WO2017000304A1 - 无人机、其控制***及方法,以及无人机降落控制方法 - Google Patents

无人机、其控制***及方法,以及无人机降落控制方法 Download PDF

Info

Publication number
WO2017000304A1
WO2017000304A1 PCT/CN2015/083171 CN2015083171W WO2017000304A1 WO 2017000304 A1 WO2017000304 A1 WO 2017000304A1 CN 2015083171 W CN2015083171 W CN 2015083171W WO 2017000304 A1 WO2017000304 A1 WO 2017000304A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
landing
control
disposed
water
Prior art date
Application number
PCT/CN2015/083171
Other languages
English (en)
French (fr)
Inventor
王铭钰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201710560178.5A priority Critical patent/CN107554763A/zh
Priority to EP21170465.5A priority patent/EP3875366A1/en
Priority to CN201710560184.0A priority patent/CN107600398B/zh
Priority to JP2016558200A priority patent/JP6234610B2/ja
Priority to CN201580002808.6A priority patent/CN106103274B/zh
Priority to EP15896835.4A priority patent/EP3318487B1/en
Priority to PCT/CN2015/083171 priority patent/WO2017000304A1/zh
Priority to CN201710750421.XA priority patent/CN107697286B/zh
Publication of WO2017000304A1 publication Critical patent/WO2017000304A1/zh
Priority to US15/860,113 priority patent/US10669024B2/en
Priority to US16/884,500 priority patent/US20200317338A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/66Convertible alighting gear; Combinations of different kinds of ground or like engaging elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/54Floats
    • B64C25/56Floats inflatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • B64C25/60Oleo legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • B64C25/62Spring shock-absorbers; Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • B64C35/005Flying-boats; Seaplanes with propellers, rudders or brakes acting in the water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C2025/325Alighting gear characterised by elements which contact the ground or similar surface  specially adapted for helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • B64C35/008Amphibious sea planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements

Definitions

  • the invention relates to a drone, a drone control system, a drone control method and a drone landing control method.
  • a drone referred to as a "unmanned aerial vehicle” is a non-manned aircraft that is operated using radio remote control equipment and self-contained program control devices.
  • the water and air dual-use drone is mainly used for air flight in peacetime, and can be used for short-term navigation in the water when performing tasks above the sea surface and other waters.
  • the existing drone can only be used as a flight play, can not sail in the water, can not achieve the dual function of water and air, and its playability is limited.
  • An unmanned aerial vehicle includes a body and a power unit connected to the body, and a control device and a take-off device disposed on the body, the power device and the take-off device respectively
  • the control device is electrically connected; the control device includes a landing surface detecting component, and the control device is configured to control the power when the landing surface detecting component detects that the landing target of the drone is a water surface
  • the mode of operation of the device and the landing gear enables the drone to land and sail on the surface of the water.
  • control device further includes a control device, and when the landing surface detecting component detects that the landing destination of the drone is a water surface, the control device can control the landing device to switch to a buoyancy supporting state, And controlling the power device to drive the drone to land on the landing destination as a whole.
  • the landing surface detecting component includes an image collector capable of acquiring a surface image of a landing destination of the drone, and determining whether the landing destination is a water surface according to the surface image.
  • the image collector includes a camera and an image analysis component, the camera is capable of acquiring a surface image of the landing destination, and transmitting the surface image to the image analysis component; the image analysis component is capable of The surface texture feature of the landing destination determines whether the landing destination is a water surface.
  • the image analysis component is pre-set with a ripple feature of the water surface, and the image analysis component extracts a surface texture feature of the surface image from the surface image, and the surface texture feature and the ripple of the water surface The feature is compared, and it is determined whether the landing destination is a water surface.
  • the image collector includes a camera and an image processing component, the camera is capable of acquiring a surface image of the landing destination, and transmitting the surface image to the image processing component; the image processing component according to the The imaging spectral characteristics of the landing destination determine whether the landing destination is a water surface.
  • an analog spectral feature of the water surface is pre-set in the image processing component, and the image processing component is capable of constructing and calculating a reflectance of the landing destination surface according to the surface image of the landing destination to obtain the A surface spectral feature of the landing destination is measured, and the surface spectral features of the landing destination are compared with the preset simulated spectral features to determine whether the landing destination is a water surface.
  • the image collector is an imaging spectrometer.
  • the image collector includes a plurality of cameras and a plurality of polarizers, each of the polarizers being disposed on one of the cameras.
  • the performance parameters of the plurality of the cameras are completely identical, and the deflection angles of the plurality of the polarizing plates are different from each other.
  • the landing surface detecting assembly further includes a distance sensor capable of detecting a distance between the drone and the landing destination to allow the control device to control the takeoff and landing according to the distance The device enters a preliminary landing state.
  • the distance sensor is at least one of a barometer, an ultrasonic ranging sensor, a laser ranging sensor, and a vision sensor.
  • the distance sensor when determining that the distance between the drone and the landing destination is within a preset range, allows the control device to control the landing device to enter the preliminary landing according to the distance status.
  • the landing surface detecting component further includes a depth detector capable of detecting a depth of the water when the image collector determines that the landing destination is a water surface; the control device is capable of When the depth detector determines that the depth falls within a predetermined depth range, the power device is controlled to not drive the drone to fall as a whole.
  • the depth detector is a water depth detector.
  • the drone further includes an alarm, the alarm being capable of issuing a message to a user of the drone when the depth detector determines that the depth falls within a predetermined depth range
  • the warning signal indicates that the landing destination is not suitable for landing.
  • the alarm is a warning light, a buzzer or an electronic information transmitter.
  • the airframe includes a body, and the lifting device and the power device are all disposed on the body; the landing device includes a levator capable of landing on the water surface of the drone Provide buoyancy support while sailing.
  • the suspensor is an inflatable buoyancy board.
  • the levitation device is a buoyancy plate made of a solid buoyancy material.
  • the levitation device comprises a bottom plate and a side plate disposed on a periphery of the bottom plate, and the bottom plate and the side plate form a predetermined angle.
  • the side plate is adjustably mounted on the bottom plate, and an angle formed between the bottom plate and the side plate is adjustable.
  • the bottom plate is adjustably connected to the body, and an angle formed between the bottom plate and the body can be adjusted.
  • the levitation device is disposed around the outside of the machine.
  • the suspensor encapsulates all or part of the structure of the body.
  • the take-off and landing device further includes a landing gear disposed on the body, and the levator is disposed on the landing gear.
  • the landing gear includes a support mechanism disposed on the body and a buffer mechanism disposed on the support mechanism.
  • the buffer mechanism is a cushioning member made of an elastic material.
  • the buffer mechanism is at least one of a gas pressure damper, a hydraulic damper, and a spring damper.
  • the support mechanism is a telescopic support structure, and the support mechanism can drive the buffer mechanism relatively away from or close to the body.
  • the support mechanism is a cylinder
  • the buffer mechanism is disposed on a driving rod of the cylinder, and the cylinder drives the buffer mechanism to be relatively far away from or close to the body through the driving rod.
  • the support mechanism is a voice coil motor
  • the buffer mechanism is disposed on a driving end of the voice coil motor, and the voice coil motor drives the buffer mechanism to be relatively far away from or close to the body through the driving end .
  • the support mechanism is a linear motor
  • the buffer mechanism is disposed on a mover of the linear motor, and the linear motor drives the buffer mechanism relatively far away from or close to the body by the mover.
  • the supporting mechanism comprises a guide rail, an electromagnet and a permanent magnet
  • the rail is connected to the body, the buffer mechanism is slidably disposed on the rail;
  • the electromagnet and the permanent magnet are One of the electromagnet and the permanent magnet is disposed on the body, and the electromagnet is attracted or repelled by controlling the direction of the current on the electromagnet.
  • the permanent magnets are such that the buffer mechanism is relatively far from or close to the body along the rail.
  • the supporting mechanism comprises an electric motor, a screw rod and a nut
  • the electric motor is connected to the machine body
  • the screw rod is coaxially fixedly connected with a driving shaft of the electric motor
  • the nut is sleeved on the wire a rod connected to the buffer mechanism; wherein the motor drives the screw to rotate, the screw is screwed with the nut to drive the nut to move relative to the screw, and the nut drives the nut Buffer mechanism movement.
  • the support mechanism includes an electric motor, a gear and a rack, the electric motor is coupled to the body, the gear is coupled to a drive shaft of the electric motor, and the rack meshes with the gear.
  • the buffer mechanism is mounted on the rack; wherein the motor drives the gear to rotate, the gear drives the rack to translate, and the rack drives the buffer mechanism to move.
  • the power unit further includes a propeller coupled to the body and powering the drone on the surface of the water.
  • the propeller is at least one of a pump jet propeller, a propeller propeller, and a spherical motor propeller.
  • the power device further includes a connecting mechanism, the pusher is connected to the body through the connecting mechanism, the connecting mechanism is a telescopic connecting structure, and the connecting mechanism is capable of driving the pusher Keep away from or close to the body.
  • the connecting mechanism is a cylinder
  • the propeller is disposed on a driving rod of the cylinder, and the cylinder drives the propeller relatively far away from or close to the body through the driving rod.
  • the connecting mechanism is a voice coil motor
  • the pusher is disposed on a driving end of the voice coil motor, and the voice coil motor drives the pusher to be relatively far away from or close to the body through the driving end .
  • the connecting mechanism is a linear motor
  • the pusher is disposed on a mover of the linear motor, and the linear motor drives the pusher relatively far away from or close to the body by the mover.
  • the connecting mechanism comprises a guide rail, an electromagnet and a permanent magnet
  • the rail is connected to the body, the pusher is slidably disposed on the rail;
  • the electromagnet and the permanent magnet are One of the electromagnet and the permanent magnet is disposed on the body, and the electromagnet is attracted or repelled by controlling the direction of the current on the electromagnet.
  • the permanent magnets are such that the pusher is relatively far away from or close to the body along the rail.
  • the connecting mechanism comprises an electric motor, a screw rod and a nut
  • the electric motor is connected to the machine body
  • the screw rod is coaxially fixedly connected with a driving shaft of the electric motor
  • the nut is sleeved on the wire a rod coupled to the pusher; wherein the motor drives the screw to rotate, the screw being screwed with the nut to urge the nut to move relative to the lead, the nut driving the Propeller movement.
  • the connecting mechanism comprises an electric motor, a gear and a rack
  • the electric motor is connected to the machine body
  • the gear is connected to a driving shaft of the electric motor
  • the rack meshes with the gear
  • the propeller is mounted on the rack; wherein the motor drives the gear to rotate, the gear drives the rack to translate, and the rack drives the propeller to move.
  • the power unit further includes a rotor assembly rotatably coupled to the body; the control device capable of controlling the rotor assembly to operate when the drone is operating in the air The drone provides power during flight in the air; the control device is capable of controlling the rotor assembly to rotate a predetermined angle relative to the body when the drone is navigating on the surface to provide power for navigation of the drone.
  • the airframe further includes a plurality of arms disposed on the body, the plurality of rotor assemblies being plural; a plurality of the arms are disposed around the body, and each of the rotor assemblies may be Rotatingly mounted on the arm.
  • the rotor assembly includes a mounting member rotatably disposed on the arm, and the control device is capable of controlling the mounting member to rotate relative to the arm.
  • the rotor assembly further includes a driving member and a propeller, the driving member is disposed on the mounting member, and the propeller is disposed on the driving member.
  • control device further includes a satellite locator that tracks the geographic location of the drone in real time.
  • control device further includes a magnetic field sensor that tracks the traveling direction of the drone in real time to determine the geographic orientation information of the drone together with the satellite locator.
  • the magnetic field sensor is a compass.
  • control device further includes a main controller, and the power device, the take-off and landing device, and the landing surface detecting component are electrically connected to the main controller, respectively.
  • a drone control system running on a drone including a control device, a power device, and a take-off device, wherein the control device is configured to control the power device to operate as the drone Providing power to also control the movement of the landing gear as a support when the drone is landing;
  • the drone control system includes:
  • a central control module configured to receive a control instruction for taking off, traveling, or landing of the drone
  • An environment detecting module configured to detect an object type of a landing destination of the drone when the central control module receives a landing control command
  • the landing control module is configured to control the landing gear to switch to the water landing mode when the environment detecting module detects that the landing destination is a water surface.
  • the landing control module includes a water landing control unit, and the water landing control unit is configured to control the landing gear to switch to a water landing mode.
  • the landing control module further includes a land landing control unit, and the land landing control unit is configured to control the landing device to switch to the land when the environment detecting module detects that the landing destination is a non-surface Landing mode.
  • the environment detecting module is further configured to detect a distance between the drone and the landing destination, and determine that if the distance falls within a preset distance range, the landing control module is allowed to control the The landing device switches the landing mode.
  • the environment detecting module determines that if the distance between the drone and the landing destination does not fall within the preset distance range, the travel control module is configured to control the power device to operate. To reduce the flying height of the drone.
  • the environment detecting module is configured to detect a distance between the drone and the landing destination in real time.
  • the environment detecting module is configured to intermittently detect a distance between the drone and the landing destination.
  • the environment detecting module is further configured to further detect the depth of the water after detecting that the landing destination is a water surface, and determine that if the depth falls within a preset depth range, the landing control module does not Controlling the movement of the landing gear.
  • the drone control system further includes a takeoff control module, and the takeoff control module is configured to control the power device to operate to drive the drone to be upgraded when the central control module receives the fly control command take off.
  • the drone control system further includes a self-test module
  • the drone further includes a self-test device
  • the self-test module is configured to control the control unit after the central control module receives the take-off control command
  • the self-checking device checks the operating state of the drone, and determines that if the state of the drone is suitable for flight, the take-off control module is allowed to control the operation of the power device to drive the drone to improve take off.
  • the drone control system further includes a travel control module, wherein the travel control module is configured to control the power device to operate when the central control module receives a travel control command, so that the drone Ability to fly in the air or on the surface of the water.
  • a drone landing control method is applied to a drone, the drone includes a control device, a power device, and a take-off device, and the control device is configured to control the power device to operate as the unmanned person
  • the machine travels to provide power and is also used to control the movement of the landing gear as a support when the drone is landing;
  • the drone landing control method includes:
  • the power unit is controlled to operate to reduce the flying height of the drone until it drops to a destination.
  • the landing destination is a water surface
  • the depth of the water is detected, and it is determined that if the depth falls within a predetermined depth range, the movement of the landing gear is not controlled.
  • the starting The drop device switches the landing mode.
  • the power device is controlled to operate to reduce the flying height of the drone.
  • the detection is performed at intervals.
  • the detection is performed in real time.
  • the geographic orientation of the drone is initially located to predict whether the drone is about to land on the water surface.
  • a drone control method is applied to a drone, the drone includes a control device, a power device, and a take-off device, and the control device is configured to control the power device to operate as the drone Providing power to also control the movement of the landing gear as a support when the drone is landing;
  • the drone control method includes:
  • the power unit is controlled to operate to reduce the flying height of the drone until it drops to a destination.
  • the landing destination is a water surface
  • the depth of the water is detected, and it is determined that if the depth falls within a predetermined depth range, the movement of the landing gear is not controlled.
  • the starting The drop device switches the landing mode.
  • the power device is controlled to operate to reduce the flying height of the drone.
  • the detection is performed at intervals.
  • the detection is performed in real time.
  • the geographic orientation of the drone is initially located to predict whether the drone is about to land on the water surface.
  • a drone includes a body and a power unit coupled to the body, and a control device and a take-off device disposed on the body.
  • the power device and the take-off and landing device are respectively electrically connected to the control device; the control device is configured to control the power device and the take-off and landing device to switch to land landing when receiving a landing control command Mode or water landing mode.
  • control device includes a main controller that controls the power device and the landing device to switch to or land landing mode upon receiving a land landing control command.
  • control device includes a main controller, when the main controller receives a water landing control command, controls the water landing mode of the landing gear to switch to the buoyancy support state, and controls the power device to drive The drone is totally dropped to the surface of the water.
  • control device includes a distance sensor capable of detecting a distance between the drone and the water surface to allow the main controller to control the landing device to enter a preliminary landing according to the distance status.
  • the distance sensor is at least one of a barometer, an ultrasonic ranging sensor, a laser ranging sensor, and a vision sensor.
  • the distance sensor when determining that the distance between the drone and the water surface is within a preset range, allows the main controller to control the landing device to enter a preliminary landing state according to the distance .
  • control device further includes a depth detector capable of detecting a depth of water; the main controller being capable of determining, when the depth detector falls within a predetermined depth range, Controlling the power device does not drive the drone to land as a whole.
  • the depth detector is a water depth detector.
  • the drone further includes an alarm, the alarm being capable of issuing a message to a user of the drone when the depth detector determines that the depth falls within a predetermined depth range
  • the warning signal indicates that the landing destination is not suitable for landing.
  • the alarm is a warning light, a buzzer or an electronic information transmitter.
  • the airframe includes a body, and the lifting device and the power device are all disposed on the body; the landing device includes a levator capable of landing on the water surface of the drone Provide buoyancy support while sailing.
  • the suspensor is an inflatable buoyancy board.
  • the levitation device is a buoyancy plate made of a solid buoyancy material.
  • the levitation device comprises a bottom plate and a side plate disposed on a periphery of the bottom plate, and the bottom plate and the side plate form a predetermined angle.
  • the side plate is adjustably mounted on the bottom plate, and an angle formed between the bottom plate and the side plate is adjustable.
  • the bottom plate is adjustably connected to the body, and an angle formed between the bottom plate and the body can be adjusted.
  • the levitation device is disposed around the outside of the machine.
  • the suspensor encapsulates all or part of the structure of the body.
  • the take-off and landing device further includes a landing gear disposed on the body, and the levator is disposed on the landing gear.
  • the landing gear includes a support mechanism disposed on the body and a buffer mechanism disposed on the support mechanism.
  • the buffer mechanism is a cushioning member made of an elastic material.
  • the buffer mechanism is at least one of a gas pressure damper, a hydraulic damper, and a spring damper.
  • the support mechanism is a telescopic support structure, and the support mechanism can drive the buffer mechanism relatively away from or close to the body.
  • the support mechanism is a cylinder
  • the buffer mechanism is disposed on a driving rod of the cylinder, and the cylinder drives the buffer mechanism to be relatively far away from or close to the body through the driving rod.
  • the support mechanism is a voice coil motor
  • the buffer mechanism is disposed on a driving end of the voice coil motor, and the voice coil motor drives the buffer mechanism to be relatively far away from or close to the body through the driving end .
  • the support mechanism is a linear motor
  • the buffer mechanism is disposed on a mover of the linear motor, and the linear motor drives the buffer mechanism relatively far away from or close to the body by the mover.
  • the supporting mechanism comprises a guide rail, an electromagnet and a permanent magnet
  • the rail is connected to the body, the buffer mechanism is slidably disposed on the rail;
  • the electromagnet and the permanent magnet are One of the electromagnet and the permanent magnet is disposed on the body, and the electromagnet is attracted or repelled by controlling the direction of the current on the electromagnet.
  • the permanent magnets are such that the buffer mechanism is relatively far from or close to the body along the rail.
  • the supporting mechanism comprises an electric motor, a screw rod and a nut
  • the electric motor is connected to the machine body
  • the screw rod is coaxially fixedly connected with a driving shaft of the electric motor
  • the nut is sleeved on the wire a rod connected to the buffer mechanism; wherein the motor drives the screw to rotate, the screw is screwed with the nut to drive the nut to move relative to the screw, and the nut drives the nut Buffer mechanism movement.
  • the support mechanism includes an electric motor, a gear and a rack, the electric motor is coupled to the body, the gear is coupled to a drive shaft of the electric motor, and the rack meshes with the gear.
  • the buffer mechanism is mounted on the rack; wherein the motor drives the gear to rotate, the gear drives the rack to translate, and the rack drives the buffer mechanism to move.
  • the power unit further includes a propeller coupled to the body and powering the drone on the surface of the water.
  • the propeller is at least one of a pump jet propeller, a propeller propeller, and a spherical motor propeller.
  • the power device further includes a connecting mechanism, the pusher is connected to the body through the connecting mechanism, the connecting mechanism is a telescopic connecting structure, and the connecting mechanism is capable of driving the pusher Relatively far from or close to the body.
  • the connecting mechanism is a cylinder
  • the propeller is disposed on a driving rod of the cylinder, and the cylinder drives the propeller relatively far away from or close to the body through the driving rod.
  • the connecting mechanism is a voice coil motor
  • the pusher is disposed on a driving end of the voice coil motor, and the voice coil motor drives the pusher to be relatively far away from or close to the body through the driving end .
  • the connecting mechanism is a linear motor
  • the pusher is disposed on a mover of the linear motor, and the linear motor drives the pusher relatively far away from or close to the body by the mover.
  • the connecting mechanism comprises a guide rail, an electromagnet and a permanent magnet
  • the rail is connected to the body, the pusher is slidably disposed on the rail;
  • the electromagnet and the permanent magnet are One of the electromagnet and the permanent magnet is disposed on the body, and the electromagnet is attracted or repelled by controlling the direction of the current on the electromagnet.
  • the permanent magnets are such that the pusher is relatively far away from or close to the body along the rail.
  • the connecting mechanism comprises an electric motor, a screw rod and a nut
  • the electric motor is connected to the machine body
  • the screw rod is coaxially fixedly connected with a driving shaft of the electric motor
  • the nut is sleeved on the wire a rod coupled to the pusher; wherein the motor drives the screw to rotate, the screw being screwed with the nut to urge the nut to move relative to the lead, the nut driving the Propeller movement.
  • the connecting mechanism comprises an electric motor, a gear and a rack
  • the electric motor is connected to the machine body
  • the gear is connected to a driving shaft of the electric motor
  • the rack meshes with the gear
  • the propeller is mounted on the rack; wherein the motor drives the gear to rotate, the gear drives the rack to translate, and the rack drives the propeller to move.
  • the power unit further includes a rotor assembly rotatably coupled to the body; the control device capable of controlling the rotor assembly to operate when the drone is operating in the air The drone provides power during flight in the air; the control device is capable of controlling the rotor assembly to rotate a predetermined angle relative to the body when the drone is navigating on the surface to provide power for navigation of the drone.
  • the airframe further includes a plurality of arms disposed on the body, the plurality of rotor assemblies being plural; a plurality of the arms are disposed around the body, and each of the rotor assemblies may be Rotatingly mounted on the arm.
  • the rotor assembly includes a mounting member rotatably disposed on the arm, and the control device is capable of controlling the mounting member to rotate relative to the arm.
  • the rotor assembly further includes a driving member and a propeller, the driving member is disposed on the mounting member, and the propeller is disposed on the driving member.
  • control device further includes a satellite locator that tracks the geographic location of the drone in real time.
  • control device further includes a magnetic field sensor that tracks the traveling direction of the drone in real time to determine the geographic orientation information of the drone together with the satellite locator.
  • the magnetic field sensor is a compass.
  • a drone control system running on a drone including a control device, a power device, and a take-off device, wherein the control device is configured to control the power device to operate as the drone Providing power to also control the movement of the landing gear as a support when the drone is landing;
  • the drone control system includes:
  • a central control module for receiving a control command for takeoff, travel or landing of the drone
  • the landing control module is configured to control the landing gear to switch to a land landing mode or a water landing mode corresponding to the landing destination when the central control module receives a landing control command.
  • the landing control module includes a water landing control unit, and the water landing control unit is configured to control the landing gear to switch to the water landing mode when the central control module receives a water landing control command.
  • the landing control module further includes a land landing control unit, and the land landing control unit is configured to control the landing gear to switch to the land landing mode when the central control module receives a land landing control command.
  • the drone control system further includes an environment detecting module, wherein the environment detecting module is configured to detect a distance between the drone and the landing destination, and determine that the distance falls within a preset The distance range allows the landing control module to control the landing gear to switch the landing mode.
  • the environment detecting module determines that if the distance between the drone and the landing destination does not fall within the preset distance range, the travel control module is configured to control the power device to operate. To reduce the flying height of the drone.
  • the environment detecting module is configured to detect a distance between the drone and the landing destination in real time.
  • the environment detecting module is configured to intermittently detect a distance between the drone and the landing destination.
  • the environment detecting module is further configured to: after the central control module receives a land landing control command, detect a depth of water, and determine that the landing control is if the depth falls within a preset depth range. The module does not control the action of the take-off and landing device.
  • the drone control system further includes a takeoff control module, and the takeoff control module is configured to control the power device to operate to drive the drone to be upgraded when the central control module receives the fly control command take off.
  • the drone control system further includes a self-test module
  • the drone further includes a self-test device
  • the self-test module is configured to control the control unit after the central control module receives the take-off control command
  • the self-checking device checks the operating state of the drone, and determines that if the state of the drone is suitable for flight, the take-off control module is allowed to control the operation of the power device to drive the drone to improve take off.
  • the drone control system further includes a travel control module, wherein the travel control module is configured to control the power device to operate when the central control module receives a travel control command, so that the drone Ability to fly in the air or on the surface of the water.
  • a drone landing control method is applied to a drone, the drone includes a control device, a power device, and a take-off device, and the control device is configured to control the power device to operate as the unmanned person
  • the machine travels to provide power and is also used to control the movement of the landing gear as a support when the drone is landing;
  • the drone landing control method includes:
  • the power unit is controlled to operate to reduce the flying height of the drone until it drops to a destination.
  • control command is a water fall control command
  • the depth of the water is detected, and if the depth falls within a predetermined depth range, the action of the take-off and landing device is not controlled.
  • controlling the landing device to switch the landing mode detecting a distance between the drone and the landing destination, and determining that if the distance falls within a preset distance range, controlling the starting The drop device switches the landing mode.
  • the power device is controlled to operate to reduce the flying height of the drone.
  • the detection is performed at intervals.
  • the detection is performed in real time.
  • a drone control method is applied to a drone, the drone includes a control device, a power device, and a take-off device, and the control device is configured to control the power device to operate as the drone Providing power to also control the movement of the landing gear as a support when the drone is landing;
  • the drone control method includes:
  • the power unit is controlled to operate to reduce the flying height of the drone until it drops to a destination.
  • control command is a water fall control command
  • the depth of the water is detected, and if the depth falls within a predetermined depth range, the action of the take-off and landing device is not controlled.
  • controlling the landing device to switch the landing mode detecting a distance between the drone and the landing destination, and determining that if the distance falls within a preset distance range, controlling the starting The drop device switches the landing mode.
  • the power device is controlled to operate to reduce the flying height of the drone.
  • the detection is performed at intervals.
  • the detection is performed in real time.
  • a drone includes a body and a power unit coupled to the body, and a control device disposed on the body and electrically connected to the power unit.
  • the control device is configured to control the power device to switch an operating mode to enable the drone to fly in the air or to sail on the surface of the water.
  • the drone further includes a take-off and landing device electrically connected to the control device, the control device is further configured to control the take-off and landing device to switch the working mode, so that the drone can land on the land On or on the water.
  • control device includes a main controller that controls the power device and the landing device to switch to or land landing mode upon receiving a land landing control command.
  • control device includes a main controller, when the main controller receives a water landing control command, controls the water landing mode of the landing gear to switch to the buoyancy support state, and controls the power device to drive The drone is totally dropped to the surface of the water.
  • control device includes a distance sensor capable of detecting a distance between the drone and the water surface to allow the main controller to control the landing device to enter a preliminary landing according to the distance status.
  • the distance sensor is at least one of a barometer, an ultrasonic ranging sensor, a laser ranging sensor, and a vision sensor.
  • the distance sensor when determining that the distance between the drone and the water surface is within a preset range, allows the main controller to control the landing device to enter a preliminary landing state according to the distance .
  • control device further includes a depth detector capable of detecting a depth of water; the main controller being capable of determining, when the depth detector falls within a predetermined depth range, Controlling the power device does not drive the drone to land as a whole.
  • the depth detector is a water depth detector.
  • the drone further includes an alarm, the alarm being capable of issuing a message to a user of the drone when the depth detector determines that the depth falls within a predetermined depth range
  • the warning signal indicates that the landing destination is not suitable for landing.
  • the alarm is a warning light, a buzzer or an electronic information transmitter.
  • the airframe includes a body, and the lifting device and the power device are all disposed on the body; the landing device includes a levator capable of landing on the water surface of the drone Provide buoyancy support while sailing.
  • the suspensor is an inflatable buoyancy board.
  • the levitation device is a buoyancy plate made of a solid buoyancy material.
  • the levitation device comprises a bottom plate and a side plate disposed on a periphery of the bottom plate, and the bottom plate and the side plate form a predetermined angle.
  • the side plate is adjustably mounted on the bottom plate, and an angle formed between the bottom plate and the side plate is adjustable.
  • the bottom plate is adjustably connected to the body, and an angle formed between the bottom plate and the body can be adjusted.
  • the levitation device is disposed around the outside of the machine.
  • the suspensor encapsulates all or part of the structure of the body.
  • the take-off and landing device further includes a landing gear disposed on the body, and the levator is disposed on the landing gear.
  • the landing gear includes a support mechanism disposed on the body and a buffer mechanism disposed on the support mechanism.
  • the buffer mechanism is a cushioning member made of an elastic material.
  • the buffer mechanism is at least one of a gas pressure damper, a hydraulic damper, and a spring damper.
  • the support mechanism is a telescopic support structure, and the support mechanism can drive the buffer mechanism relatively away from or close to the body.
  • the support mechanism is a cylinder
  • the buffer mechanism is disposed on a driving rod of the cylinder, and the cylinder drives the buffer mechanism to be relatively far away from or close to the body through the driving rod.
  • the support mechanism is a voice coil motor
  • the buffer mechanism is disposed on a driving end of the voice coil motor, and the voice coil motor drives the buffer mechanism to be relatively far away from or close to the body through the driving end .
  • the support mechanism is a linear motor
  • the buffer mechanism is disposed on a mover of the linear motor, and the linear motor drives the buffer mechanism relatively far away from or close to the body by the mover.
  • the supporting mechanism comprises a guide rail, an electromagnet and a permanent magnet
  • the rail is connected to the body, the buffer mechanism is slidably disposed on the rail;
  • the electromagnet and the permanent magnet are One of the electromagnet and the permanent magnet is disposed on the body, and the electromagnet is attracted or repelled by controlling the direction of the current on the electromagnet.
  • the permanent magnets are such that the buffer mechanism is relatively far from or close to the body along the rail.
  • the supporting mechanism comprises an electric motor, a screw rod and a nut
  • the electric motor is connected to the machine body
  • the screw rod is coaxially fixedly connected with a driving shaft of the electric motor
  • the nut is sleeved on the wire a rod connected to the buffer mechanism; wherein the motor drives the screw to rotate, the screw is screwed with the nut to drive the nut to move relative to the screw, and the nut drives the nut Buffer mechanism movement.
  • the support mechanism includes an electric motor, a gear and a rack, the electric motor is coupled to the body, the gear is coupled to a drive shaft of the electric motor, and the rack meshes with the gear.
  • the buffer mechanism is mounted on the rack; wherein the motor drives the gear to rotate, the gear drives the rack to translate, and the rack drives the buffer mechanism to move.
  • the power unit further includes a propeller coupled to the body and powering the drone on the surface of the water.
  • the propeller is at least one of a pump jet propeller, a propeller propeller, and a spherical motor propeller.
  • the power device further includes a connecting mechanism, the pusher is connected to the body through the connecting mechanism, the connecting mechanism is a telescopic connecting structure, and the connecting mechanism is capable of driving the pusher Keep away from or close to the body.
  • the connecting mechanism is a cylinder
  • the propeller is disposed on a driving rod of the cylinder, and the cylinder drives the propeller relatively far away from or close to the body through the driving rod.
  • the connecting mechanism is a voice coil motor
  • the pusher is disposed on a driving end of the voice coil motor, and the voice coil motor drives the pusher to be relatively far away from or close to the body through the driving end .
  • the connecting mechanism is a linear motor
  • the pusher is disposed on a mover of the linear motor, and the linear motor drives the pusher relatively far away from or close to the body by the mover.
  • the connecting mechanism comprises a guide rail, an electromagnet and a permanent magnet
  • the rail is connected to the body, the pusher is slidably disposed on the rail;
  • the electromagnet and the permanent magnet are One of the electromagnet and the permanent magnet is disposed on the body, and the electromagnet is attracted or repelled by controlling the direction of the current on the electromagnet.
  • the permanent magnets are such that the pusher is relatively far away from or close to the body along the rail.
  • the connecting mechanism comprises an electric motor, a screw rod and a nut
  • the electric motor is connected to the machine body
  • the screw rod is coaxially fixedly connected with a driving shaft of the electric motor
  • the nut is sleeved on the wire a rod coupled to the pusher; wherein the motor drives the screw to rotate, the screw being screwed with the nut to urge the nut to move relative to the lead, the nut driving the Propeller movement.
  • the connecting mechanism comprises an electric motor, a gear and a rack
  • the electric motor is connected to the machine body
  • the gear is connected to a driving shaft of the electric motor
  • the rack meshes with the gear
  • the propeller is mounted on the rack; wherein the motor drives the gear to rotate, the gear drives the rack to translate, and the rack drives the propeller to move.
  • the power unit further includes a rotor assembly rotatably coupled to the body; the control device capable of controlling the rotor assembly to operate when the drone is operating in the air The drone provides power during flight in the air; the control device is capable of controlling the rotor assembly to rotate a predetermined angle relative to the body when the drone is navigating on the surface to provide power for navigation of the drone.
  • the airframe further includes a plurality of arms disposed on the body, the plurality of rotor assemblies being plural; a plurality of the arms are disposed around the body, and each of the rotor assemblies may be Rotatingly mounted on the arm.
  • the rotor assembly includes a mounting member rotatably disposed on the arm, and the control device is capable of controlling the mounting member to rotate relative to the arm.
  • the rotor assembly further includes a driving member and a propeller, the driving member is disposed on the mounting member, and the propeller is disposed on the driving member.
  • control device further includes a satellite locator that tracks the geographic location of the drone in real time.
  • control device further includes a magnetic field sensor that tracks the traveling direction of the drone in real time to determine the geographic orientation information of the drone together with the satellite locator.
  • the magnetic field sensor is a compass.
  • a drone control system that operates on a drone, the drone including a control device and a power device, the control device for controlling operation of the power device to provide power to the drone.
  • the drone control system includes: a central control module configured to receive a control command for takeoff, travel, or landing of the drone, and allow the control device to control the power device to switch an operating mode to cause the The man-machine can fly in the air or sail on the surface of the water.
  • the drone control system further includes a water landing control unit, and the water landing control unit is configured to control the landing gear to switch to a water landing mode.
  • the drone control system further includes a land landing control unit for controlling the landing gear to switch to the land landing mode.
  • the drone control system further includes an environment detecting module, wherein the environment detecting module is configured to detect a distance between the drone and a landing destination of the drone, and determine that the distance falls Entering a predetermined distance range allows the landing control module to control the landing gear to switch the landing mode.
  • the environment detecting module determines that if the distance between the drone and the landing destination does not fall within the preset distance range, the travel control module is configured to control the power device to operate. To reduce the flying height of the drone.
  • the environment detecting module is configured to detect a distance between the drone and the landing destination in real time.
  • the environment detecting module is configured to intermittently detect a distance between the drone and the landing destination.
  • the drone control system further includes a takeoff control module, and the takeoff control module is configured to control the power device to operate to drive the drone to be upgraded when the central control module receives the fly control command take off.
  • the drone control system further includes a self-test module
  • the drone further includes a self-test device
  • the self-test module is configured to control the control unit after the central control module receives the take-off control command
  • the self-checking device checks the operating state of the drone, and determines that if the state of the drone is suitable for flight, the take-off control module is allowed to control the operation of the power device to drive the drone to improve take off.
  • the drone control system further includes a travel control module, wherein the travel control module is configured to control the power device to operate when the central control module receives a travel control command, so that the drone Ability to fly in the air or on the surface of the water.
  • a drone control method is applied to a drone, the drone comprising a control device and a power device, the control device for controlling the operation of the power device to provide power for the drone to travel.
  • the drone control method includes: receiving a drone control command; controlling the power device to switch an operation mode according to the control command, so that the drone can fly in the air or sail on the water surface.
  • control command is a landing control command
  • detecting a distance between the drone and a landing destination of the drone and controlling the power device to operate to reduce the flying height of the drone Until landing.
  • the detection is performed at intervals.
  • the detection is performed in real time.
  • the drone, the drone control system and method of the present invention, and the drone landing control method detect the object type of the drone landing destination by the landing surface detecting device, and control the type according to the object type
  • the take-off and landing device switches to an operating state that is compatible with the type of object. If the landing surface detecting device detects that the landing destination is a liquid surface such as a water surface, the drove device can be controlled to switch the working mode, so that the drone can smoothly land on the liquid surface, and can Sailing in the liquid. Therefore, the drone can fly in the air as well as in the water.
  • FIG. 1 is a schematic diagram of the unmanned aerial vehicle in the first state according to the first embodiment of the present invention, and the first state may be a non-working static state or an air working state.
  • FIG. 2 is a schematic view of the drone shown in FIG. 1 in a second state, which may be a first preparatory state that is to be dropped from the air to the surface of the water, or may be a non-working stationary state.
  • FIG. 3 is a schematic view of the drone shown in FIG. 1 in a third state, which may be a second preparatory state that is to be dropped from the air onto the water surface, or may be a water navigation/resident state, or It is a non-working quiescent state.
  • FIG. 4 is a schematic diagram of the UAV shown in FIG. 1 in a fourth state, which may be a water navigation/resident state or a non-working static state.
  • Fig. 5 is a schematic view showing the drone in the first state in the second embodiment of the present invention.
  • Figure 6 is a schematic view of the drone shown in Figure 5 in the second state.
  • Fig. 7 is a schematic view showing the drone shown in Fig. 5 in the third state.
  • Figure 8 is a schematic view of the drone shown in Figure 5 in the fourth state.
  • Fig. 9 is a schematic view showing the drone in the first state in the third embodiment of the present invention.
  • Figure 10 is a schematic view of the drone shown in Figure 9 in the second state.
  • Figure 11 is a schematic view of the drone shown in Figure 9 in the third state.
  • Figure 12 is a schematic view of the drone shown in Figure 9 in the fourth state.
  • Figure 13 is a functional block diagram of a drone control system according to an embodiment of the present invention.
  • FIG. 14 is a schematic flow chart of a drone drop control method according to an embodiment of the present invention.
  • FIG. 15 is a schematic flow chart of a method for controlling a take-off of a drone according to an embodiment of the present invention.
  • FIG. 16 is a schematic flow chart of a method for controlling travel of a drone according to an embodiment of the present invention.
  • a component when referred to as being “fixed” to another component, it can be directly on the other component or the component can be present.
  • a component When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • a component When a component is considered to be “set to” another component, it can be placed directly on another component or possibly with a centered component.
  • the terms “vertical,” “horizontal,” “left,” “right,” and the like, as used herein, are for illustrative purposes only.
  • a drone includes a body and a power unit coupled to the body, and a control device disposed on the body and electrically connected to the power unit.
  • the control device is configured to control the power device to switch an operating mode to enable the drone to fly in the air or to sail on the surface of the water.
  • a drone control system that operates on a drone, the drone including a control device and a power device, the control device for controlling operation of the power device to provide power to the drone.
  • the drone control system includes: a central control module configured to receive a control command for takeoff, travel, or landing of the drone, and allow the control device to control the power device to switch an operating mode to cause the The man-machine can fly in the air or sail on the surface of the water.
  • a drone control method is applied to a drone, the drone comprising a control device and a power device, the control device for controlling the operation of the power device to provide power for the drone to travel.
  • the drone control method includes: receiving a drone control command; controlling the power device to switch an operation mode according to the control command, so that the drone can fly in the air or sail on the water surface.
  • a first embodiment of the present invention provides a drone 100, which is a water and air dual-use drone.
  • the drone 100 can be used for air flight, hovering, and also for water navigation, dwelling. Further, the drone 100 can take off or land on land, or take off or land on the water surface.
  • the drone 100 includes a body 10 and a power unit 30, a take-off and landing device 50, and a control device 70 disposed on the body 10.
  • the power device 30 and the take-off and landing device 50 are respectively electrically connected to the control device 70, and the power device 30 is used to provide the drone 100 with traveling power, and the take-off device 50 is used for As the support when the drone 100 is dropped, the control device 70 is used to control the drone 100 to execute instructions such as flight, navigation, take-off or landing.
  • the body 10 includes a body 12 and an arm 14 disposed on the body 12.
  • the body 12 is used to mount the control device 70.
  • One end of the arm 14 is disposed on the body 12, and the other end extends in a direction away from the body 12.
  • the number of the arms 14 is plural, and the plurality of the arms 14 are circumferentially disposed around the body 12 and spaced apart from each other.
  • the arm 14 is used to mount a partial structure of the power unit 30. It can be understood that the number of the arms 14 can be two, three, four, five, six, seven, eight, ... and so on.
  • the power unit 30 includes a rotor assembly 32 and a propulsion assembly 34.
  • the rotor assembly 32 is disposed on the arm 14
  • the propulsion assembly 34 is disposed on the body 12 .
  • the number of the rotor assemblies 32 is plural, and the number thereof is the same as the number of the arms 14.
  • Each of the rotor assemblies 32 is mounted on one of the arms 14.
  • Each of the rotor assemblies 32 includes an assembly 321 , a drive member 323 , and a propeller 325 .
  • the mounting member 321 is connected to the end of the arm 14
  • the driving member 323 is disposed on the mounting member 321
  • the propeller 325 is coupled to the driving member.
  • the mounting member 321 is connected to the end of the arm 14
  • the driving member 323 is disposed on the mounting member 321
  • the propeller 325 is coupled to the driving member.
  • the mounting member 321 is rotatably connected to an end of the corresponding arm 14 away from the body 12 and extends in a direction away from the arm 14 .
  • the mounting member 321 is rotatable relative to the arm 14 by a predetermined angle under the control of the control device 70. Specifically, the mounting member 321 can be rotated by a predetermined angle in a vertical plane around the connection between the mounting member 321 and the arm 14 under the control of the control device 70.
  • the driving member 323 is a motor.
  • the driving member 323 is a brushless motor.
  • the driving member 323 is disposed at an end of the mounting member 321 away from the arm 14 . It can be understood that in other embodiments, the driving member 323 can also be a brush motor or other type of motor.
  • the propeller 325 is coupled to the driving member 323 and is rotatable under the driving of the driving member 323. Specifically, the rotating shaft of the propeller 325 is substantially perpendicular to the mounting member 321 .
  • the rotating shaft of the propeller 325 is substantially perpendicular to the arm 14.
  • the rotor assembly 32 can provide power for the drone 100 to fly or hover in the air, and can also provide the motive power for the drone 100 to sail on the surface.
  • the mounting member 321 can rotate in a vertical plane around the connection between the mounting member 321 and the arm 14 under the control of the control device 70.
  • the predetermined angle, therefore, the axis of rotation of the propeller 325 can also be at an oblique angle to the arm 14.
  • the mounting member 321 When the mounting member 321 is rotated relative to the arm 14 , the mounting member 321 can drive the driving member 323 and the propeller 325 to rotate, and at the same time, the rotating shaft of the propeller 325 also rotates ( Please refer to Figure 4).
  • the rotor assembly 32 can provide the motive force for the drone 100 to navigate on the surface of the water. Specifically, when the drone 100 is lowered onto a water surface, and the mounting member 321 is rotated substantially 90 degrees with respect to the arm 14, the rotor assembly 32 can be partially or completely submerged, the driving The piece 323 drives the propeller 325 to rotate to provide the motive power for the drone 100 to sail on the surface.
  • the maximum rotational speed of the propeller 325 should be less than the minimum rotational speed capable of taking off the drone 100 to avoid the drone 100 from the water surface. Take off during the voyage.
  • the mounting member 321 can be rotated not only in a vertical plane, but also can be rotated on a horizontal plane, or/and can be rotated in a three-dimensional space to drive the driving member 323 and the propeller 325. Rotating in a horizontal plane or/and a three-dimensional space provides power to the drone 100 to navigate in various directions on the water surface.
  • all of the plurality of rotor assemblies 32 may be rotated relative to the arms 14 to partially or fully submerged to provide navigational power to the drone 100; or, Only a portion of the rotor assembly 32 of the rotor assembly 32 is rotated relative to the arm 14 to partially or fully submerged to provide navigational power to the drone 100 while the remaining rotor assemblies 32 continue to be above the surface of the water.
  • the arm 14 is rotated by a predetermined angle and is located above the water surface such that the rotation axis of the propeller 325 of the rotor assembly 32 is substantially parallel to the water surface.
  • the propeller 325 of the rotor assembly 32 rotates, it can be pushed by the reverse thrust of the air.
  • the drone 100 sails on the water.
  • the rotation axis of the propeller 325 is not limited to the arrangement parallel to the water surface, for example, the rotation axis of the propeller 325 may also be inclined with respect to the water surface, and The rotation axes of a portion of the plurality of propellers 325 may be different from each other to adjust the speed and direction of travel of the drone 100 by air reverse thrust in different directions.
  • the propulsion assembly 34 is disposed on the body 12 for providing power for the drone 100 to navigate on the surface of the water.
  • the propulsion assembly 34 includes a coupling mechanism 341 (see FIG. 2) and a pusher 343 disposed on the coupling mechanism 341.
  • the connecting mechanism 341 is a telescopic connecting structure, one end is disposed on the body 12, and the other end is used to mount the pusher 343.
  • the pusher 343 can be relatively far from or close to the body 12 under the driving of the connecting mechanism 341.
  • the pusher 343 is an underwater propeller capable of driving the drone 100 to perform operations such as advancing, retreating, or turning on the water surface.
  • the propeller 343 can be a pump propeller, a propeller, a spherical motor propeller or other underwater propeller.
  • the connecting mechanism 341 When the drone 100 does not need to work on the surface of the water, the connecting mechanism 341 is in a collapsed state, and the pusher 343 is relatively close to the body 12 or housed in the body 12 to reduce the absence.
  • the volume of the man machine 100 during flight operations increases the flexibility of the drone 100 flight control.
  • the attachment mechanism 341 can be in an unfolded state such that the pusher 343 can adjust its distance from the body 12 as needed.
  • the connecting mechanism 341 can drive the pusher 343 to a position away from the body 12 until the side of the landing gear 50 facing away from the body 12 is protruded to ensure the drone
  • the propeller 343 can be submerged, thereby providing the drone 100 with the driving force for traveling on the surface of the water. It can be understood that the connecting mechanism 341 can drive the pusher 343 between the body 12 and the landing gear 50.
  • connecting mechanism 341 is electrically connected to the control device 70 and can be deployed or folded under the control of the control device 70.
  • the propulsion assembly 34 may also be omitted, providing power directly through the rotation of the propeller 325 of the rotor assembly 32 when the drone 100 needs to sail or reside on the surface of the water. .
  • the take-off and landing device 50 is disposed on the body 12 for providing the drone 100 with support for landing on land or on the water surface.
  • the take-off and landing device 50 includes a landing gear 52 and a levitation device 54.
  • the landing gear 52 is coupled to the body 12 and the levator 54 is disposed on the landing gear 52.
  • the landing gear 52 includes a support mechanism 521 and a buffer mechanism 523 disposed on the support mechanism 521 .
  • One end of the support mechanism 521 is disposed on the body 12, and the other end extends in a direction away from the body 12.
  • the support mechanism 521 is a telescopic support structure.
  • the buffer mechanism 523 is disposed at an end of the support mechanism 521 away from the body 12 .
  • the buffer mechanism 523 can be relatively far from or close to the body 12 under the driving of the support mechanism 521.
  • the buffer mechanism 523 can be elastically deformed by an external force to reduce the impact that the drone 100 receives when landing on a hard surface.
  • the cushioning mechanism 523 may be a cushioning member made of an elastic material such as plastic, rubber, foam, or the like.
  • the buffer mechanism 523 may be a buffer damper such as a gas pressure damper, a hydraulic damper, a spring damper, or the like.
  • the support mechanism 521 can also be a non-retractable support structure that is directly fixed to the body 12.
  • the support mechanism 521 When the drone 100 does not need to land on the land, the support mechanism 521 is in a collapsed state, and the buffer mechanism 523 is close to the body 12 or housed in the body 12 to reduce the absence.
  • the volume of the man machine 100 during operation increases the flexibility of the drone 100's travel control.
  • the support mechanism 521 can be in an unfolded state, and the buffer mechanism 523 is relatively far from the body 12 and serves as a support when the drone 100 is landed.
  • the levator 54 is substantially plate-shaped and is disposed on a side of the buffer mechanism 523 that faces away from the body 12.
  • the density of the levitation device 54 is much smaller than the density of water.
  • the levitation device 54 may float on the water or partially/all of the water, and support the drone 100. In its entirety, the drone 100 as a whole can sail or reside on the surface of the water driven by the power unit 30.
  • the levitation device 54 is an inflatable buoyancy plate.
  • the suspensor 54 When the drone 100 does not need to be operated on the surface of the water, the suspensor 54 is in a compressed state and is substantially flat, and is superposed on a side of the buffer mechanism 523 facing away from the body 12.
  • the suspensor 54 When the drone 100 is to be operated on the surface of the water, the suspensor 54 is filled with gas and expanded (see FIGS. 3 and 4) until the levitation device 54 floats on the water or partially/all is submerged. The whole of the drone 100 can be supported.
  • the suspensor 54 may include a bottom plate 541 and a side plate 543 disposed on a periphery of the bottom plate 541.
  • the bottom plate 541 is substantially in the shape of a horizontal plate, and the side plate 543 is disposed at an edge of the bottom plate 541.
  • the side plate 543 is inclined with respect to the bottom plate 541 and extends toward the direction of the body 10.
  • the side plate 543 forms a predetermined angle with the bottom plate 541, so that the drone 100 can break the wave when sailing on the surface of the water, and relatively reduce the resistance to travel in the water.
  • the bottom plate 541 may be a circular plate, a rectangular plate, a triangular plate, a polygonal plate, or any other shape plate.
  • the side plate 543 may be annular in shape corresponding to the contour shape of the bottom plate 541, and is disposed around the circumference of the bottom plate 541, so that the drone 100 can be reduced when sailing in various directions on the water surface. Small resistance to travel.
  • the bottom plate 541 may also be in the form of a sheet, and the number of the bottom plates 541 may be plural, and the plurality of the bottom plates 541 may be spaced apart from each other at a circumference of the bottom plate 541.
  • the mounting angle of the side plate 543 relative to the bottom plate 541 can be adjusted to adapt to the water surface in different states.
  • the control device 70 can control the movement of the side plate 543 relative to the bottom plate 541 such that the angle formed by the side plate 543 with respect to the bottom plate 541 is relatively large.
  • the control device 70 can control the movement of the side plate 543 with respect to the bottom plate 541 such that the angle formed by the side plate 543 with respect to the bottom plate 541 is relatively small.
  • the mounting angle of the bottom plate 541 relative to the body 12 can be adjusted to facilitate the drone 100 to land on the water surface in different flight attitudes, and at the same time, the drone 100 is beneficial. It can adapt to the water surface in different states when landing. For example, when the drone 100 is flying obliquely, the body 12 is inclined with respect to a horizontal plane. If the drone 100 needs to land on the water surface at this time, the control device 70 can control the bottom plate 541 to be opposite. The body 12 is moved to adjust the water inlet angle of the bottom plate 541 so that the bottom plate 541 can be substantially parallel to the horizontal plane, thereby ensuring that the bottom plate 541 can provide greater buoyancy support for the drone 100 as a whole.
  • the control device 70 can control the bottom plate 541 to move to a tilt setting relative to the water surface, so that the The side of the bottom plate 541 facing away from the body 12 faces the traveling direction of the drone 100 to facilitate the drone 100 landing on the water surface.
  • the control device 70 can control the movement of the bottom plate 541 relative to the body 12, so that the bottom plate 541 is inclined with respect to the water surface to reduce the water surface fluctuation to the drone. The impact of the 100 landing.
  • the suspensor 54 can be a solid buoyancy plate that can be made of a less dense material, such as a solid buoyancy material or the like. It can be understood that when the levitation device 54 is a solid buoyancy plate, it can be used as the buffer mechanism 523 of the landing gear 52. At this time, the buffer mechanism 523 may be omitted, and the levator 54 is directly disposed on the support mechanism 521.
  • the control device 70 is disposed on the body 10 and includes a main controller 72 and a positioning component 73 and a landing surface detecting component 74 electrically connected to the main controller 72.
  • the main controller 72 is also electrically connected to the power unit 30 and the take-off and landing device 50, and the main controller 72 is configured to control the movement of the power unit 30 and the take-off and landing device 50.
  • the positioning component 73 is configured to locate the orientation information of the drone 100 in real time, and includes a magnetic field sensor (not shown) and a satellite locator (not shown).
  • the magnetic field sensor is a compass
  • the positioner is a GPS positioning unit.
  • the magnetic field sensor is used to determine the direction of travel of the drone 100.
  • the locator is used to locate the orientation of the drone 100 in real time.
  • the drone 100 executes the landing control command, it can perform its own positioning through the positioning component 73 to determine the geographic location and environmental conditions of the drone 100, so that the drone 100 enters early.
  • the predicted state is dropped to allow the landing surface detecting assembly 74 to enter the detection state, improving the sensitivity of the drone 100 control.
  • the geographic location is a real-time orientation of the drone 100, which may be a mountain surface, a residential house, a lake, a sea surface, or the like.
  • the landing surface detecting component 74 is configured to detect a condition of the landing destination of the drone 100 to determine whether the landing destination is a water surface or a non-surface, and transmit the determination result to the main controller 72, so that The main controller 72 can control the power unit 30 and the landing gear 50 to switch to an operating state that is compatible with the landing destination.
  • the landing surface detecting assembly 74 includes an image collector 741, an image sensor 743, a distance sensor 745, and a depth detector 747.
  • the image collector 741 includes a camera (not shown) and an image analysis component (not shown).
  • the camera is configured to acquire an object surface image of the landing destination of the drone 100 and transmit the image to the image analysis component.
  • the image analysis component identifies an object type in the image by analyzing an object surface texture feature of the landing destination. Specifically, a corrugation feature of the liquid surface is pre-set within the image analysis component. After the image analysis component acquires the surface image of the object of the landing destination, scan and analyze the surface image, extract surface texture features of the surface image, and describe the surface texture feature and the ripple characteristics of the liquid surface In contrast, it is judged whether or not the landing destination is a liquid surface such as a water surface.
  • the image collector 741 can include a camera (not shown) and an image processing component (not shown).
  • the camera is configured to acquire an object surface image of the landing destination of the drone 100 and transmit the image to the image processing component.
  • the image processing component identifies an object type in the image based on differences in different spectral characteristics of different objects. Specifically, the image processing component is preliminarily provided with simulated spectral features of objects such as water, vegetation, soil, and cement floor. After the image processing component acquires the object surface image of the landing destination, constructs and calculates a reflectivity of the object for the object presented by the image to obtain a spectral feature of the object in the image. Then, the image processing component compares the acquired spectral features with the preset simulated spectral features to determine the type of objects presented within the image. It will be appreciated that the image processing element can be an imaging spectrometer.
  • the image collector 741 can include a plurality of cameras (not shown), and a plurality of polarizers (not shown), each of which is disposed on one of the cameras.
  • the structures, parameters, and configurations of the plurality of cameras are the same, and the camera is configured to acquire object surface image information of the landing destination of the drone 100.
  • Each of the polarizing plates is disposed on a corresponding camera and covers a framing lens of the camera. The deflection angles of the plurality of polarizing plates are different from each other.
  • the image collector 741 determines the type of the object on the landing destination accordingly. It can be understood that the number of the camera and the polarizing plate may be two or more, such as two, three, four, five, six, ... and the like.
  • the landing surface detecting component 74 or/and the detecting process may be omitted, and the drone 100 falls on the
  • the process of the water surface may be such that after the main controller 72 receives the control command landing on the water surface, it can control the power device 30 and the landing gear 50 to switch to the water landing mode.
  • the image sensor 743 is configured to transmit image information collected by the image collector 741 and a determination result of the object type to the main controller 72 to allow the main controller 72 to control the power.
  • the device 30 and the landing gear 50 are switched to an operating state that is compatible with the type of object of the landing destination.
  • the image sensor 743 can also be omitted, and the image information collected by the image collector 741 and the judgment result of the object type are directly transmitted to the main controller 72.
  • the image sensor 743 is integrated with the image collector 741.
  • the distance sensor 745 is configured to detect a distance between the UAV 100 and an object surface of the landing destination, so that the main controller 72 controls the power device 30 and the landing gear 50 to switch. The working state to match the type of object at the landing destination.
  • the distance sensor 745 may be a barometer, an ultrasonic ranging sensor, or a laser ranging sensor. When the distance between the UAV 100 and the landing destination detected by the distance sensor 745 is within a predetermined range, the main controller 72 controls the power device 30 and the The take-off and landing device 50 is ready to switch to an operating state that is compatible with the type of object of the landing destination.
  • the main controller 72 controls the support mechanism 521 to drive the buffer mechanism 523 away from the body 12 to serve as a support when the drone 100 is lowered.
  • the main controller controls the pusher 341 to drive the pusher 343 away from the body 12 and controls the levator 54 to self-fill with gas to prepare the drone 100 to land on the water.
  • the main controller 72 can control the mounting member 321 of the rotor assembly 32 relative to the arm 14 according to work requirements. Rotating the predetermined angle, the rotor assembly 32 can be partially or completely submerged, and the drive member 323 drives the propeller 325 to rotate to provide the motive power for the drone 100 to sail on the surface.
  • all of the plurality of rotor assemblies 32 may be rotated relative to the arms 14 to partially or fully submerged to provide navigational power to the drone 100; or, Only a portion of the rotor assembly 32 of the rotor assembly 32 is rotated relative to the arm 14 to partially or fully submerged to provide navigational power to the drone 100 while the remaining rotor assemblies 32 continue to be above the surface of the water.
  • the arm 14 is rotated by a predetermined angle and is located above the water surface such that the rotation axis of the propeller 325 of the rotor assembly 32 is substantially parallel to the water surface.
  • the drone 100 sails on the water surface, it being understood that the axis of rotation of the propeller 325 of the rotor assembly 32 can also be inclined relative to the water surface.
  • the depth detector 747 is configured to detect the water depth of the landing destination when the landing destination of the drone 100 is a water surface. Specifically, the depth detector 747 is a water depth detector. If the depth detector 747 detects that the water depth of the landing destination falls within a predetermined depth range, it is determined that the landing destination is a shallow water area, and the drone 100 is not suitable for landing in a surface operation manner. Thereby, the damage caused by the impact caused by the drone falling on a shallow water surface (such as a road area water area) is avoided.
  • a shallow water surface such as a road area water area
  • the drone 100 may further include an alarm 749 for issuing an alert signal when the depth detector 747 determines that the landing destination is a shallow water zone.
  • the landing destination of the drone 100 can be readjusted.
  • the alarm 749 can be alarmed by sound or light.
  • the alarm 749 is an alarm device such as a warning light or a buzzer. It can be understood that the alarm 749 can also use the information to alarm, for example, when the depth detector 747 determines that the landing destination is a shallow water area, the alarm 749 is directed to the user of the drone 100.
  • a mobile terminal (such as a remote controller, a portable electronic device, etc.) transmits an alarm signal (such as text information, picture/icon information, screen flicker, etc.) to enable the user of the drone 100 to know the current landing destination. If the drone 100 is not suitable for landing, the landing destination of the drone 100 should be readjusted.
  • an alarm signal such as text information, picture/icon information, screen flicker, etc.
  • FIGS. 5 to 8 show a drone 200 according to a second embodiment of the present invention.
  • the configuration of the unmanned aerial vehicle 200 of the second embodiment is substantially the same as that of the unmanned aerial vehicle 100 of the first embodiment.
  • the difference is that the levator 254 of the drone 200 is disposed on the body 212 and located on the side of the body 212 near the landing gear 252, so that the drone 200 is working on the water.
  • the overall center of gravity is relatively low and it is not easy to have a dumping accident.
  • the levator 254 of the drone 200 in the second embodiment may be a buoyancy plate made of a solid buoyancy material or an inflatable buoyancy plate, which is also A bottom plate 2541 and a side plate 2543 disposed on a periphery of the bottom plate 2541 may be included.
  • the levator 254 may also be a buoyancy ring disposed around the outer circumference of the body 12 .
  • the drone 200 may not be provided with a landing gear.
  • FIG. 9 to FIG. 12 show a drone 400 according to a third embodiment of the present invention.
  • the configuration of the drone 400 of the third embodiment is substantially the same as that of the drone 100 of the first embodiment.
  • the difference is that the levator 454 of the drone 400 is disposed on the body 412 and covers the outer circumference of the body 412, so that the overall center of gravity of the drone 400 when working on the water is relatively low. It is not easy to have a dumping accident.
  • the levitation device 454 is an inflatable buoyancy ring that is disposed around the outer circumference of the body 412.
  • the levator 454 can self-inflate and expand to prepare for the landing of the drone 400. It can be understood that the levator 454 can cover the entire structure of the body 412 or only cover part of the structure of the body 412. It will be appreciated that the suspensor 454 may also be a buoyancy ring made of a solid buoyant material. In this embodiment, the drone 400 may not be provided with a landing gear.
  • FIG. 13 is a functional block diagram of the UAV control system S1 according to an embodiment of the present invention.
  • the UAV control system S1 operates in the power unit 30, the take-off and landing device 50, or the control device 70 described above.
  • the UAV control system S1 includes a central control module 101, a takeoff control module 103, a travel control module 105, an environment detection module 107, and a fall control module 109.
  • the control device 70 further includes a memory (not shown), the respective modules of the UAV control system S1 being programmable in the memory and executable by the control device 70 Module.
  • the central control module 101 is configured to send instructions to the remaining modules to enable the various modules to work together to control the drones 100, 200, 400 to take off, travel, or land. Specifically, after receiving the control instruction for taking off, traveling, or landing, the central control module 101 transmits an instruction to the takeoff control module 103, the travel control module 105, and the environment detection module according to the instruction. 107 or the landing control module 109.
  • the takeoff control module 103 is configured to control the operation of the rotor assembly 32 of the power unit 30 to provide the drone lifting force for the drones 100, 200, 400. Specifically, when the drones 100, 200, 400 are in a stationary state and the central control module 101 receives a fly control command, the takeoff control module 103 acquires the takeoff control from the central control module 101. The propeller 325 of the rotor assembly 32 is commanded and controlled to rotate at a predetermined speed to lift the drones 100, 200, 400.
  • the travel control module 105 is configured to control the operation of the power unit 30 to cause the drones 100, 200, 400 to fly, hover, or sail on the surface of the water. Specifically, when the central control module 101 receives a travel control command (such as acceleration, deceleration, forward, reverse, turn, etc.) after the drones 100, 200, 400 take off, the travel control module 105 The central control module 101 acquires the travel control command and controls the propeller 325 of the rotor assembly 32 to rotate at a predetermined speed/acceleration to achieve a flight operation of the drones 100, 200, 400 in the air.
  • a travel control command such as acceleration, deceleration, forward, reverse, turn, etc.
  • the central control module 101 receives a travel control command (such as acceleration, deceleration, advance, retreat, turn, etc.), the travel control module 105 Acquiring the travel control command from the central control module 101 and controlling the propeller 343 of the propulsion assembly 34 to operate at a predetermined speed/acceleration to achieve navigation of the drones 100, 200, 400 over water operation.
  • a travel control command such as acceleration, deceleration, advance, retreat, turn, etc.
  • the environment detecting module 107 is configured to detect an object type of the drone destination of the drone 100, 200, 400, so that the landing gear 50 can switch to a land landing mode or water according to different object types of the landing destination. Landing mode. Specifically, when the drone 100, 200, 400 is in the air flight, when the central control module 101 receives a landing control finger, the environment detecting module 107 acquires the Falling the control command, and controlling the landing surface detecting component 74 to detect and determine the object type of the landing destination of the drone 100, 200, 400, and transmit the determination result to the landing control module 109 to allow The landing control module 109 controls the landing gear 50 to switch to a land landing mode or a water landing mode.
  • the landing control module 109 is configured to control the landing gear 50 to switch to a land landing mode or a water landing mode.
  • the landing control module 109 includes a water fall control unit 1091 and a land landing control unit 1092, and the water fall control unit 1091 is configured to control the operation of the levators 54, 254, 454 to be the drones 100, 200, 400 ready to land on the water.
  • the land landing control unit 1092 is configured to control the operation of the landing gears 52, 252, 452 to prepare the drones 100, 200, 400 for landing on a non-surface destination.
  • the landing control module 109 receives the object type of the landing destination of the drones 100, 200, 400 issued by the environment detecting module 107, and controls the landing device according to the object type. 50 switch. If the drone 100, 200, 400 descends to a water surface suitable for landing, the distance sensor 745 detects the distance between the drones 100, 200, 400 and the landing destination. When the preset range is within, the water landing control unit 1091 controls the connecting mechanism 341 to drive the pusher 343 away from the body 12, and controls the levitation device 54 to self-fill the gas, so that the drone 100 Prepare to land on the water.
  • the land landing control unit 1092 controls the support mechanism 521 to drive the buffer mechanism 523 away from the body 12 to serve as a support for the drone 100 when landing, the drone 100, 200, 400 can land smoothly.
  • FIG. 14 is a flow chart showing a drone landing control method according to an embodiment of the present invention.
  • the drone landing control method includes the following steps:
  • Step S101 Receive a drone landing control command. Specifically, when the drones 100, 200, 400 are in the air, the central control module 101 receives the landing control command and transmits the landing control command to the travel control module 105 and the In the environment detection module 107.
  • Step S102 Positioning the drone to predict the landing destination.
  • the environment detecting module 107 controls the magnetic field sensor and the satellite locator to locate the real-time orientation of the drones 100, 200, and 400, and predicts the drones 100, 200, The geographical location and environmental conditions of the landing destination of 400.
  • Step S103 Control the power device 30 to operate to reduce the flying height of the drone. Specifically, after the travel control module 105 acquires the landing control command from the central control module 101, the rotor assembly 32 of the power unit 30 is controlled to operate at a predetermined speed/acceleration to drive the The overall man-machine reduces the flight height.
  • Step S105 It is determined whether the distance between the drone and the landing destination falls within a preset range. Specifically, the environment detecting module 107 controls the distance sensor 745 of the landing surface detecting component 74 to detect a distance between the drones 100, 200, 400 and the landing destination, and determine the distance. When it is within a predetermined range, step S107 is performed, and if not, step S103 is performed.
  • the distance sensor 745 can detect the distance between the drone and the landing destination in real time, and can also detect the distance between the drone and the landing destination at intervals.
  • the time interval between the two detections of the distance sensor 745 may be 1 s, 2 s, 3 s ..., or may be 0.1 s, 0.2 s, 0.3 s ..., or even 1 ms, 2 ms, 3 ms ... or any other value.
  • Step S107 determining whether the surface of the object to which the drone is landing is a liquid surface such as a water surface.
  • the environment detecting module 107 acquires the landing control instruction from the central control module 101, and controls the landing surface detecting component 74 to detect and determine the landing destination of the drones 100, 200, and 400. Whether the surface of the object is a liquid surface such as a water surface, and the judgment result is transmitted to the landing control module 109. If the surface of the object to be dropped is a liquid surface such as a water surface, step S108 is performed, and if no, step S113 is performed.
  • step S107 The judging process can be omitted, and step S108 is directly executed.
  • Step S108 determining whether the water depth of the landing destination is suitable for the drones 100, 200, 400 to land.
  • the environment detecting module 107 controls the depth detector 747 to detect the water depth of the landing destination, and if the water depth of the landing destination does not fall within a predetermined depth range, determine the landing destination.
  • Step S109 is performed to suit the water surface where the drones 100, 200, and 400 are dropped; if the water depth of the landing destination falls within a predetermined depth range, it is determined that the landing destination is unsuitable for the The shallow water area where the human machine 100, 200, 400 is dropped performs step S115.
  • Step S109 The levators 54, 254, 454 are controlled to operate to prepare the drones 100, 200, 400 for landing on the water.
  • the water fall control unit 1091 of the landing control module 109 controls the connection mechanism 341 to drive the pusher 343 away from the body 12, and controls the levitation device 54 to self-fill the gas, so that the The man machine 100 landed on the water to prepare.
  • Step S111 Control the operation of the rotor assembly 32 to lower the flying height of the drone until it descends to the destination.
  • the travel control module 105 controls the rotor assembly 32 of the power unit 30 to operate at a predetermined speed/acceleration to drive the drone as a whole to reduce the flying height until the drone falls to the destination. Ground.
  • Step S113 The landing gears 52, 252, 452 are controlled to operate to prepare the drones 100, 200, 400 for landing on a non-surface destination.
  • the land landing control unit 1092 of the landing control module 109 controls the support mechanism 521 to drive the buffer mechanism 523 away from the body 12 to serve as a support when the drone 100 is lowered.
  • the drones 100, 200, 400 can smoothly land and execute step S111.
  • Step S115 issuing an alert signal, controlling the drones 100, 200, 400 not to execute the landing control command, and adjusting the landing destination.
  • the central control module 101 controls the alarm 749 to send an undesired warning signal
  • the landing control module 109 stops controlling the landing gear 50
  • the travel control module 105 controls the unmanned
  • the machines 100, 200, 400 continue to operate in the air, and the central control module 101 waits for an instruction to accept the user to land again, and performs step S101.
  • the present invention further provides a UAV control method, including the UAV takeoff control method, the UAV travel control method, and the UAV landing control described above.
  • the method is as follows:
  • Step S201 Receive a drone takeoff control command.
  • the drone further includes a self-test device
  • the drone control system further includes a self-test module, wherein the self-test module operates in the self-test device; the central control module 101 receives the Taking off the control command and transmitting the takeoff control command to the self-test module.
  • Step S203 Check the running state of the drone.
  • the self-test module controls the self-test device to check an operating state of the drone to determine that the drone is already in a state suitable for flight.
  • the self-test module controls the self-test device to check whether the battery capacity of the drone is sufficient, whether the connection between the electrical components is good, etc., to eliminate the safety hazard of the drone flight. If it is determined that the operating state of the drone is suitable for flight, the takeoff control command is transmitted to the takeoff control module 103, and step S205 is performed, and if it is determined that the operating state of the drone is unsuitable for flight, the process ends. .
  • Step S205 Control the power device 30 to operate to lower the flying height of the drone. Specifically, after the takeoff control module 103 acquires the takeoff control command from the self-test module, the rotor assembly 32 of the power device 30 is controlled to operate at a predetermined speed/acceleration to drive the unmanned The overall height of the aircraft is increased.
  • Step S301 Receive a drone travel control command. Specifically, after the drone takes off to a predetermined height, the central control module 101 receives the travel control command and transmits the travel control command to the travel control module 105.
  • the travel control command may include, but is not limited to, lifting height, lowering height, advancing, retreating, turning, pitching, flipping, accelerating, decelerating, and the like.
  • Step S302 Control the power device 30 to operate to drive the drone to perform a flight mission.
  • the travel control module 105 controls the rotor assembly 32 of the power unit 30 to operate at a predetermined speed/acceleration to drive the drone as a whole to perform a corresponding mission.
  • the drone drop control method is substantially the same as the drone drop control method described above, and the description is not described in detail in order to save space.
  • the UAV, the UAV control system, the UAV landing control method and the UAV control method of the present invention detect the object type of the UAV landing destination by the landing surface detecting device, and according to the object type
  • the take-off and landing device is controlled to switch to an operating state that is compatible with the type of object. If the landing surface detecting device detects that the landing destination is a liquid surface such as a water surface, it can enter a preliminary state of inflation expansion by controlling the levitation device of the landing gear device, or control the buoyancy device to enter buoyancy
  • the support state enables the drone to land smoothly on the surface of the liquid and is capable of navigating in the liquid. Therefore, the drone can fly in the air as well as in the water.
  • the traveling power may be provided separately by either of the rotor assemblies 32 or the propulsion assembly 34, or by the rotor assemblies 32 or The propulsion assembly 34 collectively provides travel power.
  • the number of the rotor assemblies 32 may be different from the number of the arms 14, for example, the number of the rotor assemblies 32 may be less than the number of the arms 14, or the rotor assembly The number can be more than the number of the arms 14. It can be understood that the number of the arms 14 can be two, three, four, five, six, seven, eight, ... and so on.
  • the arrangement of the plurality of the rotor assemblies 32 and the plurality of the arms 14 may not be limited to the one-to-one correspondence described above, for example, in the plurality of the arms 14 One or more of the rotor assemblies 32 are disposed thereon, and one or more of the plurality of arms 14 are not provided with the rotor assembly 32; or one or more of the rotor assemblies 32 may be disposed at The same arm 14 is on the same.
  • connection mechanism 341 can be a cylinder mechanism.
  • the connecting mechanism 341 is a linear reciprocating cylinder, which includes a cylinder block and a driving rod disposed on the cylinder block.
  • the cylinder block is disposed on the body 12, and the driving rod is used for connecting The pusher 343.
  • the cylinder block can drive the driving rod to drive the pusher 343 to move, so that the pusher 343 is relatively far away from or close to the body 12.
  • the connecting mechanism 341 can also be a voice coil motor, the pusher 343 is disposed on the driving end of the voice coil motor, and can be relatively far away or close to the driving of the voice coil motor.
  • the connecting mechanism 341 can also be a linear motor, the pusher 343 is disposed on the mover of the linear motor, and can be relatively far away from or close to the body 12 under the driving of the linear motor. .
  • the connecting mechanism 341 can also be an electromagnet mechanism.
  • the electromagnet mechanism includes an electromagnet, a permanent magnet, and a guide rail.
  • the rail is fixed to the body 12, and the pusher 343 is slidably disposed on the rail.
  • One of the electromagnet and the permanent magnet is mounted on the body 12, and the other is mounted on the pusher 343.
  • the permanent magnet can be attracted or repelled, thereby moving the pusher 343 along the rail, relatively far away from or near the body 12.
  • the connecting mechanism 341 can also be a screw nut mechanism.
  • the connecting mechanism 341 may include an electric motor, a lead screw, and a nut.
  • the motor is fixedly mounted on the body 12, and the nut is sleeved on the screw and fixedly connected to the pusher 343.
  • the screw drives the pusher 343 relatively far away from or close to the body 12 by the nut.
  • the connecting mechanism 341 can also be a rack and pinion mechanism.
  • the rack and pinion mechanism may include an electric motor, a gear, and a rack.
  • the motor is mounted on the body 12, the gear is mounted on a driving end of the motor, and the rack meshes with the gear.
  • the pusher 343 is mounted on the rack. When the motor drives the gear to rotate, the gear drives the pusher 343 relatively far away from or close to the body 12 through the rack.
  • the connecting mechanism 341 can also be a mechanical mechanism other than the above-mentioned connecting mechanism, such as a link mechanism, etc., so that the connecting mechanism 341 can drive the pusher 343 relatively far away or close to each other.
  • the body 12 can be used.
  • the connecting mechanism 341 can also be designed as a connecting structure other than the above-mentioned telescopic structure.
  • the connecting mechanism 341 can be a non-retractable structure, and the pusher 343 is disposed through the connecting mechanism 341.
  • the body 12 can be provided with power for the drone 100 to travel on the surface of the water.
  • the connecting mechanism 341 may be in an unfolded state or in a collapsed state, without affecting the unmanned In the case of the overall working condition of the machine, the unfolding or folding state of the connecting mechanism 341 can be adjusted as needed.
  • the controller 70 can control the connection mechanism 341 to be deployed before the drones 100, 200, 400 are landed, or The connection mechanism 341 is controlled to deploy after the drones 100, 200, 400 have landed.
  • the structure of the supporting mechanism 521 can be the same as that of the connecting mechanism 341, that is, the supporting mechanism 521 can be a cylinder mechanism, a voice coil motor, an electromagnet mechanism, a screw nut mechanism or Any of the rack and pinion mechanisms may be other mechanical structures such as a link mechanism, etc., so that the support mechanism 521 can drive the buffer mechanism 523 relatively far away from or close to the body 12.
  • the support mechanism 521 can also be designed as a support structure other than the above-mentioned telescopic structure.
  • the support mechanism 521 can be a non-retractable structure, and the buffer mechanism 523 is disposed through the support mechanism 521. On the body 12.
  • the supporting mechanism 521 may be in an unfolded state or in a collapsed state, without affecting the unmanned In the case of the overall working condition of the machine, the deployed or collapsed state of the support mechanism 521 can be adjusted as needed.
  • the distance sensor 745 may not be limited to the sensor form such as the barometer, the ultrasonic ranging sensor or the laser ranging sensor described above, and may be other distance measuring devices.
  • the distance sensor 745 may be a visual sensor that can acquire the surface image of the landing destination and analyze the surface image to know the flying height of the drone, that is, to know The distance between the drone and the landing destination.
  • the unmanned aerial vehicle is a rotorcraft for carrying an aerial photographing operation by a photographing device such as a camera or a video camera.
  • a photographing device such as a camera or a video camera.
  • the drone can also be used for map mapping, disaster investigation and rescue, air monitoring, transmission line inspection and the like. It will also be appreciated that the drone may also be a fixed wing aircraft.
  • the drone of the present invention can fall on the surface of the lake, river water, sea water, etc., and can also fall on other suitable liquid surfaces.
  • the drone when used for experimental monitoring of a solution reaction, it can land or/and navigate on the surface of the solution; alternatively, the drone can land on the surface of the oil or/and Sailing to perform oil quality monitoring, oil sample collection, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种无人机(100)、无人机控制***、无人机控制方法以及无人机降落控制方法。无人机(100)包括机身(10)、连接于机身(10)上的动力装置(30),设置于机身(10)上的控制装置(70)及起降装置(50)。控制装置(70)包括降落面检测组件(74),控制装置(70)用于在降落面检测组件(74)检测到无人机(100)的降落目的地为水面时,控制动力装置(30)及起降装置(50)的工作模式,使无人机(100)能够在水面降落并航行。无人机(100)能够在空中飞行也可以在水中航行。

Description

无人机、其控制***及方法,以及无人机降落控制方法 技术领域
本发明涉及一种无人机、无人机控制***、无人机控制方法以及无人机降落控制方法。
背景技术
无人驾驶飞机,简称“无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。水空两用无人机就是指平时主要用于空中飞行,在海面等水域上空执行任务时可水中进行短暂的航行。然而,而现有无人机只能用作飞行玩赏,不能在水中航行,无法实现水空两用功能,其玩赏性有限。
发明内容
鉴于以上内容,有必要提供一种可以在空中飞行也可以在水中航行的水空两用无人机及其控制***、方法以及其降落控制方法。
一种无人机,其包括机身及连接于所述机身上的动力装置,以及设置于所述机身上的控制装置及起降装置,所述动力装置及所述起降装置分别与所述控制装置电性连接;所述控制装置包括降落面检测组件,所述控制装置用于在所述降落面检测组件检测到所述无人机的降落目的地为水面时,控制所述动力装置及所述起降装置的工作模式,使所述无人机能够在水面降落并航行。
进一步地,所述控制装置还包括控制装置,所述降落面检测组件检测到所述无人机的降落目的地为水面时,所述控制装置能够控制所述起降装置切换至浮力支撑状态,并控制所述动力装置带动所述无人机整体降落至所述降落目的地上。
进一步地,所述降落面检测组件包括图像采集器,所述图像采集器能够获取所述无人机的降落目的地的表面图像,并根据该表面图像判断所述降落目的地是否为水面。
进一步地,所述图像采集器包括摄像头及图像分析元件,所述摄像头能够获取所述降落目的地的表面图像,并将该表面图像传送至该图像分析元件中;所述图像分析元件能够根据所述降落目的地的表面纹理特征判断所述降落目的地是否为水面。
进一步地,所述图像分析元件中预设有水面的波纹特征,所述图像分析元件从所述表面图像中抽取所述表面图像的表面纹理特征,并将述表面纹理特征与所述水面的波纹特征相比对,并判断所述降落目的地的是否为水面。
进一步地,所述图像采集器包括摄像头及图像处理元件,所述摄像头能够获取所述降落目的地的表面图像,并将该表面图像传送至该图像处理元件中;所述图像处理元件根据所述降落目的地的成像光谱特征判断所述降落目的地是否为水面。
进一步地,所述图像处理元件内预设有水面的模拟光谱特征,所述图像处理元件能够根据所述降落目的地的表面图像构建并计算所述降落目的地表面的反射率,以获取所述降落目的地的表面光谱特征,并将该降落目的地的表面光谱特征与所述预设的模拟光谱特征进行比对,从而判断所述降落目的地是否为水面。
进一步地,所述图像采集器为成像光谱仪。
进一步地,所述图像采集器包括多个摄像头及多个偏振片,每个所述偏振片设置于一个所述摄像头上。
进一步地,多个所述摄像头的性能参数完全一致,多个所述偏振片的起偏角互不相同。
进一步地,所述降落面检测组件还包括距离传感器,所述距离传感器能够检测所述无人机与所述降落目的地之间的距离,以允许所述控制装置根据该距离控制所述起降装置进入预备降落状态。
进一步地,所述距离传感器为气压计、超声波测距传感器、激光测距传感器、视觉传感器中的至少一种。
进一步地,所述距离传感器在判断所述无人机与所述降落目的地之间的距离在一预设的范围内时,允许所述控制装置根据该距离控制所述起降装置进入预备降落状态。
进一步地,所述降落面检测组件还包括深度检测器,所述深度检测器能够在所述图像采集器判断所述降落目的地为水面时,检测该水的深度;所述控制装置能够在所述深度检测器判断该深度落入一预设的深度范围内时,控制所述动力装置不带动所述无人机整体降落。
进一步地,所述深度检测器为水深探测仪。
进一步地,所述无人机还包括警报器,所述警报器能够在在所述深度检测器判断该深度落入一预设的深度范围内时,向所述无人机的使用者发出一警示信号表示所述降落目的地不宜降落。
进一步地,所述警报器为警示灯、蜂鸣器或电子信息发送器。
进一步地,所述机身包括机体,起降装置及所述动力装置均设置于所述机体上;所述起降装置包括悬浮器,所述悬浮器能够在所述无人机降落在水面上航行时,提供浮力支撑。
进一步地,所述悬浮器为可充气浮力板。
进一步地,所述悬浮器为固体浮力材料制成的浮力板。
进一步地,所述悬浮器包括底板及设置于所述底板周缘的侧板,所述底板及所述侧板之间成预定夹角。
进一步地,所述侧板可调节地装设于所述底板上,所述底板及所述侧板之间所成的夹角可调节。
进一步地,所述底板可调节地连接于所述机体上,所述底板及所述机体之间所成的夹角可调节。
进一步地,所述悬浮器环绕设置于所述机体外。
进一步地,所述悬浮器将所述机体的全部或部分结构包覆在内。
进一步地,所述起降装置还包括设置于所述机体上的起落架,所述悬浮器设置在所述起落架上。
进一步地,所述起落架包括设置于所述机体上的支撑机构及设置于所述支撑机构上的缓冲机构。
进一步地,所述缓冲机构为弹性材料制成的缓冲件。
进一步地,所述缓冲机构为气压阻尼器、液压阻尼器、弹簧阻尼器中的至少一种。
进一步地,所述支撑机构为可伸缩的支撑结构,所述支撑机构能够驱动该所述缓冲机构相对地远离或靠近所述机体。
进一步地,所述支撑机构为气缸,所述缓冲机构设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构为音圈马达,所述缓冲机构设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构为线性电机,所述缓冲机构设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述缓冲机构可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述缓冲机构上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述缓冲机构沿所述导轨相对远离或靠近所述机体。
进一步地,所述支撑机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述缓冲机构连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述缓冲机构运动。
进一步地,所述支撑机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述缓冲机构装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述缓冲机构运动。
进一步地,所述动力装置还包括推进器,所述推进器连接于所述机体上,并为所述无人机在水面上航行提供动力。
进一步地,所述推进器为泵喷推进器、螺旋桨推进器、球形电机推进器中的至少一个。
进一步地,所述动力装置还包括连接机构,所述推进器通过所述连接机构连接于所述机体上,所述连接机构为可伸缩的连接结构,所述连接机构能够驱动该所述推进器远离或靠近所述机体。
进一步地,所述连接机构为气缸,所述推进器设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构为音圈马达,所述推进器设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构为线性电机,所述推进器设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述推进器可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述推进器上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述推进器沿所述导轨相对远离或靠近所述机体。
进一步地,所述连接机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述推进器连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述推进器运动。
进一步地,所述连接机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述推进器装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述推进器运动。
进一步地,所述动力装置还包括旋翼组件,所述旋翼组件可转动地连接于所述机体上;所述无人机在空中作业时,所述控制装置能够控制所述旋翼组件运转以为所述无人机在空中飞行提供动力;所述无人机在水面航行时,所述控制装置能够控制所述旋翼组件相对所述机体转动预定角度并运转,以为所述无人机的航行提供动力。
进一步地,所述机身还包括设置于所述机体上的多个机臂,所述旋翼组件为多个;多个所述机臂围绕设置在所述机体周围,每个所述旋翼组件可转动地装设于所述机臂上。
进一步地,所述旋翼组件包括可转动地设置于所述机臂上的装设件,所述控制装置能够控制所述装设件相对所述机臂转动。
进一步地,所述旋翼组件还包括驱动件及螺旋桨,所述驱动件设置于所述装设件上,所述螺旋桨设置于所述驱动件上。
进一步地,所述控制装置还包括卫星***,所述卫星***实时地跟踪所述无人机的所在地理位置。
进一步地,所述控制装置还包括磁场感应器,所述磁场感应器实时地跟踪所述无人机的行进方向,以与所述卫星***共同确定所述无人机的地理方位信息。
进一步地,所述磁场感应器为指南针。
进一步地,所述控制装置还包括主控制器,所述动力装置、所述起降装置及所述降落面检测组件分别与所述主控制器电性连接。
一种无人机控制***,其运行于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
所述无人机控制***包括:
中央控制模块,用于接收所述无人机的起飞、行进或降落的控制指令;
环境检测模块,用于在中央控制模块接收到一降落控制指令时,检测所述无人机的降落目的地的物体类型;以及
降落控制模块,用于在所述环境检测模块检测到所述降落目的地为水面时,控制所述起降装置切换至水上降落模式。
进一步地,所述降落控制模块包括水上降落控制单元,所述水上降落控制单元用于控制所述起降装置切换至水上降落模式。
进一步地,所述降落控制模块还包括陆地降落控制单元,所述陆地降落控制单元用于在所述环境检测模块检测到所述降落目的地为非水面时,控制所述起降装置切换至陆地降落模式。
进一步地,所述环境检测模块还用于检测所述无人机与所述降落目的地之间的距离,并判断若该距离落入一预设的距离范围,则允许该降落控制模块控制所述起降装置切换降落模式。
进一步地,所述环境检测模块判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则所述行进控制模块用于控制所述动力装置运转以降低所述无人机的飞行高度。
进一步地,所述环境检测模块用于实时地检测所述无人机与所述降落目的地之间的距离。
进一步地,所述环境检测模块用于间隔地检测所述无人机与所述降落目的地之间的距离。
进一步地,所述环境检测模块还用于在检测到所述降落目的地为水面后,进一步检测水的深度,并判断若该深度落入一预设的深度范围,则所述降落控制模块不控制所述起降装置动作。
进一步地,所述无人机控制***还包括起飞控制模块,所述起飞控制模块用于在所述中央控制模块接收一起飞控制指令时,控制所述动力装置运转以带动所述无人机提升起飞。
进一步地,所述无人机控制***还包括自检模块,所述无人机还包括自检装置,所述自检模块用于在所述中央控制模块接收所述起飞控制指令后,控制所述自检装置对所述无人机的运行状态进行检查,判断若所述无人机的状态适宜飞行,则允许所述起飞控制模块控制所述动力装置运转,以带动所述无人机提升起飞。
进一步地,所述无人机控制***还包括行进控制模块,所述行进控制模块用于在所述中央控制模块接收一行进控制指令时,控制所述动力装置运转,以使所述无人机能够在空中飞行或在水面航行。
一种无人机降落控制方法,其应用于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
所述无人机降落控制方法包括:
接收一无人机降落控制指令;
检测所述无人机的降落目的地的物体类型;
判断若所述降落目的地为水面,则控制所述起降装置切换至水上降落模式;判断若所述降落目的地为非水面,则控制所述起降装置切换至陆地降落模式;
控制所述动力装置运转,以降低所述无人机的飞行高度直至降落至目的地。
进一步地,判断若所述降落目的地为水面后,检测水的深度,并判断若该深度落入一预设的深度范围,则不控制所述起降装置动作。
进一步地,在检测所述降落目的地的物体类型之前,检测所述无人机与所述降落目的地之间的距离,判断若该距离落入一预设的距离范围,则控制所述起降装置切换降落模式。
进一步地,判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则控制所述动力装置运转以降低所述无人机的飞行高度。
进一步地,检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
进一步地,检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
进一步地,接收所述无人机降落控制指令后,初步定位所述无人机的地理方位,以预判所述无人机是否即将降落在水面上。
一种无人机控制方法,其应用于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
所述无人机控制方法包括:
接收一无人机降落控制指令;
检测所述无人机的降落目的地的物体类型;
判断若所述降落目的地为水面,则控制所述起降装置切换至水上降落模式;判断若所述降落目的地为非水面,则控制所述起降装置切换至陆地降落模式;
控制所述动力装置运转,以降低所述无人机的飞行高度直至降落至目的地。
进一步地,判断若所述降落目的地为水面后,检测水的深度,并判断若该深度落入一预设的深度范围,则不控制所述起降装置动作。
进一步地,在检测所述降落目的地的物体类型之前,检测所述无人机与所述降落目的地之间的距离,判断若该距离落入一预设的距离范围,则控制所述起降装置切换降落模式。
进一步地,判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则控制所述动力装置运转以降低所述无人机的飞行高度。
进一步地,检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
进一步地,检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
进一步地,接收所述无人机降落控制指令后,初步定位所述无人机的地理方位,以预判所述无人机是否即将降落在水面上。
一种无人机,其包括机身及连接于所述机身上的动力装置,以及设置于所述机身上的控制装置及起降装置。所述动力装置及所述起降装置分别与所述控制装置电性连接;所述控制装置用于在接收到一降落控制指令时,控制所述动力装置及所述起降装置切换至陆地降落模式或水上降落模式。
进一步地,所述控制装置包括主控制器,所述主控制器在接收到一陆地降落控制指令时,控制所述动力装置及所述起降装置切换至或陆地降落模式。
进一步地,所述控制装置包括主控制器,所述主控制器在接收到一水上降落控制指令时,控制所述起降装置切换至浮力支撑状态的水上降落模式,并控制所述动力装置带动所述无人机整体降落至水面。
进一步地,所述控制装置包括距离传感器,所述距离传感器能够检测所述无人机与所述水面之间的距离,以允许所述主控制器根据该距离控制所述起降装置进入预备降落状态。
进一步地,所述距离传感器为气压计、超声波测距传感器、激光测距传感器、视觉传感器中的至少一种。
进一步地,所述距离传感器在判断所述无人机与所述水面之间的距离在一预设的范围内时,允许所述主控制器根据该距离控制所述起降装置进入预备降落状态。
进一步地,所述控制装置还包括深度检测器,所述深度检测器能够检测水的深度;所述主控制器能够在所述深度检测器判断该深度落入一预设的深度范围内时,控制所述动力装置不带动所述无人机整体降落。
进一步地,所述深度检测器为水深探测仪。
进一步地,所述无人机还包括警报器,所述警报器能够在在所述深度检测器判断该深度落入一预设的深度范围内时,向所述无人机的使用者发出一警示信号表示所述降落目的地不宜降落。
进一步地,所述警报器为警示灯、蜂鸣器或电子信息发送器。
进一步地,所述机身包括机体,起降装置及所述动力装置均设置于所述机体上;所述起降装置包括悬浮器,所述悬浮器能够在所述无人机降落在水面上航行时,提供浮力支撑。
进一步地,所述悬浮器为可充气浮力板。
进一步地,所述悬浮器为固体浮力材料制成的浮力板。
进一步地,所述悬浮器包括底板及设置于所述底板周缘的侧板,所述底板及所述侧板之间成预定夹角。
进一步地,所述侧板可调节地装设于所述底板上,所述底板及所述侧板之间所成的夹角可调节。
进一步地,所述底板可调节地连接于所述机体上,所述底板及所述机体之间所成的夹角可调节。
进一步地,所述悬浮器环绕设置于所述机体外。
进一步地,所述悬浮器将所述机体的全部或部分结构包覆在内。
进一步地,所述起降装置还包括设置于所述机体上的起落架,所述悬浮器设置在所述起落架上。
进一步地,所述起落架包括设置于所述机体上的支撑机构及设置于所述支撑机构上的缓冲机构。
进一步地,所述缓冲机构为弹性材料制成的缓冲件。
进一步地,所述缓冲机构为气压阻尼器、液压阻尼器、弹簧阻尼器中的至少一种。
进一步地,所述支撑机构为可伸缩的支撑结构,所述支撑机构能够驱动该所述缓冲机构相对地远离或靠近所述机体。
进一步地,所述支撑机构为气缸,所述缓冲机构设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构为音圈马达,所述缓冲机构设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构为线性电机,所述缓冲机构设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述缓冲机构可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述缓冲机构上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述缓冲机构沿所述导轨相对远离或靠近所述机体。
进一步地,所述支撑机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述缓冲机构连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述缓冲机构运动。
进一步地,所述支撑机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述缓冲机构装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述缓冲机构运动。
进一步地,所述动力装置还包括推进器,所述推进器连接于所述机体上,并为所述无人机在水面上航行提供动力。
进一步地,所述推进器为泵喷推进器、螺旋桨推进器、球形电机推进器中的至少一个。
进一步地,所述动力装置还包括连接机构,所述推进器通过所述连接机构连接于所述机体上,所述连接机构为可伸缩的连接结构,所述连接机构能够驱动该所述推进器相对地远离或靠近所述机体。
进一步地,所述连接机构为气缸,所述推进器设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构为音圈马达,所述推进器设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构为线性电机,所述推进器设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述推进器可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述推进器上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述推进器沿所述导轨相对远离或靠近所述机体。
进一步地,所述连接机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述推进器连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述推进器运动。
进一步地,所述连接机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述推进器装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述推进器运动。
进一步地,所述动力装置还包括旋翼组件,所述旋翼组件可转动地连接于所述机体上;所述无人机在空中作业时,所述控制装置能够控制所述旋翼组件运转以为所述无人机在空中飞行提供动力;所述无人机在水面航行时,所述控制装置能够控制所述旋翼组件相对所述机体转动预定角度并运转,以为所述无人机的航行提供动力。
进一步地,所述机身还包括设置于所述机体上的多个机臂,所述旋翼组件为多个;多个所述机臂围绕设置在所述机体周围,每个所述旋翼组件可转动地装设于所述机臂上。
进一步地,所述旋翼组件包括可转动地设置于所述机臂上的装设件,所述控制装置能够控制所述装设件相对所述机臂转动。
进一步地,所述旋翼组件还包括驱动件及螺旋桨,所述驱动件设置于所述装设件上,所述螺旋桨设置于所述驱动件上。
进一步地,所述控制装置还包括卫星***,所述卫星***实时地跟踪所述无人机的所在地理位置。
进一步地,所述控制装置还包括磁场感应器,所述磁场感应器实时地跟踪所述无人机的行进方向,以与所述卫星***共同确定所述无人机的地理方位信息。
进一步地,所述磁场感应器为指南针。
一种无人机控制***,其运行于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
所述无人机控制***包括:
中央控制模块,用于接收所述无人机的起飞、行进或降落的控制指令;以及
降落控制模块,用于在所述中央控制模块接收到一降落控制指令时,控制所述起降装置切换至与降落目的地相应的陆地降落模式或水上降落模式。
进一步地,所述降落控制模块包括水上降落控制单元,所述水上降落控制单元用于在所述中央控制模块接收到一水上降落控制指令时,控制所述起降装置切换至水上降落模式。
进一步地,所述降落控制模块还包括陆地降落控制单元,所述陆地降落控制单元用于在所述中央控制模块接收到一陆地降落控制指令时,控制所述起降装置切换至陆地降落模式。
进一步地,所述无人机控制***还包括环境检测模块,所述环境检测模块用于检测所述无人机与所述降落目的地之间的距离,并判断若该距离落入一预设的距离范围,则允许该降落控制模块控制所述起降装置切换降落模式。
进一步地,所述环境检测模块判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则所述行进控制模块用于控制所述动力装置运转以降低所述无人机的飞行高度。
进一步地,所述环境检测模块用于实时地检测所述无人机与所述降落目的地之间的距离。
进一步地,所述环境检测模块用于间隔地检测所述无人机与所述降落目的地之间的距离。
进一步地,所述环境检测模块还用于在所述中央控制模块接收到一陆地降落控制指令后,检测水的深度,并判断若该深度落入一预设的深度范围,则所述降落控制模块不控制所述起降装置动作。
进一步地,所述无人机控制***还包括起飞控制模块,所述起飞控制模块用于在所述中央控制模块接收一起飞控制指令时,控制所述动力装置运转以带动所述无人机提升起飞。
进一步地,所述无人机控制***还包括自检模块,所述无人机还包括自检装置,所述自检模块用于在所述中央控制模块接收所述起飞控制指令后,控制所述自检装置对所述无人机的运行状态进行检查,判断若所述无人机的状态适宜飞行,则允许所述起飞控制模块控制所述动力装置运转,以带动所述无人机提升起飞。
进一步地,所述无人机控制***还包括行进控制模块,所述行进控制模块用于在所述中央控制模块接收一行进控制指令时,控制所述动力装置运转,以使所述无人机能够在空中飞行或在水面航行。
一种无人机降落控制方法,其应用于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
所述无人机降落控制方法包括:
接收一无人机降落控制指令;
根据所述降落控制指令,控制所述起降装置切换至水上降落模式或陆地降落模式;
控制所述动力装置运转,以降低所述无人机的飞行高度直至降落至目的地。
进一步地,判断若所述控制指令为水上降落控制指令,检测水的深度,并判断若该深度落入一预设的深度范围,则不控制所述起降装置动作。
进一步地,在控制所述起降装置切换降落模式之前,检测所述无人机与所述降落目的地之间的距离,判断若该距离落入一预设的距离范围,则控制所述起降装置切换降落模式。
进一步地,判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则控制所述动力装置运转以降低所述无人机的飞行高度。
进一步地,检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
进一步地,检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
一种无人机控制方法,其应用于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
所述无人机控制方法包括:
接收一无人机降落控制指令;
根据所述降落控制指令,控制所述起降装置切换至水上降落模式或陆地降落模式;
控制所述动力装置运转,以降低所述无人机的飞行高度直至降落至目的地。
进一步地,判断若所述控制指令为水上降落控制指令,检测水的深度,并判断若该深度落入一预设的深度范围,则不控制所述起降装置动作。
进一步地,在控制所述起降装置切换降落模式之前,检测所述无人机与所述降落目的地之间的距离,判断若该距离落入一预设的距离范围,则控制所述起降装置切换降落模式。
进一步地,判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则控制所述动力装置运转以降低所述无人机的飞行高度。
进一步地,检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
进一步地,检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
一种无人机,其包括机身及连接于所述机身上的动力装置,以及设置于所述机身上并与所述动力装置电性连接的控制装置。所述控制装置用于控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
进一步地,所述无人机还包括与所述控制装置电性连接的起降装置,所述控制装置还用于控制所述起降装置切换工作模式,使所述无人机能够降落在陆地上或水面上。
进一步地,所述控制装置包括主控制器,所述主控制器在接收到一陆地降落控制指令时,控制所述动力装置及所述起降装置切换至或陆地降落模式。
进一步地,所述控制装置包括主控制器,所述主控制器在接收到一水上降落控制指令时,控制所述起降装置切换至浮力支撑状态的水上降落模式,并控制所述动力装置带动所述无人机整体降落至水面。
进一步地,所述控制装置包括距离传感器,所述距离传感器能够检测所述无人机与所述水面之间的距离,以允许所述主控制器根据该距离控制所述起降装置进入预备降落状态。
进一步地,所述距离传感器为气压计、超声波测距传感器、激光测距传感器、视觉传感器中的至少一种。
进一步地,所述距离传感器在判断所述无人机与所述水面之间的距离在一预设的范围内时,允许所述主控制器根据该距离控制所述起降装置进入预备降落状态。
进一步地,所述控制装置还包括深度检测器,所述深度检测器能够检测水的深度;所述主控制器能够在所述深度检测器判断该深度落入一预设的深度范围内时,控制所述动力装置不带动所述无人机整体降落。
进一步地,所述深度检测器为水深探测仪。
进一步地,所述无人机还包括警报器,所述警报器能够在在所述深度检测器判断该深度落入一预设的深度范围内时,向所述无人机的使用者发出一警示信号表示所述降落目的地不宜降落。
进一步地,所述警报器为警示灯、蜂鸣器或电子信息发送器。
进一步地,所述机身包括机体,起降装置及所述动力装置均设置于所述机体上;所述起降装置包括悬浮器,所述悬浮器能够在所述无人机降落在水面上航行时,提供浮力支撑。
进一步地,所述悬浮器为可充气浮力板。
进一步地,所述悬浮器为固体浮力材料制成的浮力板。
进一步地,所述悬浮器包括底板及设置于所述底板周缘的侧板,所述底板及所述侧板之间成预定夹角。
进一步地,所述侧板可调节地装设于所述底板上,所述底板及所述侧板之间所成的夹角可调节。
进一步地,所述底板可调节地连接于所述机体上,所述底板及所述机体之间所成的夹角可调节。
进一步地,所述悬浮器环绕设置于所述机体外。
进一步地,所述悬浮器将所述机体的全部或部分结构包覆在内。
进一步地,所述起降装置还包括设置于所述机体上的起落架,所述悬浮器设置在所述起落架上。
进一步地,所述起落架包括设置于所述机体上的支撑机构及设置于所述支撑机构上的缓冲机构。
进一步地,所述缓冲机构为弹性材料制成的缓冲件。
进一步地,所述缓冲机构为气压阻尼器、液压阻尼器、弹簧阻尼器中的至少一种。
进一步地,所述支撑机构为可伸缩的支撑结构,所述支撑机构能够驱动该所述缓冲机构相对地远离或靠近所述机体。
进一步地,所述支撑机构为气缸,所述缓冲机构设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构为音圈马达,所述缓冲机构设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构为线性电机,所述缓冲机构设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述缓冲机构相对远离或靠近所述机体。
进一步地,所述支撑机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述缓冲机构可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述缓冲机构上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述缓冲机构沿所述导轨相对远离或靠近所述机体。
进一步地,所述支撑机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述缓冲机构连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述缓冲机构运动。
进一步地,所述支撑机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述缓冲机构装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述缓冲机构运动。
进一步地,所述动力装置还包括推进器,所述推进器连接于所述机体上,并为所述无人机在水面上航行提供动力。
进一步地,所述推进器为泵喷推进器、螺旋桨推进器、球形电机推进器中的至少一个。
进一步地,所述动力装置还包括连接机构,所述推进器通过所述连接机构连接于所述机体上,所述连接机构为可伸缩的连接结构,所述连接机构能够驱动该所述推进器远离或靠近所述机体。
进一步地,所述连接机构为气缸,所述推进器设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构为音圈马达,所述推进器设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构为线性电机,所述推进器设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述推进器相对远离或靠近所述机体。
进一步地,所述连接机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述推进器可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述推进器上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述推进器沿所述导轨相对远离或靠近所述机体。
进一步地,所述连接机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述推进器连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述推进器运动。
进一步地,所述连接机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述推进器装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述推进器运动。
进一步地,所述动力装置还包括旋翼组件,所述旋翼组件可转动地连接于所述机体上;所述无人机在空中作业时,所述控制装置能够控制所述旋翼组件运转以为所述无人机在空中飞行提供动力;所述无人机在水面航行时,所述控制装置能够控制所述旋翼组件相对所述机体转动预定角度并运转,以为所述无人机的航行提供动力。
进一步地,所述机身还包括设置于所述机体上的多个机臂,所述旋翼组件为多个;多个所述机臂围绕设置在所述机体周围,每个所述旋翼组件可转动地装设于所述机臂上。
进一步地,所述旋翼组件包括可转动地设置于所述机臂上的装设件,所述控制装置能够控制所述装设件相对所述机臂转动。
进一步地,所述旋翼组件还包括驱动件及螺旋桨,所述驱动件设置于所述装设件上,所述螺旋桨设置于所述驱动件上。
进一步地,所述控制装置还包括卫星***,所述卫星***实时地跟踪所述无人机的所在地理位置。
进一步地,所述控制装置还包括磁场感应器,所述磁场感应器实时地跟踪所述无人机的行进方向,以与所述卫星***共同确定所述无人机的地理方位信息。
进一步地,所述磁场感应器为指南针。
一种无人机控制***,其运行于一无人机上,所述无人机包括控制装置及动力装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力。所述无人机控制***包括:中央控制模块,用于接收所述无人机的起飞、行进或降落的控制指令,并允许所述控制装置控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
进一步地,所述无人机控制***还包括水上降落控制单元,所述水上降落控制单元用于控制所述起降装置切换至水上降落模式。
进一步地,所述无人机控制***还包括陆地降落控制单元,所述陆地降落控制单元用于控制所述起降装置切换至陆地降落模式。
进一步地,所述无人机控制***还包括环境检测模块,所述环境检测模块用于检测所述无人机与所述无人机的降落目的地之间的距离,并判断若该距离落入一预设的距离范围,则允许该降落控制模块控制所述起降装置切换降落模式。
进一步地,所述环境检测模块判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则所述行进控制模块用于控制所述动力装置运转以降低所述无人机的飞行高度。
进一步地,所述环境检测模块用于实时地检测所述无人机与所述降落目的地之间的距离。
进一步地,所述环境检测模块用于间隔地检测所述无人机与所述降落目的地之间的距离。
进一步地,所述无人机控制***还包括起飞控制模块,所述起飞控制模块用于在所述中央控制模块接收一起飞控制指令时,控制所述动力装置运转以带动所述无人机提升起飞。
进一步地,所述无人机控制***还包括自检模块,所述无人机还包括自检装置,所述自检模块用于在所述中央控制模块接收所述起飞控制指令后,控制所述自检装置对所述无人机的运行状态进行检查,判断若所述无人机的状态适宜飞行,则允许所述起飞控制模块控制所述动力装置运转,以带动所述无人机提升起飞。
进一步地,所述无人机控制***还包括行进控制模块,所述行进控制模块用于在所述中央控制模块接收一行进控制指令时,控制所述动力装置运转,以使所述无人机能够在空中飞行或在水面航行。
一种无人机控制方法,其应用于一无人机上,所述无人机包括控制装置及动力装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力。所述无人机控制方法包括:接收一无人机控制指令;根据所述控制指令,控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
进一步地,判断若所述控制指令为降落控制指令后,检测所述无人机与无人机的降落目的地之间的距离,并控制所述动力装置运转以降低所述无人机飞行高度直至降落。
进一步地,检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
进一步地,检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
本发明的无人机、无人机控制***及方法,以及无人机降落控制方法,通过降落面检测装置检测所述无人机降落目的地的物体类型,并根据所述物体类型控制所述起降装置切换至与该物体类型相适应的工作状态。若所述降落面检测装置检测到所述降落目的地为水面等液体表面,则能通过控制所述起降装置切换工作模式,使所述无人机能够顺利降落在所述液体表面,并能够在所述液体中航行。因此,所述无人机在可以在空中飞行也可以在水中航行。
附图说明
图1为本发明第一实施方式中的无人机处于第一状态的示意图,所述第一状态可以为非工作的静止状态,也可以为空中作业状态。
图2为图1所示的无人机处于第二状态的示意图,所述第二状态可以为即将从空中降落至水面上的第一预备状态,也可以为非工作的静止状态。
图3为图1所示的无人机处于第三状态的示意图,所述第三状态可以为即将从空中降落至水面上的第二预备状态,也可以为水上航行/驻留状态,还可以为非工作的静止状态。
图4为图1所示的无人机处于第四状态的示意图,所述第四状态可以为水上航行/驻留状态,也可以为非工作的静止状态。
图5为本发明第二实施方式中的无人机处于所述第一状态的示意图。
图6为图5所示的无人机处于所述第二状态的示意图。
图7为图5所示的无人机处于所述第三状态的示意图。
图8为图5所示的无人机处于所述第四状态的示意图。
图9为本发明第三实施方式中的无人机处于所述第一状态的示意图。
图10为图9所示的无人机处于所述第二状态的示意图。
图11为图9所示的无人机处于所述第三状态的示意图。
图12为图9所示的无人机处于所述第四状态的示意图。
图13为本发明一实施方式的无人机控制***的功能模块图。
图14为本发明一实施方式中无人机降落控制方法的流程示意图。
图15为本发明一实施方式中无人机起飞控制方法的流程示意图。
图16为本发明一实施方式中无人机行进控制方法的流程示意图。
主要元件符号说明
无人机 100,200,400
机身 10
机体 12
机臂 14
动力装置 30
旋翼组件 32
装设件 321
驱动件 323
螺旋桨 325
推进组件 34
连接机构 341
推进器 343
起降装置 50
起落架 52,252
支撑机构 521
缓冲机构 523
悬浮器 54,254,454
底板 541,2541
侧板 543,2543
控制装置 70
主控制器 72
定位组件 73
降落面检测组件 74
图像采集器 741
图像传感器 743
距离传感器 745
深度检测器 747
警报器 749
无人机控制*** S1
中央控制模块 101
起飞控制模块 103
行进控制模块 105
环境检测模块 107
降落控制模块 109
水上降落控制单元 1091
陆地降落控制单元 1092
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
一种无人机,其包括机身及连接于所述机身上的动力装置,以及设置于所述机身上并与所述动力装置电性连接的控制装置。所述控制装置用于控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
一种无人机控制***,其运行于一无人机上,所述无人机包括控制装置及动力装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力。所述无人机控制***包括:中央控制模块,用于接收所述无人机的起飞、行进或降落的控制指令,并允许所述控制装置控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
一种无人机控制方法,其应用于一无人机上,所述无人机包括控制装置及动力装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力。所述无人机控制方法包括:接收一无人机控制指令;根据所述控制指令,控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
请参阅图1至图4,本发明第一实施方式提供一种无人机100,其为水空两用无人机。所述无人机100可以用于空中飞行、悬停,也以用于水上航行、驻留。进一步地,所述无人机100可以在陆地上起飞或降落,也可以在水面上起飞或降落。
所述无人机100包括机身10以及设置于所述机身10上的动力装置30、起降装置50及控制装置70。所述动力装置30及所述起降装置50分别与所述控制装置70电性连接,所述动力装置30用于为所述无人机100提供行进的动力,所述起降装置50用于作为所述无人机100降落时的支撑,所述控制装置70用于控制所述无人机100执行飞行、航行、起飞或降落等指令。
所述机身10包括机体12以及设置于所述机体12上的机臂14。所述机体12用于装设所述控制装置70。所述机臂14的一端设置于所述机体12上,另一端朝背离所述机体12的方向延伸。在本实施方式中,所述机臂14的数量为多个,多个所述机臂14环绕设置于所述机体12的周围且彼此间隔设置。所述机臂14用于装设所述动力装置30的部分结构。可以理解,所述机臂14的数量可以为两个,三个,四个,五个,六个,七个,八个,……等等。
所述动力装置30包括旋翼组件32及推进组件34。具体在图示的实施例中,所述旋翼组件32设置于所述机臂14上,所述推进组件34设置于所述机体12上。
在本实施方式中,所述旋翼组件32的数量为多个,且其数量与所述机臂14的数量相同。每个所述旋翼组件32装设在一个所述机臂14上。
每个所述旋翼组件32均包括装设件321、驱动件323及螺旋桨325。具体在图示的实施例中,所述装设件321连接于所述机臂14的末端,所述驱动件323设置于所述装设件321上,所述螺旋桨325连接于所述驱动件323上。
所述装设件321可转动地连接在对应的所述机臂14远离所述机体12的一端,并朝背离所述机臂14的方向延伸设置。所述装设件321能够在所述控制装置70的控制下,相对所述机臂14转动预定角度。具体地,所述装设件321能够在所述控制装置70的控制下,绕所述装设件321与所述机臂14的连接处,在竖直平面内转动预定角度。
在本实施方式中,所述驱动件323为电机。优选地,所述驱动件323为无刷电机。所述驱动件323设置于所述装设件321远离所述机臂14的一端。可以理解的是,在其他实施例中,所述驱动件323也可以为有刷电机、或者其他类型的电机。
所述螺旋桨325连接于所述驱动件323上,并能够在所述驱动件323的驱动下转动。具体地,所述螺旋桨325的旋转轴大致垂直于所述装设件321。
当所述装设件321的长度方向沿着所述机臂14的延伸方向设置时,所述螺旋桨325的旋转轴大致垂直于所述机臂14。此时,所述旋翼组件32能够为所述无人机100在空中飞行或悬停提供动力,也能够为所述无人机100在水面航行提供行进的动力。
可以理解的是,如前所述,所述装设件321能够在所述控制装置70的控制下,绕所述装设件321与所述机臂14的连接处,在竖直平面内转动预定角度,因此,所述螺旋桨325的旋转轴也可与所述机臂14之间呈一定倾斜角。
当所述装设件321相对所述机臂14转动时,所述装设件321能够带动所述驱动件323及所述螺旋桨325转动,同时,所述螺旋桨325的旋转轴也随之转动(请参图4)。此时,所述旋翼组件32能够为所述无人机100在水面航行提供行进的动力。具体地,当所述无人机100降落至一水面上,所述装设件321相对所述机臂14大致转动90度时,所述旋翼组件32能够部分或全部地没入水中,所述驱动件323驱动所述螺旋桨325转动,以为所述无人机100在水面航行提供行进的动力。
进一步地,当所述无人机100在水面航行时,所述螺旋桨325的最大转动速度应小于能够使所述无人机100起飞的最小转动速度,以避免所述无人机100从水面上航行的过程中起飞。
可以理解,所述装设件321可以不局限于在竖直平面内转动,其还可以在水平面上转动,或/及可以在三维空间内转动,以带动所述驱动件323及所述螺旋桨325在水平面上或/及三维空间内转动,从而为所述无人机100在水面上朝各个方向航行提供动力。
可以理解,多个所述旋翼组件32中的所有旋翼组件32均可以相对所述机臂14转动至部分或全部地没入水中,以为所述无人机100提供航行的动力;或者,多个所述旋翼组件32中仅有一部分旋翼组件32相对所述机臂14转动至部分或全部地没入水中,以为所述无人机100提供航行的动力,而其余的所述旋翼组件32继续在水面以上运转,以为所述无人机100提供提升浮力,保证所述无人机100在水面航行的稳定性;或者,多个所述旋翼组件32中的所有旋翼组件32或一部分旋翼组件32均可以相对所述机臂14转动预定角度且位于水面以上,使所述旋翼组件32的螺旋桨325的旋转轴线大致平行于水面,所述旋翼组件32的所述螺旋桨325转动时,能够通过空气的反推力推动所述无人机100在水面上航行。可以理解的是,所述旋翼组件32的螺旋桨325位于水面以上时,所述螺旋桨325的旋转轴线不局限于平行于水面的设置方式,例如,螺旋桨325的旋转轴线也可以相对水面倾斜设置,且多个螺旋桨325中的一部分螺旋桨325的旋转轴线可以互不相同,以借由不同方向的空气反推力调整所述无人机100行进的速度及方向。
所述推进组件34设置于所述机体12上,其用于为所述无人机100在水面航行提供行进的动力。所述推进组件34包括连接机构341(请参阅图2)以及设置于所述连接机构341上的推进器343。
所述连接机构341为可伸缩的连接结构,一端设置于所述机体12上,另一端用于装设所述推进器343。所述推进器343能够在所述连接机构341的驱动下,相对远离或靠近所述机体12。在本实施方式中,所述推进器343为水下推进器,其能够驱动所述无人机100在水面上完成前进、后退或转弯等作业。具体而言,所述推进器343可以为泵喷推进器、螺旋桨推进器、球形电机推进器或其他的水下推进器。
当所述无人机100不需要在水面作业时,所述连接机构341处于收合状态,所述推进器343相对靠近所述机体12或收容于所述机体12内,以减小所述无人机100在飞行作业时的体积,提高所述无人机100飞行控制的灵活性。
当所述无人机100需在水面航行或驻留时,所述连接机构341能够处于展开状态,使得所述推进器343能够视需要调整其与所述机体12之间的距离。例如,所述连接机构341能够将所述推进器343驱动至远离所述机体12的位置,直至凸伸出所述起降装置50背离所述机体12的一侧,以保证所述无人机100通过所述起降装置50降落在水面上时,所述推进器343能够没入水中,从而为所述无人机100在水面航行提供行进的动力。可以理解的是,所述连接机构341能够将所述推进器343驱动至位于所述机体12与所述起降装置50之间。
进一步地,所述连接机构341与所述控制装置70电性连接,并能够在所述控制装置70的控制下展开或者收合。
可以理解的是,在其他实施例中,所述推进组件34也可以省略,当所述无人机100需在水面航行或驻留时,直接通过所述旋翼组件32的螺旋桨325的转动提供动力。
所述起降装置50设置在所述机体12上,其用于为所述无人机100提供降落在陆地上或水面上的支撑。所述起降装置50包括起落架52以及悬浮器54。具体在图示的实施例中,所述起落架52连接于所述机体12上,所述悬浮器54设置于所述起落架52上。
所述起落架52包括支撑机构521及设置于所述支撑机构521上的缓冲机构523。所述支撑机构521的一端设置在所述机体12上,另一端朝背离所述机体12的方向延伸。在本实施方式中,所述支撑机构521为可伸缩的支撑结构。所述缓冲机构523设置于所述支撑机构521远离所述机体12的一端。所述缓冲机构523能够在所述支撑机构521的驱动下相对远离或靠近所述机体12。在本实施方式中,所述缓冲机构523能够在外力作用下发生弹性形变,以减小所述无人机100降落在硬质表面上时所受到的冲击。在一些实施例中,所述缓冲机构523可以为由弹性材料如塑胶、橡胶、泡棉等弹性材料制成的缓冲件。在其他的实施例中,所述缓冲机构523可以为气压阻尼器、液压阻尼器、弹簧阻尼器等缓冲阻尼器。
在其他实施例中,所述支撑机构521也可为不可伸缩的支撑结构,其直接固定在所述机体12上。
当所述无人机100不需降落在陆地上时,所述支撑机构521处于收合状态,所述缓冲机构523靠近所述机体12或收容于所述机体12内,以减小所述无人机100在作业时的体积,提高所述无人机100行进控制的灵活性。当所述无人机100需要降落在陆地上时,所述支撑机构521能够处于展开状态,所述缓冲机构523相对远离所述机体12并作为所述无人机100降落时的支撑。
在本实施方式中,所述悬浮器54大致呈板状,其设置在所述缓冲机构523背离所述机体12的一侧。所述悬浮器54的密度远小于水的密度,当所述无人机100需在水上作业时,所述悬浮器54可以漂浮于水上或部分/全部没入水中,并支撑所述无人机100整体,以使所述无人机100整体能够在所述动力装置30的驱动下在水面航行或驻留。
在本实施方式中,所述悬浮器54为可充气浮力板。当所述无人机100不需在水面上作业时,所述悬浮器54处于压缩状态并大致呈扁平状,且叠置于所述缓冲机构523背离所述机体12的一侧。当所述无人机100需在水面上作业时,所述悬浮器54内填充气体并膨胀(请参阅图3及图4),直至所述悬浮器54漂浮于水上或部分/全部没入水中时,能够支撑所述无人机100的整体。
进一步地,所述悬浮器54可以包括底板541及设置于所述底板541周缘的侧板543。所述底板541大致呈水平设置的板状,所述侧板543设置于所述底板541的边缘。所述侧板543相对所述底板541倾斜,并朝所述机身10的方向延伸设置。所述侧板543与所述底板541之间形成预定角度,使所述无人机100在水面航行时,能够破浪前进,并相对减小其在水中行进的阻力。具体而言,所述底板541可以为圆形板、矩形板、三角形板、多边形板或其他任意形状的板。所述侧板543可以为与所述底板541的轮廓形状相适应的环状,并环绕设置于所述底板541的周缘,使所述无人机100在水面朝各个方向航行时,均能减小行进阻力。所述底板541还可以为片状,其数量为多个,多个所述底板541可以彼此间隔设置于所述底板541的周缘。
进一步地,所述侧板543相对于所述底板541的装设角度可调整,以适应于不同状态下的水面。例如,当水面波动较大时,所述控制装置70能够控制所述侧板543相对所述底板541运动,使所述侧板543相对所述底板541所成的夹角相对较大。反之,当水面波动较小时,所述控制装置70能够控制所述侧板543相对所述底板541运动,使所述侧板543相对所述底板541所成的夹角相对较小。
另外,所述底板541相对于所述机体12的装设角度可调整,以利于所述无人机100在不同的飞行姿态下均能降落在水面上,同时有利于所述无人机100在降落时能够适应于不同状态的水面。例如,当所述无人机100倾斜飞行时,所述机体12相对于水平面倾斜,若此时所述无人机100需降落至水面上,则所述控制装置70能够控制所述底板541相对所述机体12运动,以调整所述底板541的入水角度,使所述底板541能够大致平行于水平面,从而保证所述底板541能够为所述无人机100整体提供较大的浮力支撑。可以理解的是,当所述无人机100在较高的速度下飞行并需要降落至水面上时,所述控制装置70能够控制所述底板541运动至相对所述水面倾斜设置,使所述底板541背离所述机体12的一侧朝向所述无人机100的行进方向,以利于所述无人机100降落在水面上。同样地,当水面波动较大时,所述控制装置70能够控制所述底板541相对所述机体12运动,使所述底板541相对所述水面倾斜设置,以降低水面波动对所述无人机100降落造成的影响。
可以理解,在其他的实施方式中,所述悬浮器54可以为实体浮力板,其可以由密度较小的材料制成,如固体浮力材料等。可以理解,所述悬浮器54为实体浮力板时,其可以兼作所述起落架52的缓冲机构523使用。此时,所述缓冲机构523可以省略,而直接将所述悬浮器54设置于所述支撑机构521上。
所述控制装置70设置于所述机身10上,其包括主控制器72及与所述主控制器72电性连接的定位组件73和降落面检测组件74。
所述主控制器72还与所述动力装置30及所述起降装置50电性连接,所述主控制器72用于控制所述动力装置30及所述起降装置50运动。
所述定位组件73用于实时定位所述无人机100的方位信息,其包括磁场感应器(图未示出)及卫星***(图未示出)。在本实施方式中,所述磁场感应器为指南针,所述***为GPS定位单元。所述磁场感应器用于判定所述无人机100的行进方向。所述***用于实时定位所述无人机100的方位。当所述无人机100执行降落控制指令时,其能通过所述定位组件73进行自身定位,以判断所述无人机100所在的地理位置及环境状况,使所述无人机100提前进入降落预判状态,以允许所述降落面检测组件74进入检测状态,提高了所述无人机100控制的灵敏性。其中,所述地理位置为所述无人机100的实时方位,其可以为山地表面、居民住宅、湖泊、海面等。
所述降落面检测组件74用于检测所述无人机100降落目的地的状况,以判断所述降落目的地是水面或非水面,并将判断结果回传至所述主控制器72,使所述主控制器72能够控制所述动力装置30及所述起降装置50切换至与降落目的地相适应的工作状态。
在本实施方式中,所述降落面检测组件74包括图像采集器741、图像传感器743、距离传感器745以及深度检测器747。
在本实施方式中,所述图像采集器741包括摄像头(图未示出)及图像分析元件(图未示出)。所述摄像头用于获取所述无人机100降落目的地的物体表面图像,并将该图像传送至所述图像分析元件中。所述图像分析元件通过分析所述降落目的地的物体表面纹理特征来识别所述图像中的物体类型。具体地,所述图像分析元件内预设有液体表面的波纹特征。所述图像分析元件获取所述降落目的地的物体表面图像后,对所述表面图像进行扫描分析,抽取所述表面图像的表面纹理特征,并将述表面纹理特征与所述液体表面的波纹特征相比对,并判断所述降落目的地的是否为水面等液体表面。
在一些实施方式中,所述图像采集器741可以包括摄像头(图未示出)及图像处理元件(图未示出)。所述摄像头用于获取所述无人机100降落目的地的物体表面图像,并将该图像传送至所述图像处理元件中。所述图像处理元件根据不同物体的不同光谱特征的差异来识别所述图像中的物体类型。具体地,所述图像处理元件内预设有水体、植被、土壤、水泥地面等物体的模拟光谱特征。所述图像处理元件获取所述降落目的地的物体表面图像后,对所述图像所呈现的物体构建并计算所述物体的反射率,以获取该图像中的物体的光谱特征。然后,所述图像处理元件通过其获取的光谱特征与所述预设的模拟光谱特征进行比对,从而判断所述图像内所呈现物体的类型。可以理解,所述图像处理元件可以为成像光谱仪。
在一些实施方式中,所述图像采集器741可以包括多个摄像头(图未示出),以及多个偏振片(图未示出),每个所述偏振片设置于一个所述摄像头上。多个所述摄像头的结构、参数及配置均相同,所述摄像头用于获取所述无人机100降落目的地的物体表面图像信息。每个所述偏振片设置于对应的所述摄像头上,并覆盖所述摄像头的取景镜头。多个所述偏振片的起偏角互不相同。当所述无人机100即将降落时,所述降落目的地上物体的直射或/及反射光会透过所述偏振片投射入所述摄像头的取景镜头内。在通常情况下,植被、土壤、水泥地面等固态物体所直射或/及反射的光线较为稳定,该光线通过多个所述偏振片的偏振光亦较为稳定。而水体等液体表面反射的光,会因液体表面波纹的存在而发生波动,所述液体表面反射的光通过多个所述偏振片的偏振光会存在抖动差异。因此,所述图像采集器741据此判断所述降落目的地上物体的类型。可以理解,所述摄像头及所述偏振片的数量可以为两个或两个以上,如,两个,三个,四个,五个,六个,……等等。
可以理解的是,当所述无人机100的用户控制所述无人机100降落在水面上时,上述降落面检测组件74或/及检测过程可以省略,而所述无人机100降落于水面的过程可以为:所述主控制器72接收降落于水面上的控制指令后,其能够控制所述动力装置30及所述起降装置50切换至水上降落模式。
所述图像传感器743用于将所述图像采集器741采集到的图像信息以及所述物体类型的判断结果回传至所述主控制器72中,以允许所述主控制器72控制所述动力装置30及所述起降装置50切换至与降落目的地的物体类型相适应的工作状态。
可以理解的是,所述图像传感器743也可以省略,而所述图像采集器741采集到的图像信息以及所述物体类型的判断结果直接传至所述主控制器72中。或者,所述图像传感器743与所述图像采集器741集成在一起。
所述距离传感器745用于检测所述无人机100与所述降落目的地的物体表面之间的距离,使所述主控制器72控制所述动力装置30及所述起降装置50预备切换至与降落目的地的物体类型相适应的工作状态。所述距离传感器745可以为气压计、超声波测距传感器或激光测距传感器等。当所述距离传感器745所检测到的所述无人机100与所述降落目的地之间的距离在一预设的范围内时,所述主控制器72控制所述动力装置30及所述起降装置50预备切换至与降落目的地的物体类型相适应的工作状态。
具体而言,若所述无人机100降落目的地为非水面,当所述距离传感器745检测到所述无人机100与所述降落目的地之间的距离在一预设的范围内时,所述主控制器72控制所述支撑机构521驱动所述缓冲机构523远离所述机体12,以作为所述无人机100降落时的支撑。
若所述无人机100降落目的地为水面,所述距离传感器745检测到所述无人机100与所述降落目的地之间的距离在一预设的范围内时,所述主控制器72控制所述连接机构341驱动所述推进器343远离所述机体12,并控制所述悬浮器54自行充满气体,以为所述无人机100降落在水面上做好准备。
当所述距离传感器745检测到所述无人机100降落在水面上后,所述主控制器72可以根据工作需要,控制所述旋翼组件32的所述装设件321相对所述机臂14转动预定角度,所述旋翼组件32能够部分或全部地没入水中,所述驱动件323驱动所述螺旋桨325转动,以为所述无人机100在水面航行提供行进的动力。可以理解,多个所述旋翼组件32中的所有旋翼组件32均可以相对所述机臂14转动至部分或全部地没入水中,以为所述无人机100提供航行的动力;或者,多个所述旋翼组件32中仅有一部分旋翼组件32相对所述机臂14转动至部分或全部地没入水中,以为所述无人机100提供航行的动力,而其余的所述旋翼组件32继续在水面以上运转,以为所述无人机100提供提升浮力,保证所述无人机100在水面航行的稳定性;或者,多个所述旋翼组件32中的所有旋翼组件32或一部分旋翼组件32均可以相对所述机臂14转动预定角度且位于水面以上,使所述旋翼组件32的螺旋桨325的旋转轴线大致平行于水面,所述旋翼组件32的所述螺旋桨325转动时,能够通过空气的反推力推动所述无人机100在水面上航行,可以理解的是,所述旋翼组件32的螺旋桨325的旋转轴线也可以相对水面倾斜设置。
所述深度检测器747用于当所述无人机100的降落目的地为水面时,检测所述降落目的地的水深。具体地,所述深度检测器747为水深探测仪。若所述深度检测器747检测到所述降落目的地的水深落入一预设的深度范围,则判定所述降落目的地为浅水区,不适宜所述无人机100以水面作业方式降落,从而避免所述无人机降落在较浅的水面(如路面积水区)所造成的撞击等损伤。
在其他的实施例中,所述无人机100还可以包括警报器749,所述警报器749用于当所述深度检测器747判断所述降落目的地为浅水区后,发出一警示信号,使所述无人机100的使用者接收所述警示信号后,可以重新调整所述无人机100的降落目的地。所述警报器749可以采用声音、灯光进行报警,例如,所述警报器749为警示灯、蜂鸣器等报警装置。可以理解,所述警报器749还可以采用信息进行报警,例如,当所述深度检测器747判断所述降落目的地为浅水区后,所述警报器749向所述无人机100的使用者的移动终端(如遥控器、便携式电子装置等)传送一警报信号(如文字信息、图片/图标信息、屏幕闪烁等),使所述无人机100的使用者能够了解到目前的降落目的地不适宜所述无人机100降落,应重新调整所述无人机100的降落目的地。
请同时参阅图5至图8,图5至图8示出了本发明第二实施方式的无人机200。第二实施方式的所述无人机200的结构与第一实施方式的无人机100的结构大致相同。其不同在于,所述无人机200的悬浮器254设置在所述机体212上,并位于所述机体212上靠近所述起落架252的一侧,使所述无人机200在水上作业时的整体重心相对较低,不易发生倾覆事故。与第一实施方式中的无人机100相同,第二实施方式中的无人机200的所述悬浮器254可以为固体浮力材料制成的浮力板,也可以为充气式浮力板,其还可以包括底板2541及设置于所述底板2541周缘的侧板2543。而在其他的实施例中,所述悬浮器254还可以为环绕设置在所述机体12外周的浮力圈。本实施例中,所述无人机200也可不设置起落架。
请同时参阅图9至图12,图9至图12示出了本发明第三实施方式的无人机400。第三实施方式的所述无人机400的结构与第一实施方式的无人机100的结构大致相同。其不同在于,所述无人机400的悬浮器454设置在所述机体412上,并包覆于所述机体412的外周,使所述无人机400在水上作业时的整体重心相对较低,不易发生倾覆事故。在本实施方式中,所述悬浮器454为可充气的浮力圈,其环绕设置于所述机体412的外周。当所述无人机400需要降落在水面上时,所述悬浮器454能够自行充气并膨胀,以为这种无人机400的降落做好支撑准备。可以理解的是,所述悬浮器454可以将所述机体412的全部结构包覆在内,也可以仅包覆所述机体412的部分结构。可以理解的是,所述悬浮器454还可以为由固体浮力材料制成的浮力圈。本实施例中,所述无人机400也可不设置起落架。
请同时参阅图13,本发明还提供一种无人机控制***S1,图13示出了本发明一实施方式中无人机控制***S1的功能模块图。所述无人机控制***S1运行于上述的动力装置30、起降装置50或控制装置70中。具体而言,所述无人机控制***S1包括中央控制模块101、起飞控制模块103、行进控制模块105、环境检测模块107,以及降落控制模块109。进一步地,所述控制装置70还包括存储器(图未示出),所述无人机控制***S1的各个模块为存储在所述存储器中并可被所述控制装置70执行的可程序化的模块。
具体如下:
所述中央控制模块101用于向其余各个模块发送指令,以使各个模块协同作业,控制所述无人机100、200、400起飞、行进或降落。具体地,所述中央控制模块101接收起飞、行进或降落的控制指令后,根据所述指令的不同,将指令传送至所述起飞控制模块103、所述行进控制模块105、所述环境检测模块107或所述降落控制模块109中。
所述起飞控制模块103用于控制所述动力装置30的所述旋翼组件32运转,以为所述无人机100、200、400提供起飞的提升力。具体地,当所述无人机100、200、400处于静止状态且所述中央控制模块101接收一起飞控制指令时,所述起飞控制模块103从所述中央控制模块101处获取所述起飞控制指令,并控制所述旋翼组件32的所述螺旋桨325以预定速度转动,以提升所述无人机100、200、400。
所述行进控制模块105用于控制所述动力装置30运转,使所述无人机100、200、400在空中飞行、悬停或在水面航行、驻留。具体地,当所述无人机100、200、400起飞后,所述中央控制模块101接收一行进控制指令(如加速、减速、前进、后退、转弯等)时,所述行进控制模块105从所述中央控制模块101处获取所述行进控制指令,并控制所述旋翼组件32的所述螺旋桨325以预定速度/加速度转动,实现所述无人机100、200、400在空中的飞行作业。或者,当所述无人机100、200、400降落于水上后,所述中央控制模块101接收一行进控制指令(如加速、减速、前进、后退、转弯等)时,所述行进控制模块105从所述中央控制模块101处获取所述行进控制指令,并控制所述推进组件34的所述推进器343以预定速度/加速度运转,实现所述无人机100、200、400在水上的航行作业。
所述环境检测模块107用于检测所述无人机100、200、400降落目的地的物体类型,以使所述起降装置50能够根据降落目的地的不同物体类型切换至陆地降落模式或水上降落模式。具体地,当所述无人机100、200、400在空中飞行过程中,所述中央控制模块101接收一降落控制指时,所述环境检测模块107从所述中央控制模块101处获取所述降落控制指令,并控制所述降落面检测组件74检测并判断所述无人机100、200、400降落目的地的物体类型,并将判断结果传送至所述降落控制模块109中,以允许所述降落控制模块109控制所述起降装置50换至陆地降落模式或水上降落模式。
所述降落控制模块109用于控制所述起降装置50换至陆地降落模式或水上降落模式。所述降落控制模块109包括水上降落控制单元1091及陆地降落控制单元1092,所述水上降落控制单元1091用于控制所述悬浮器54、254、454运行,以为所述无人机100、200、400在水上降落做好准备。所述陆地降落控制单元1092用于控制所述起落架52、252、452运行,以为所述无人机100、200、400在非水面的目的地降落做好准备。
具体地,所述降落控制模块109接收到所述环境检测模块107所发出的所述无人机100、200、400的降落目的地的物体类型,并根据所述物体类型控制所述起降装置50切换。若所述无人机100、200、400降落目的地为适宜降落的水面时,所述距离传感器745检测到所述无人机100、200、400与所述降落目的地之间的距离在一预设的范围内时,所述水上降落控制单元1091控制所述连接机构341驱动所述推进器343远离所述机体12,并控制所述悬浮器54自行充满气体,以为所述无人机100降落在水面上做好准备。若所述无人机100、200、400降落目的地为非水面,当所述距离传感器745检测到所述无人机100、200、400与所述降落目的地之间的距离在一预设的范围内时,所述陆地降落控制单元1092控制所述支撑机构521驱动所述缓冲机构523远离所述机体12,以作为所述无人机100降落时的支撑,所述无人机100、200、400能够顺利降落。
请同时参阅图14,本发明还提供一种无人机降落控制方法,图14示出了本发明一实施方式中无人机降落控制方法的流程示意图。所述无人机降落控制方法包括如下步骤:
步骤S101:接收无人机降落控制指令。具体地,当所述无人机100、200、400在空中飞行过程中,所述中央控制模块101接收所述降落控制指令,并将所述降落控制指令传输至所述行进控制模块105及所述环境检测模块107中。
步骤S102:定位所述无人机的位置,对降落目的地进行预判。具体地,所述环境检测模块107控制所述磁场感应器及所述卫星***对所述无人机100、200、400的实时方位进行定位,并预判所述无人机100、200、400的降落目的地的地理位置及环境状况。
步骤S103:控制所述动力装置30运行,以降低所述无人机的飞行高度。具体地,所述行进控制模块105从所述中央控制模块101处获取所述降落控制指令后,控制所述动力装置30的所述旋翼组件32以预定的速度/加速度运转,以带动所述无人机整体降低飞行高度。
步骤S105:判断所述无人机与所述降落目的地之间的距离是否落入一预设的范围内。具体地,所述环境检测模块107控制所述降落面检测组件74的所述距离传感器745检测所述无人机100、200、400与所述降落目的地之间的距离,判断若所述距离在一预设的范围内时,执行步骤S107,若否,则执行步骤S103。
可以理解的是,所述距离传感器745可以实时地检测所述无人机与所述降落目的地之间的距离,也可以间隔地检测所述无人机与所述降落目的地之间的距离。所述距离传感器745两次检测之间的时间间隔可以为1s, 2s, 3s……,也可以为0.1s, 0.2s, 0.3s……,甚至可以为1ms, 2ms, 3ms……或者其他任何值。
步骤S107:判断所述无人机降落目的地的物体表面是否为水面等液体表面。具体地,所述环境检测模块107从所述中央控制模块101处获取所述降落控制指令,并控制所述降落面检测组件74检测并判断所述无人机100、200、400降落目的地的物体表面是否为水面等液体表面,并将判断结果传送至所述降落控制模块109中。若降落目的地的物体表面为水面等液体表面,则执行步骤S108,若否,则执行步骤S113。
可以理解的是,若所述无人机100的用户控制所述无人机100降落在水面上,即,在步骤S101中,所述中央控制模块101接收一水上降落的控制指令时,步骤S107的判断过程可以省略,直接执行步骤S108。
步骤S108:判断所述降落目的地的水深是否适宜所述无人机100、200、400降落。具体地,所述环境检测模块107控制所述深度检测器747检测所述降落目的地的水深,若所述降落目的地的水深未落入一预设的深度范围,则判断所述降落目的地为适宜所述无人机100、200、400降落的水面,执行步骤S109;若所述降落目的地的水深落入一预设的深度范围,则判断所述降落目的地为不适宜所述无人机100、200、400降落的浅水区,执行步骤S115。
步骤S109:控制所述悬浮器54、254、454运行,以为所述无人机100、200、400在水上降落做好准备。具体地,所述降落控制模块109的所述水上降落控制单元1091控制所述连接机构341驱动所述推进器343远离所述机体12,并控制所述悬浮器54自行充满气体,以为所述无人机100降落在水面上做好准备。
步骤S111:控制所述旋翼组件32运行,降低所述无人机的飞行高度,直至降落至目的地。具体地,所述行进控制模块105控制所述动力装置30的所述旋翼组件32以预定的速度/加速度运转,以带动所述无人机整体降低飞行高度,直至所述无人机降落至目的地。
步骤S113:控制所述起落架52、252、452运行,以为所述无人机100、200、400在非水面的目的地降落做好准备。具体地,所述降落控制模块109的所述陆地降落控制单元1092控制所述支撑机构521驱动所述缓冲机构523远离所述机体12,以作为所述无人机100降落时的支撑,所述无人机100、200、400能够顺利降落,并执行步骤S111。
步骤S115:发出警示信号,控制所述无人机100、200、400不执行降落控制指令,并调整降落目的地。具体地,所述中央控制模块101控制所述警报器749发出一不适宜降落的警示信号,所述降落控制模块109停止控制所述起降装置50,所述行进控制模块105控制所述无人机100、200、400持续在空中作业,所述中央控制模块101等待接受所述使用者重新降落的指令,并执行步骤S101。
请同时参阅图15至图16,本发明还提供一种无人机控制方法,所述无人机控制方法包括无人机起飞控制方法、无人机行进控制方法以及上述的无人机降落控制方法,具体如下:
在所述无人机起飞控制方法中:
步骤S201:接收无人机起飞控制指令。具体地,所述无人机进一步包括自检装置,所述无人机控制***进一步包括自检模块,所述自检模块运行于所述自检装置中;所述中央控制模块101接收所述起飞控制指令,并将所述起飞控制指令传输至自检模块中。
步骤S203:对无人机的运行状态进行检查。具体地,所述自检模块控制所述自检装置检查所述无人机的运行状态,以确定所述无人机已经处于适宜飞行的状态。例如,所述自检模块控制所述自检装置检查所述无人机的电池电量是否充足、各电气元件之间的连接是否良好等,以排除所述无人机飞行的安全隐患。若判断所述无人机的运行状态适宜飞行,则将所述起飞控制指令传输至所述起飞控制模块103中,并执行步骤S205,若判断所述无人机的运行状态不宜飞行,则结束。
步骤S205:控制所述动力装置30运行,以降提升所述无人机的飞行高度。具体地,所述起飞控制模块103从所述自检模块处获取所述起飞控制指令后,控制所述动力装置30的所述旋翼组件32以预定的速度/加速度运转,以带动所述无人机整体提升飞行高度。
在所述无人机行进控制方法中:
步骤S301:接收无人机行进控制指令。具体地,在所述无人机起飞达到预定高度后,所述中央控制模块101接收所述行进控制指令,并将所述行进控制指令传输至所述行进控制模块105中。其中,所述行进控制指令可以包括但不限于:提升高度,降低高度,前进,后退,转弯,俯仰,翻转,加速,减速等等。
步骤S302:控制所述动力装置30运行,以带动所述无人机执行飞行任务。具体地,所述行进控制模块105控制所述动力装置30的所述旋翼组件32以预定的速度/加速度运转,以带动所述无人机整体执行相应的飞行任务。
在所述无人机降落控制方法中,所述无人机降落控制方法与上文所描述的无人机降落控制方法大致相同,为节省篇幅,本说明书不作赘述。
本发明的无人机、无人机控制***、无人机降落控制方法及无人机控制方法,通过降落面检测装置检测所述无人机降落目的地的物体类型,并根据所述物体类型控制所述起降装置切换至与该物体类型相适应的工作状态。若所述降落面检测装置检测到所述降落目的地为水面等液体表面,则能通过控制所述起降装置的所述悬浮器进入充气膨胀的预备状态,或者控制所述起降装置进入浮力支撑状态,使所述无人机能够顺利降落在所述液体表面,并能够在所述液体中航行。因此,所述无人机在可以在空中飞行也可以在水中航行。
可以理解,当所述无人机100、200、400在水上作业时,可以由所述旋翼组件32或所述推进组件34中的任一个单独提供行进动力,也可由所述旋翼组件32或所述推进组件34共同提供行进动力。
可以理解的是,所述旋翼组件32的数量可以不同于所述机臂14的数量,例如,所述旋翼组件32的数量可以少于所述机臂14的数量,或者,所述旋翼组件的数量可以多于所述机臂14的数量。可以理解,所述机臂14的数量可以为两个,三个,四个,五个,六个,七个,八个,……等等。同样可以理解的是,多个所述旋翼组件32及多个所述机臂14的的设置方式可以不局限于上文所述的一一对应设置,例如,多个所述机臂14中的一个或多个上设置有所述旋翼组件32,多个所述机臂14中的一个或多个上未设置有所述旋翼组件32;或者,一个或多个所述旋翼组件32可以设置在同一个所述机臂14上。
在一些实施方式中,所述连接机构341可以为气缸机构。具体而言,所述连接机构341为直线往复式气缸,其包括气缸体及设于所述气缸体上的驱动杆,所述气缸体设置于所述机体12上,所述驱动杆用以连接所述推进器343。所述气缸体能够驱动所述驱动杆带动所述推进器343运动,使所述推进器343相对远离或靠近所述机体12。
在其他实施例中,所述连接机构341也可以为音圈马达,所述推进器343设置于所述音圈马达的驱动端上,并能够在所述音圈马达的驱动下相对远离或靠近所述机体12。可以理解的是,所述连接机构341还可以为线性电机,所述推进器343设置于所述线性电机的动子上,并能够在所述线性电机的驱动下相对远离或靠近所述机体12。
在另一实施例中,所述连接机构341也可以为电磁铁机构。具体而言,所述电磁铁机构包括电磁铁、永磁体以及导轨。所述导轨固定于所述机体12上,所述推进器343可滑动地设置于所述导轨上。所述电磁铁及所述永磁体中的一个装设于所述机体12上,另一个装设于所述推进器343上。通过控制所述电磁铁上电流的方向,可以吸引或排斥所述永磁体,从而使所述推进器343沿所述导轨运动,相对远离或靠近所述机体12。
在另一实施例中,所述连接机构341也可以为丝杆螺母机构。具体而言,所述连接机构341可以包括电动机、丝杆及螺母。所述电动机固定装设于所述机体12上,所述螺母套设于所述丝杆上并与所述推进器343固定连接。当所述电动机驱动所述丝杆转动时,所述丝杆通过所述螺母驱动所述推进器343相对远离或靠近所述机体12。
在另一实施例中,所述连接机构341也可以为齿轮齿条机构。具体而言,所述齿轮齿条机构可以包括电动机、齿轮及齿条。所述电动机装设于机体12上,所述齿轮装设于所述电动机的驱动端,所述齿条与所述齿轮相啮合。所述推进器343装设于所述齿条上。当所述电动机驱动所述齿轮转动时,所述齿轮通过所述齿条驱动所述推进器343相对远离或靠近所述机体12。
可以理解,在其他的实施方式中,所述连接机构341还可以为上述的连接机构以外的其他机械结构如连杆机构等,使所述连接机构341能够驱动所述推进器343相对远离或靠近所述机体12即可。可以理解的是,所述连接机构341还可以设计为除了上述的伸缩结构以外的连接结构,例如,所述连接机构341可以为不可伸缩结构,所述推进器343通过所述连接机构341设置于所述机体12上,并能够为所述无人机100在水面航行提供行进的动力即可。
可以理解,当所述无人机100、200、400处于水上工作状态或非工作的静止状态时,所述连接机构341可以处于展开状态,也可以处于收合状态,在不影响所述无人机整体工作状况的情况下,所述连接机构341的展开或收合状态可以视需要调整。
可以理解,当所述无人机100、200、400即将降落至水上时,所述控制器70可以控制所述连接机构341在所述无人机100、200、400在降落之前展开,也可以控制所述连接机构341在所述无人机100、200、400在降落之后展开。
可以理解,所述支撑机构521的结构可以与所述连接机构341的结构相同,即,所述支撑机构521可以为如上所述的气缸机构、音圈马达、电磁铁机构、丝杆螺母机构或齿轮齿条机构中的任一种,也可以为其他的机械结构如连杆机构等,使所述支撑机构521能够驱动所述缓冲机构523相对远离或靠近所述机体12即可。可以理解的是,所述支撑机构521还可以设计为除了上述的伸缩结构以外的支撑结构,例如,所述支撑机构521可以为不可伸缩结构,所述缓冲机构523通过所述支撑机构521设置于所述机体12上。
可以理解,当所述无人机100、200、400处于空中工作状态或非工作的静止状态时,所述支撑机构521可以处于展开状态,也可以处于收合状态,在不影响所述无人机整体工作状况的情况下,所述支撑机构521的展开或收合状态可以视需要调整。
可以理解,所述距离传感器745可以不局限于上文所描述的气压计、超声波测距传感器或激光测距传感器等传感器形式,其还可以为其他的距离测量装置。例如,所述距离传感器745可以为视觉传感器,所述视觉传感器通过获取所述降落目的地的表面图像,并对所述表面图像进行分析,可以获知所述无人机的飞行高度,即,获知所述无人机与所述降落目的地之间的距离。
在本发明的实施方式中,所述无人机为旋翼飞行器,其用于搭载照相机、摄像机等拍摄装置进行航拍作业。可以理解,所述无人机还可以用于地图测绘、灾情调查和救援、空中监控、输电线路巡检等工作。同样可以理解的是,所述无人机还可以为固定翼飞行器。
可以理解,本发明的无人机可以在湖水、河水、海水等水面降落,也可以在其他适宜的液体表面降落。例如,当所述无人机用于一溶液反应的实验监控时,其可以在所述溶液的表面上降落或/及航行;或者,所述无人机可以在油液表面上降落或/及航行,以执行油液质量监控、油液样品采集等工作。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (206)

  1. 一种无人机,其包括机身及连接于所述机身上的动力装置,其特征在于:所述无人机还包括设置于所述机身上的控制装置及起降装置,所述动力装置及所述起降装置分别与所述控制装置电性连接;所述控制装置包括降落面检测组件,所述控制装置用于在所述降落面检测组件检测到所述无人机的降落目的地为水面时,控制所述动力装置及所述起降装置的工作模式,使所述无人机能够在水面降落并航行。
  2. 如权利要求1所述的无人机,其特征在于:所述降落面检测组件检测到所述无人机的降落目的地为水面时,所述控制装置能够控制所述起降装置切换至浮力支撑状态,并控制所述动力装置带动所述无人机整体降落至所述降落目的地上。
  3. 如权利要求2所述的无人机,其特征在于:所述降落面检测组件包括图像采集器,所述图像采集器能够获取所述无人机的降落目的地的表面图像,并根据该表面图像判断所述降落目的地是否为水面。
  4. 如权利要求3所述的无人机,其特征在于:所述图像采集器包括摄像头及图像分析元件,所述摄像头能够获取所述降落目的地的表面图像,并将该表面图像传送至该图像分析元件中;所述图像分析元件能够根据所述降落目的地的表面纹理特征判断所述降落目的地是否为水面。
  5. 如权利要求4所述的无人机,其特征在于:所述图像分析元件中预设有水面的波纹特征,所述图像分析元件从所述表面图像中抽取所述表面图像的表面纹理特征,并将述表面纹理特征与所述水面的波纹特征相比对,并判断所述降落目的地的是否为水面。
  6. 如权利要求3所述的无人机,其特征在于:所述图像采集器包括摄像头及图像处理元件,所述摄像头能够获取所述降落目的地的表面图像,并将该表面图像传送至该图像处理元件中;所述图像处理元件根据所述降落目的地的成像光谱特征判断所述降落目的地是否为水面。
  7. 如权利要求6所述的无人机,其特征在于:所述图像处理元件内预设有水面的模拟光谱特征,所述图像处理元件能够根据所述降落目的地的表面图像构建并计算所述降落目的地表面的反射率,以获取所述降落目的地的表面光谱特征,并将该降落目的地的表面光谱特征与所述预设的模拟光谱特征进行比对,从而判断所述降落目的地是否为水面。
  8. 如权利要求3所述的无人机,其特征在于:所述图像采集器为成像光谱仪。
  9. 如权利要求3所述的无人机,其特征在于:所述图像采集器包括多个摄像头及多个偏振片,每个所述偏振片设置于一个所述摄像头上。
  10. 如权利要求9所述的无人机,其特征在于:多个所述摄像头的性能参数完全一致,多个所述偏振片的起偏角互不相同。
  11. 如权利要求3所述的无人机,其特征在于:所述降落面检测组件还包括距离传感器,所述距离传感器能够检测所述无人机与所述降落目的地之间的距离,以允许所述控制装置根据该距离控制所述起降装置进入预备降落状态。
  12. 如权利要求11所述的无人机,其特征在于:所述距离传感器为气压计、超声波测距传感器、激光测距传感器、视觉传感器中的至少一种。
  13. 如权利要求11所述的无人机,其特征在于:所述距离传感器在判断所述无人机与所述降落目的地之间的距离在一预设的范围内时,允许所述控制装置根据该距离控制所述起降装置进入预备降落状态。
  14. 如权利要求3所述的无人机,其特征在于:所述降落面检测组件还包括深度检测器,所述深度检测器能够在所述图像采集器判断所述降落目的地为水面时,检测该水的深度;所述控制装置能够在所述深度检测器判断该深度落入一预设的深度范围内时,控制所述动力装置不带动所述无人机整体降落。
  15. 如权利要求14所述的无人机,其特征在于:所述深度检测器为水深探测仪。
  16. 如权利要求14所述的无人机,其特征在于:所述无人机还包括警报器,所述警报器能够在在所述深度检测器判断该深度落入一预设的深度范围内时,向所述无人机的使用者发出一警示信号表示所述降落目的地不宜降落。
  17. 如权利要求16所述的无人机,其特征在于:所述警报器为警示灯、蜂鸣器或电子信息发送器。
  18. 如权利要求2所述的无人机,其特征在于:所述机身包括机体,起降装置及所述动力装置均设置于所述机体上;所述起降装置包括悬浮器,所述悬浮器能够在所述无人机降落在水面上航行时,提供浮力支撑。
  19. 如权利要求18所述的无人机,其特征在于:所述悬浮器为可充气浮力板。
  20. 如权利要求18所述的无人机,其特征在于:所述悬浮器为固体浮力材料制成的浮力板。
  21. 如权利要求18所述的无人机,其特征在于:所述悬浮器包括底板及设置于所述底板周缘的侧板,所述底板及所述侧板之间成预定夹角。
  22. 如权利要求21所述的无人机,其特征在于:所述侧板可调节地装设于所述底板上,所述底板及所述侧板之间所成的夹角可调节。
  23. 如权利要求21所述的无人机,其特征在于:所述底板可调节地连接于所述机体上,所述底板及所述机体之间所成的夹角可调节。
  24. 如权利要求18所述的无人机,其特征在于:所述悬浮器环绕设置于所述机体外。
  25. 如权利要求24所述的无人机,其特征在于:所述悬浮器将所述机体的全部或部分结构包覆在内。
  26. 如权利要求18所述的无人机,其特征在于:所述起降装置还包括设置于所述机体上的起落架,所述悬浮器设置在所述起落架上。
  27. 如权利要求26所述的无人机,其特征在于:所述起落架包括设置于所述机体上的支撑机构及设置于所述支撑机构上的缓冲机构。
  28. 如权利要求27所述的无人机,其特征在于:所述缓冲机构为弹性材料制成的缓冲件。
  29. 如权利要求27所述的无人机,其特征在于:所述缓冲机构为气压阻尼器、液压阻尼器、弹簧阻尼器中的至少一种。
  30. 如权利要求27所述的无人机,其特征在于:所述支撑机构为可伸缩的支撑结构,所述支撑机构能够驱动该所述缓冲机构相对地远离或靠近所述机体。
  31. 如权利要求30所述的无人机,其特征在于:所述支撑机构为气缸,所述缓冲机构设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述缓冲机构相对远离或靠近所述机体。
  32. 如权利要求30所述的无人机,其特征在于:所述支撑机构为音圈马达,所述缓冲机构设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述缓冲机构相对远离或靠近所述机体。
  33. 如权利要求30所述的无人机,其特征在于:所述支撑机构为线性电机,所述缓冲机构设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述缓冲机构相对远离或靠近所述机体。
  34. 如权利要求30所述的无人机,其特征在于:所述支撑机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述缓冲机构可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述缓冲机构上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述缓冲机构沿所述导轨相对远离或靠近所述机体。
  35. 如权利要求30所述的无人机,其特征在于:所述支撑机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述缓冲机构连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述缓冲机构运动。
  36. 如权利要求30所述的无人机,其特征在于:所述支撑机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述缓冲机构装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述缓冲机构运动。
  37. 如权利要求18所述的无人机,其特征在于:所述动力装置还包括推进器,所述推进器连接于所述机体上,并为所述无人机在水面上航行提供动力。
  38. 如权利要求37所述的无人机,其特征在于:所述推进器为泵喷推进器、螺旋桨推进器、球形电机推进器中的至少一个。
  39. 如权利要求37所述的无人机,其特征在于:所述动力装置还包括连接机构,所述推进器通过所述连接机构连接于所述机体上,所述连接机构为可伸缩的连接结构,所述连接机构能够驱动该所述推进器远离或靠近所述机体。
  40. 如权利要求39所述的无人机,其特征在于:所述连接机构为气缸,所述推进器设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述推进器相对远离或靠近所述机体。
  41. 如权利要求39所述的无人机,其特征在于:所述连接机构为音圈马达,所述推进器设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述推进器相对远离或靠近所述机体。
  42. 如权利要求39所述的无人机,其特征在于:所述连接机构为线性电机,所述推进器设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述推进器相对远离或靠近所述机体。
  43. 如权利要求39所述的无人机,其特征在于:所述连接机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述推进器可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述推进器上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述推进器沿所述导轨相对远离或靠近所述机体。
  44. 如权利要求39所述的无人机,其特征在于:所述连接机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述推进器连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述推进器运动。
  45. 如权利要求39所述的无人机,其特征在于:所述连接机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述推进器装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述推进器运动。
  46. 如权利要求18所述的无人机,其特征在于:所述动力装置还包括旋翼组件,所述旋翼组件可转动地连接于所述机体上;所述无人机在空中作业时,所述控制装置能够控制所述旋翼组件运转以为所述无人机在空中飞行提供动力;所述无人机在水面航行时,所述控制装置能够控制所述旋翼组件相对所述机体转动预定角度并运转,以为所述无人机的航行提供动力。
  47. 如权利要求46所述的无人机,其特征在于:所述机身还包括设置于所述机体上的多个机臂,所述旋翼组件为多个;多个所述机臂围绕设置在所述机体周围,每个所述旋翼组件可转动地装设于所述机臂上。
  48. 如权利要求47所述的无人机,其特征在于:所述旋翼组件包括可转动地设置于所述机臂上的装设件,所述控制装置能够控制所述装设件相对所述机臂转动。
  49. 如权利要求48所述的无人机,其特征在于:所述旋翼组件还包括驱动件及螺旋桨,所述驱动件设置于所述装设件上,所述螺旋桨设置于所述驱动件上。
  50. 如权利要求2所述的无人机,其特征在于:所述无人机还包括卫星***,所述卫星***实时地跟踪所述无人机的所在地理位置。
  51. 如权利要求50所述的无人机,其特征在于:所述无人机还包括磁场感应器,所述磁场感应器实时地跟踪所述无人机的行进方向,以与所述卫星***共同确定所述无人机的地理方位信息。
  52. 如权利要求51所述的无人机,其特征在于:所述磁场感应器为指南针。
  53. 如权利要求2所述的无人机,其特征在于:所述控制装置还包括主控制器,所述动力装置、所述起降装置及所述降落面检测组件分别与所述主控制器电性连接。
  54. 一种无人机控制***,其运行于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
    所述无人机控制***包括:
    中央控制模块,用于接收所述无人机的起飞、行进或降落的控制指令;
    环境检测模块,用于在中央控制模块接收到一降落控制指令时,检测所述无人机的降落目的地的物体类型;以及
    降落控制模块,用于在所述环境检测模块检测到所述降落目的地为水面时,控制所述起降装置切换至水上降落模式。
  55. 如权利要求54所述的无人机控制***,其特征在于:所述降落控制模块包括水上降落控制单元,所述水上降落控制单元用于控制所述起降装置切换至水上降落模式。
  56. 如权利要求55所述的无人机控制***,其特征在于:所述降落控制模块还包括陆地降落控制单元,所述陆地降落控制单元用于在所述环境检测模块检测到所述降落目的地为非水面时,控制所述起降装置切换至陆地降落模式。
  57. 如权利要求56所述的无人机控制***,其特征在于:所述环境检测模块还用于检测所述无人机与所述降落目的地之间的距离,并判断若该距离落入一预设的距离范围,则允许该降落控制模块控制所述起降装置切换降落模式。
  58. 如权利要求57所述的无人机控制***,其特征在于:所述环境检测模块判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则所述行进控制模块用于控制所述动力装置运转以降低所述无人机的飞行高度。
  59. 如权利要求58所述的无人机控制***,其特征在于:所述环境检测模块用于实时地检测所述无人机与所述降落目的地之间的距离。
  60. 如权利要求58所述的无人机控制***,其特征在于:所述环境检测模块用于间隔地检测所述无人机与所述降落目的地之间的距离。
  61. 如权利要求56所述的无人机控制***,其特征在于:所述环境检测模块还用于在检测到所述降落目的地为水面后,进一步检测水的深度,并判断若该深度落入一预设的深度范围,则所述降落控制模块不控制所述起降装置动作。
  62. 如权利要求54所述的无人机控制***,其特征在于:所述无人机控制***还包括起飞控制模块,所述起飞控制模块用于在所述中央控制模块接收一起飞控制指令时,控制所述动力装置运转以带动所述无人机提升起飞。
  63. 如权利要求62所述的无人机控制***,其特征在于:所述无人机控制***还包括自检模块,所述无人机还包括自检装置,所述自检模块用于在所述中央控制模块接收所述起飞控制指令后,控制所述自检装置对所述无人机的运行状态进行检查,判断若所述无人机的状态适宜飞行,则允许所述起飞控制模块控制所述动力装置运转,以带动所述无人机提升起飞。
  64. 如权利要求62所述的无人机控制***,其特征在于:所述无人机控制***还包括行进控制模块,所述行进控制模块用于在所述中央控制模块接收一行进控制指令时,控制所述动力装置运转,以使所述无人机能够在空中飞行或在水面航行。
  65. 一种无人机降落控制方法,其应用于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
    所述无人机降落控制方法包括:
    接收一无人机降落控制指令;
    检测所述无人机的降落目的地的物体类型;
    判断若所述降落目的地为水面,则控制所述起降装置切换至水上降落模式;判断若所述降落目的地为非水面,则控制所述起降装置切换至陆地降落模式;
    控制所述动力装置运转,以降低所述无人机的飞行高度直至降落至目的地。
  66. 如权利要求65所述的无人机降落控制方法,其特征在于:判断若所述降落目的地为水面后,检测水的深度,并判断若该深度落入一预设的深度范围,则不控制所述起降装置动作。
  67. 如权利要求65所述的无人机降落控制方法,其特征在于:在检测所述降落目的地的物体类型之前,检测所述无人机与所述降落目的地之间的距离,判断若该距离落入一预设的距离范围,则控制所述起降装置切换降落模式。
  68. 如权利要求67所述的无人机降落控制方法,其特征在于:判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则控制所述动力装置运转以降低所述无人机的飞行高度。
  69. 如权利要求68所述的无人机降落控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
  70. 如权利要求68所述的无人机降落控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
  71. 如权利要求65所述的无人机降落控制方法,其特征在于:接收所述无人机降落控制指令后,初步定位所述无人机的地理方位,以预判所述无人机是否即将降落在水面上。
  72. 一种无人机控制方法,其应用于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
    所述无人机控制方法包括:
    接收一无人机降落控制指令;
    检测所述无人机的降落目的地的物体类型;
    判断若所述降落目的地为水面,则控制所述起降装置切换至水上降落模式;判断若所述降落目的地为非水面,则控制所述起降装置切换至陆地降落模式;
    控制所述动力装置运转,以降低所述无人机的飞行高度直至降落至目的地。
  73. 如权利要求72所述的无人机控制方法,其特征在于:判断若所述降落目的地为水面后,检测水的深度,并判断若该深度落入一预设的深度范围,则不控制所述起降装置动作。
  74. 如权利要求72所述的无人机控制方法,其特征在于:在检测所述降落目的地的物体类型之前,检测所述无人机与所述降落目的地之间的距离,判断若该距离落入一预设的距离范围,则控制所述起降装置切换降落模式。
  75. 如权利要求74所述的无人机控制方法,其特征在于:判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则控制所述动力装置运转以降低所述无人机的飞行高度。
  76. 如权利要求75所述的无人机控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
  77. 如权利要求75所述的无人机控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
  78. 如权利要求72所述的无人机控制方法,其特征在于:接收所述无人机降落控制指令后,初步定位所述无人机的地理方位,以预判所述无人机是否即将降落在水面上。
  79. 一种无人机,其包括机身及连接于所述机身上的动力装置,其特征在于:所述无人机还包括设置于所述机身上的控制装置及起降装置,所述动力装置及所述起降装置分别与所述控制装置电性连接;所述控制装置用于在接收到一降落控制指令时,控制所述动力装置及所述起降装置切换至陆地降落模式或水上降落模式。
  80. 如权利要求79所述的无人机,其特征在于:所述控制装置包括主控制器,所述主控制器在接收到一陆地降落控制指令时,控制所述动力装置及所述起降装置切换至或陆地降落模式。
  81. 如权利要求79所述的无人机,其特征在于:所述控制装置包括主控制器,所述主控制器在接收到一水上降落控制指令时,控制所述起降装置切换至浮力支撑状态的水上降落模式,并控制所述动力装置带动所述无人机整体降落至水面。
  82. 如权利要求81所述的无人机,其特征在于:所述控制装置包括距离传感器,所述距离传感器能够检测所述无人机与所述水面之间的距离,以允许所述主控制器根据该距离控制所述起降装置进入预备降落状态。
  83. 如权利要求82所述的无人机,其特征在于:所述距离传感器为气压计、超声波测距传感器、激光测距传感器、视觉传感器中的至少一种。
  84. 如权利要求82所述的无人机,其特征在于:所述距离传感器在判断所述无人机与所述水面之间的距离在一预设的范围内时,允许所述主控制器根据该距离控制所述起降装置进入预备降落状态。
  85. 如权利要求81所述的无人机,其特征在于:所述控制装置还包括深度检测器,所述深度检测器能够检测水的深度;所述主控制器能够在所述深度检测器判断该深度落入一预设的深度范围内时,控制所述动力装置不带动所述无人机整体降落。
  86. 如权利要求85所述的无人机,其特征在于:所述深度检测器为水深探测仪。
  87. 如权利要求85所述的无人机,其特征在于:所述无人机还包括警报器,所述警报器能够在在所述深度检测器判断该深度落入一预设的深度范围内时,向所述无人机的使用者发出一警示信号表示所述降落目的地不宜降落。
  88. 如权利要求87所述的无人机,其特征在于:所述警报器为警示灯、蜂鸣器或电子信息发送器。
  89. 如权利要求81所述的无人机,其特征在于:所述机身包括机体,起降装置及所述动力装置均设置于所述机体上;所述起降装置包括悬浮器,所述悬浮器能够在所述无人机降落在水面上航行时,提供浮力支撑。
  90. 如权利要求89所述的无人机,其特征在于:所述悬浮器为可充气浮力板。
  91. 如权利要求89所述的无人机,其特征在于:所述悬浮器为固体浮力材料制成的浮力板。
  92. 如权利要求89所述的无人机,其特征在于:所述悬浮器包括底板及设置于所述底板周缘的侧板,所述底板及所述侧板之间成预定夹角。
  93. 如权利要求92所述的无人机,其特征在于:所述侧板可调节地装设于所述底板上,所述底板及所述侧板之间所成的夹角可调节。
  94. 如权利要求92所述的无人机,其特征在于:所述底板可调节地连接于所述机体上,所述底板及所述机体之间所成的夹角可调节。
  95. 如权利要求89所述的无人机,其特征在于:所述悬浮器环绕设置于所述机体外。
  96. 如权利要求95所述的无人机,其特征在于:所述悬浮器将所述机体的全部或部分结构包覆在内。
  97. 如权利要求89所述的无人机,其特征在于:所述起降装置还包括设置于所述机体上的起落架,所述悬浮器设置在所述起落架上。
  98. 如权利要求97所述的无人机,其特征在于:所述起落架包括设置于所述机体上的支撑机构及设置于所述支撑机构上的缓冲机构。
  99. 如权利要求98所述的无人机,其特征在于:所述缓冲机构为弹性材料制成的缓冲件。
  100. 如权利要求98所述的无人机,其特征在于:所述缓冲机构为气压阻尼器、液压阻尼器、弹簧阻尼器中的至少一种。
  101. 如权利要求98所述的无人机,其特征在于:所述支撑机构为可伸缩的支撑结构,所述支撑机构能够驱动该所述缓冲机构相对地远离或靠近所述机体。
  102. 如权利要求101所述的无人机,其特征在于:所述支撑机构为气缸,所述缓冲机构设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述缓冲机构相对远离或靠近所述机体。
  103. 如权利要求101所述的无人机,其特征在于:所述支撑机构为音圈马达,所述缓冲机构设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述缓冲机构相对远离或靠近所述机体。
  104. 如权利要求101所述的无人机,其特征在于:所述支撑机构为线性电机,所述缓冲机构设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述缓冲机构相对远离或靠近所述机体。
  105. 如权利要求101所述的无人机,其特征在于:所述支撑机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述缓冲机构可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述缓冲机构上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述缓冲机构沿所述导轨相对远离或靠近所述机体。
  106. 如权利要求101所述的无人机,其特征在于:所述支撑机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述缓冲机构连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述缓冲机构运动。
  107. 如权利要求101所述的无人机,其特征在于:所述支撑机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述缓冲机构装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述缓冲机构运动。
  108. 如权利要求89所述的无人机,其特征在于:所述动力装置还包括推进器,所述推进器连接于所述机体上,并为所述无人机在水面上航行提供动力。
  109. 如权利要求108所述的无人机,其特征在于:所述推进器为泵喷推进器、螺旋桨推进器、球形电机推进器中的至少一个。
  110. 如权利要求108所述的无人机,其特征在于:所述动力装置还包括连接机构,所述推进器通过所述连接机构连接于所述机体上,所述连接机构为可伸缩的连接结构,所述连接机构能够驱动该所述推进器远离或靠近所述机体。
  111. 如权利要求110所述的无人机,其特征在于:所述连接机构为气缸,所述推进器设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述推进器相对远离或靠近所述机体。
  112. 如权利要求110所述的无人机,其特征在于:所述连接机构为音圈马达,所述推进器设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述推进器相对远离或靠近所述机体。
  113. 如权利要求110所述的无人机,其特征在于:所述连接机构为线性电机,所述推进器设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述推进器相对远离或靠近所述机体。
  114. 如权利要求110所述的无人机,其特征在于:所述连接机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述推进器可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述推进器上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述推进器沿所述导轨相对远离或靠近所述机体。
  115. 如权利要求110所述的无人机,其特征在于:所述连接机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述推进器连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述推进器运动。
  116. 如权利要求110所述的无人机,其特征在于:所述连接机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述推进器装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述推进器运动。
  117. 如权利要求89所述的无人机,其特征在于:所述动力装置还包括旋翼组件,所述旋翼组件可转动地连接于所述机体上;所述无人机在空中作业时,所述控制装置能够控制所述旋翼组件运转以为所述无人机在空中飞行提供动力;所述无人机在水面航行时,所述控制装置能够控制所述旋翼组件相对所述机体转动预定角度并运转,以为所述无人机的航行提供动力。
  118. 如权利要求117所述的无人机,其特征在于:所述机身还包括设置于所述机体上的多个机臂,所述旋翼组件为多个;多个所述机臂围绕设置在所述机体周围,每个所述旋翼组件可转动地装设于所述机臂上。
  119. 如权利要求118所述的无人机,其特征在于:所述旋翼组件包括可转动地设置于所述机臂上的装设件,所述控制装置能够控制所述装设件相对所述机臂转动。
  120. 如权利要求119所述的无人机,其特征在于:所述旋翼组件还包括驱动件及螺旋桨,所述驱动件设置于所述装设件上,所述螺旋桨设置于所述驱动件上。
  121. 如权利要求81所述的无人机,其特征在于:所述控制装置还包括卫星***,所述卫星***实时地跟踪所述无人机的所在地理位置。
  122. 如权利要求121所述的无人机,其特征在于:所述控制装置还包括磁场感应器,所述磁场感应器实时地跟踪所述无人机的行进方向,以与所述卫星***共同确定所述无人机的地理方位信息。
  123. 如权利要求122所述的无人机,其特征在于:所述磁场感应器为指南针。
  124. 一种无人机控制***,其运行于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
    所述无人机控制***包括:
    中央控制模块,用于接收所述无人机的起飞、行进或降落的控制指令;以及
    降落控制模块,用于在所述中央控制模块接收到一降落控制指令时,控制所述起降装置切换至与降落目的地相应的陆地降落模式或水上降落模式。
  125. 如权利要求124所述的无人机控制***,其特征在于:所述降落控制模块包括水上降落控制单元,所述水上降落控制单元用于在所述中央控制模块接收到一水上降落控制指令时,控制所述起降装置切换至水上降落模式。
  126. 如权利要求125所述的无人机控制***,其特征在于:所述降落控制模块还包括陆地降落控制单元,所述陆地降落控制单元用于在所述中央控制模块接收到一陆地降落控制指令时,控制所述起降装置切换至陆地降落模式。
  127. 如权利要求126所述的无人机控制***,其特征在于:所述无人机控制***还包括环境检测模块,所述环境检测模块用于检测所述无人机与所述降落目的地之间的距离,并判断若该距离落入一预设的距离范围,则允许该降落控制模块控制所述起降装置切换降落模式。
  128. 如权利要求127所述的无人机控制***,其特征在于:所述环境检测模块判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则所述行进控制模块用于控制所述动力装置运转以降低所述无人机的飞行高度。
  129. 如权利要求128所述的无人机控制***,其特征在于:所述环境检测模块用于实时地检测所述无人机与所述降落目的地之间的距离。
  130. 如权利要求128所述的无人机控制***,其特征在于:所述环境检测模块用于间隔地检测所述无人机与所述降落目的地之间的距离。
  131. 如权利要求128所述的无人机控制***,其特征在于:所述环境检测模块还用于在所述中央控制模块接收到一水上降落控制指令后,检测水的深度,并判断若该深度落入一预设的深度范围,则所述降落控制模块不控制所述起降装置动作。
  132. 如权利要求124所述的无人机控制***,其特征在于:所述无人机控制***还包括起飞控制模块,所述起飞控制模块用于在所述中央控制模块接收一起飞控制指令时,控制所述动力装置运转以带动所述无人机提升起飞。
  133. 如权利要求132所述的无人机控制***,其特征在于:所述无人机控制***还包括自检模块,所述无人机还包括自检装置,所述自检模块用于在所述中央控制模块接收所述起飞控制指令后,控制所述自检装置对所述无人机的运行状态进行检查,判断若所述无人机的状态适宜飞行,则允许所述起飞控制模块控制所述动力装置运转,以带动所述无人机提升起飞。
  134. 如权利要求132所述的无人机控制***,其特征在于:所述无人机控制***还包括行进控制模块,所述行进控制模块用于在所述中央控制模块接收一行进控制指令时,控制所述动力装置运转,以使所述无人机能够在空中飞行或在水面航行。
  135. 一种无人机降落控制方法,其应用于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
    所述无人机降落控制方法包括:
    接收一无人机降落控制指令;
    根据所述降落控制指令,控制所述起降装置切换至水上降落模式或陆地降落模式;
    控制所述动力装置运转,以降低所述无人机的飞行高度直至降落至目的地。
  136. 如权利要求135所述的无人机降落控制方法,其特征在于:判断若所述控制指令为水上降落控制指令,检测水的深度,并判断若该深度落入一预设的深度范围,则不控制所述起降装置动作。
  137. 如权利要求135所述的无人机降落控制方法,其特征在于:在控制所述起降装置切换降落模式之前,检测所述无人机与所述降落目的地之间的距离,判断若该距离落入一预设的距离范围,则控制所述起降装置切换降落模式。
  138. 如权利要求137所述的无人机降落控制方法,其特征在于:判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则控制所述动力装置运转以降低所述无人机的飞行高度。
  139. 如权利要求138所述的无人机降落控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
  140. 如权利要求138所述的无人机降落控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
  141. 一种无人机控制方法,其应用于一无人机上,所述无人机包括控制装置、动力装置、起降装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力,还用于控制所述起降装置运动以作为所述无人机降落时的支撑;
    所述无人机控制方法包括:
    接收一无人机降落控制指令;
    根据所述降落控制指令,控制所述起降装置切换至水上降落模式或陆地降落模式;
    控制所述动力装置运转,以降低所述无人机的飞行高度直至降落至目的地。
  142. 如权利要求141所述的无人机控制方法,其特征在于:判断若所述控制指令为水上降落控制指令,检测水的深度,并判断若该深度落入一预设的深度范围,则不控制所述起降装置动作。
  143. 如权利要求141所述的无人机控制方法,其特征在于:在控制所述起降装置切换降落模式之前,检测所述无人机与所述降落目的地之间的距离,判断若该距离落入一预设的距离范围,则控制所述起降装置切换降落模式。
  144. 如权利要求143所述的无人机控制方法,其特征在于:判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则控制所述动力装置运转以降低所述无人机的飞行高度。
  145. 如权利要求144所述的无人机控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
  146. 如权利要求144所述的无人机控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
  147. 一种无人机,其包括机身及连接于所述机身上的动力装置,其特征在于:所述无人机还包括设置于所述机身上并与所述动力装置电性连接的控制装置;所述控制装置用于控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
  148. 如权利要求147所述的无人机,其特征在于:所述无人机还包括与所述控制装置电性连接的起降装置,所述控制装置还用于控制所述起降装置切换工作模式,使所述无人机能够降落在陆地上或水面上。
  149. 如权利要求148所述的无人机,其特征在于:所述控制装置包括主控制器,所述主控制器在接收到一陆地降落控制指令时,控制所述动力装置及所述起降装置切换至或陆地降落模式。
  150. 如权利要求148所述的无人机,其特征在于:所述控制装置包括主控制器,所述主控制器在接收到一水上降落控制指令时,控制所述起降装置切换至浮力支撑状态的水上降落模式,并控制所述动力装置带动所述无人机整体降落至水面。
  151. 如权利要求150所述的无人机,其特征在于:所述控制装置包括距离传感器,所述距离传感器能够检测所述无人机与所述水面之间的距离,以允许所述主控制器根据该距离控制所述起降装置进入预备降落状态。
  152. 如权利要求151所述的无人机,其特征在于:所述距离传感器为气压计、超声波测距传感器、激光测距传感器、视觉传感器中的至少一种。
  153. 如权利要求151所述的无人机,其特征在于:所述距离传感器在判断所述无人机与所述水面之间的距离在一预设的范围内时,允许所述主控制器根据该距离控制所述起降装置进入预备降落状态。
  154. 如权利要求150所述的无人机,其特征在于:所述控制装置还包括深度检测器,所述深度检测器能够检测水的深度;所述主控制器能够在所述深度检测器判断该深度落入一预设的深度范围内时,控制所述动力装置不带动所述无人机整体降落。
  155. 如权利要求154所述的无人机,其特征在于:所述深度检测器为水深探测仪。
  156. 如权利要求154所述的无人机,其特征在于:所述无人机还包括警报器,所述警报器能够在在所述深度检测器判断该深度落入一预设的深度范围内时,向所述无人机的使用者发出一警示信号表示所述降落目的地不宜降落。
  157. 如权利要求156所述的无人机,其特征在于:所述警报器为警示灯、蜂鸣器或电子信息发送器。
  158. 如权利要求150所述的无人机,其特征在于:所述机身包括机体,起降装置及所述动力装置均设置于所述机体上;所述起降装置包括悬浮器,所述悬浮器能够在所述无人机降落在水面上航行时,提供浮力支撑。
  159. 如权利要求158所述的无人机,其特征在于:所述悬浮器为可充气浮力板。
  160. 如权利要求158所述的无人机,其特征在于:所述悬浮器为固体浮力材料制成的浮力板。
  161. 如权利要求158所述的无人机,其特征在于:所述悬浮器包括底板及设置于所述底板周缘的侧板,所述底板及所述侧板之间成预定夹角。
  162. 如权利要求161所述的无人机,其特征在于:所述侧板可调节地装设于所述底板上,所述底板及所述侧板之间所成的夹角可调节。
  163. 如权利要求161所述的无人机,其特征在于:所述底板可调节地连接于所述机体上,所述底板及所述机体之间所成的夹角可调节。
  164. 如权利要求158所述的无人机,其特征在于:所述悬浮器环绕设置于所述机体外。
  165. 如权利要求164所述的无人机,其特征在于:所述悬浮器将所述机体的全部或部分结构包覆在内。
  166. 如权利要求158所述的无人机,其特征在于:所述起降装置还包括设置于所述机体上的起落架,所述悬浮器设置在所述起落架上。
  167. 如权利要求166所述的无人机,其特征在于:所述起落架包括设置于所述机体上的支撑机构及设置于所述支撑机构上的缓冲机构。
  168. 如权利要求167所述的无人机,其特征在于:所述缓冲机构为弹性材料制成的缓冲件。
  169. 如权利要求167所述的无人机,其特征在于:所述缓冲机构为气压阻尼器、液压阻尼器、弹簧阻尼器中的至少一种。
  170. 如权利要求167所述的无人机,其特征在于:所述支撑机构为可伸缩的支撑结构,所述支撑机构能够驱动该所述缓冲机构相对地远离或靠近所述机体。
  171. 如权利要求170所述的无人机,其特征在于:所述支撑机构为气缸,所述缓冲机构设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述缓冲机构相对远离或靠近所述机体。
  172. 如权利要求170所述的无人机,其特征在于:所述支撑机构为音圈马达,所述缓冲机构设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述缓冲机构相对远离或靠近所述机体。
  173. 如权利要求170所述的无人机,其特征在于:所述支撑机构为线性电机,所述缓冲机构设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述缓冲机构相对远离或靠近所述机体。
  174. 如权利要求170所述的无人机,其特征在于:所述支撑机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述缓冲机构可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述缓冲机构上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述缓冲机构沿所述导轨相对远离或靠近所述机体。
  175. 如权利要求170所述的无人机,其特征在于:所述支撑机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述缓冲机构连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述缓冲机构运动。
  176. 如权利要求170所述的无人机,其特征在于:所述支撑机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述缓冲机构装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述缓冲机构运动。
  177. 如权利要求158所述的无人机,其特征在于:所述动力装置还包括推进器,所述推进器连接于所述机体上,并为所述无人机在水面上航行提供动力。
  178. 如权利要求177所述的无人机,其特征在于:所述推进器为泵喷推进器、螺旋桨推进器、球形电机推进器中的至少一个。
  179. 如权利要求177所述的无人机,其特征在于:所述动力装置还包括连接机构,所述推进器通过所述连接机构连接于所述机体上,所述连接机构为可伸缩的连接结构,所述连接机构能够驱动该所述推进器远离或靠近所述机体。
  180. 如权利要求179所述的无人机,其特征在于:所述连接机构为气缸,所述推进器设置于所述气缸的驱动杆上,所述气缸通过所述驱动杆驱动所述推进器相对远离或靠近所述机体。
  181. 如权利要求179所述的无人机,其特征在于:所述连接机构为音圈马达,所述推进器设置于所述音圈马达的驱动端上,所述音圈马达通过所述驱动端驱动所述推进器相对远离或靠近所述机体。
  182. 如权利要求179所述的无人机,其特征在于:所述连接机构为线性电机,所述推进器设置于所述线性电机的动子上,所述线性电机通过所述动子驱动所述推进器相对远离或靠近所述机体。
  183. 如权利要求179所述的无人机,其特征在于:所述连接机构包括导轨、电磁铁以及永磁体,所述导轨连接于所述机体上,所述推进器可滑动地设置于所述导轨上;所述电磁铁及所述永磁体中的一个设置于所述推进器上,所述电磁铁及所述永磁体中的另一个设置于所述机体上,通过控制所述电磁铁上电流的方向,使所述电磁铁吸引或排斥所述永磁体,从而使所述推进器沿所述导轨相对远离或靠近所述机体。
  184. 如权利要求179所述的无人机,其特征在于:所述连接机构包括电动机、丝杆及螺母,所述电动机连接于所述机体上,所述丝杆与所述电动机的驱动轴共轴固定连接,所述螺母套设于所述丝杆上并与所述推进器连接;其中所述电动机驱动所述丝杆转动,所述丝杆与所述螺母相螺合而驱使所述螺母相对所述丝杆移动,所述螺母带动所述推进器运动。
  185. 如权利要求179所述的无人机,其特征在于:所述连接机构包括电动机、齿轮及齿条,所述电动机连接于所述机体上,所述齿轮连接于所述电动机的驱动轴上,所述齿条与所述齿轮相啮合,所述推进器装设于所述齿条上;其中,所述电动机驱动所述齿轮转动,所述齿轮驱使所述齿条平移,所述齿条带动所述推进器运动。
  186. 如权利要求158所述的无人机,其特征在于:所述动力装置还包括旋翼组件,所述旋翼组件可转动地连接于所述机体上;所述无人机在空中作业时,所述控制装置能够控制所述旋翼组件运转以为所述无人机在空中飞行提供动力;所述无人机在水面航行时,所述控制装置能够控制所述旋翼组件相对所述机体转动预定角度并运转,以为所述无人机的航行提供动力。
  187. 如权利要求186所述的无人机,其特征在于:所述机身还包括设置于所述机体上的多个机臂,所述旋翼组件为多个;多个所述机臂围绕设置在所述机体周围,每个所述旋翼组件可转动地装设于所述机臂上。
  188. 如权利要求187所述的无人机,其特征在于:所述旋翼组件包括可转动地设置于所述机臂上的装设件,所述控制装置能够控制所述装设件相对所述机臂转动。
  189. 如权利要求188所述的无人机,其特征在于:所述旋翼组件还包括驱动件及螺旋桨,所述驱动件设置于所述装设件上,所述螺旋桨设置于所述驱动件上。
  190. 如权利要求147所述的无人机,其特征在于:所述控制装置还包括卫星***,所述卫星***实时地跟踪所述无人机的所在地理位置。
  191. 如权利要求190所述的无人机,其特征在于:所述控制装置还包括磁场感应器,所述磁场感应器实时地跟踪所述无人机的行进方向,以与所述卫星***共同确定所述无人机的地理方位信息。
  192. 如权利要求191所述的无人机,其特征在于:所述磁场感应器为指南针。
  193. 一种无人机控制***,其运行于一无人机上,所述无人机包括控制装置及动力装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力;
    所述无人机控制***包括:
    中央控制模块,用于接收所述无人机的起飞、行进或降落的控制指令,并允许所述控制装置控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
  194. 如权利要求193所述的无人机控制***,其特征在于:所述无人机控制***还包括水上降落控制单元,所述水上降落控制单元用于控制所述起降装置切换至水上降落模式。
  195. 如权利要求194所述的无人机控制***,其特征在于:所述无人机控制***还包括陆地降落控制单元,所述陆地降落控制单元用于控制所述起降装置切换至陆地降落模式。
  196. 如权利要求195所述的无人机控制***,其特征在于:所述无人机控制***还包括环境检测模块,所述环境检测模块用于检测所述无人机与所述无人机的降落目的地之间的距离,并判断若该距离落入一预设的距离范围,则允许该降落控制模块控制所述起降装置切换降落模式。
  197. 如权利要求196所述的无人机控制***,其特征在于:所述环境检测模块判断若所述无人机与所述降落目的地之间的距离未落入所述预设的距离范围,则所述行进控制模块用于控制所述动力装置运转以降低所述无人机的飞行高度。
  198. 如权利要求197所述的无人机控制***,其特征在于:所述环境检测模块用于实时地检测所述无人机与所述降落目的地之间的距离。
  199. 如权利要求197所述的无人机控制***,其特征在于:所述环境检测模块用于间隔地检测所述无人机与所述降落目的地之间的距离。
  200. 如权利要求194所述的无人机控制***,其特征在于:所述无人机控制***还包括起飞控制模块,所述起飞控制模块用于在所述中央控制模块接收一起飞控制指令时,控制所述动力装置运转以带动所述无人机提升起飞。
  201. 如权利要求200所述的无人机控制***,其特征在于:所述无人机控制***还包括自检模块,所述无人机还包括自检装置,所述自检模块用于在所述中央控制模块接收所述起飞控制指令后,控制所述自检装置对所述无人机的运行状态进行检查,判断若所述无人机的状态适宜飞行,则允许所述起飞控制模块控制所述动力装置运转,以带动所述无人机提升起飞。
  202. 如权利要求200所述的无人机控制***,其特征在于:所述无人机控制***还包括行进控制模块,所述行进控制模块用于在所述中央控制模块接收一行进控制指令时,控制所述动力装置运转,以使所述无人机能够在空中飞行或在水面航行。
  203. 一种无人机控制方法,其应用于一无人机上,所述无人机包括控制装置及动力装置,所述控制装置用于控制所述动力装置运转以为所述无人机行进提供动力;
    所述无人机控制方法包括:
    接收一无人机控制指令;
    根据所述控制指令,控制所述动力装置切换工作模式,使所述无人机能够在空中飞行或在水面航行。
  204. 如权利要求203所述的无人机控制方法,其特征在于:判断若所述控制指令为降落控制指令后,检测所述无人机与无人机的降落目的地之间的距离,并控制所述动力装置运转以降低所述无人机飞行高度直至降落。
  205. 如权利要求204所述的无人机控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,间隔地进行检测。
  206. 如权利要求204所述的无人机控制方法,其特征在于:检测所述无人机与所述降落目的地之间的距离时,实时地进行检测。
PCT/CN2015/083171 2015-07-02 2015-07-02 无人机、其控制***及方法,以及无人机降落控制方法 WO2017000304A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201710560178.5A CN107554763A (zh) 2015-07-02 2015-07-02 无人机、其控制***及方法,以及无人机降落控制方法
EP21170465.5A EP3875366A1 (en) 2015-07-02 2015-07-02 Unmanned aerial vehicle, control system and method therefor, and landing control method for unmanned aerial vehicle
CN201710560184.0A CN107600398B (zh) 2015-07-02 2015-07-02 无人机、无人机控制***及无人机控制方法
JP2016558200A JP6234610B2 (ja) 2015-07-02 2015-07-02 無人機、その制御システムおよび方法、ならびに無人機降着制御方法
CN201580002808.6A CN106103274B (zh) 2015-07-02 2015-07-02 无人机、其控制***及方法,以及无人机降落控制方法
EP15896835.4A EP3318487B1 (en) 2015-07-02 2015-07-02 Unmanned aerial vehicle, control system and method therefor, and landing control method for unmanned aerial vehicle
PCT/CN2015/083171 WO2017000304A1 (zh) 2015-07-02 2015-07-02 无人机、其控制***及方法,以及无人机降落控制方法
CN201710750421.XA CN107697286B (zh) 2015-07-02 2015-07-02 无人机、其控制***及方法,以及无人机降落控制方法
US15/860,113 US10669024B2 (en) 2015-07-02 2018-01-02 Unmanned aerial vehicle, control system and method thereof, and unmanned aerial vehicle landing control method
US16/884,500 US20200317338A1 (en) 2015-07-02 2020-05-27 Unmanned aerial vehicle, control system and method thereof, and unmanned aerial vehicle landing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083171 WO2017000304A1 (zh) 2015-07-02 2015-07-02 无人机、其控制***及方法,以及无人机降落控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/860,113 Continuation US10669024B2 (en) 2015-07-02 2018-01-02 Unmanned aerial vehicle, control system and method thereof, and unmanned aerial vehicle landing control method

Publications (1)

Publication Number Publication Date
WO2017000304A1 true WO2017000304A1 (zh) 2017-01-05

Family

ID=57216257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083171 WO2017000304A1 (zh) 2015-07-02 2015-07-02 无人机、其控制***及方法,以及无人机降落控制方法

Country Status (5)

Country Link
US (2) US10669024B2 (zh)
EP (2) EP3318487B1 (zh)
JP (1) JP6234610B2 (zh)
CN (4) CN107554763A (zh)
WO (1) WO2017000304A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168564A1 (ja) * 2017-03-12 2018-09-20 株式会社ナイルワークス 圃場の水深測定用ドローン
US20190193852A1 (en) * 2017-12-21 2019-06-27 Autel Robotics Co., Ltd. Water surface detection method and apparatus, unmanned aerial vehicle landing method and apparatus and unmanned aerial vehicle
US20200348698A1 (en) * 2018-02-28 2020-11-05 Nileworks Inc. Agricultural drone having improved safety
CN113173249A (zh) * 2021-06-15 2021-07-27 南通大学 清除电力高压架空输电线路异物的无人机激光炮及其方法
CN113879058A (zh) * 2021-11-23 2022-01-04 四川农业大学 一种陆空通讯搜救机器人
TWI759476B (zh) * 2017-05-03 2022-04-01 美商高通公司 在與無人機耦合的使用者設備和陸地無線通訊用戶網路的元件之間交換包括飛行中狀態指示符的訊息
CN114684341A (zh) * 2022-04-28 2022-07-01 中国船舶科学研究中心 一种水下观察装置及操作方法

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874397A (zh) * 2014-11-28 2016-08-17 深圳市大疆创新科技有限公司 无人机及其水样检测方法
CA3004294A1 (en) * 2015-11-05 2017-05-11 Walmart Apollo, Llc Apparatus and method for stabilizing an unmanned aerial system
US11292598B2 (en) * 2015-12-08 2022-04-05 Mark Bradford FOLEY Handheld aircraft with adjustable components
JP2017132378A (ja) * 2016-01-28 2017-08-03 株式会社Soken 飛行装置
US11355020B2 (en) * 2016-06-10 2022-06-07 Metal Raptor, Llc Drone air traffic control over wireless networks for package pickup and delivery
CN106647785B (zh) * 2016-11-16 2020-07-14 深圳市元征科技股份有限公司 无人机停机坪控制方法及装置
CN106773816A (zh) * 2016-12-01 2017-05-31 李英德 车载无人机控制方法及装置
CN106586012A (zh) * 2016-12-12 2017-04-26 成都育芽科技有限公司 一种自适应降落场地环境的无人机
CN106647790A (zh) * 2016-12-27 2017-05-10 重庆大学 面向复杂环境的四旋翼无人机飞行器***及飞行方法
CN107054629A (zh) * 2017-01-19 2017-08-18 广东工业大学 一种无人机及其起落架
CN107000832B (zh) 2017-01-19 2019-03-26 深圳市大疆创新科技有限公司 无人机起落架控制方法、装置、无人机及其***
WO2018157287A1 (zh) * 2017-02-28 2018-09-07 深圳市大疆创新科技有限公司 无人机降落控制方法、装置及无人机
CN106864738A (zh) * 2017-03-17 2017-06-20 上海与德科技有限公司 一种无人机起落架的控制方法和装置
CN106927042B (zh) * 2017-03-29 2019-05-24 天津萤火虫航空科技有限公司 一种可切换形态的无人机
CN107310725B (zh) * 2017-06-26 2020-10-23 赵成东 一种具有清除近海面悬浮垃圾功能的无人机
CN107264783A (zh) * 2017-07-06 2017-10-20 上海复亚通信科技有限公司 无人机坠落保护装置
CN109383797A (zh) * 2017-08-04 2019-02-26 上海裕芮信息技术有限公司 一种农林业专用智能无人机
CN107600443B (zh) * 2017-08-11 2020-10-16 无锡科技职业学院 一种用于摄制外语教学资源的航拍***
CN107409607A (zh) * 2017-08-17 2017-12-01 郑州大学 一种无视地形的除草装置
CN107521661A (zh) * 2017-09-03 2017-12-29 佛山市龙远科技有限公司 一种机翼可旋转的多动力垂直起降水陆两栖无人机
CN107696811A (zh) * 2017-09-03 2018-02-16 佛山市龙远科技有限公司 一种多动力的垂直起降水陆两栖无人机
CN107499504A (zh) * 2017-09-03 2017-12-22 佛山市龙远科技有限公司 一种机翼可旋转的垂直起降水陆两栖无人机
CN107539470A (zh) * 2017-09-03 2018-01-05 佛山市龙远科技有限公司 一种垂直起降的四桨水陆两栖无人机
CN107554783A (zh) * 2017-09-03 2018-01-09 佛山市龙远科技有限公司 一种垂直起降的水陆两栖无人机
CN107685857A (zh) * 2017-09-03 2018-02-13 佛山市海茂聚航科技有限公司 一种垂直升降的四旋水陆无人机
CN107554778A (zh) * 2017-09-03 2018-01-09 佛山市海茂聚航科技有限公司 一种垂直起降的水陆无人机
CN107458601A (zh) * 2017-09-03 2017-12-12 佛山市龙远科技有限公司 一种带辅助动力的垂直起降水陆两栖无人机
CN108016610B (zh) * 2017-12-13 2020-12-29 浙江黎盛新材料科技有限公司 一种具有缓冲结构的飞行器及工作方法
CN108082514A (zh) * 2017-12-23 2018-05-29 中山市得高行知识产权中心(有限合伙) 一种基于多摄像头的无人机航拍云台
CN108128108A (zh) * 2018-01-18 2018-06-08 浙江大学 一种基于仿生学原理的三栖运动四旋翼无人机
JP6385604B1 (ja) * 2018-01-22 2018-09-05 株式会社松屋アールアンドディ エアバッグ付きドローンの制御方法及びエアバッグ付きドローン
WO2019144287A1 (en) * 2018-01-23 2019-08-01 SZ DJI Technology Co., Ltd. Systems and methods for automatic water surface and sky detection
CN111111032B (zh) * 2018-02-05 2021-04-30 楼林华 一种利用齿条传动的建筑直跳式逃生机构
CN108557067A (zh) * 2018-02-05 2018-09-21 成都市煜沣科技有限公司 一种无起落架式小型无人机
US11142316B2 (en) 2018-02-08 2021-10-12 Vita Inclinata Technologies, Inc. Control of drone-load system method, system, and apparatus
US11945697B2 (en) 2018-02-08 2024-04-02 Vita Inclinata Ip Holdings Llc Multiple remote control for suspended load control equipment apparatus, system, and method
US11209836B1 (en) 2018-02-08 2021-12-28 Vita Inclinata Technologies, Inc. Long line loiter apparatus, system, and method
CN108341070B (zh) * 2018-02-09 2021-04-20 重庆三峡学院 一种桥梁检测无人机起落架
US11279496B2 (en) * 2018-02-21 2022-03-22 Sikorsky Aircraft Corporation System for reliable landing gear contact with identification of the surface
CN108557059A (zh) * 2018-03-12 2018-09-21 芜湖翼讯飞行智能装备有限公司 一种便于起降的无人机
US11442190B2 (en) * 2018-04-16 2022-09-13 Pgs Geophysical As Autonomous marine survey nodes
US11619757B2 (en) 2018-04-16 2023-04-04 Pgs Geophysical As Modular system for deployment and retrieval of marine survey nodes
CN108725812A (zh) * 2018-05-10 2018-11-02 送飞实业集团有限公司 一种声波对正引导降落***
KR102060731B1 (ko) * 2018-05-14 2019-12-31 삼성중공업(주) 수상구조물 검사 장치 및 수상구조물 검사 방법
CN108415459A (zh) * 2018-05-23 2018-08-17 宜昌快马仕网络科技有限公司 一种无人机绕目标点环绕飞行的控制方法及装置
CN108768058B (zh) * 2018-05-28 2019-08-13 华中科技大学 一种适用于球形电机的转子抱闸机构及球形电机
JP6777355B2 (ja) * 2018-06-04 2020-10-28 株式会社ナイルワークス ドローンシステム、ドローンシステムの制御方法、およびドローンシステムの制御プログラム
CN108791833B (zh) * 2018-06-19 2020-05-19 王菲 一种无人机水陆两用起落架
JP6777923B2 (ja) * 2018-06-28 2020-10-28 株式会社ナイルワークス ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
CN108891587A (zh) * 2018-07-23 2018-11-27 河南机电职业学院 一种具有气囊的无人机
WO2020036388A1 (ko) * 2018-08-14 2020-02-20 네이버랩스 주식회사 댐핑장치, 이미지 센싱용 고정장치 및 이미지 센싱장치
KR102142586B1 (ko) * 2018-08-14 2020-08-07 네이버랩스 주식회사 댐핑장치 및 이를 포함한 이미지 센싱용 고정장치
CN109144079B (zh) * 2018-08-22 2021-04-23 中国民航大学 一种基于综合化航电的水陆两栖飞机降落构型控制***
CN109110111B (zh) * 2018-09-07 2020-07-24 温州明览科技有限公司 一种水陆两用无人机结构
CN109110110B (zh) * 2018-09-07 2021-10-12 深圳市鑫疆基业科技有限责任公司 一种智能无人机水面起降起落架结构
CN109375232B (zh) * 2018-10-17 2021-01-26 维沃移动通信(杭州)有限公司 一种距离测量方法及装置
CN109278994B (zh) * 2018-10-18 2024-05-03 南京寻翼文化传媒有限公司 一种带有表演用编队led频闪灯的无人机
US20210237868A1 (en) * 2018-11-09 2021-08-05 Rakuten, Inc. Unmanned aerial vehicle
CN113056418B (zh) 2018-11-16 2022-06-07 渥美不动产有限公司 飞行体和飞行体控制***
CN109520478B (zh) * 2018-12-05 2020-10-23 深圳市道通智能航空技术有限公司 一种水面检测方法、装置和无人机
CN111324139A (zh) * 2018-12-13 2020-06-23 顺丰科技有限公司 无人机降落方法、装置、设备及存储介质
CN109774958B (zh) * 2018-12-20 2021-01-05 浙江省第二测绘院 一种勘测无人机
JP6712682B1 (ja) * 2018-12-25 2020-06-24 楽天株式会社 配置場所の決定方法、輸送システム、及び情報処理装置
CN109839292A (zh) * 2019-02-18 2019-06-04 成都理工大学 用于地质环境调查的取样无人机及内置采集袋的无人机
US11746951B2 (en) 2019-02-26 2023-09-05 Vita Inclinata Ip Holdings Llc Cable deployment apparatus, system, and methods for suspended load control equipment
US11618566B1 (en) 2019-04-12 2023-04-04 Vita Inclinata Technologies, Inc. State information and telemetry for suspended load control equipment apparatus, system, and method
US11834305B1 (en) 2019-04-12 2023-12-05 Vita Inclinata Ip Holdings Llc Apparatus, system, and method to control torque or lateral thrust applied to a load suspended on a suspension cable
CN112154101A (zh) * 2019-04-26 2020-12-29 乐天株式会社 无人飞行器、飞行器控制***及搬运方法
CN110121064B (zh) * 2019-05-15 2021-07-30 深圳市道通智能航空技术股份有限公司 一种图像色彩调节方法、装置及无人机
WO2020237566A1 (zh) * 2019-05-30 2020-12-03 深圳市大疆创新科技有限公司 无人飞行器及其控制终端、姿态调整方法、存储介质
WO2021003692A1 (zh) * 2019-07-10 2021-01-14 深圳市大疆创新科技有限公司 算法配置方法、设备、***及可移动平台
CN110450953B (zh) * 2019-08-13 2020-12-04 江苏锦程航空科技有限公司 一种用于海上安防巡逻的具有散热功能的无人飞行装置
JPWO2021039100A1 (zh) * 2019-08-27 2021-03-04
US11427318B2 (en) * 2019-08-27 2022-08-30 Joseph Williams Delivery drone apparatus
CN110588972B (zh) * 2019-09-06 2022-09-09 西安电子科技大学 一种基于共轴式水空双动力无人机的水空转换装置及方法
CN110515317B (zh) * 2019-09-06 2021-02-05 西安电子科技大学 一种共轴式水空双动力无人机控制***
CN110687914A (zh) * 2019-09-09 2020-01-14 苏州臻迪智能科技有限公司 无人机控制方法、装置、无人机及可读存储介质
CN110648258A (zh) * 2019-09-25 2020-01-03 苏州安软信息科技有限公司 一种综合执法全流程一站式管理平台
JP7280799B2 (ja) * 2019-10-10 2023-05-24 株式会社フジタ 水中測定装置
USD1010004S1 (en) 2019-11-04 2024-01-02 Amax Group Usa, Llc Flying toy
JP7251862B2 (ja) * 2020-01-07 2023-04-04 株式会社A.L.I.Technologies 飛行体およびシステム
WO2021140554A1 (ja) * 2020-01-07 2021-07-15 株式会社A.L.I. Technologies 飛行体およびシステム
CN111169625A (zh) * 2020-01-15 2020-05-19 郑州航空工业管理学院 一种无人机用移动轮
CN111268105A (zh) * 2020-02-04 2020-06-12 青海交通职业技术学院 无人机降落缓冲装置
CN111340973B (zh) * 2020-03-06 2022-11-15 知轮(杭州)科技有限公司 一种基于车辆轮胎智慧***的辅助巡检***及方法
JP7299553B2 (ja) * 2020-03-23 2023-06-28 日本電信電話株式会社 無人航空機
JP7280544B2 (ja) * 2020-03-25 2023-05-24 日本電信電話株式会社 無人航空機
CN111319760B (zh) * 2020-03-26 2024-05-28 合肥工业大学 一种水空两用无人机
CN111829824B (zh) * 2020-06-05 2024-02-13 重庆普绿斯环保科技发展有限公司 一种自动化取样设备及水质监测方法
CN111766896B (zh) 2020-07-10 2023-12-29 珠海紫燕无人飞行器有限公司 一种基于动基座的无人机控制方法及其***
CN112093034A (zh) * 2020-09-22 2020-12-18 青海奥珞威信息科技有限公司 一种旋翼磁动力无人机起落架收放***
CN112249307A (zh) * 2020-10-14 2021-01-22 路志芹 一种水利用无人机扩展起落装置
CN112631283A (zh) * 2020-12-08 2021-04-09 江苏科技大学 水空两栖无人航行器的控制***及控制方法
CN112550700A (zh) * 2020-12-24 2021-03-26 重庆工程职业技术学院 一种水上无人机海上防翻转***
CN112810807A (zh) * 2021-02-10 2021-05-18 北京京东乾石科技有限公司 一种无人机及无人机的控制方法
CN113093707B (zh) * 2021-03-25 2022-03-25 四川大学锦城学院 一种基于故障检测的无人机电力控制***
CN112918694A (zh) * 2021-04-02 2021-06-08 北京博观寰宇科技有限公司 一种专用于无人机落水自救保护的设备
CN113086194B (zh) * 2021-04-17 2024-02-20 合肥市方升信息科技有限公司 基于回波机载激光扫描数据智慧城市数据集合***及方法
CN113173237B (zh) * 2021-04-19 2024-03-08 江苏省海洋资源开发研究院(连云港) 一种模态可切换跨介质环境探测平台及其探测方法
CN113238574B (zh) * 2021-05-08 2022-12-13 一飞(海南)科技有限公司 集群表演无人机落地检测控制方法、***、终端及应用
USD1001009S1 (en) 2021-06-09 2023-10-10 Amax Group Usa, Llc Quadcopter
USD1003214S1 (en) 2021-06-09 2023-10-31 Amax Group Usa, Llc Quadcopter
US11295131B1 (en) 2021-06-15 2022-04-05 Knoetik Solutions, Inc. Smoke and fire recognition, fire forecasting, and monitoring
CN113485423B (zh) * 2021-07-12 2022-12-13 一飞(海南)科技有限公司 机群表演起飞时间更新方法、***、介质、终端、产品及应用
CN113306733A (zh) * 2021-07-29 2021-08-27 深圳市青之鸟科技有限公司 一种具有保护结构的无人机
CN113460305B (zh) * 2021-08-24 2023-05-12 中国矿业大学(北京) 一种架空电力电网消防六旋翼飞行器
CN113716026B (zh) * 2021-09-02 2023-03-24 重庆水利电力职业技术学院 一种带有红外检测功能的水上综合检测无人机
CN113970933B (zh) * 2021-10-22 2024-04-30 中航通飞华南飞机工业有限公司 一种水上飞机水面降落辅助***及控制方法
CN113821058B (zh) * 2021-11-22 2022-05-27 西安羚控电子科技有限公司 一种固定翼无人机的迫降方法及***
CN114212247B (zh) * 2021-12-23 2023-10-20 航宇救生装备有限公司 一种适用于滑撬式起落架的应急浮筒
CN114476035B (zh) * 2022-02-08 2023-05-02 中交二公局第三工程有限公司 一种无人机用的起落架
CN114750945A (zh) * 2022-03-24 2022-07-15 辽宁警察学院 一种可变形水空两用的无人机及其控制方法
CN114571931B (zh) * 2022-04-24 2022-08-26 浙江大学 一种水陆两用无人机
WO2023211499A1 (en) 2022-04-29 2023-11-02 Vita Inclinata Ip Holdings Llc Machine learning real property object detection and analysis apparatus, system, and method
CN114839196B (zh) * 2022-07-01 2022-10-14 中国标准化研究院 一种基于计算机视觉的无接触式质量测量研究方法的***
CN115284804B (zh) * 2022-08-25 2023-04-07 哈尔滨工业大学 一种结合倾转四旋翼与双轮足的陆空两栖机器人
US11992444B1 (en) 2023-12-04 2024-05-28 Vita Inclinata Ip Holdings Llc Apparatus, system, and method to control torque or lateral thrust applied to a load suspended on a suspension cable
CN117446224B (zh) * 2023-12-20 2024-02-23 中国空气动力研究与发展中心设备设计与测试技术研究所 一种水上无人机及水下探测器投放和回收方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815397A (zh) * 2012-08-22 2012-12-12 华北电力大学 可水陆起降和自主充电的微型多旋翼飞行器
CN102933460A (zh) * 2010-03-19 2013-02-13 空中客车作业有限公司 用于在水上降落期间控制飞机部件的方法和***
CN104199462A (zh) * 2014-09-02 2014-12-10 中国科学院自动化研究所 一种基于海浪传感的水上无人机自主起降控制***
FI124723B (en) * 2014-02-11 2014-12-31 Suokas Avionics Oy An airplane security procedure and a method to identify the type of landing platform
CN204279934U (zh) * 2014-10-27 2015-04-22 深圳九星智能航空科技有限公司 用于无人飞行器的水陆两用着陆装置
CN204368424U (zh) * 2015-01-04 2015-06-03 金陵科技学院 一种可在水面降落的旋翼式无人机

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2220990Y (zh) * 1995-02-13 1996-02-28 张小林 游乐水上飞机
US5692706A (en) * 1995-10-02 1997-12-02 Arney; Donald B. Inflatable float step-reinforcement system
JP3963293B2 (ja) * 1998-05-27 2007-08-22 ヤマハ発動機株式会社 無人ヘリコプター
US6464459B2 (en) * 1999-05-21 2002-10-15 Avionic Instruments, Inc. Lifting platform with energy recovery
CN2411207Y (zh) * 1999-11-27 2000-12-20 李昌满 一种海陆空多功能汽车
AUPQ957300A0 (en) * 2000-08-22 2000-09-14 Tigerfish Aviation Pty Ltd Twin float aircraft improvements
RU2179135C1 (ru) * 2000-10-20 2002-02-10 Кормилицин Юрий Николаевич Многоцелевой самолет-амфибия
US6927702B2 (en) * 2001-06-11 2005-08-09 Robert D. Wiplinger Landing gear warning system
RU2281228C1 (ru) * 2004-12-27 2006-08-10 Тимофеев Михаил Гаврилович Самолет-амфибия "кашалот"
US7150662B1 (en) 2005-01-05 2006-12-19 Brunswick Corporation Watercraft docking system and propulsion assembly
CN200988577Y (zh) * 2005-11-07 2007-12-12 邵厚洪 双机体三栖飞行器
DE06851913T1 (de) * 2005-11-09 2008-12-24 Bell Helicopter Textron, Inc., Fort Worth Unfalldämpfungssystem für flugzeuge
CN1876493A (zh) * 2006-06-01 2006-12-13 肖忠渊 用碳纤维复合材料制造的可水、陆起落直升飞机
US7693617B2 (en) * 2006-09-19 2010-04-06 The Boeing Company Aircraft precision approach control
JP5093451B2 (ja) * 2007-02-21 2012-12-12 独立行政法人 宇宙航空研究開発機構 航空機用水面及び地面観測装置
CN101670889A (zh) * 2008-09-14 2010-03-17 曾鸿凌 水陆空人力直升飞行器
US8186767B2 (en) * 2008-09-18 2012-05-29 Hamilton Thomas S Wheel rim assembly with integral air cooled lubricant cavity and hub
FR2937306B1 (fr) * 2008-10-20 2011-08-12 Breizhtech Drone gyropendulaire amphibie a atterrissage et decollage vertical
US20110042508A1 (en) 2009-08-24 2011-02-24 Bevirt Joeben Controlled take-off and flight system using thrust differentials
US8272596B2 (en) * 2010-04-08 2012-09-25 Leader Industries, Inc. Amphibious aircraft
FR2959208B1 (fr) * 2010-04-22 2012-05-25 Eurl Jmdtheque Engin gyropendulaire a propulsion compensatoire et collimation de gradient fluidique multi-milieux multimodal a decollage et atterrissage vertical
AU2012236872B2 (en) 2011-03-31 2017-02-02 Lta Corporation Airship including aerodynamic, floatation, and deployable structures
CN102198861A (zh) * 2011-06-24 2011-09-28 哈尔滨开恩科技开发有限公司 太阳能薄膜电池水上飞机
CN102424110A (zh) * 2011-11-23 2012-04-25 向天立 可变翼微型水陆飞行器
CN202783781U (zh) * 2012-06-25 2013-03-13 刘畅 带充气垫和滑翔伞的水陆起降两栖飞机
US9008872B2 (en) 2012-10-04 2015-04-14 The Boeing Company Configuring landing supports for landing on uneven terrain
FR2997923B1 (fr) * 2012-11-14 2014-11-28 Eurocopter France Procede de declenchement automatique d'un systeme de flottabilite de secours pour helicoptere hybride
US20160376000A1 (en) 2014-07-10 2016-12-29 Christoph Kohstall Submersible unmanned aerial vehicles and associated systems and methods
US9754496B2 (en) * 2014-09-30 2017-09-05 Elwha Llc System and method for management of airspace for unmanned aircraft
KR101661942B1 (ko) 2014-12-15 2016-10-05 한국항공우주연구원 해상 인명구조용 무인비행체
CN104626904B (zh) * 2015-02-24 2017-03-01 丁乃祥 多功能飞碟
CN104724284B (zh) * 2015-03-25 2016-10-05 朱威 一种多旋翼潜水无人飞行器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933460A (zh) * 2010-03-19 2013-02-13 空中客车作业有限公司 用于在水上降落期间控制飞机部件的方法和***
CN102815397A (zh) * 2012-08-22 2012-12-12 华北电力大学 可水陆起降和自主充电的微型多旋翼飞行器
FI124723B (en) * 2014-02-11 2014-12-31 Suokas Avionics Oy An airplane security procedure and a method to identify the type of landing platform
CN104199462A (zh) * 2014-09-02 2014-12-10 中国科学院自动化研究所 一种基于海浪传感的水上无人机自主起降控制***
CN204279934U (zh) * 2014-10-27 2015-04-22 深圳九星智能航空科技有限公司 用于无人飞行器的水陆两用着陆装置
CN204368424U (zh) * 2015-01-04 2015-06-03 金陵科技学院 一种可在水面降落的旋翼式无人机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318487A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168564A1 (ja) * 2017-03-12 2018-09-20 株式会社ナイルワークス 圃場の水深測定用ドローン
JPWO2018168564A1 (ja) * 2017-03-12 2020-01-09 株式会社ナイルワークス 圃場の水深測定用ドローン
TWI759476B (zh) * 2017-05-03 2022-04-01 美商高通公司 在與無人機耦合的使用者設備和陸地無線通訊用戶網路的元件之間交換包括飛行中狀態指示符的訊息
US20190193852A1 (en) * 2017-12-21 2019-06-27 Autel Robotics Co., Ltd. Water surface detection method and apparatus, unmanned aerial vehicle landing method and apparatus and unmanned aerial vehicle
WO2019119780A1 (en) 2017-12-21 2019-06-27 Autel Robotics Co., Ltd. Water surface detection method and apparatus, unmanned aerial vehicle landing method and apparatus and unmanned aerial vehicle
US10577101B2 (en) * 2017-12-21 2020-03-03 Autel Robotics Co., Ltd. Water surface detection method and apparatus, unmanned aerial vehicle landing method and apparatus and unmanned aerial vehicle
EP3728043A4 (en) * 2017-12-21 2021-09-01 Autel Robotics Co., Ltd. METHOD AND DEVICE FOR WATER SURFACE DETECTION, LAND PROCEDURE FOR UNMANNED AIRPLANE AND DEVICE AND UNMANNED AIRCRAFT
US20200348698A1 (en) * 2018-02-28 2020-11-05 Nileworks Inc. Agricultural drone having improved safety
CN113173249A (zh) * 2021-06-15 2021-07-27 南通大学 清除电力高压架空输电线路异物的无人机激光炮及其方法
CN113879058A (zh) * 2021-11-23 2022-01-04 四川农业大学 一种陆空通讯搜救机器人
CN114684341A (zh) * 2022-04-28 2022-07-01 中国船舶科学研究中心 一种水下观察装置及操作方法
CN114684341B (zh) * 2022-04-28 2023-02-28 中国船舶科学研究中心 一种水下观察装置及操作方法

Also Published As

Publication number Publication date
EP3318487B1 (en) 2021-06-02
CN106103274B (zh) 2017-11-14
EP3318487A4 (en) 2019-05-08
EP3875366A1 (en) 2021-09-08
EP3318487A1 (en) 2018-05-09
US20200317338A1 (en) 2020-10-08
JP6234610B2 (ja) 2017-11-22
JP2017530043A (ja) 2017-10-12
CN107554763A (zh) 2018-01-09
CN107697286A (zh) 2018-02-16
CN107697286B (zh) 2020-10-23
US10669024B2 (en) 2020-06-02
US20180208309A1 (en) 2018-07-26
CN107600398A (zh) 2018-01-19
CN106103274A (zh) 2016-11-09
CN107600398B (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2017000304A1 (zh) 无人机、其控制***及方法,以及无人机降落控制方法
WO2019103209A1 (ko) 해양 모니터링용 드론
WO2017143645A1 (zh) 无人飞行器及其机架、套件、组装方法、以及操作方法
CN107000849A (zh) 无人机及其空中补给方法、以及浮空平台及其控制方法
WO2018139694A1 (ko) 동축 반전 로터를 이용한 드론
WO2019143172A1 (ko) 청소기
WO2017045141A1 (en) Method and apparatus for operating mobile platform
WO2017066927A1 (en) Systems, methods, and devices for setting camera parameters
WO2018139879A1 (en) Method and apparatus for determining stereoscopic multimedia information
WO2016148368A1 (en) Unmanned aerial vehicle and method of controlling the same
WO2020060155A1 (en) Robot cleaner, charging device and charging system
WO2018182237A1 (ko) 무인 항공기 및 이를 제어하는 방법
WO2017096601A1 (zh) 无人机及其飞行状态的监管方法与监控***
WO2015076593A1 (en) Cleaning robot and method for controlling the same
WO2016029469A1 (en) An unmanned aerial vehicle (uav) for collecting audio data
WO2016192020A1 (en) Method, apparatus, and kit for assembling a mobile platform
WO2022050507A1 (ko) 태양광 발전 모듈 모니터링 방법 및 시스템
WO2015002338A1 (en) Antenna for satellite communication having structure for switching multiple band signals
WO2019004633A1 (ko) 이동 로봇의 동작 방법 및 이동 로봇
WO2017104935A1 (en) Electronic device and cradle therefore
WO2016015310A1 (zh) 一种飞行器自动停机的控制方法、装置及飞行器
WO2019143010A1 (ko) 이동 로봇의 동작 방법
WO2017018850A1 (ko) 자율 주행 차량 및 자율 주행 차량 제어 방법
CN107406140A (zh) 旋翼机构、转动装置和无人机及其控制***及操控方法
WO2019172687A1 (ko) 공기조화기

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016558200

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015896835

Country of ref document: EP