて、少なくとも一部が重なり、連通して、微細なチャネルが3次元的に延びるようにすることによって形成されることになる。このようなウィック20を設けることで、作動流体との接触面積、即ち、蒸発面積を増加させることができる。なお、詳細はPCT/JP2013/083504参照。
 また、蒸発器2の内部には、蒸気管4側へ蒸気を排出するための蒸気排出流路(蒸気流路)12を設ける必要がある。そこで、上述のようにして薄型のループヒートパイプ1を実現する場合、蒸発器2の内部に設けられるウィック20を、図7に示すようにパターニングして設けることが考えられる。この場合、ウィック20は、蒸発器2の液管5が接続されている側の部分(連結部分)20Aと、この部分20Aから分岐した複数の分岐部分(リブ状部分)20Bとを備えるものとなる。そして、蒸発器2の内部のウィック20が設けられている部分が液流入口側部分10及び複数の部分11となり、ウィック20が設けられていない部分が複数の蒸気流路12及び蒸気流出口側蒸気流路13となる。このように、上述のようにして薄型のループヒートパイプ1を実現する場合、蒸発器2の内部に、作動流体が流れる方向に沿って延びる複数の部分11としてのウィック20のくし歯状の複数の部分と、作動流体が流れる方向に沿って延びる蒸気流路としての蒸気排出流路12とを、同一面内で作動流体が流れる方向に直交する方向に交互に配置することが考えられる。例えば、4層の内層シート19を、それぞれ、液流入口側部分10及び複数の部分11となる複数の孔を有する部分と、蒸気排出流路12、13となる開口部とを有するものとし、これらを積層させて、拡散接合することによって、ウィック20及び蒸気排出流路12、13を有する蒸発器2を形成することができる。
 この場合、液管5側から蒸発器2に流入する作動液は、図8に示すように、ウィック20の内部へと染み込み、熱源からの熱によって作動液が蒸発して気体になると、蒸気はウィック20の間に設けられた蒸気排出流路12、13を通って蒸気管4へと排出されることになる。なお、図8では、ウィック20を7つの分岐部分(くし歯状部分)20Bを備えるものとし、これらの分岐部分20Bの間に6つの蒸気排出流路12(図8中、符号(1)~(6)を付している)を備える蒸発器2における作動流体の移動を例示している。また、図8では、作動液の流れを破線で示しており、蒸気の流れを実線で示している。
 ここで、図9(A)~図9(C)は、蒸発器2に熱が入力された場合の赤外線サーモグラフィ画像を示している。なお、図9(A)~図9(C)では、薄い領域が高温であり、濃い領域が低温であることを示している。実際の赤外線サーモグラフィ画像では、薄い領域は白い領域であり、濃い領域は赤い領域である。これらの赤外線サーモグラフィ画像における温度分布から蒸発器2の内部における作動流体の挙動を推測することができる。
 ここでは、蒸発器2の下部に熱源(発熱源)が配置されており、熱源から蒸発器2への熱の入力の直後には、蒸発器2を構成する金属薄板(ここでは銅板)の熱伝導によって、蒸発器全体が温められるため、薄く(白く)表示される。
 そして、蒸発器2内の作動液が蒸発しはじめると、まず、図9(A)に示すように、蒸気は、図9(A)中、符号(1)で示す蒸気排出流路12を蒸気管4へ向かって流れ、このとき熱が奪われることで、図9(A)中、符号(1)で示す蒸気排出流路12の領域が周囲よりも低温になり、濃く(赤く)なる。
 次に、図9(B)に示すように、蒸気は、図9(B)中、符号(3)で示す蒸気排出流路12から蒸気管4へ排出され、図9(B)中、符号(1)、(3)で示す蒸気排出流路12の部分が周囲よりも低温になり、濃く(赤く)なる。
 次に、図9(C)に示すように、蒸気は、図9(C)中、符号(2)で示す蒸気排出流路12から排出され、図9(C)中、符号(1)、(3)、(2)で示す蒸気排出流路12の領域が周囲よりも低温になり、濃く(赤く)なる。その後、図9(C)中、符号(5)で示す蒸気排出流路12から蒸気が排出され、図9(C)中、符号(1)、(3)、(2)、(5)で示す蒸気排出流路12の領域が周囲よりも低温になり、濃く(赤く)なる。
 このように、上述のようにして薄型のループヒートパイプ1を実現するのに、蒸発器2の内部に設けられるウィックを、図7に示すようにパターニングして設けると、蒸気の排出は、図8中、符号(1)で示す蒸気排出流路12、符号(3)で示す蒸気排出流路12、符号(2)で示す蒸気排出流路12、符号(5)で示す蒸気排出流路12、符号(4)で示す蒸気排出流路12、符号(6)で示す蒸気排出流路12の順に時間差を持って行なわれることになる。
 この蒸気排出の順番は、蒸発器2内での作動液の蒸発に伴う蒸気排出流路12内での温度及び圧力の変動に起因していると考えられる。
 ところで、熱源からの熱により蒸発器2内で作動液が蒸発し、蒸気が蒸気管4を通過し、凝縮器3まで進行する際に、ループヒートパイプ1の各部の温度上昇が観察される。
 そして、蒸発器2に熱が入力された時から凝縮器3の入口の温度が上昇するまでの時間、即ち、蒸発器2に熱が入力された時から蒸発器2の温度が上昇した後、熱が輸送されて温度が低下するまでの時間を、ループヒートパイプ1の起動時間と見なすことができる。
 ここで、図10は、ループヒートパイプ1が起動する時のループヒートパイプ1の各部の温度プロファイルを示している。
 図10中、実線Aは、図11中、EVPで示す箇所の温度、即ち、ループヒートパイプ1の蒸発器2の温度EVPを測定した結果を示している。また、図10中、実線Bは、図11中、EVP-OUTで示す箇所の温度、即ち、蒸発器2の出口(蒸気流出口)の温度EVP-OUTを測定した結果を示している。また、図10中、実線Cは、図11中、V1で示す箇所の温度、即ち、蒸気管4の蒸発器2の側の温度V1を測定した結果を示している。また、図10中、実線Dは、図11中、V2で示す箇所の温度、即ち、蒸気管4の中間部分の温度V2を測定した結果を示している。また、図10中、実線Eは、図11中、V3で示す箇所の温度、即ち、蒸気管4の凝縮器3の側の温度V3を測定した結果を示している。また、図10中、実線Fは、図11中、CND-INで示す箇所の温度、即ち、凝縮器3の入口(蒸気流入口)の温度CND-INを測定した結果を示している。
 上述のようにして薄型のループヒートパイプ1を実現するのに、蒸発器2の内部に設けられるウィック20を、図7に示すようにパターニングして設けると、蒸発器2内に温度及び圧力の分布が生じてしまい、蒸気の排出が不均一になるため、図10に示すように、ループヒートパイプ1の起動時間が約190秒程度になり、ループヒートパイプ1の起動(即ち、蒸発器2から凝縮器3までの熱移動)に時間かかってしまうことがわかった。
 そこで、蒸発器2を薄型化したループヒートパイプ1において、起動時間を短縮し、できるだけ早く熱移動が開始されるようにすべく、上述のように、蒸発器2において、図1に示すように、複数の部分11が、それぞれ、複数の蒸気流路12のうち隣り合う2つの蒸気流路12を連通する第1溝14を備えるものとしている。
 このように、隣り合う蒸気流路12同士が、第1溝14によって連通しているため、蒸気流路12間に圧力差がなくなり、蒸気発生に伴う蒸発器2内の圧力分布がなくなって、熱源からの熱によって発生した気相の作動流体(蒸気)が均一に蒸気管4に排出されることになる。これにより、ループヒートパイプ1の起動時間を短縮することができる。
 この場合、蒸発器2の内部に、図7に示すようにパターニングされたウィック20を設けた上述の薄型のループヒートパイプ1に備えられる蒸発器2において、図1に示すように、複数の部分11を、それぞれ、複数の蒸気流路12のうち隣り合う2つの蒸気流路12を連通する第1溝14を備えるものとすることになる。
 具体的には、上述のように、6枚の金属薄板、即ち、2枚の表面シート17、18と4枚の内層シート19を積層し、拡散接合して、薄型のループヒートパイプ1を構成する場合(図5~図7参照)、2枚の表面シート17、18の少なくとも一方の蒸発器2の複数の部分11となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように、第1溝14として、幅方向へ延びる複数の溝を、互いに平行に長さ方向に並べて設け、さらに、複数の蒸気流路12及び蒸気流出口側蒸気流路13となる領域に第1幅広溝15を設ければ良い。なお、金属薄板の枚数、第1溝14や第1幅広溝15の本数、間隔、形状はここで例示しているものに限られるものではない。
 この場合、蒸発器2は、第1溝14、及び、第1溝14よりも幅が広く、複数の蒸気流路12及び蒸気流出口側蒸気流路13の一部となる第1幅広溝15を有する第1板状部材16(ここでは2枚の表面シート17、18の一方)と、複数の孔を有する部分、及び、複数の蒸気流路12及び蒸気流出口側蒸気流路13の一部となる開口部を有する複数の第3板状部材(ここでは4枚の内層シート19)とを接合した構造を有するものとなる。そして、複数の部分11及び液流入口側流路10は、複数の孔を有する部分が孔の少なくとも一部が重なって連通するように積層されて構成されるウィック20(図7参照)を備えるものとなる。なお、ここでは、複数の第3板状部材は、金属板(金属薄板)であり、具体的には、銅板(銅薄板)である。
 ところで、上述のように、複数の部分11を、第1溝14を備えるものとする場合、この第1溝14を、毛細管力を発生させうる溝としても良い。この場合、図12に示すように、複数の部分11を、それぞれ、長さ方向へ延びる第2溝21を備えるものとし、この第2溝21も、毛細管力を発生させうる溝とするのが好ましい。このような第2溝21を設けることで、長さ方向へ向けて液相の作動流体が流れやすくすることができる。つまり、上述の毛細管力を発生させうる第1溝14を設けると、液相の作動流体は幅方向へ向けて広がりやすくなり、長さ方向へ向けて流れにくくなるため、毛細管力を発生させうる第2溝21を設けることで、長さ方向へ向けて液相の作動流体が流れやすくすることができる。
 この場合、蒸発器2を、上述の第1板状部材16(図1参照;図5の表面シート17、18の一方)及び第3板状部材(図5の4枚の内層シート19)に加え、第2溝21と、第2溝21よりも幅が広く、複数の蒸気流路12及び蒸気流出口側蒸気流路13の一部となる第2幅広溝22とを有する第2板状部材23も備えるものとし、第1溝14及び第2溝21を、毛細管力を発生させうる溝とすれば良い。ここでは、第2板状部材23は、金属板(金属薄板)であり、具体的には、銅板(銅薄板)である。また、第2板状部材23は、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように設けられた第2溝21及び第2幅広溝22を有するものとする。ここでは、第2溝21として、長さ方向へ延びる複数の溝が、互いに平行に幅方向に並べて設けられている。また、第1溝14と第2溝21は直交するように設けられている。なお、第2溝21や第2幅広溝22の本数、間隔、形状はここで例示しているものに限られるものではない。
 具体的には、上述のように、6枚の金属薄板、即ち、2枚の表面シート17、18と4枚の内層シート19を積層し、拡散接合して、薄型のループヒートパイプ1を構成する場合(図5~図7参照)、図1に示すように、2枚の表面シート17、18の一方(ここでは第1板状部材16)の蒸発器2の複数の部分11となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように、第1溝14として、幅方向へ延び、毛細管力を発生させうる複数の溝を、互いに平行に長さ方向に並べて設け、さらに、複数の蒸気流路12及び蒸気流出口側蒸気流路13となる領域に第1幅広溝15を設けるとともに、図12に示すように、2枚の表面シート17、18の他方(ここでは第2板状部材23)の蒸発器2の複数の部分11となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように、第2溝21として、長さ方向へ延び、毛細管力を発生させうる複数の溝を、互いに平行に幅方向に並べて設け、さらに、複数の蒸気流路12及び蒸気流出口側蒸気流路13となる領域に第2幅広溝22を設ければ良い。
 ところで、ここでは、蒸発器2の液流入口側部分10及び複数の部分11を、上述のように構成されるウィック20(図7参照)を備えるものとして構成しているが、これに限られるものではなく、蒸発器2の液流入口側部分10及び複数の部分11は、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる部分であれば良く、例えば、蒸発器2の液流入口側部分10及び複数の部分11を、上述のように構成されるウィック20を備えないものとして構成しても良い。
 この場合、図13、図14に示すように、蒸発器2の複数の部分11を、それぞれ、複数の蒸気流路12のうち隣り合う2つの蒸気流路12を連通する第1溝14と、長さ方向へ延びる第2溝21とを備えるものとし、さらに、蒸発器2の液流入口側部分10を、幅方向へ向けて延びる第3溝24と、液流入口8に連なる領域及び複数の部分11のそれぞれが連なる領域に設けられ、長さ方向へ向けて延びる第4溝25とを備えるものとすれば良い。また、第1溝14、第2溝21、第3溝24及び第4溝25を、毛細管力を発生させうる溝とすれば良い。なお、第3溝24や第4溝25の本数、間隔、形状はここで例示しているものに限られるものではない。
 この場合、図13に示すように、上述の第1板状部材16に、第1溝14及び第1幅広溝15に加え、第3溝24も設ければ良い。つまり、上述の第1板状部材16を、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように設けられた第1溝14、第1幅広溝15及び第3溝24を有するものとすれば良い。ここでは、第3溝24として、幅方向へ延びる複数の溝が、互いに平行に長さ方向に並べて設けられている。また、ここでは、第1板状部材16には、第1溝14及び第3溝24と第1幅広溝15の長さ方向に延びる部分(複数の蒸気流路12の一部となる部分)とが、これらが延びる方向が直交するように設けられることになる。また、ここでは、第1板状部材16には、第1溝14及び第3溝24と第1幅広溝15の幅方向に延びる部分(蒸気流出口側蒸気流路13の一部となる部分)が、これらが延びる方向が平行になるように設けられることになる。
 また、図14に示すように、上述の第2板状部材23に、第2溝21及び第2幅広溝22に加え、第4溝25も設ければ良い。つまり、上述の第2板状部材23を、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように設けられた第2溝21、第2幅広溝22及び第4溝25を有するものとすれば良い。ここでは、第4溝25として、液流入口8に連なる領域及び複数の部分11のそれぞれが連なる領域に、長さ方向へ延びる複数の溝が、互いに平行に幅方向に並べて設けられている。また、ここでは、第2板状部材23には、第2溝21及び第4溝25と第2幅広溝22の長さ方向に延びる部分(複数の蒸気流路12の一部となる部分)が、これらが延びる方向が平行になるように設けられることになる。つまり、第2板状部材23には、その幅方向に沿って、複数の第2溝21及び複数の第4溝25と第2幅広溝22の長さ方向に延びる部分(複数の蒸気流路12の一部となる部分)とが交互に設けられることになる。また、ここでは、第2板状部材23には、第2溝21及び第4溝25と第2幅広溝22の幅方向に延びる部分(蒸気流出口側蒸気流路13の一部となる部分)が、これらが延びる方向が直交するように設けられることになる。
 なお、ここでは、第1溝14、第2溝21、第3溝24及び第4溝25は、毛細管力を発生させうるサイズの微細な溝であるため、これらの溝を微細溝ともいう。一方、第1幅広溝15及び第2幅広溝22は、気相の作動流体が流れ、気相の作動流体を蒸気管4へ排出する流路を構成しうるサイズの溝であれば良く、グルーブともいう。
 また、ここでは、図13、図14に示すように、第1板状部材16及び第2板状部材23の蒸発器2の入口、即ち、液流入口8となる領域にも溝26、27を設けているが、例えば図15、図16に示すように、これらの溝は設けなくても良い。また、ここでは、図13に示すように、第1板状部材16の蒸発器2の入口、即ち、液流入口8となる領域には、幅方向へ延びる複数の溝26を設けているが、これに限られるものではなく、例えば図17に示すように、長さ方向へ延びる複数の溝28を設けても良い。
 そして、蒸発器2を、第1溝14、第3溝24、第1溝14及び第3溝24よりも幅が広く、複数の蒸気流路12及び蒸気流出口側蒸気流路13の一部となる第1幅広溝15を有する第1板状部材16と、第2溝21、第4溝25、第2溝21及び第4溝25よりも幅が広く、複数の蒸気流路12及び蒸気流出口側蒸気流路13の一部となる第2幅広溝22とを有する第2板状部材23とを、第1溝14、第3溝24及び第1幅広溝15を有する側と第2溝21、第4溝25及び第2幅広溝22を有する側とを対向させて、接合した構造になっているものとすれば良い。このように、蒸発器2を、第1板状部材16及び第2板状部材23の2つの板状部材によって構成することで、コストを低減することが可能となる。つまり、ループヒートパイプ1の薄型化、起動時間の短縮化、低コスト化を実現することが可能となる。
 この場合、蒸発器2の複数の部分11では、毛細管力を発生させうる第1溝14と毛細管力を発生させうる第2溝21とが交差(ここでは直交)するように設けられ、これらが連通し、微細なチャネルを構成することなる。また、蒸発器2の液流入口側部分10では、毛細管力を発生させうる第3溝24と毛細管力を発生させうる第4溝25とが交差(ここでは直交)するように設けられ、これらが連通し、微細なチャネルを構成することになる。
 これにより、蒸発器2の液流入口側部分10及び複数の部分11では、これらに設けられた各溝14、24、21、25が、一般的なループヒートパイプの蒸発器の内部に備えられるウィックと同様に機能して、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となることになる。
 特に、第2溝21及び第4溝25は、蒸発器2の長さ方向、即ち、液相の作動流体が流れる方向に沿って延びている。このため、液管5から蒸発器2に流入した液相の作動流体が、第2溝21及び第4溝25に流入すると、毛細管力が発生し、この毛細管力によって、蒸発器2の長さ方向に沿って蒸気管4が接続されている側へ向けて流されることになる。また、第1溝14及び第3溝24は、蒸発器2の幅方向に沿って延びている。このため、液管5から蒸発器2に流入した液相の作動流体が、第1溝14及び第3溝24に流入すると、毛細管力が発生し、この毛細管力によって、蒸発器2の幅方向にポンピング力が生じ、蒸発器2の幅方向に沿って流されることになる。このように、第1溝14、第2溝21、第3溝24及び第4溝25によって、液相の作動流体は面内に広がるように流されることになる。また、複数の蒸気流路12のうち隣り合う2つの蒸気流路12は、第1溝14によって連通しているため、複数の蒸気流路12間の圧力差がなくなり、気相の作動流体が均一に蒸気管4に排出され、ループヒートパイプ1の起動時間を短縮することができる。
 また、蒸発器2の複数の蒸気流路12は、それぞれ、第1幅広溝15の長さ方向へ延びる部分及び第2幅広溝22の長さ方向に延びる部分によって構成されることになる。また、蒸発器2の蒸気流出口側蒸気流路13は、第1幅広溝15の幅方向へ延びる部分及び第2幅広溝22の幅方向へ延びる部分によって構成されることになる。
 具体的には、第1板状部材16及び第2板状部材23としての2枚の金属薄板(2枚の表面シート)の一方の蒸発器2となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように、第1溝14、第1幅広溝15及び第3溝24を設けるとともに、2枚の金属薄板の他方の蒸発器2となる領域に、例えばハーフエッチングなどの加工によって板厚よりも小さい深さになるように、第2溝21、第2幅広溝22及び第4溝25を設け、さらに、2枚の金属薄板のそれぞれの蒸気管4となる領域、凝縮器3に備えられる凝縮管3Aとなる領域、液管5となる領域には、それぞれ、蒸気管4、凝縮器3に備えられる凝縮管3A、液管5の各流路を構成する凹部を設け、これらの2枚の金属薄板を、各溝及び各凹部が設けられている面同士が接触するように対向させ、拡散接合して、薄型のループヒートパイプ1を構成すれば良い。
 この場合、第1板状部材16及び第2板状部材23の2つの板状部材を接合することで、蒸発器2、蒸気管4、凝縮器3及び液管5が一体形成されることになる。つまり、蒸発器2、蒸気管4、凝縮器3及び液管5は、同一の材料(ここでは銅)からなることになる。
 ここでは、第1板状部材16及び第2板状部材23の凝縮管3Aとなる領域に設けられる凹部は、外気との熱交換の効率を上げ、凝縮による液化が十分に行なえるように、蛇行させて設けられている。また、ここでは、蒸発器2、蒸気管4、凝縮器3及び液管5のそれぞれの形状にパターニングする際に、凝縮器3に備えられる凝縮管3Aとなる領域の周囲に平板状に板状部材を残すことで、この部分が凝縮器3に備えられる熱拡散プレート3Bとして機能するようにしている。
 上述のように、第1板状部材16及び第2板状部材23の2つの板状部材によって構成されるループヒートパイプ1は、以下のようにして製造することができる。
 まず、第1板状部材16の蒸発器2となる領域をハーフエッチングして、蒸発器2となる領域の液流入口8の側から蒸気流出口9の側へ向かう長さ方向へ延びる複数の部分11となる領域に、長さ方向に交差する幅方向へ延び、複数の部分11となる領域の間に設けられる複数の蒸気流路12となる領域のうち隣り合う2つの蒸気流路12となる領域が連通するように、毛細管力を発生させうる第1溝14を形成し、液流入口側部分10となる領域に、幅方向へ向けて延び、毛細管力を発生させうる第3溝24を形成し、複数の蒸気流路12となる領域及び蒸気流出口側蒸気流路13となる領域に、第1溝14及び第3溝24よりも幅が広い第1幅広溝15を形成する(例えば図13、図15、図17参照)。
 また、第2板状部材23の蒸発器2となる領域をハーフエッチングして、複数の部分11となる領域に、長さ方向へ延び、毛細管力を発生させうる第2溝21を形成し、液流入口側部分10となる領域に含まれる液流入口8に連なる領域及び複数の部分11のそれぞれが連なる領域に、長さ方向へ延び、毛細管力を発生させうる第4溝25を形成し、複数の蒸気流路12となる領域及び蒸気流出口側蒸気流路13となる領域に、第2溝21及び第4溝25よりも幅が広い第2幅広溝22を形成する(例えば図14、図16参照)。
 そして、第1板状部材16と第2板状部材23とを、第1溝14、第3溝24及び第1幅広溝15を有する側と第2溝21、第4溝25及び第2幅広溝22を有する側とを対向させて、接合する。
 このようにして、ループヒートパイプ1を製造することができる。
 なお、上述のループヒートパイプ1では、蒸気管4、凝縮管3A及び液管5には溝は設けられていないが、これに限られるものではない。
 例えば、図18~図20に示すように、液管5を、毛細管力を発生させうる液管用溝29を有するものとしても良い。
 例えば、図18に示すように、液管5を、液管5の長さ方向へ延び、毛細管力を発生させうる液管用溝29Aを備えるものとすれば良い。
 この場合、第1板状部材16の液管5となる領域に、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29Aを設けるとともに、第2板状部材23の液管5となる領域に、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第2液管用溝29Aを設け、液管5を、第1板状部材16と第2板状部材23とを、第1液管用溝29Aを有する側と第2液管用溝29Aを有する側とを対向させて、接合した構造を備えるものとすれば良い。
 また、上述のループヒートパイプの製造方法における第1板状部材16をハーフエッチングする工程において、第1板状部材16の液管5となる領域をハーフエッチングして、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29Aを形成し、第2板状部材23をハーフエッチングする工程において、第2板状部材23の液管5となる領域をハーフエッチングして、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第2液管用溝29Aを形成し、第1板状部材16と第2板状部材23とを接合する工程において、第1板状部材16と第2板状部材23とを、第1溝14、第3溝24、第1幅広溝15及び第1液管用溝29Aを有する側と第2溝21、第4溝25、第2幅広溝22及び第2液管用溝29Aを有する側とを対向させて、接合するようにすれば良い。
 また、例えば、図19、図20に示すように、液管5を、液管5の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29Aと、液管5の幅方向へ延び、毛細管力を発生させうる第2液管用溝29Bとを備えるものとしても良い。
 この場合、図19に示すように、第1板状部材16の液管5となる領域に、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29Aを設けるとともに、図20に示すように、第2板状部材23の液管5となる領域に、液管5となる領域の幅方向へ延び、毛細管力を発生させうる第2液管用溝29Bを設け、液管5を、第1板状部材16と第2板状部材23とを、第1液管用溝29Aを有する側と第2液管用溝29Bを有する側とを対向させて、接合した構造を備えるものとすれば良い。
 また、上述のループヒートパイプの製造方法における第1板状部材16をハーフエッチングする工程において、第1板状部材16の液管5となる領域をハーフエッチングして、液管5となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝29Aを形成し、第2板状部材23をハーフエッチングする工程において、第2板状部材23の液管5となる領域をハーフエッチングして、液管5となる領域の幅方向へ延び、毛細管力を発生させうる第2液管用溝29Bを形成し、第1板状部材16と第2板状部材23とを接合する工程において、第1板状部材16と第2板状部材23とを、第1溝14、第3溝24、第1幅広溝15及び第1液管用溝29Aを有する側と第2溝21、第4溝25、第2幅広溝22及び第2液管用溝29Bを有する側とを対向させて、接合するようにすれば良い。
 また、例えば、液管5を、液管用溝29に代えて、ウィックを備えるものとしても良い。この場合、上述の蒸発器2に設けられるウィック20と同様の構成のウィックを液管5にも設ければ良い。
 なお、液管用溝29やウィックは、液管5の全体にわたって設けられていても良いし、液管5の一部分に設けられていても良い。また、液管用溝29の本数、間隔、形状はここで例示しているものに限られるものではない。
 このようにして、液管5にも、毛細管力を発生させうる液管用溝29やウィックを設けるのは、モバイル機器が縦向きになり、熱源である発熱部品7の位置が上側になる場合があり、このような場合であっても、毛細管力が作用することで、液相の作動流体が液管5の内部を流れ、蒸発器2へ流入するようにし、ループヒートパイプ1が安定して動作するようにするためである。
 以下、具体的な構成例及びその製造方法について説明する。
 まず、厚さ約3mmの1枚の銅薄板を用い、これを、図21(A)に示すような形状になるように、レジストでパターニングし、エッチング加工する。ここで、蒸気管4、及び、凝縮器3に備えられる凝縮管3Aの幅は約8mm、液管5の幅は約6mmである。また、蒸気管4、凝縮管3A及び液管5の各流路は、銅薄板を深さ約0.15mmまでハーフエッチングして形成する。また、蒸発器2の内部は、図21(A)に示すようなパターンが形成されるようにハーフエッチングして形成する。ここで、第1溝14及び第3溝24(例えば図13、図15、図17参照)である微細溝の幅は約0.1mmであり、深さは約0.12mmである。また、第1幅広溝15(例えば図13、図15、図17参照)であるグルーブの幅は約1mmであり、深さは約0.15mmである。なお、図21(A)では、第1溝14及び第3溝24が設けられる領域に模様を付している。
 次に、厚さ約3mmの1枚の銅薄板を用い、これを、図21(B)に示すような形状になるように、レジストでパターニングし、エッチング加工する。ここでは、図21(A)に示すような形状に加工したものに対し、蒸発器2、蒸気管4、凝縮器3及び液管5が対称な位置に配置されるように加工する。ここで、蒸気管4、及び、凝縮器3に備えられる凝縮管3Aの幅は約8mm、液管5の幅は約6mmである。また、蒸気管4、凝縮管3A及び液管5の各流路は、銅薄板を深さ約0.15mmまでハーフエッチングして形成する。また、蒸発器2の内部は、図21(B)に示すようなパターンが形成されるようにハーフエッチングして形成する。ここで、第2溝21及び第4溝25(例えば図14、図16参照)である微細溝の幅は約0.1mmであり、深さは約0.12mmである。また、第2幅広溝22(例えば図14、図16参照)であるグルーブの幅は約1mmであり、深さは約0.15mmである。なお、図21(B)では、第2溝21及び第4溝25が設けられる領域に模様を付している。
 そして、図21(A)に示すように加工された銅薄板と、図21(B)に示すように加工された銅薄板とを拡散接合し、液注入口から内部を真空排気した後、配管内に作動液として水(あるいはエタノールやフロン)を注入することで、ループヒートパイプ1を作製することができる。
 なお、このようにして作製されるループヒートパイプ1において、図22に示すように、液管5の内部にも毛細管力を発生させうる液管用溝29を形成する場合、それぞれの銅薄板の液管5となる領域に液管用溝29をハーフエッチングによって形成すれば良い。この場合、両方の銅薄板の液管5となる領域に液管5の長さ方向に延びる液管用溝29Aを形成しても良いし、一方の銅薄板の液管5となる領域に液管5の長さ方向に延びる液管用溝29Aを形成し、他方の銅薄板の液管5となる領域に液管5の幅方向に延びる液管用溝29Bを形成しても良い。ここで、液管用溝29の幅は約0.1mmとし、深さは約0.12mmとすれば良い。なお、図22では、第1溝14及び第3溝24が設けられる領域、及び、液管用溝29が設けられる領域に模様を付している。
 また、ループヒートパイプ1の形状、配管パターンは、上述のものに限られるものではない。また、ここでは、金属薄板として銅薄板を用いているが、金属薄板を拡散接合することによって一括形成できれば良く、金属薄板の材料は、銅に限られるものではなく、エッチング等によるパターン形成及び拡散接合に適するものであれば良い。また、ループヒートパイプ1の各寸法は、上述のものに限られるものではなく、要求される熱輸送量と熱輸送距離、配管高さ及び配管幅によって適宜最適化すれば良い。
 上述のようにして作製されたループヒートパイプ1では、複数の蒸気流路12のうち隣り合う蒸気流路12同士が、第1溝14である微細溝によって連通しているため、蒸気発生に伴う蒸発器2内の圧力分布がなくなり、気相の作動流体が均一に蒸気管4に排出され、ループヒートパイプ1の起動時間を短縮することができる。
 ここで、図23は、上述の実施形態及び比較例のループヒートパイプ1における起動時の凝縮器3の入口温度のプロファイルを示している。
 ここで、図23中、実線Aは、上述の実施形態のループヒートパイプ1、即ち、上述のようにして2枚の金属薄板によって構成し、蒸発器2に第1溝14、第2溝21、第3溝24及び第4溝25を設けたループヒートパイプ1の凝縮器3の入口温度のプロファイルを示している。また、図23中、実線Bは、比較例のループヒートパイプ、即ち、6枚の金属薄板によって構成し、蒸発器にウィックを設け、第1溝、第2溝、第3溝及び第4溝を設けていないループヒートパイプの凝縮器の入口温度のプロファイルを示している。
 図23に示すように、比較例のループヒートパイプでは、蒸発器に熱が入った時(t=0秒)から、凝縮器の入口の温度が上昇するまでの時間は、約190秒程度であるのに対し、上述の実施形態のループヒートパイプ1では、約120秒程度に短縮されている。このように、上述の実施形態のループヒートパイプ1によれば、比較例のループヒートパイプと比較して、起動時間を短縮することができる。このようにしてループヒートパイプ1の起動時間を短縮することで、熱源となる例えばCPUのようなLSIチップ(発熱部品)の熱を短時間で移動させることが可能となり、LSIチップの急な昇温による熱暴走の防止や過昇温防止のためのLSIチップの機能制限を遅らせる効果がある。この結果、モバイル機器6の使用者にとって、快適な操作や使用感を実現できることになる。
 したがって、本実施形態にかかるループヒートパイプ及びその製造方法並びに電子機器によれば、蒸発器2を薄型化したループヒートパイプ1において、熱移動のための起動時間を短縮できるという利点がある。
 なお、上述の実施形態では、第1溝14を、複数の蒸気流路12が延びる方向に対して直交する方向に延び、複数の蒸気流路12が延びる方向と第1溝14が延びる方向とが交差するように設けているが(例えば図13参照)、これに限られるものではなく、第1溝14は、複数の蒸気流路12のうち隣り合う2つの蒸気流路12を連通するように設けられていれば良い。例えば図24に示すように、第1溝14を、複数の蒸気流路12が延びる方向に対して斜め方向に延び、複数の蒸気流路12が延びる方向と第1溝14が延びる方向とが交差するように設けられていても良い。
 また、上述の実施形態では、複数の部分11のそれぞれに設けられる第1溝として、幅方向へ延びる複数の溝14を、互いに平行に長さ方向に並べて設けているが(例えば図13参照)、必ずしも長さ方向の全長にわたって設けなくても良く、例えば図25に示すように、長さ方向の一部に、長さ方向へ延びる複数の溝14Xを、互いに平行に幅方向に並べて設けても良い。つまり、複数の部分11のそれぞれに設けられる第1溝として、幅方向へ延びる複数の溝14と、長さ方向へ延びる複数の溝14Xを設けても良い。ここでは、幅方向へ延びる複数の溝14と、長さ方向へ延びる複数の溝14Xは、互いに直交するように設けられている。
 なお、本発明は、上述した実施形態及び変形例に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能であり、適宜組み合わせることも可能である。
 1 ループヒートパイプ
 2 蒸発器
 3 凝縮器
 3A 凝縮管
 3B 熱拡散プレート
 4 蒸気管
 5 液管
 6 モバイル機器(電子機器)
 7 発熱部品
 8 液流入口
 9 蒸気流出口
 10 液流入口側部分
 11 複数の部分(くし歯状の部分)
 12 蒸気流路
 13 蒸気流出口側蒸気流路
 14、14X 第1溝
 15 幅広溝
 16 第1板状部材
 17、18 表面シート
 19 内層シート
 20 ウィック
 20A 液管が接続されている側の部分(連結部分)
 20B 分岐部分(リブ状部分)
 21 第2溝
 22 第2幅広溝
 23 第2板状部材
 24 第3溝
 25 第4溝
 26、27、28 溝
 29 液管用溝
 29A 液管の長さ方向へ延びる液管用溝(第1液管用溝;第2液管用溝)
 29B 液管の幅方向へ延びる液管用溝(第2液管用溝)

Claims (13)

  1.  液相の作動流体が蒸発する蒸発器と、
     気相の作動流体が凝縮する凝縮器と、
     前記蒸発器と前記凝縮器とを接続し、気相の作動流体が流れる蒸気管と、
     前記凝縮器と前記蒸発器とを接続し、液相の作動流体が流れる液管とを備え、
     前記蒸発器は、
     前記液管が接続されている液流入口と、
     前記蒸気管が接続されている蒸気流出口と、
     前記液流入口の側に設けられ、前記液流入口の側から前記蒸気流出口の側へ向かう長さ方向に交差する幅方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる液流入口側部分と、
     前記液流入口側部分に連なり、前記長さ方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる複数の部分と、
     前記複数の部分の間に設けられ、前記長さ方向へ延び、気相の作動流体が流れる複数の蒸気流路と、
     前記蒸気流出口の側に設けられ、前記幅方向へ延び、前記複数の蒸気流路に連なり、気相の作動流体が流れる蒸気流出口側蒸気流路とを備え、
     前記複数の部分は、それぞれ、前記複数の蒸気流路のうち隣り合う2つの蒸気流路を連通する第1溝を備えることを特徴とするループヒートパイプ。
  2.  前記複数の部分は、それぞれ、前記長さ方向へ延びる第2溝を備え、
     前記第1溝及び前記第2溝は、毛細管力を発生させうる溝であることを特徴とする、請求項1に記載のループヒートパイプ。
  3.  前記複数の部分は、それぞれ、前記長さ方向へ延びる第2溝を備え、
     前記液流入口側部分は、前記幅方向へ向けて延びる第3溝と、前記液流入口に連なる領域及び前記複数の部分のそれぞれが連なる領域に設けられ、前記長さ方向へ向けて延びる第4溝とを備え、
     前記第1溝、前記第2溝、前記第3溝及び前記第4溝は、毛細管力を発生させうる溝であり、
     前記蒸発器は、前記第1溝と、前記第3溝と、前記第1溝及び前記第3溝よりも幅が広く、前記複数の蒸気流路及び前記蒸気流出口側蒸気流路の一部となる第1幅広溝とを有する第1板状部材と、前記第2溝と、前記第4溝と、前記第2溝及び前記第4溝よりも幅が広く、前記複数の蒸気流路及び前記蒸気流出口側蒸気流路の一部となる第2幅広溝とを有する第2板状部材とを、前記第1溝、前記第3溝及び前記第1幅広溝を有する側と前記第2溝、前記第4溝及び前記第2幅広溝を有する側とを対向させて、接合した構造になっていることを特徴とする、請求項1に記載のループヒートパイプ。
  4.  前記蒸発器は、前記第1溝、及び、前記第1溝よりも幅が広く、前記複数の蒸気流路及び前記蒸気流出口側蒸気流路の一部となる第1幅広溝を有する第1板状部材と、複数の孔を有する部分、及び、前記複数の蒸気流路及び蒸気流出口側蒸気流路の一部となる開口部を有する複数の第3板状部材とを接合した構造になっており、
     前記複数の部分及び前記液流入口側部分は、前記複数の孔を有する部分が前記孔の少なくとも一部が重なって連通するように積層されて構成されるウィックを備えることを特徴とする、請求項1に記載のループヒートパイプ。
  5.  前記蒸発器は、前記第1溝、及び、前記第1溝よりも幅が広く、前記複数の蒸気流路及び前記蒸気流出口側蒸気流路の一部となる第1幅広溝を有する第1板状部材と、前記第2溝と、前記第2溝よりも幅が広く、前記複数の蒸気流路及び前記蒸気流出口側蒸気流路の一部となる第2幅広溝とを有する第2板状部材と、複数の孔を有する部分、及び、前記複数の蒸気流路及び蒸気流出口側蒸気流路の一部となる開口部を有する複数の第3板状部材とを接合した構造になっており、
     前記複数の部分及び前記液流入口側部分は、前記複数の孔を有する部分が前記孔の少なくとも一部が重なって連通するように積層されて構成されるウィックを備えることを特徴とする、請求項2に記載のループヒートパイプ。
  6.  前記液管は、毛細管力を発生させうる液管用溝を備えることを特徴とする、請求項1~5のいずれか1項に記載のループヒートパイプ。
  7.  前記第1板状部材は、前記液管となる領域に、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝を有し、
     前記第2板状部材は、前記液管となる領域に、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第2液管用溝を有し、
     前記液管は、前記第1板状部材と前記第2板状部材とを、前記第1液管用溝を有する側と前記第2液管用溝を有する側とを対向させて、接合した構造を備えることを特徴とする、請求項3に記載のループヒートパイプ。
  8.  前記第1板状部材は、前記液管となる領域に、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝を有し、
     前記第2板状部材は、前記液管となる領域に、前記液管となる領域の幅方向へ延び、毛細管力を発生させうる第2液管用溝を有し、
     前記液管は、前記第1板状部材と前記第2板状部材とを、前記第1液管用溝を有する側と前記第2液管用溝を有する側とを対向させて、接合した構造を備えることを特徴とする、請求項3に記載のループヒートパイプ。
  9.  前記液管は、前記ウィックを備えることを特徴とする、請求項4又は5に記載のループヒートパイプ。
  10.  発熱部品と、
     前記発熱部品を冷却するループヒートパイプとを備え、
     前記ループヒートパイプが、
     液相の作動流体が蒸発する蒸発器と、
     気相の作動流体が凝縮する凝縮器と、
     前記蒸発器と前記凝縮器とを接続し、気相の作動流体が流れる蒸気管と、
     前記凝縮器と前記蒸発器とを接続し、液相の作動流体が流れる液管とを備え、
     前記蒸発器は、
     前記液管が接続されている液流入口と、
     前記蒸気管が接続されている蒸気流出口と、
     前記液流入口の側に設けられ、前記液流入口の側から前記蒸気流出口の側へ向かう長さ方向に交差する幅方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる液流入口側部分と、
     前記液流入口側部分に連なり、前記長さ方向へ延び、毛細管力が発生し、液相の作動流体が浸透し、気相の作動流体となる複数の部分と、
     前記複数の部分の間に設けられ、前記長さ方向へ延び、気相の作動流体が流れる複数の蒸気流路と、
     前記蒸気流出口の側に設けられ、前記幅方向へ延び、前記複数の蒸気流路に連なり、気相の作動流体が流れる蒸気流出口側蒸気流路とを備え、
     前記複数の部分は、それぞれ、前記複数の蒸気流路のうち隣り合う2つの蒸気流路を連通する第1溝を備えることを特徴とする電子機器。
  11.  第1板状部材の蒸発器となる領域を加工して、前記蒸発器となる領域の液流入口の側から蒸気流出口の側へ向かう長さ方向へ延びる複数の部分となる領域に、前記長さ方向に交差する幅方向へ延び、前記複数の部分となる領域の間に設けられる複数の蒸気流路となる領域のうち隣り合う2つの蒸気流路となる領域が連通するように、毛細管力を発生させうる第1溝を形成し、液流入口側部分となる領域に、前記幅方向へ向けて延び、毛細管力を発生させうる第3溝を形成し、前記複数の蒸気流路となる領域及び蒸気流出口側蒸気流路となる領域に、前記第1溝及び前記第3溝よりも幅が広い第1幅広溝を形成する工程と、
     第2板状部材の前記蒸発器となる領域を加工して、前記複数の部分となる領域に、前記長さ方向へ延び、毛細管力を発生させうる第2溝を形成し、前記液流入口側部分となる領域に含まれる前記液流入口に連なる領域及び前記複数の部分のそれぞれが連なる領域に、前記長さ方向へ延び、毛細管力を発生させうる第4溝を形成し、前記複数の蒸気流路となる領域及び前記蒸気流出口側蒸気流路となる領域に、前記第2溝及び前記第4溝よりも幅が広い第2幅広溝を形成する工程と、
     前記第1板状部材と前記第2板状部材とを、前記第1溝、前記第3溝及び前記第1幅広溝を有する側と前記第2溝、前記第4溝及び前記第2幅広溝を有する側とを対向させて、接合する工程とを含むことを特徴とするループヒートパイプの製造方法。
  12.  前記第1板状部材を加工する工程において、前記第1板状部材の液管となる領域をエッチング加工して、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝を形成し、
     前記第2板状部材を加工する工程において、前記第2板状部材の液管となる領域をエッチング加工して、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第2液管用溝を形成し、
     前記第1板状部材と前記第2板状部材とを接合する工程において、前記第1板状部材と前記第2板状部材とを、前記第1溝、前記第3溝、前記第1幅広溝及び前記第1液管用溝を有する側と前記第2溝、前記第4溝、前記第2幅広溝及び前記第2液管用溝を有する側とを対向させて、接合することを特徴とする、請求項11に記載のループヒートパイプの製造方法。
  13.  前記第1板状部材を加工する工程において、前記第1板状部材の液管となる領域をエッチング加工して、前記液管となる領域の長さ方向へ延び、毛細管力を発生させうる第1液管用溝を形成し、
     前記第2板状部材を加工する工程において、前記第2板状部材の液管となる領域をエッチング加工して、前記液管となる領域の幅方向へ延び、毛細管力を発生させうる第2液管用溝を形成し、
     前記第1板状部材と前記第2板状部材とを接合する工程において、前記第1板状部材と前記第2板状部材とを、前記第1溝、前記第3溝、前記第1幅広溝及び前記第1液管用溝を有する側と前記第2溝、前記第4溝、前記第2幅広溝及び前記第2液管用溝を有する側とを対向させて、接合することを特徴とする、請求項11に記載のループヒートパイプの製造方法。
PCT/JP2015/075081 2015-09-03 2015-09-03 ループヒートパイプ及びその製造方法並びに電子機器 WO2017037921A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/075081 WO2017037921A1 (ja) 2015-09-03 2015-09-03 ループヒートパイプ及びその製造方法並びに電子機器
JP2017537160A JP6451860B2 (ja) 2015-09-03 2015-09-03 ループヒートパイプ及びその製造方法並びに電子機器
US15/895,232 US10881021B2 (en) 2015-09-03 2018-02-13 Loop heat pipe and fabrication method therefor, and electronic device
US17/104,386 US11536518B2 (en) 2015-09-03 2020-11-25 Fabrication method for loop heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075081 WO2017037921A1 (ja) 2015-09-03 2015-09-03 ループヒートパイプ及びその製造方法並びに電子機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/895,232 Continuation US10881021B2 (en) 2015-09-03 2018-02-13 Loop heat pipe and fabrication method therefor, and electronic device

Publications (1)

Publication Number Publication Date
WO2017037921A1 true WO2017037921A1 (ja) 2017-03-09

Family

ID=58186752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075081 WO2017037921A1 (ja) 2015-09-03 2015-09-03 ループヒートパイプ及びその製造方法並びに電子機器

Country Status (3)

Country Link
US (2) US10881021B2 (ja)
JP (1) JP6451860B2 (ja)
WO (1) WO2017037921A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782189A (zh) * 2017-09-27 2018-03-09 北京空间飞行器总体设计部 耐正压、大功率平板蒸发器及其加工方法以及基于该蒸发器的平板环路热管
CN108458615A (zh) * 2018-05-25 2018-08-28 中国科学院理化技术研究所 回路热管的蒸发器
JP2018189320A (ja) * 2017-05-09 2018-11-29 富士通株式会社 ヒートパイプ及び電子機器
JP2018197631A (ja) * 2017-05-24 2018-12-13 大日本印刷株式会社 ベーパーチャンバ、ベーパーチャンバ用金属シートおよびベーパーチャンバの製造方法
WO2019106762A1 (ja) * 2017-11-29 2019-06-06 富士通株式会社 ループヒートパイプ及び電子機器
JP2019184219A (ja) * 2018-04-16 2019-10-24 泰碩電子股▲分▼有限公司 液体弾管路を有する還流ヒートパイプ
CN110388840A (zh) * 2018-04-16 2019-10-29 泰硕电子股份有限公司 具有液弹管的回路热管
JP2019194512A (ja) * 2018-05-04 2019-11-07 泰碩電子股▲分▼有限公司 延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール
WO2020174593A1 (ja) * 2019-02-26 2020-09-03 住友精密工業株式会社 冷却装置
CN111649609A (zh) * 2020-06-23 2020-09-11 山东大学 一种具有梳状结构碳纤维毛细芯的平板型环路热管蒸发器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI590751B (zh) * 2016-08-26 2017-07-01 宏碁股份有限公司 可攜式電子裝置
US20180106553A1 (en) * 2016-10-13 2018-04-19 Pimems, Inc. Thermal module charging method
US10622282B2 (en) * 2017-07-28 2020-04-14 Qualcomm Incorporated Systems and methods for cooling an electronic device
JP6997008B2 (ja) * 2018-02-27 2022-01-17 新光電気工業株式会社 平板型ループヒートパイプ
TWI672478B (zh) * 2018-05-04 2019-09-21 泰碩電子股份有限公司 迴路式均溫板
JP7236825B2 (ja) * 2018-07-11 2023-03-10 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
CN110740611A (zh) * 2018-07-20 2020-01-31 深圳富泰宏精密工业有限公司 散热器及具有该散热器的电子装置
JP7146524B2 (ja) * 2018-08-13 2022-10-04 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7153515B2 (ja) * 2018-09-25 2022-10-14 新光電気工業株式会社 ループ型ヒートパイプ
JP7350434B2 (ja) * 2019-08-09 2023-09-26 矢崎エナジーシステム株式会社 構造体及びその製造方法
US11104451B2 (en) * 2020-01-17 2021-08-31 B/E Aerospace, Inc Systems and methods for mitigating condensation in aircraft lighting
CN114440679B (zh) * 2022-01-20 2022-12-13 哈尔滨工程大学 一种用于斯特林热机冷端的环形蒸发器回路热管散热器
CN114727546B (zh) * 2022-02-23 2023-04-28 华为技术有限公司 一种散热装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049192A (ko) * 2001-12-14 2003-06-25 삼성전자주식회사 박형 증발기를 구비하는 열 전달장치
JP2007266153A (ja) * 2006-03-28 2007-10-11 Sony Corp プレート型熱輸送装置及び電子機器
JP2012043954A (ja) * 2010-08-18 2012-03-01 Fujitsu Ltd 半導体装置
CN202329315U (zh) * 2011-09-06 2012-07-11 北京奇宏科技研发中心有限公司 低压环路式热虹吸散热装置
JP2015059693A (ja) * 2013-09-18 2015-03-30 東芝ホームテクノ株式会社 シート型ヒートパイプまたは携帯情報端末
JP2015090247A (ja) * 2013-11-06 2015-05-11 富士通株式会社 ループヒートパイプ及び情報処理装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313178A (ja) * 1995-05-19 1996-11-29 Mitsubishi Alum Co Ltd 熱交換器用蒸発器
JP3896840B2 (ja) 2001-12-13 2007-03-22 ソニー株式会社 冷却装置、電子機器装置及び冷却装置の製造方法
US7120022B2 (en) * 2002-02-12 2006-10-10 Hewlett-Packard Development Company, Lp. Loop thermosyphon with wicking structure and semiconductor die as evaporator
US7775261B2 (en) * 2002-02-26 2010-08-17 Mikros Manufacturing, Inc. Capillary condenser/evaporator
JP2004063684A (ja) 2002-07-26 2004-02-26 Denso Corp 沸騰冷却装置
US7836597B2 (en) * 2002-11-01 2010-11-23 Cooligy Inc. Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system
KR200349192Y1 (ko) 2004-01-26 2004-05-04 박수현 자동차용 시트커버
US7259965B2 (en) * 2005-04-07 2007-08-21 Intel Corporation Integrated circuit coolant microchannel assembly with targeted channel configuration
JP2009076650A (ja) * 2007-09-20 2009-04-09 Sony Corp 相変化型ヒートスプレッダ、流路構造体、電子機器及び相変化型ヒートスプレッダの製造方法
US8919426B2 (en) * 2007-10-22 2014-12-30 The Peregrine Falcon Corporation Micro-channel pulsating heat pipe
US8353334B2 (en) * 2007-12-19 2013-01-15 Teledyne Scientific & Imaging, Llc Nano tube lattice wick system
JP5714836B2 (ja) * 2010-04-17 2015-05-07 モレックス インコーポレイテドMolex Incorporated 熱輸送ユニット、電子基板、電子機器
CN102374807A (zh) * 2010-08-20 2012-03-14 富准精密工业(深圳)有限公司 回路热管
US20120181005A1 (en) * 2011-01-14 2012-07-19 Robert Scott Downing Compact high performance condenser
US8997840B2 (en) * 2011-03-11 2015-04-07 Asia Vital Components Co., Ltd. Heat-dissipating unit having a hydrophilic compound film and method for depositing a hydrophilic compound film
JP6125972B2 (ja) * 2013-10-30 2017-05-10 東芝ホームテクノ株式会社 携帯情報端末
CN105814389B (zh) 2013-12-13 2019-04-19 富士通株式会社 环型热管及其制造方法、以及电子设备
JP6121893B2 (ja) * 2013-12-24 2017-04-26 東芝ホームテクノ株式会社 シート型ヒートパイプ
JP6485075B2 (ja) * 2015-01-29 2019-03-20 富士通株式会社 ループヒートパイプ及びループヒートパイプの製造方法
JP6433848B2 (ja) * 2015-05-01 2018-12-05 国立大学法人名古屋大学 熱交換器、蒸発体、および電子機器
JP6648824B2 (ja) * 2016-05-23 2020-02-14 富士通株式会社 ループヒートパイプ及びその製造方法並びに電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049192A (ko) * 2001-12-14 2003-06-25 삼성전자주식회사 박형 증발기를 구비하는 열 전달장치
JP2007266153A (ja) * 2006-03-28 2007-10-11 Sony Corp プレート型熱輸送装置及び電子機器
JP2012043954A (ja) * 2010-08-18 2012-03-01 Fujitsu Ltd 半導体装置
CN202329315U (zh) * 2011-09-06 2012-07-11 北京奇宏科技研发中心有限公司 低压环路式热虹吸散热装置
JP2015059693A (ja) * 2013-09-18 2015-03-30 東芝ホームテクノ株式会社 シート型ヒートパイプまたは携帯情報端末
JP2015090247A (ja) * 2013-11-06 2015-05-11 富士通株式会社 ループヒートパイプ及び情報処理装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189320A (ja) * 2017-05-09 2018-11-29 富士通株式会社 ヒートパイプ及び電子機器
JP2018197631A (ja) * 2017-05-24 2018-12-13 大日本印刷株式会社 ベーパーチャンバ、ベーパーチャンバ用金属シートおよびベーパーチャンバの製造方法
EP3690373A4 (en) * 2017-09-27 2021-07-07 Beijing Institute of Spacecraft System Engineering RESISTANT HIGH-PERFORMANCE FLAT EVAPORATOR AGAINST POSITIVE PRESSURE, PROCESSING METHODS FOR IT AND FLAT PLATE LOOP HEAT PIPE BASED ON THE EVAPORATOR
CN107782189A (zh) * 2017-09-27 2018-03-09 北京空间飞行器总体设计部 耐正压、大功率平板蒸发器及其加工方法以及基于该蒸发器的平板环路热管
JPWO2019106762A1 (ja) * 2017-11-29 2020-11-19 富士通株式会社 ループヒートパイプ及び電子機器
WO2019106762A1 (ja) * 2017-11-29 2019-06-06 富士通株式会社 ループヒートパイプ及び電子機器
US11044830B2 (en) 2017-11-29 2021-06-22 Fujitsu Limited Loop heat pipe and electronic device
CN110388840A (zh) * 2018-04-16 2019-10-29 泰硕电子股份有限公司 具有液弹管的回路热管
JP2019184219A (ja) * 2018-04-16 2019-10-24 泰碩電子股▲分▼有限公司 液体弾管路を有する還流ヒートパイプ
JP2019194512A (ja) * 2018-05-04 2019-11-07 泰碩電子股▲分▼有限公司 延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール
CN108458615A (zh) * 2018-05-25 2018-08-28 中国科学院理化技术研究所 回路热管的蒸发器
WO2020174593A1 (ja) * 2019-02-26 2020-09-03 住友精密工業株式会社 冷却装置
CN111649609A (zh) * 2020-06-23 2020-09-11 山东大学 一种具有梳状结构碳纤维毛细芯的平板型环路热管蒸发器

Also Published As

Publication number Publication date
JPWO2017037921A1 (ja) 2018-05-31
JP6451860B2 (ja) 2019-01-16
US11536518B2 (en) 2022-12-27
US20180177077A1 (en) 2018-06-21
US20210080192A1 (en) 2021-03-18
US10881021B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
JP6451860B2 (ja) ループヒートパイプ及びその製造方法並びに電子機器
JP6597892B2 (ja) ループヒートパイプ及びその製造方法並びに電子機器
JP6648824B2 (ja) ループヒートパイプ及びその製造方法並びに電子機器
JP6485075B2 (ja) ループヒートパイプ及びループヒートパイプの製造方法
US10408546B2 (en) Loop heat pipe
US10704838B2 (en) Loop heat pipe
JP6233125B2 (ja) ループ型ヒートパイプとその製造方法、及び電子機器
JP4557055B2 (ja) 熱輸送デバイス及び電子機器
JP6146484B2 (ja) ループ型ヒートパイプとその製造方法、及び電子機器
TWI382811B (zh) A method of manufacturing a phase change type heat sink, a flow path structure, an electronic machine, and a phase change type heat sink
JP7284944B2 (ja) ベーパーチャンバおよび電子機器
JP2009024933A (ja) 熱拡散装置及びその製造方法
WO2019106762A1 (ja) ループヒートパイプ及び電子機器
JP2022189849A (ja) ベーパーチャンバー、及び電子機器
JP2014142143A (ja) ヒートパイプ
JP2019158307A (ja) ループ型ヒートパイプ
US20210392781A1 (en) Wick sheet for vapor chamber, vapor chamber, and electronic apparatus
JP6852352B2 (ja) ループヒートパイプ及び電子機器
JP2006308263A (ja) 熱交換装置
JP2021071239A (ja) ループ型ヒートパイプ及びその製造方法
JP2004353902A (ja) 冷却装置
JP6863058B2 (ja) ヒートパイプ及び電子機器
JP2016075437A (ja) ループ型ヒートパイプ及び電子機器
JP7155869B2 (ja) 冷却装置、電子機器及び冷却装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903040

Country of ref document: EP

Kind code of ref document: A1