WO2002052143A1 - Dispositif de diagnostic de defaillance destine a un dispositif de recyclage de gaz d'echappement - Google Patents

Dispositif de diagnostic de defaillance destine a un dispositif de recyclage de gaz d'echappement Download PDF

Info

Publication number
WO2002052143A1
WO2002052143A1 PCT/JP2001/011234 JP0111234W WO02052143A1 WO 2002052143 A1 WO2002052143 A1 WO 2002052143A1 JP 0111234 W JP0111234 W JP 0111234W WO 02052143 A1 WO02052143 A1 WO 02052143A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
abnormality diagnosis
gas recirculation
control valve
amount
Prior art date
Application number
PCT/JP2001/011234
Other languages
English (en)
French (fr)
Inventor
Atsushi Morikawa
Takahiro Uchida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP01272278A priority Critical patent/EP1347166B8/en
Priority to PL357588A priority patent/PL202681B1/pl
Priority to ES01272278T priority patent/ES2397224T3/es
Priority to HU0300031A priority patent/HU228549B1/hu
Publication of WO2002052143A1 publication Critical patent/WO2002052143A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/406Electrically controlling a diesel injection pump
    • F02D41/408Electrically controlling a diesel injection pump of the distributing type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality diagnosis device for an exhaust gas recirculation device that recirculates exhaust gas of an internal combustion engine to an intake system of the engine.
  • an internal combustion engine such as a vehicle engine provided with an exhaust gas recirculation (EGR) device that recirculates a part of exhaust gas to an intake system in order to improve exhaust emission.
  • This EGR device includes an EGR passage that connects an exhaust passage and an intake passage of an internal combustion engine, and an EGR valve provided in the EGR passage. By adjusting the opening of the EGR valve, the amount of exhaust gas (EGR amount) recirculated from the exhaust passage to the intake passage is adjusted.
  • EGR amount exhaust gas recirculation
  • the exhaust gas lowers the combustion temperature of the fuel and suppresses the generation of nitrogen oxides (NOx) in the combustion chamber.
  • Missions will be improved.
  • Japanese Patent Application Laid-Open No. H4-140464 discloses that when a predetermined abnormality diagnosis condition is satisfied, the EGR valve is forcibly set to a fully closed state or a fully open state, and this EGR pulp operation is performed.
  • a failure diagnosis device for an exhaust gas recirculation system has been proposed in which the amount of change in pressure in the intake passage is measured and the presence or absence of an abnormality in the EGR device is determined based on the amount of change in pressure.
  • the failure diagnosis device disclosed in the above publication measures the amount of change in pressure in the intake passage. For this reason, the EGR valve is set to the fully closed state or the fully open state, and the amount of change in the EGR amount during that time increases. If the amount of change in the EGR amount becomes large in this way, there is a possibility that the exhaust emission will deteriorate, or that the combustion state will change greatly, causing a sudden change in the engine output and drivability will deteriorate.
  • a device that determines the presence or absence of an abnormality in the EGR device based on the measurement result of the engine control amount such as intake pressure measures sensors to measure the engine control amount used for abnormality determination, for example, intake pressure If the intake air pressure sensor or the air flow meter that measures the amount of intake air is out of order, it is naturally impossible to accurately determine whether an abnormality has occurred in the EGR system.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust gas recirculation device abnormality diagnosis device that can easily and reliably perform an exhaust gas recirculation device abnormality diagnosis.
  • An abnormality diagnosis device for an exhaust gas recirculation device includes: a control valve provided in the exhaust gas recirculation passage, which communicates an exhaust system of an internal combustion engine with a downstream of a throttle valve of an intake system by an exhaust gas recirculation passage.
  • the present invention is applied to an exhaust gas recirculation device in which the amount of exhaust gas recirculated from the exhaust system to the intake system is adjusted by controlling the opening degree of the exhaust gas.
  • the abnormality diagnostic device drives and controls the control valve so that the opening of the control valve gradually changes when a predetermined abnormality diagnosis condition is satisfied, and a predetermined period after the start of the drive control of the control valve.
  • the amount of change in the intake air amount or the amount of change in the intake pressure is detected. If the detected value does not exceed a predetermined determination value, it is diagnosed that there is an abnormality in the exhaust gas recirculation device.
  • the opening of the control valve of the exhaust gas recirculation passage is controlled so as to gradually change. Therefore, if there is no abnormality in the exhaust gas recirculation device, the exhaust gas recirculation amount does not change or does not rapidly increase or decrease, and the exhaust gas recirculation amount gradually changes. Although there is a response delay in the gas with respect to the change in the opening of the control valve, the change amount of the exhaust gas recirculation amount becomes equal to or more than a predetermined amount after a predetermined period.
  • Such a change in the exhaust gas recirculation amount causes a change in the intake air amount or the intake pressure, and the change in the exhaust gas recirculation amount is detected by detecting the change amount of the intake air amount or the change in the intake pressure during a predetermined period.
  • the quantity can be determined. Therefore, when the amount of change in the amount of intake air or the amount of change in the intake pressure during the predetermined period during the control of the control valve is equal to or smaller than the determination value, it can be diagnosed that there is an abnormality in the exhaust gas recirculation device. Can be easily and reliably diagnosed.
  • the exhaust gas recirculation amount does not rapidly increase or decrease when the exhaust gas recirculation device is diagnosed, so that it is possible to suppress the deterioration of the exhaust emission and suppress the change in the combustion state to suppress the rapid fluctuation of the engine output. Therefore, it is possible to suppress the deterioration of driver parity.
  • the abnormality diagnosis device performs abnormality diagnosis of the exhaust gas recirculation device when the operation state of the internal combustion engine is stable. When the operating state of the internal combustion engine is stable, the intake air amount or intake pressure is stable.
  • abnormality diagnosis of the exhaust gas recirculation system is performed when the operating condition of the internal combustion engine is stable, it is possible to suppress changes in intake air volume or changes in intake pressure based on factors other than control of the opening of the control valve.
  • the accuracy of abnormality diagnosis can be improved.
  • the abnormality diagnosis device performs abnormality diagnosis of the exhaust gas recirculation device when the operation state of the internal combustion engine is decelerating the vehicle and the fuel supply amount is equal to or less than a predetermined amount. At this time, since almost no fuel combustion occurs, the exhaust The deterioration of the session can be reliably suppressed. It is preferable that the abnormality diagnosis device suppresses a change in the opening degree of the throttle valve when performing abnormality diagnosis.
  • the abnormality diagnosis device fixes the opening of the throttle valve when performing abnormality diagnosis.
  • the opening of the throttle valve is fixed, and fluctuations in pressure and air amount in the intake system are accurately suppressed. Accuracy can be further improved.
  • the number of abnormal diagnoses should be as small as possible.
  • the trip is a period from when the internal combustion engine is started to when it is stopped.
  • a preferable abnormality diagnosis device is configured to perform the abnormality diagnosis when the abnormality diagnosis condition is satisfied.
  • the driving direction of the control valve is set based on the opening degree of the control valve. In this case, the driving direction of the control valve is set to the opening side or the closing side based on the opening degree of the control valve when the abnormal diagnosis condition is satisfied. Therefore, the total drive amount of the control valve from the opening position of the control valve when the abnormality diagnosis condition is satisfied can be secured. By ensuring the total drive amount of the control valve in this way, the amount of change in the exhaust gas recirculation amount can be made equal to or more than a predetermined amount.
  • the abnormality diagnosis device sets the drive direction of the control valve to the closing side when the opening of the control valve is equal to or greater than a first predetermined opening when the abnormality diagnosis condition is satisfied, When the opening of the control valve is less than the first predetermined opening, the driving direction of the control valve is preferably set to the opening side.
  • the driving direction of the control valve is set to the closing side, and the opening of the control valve is set to the first predetermined opening. If it is less than, the drive direction of the control valve is set to the open side. Therefore, the total drive amount from the opening of the control valve when the abnormality diagnosis condition is satisfied can be secured. It is preferable that the abnormality diagnosis device sets the gradual change amount for driving the control valve to the closed side and the gradual change amount for driving the control valve to the open side to different values.
  • the gradual change amount for driving the control valve to the close side and the gradual change amount for driving to the open side are set to different values
  • the gradual change amount for driving the control valve to the close side and the control valve to the open side are set. It can be set to a value larger than the gradually changing amount to be driven.
  • the magnitude of the exhaust gas recirculation affects the engine output
  • the abnormality diagnosis device changes the gradual change amount when the opening of the control valve reaches a second predetermined opening with the drive control of the control valve.
  • the gradual change amount of the opening degree of the control valve is changed so as to increase on the opening side of the control valve and to decrease on the closing side of the control valve. Can be changed. If the opening degree of the control valve is greater than or equal to the second predetermined opening degree, if the control valve is less sensitive to the change in the exhaust gas recirculation amount with respect to the opening degree change, the amount of gradual change in the opening degree of the control valve is constant.
  • the amount of change in the exhaust gas recirculation amount is small when the opening degree of the control valve is equal to or more than the second predetermined opening degree. Therefore, a long time is required to obtain the required change in the exhaust gas recirculation amount, and the abnormality diagnosis time is prolonged.
  • the control valve is driven to the opening side or the closing side to change the gradual change amount when the opening degree reaches the second predetermined opening degree, the predetermined change amount of the exhaust gas recirculation amount is obtained.
  • the time required for diagnosis can be shortened, and the time required for diagnosis can be shortened.
  • the abnormality diagnosis device prohibits the abnormality diagnosis when the opening degree of the control valve when the abnormality diagnosis condition is satisfied is less than a third predetermined opening degree. If the control valve is opened and the amount of exhaust gas recirculation is increased from a state in which the opening of the control valve is small and there is almost no exhaust gas recirculation, the engine output will decrease markedly, deteriorating dryability, and Or increase. In this regard, if the abnormality diagnosis is prohibited when the opening degree of the control valve is less than the third predetermined opening degree when the abnormality diagnosis condition is satisfied, the deterioration of the driveability and the increase in smoke are surely suppressed. . BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic diagram showing a schematic configuration of a diesel engine to which an exhaust gas recirculation device according to a first embodiment of the present invention is applied.
  • FIG. 2 is a flowchart illustrating an abnormality diagnosis process of the exhaust gas recirculation device according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an abnormality diagnosis process of the exhaust gas recirculation device according to the first embodiment.
  • FIG. 4 is a time chart illustrating an example of control at the time of abnormality diagnosis according to the first embodiment.
  • FIG. 5 is a flowchart illustrating an abnormality diagnosis process of the exhaust gas recirculation device according to the second embodiment.
  • FIG. 6 is an explanatory diagram showing control of the opening degree of the EGR control valve in the second embodiment.
  • FIG. 7 is a graph showing the relationship between the EGR opening and the amount of EGR.
  • FIG. 8 is an explanatory diagram showing a change in the EGR amount based on switching of the gradually changing amount of the EGR opening.
  • FIG. 9 is a schematic view showing a diesel engine according to a third embodiment of the present invention.
  • FIG. 10 is a flowchart of a main routine of the abnormality diagnosis processing of the embodiment.
  • FIG. 11 is a flowchart of the AFM abnormality diagnosis processing of the embodiment.
  • FIG. 12 is a flowchart of the EGR abnormality diagnosis processing of the embodiment.
  • FIG. 13 is a flowchart of the abnormality determination processing of the embodiment.
  • FIG. 14 is a flowchart of an abnormality diagnosis process according to a further embodiment.
  • an intake passage 2 is connected to a combustion chamber 12 of the diesel engine 1 via intake pulp (not shown).
  • the intake passage 2 has an air cleaner 3 for filtering intake air, an air quantity sensor 6 for detecting intake air quantity, an intake air temperature sensor 32 for detecting intake air temperature, and a combustion chamber from the upstream side to the downstream side.
  • a throttle valve 4 for adjusting the amount of intake air introduced into 12 is provided.
  • the throttle valve 4 is opened and closed by a stepping motor 25 and a drive mechanism 5 including a gear group that connects the stepping motor 25 and the throttle valve 4.
  • the step motor 25 is controlled by an electronic control unit (hereinafter referred to as “ECU”) 19 for performing various controls of the diesel engine 1. Further, the drive mechanism 5 is provided with a fully open switch 26 which is turned on when the throttle valve 4 is located closer to the open side than a predetermined position near the fully open state.
  • ECU electronice control unit
  • the intake passage 2 further downstream of the throttle valve 4, exhaust gas branched from an exhaust passage 7 connected to the combustion chamber 12 via an exhaust valve (not shown) and joined to the intake passage 2 is provided.
  • the return (EGR) passage 8 is connected.
  • the EGR passage 8 is provided with an EGR control valve 9 which is opened and closed by an actuator 10 such as a diaphragm controlled by the ECU 19.
  • the amount of gas introduced into the combustion chamber 12 is constant, and the amount of intake air is adjusted by the throttle valve 4 and the amount of EGR is adjusted by the EGR control valve 9.
  • the ratio of the EGR amount to the introduced intake air amount can be freely set. That is, appropriate EGR control can be performed over the entire operation range of the diesel engine 1.
  • the combustion chamber 12 of the diesel engine 1 is provided with an injection nozzle 11 for directly injecting fuel.
  • the fuel injection nozzle 11 is connected to a fuel injection pump 14.
  • This fuel injection pump 14 is a diesel engine 1 Driven based on the rotation of the output shaft 23, the fuel is pressurized and supplied to the injection nozzle 11.
  • the fuel injection pump 14 includes a timer control valve 15 and a spill valve 16 for adjusting the injection timing and the injection amount of the fuel injected from the injection nozzle 11.
  • the operation of the timer control valve 15 and the spill valve 16 is also controlled by the ECU 19.
  • a rotor (not shown) that rotates in synchronization with the rotation of the output shaft of the diesel engine 1 is provided in the fuel injection pump 14, and a rotation speed sensor 17 that detects the rotation speed of this rotor is provided.
  • the rotation speed sensor 17 is composed of an electromagnetic pickup, detects a protrusion formed on the outer peripheral surface of the rotor, and outputs a pulse signal corresponding to the rotation speed.
  • the output of the rotation speed sensor 17 is taken into the ECU 19 as a signal that contributes to the calculation of the rotation speed of the diesel engine 1.
  • the ECU 19 receives information on the intake air amount detected by the air amount sensor 6 and information on the intake air temperature detected by the intake air temperature sensor 32.
  • the ECU 19 also has accelerator opening information (accelerator pedal depression amount information) detected by the accelerator opening sensor 18 and IG (ignition) switch 20 on / off information, starter switch 21 on / off. Off information and cooling water temperature information detected by the water temperature sensor 30 are also taken in.
  • the IG switch 20 is a switch for controlling the start and stop of the engine, and is turned on when the engine is started and turned off when the engine is stopped.
  • the starter switch 21 is a switch for driving a starter motor for starting the engine.
  • the starter switch 21 is turned on when the starter motor is rotating, and is turned off when the starter motor is stopped.
  • the ECU 19 drives the timer control valve 15 and the spill valve 16 of the fuel injection pump 14 based on the detection signals of the above sensors, thereby Executes fuel injection amount control and fuel injection timing control of the easel engine i.
  • the ECU 19 drives the step motor 25, the actuator 10 that opens and closes the EGR control valve 9, and the like based on the detection signals of the sensors, thereby performing EGR control, intake air amount control, and the like.
  • the ECU 19 drives the step motor 25 and the actuator 10 in a method different from the EGR control on the basis of the detection signals of the respective sensors to diagnose the EGR device for abnormality.
  • This routine is periodically executed by the ECU 19 every predetermined time, for example, every several tens of milliseconds.
  • step 100 it is determined whether a precondition for abnormality diagnosis is satisfied.
  • the predetermined value QF 0 is not limited to “0” and may be any value as long as it is substantially equal to or less than the idle injection amount.
  • the accelerator opening is 0%, the fuel injection amount is equal to or less than the predetermined value QF0, and the rotational speed deviation ⁇ NE is less than the predetermined value NE0. 1 means that the fuel supply is stopped. Only when all of these conditions are satisfied, it is considered that the preconditions for abnormality diagnosis are satisfied.
  • step 110 the value of the condition satisfaction counter is incremented.
  • step 7 ° 120 it is determined whether the operation state of the diesel engine 1 is stable by determining whether the value of the condition satisfaction counter is greater than a value corresponding to the predetermined time T0. . This is because when the operation state of the diesel engine 1 is stable, the amount of intake air and the amount of EGR are also stable, and the detection accuracy of abnormality diagnosis of the EGR device can be improved. If it is determined in step 120 that the value of the condition satisfaction force counter is equal to or less than the value indicating the predetermined time T0, the present routine is terminated once.
  • the opening of the throttle valve 4 is fixed to the opening at that time.
  • the intake negative pressure downstream of the throttle valve 4 changes. This change in the intake negative pressure changes the EGR amount and the intake air amount. Therefore, the throttle opening is fixed at the time of abnormality diagnosis of the EGR device, so that the change of the intake air amount due to the change of the throttle opening is suppressed and the accuracy of the abnormality diagnosis of the EGR device is improved.
  • next step 140 it is determined whether or not a reference learning flag indicating whether or not the measurement reference value of the intake air amount has been learned is ON. If it is determined that the reference learning flag is not ON, the measurement reference value has not been learned, so the process proceeds to step 150, and the intake air amount GA at that time is set as the measurement reference value of the intake air amount. In the next step 160, the reference learning flag is set to ON, and the process proceeds to step 180 in FIG. If it is determined in step 140 that the reference learning flag is ⁇ N, the measurement reference value has been learned, so the process proceeds to step 170 to set the target opening epegfin of the EGR control valve 9. Is done.
  • This target opening epegfin is EGR controlled It is set by subtracting the gradual change “a%” from the actual opening epegact of the valve 9.
  • the EGR control valve 9 is feedback-controlled to the target value.
  • the gradual change “a%” is a ratio to the opening degree when the EGR control valve 9 is fully opened, and any of positive and negative values can be set as the gradual change “a”. Therefore, if the gradual change “a” is a positive value, the EGR control valve 9 is controlled so that its opening gradually decreases. Conversely, if the gradual change “a” is a negative value, the EGR control valve 9 is controlled.
  • the gradual change amount “a” is a positive value or a negative value may be determined based on the actual opening of the EGR control valve 9. That is, when the actual opening degree of the EGR control valve 9 is larger than a predetermined value, the gradual change amount “a” is set to a positive value, and when the actual opening degree is equal to or less than the predetermined value, the gradual change amount “a” is set to negative. be able to.
  • the predetermined value can be set, for example, to a value that is 30% open from the fully closed state of the EGR control valve 9. By doing so, it is possible to prevent erroneous detection and to minimize the occurrence of smoke and the deterioration of drivability.
  • the EGR control valve 9 when the actual opening of the EGR control valve 9 is smaller than the predetermined value, even if the EGR control valve 9 is gradually closed, the change in the intake air amount is small, and there is a risk of erroneous detection. Therefore, in this case, by gradually opening the EGR control valve 9, the change in the amount of intake air becomes large to some extent, preventing erroneous detection and minimizing the generation of smoke and the deterioration of driver's piracy. Can be suppressed. Further, when the actual opening of the EGR control valve 9 is larger than a predetermined value, the abnormality diagnosis can be performed by gradually closing the EGR control valve 9 without generating smoke or deteriorating the driver's rightness.
  • the measurement reference value GA is subtracted from the intake air amount corresponding to the opening of the EGR control valve 9, and the change in the intake air amount after the start of the control of the EGR control valve 9 is detected, and the change in the air amount is determined. It is determined whether or not the determination value QA is greater than 0. This air volume If it is determined that the change is larger than the determination value QAO, the process proceeds to step 190, and if it is determined that the air amount change is equal to or less than the determination value QAO, the process proceeds to step 220.
  • the EGR device is diagnosed as normal, the normality determination flag indicating that the diagnostic result is normal is set to ON, and the elapsed time since the start of the opening control of the EGR control valve 9 is set. The value of the abnormal counter to be measured is cleared.
  • it is determined whether or not an abnormality determination flag indicating that the EGR device is abnormal is ON. If it is determined that the abnormality determination flag is ON, the process proceeds to step 210, and if it is determined that the abnormality determination flag is $ FF, the process proceeds to step 270.
  • the abnormality determination flag is set to OFF, and the diagnostic counter is cleared.
  • step 180 If it is determined in step 180 that the air amount change is equal to or smaller than the determination value Q AO, the value of the abnormality counter is increased by one in step 220.
  • step 230 it is determined whether or not the value of the abnormality counter is larger than a value indicating the predetermined time T1.
  • This predetermined time T1 is a time when the EGR device including the EGR control valve 9 and the EGR passage 8 is normal and the gradual change of the opening degree of the EGR control valve 9 is set to ⁇ a% ''. Is set to a value exceeding the determination value Q AO. If it is determined in step 230 that the value of the abnormality counter is equal to or less than the value indicating the predetermined time T1, this routine is terminated.
  • step 240 it is diagnosed that there is an abnormality in the EGR device, and the abnormality determination flag is set to ON.
  • the next step 250 it is determined whether the normality determination flag is ON. You. If it is determined that the normality determination flag is ON, the process proceeds to step 260. If it is determined that the normality determination flag is OFF, the process proceeds to step 270. In step 260, the normality determination flag is set to OFF and the diagnostic counter is cleared. In step 270 following step 210 and step 260, the detection completion flag is set to ON and the value of the diagnostic counter is incremented.
  • the detection completion flag and the diagnostic power counter operate only once during one vehicle deceleration. Therefore, the abnormality diagnosis is not determined during one deceleration of the vehicle. This is to prevent erroneous detection during one deceleration of the vehicle, and not to give the driver unnecessary unnecessary discomfort by not performing abnormality diagnosis once it is determined to be normal. Therefore, the diagnosis result is only confirmed after at least two vehicle decelerations. As a result, the possibility of erroneous detection can be reliably eliminated, and unnecessary execution of abnormality diagnosis processing is suppressed.
  • one deceleration is a state in which the condition of step 100 is satisfied.
  • the diagnostic power counter is reset and then incremented by one, so that the value of the diagnostic counter is always “1”. It becomes.
  • N 2 in the present embodiment. If it is determined that the value of the diagnostic counter is 2 or more, the diagnostic decision flag is set to ON in step 290, and the diagnostic counter is cleared.
  • the diagnosis confirmation flag is turned on, the abnormality diagnosis is prohibited. By doing so, the number of times of abnormality diagnosis is minimized, thereby ensuring the driver pirity and maintaining the durability of parts such as the throttle valve 4. Of course, the accuracy of abnormality diagnosis is improved.
  • step 320 the condition satisfaction counter is cleared, the reference learning flag is set to OFF, and the abnormality counter is cleared. Then, in step 330, the EGR control valve 9 and the throttle valve 4 are normally driven, and this routine ends once.
  • FIG. 4 is a time chart showing an example of an abnormality diagnosis process of the exhaust gas recirculation device in the diesel engine 1 configured as described above. The case where the value N of the diagnostic counter is 2 will be described. After the diesel engine 1 is started, the vehicle is driven, and the vehicle shifts to deceleration while the vehicle is running, and when the fuel supply amount becomes equal to or less than the predetermined amount, the abnormality diagnosis is performed at time t0. It is determined that the precondition is satisfied (step 100).
  • step 120 If the above preconditions continue to be satisfied during the period of the predetermined time T0 from time t0 to t1, it is confirmed that the operation state of the diesel engine 1 is stable (step 120). As a result, at time t1, abnormality diagnosis is started, and the opening of the throttle valve 4 is fixed.
  • the intake air amount GA at time t1 is set as a measurement reference value (step 150).
  • the EGR control valve 9 is controlled such that the opening degree of the EGR control valve 9 changes by a gradually changing amount “a%” (a> 0 in this case) within a predetermined time T1 from time t1 to t2. (Step 170). If the EGR control valve 9 is normal, its opening gradually decreases.
  • the EGR amount gradually decreases, and conversely, the intake air amount changes so as to gradually increase. If it is determined that the amount of change in the intake air amount is larger than the determination value QA0 within the predetermined time T1 between times t1 and t2, the normality determination flag is set to ON (step 190). At this time, if the abnormality determination flag is ON, the abnormality determination flag is set to OFF and the value of the diagnostic counter is cleared to “0”. Then, the detection completion flag is set to ⁇ N, and the diagnostic counter is incremented by one, and the value becomes “1”.
  • the abnormality determination flag is set to ON (step 240). At this time, if the normality judgment flag is ON, the normality judgment flag is turned OFF and the value of the diagnostic counter is cleared to “0”. Then, the detection completion flag is set to ON, and the diagnostic counter is incremented by one, and the value becomes “1”. If the vehicle deceleration state started after time t0 continues after time t2, the detection completion flag is ON and the precondition for abnormality diagnosis is not satisfied (step 100).
  • the condition satisfaction counter is cleared, the reference learning flag is set to OFF, and the abnormality counter is also tallied (step 320). Then, the EGR control valve 9 and the throttle valve 4 are normally driven to execute the EGR control.
  • the vehicle speed becomes equal to or lower than the predetermined vehicle speed SPD at time t3
  • the detection completion flag is set to OFF (step 340). ).
  • the accelerator is depressed and the vehicle shifts to normal running, and again, the vehicle shifts to decelerating running and the fuel supply amount becomes equal to or less than a predetermined amount
  • the precondition for abnormality diagnosis is satisfied at time t4.
  • step 100 If the above preconditions continue to be satisfied during the period of the predetermined time T0 from time t4 to t5, it is confirmed that the operation state of the diesel engine 1 is stable (step 120). As a result, abnormality diagnosis is started at time t5, and the opening of the throttle valve 4 is fixed.
  • the intake air amount GA at time t5 is set as a measurement reference value (step 150).
  • the EGR control valve 9 is controlled such that the opening degree of the EGR control valve 9 changes by the gradually changing amount "a%"(a> 0 in this case). Step 1 70).
  • the EGR control valve 9 If the EGR control valve 9 is normal, its opening gradually decreases, and as the opening of the EGR control valve 9 decreases, the EGR amount gradually decreases, and conversely, the intake air amount gradually decreases. Vary to increase. If it is determined that the amount of change in the intake air amount is larger than the determination value QA0 within the predetermined time T1 from the time t5 to t6, the normality determination flag is set to ON (step 190). At this time, if the abnormality determination flag is ON, the abnormality determination flag is turned OFF and the value of the diagnostic counter is cleared to “0”. Then, the detection completion flag is set to ⁇ N, and the diagnostic counter is incremented by one, and the value becomes “1”.
  • the abnormality determination flag is set to ON (step 240). At this time, if the normality judgment flag is ON, the normality judgment flag is turned OFF and the value of the diagnostic counter is cleared to “0”. Then, the detection completion flag is set to ⁇ N, and the diagnostic counter is incremented by one, and the value becomes “1”. Therefore, the value of the diagnosis counter is “2” only when the diagnosis result of the abnormality diagnosis at the time t1 to t2 and the diagnosis result of the abnormality diagnosis at the time t5 to t6 are the same.
  • the diagnostic confirmation flag is set to ON, the diagnostic result is confirmed, and the diagnostic counter is cleared. If the vehicle deceleration state started after time t4 continues after time t6, the detection completion flag is ON, and the precondition for abnormality diagnosis is not satisfied (step 100). Therefore, at time t6, the condition satisfaction counter is cleared, the reference learning flag is set to OFF, and the abnormal force counter is cleared (step 320), and the EGR control valve 9 and the throttle valve 4 are driven normally to stop the operation. GR control is executed.
  • the detection completion flag is set to OFF (step 340). After that, even if the accelerator is depressed and the vehicle shifts to normal running, and the vehicle shifts again to decelerating running, the diagnosis confirmation flag is ON and the precondition for abnormality diagnosis is not satisfied (step 100). ). After the diagnosis confirmation flag is set to ON, the diagnosis confirmation flag is set to OFF based on the stoppage of diesel engine 1! /.
  • the diagnosis result of the abnormality diagnosis of the EGR device is determined during the operation of the diesel engine 1, the abnormality diagnosis of the EGR device is repeatedly executed within one trip from the start and the stop of the diesel engine 1. None. According to the present embodiment described above, the following effects can be obtained.
  • the EGR control valve 9 is controlled so that the opening degree of the EGR control valve 9 changes gradually. Therefore, if the EGR device does not malfunction, the EGR amount does not change or does not rapidly increase or decrease, and the EGR amount gradually changes.
  • Such a change in the exhaust gas recirculation amount causes a change in the intake air amount of the EGR passage 8, and the change amount of the EGR amount can be obtained by detecting the change amount of the intake air amount in the predetermined time T1. .
  • the change amount of the intake air amount during the predetermined time T1 during the control of the EGR control valve 9 is equal to or less than the determination value QA0, it can be diagnosed that the EGR device is abnormal, and the abnormality diagnosis of the EGR device can be performed. It can be done easily and reliably. Moreover, since the EGR amount does not increase or decrease rapidly during the EGR device abnormality diagnosis, it is possible to suppress the deterioration of the exhaust emission of the diesel engine 1 and to suppress the change in the combustion state and the engine output. Abrupt fluctuations can be reduced, and deterioration of drivability can be suppressed. (2) The ECU 19 performs the abnormality diagnosis of the EGR device when the operation state of the diesel engine 1 is stable. Therefore, a change in the intake air amount based on a factor other than the opening control of the EGR control valve 9 can be suppressed, and the accuracy of abnormality diagnosis of the EGR device can be improved.
  • the ECU 19 performs the abnormality diagnosis of the EGR device when the fuel supply amount during the vehicle deceleration is equal to or less than a predetermined amount. Since combustion is not performed when the fuel supply amount of the diesel engine 1 is equal to or less than a predetermined amount, it is possible to reliably suppress the deterioration of the exhaust emission at the time of abnormality diagnosis of the EGR device.
  • the system configuration of the internal combustion engine and its control device is the first embodiment. It is the same as the state.
  • the actual opening epegfin of the EGR control valve 9 when setting the target opening epegfin of the EGR control valve 9 in the abnormality diagnosis of the EGR device, the actual opening epegact of the EGR control valve 9 is not considered, and the EGR control valve 9 is not considered. From the actual opening degree epegact of, the fixed variable “a” was reduced. When the gradual change “a” is a positive value, the EGR control valve 9 is driven to the closed side, and the gradual change
  • FIG. Fig. 5 is a flowchart showing a part of the abnormality diagnosis processing of the EGR device executed by the ECU 19, and this processing is a part of the abnormality diagnosis processing in the first embodiment. This is a modification of steps 140, 150, 160, and 170.
  • this processing is started, the processing of steps 100, 110, 120, and 130 is sequentially performed. At the time, learning of the reference value for the intake air volume was not yet completed.
  • the flag is determined not O N,
  • a predetermined value A is a ratio to the opening degree when the EGR control valve 9 is fully opened, and in this case, A is set to 50%.
  • a predetermined value B is a ratio to the opening degree when the EGR control valve 9 is fully opened, and in this case, B is set to 30%. If it is determined that the actual opening epegact is greater than or equal to the predetermined value B, the process proceeds to step 440. If it is determined that the actual opening epegact is less than the predetermined value B, the process proceeds to step 450.
  • step 420 the gradual change amount epegadd force S for setting the target opening epegfin of the EGR control valve 9 is set to "1 m%".
  • the sign “1” indicates that the driving direction of the EGR control valve 9 is set to the closing side
  • “m” is a ratio to the opening degree when the EGR control valve 9 is fully opened. Which is a positive value. Therefore, the drive of the EGR control valve 9 is controlled to the closing side based on the gradual change amount “1 m%”.
  • step 440 the gradual change amount epegadd force S of the opening degree of the EGR control valve 9 is set to “+ n%”.
  • the sign “+” indicates that the drive direction of the EGR control valve 9 is set to the open side, and “n” is the ratio to the opening when the EGR control valve 9 is fully opened. Is a positive value. Therefore, the drive of the EGR control valve 9 is controlled to open based on the gradual change amount “+ n%”.
  • the EGR control valve 9 is driven to the closed side, the amount of EGR decreases and the amount of intake air increases, so that a decrease in the output of the diesel engine 1 is suppressed and dryability is maintained.
  • the gradual change amount m on the closed side and the gradual change amount n on the open side are set to have a relationship of m> n.
  • the EGR control valve 9 when the opening of the EGR control valve 9 at the start of driving is equal to or more than the predetermined value A (50%) as shown in the example EX1 in FIG. 6, the EGR control valve 9 is driven to the closing side. The total drive amount of the EGR control valve 9 can be increased. If the opening of the EGR control valve 9 at the start of driving is less than the predetermined value A (50%) as shown in the example EX 2 in FIG. 6, the EGR control valve 9 should be driven to the open side. Accordingly, the total drive amount of the EGR control valve 9 can be increased.
  • step 450 the gradual change amount 6 pegadd of the opening degree of the £ 01 control valve 9 is set to “0%”, and the detection completion flag is set to ON.
  • the detection completion flag is set to ON in step 450 in this way, when the routine of the abnormality diagnosis process is next executed, it is determined in step 100 that the abnormality diagnosis condition is not satisfied, and Diagnosis processing is prohibited.
  • step 450 the intake air amount GA at that time is set as a measurement reference value of the intake air amount.
  • step 470 the reference learning flag is set to ON, and the process proceeds to step 180. If it is determined in step 140 that the reference learning flag is ON, the process proceeds to step 480 because the measurement reference value has been learned.
  • step 480 it is determined whether the gradual change amount 6 pegadd of the opening degree of the control valve 9 is less than zero.
  • the process proceeds to step 490, and when it is determined that the gradual change amount epegadd is 0 or more, the process proceeds to step 510.
  • step 49 it is determined whether or not the actual opening epegact of the EGR control valve 9 at that time is equal to or less than a predetermined value C as a second predetermined opening.
  • This predetermined value C is a ratio to the opening degree when the EGR control valve 9 is fully opened, and in this case, C is set to 50%.
  • step 510 it is determined whether or not the actual opening degree epegact of the EGR control valve 9 at that time is equal to or greater than a predetermined value D as a second predetermined opening degree.
  • This predetermined value D is a ratio to the opening degree when the EGR control valve 9 is fully opened, and in this case, D is set to 50%. If it is determined that the actual opening epegact at this time is equal to or more than the predetermined value D, the process proceeds to step 520, and if it is determined that the actual opening epegact is less than the predetermined value D, the process proceeds to step 530 .
  • This correction coefficient is set to be 1 ⁇ . Therefore, the new gradual change amount epegadd set in this way is changed to a large value.
  • the degree of opening of the EGR control valve 9 is equal to or greater than the predetermined values C and D, as shown in FIG. This is because the sensitivity of the change is reduced.
  • the gradual change amount of the EGR control valve 9 When the gradual change amount of the EGR control valve 9 is set to a constant value, the change amount of the EGR amount becomes small when the opening degree of the EGR control valve 9 is equal to or more than the predetermined values C and D, and the required change amount of the EGR amount is reduced. It takes a long time to get. Therefore, when the opening degree of the EGR control valve 9 is equal to or more than the predetermined values C and D, the time for obtaining the predetermined change amount of the EGR amount is shortened by changing the gradual change amount epegadd to a large value. I have. That is, as shown in FIG.
  • the gradual change amount is set to a value larger than the above-mentioned constant value, and In order to obtain the amount of change in the EGR amount equivalent to the determination value QA0, the time from the drive start timing t10 of the EGR control valve 9 to the time t11 only needs to be obtained. The time required to obtain the amount of change can be reduced.
  • the EGR The target opening epegfin of the valve 9 is set. The target opening epegfin is set by adding the gradual change amount epegadd set in step 420, 440, 500 or 520 to the actual opening epegact of the EGR control valve 9.
  • the EGR control valve 9 is feedback-controlled to the target value, and the actual opening immediately before the shift, which is stored when shifting to this routine, becomes the initial value. Therefore, if the gradual change amount epegadd is a negative value, the EGR control valve 9 is controlled to the closing side so that its opening gradually decreases, and if the gradual change amount epegadd is a positive value, The control valve 9 is controlled to open so that its opening gradually increases.
  • the drive direction of the EGR control valve 9 is set to open or close based on the opening of the EGR control valve 9 when the abnormality diagnosis condition is satisfied. did. Therefore, the total drive amount of the EGR control valve 9 can be secured, the amount of change in the EGR amount can be equal to or more than a predetermined amount, and abnormality diagnosis can be performed reliably.
  • the gradual change amount for driving the EGR control valve 9 to the closed side is set to a value larger than the gradual change amount for driving the EGR control valve 9 to the open side.
  • the EGR control valve 9 is driven to the closing side, the amount of EGR decreases and the amount of intake air increases, so that a decrease in engine output can be suppressed and drivability can be maintained.
  • the EGR control valve 9 is driven to the open side, the EGR amount increases, the intake air amount decreases, the engine output decreases, and the drivability deteriorates. Since the gradual change amount for driving the GR control valve 9 to the open side is set to a small value, it is possible to suppress deterioration of drivability. Accordingly, whether the EGR control valve 9 is driven to the open side or the closed side, the abnormality diagnosis of the exhaust gas recirculation device can be performed while suppressing the deterioration of drivability.
  • the abnormality diagnosis is prohibited when the actual opening epegact of the EGR control valve 9 when the abnormality diagnosis condition is satisfied is less than the third predetermined opening (predetermined value B).
  • predetermined value B the third predetermined opening
  • the fact that the amount of change in vehicle speed is less than a predetermined value may be used.
  • the abnormality determination flag is set to ON in step 240.
  • An abnormality measurement counter may be provided in place of the abnormality determination flag, and if an abnormality is detected a plurality of times at every predetermined time T 1, it may be determined that the EGR device is abnormal.
  • the predetermined value A for setting the gradual change amount of the EGR control valve 9 is The predetermined value A is calculated based on the engine speed and the opening of the throttle valve 4 or refers to a map defined by the engine speed and the opening of the throttle valve 4. You may ask for it. Further, the predetermined value A may be obtained based on the engine speed and the intake pressure.
  • the predetermined values C and D for changing the gradual change amount of the EGR control valve 9 are set to the same value, but they may be set to different values. In addition, the predetermined values C and D are set to constant values. However, the predetermined values C and D are calculated based on the engine speed and the opening of the throttle valve 4, or the engine speed and the opening of the throttle valve 4 are determined.
  • the abnormality diagnosis device of the EGR device of the diesel engine 1 is embodied.
  • the abnormality diagnosis device of the EGR device of the gasoline engine may be embodied.
  • the abnormality diagnosis may be performed based on the change in the intake pressure in the EGR passage 8 instead of the change in the intake air amount.
  • the intake pressure in the EGR passage 8 changes in accordance with such a change in the exhaust gas recirculation amount, and the change in the EGR amount can be obtained by detecting the change in the intake pressure in a predetermined time. Therefore, when the amount of change in the intake pressure during a predetermined time during the control of the EGR control valve 9 is equal to or smaller than a predetermined determination value, it can be diagnosed that there is an abnormality in the EGR device. It can be done easily and reliably.
  • the abnormality diagnosis of the EGR device of the diesel engine 1 is performed based on the change amount of the intake air amount. However, instead of the change amount of the intake air amount, the intake pressure of the EGR passage 8 is changed. The abnormality diagnosis may be performed based on the amount of change. (Third embodiment)
  • An intake passage 51 and an exhaust passage 53 are connected to a combustion chamber 52 of the diesel engine 50 shown in FIG.
  • the intake passage 51 has an air cleaner 54 that filters intake air from the upstream side to the downstream side, an air flow meter 55 that measures the amount of intake air, and an intake passage 51 that changes the flow passage area of the intake passage 51.
  • a throttle valve 56 for adjusting the amount is provided.
  • the throttle valve 56 is opened and closed by a step motor 58 connected through a power transmission mechanism 59 having a gear group.
  • the step motor 58 is driven and controlled by an electronic control unit (ECU) 70 that controls various controls of the diesel engine 50.
  • ECU electronice control unit
  • the power transmission mechanism 59 is provided with a fully open switch 56a for confirming that the throttle valve 56 is located at the fully open position.
  • the ECU 70 determines the opening of the throttle valve 56 (throttle opening) based on the step position of the step motor 58 relative to the fully open position confirmed by the fully open switch 56a. I'm gripping. Downstream of the throttle valve 56 of the intake passage 51, an intake pressure sensor 57 for measuring the internal pressure (intake pressure) of the intake passage 51 is provided, and the intake passage 51 branches off from the exhaust passage 53.
  • the EGR passage 60 that joins with the EGR is connected.
  • An EGR control pulp 61 that is opened and closed by an actuator 62 such as a diaphragm controlled by the ECU 70 is provided in the EGR passage 60.
  • an EGR device is constituted by the EGR passage 60, the EGR control pulp 61, the actuator 62, and the like.
  • the ECU 70 adjusts the flow rate of the gas introduced into the combustion chamber 52 through the opening control of the throttle pulp 56 and controls the opening of the EGR control valve 61.
  • the flow rate (EGR amount) of the exhaust gas recirculated to the intake passage 51 is adjusted.
  • the opening of the EGR control valve 61 is changed while keeping other conditions such as the throttle opening constant, the total flow rate of the gas introduced into the combustion chamber 52 is kept constant, and the EGR amount is kept constant. Changes. Therefore, by controlling the opening of the throttle valve 56 and the EGR control valve 61, it is possible to freely control the total flow rate of the gas introduced into the combustion chamber 52 and the ratio of the exhaust gas to the gas (EGR rate). Can be.
  • EGR control can be performed over a wide operating range of the diesel engine 50.
  • the air flow meter 55 provided upstream of the junction of the intake passage 51 with the EGR passage 60, the flow rate of gas introduced into the combustion chamber 52 excluding EGR, that is, the flow rate of air taken in from the outside Only will be detected.
  • an injector 63 is provided in the combustion chamber 52 of the diesel engine 50.
  • the diesel engine 50 employs a common rail type fuel supply device, and is provided with a common rail 65 for storing fuel pumped by a fuel supply pump 64 from a fuel tank (not shown).
  • the drive of the fuel supply pump 64 is controlled by the ECU 70, and the pressure of the fuel in the common rail 65 is optimally maintained by adjusting the amount of fuel supplied from the pump 64.
  • the high-pressure fuel stored in the common rail 65 is distributed and supplied to the injector 63 of each cylinder of the diesel engine 50.
  • the injector 63 is driven by the ECU 70, and injects an optimal amount of fuel into the combustion chamber 52 at an optimal timing based on a command from the ECU 70.
  • the ECU 70 has an NE sensor 67 for detecting the engine speed ne, an accelerator sensor 68 for detecting the accelerator pedal depression amount accp, and a vehicle speed spd for detecting the engine speed ne by the air flow meter 55 and the intake pressure sensor 57.
  • FIG. 10 shows a main routine of the abnormality diagnosis processing in the present embodiment. The processing of this routine is periodically executed by the ECU 70.
  • step 610 it is determined whether or not the abnormality diagnosis execution condition is satisfied. Specifically, when all of the following conditions (a) to (c) are satisfied for a predetermined time T1 or more until the present time, the abnormality diagnosis execution condition is satisfied.
  • the fuel injection amount is equal to or less than a predetermined value QF0.
  • the deviation ⁇ of the rotation speed of the engine 50 is less than the predetermined value NE 0.
  • the predetermined value QF 0 is set to a value smaller than the fuel injection amount during idling, and under such conditions, the fuel is hardly burned in the combustion chamber 52. Therefore, the fulfillment of all of the above conditions (a) to (c) means that the fuel is being cut during vehicle deceleration. If such a state continues for a predetermined time T1 or more, it can be determined that the operating state of the diesel engine 50 is stable.
  • control of the throttle valve 56 and EGR control valve 61 for abnormality diagnosis can be controlled by driver pillar and engine
  • the ECU 70 proceeds to step 6 In 90, the value of each counter C 1 through C 3, and the measurement reference value G AO a click each Riashi, after setting the AFM (Air Flow Meter) off the determination completion flag, while ⁇ which terminates the processing of this routine is once If the abnormality diagnosis execution condition is satisfied (S610: YES),
  • diagnosis completion flag it is determined whether the diagnosis completion flag is ON. If the diagnosis completion flag is on, the ECU 70 ends the processing of this routine.
  • the diagnosis completion flag is turned on when the current abnormality diagnosis is completed and any diagnosis result (any of the air flow meter 55 abnormality determination, the EGR normality determination, and the EGR abnormality determination) is issued. Therefore, the diagnosis result is issued only once during one vehicle deceleration.
  • the diagnostic completion flag is set to ON, it is reset to OFF when the vehicle comes to a stop (including a slow running state).
  • step 630 it is determined whether or not the AFM (air flow meter) determination completion flag is on.
  • the AFM determination completion flag is turned on when the determination of the presence or absence of an abnormality is completed in the “AFM abnormality diagnosis process” for determining whether or not the air flow meter 55 has an abnormality.
  • the ECU 70 shifts the processing to step 640, and executes the AFM abnormality diagnosis processing shown in FIG. That is, until the determination of the presence or absence of the abnormality of the air flow meter 55 in the AFM abnormality diagnosis processing is completed, the processing after step 650 is not executed.
  • the ECU 70 performs the EGR cut in step 700, that is, closes the EGR control valve 61 completely to stop the recirculation of the exhaust gas to the intake passage 51. Then, in step 710, the ECU 70 calculates the theoretical value gath of the intake air amount from the throttle opening at that time. During the EGR cut, all the gas introduced into the combustion chamber 52 becomes air taken in from the outside, and is taken into the combustion chamber 52 by the flow rate of the gas flowing through the portion of the intake passage 51 where the air flow meter 55 is provided.
  • step 720 the intake air amount actually detected by the air flow meter 55, that is, the actually measured value ga of the intake air amount is read, and in the next step 730, the difference between the actually measured value ga and the theoretical value gath (
  • step 750 the ECU 70 turns on the AFM determination completion flag and ends the processing of this routine.
  • step 760 the AFM abnormality determination counter C1 is incremented.
  • step 770 it is determined whether or not the value of the counter C 1 exceeds a predetermined value T1. If the value of the counter C1 is equal to or smaller than the predetermined value T1, the process of this routine is immediately terminated.
  • step 780 the AFM abnormality determination flag is turned on. Also, if the AFM normality judgment flag was turned on in the previous AFM abnormality diagnosis processing, the flag is turned off. Further, the ECU 70 turns on the AFM abnormality history flag, turns on the AFM determination completion flag in step 750, and ends the processing of this routine.
  • the FM history flag is set on, it remains on until the identification switch turns off. Therefore, if an abnormality is determined in the AFM abnormality diagnosis process, and if a normal determination is made in the subsequent process, the AFM abnormality determination flag is turned off from on, whereas the AFM abnormality history flag is Is kept as is. Note that the determination of the abnormality of the air flow meter 55 is temporary, and has not been determined at this time. The determination of the abnormality determination is performed in “abnormality determination processing” described later.
  • the AFM abnormality diagnosis process described above is performed after the abnormality diagnosis execution condition is satisfied, until the execution condition is not satisfied ⁇ Normal judgment or abnormality judgment is made and either the AFM judgment completion flag is turned on It will be executed repeatedly.
  • step 630 of the main routine in FIG. 10 if the determination by the AFM abnormality diagnosis processing described above has been completed and the AFM determination completion flag has been turned on (YES), then in step 650, the AFM It is determined whether or not the determination flag is on.
  • the AFM normality determination flag is on (YE S)
  • step 660 If the flag is off (S660: NO), in step 670, the processing of the ECU 70 shifts to “EGR abnormality diagnosis processing” shown in FIG.
  • the ECU 70 ends the processing of this routine as it is. That is, in this routine, even if the air flow meter 55 is determined to be normal in the current abnormality diagnosis, if the air flow meter 55 is determined to be abnormal once even after the diesel engine 50 is started, the EGR abnormality diagnosis processing is performed. Try not to run.
  • step 810 it is determined whether or not the measurement reference value GA0 has been learned in the current abnormality diagnosis. If the measurement reference value G AO has not been set (S810: NO), in step 220, the actual measurement value ga of the current intake air amount is measured. The reference value is set as GAO, and the process ends. If the measurement reference value GA0 has been learned (S810: YES), in the following step 830, the target opening epegfin of the EGR control valve 61 is set. The target opening epegfin is set by adding the gradually changing amount “a%” to the actual opening epegac ⁇ of the EGR control valve 61. The variable “a%” is set to, for example, about 10%.
  • the target opening epegfin and the actual opening epegact are set as ⁇ % when the EGR control valve 61 is fully closed and 100% when fully opened. Therefore, the EGR control valve 61 is controlled so that its opening gradually increases.
  • the AFM abnormality diagnosis processing is always executed prior to the execution of the EGR abnormality diagnosis processing.
  • the EGR power check is performed. (Step 700 in Figure 11). Accordingly, during the EGR system abnormality determination, the EGR control valve 61 is gradually controlled from the fully closed state to the valve opening side.
  • the theoretical value ⁇ gath of the change amount of the intake air amount is calculated from the actual opening degree epegact of the EGR control valve 61.
  • the amount of change in the amount of intake air here indicates the amount of change in the amount of intake air between the time when the above-mentioned measurement reference value GAO is learned and the current time.
  • the throttle opening is fixed, the total flow rate of the gas introduced into the combustion chamber 52 is kept almost constant, so that the change in the intake air amount here is almost the same as the EGR amount at that time.
  • the EGR amount estimated from the actual opening epegact of the EGR control valve 61 is obtained as the theoretical value ⁇ gath of the change amount of the intake air amount.
  • the ECU 70 reads the actual measured value ga of the intake air amount at that time detected by the air flow meter 55, and in step 860, the ECU 70 reads the measured intake air amount from the measurement reference value GA0. By subtracting the measured value ga, the measured value ⁇ ga of the change amount of the intake air amount is obtained.
  • step 870 it is determined whether or not the difference between the measured value ⁇ ga of the change amount of intake air amount and the theoretical value ⁇ gath obtained as described above exceeds a predetermined determination value. That is, here, it is determined whether or not a significant difference is observed between the actually measured value ⁇ ga and the theoretical value ⁇ gath.
  • the measured value ⁇ ga and the theoretical value ⁇ gath should take almost the same value. If the difference (
  • the processing of this routine is temporarily terminated. In this case, as long as the abnormality diagnosis execution condition is satisfied, the processing of this routine is executed again. If the value of the counter C2 exceeds the predetermined value T2 (S900: YES), that is, if the difference between the actually measured value ⁇ ga and the theoretical value ⁇ gath exceeds the judgment value, If it has continued for a certain period of time or more, the ECU 70 sets the EGR abnormality determination flag to ON and the diagnosis completion flag to ON in step 910, and ends the processing.
  • the diagnosis end flag is set to ON, and the current abnormality diagnosis is completed.
  • the above is the details of the EGR abnormality diagnosis processing. As described above, in the present embodiment, only when it is confirmed that the air flow meter 55 has no abnormality, the abnormality determination of the EGR based on the intake air amount detected by the air flow meter 55 is performed. Has become. By the way, in the above AFM abnormality diagnosis processing, even if the AFM abnormality determination flag is turned on, it cannot be immediately determined that the air flow meter 55 has an abnormality.
  • step 650 of the main routine in FIG. 10 if the AFM normality determination flag is off (S650: N ⁇ ), that is, if the AFM abnormality determination flag is set on by the AFM abnormality diagnosis processing, In step 640, the ECU 70 proceeds to “abnormality determination processing” shown in FIG. 13 and specifies an abnormal part there.
  • FIG. 13 shows a flowchart of the abnormality determination processing.
  • ECU 70 Abnormal sites are identified by repeatedly executing the processing of one chin as necessary.
  • the ECU 70 first executes an EGR cut in step 1000.
  • a theoretical value pm th of the intake pressure is calculated from the throttle opening.
  • the intake pressure can be uniquely obtained as a function of the throttle opening, as with the intake air amount.
  • step 1020 the measured value pm of the intake pressure detected by the intake pressure sensor 57 is read, and in the next step 1030, the difference between the measured value pm and the theoretical value pmt h (
  • pmt h -pm I) is equal to or smaller than the determination value y (S 1030: NO)
  • the diagnosis completion flag is turned on in step 1040 to complete the current abnormality diagnosis. Thereby, the abnormality determination of the air flow meter 55 is determined.
  • step 1050 when the difference (
  • the intake pressure sensor 57 detects inappropriate detection results It can be determined that it is outputting. If it is considered that the simultaneous failure of the air flow meter 55 and the intake pressure sensor 57 is almost impossible, it can be determined that the sticking abnormality of the EGR control valve 61 has occurred in this case. Therefore, in this case, in step 1070, the EGR abnormality determination flag is set to ON, and the AFM abnormality determination flag that has been set to ON in the previous AFM abnormality diagnosis processing is reset to OFF.
  • step 1040 the diagnosis completion flag is set to ON, the diagnosis result indicating that there is an abnormality in the EGR system is determined, and the current abnormality diagnosis is completed.
  • This abnormality determination processing is repeatedly executed as long as the abnormality diagnosis execution condition is satisfied, until the diagnosis completion is set to ON.
  • the above is the details of the abnormality determination processing.
  • the abnormality diagnosis performed as described above is repeatedly performed every time the vehicle is decelerated. In this embodiment, when the same diagnostic result (AFM abnormality determination, EGR normality determination, or EGR abnormality determination) is detected continuously for a predetermined number of times, the diagnosis result is determined to be determined, and during the trip, Abnormality diagnosis is not performed. According to the embodiment described above, the following effects can be obtained.
  • the diagnosis of the EGR device is performed based on the intake air amount detected by the air flow meter 55.However, prior to the determination, the abnormality diagnosis of the air flow meter 55 is performed, and the abnormality of the air flow meter 55 is determined. When it is confirmed that there is, abnormality diagnosis of the EGR device is not performed. As a result, abnormality diagnosis using the measured value of the failed air flow meter 55 is prevented, and abnormality of the EGR can be detected more accurately.
  • the abnormality diagnosis of the air flow meter 55 is performed immediately before the abnormality diagnosis of the EGR device. Therefore, the abnormality diagnosis of the EGR device can be performed in a state where the normality of the air flow meter 55 is further guaranteed, and the detection accuracy of the abnormality of the EGR device can be further improved.
  • the EGR cut is performed during the abnormality diagnosis of the air flow meter 55, and the control for forcibly changing the opening of the EGR control valve 61 during the abnormality diagnosis of the EGR device is performed.
  • the normal EGR control is interrupted during the diagnosis.
  • the abnormality diagnosis of the EGR device is continuously performed immediately after the abnormality diagnosis of the air flow meter 55, so that the number of times such normal EGR control is interrupted can be reduced.
  • the abnormality diagnosis of the EGR device is performed by controlling the opening degree of the EGR control valve 61 to be gradually changed. Therefore, the EGR amount does not change suddenly at the time of judgment, and the sudden change in the EGR amount affects the operation of the engine 50.
  • the abnormality diagnosis of the EGR device can be similarly performed by using the change amount of the intake pressure detected by the intake pressure sensor 57 instead of the change amount of the intake air amount to be changed. In this case, too, the abnormality diagnosis of the intake pressure sensor 57 is performed in advance, and if the abnormality of the intake pressure sensor 57 is confirmed, the abnormality diagnosis of the EGR device using the measured value of the intake pressure sensor 57 is prohibited. If so, the accuracy of abnormality diagnosis can be improved as well.
  • FIG. 14 is a flowchart illustrating an outline of a processing procedure of the ECU 70 in the abnormality diagnosis of the EGR device. Also in the abnormality diagnosis by the routine in FIG. 14, prior to the abnormality diagnosis of the EGR device, first, the abnormality diagnosis of the air flow meter 55 is performed (S1100). This abnormality diagnosis is performed through the above-described AFM abnormality diagnosis processing. That is, the processing of the flowchart in FIG. 11 is repeatedly executed as necessary.
  • the abnormality diagnosis at this time is performed through a process in which the amount of change in the intake air pressure is used instead of the amount of change in the amount of intake air in the EGR abnormality diagnosis process described above. That is, in step 840 of FIG. 12, the theoretical value of the change in the atmospheric pressure is obtained from the actual opening epegact of the EGR control pulp 61, and the step 806 is obtained from the actual measured intake pressure read in step 850. At 0, the actual measured value of the intake pressure change amount is obtained. Then, in step 870, it is determined whether or not the difference between the theoretical value and the actually measured value of the amount of change in intake pressure exceeds a predetermined determination value. Of course, the measurement reference value learned in step 820 is also based on the actually measured intake pressure at that time.
  • an abnormality of the intake pressure sensor is diagnosed prior to the abnormality diagnosis of the EGR device. If no abnormality is detected in the intake pressure sensor, the amount of change in the intake pressure is used. An abnormality diagnosis of the EGR device may be performed using the amount of change.
  • the contents of the execution conditions of the abnormality diagnosis for determining whether or not the condition is satisfied in step 61 of FIG. 10 may be changed as appropriate.
  • the above execution conditions should be adjusted so that the control of the throttle valve 56 and the EGR control pulp 61 in the abnormality diagnosis has little effect on the operation of the diesel engine 50 and the abnormality diagnosis is performed in a condition where the engine operation state is stable. It is desirable to set.
  • the abnormality diagnosis of the air flow meter 55 and the abnormality diagnosis of the EGR device are performed continuously, but the abnormality diagnosis is performed at different times or in different situations. May be.
  • the abnormality diagnosis of the EGR device can be performed by using the change amount of the intake air amount or the change amount of the intake pressure. If the engine control amount changes, the EGR device abnormality diagnosis can be performed using the change amount. For example, if the engine includes a sensor that measures the intake pressure of the EGR passage 60, abnormality diagnosis can be performed based on the amount of change in the intake pressure of the EGR passage 60.
  • the air flow meter 55 is confirmed to be abnormal once even by the processing of step 66 in FIG. 10, even when the air flow meter 55 is subsequently confirmed to be normal, although it is not determined whether there is an abnormality in the EGR device, such a process may be omitted. That is, when the air flow meter 55 in which the abnormality has been previously confirmed has returned to the normal state, the execution of the abnormality determination of the EGR device may be permitted.
  • the presence or absence of an abnormality in the air flow meter 55 may be confirmed by a method different from the method based on the AFM abnormality diagnosis processing in FIG.
  • the air flow meter 55 when the air flow meter 55 is determined to be abnormal (AFM abnormality determination flag is turned on) by the AFM abnormality diagnosis processing, similar abnormality determination is performed using the measured value of the intake pressure sensor 57.
  • An abnormal confirmation process for specifying an abnormal part is performed. Such an abnormal part may be specified by another method. Further, such an abnormal portion need not be specified immediately after the air flow meter 55 determines the abnormality. Furthermore, if it is only necessary to confirm that there is some abnormality without identifying the abnormal site, the identification of such an abnormal site may be omitted.
  • the determination of the presence or absence of an abnormality in the EGR device in the above embodiment need not always be performed with the throttle opening fixed.
  • the throttle opening is changed, the amount of intake air changes, but such a change in the amount of intake air can be obtained theoretically. Therefore, taking into account the change in throttle opening and the change in the opening of the EGR control valve 61, the theoretical value of the amount of change in the amount of intake air is determined, and this is detected by the air flow meter 55. By comparing the measured value of the change in the intake air amount with the measured value, it is possible to determine whether the EGR device is abnormal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

明細書
排気還流装置の異常診断装置
技術分野
本発明は内燃機関の排気ガスを同機関の吸気系に還流する排気還流装置の異常 診断装置に関するものである。 背景技術
従来、 車载用エンジン等の内燃機関においては、 排気ェミッションの改善を意 図して排気ガスの一部を吸気系に還流させる排気還流 (EGR) 装置を備えたも のが知られている。 この EGR装置は、 内燃機関の排気通路と吸気通路とを違通 する EGR通路と、 同 EGR通路に設けられた EGRバルブとを備えている。 そ して、 EGRバルブの開度を調整することにより、 排気通路から吸気通路へ還流 される排気ガスの量 (EGR量) が調整される。 こうした EGR装置によって排 気ガスの一部が吸気通路に戻されると、 同排気ガスにより、 燃料の燃焼温度が下 がって燃焼室内での窒素酸化物 (NOx) の生成が抑制され、 排気ェミッション が改善されるようになる。 このような EGR装置に何らかの異常、 例えば EG Rバルブの作動不良が生じ たりすると、 E G R量がそのときの機関運転状態に適した値から外れて燃焼状態 が悪化したり、 NOxが増加したりしゃすい。 そこで、 EGR装置の異常を検出 する手段として、 特開平 4一 140464号公報において、 所定の異常診断条件 が成立したとき E G Rバルブを強制的に全閉状態又は全開状態にし、 この E G R パルプの動作に伴う吸気通路内の圧力の変化量を測定し、 この圧力変化量に基づ き E G R装置の異常の有無を判定するようにした排気還流装置の故障診断装置が 提案されている。 ところが、 上記公報の故障診断装置では、 吸気通路内の圧力の変化量を測定す るために、 E G Rバルブを全閉状態又は全開状態にするようにしているので、 そ の間の E G R量の変化量が大きくなる。 このように E G R量の変化量が大きくな ると、 排気ェミッションが悪化したり、 燃焼状態が大きく変化して機関出力に急 激な変動が生じ、 ドライバビリティが悪化したりするおそれがある。 また、 吸気圧等のエンジン制御量の測定結果に基づいて E G R装置の異常の有 無を判定する装置では、 異常判定に用いるェンジン制御量を測定するためのセン サ類、 例えば吸気圧を測定する吸気圧センサや吸入空気量を測定するエアフロー メータが故障していれば、 当然、 正確な E G R装置の異常判定を行うことができ なくなってしまう。 本発明は、 上記事情を鑑みてなされたものであって、 その目的は、 排気還流装 置の異常診断を容易かつ確実に行うことができる排気還流装置の異常診断装置を 提供することにある。 本発明の別の目的は、 排気ェミッションの悪化やドライバ ピリティの悪化を抑制しつつ、 排気還流装置の異常診断を容易かつ確実に行うこ とができる装置を提供することにある。 発明の開示 , 以下、 上記目的を達成するための手段及ぴその作用効果について記載する。 本発明の一実施態様における排気還流装置の異常診断装置は、 内燃機関の排気 系と、 吸気系のスロットル弁の下流とを排気還流通路により連通し、 該排気還流 通路内に設けられた制御弁の開度を制御することにより、 排気系から吸気系に還 流される排気還流量を調整するようにした排気還流装置に適用される。 その異常 診断装置は、 所定の異常診断条件が成立したとき、 前記制御弁の開度が徐々に変 化するように制御弁を駆動制御するとともに、 前記制御弁の駆動制御の開始後の 所定期間における吸入空気量の変化量又は吸気圧力の変化量を検出し、 この検出 値が所定の判定値を超えない場合に排気還流装置に異常が有ると診断する。 この装置によれば、 排気還流装置の異常診断時において、 排気還流通路の制御 弁の開度が徐々に変化するように制御される。 従って、 排気還流装置に異常がな ければ、 排気還流量が変化しなかったり急激に増減したりすることはなく、 排気 還流量は徐々に変化するようになる。 制御弁の開度変化に対して気体には応答遅 れが存在するが、 所定期間経過すれば排気還流量の変化量は所定量以上となる。 このような排気還流量の変化に伴って吸入空気量又は吸気圧力が変化することと なり、 所定期間における吸入空気量の変化量又は吸気圧力の変化量を検出するこ とにより排気還流量の変化量を求めることができる。 従って、 制御弁の制御時に おいて所定期間における吸入空気量の変化量又は吸気圧力の変化量が判定値以下 であるときには、 排気還流装置に異常が有ると診断することができ、 排気還流装 置の異常診断を容易かつ確実に行うことができる。 しかも、 排気還流装置の異常 診断時において排気還流量が急激に増減することはないため、 排気エミッション の悪化を抑制することができるとともに、 燃焼状態の変化を抑えて機関出力の急 激な変動を低減することができ、 ドライバピリティの悪化を抑制することができ る。 異常診断装置は、 前記内燃機関の運転状態が安定しているときに前記排気還流 装置の異常診断を行うことが望ましい。 内燃機関の運転状態が安定しているとき には吸入空気量又は吸気圧力は安定している。 排気還流装置の異常診断を内燃機 関の運転状態が安定しているときに行えば、 制御弁の開度制御以外の要因に基づ く吸入空気量の変化又は吸気圧力の変化を抑制することができ、 異常診断の精度 . を高めることができる。 異常診断装置は、 前記内燃機関の運転状態が車両減速中であって、 その燃料供 給量が所定量以下の時に、 前記排気還流装置の異常診断を行うことが望ましい。 このとき、 燃料の燃焼がほとんど行われないため、 異常診断時における排気エミ ッシヨンの悪化を確実に抑制することができる。 異常診断装置は、 異常診断を行う際、 前記スロッ トル弁の開度変化を抑制する ものであることが好ましい。 この場合、 スロッ トル開度変化に基づく吸気系の圧 力変動や空気量変動を抑制することができ、 異常診断の精度を高めることができ る。 異常診断装置は、 異常診断を行う際、 前記スロッ トル弁の開度を固定するもの であることが好ましい。 この場合、 排気還流装置の異常診断を行うために制御弁 が制御されるとき、 スロットル弁の開度が固定されて吸気系の圧力変動や空気量 変動が的確に抑制されるため、 同異常診断の精度を一層高めることができる。 ところで、 排気還流装置の異常診断時においては、 スロットル弁ゃ制御弁に通 常の運転時とは異なる駆動をさせることになる。 従って、 ドライバビリティの確 保ゃス口ットル弁及び制御弁等の部品の耐久性を維持するという観点からは、 異 常診断の回数はなるべく少ない方がよい。 また、 一方で誤診断を避けるためには 異常診断を複数回実行するのが望ましい。 そこで、 好適な異常診断装置では、 所定回数診断を繰り返した後、 診断結果を 確定し、 診断結果の確定後は同一トリップ内において異常診断を禁止する。 排気 還流装置の異常の診断結果を確定するまでの異常診断の回数を例えば 2回に設定 すれば、 異常診断の回数を必要最小限にし、 以てドライパビリティを確保すると ともにスロットル弁及び制御弁等の部品の耐久性を維持することができる。また、 当然ながら、 異常診断の精度を向上することができる。 なお、 トリップとは内燃 機関が始動されてから停止されるまでの期間である。 好適な異常診断装置は、 異常診断を行う際、 前記異常診断条件の成立時におけ る前記制御弁の開度に基づいて前記制御弁の駆動方向を設定する。 この場合、 異 常診断条件の成立時における制御弁の開度に基づいて制御弁の駆動方向が開き側 又は閉じ側となるように設定される。 そのため、 異常診断条件成立時における制 御弁の開度位置からの制御弁の総駆動量を確保することができる。 このように制 御弁の総駆動量を確保することによって、 排気還流量の変化量を所定量以上とす ることができる。 そのため、 制御弁の制御時において所定期間における吸入空気 量の変化量又は吸気圧力の変化量が判定値以下であるときには、 排気還流装置に 異常が有ると診断することができ、 排気還流装置の異常診断を容易かつ確実に行 うことができる。 , 異常診断装置は、 異常診断を行う際、 前記異常診断条件の成立時における前記 制御弁の開度が第 1の所定開度以上のときには前記制御弁の駆動方向を閉じ側に 設定し、 前記制御弁の開度が前記第 1の所定開度未満のときには前記制御弁の駆 動方向を開き側に設定するものであることが好ましい。 この場合、 異常診断条件 の成立時における制御弁の開度が第 1の所定開度以上のときには、 制御弁の駆動 方向が閉じ側に設定され、 制御弁の開度が第 1の所定開度未満のときには、 制御 弁の駆動方向が開き側に設定される。 そのため、 異常診断条件の成立時における 制御弁の開度からの総駆動量を確保することができる。 異常診断装置は、 前記制御弁を閉じ側に駆動させる徐変量と前記制御弁を開き 側に駆動させる徐変量とを異なる値に設定するものであることが好ましい。 この ように、 制御弁を閉じ側に駆動させる徐変量と開き側に駆動させる徐変量とを異 なる値に設定する場合、 制御弁を閉じ側に駆動させる徐変量を、 制御弁を開き側 に駆動させる徐変量よりも大きな値に設定することができる。 内燃機関において排気還流量の大小が機関出力に影響を及ぼして、
リティが悪化したりする。 排気還流量が減少して吸入空気量が増加すると、 機関 出力の低下が抑えられてドライバピリティは維持される。 逆に、 内燃機関におい て排気還流量が増加して吸入空気量が減少すると、 機関出力が低下してドライバ ビリティが悪化したり、 スモークが増加したりする。 従って、 制御弁を閉じ側に 駆動させる徐変量と前記制御弁を開き側に駆動させる徐変量とを異なる値に設定 することにより、 制御弁を開き側に駆動する場合であれ、 閉じ側に駆動する場合 であれ、 ドライバビリティの悪化やスモークの増加を抑制しつつ、 排気還流装置 の異常診断を行うことができる。 異常診断装置は、 前記制御弁の駆動制御に伴って該制御弁の開度が第 2の所定 開度に達したとき、 その徐変量を変更するものであることが好ましい。 このよう に、 制御弁の開度の徐変量を変更する場合、 前記制御弁の開き側ではその徐変量 が大きくなるように変更し、 前記制御弁の閉じ側ではその徐変量が小さくなるよ うに変更することができる。 制御弁の開度が第 2の所定開度以上の場合に、 開度の変化に対する排気還流量 の変化の感度が低下するような制御弁である場合、 制御弁の開度の徐変量を一定 値にすると、 制御弁の開度が第 2の所定開度以上であるとき、 排気還流量の変化 量は小さいものとなる。 そのため、 排気還流量の所要の変化量を得るために長い 時間が必要となり、 異常診断時間が長引いてしまう。 この点に関して、 制御弁が 開き側又は閉じ側に駆動されてその開度が第 2の所定開度に達したとき徐変量を 変更するようにすれば、排気還流量の所定の変化量を得るための時間を短縮でき、 よって異常診断時間を短縮化することができる。 異常診断装置は、 前記異常診断条件の成立時における前記制御弁の開度が第 3 の所定開度未満のときには異常診断を禁止することが好ましい。 制御弁の開度が 小さく排気還流量がほとんどない状態から、 制御弁を開いて排気還流量を増加さ せると、 機関出力の低下が著しくなり、 ドライパビリティが悪化したり、 スモー クが増加したりする。 この点に関して、 異常診断条件の成立時における前記制御 弁の開度が第 3の所定開度未満のときに異常診断を禁止すれば、 ドライバビリテ ィの悪化やスモークの増加が確実に抑制される。 図面の簡単な説明
図 1は本発明の第 1実施形態にかかる排気還流装置が適用されたディーゼルェ ンジンの概略構成を示す略図。
図 2は第 1実施形態の排気還流装置の異常診断処理を示すフローチヤ一ト。 図 3は同じく第 1実施形態の排気還流装置の異常診断処理を示すフローチヤ一 図 4は第 1実施形態の異常診断時の制御の一例を示すタイムチヤ一ト。
図 5は第 2実施形態の排気還流装置の異常診断処理を示すフローチャート。 図 6は第 2実施形態における E G R制御弁の開度量の制御を示す説明図。 図 7は E G R開度と E G R量との関係を示すグラフ。
図 8は E G R開度の徐変量の切替に基づく E G R量の変化を示す説明図。 図 9は本発明の第 3実施形態におけるディーゼルエンジンを示す模式図。 図 1 0は同実施形態の異常診断処理のメインルーチンのフローチャート。 図 1 1は同実施形態の A F M異常診断処理のフローチヤ一ト。
図 1 2は同実施形態の E G R異常診断処理のフローチャート。
図 1 3は同実施形態の異常確定処理のフローチヤ一ト。
図 1 4は更なる実施形態の異常診断処理のフローチヤ一ト。 発明を実施するための最良の形態
(第 1実施形態)
以下、 本発明にかかる排気還流装置の異常診断装置を車両用ディーゼルェ ンに適用した第 1実施形態を図 1〜図 4に従って詳細に説明する。 図 1に示すように、 ディーゼルエンジン 1の燃焼室 1 2には、 図示しない吸気 パルプを介して吸気通路 2が接続されている。 この吸気通路 2には上流側から下 流側に向かって、 吸入空気を濾過するエアクリーナ 3、 吸入空気量を検出する空 気量センサ 6、 吸入空気の温度を検出する吸気温センサ 32、 燃焼室 1 2に導入 される吸入空気量を調整するスロッ トル弁 4が設けられている。 スロッ トノレ弁 4は、 ステップモータ 25及び、 このステップモータ 25とスロ ットル弁 4とを連結するギア群を含んだ駆動機構 5によって開閉される。 なお、 ステップモータ 25は、 ディ一ゼルェンジン 1の各種制御を行うための電子制御 装置 (以下、 「ECU」 という) 1 9によって制御される。 また、 上記駆動機構 5 には、 スロットル弁 4が全開近傍の所定位置よりも開き側に位置する時にオン状 態となる全開スィツチ 26が設けられている。 一方、 吸気通路 2にあってスロッ トル弁 4の更に下流側には、 上記燃焼室 1 2 に図示しない排気バルブを介して接続される排気通路 7から分岐して同吸気通路 2に合流する排気還流 (EGR) 通路 8が接続されている。 この EG R通路 8に は、 上記 ECU1 9によって制御されるダイアフラム等のァクチユエータ 1 0に よって開閉される EGR制御弁 9が設けられている。 上記燃焼室 12内に導入さ れる気体の量は一定であって、前記スロットル弁 4によって吸入空気量を調整し、 EGR制御弁 9によって EG R量をそれぞれ調整することで、 燃焼室 12内に導 入される吸入空気量に対する EGR量の割合、 すなわち EGR率を自在に設定す ることが可能となる。 すなわち、 ディーゼルエンジン 1の全運転領域にわたって 適切な EGR制御を行うことができるようになる。 ところで、 ディーゼルエンジン 1の燃焼室 1 2には、 燃料を直接噴射するため の噴射ノズル 1 1が設けられている。 この燃料噴射ノズル 1 1は、 燃料噴射ボン プ 14に接続されている。 この燃料嘖射ポンプ 14は、 ディーゼルエンジン 1の 出力軸 2 3の回転に基づき駆動されて、 前記噴射ノズル 1 1に対し、 燃料を加圧 供給する。 また、 この燃料噴射ポンプ 1 4は、 噴射ノズル 1 1から噴射される燃 料の噴射時期や噴射量を調整するタイマコント口ールバルブ 1 5及ぴスピル弁 1 6を備えている。 これらタイマコントロールバルブ 1 5及ぴスピル弁 1 6も前記 E C U 1 9によってその作動が制御される。 なお、 燃料噴射ポンプ 1 4内には、 ディーゼルエンジン 1の出力軸の回転に同 期して回転するロータ (図示しない) が設けられるとともに、 このロータの回転 速度を検出する回転数センサ 1 7が設けられている。 回転数センサ 1 7は電磁ピ ックアップからなり、 前記ロータの外周面に形成された凸部を検出してその回転 速度に対応したパルス信号を出力する。 この回転数センサ 1 7の出力は、 ディー ゼルエンジン 1の回転速度の算出に寄与する信号として前記 E C U 1 9に取り込 まれる。 その他、 E C U 1 9には、 上記空気量センサ 6によって検出される吸入空気量 の情報や吸気温センサ 3 2によって検出される吸気温度の情報が取り込まれる。 また、 E C U 1 9にはアクセル開度センサ 1 8によって検出されるアクセル開度 情報 (アクセルペダルの踏み込み量情報) や I G (ィグニッシヨン) スィッチ 2 0のオン 'オフ情報、 スタータスイッチ 2 1のオン 'オフ情報、 水温センサ 3 0 によって検出される冷却水温度情報も併せて取り込まれる。 なお、 I Gスィッチ 2 0は、 機関の始動 ·停止を制御するためのスィツチであり、 機関始動時にオン となり、 停止時にオフとなる。 また、 スタータスイッチ 2 1は、 機関を始動させ るスタータモータを駆動するためのスィツチであり、 同スタータモータの回転時 にはオンとなり、 停止時にはオフとなる。 前記 E C U 1 9は、 上記各センサの検出信号に基づいて前記燃料噴射ポンプ 1 4のタイマコント口ールバルブ 1 5及ぴスピル弁 1 6を駆動することにより、 デ イーゼルエンジン iの燃料噴射量制御、 燃料噴射時期制御を実行する。 また、 E CU1 9は、 上記各センサの検出信号に基づいて前記ステップモータ 25、 前記 EGR制御弁 9を開閉するァクチユエータ 10等を駆動することにより、 EGR 制御、 吸入空気量制御等を実行する。 さらに、 ECU 1 9は上記各センサの検出 信号に基づいて前記ステップモータ 25、 ァクチユエータ 10を EGR制御とは 異なる方法で駆動することにより、 EGR装置の異常診断を行う。 次に、 EGR装置の異常診断処理の手順について、 図 2, 図 3に示すフローチ ヤートを参照して詳細に説明する。本ルーチンは、 E CU 1 9により所定時間毎、 例えば数十ミリ秒毎に周期的に実行される。 さて、 処理がこのルーチンに移行すると、 まずステップ 1 00において、 異常 診断の前提条件が成立しているか否かが判定される。 具体的には、 アクセル開度 が 0%であること、 かつ燃料噴射量が所定値 QF 0 (この場合、 QF 0 = 0) 以 下であること、 検出完了フラグが OF Fであること、 回転速度偏差 ΔΝΕが所定 値 NE 0未満であること、 かつ診断完了フラグが OF Fであること等である。 なお、 所定値 QF 0は "0" に限らず、 ほぼアイドル噴射量以下であればよい。 この前提条件におけるアクセル開度が 0 %であること、 燃料噴射量が所定値 Q F 0以下であること、 及び回転速度偏差 Δ N Eが所定値 N E 0未満であることは、 車両減速中のディーゼルエンジン 1への燃料供給の停止時であることを意味する。 これらの条件のすべてが満たされているときにのみ、 異常診断の前提条件が成立 しているものとみなす。
L 00においてすべての条件が満たされると、 異常診断の前提条件が 成立したと判定され、 ステップ 1 10に進む。 ステップ 11 0において、 条件成 立カウンタの値がィンクリメントされる。 7° 1 2 0において、 条件成立カウンタの値が所定時間 T 0に相当する値 よりも大きいか否かを判定することにより、 ディーゼルエンジン 1の運転状態が 安定しているか否かが判定される。 ディーゼルエンジン 1の運転状態が安定して いるときには吸入吸気量や E G R量も安定しており、 E G R装置の異常診断の検 出精度を向上することができるためである。 ステップ 1 2 0において条件成立力 ゥンタの値が所定時間 T 0を示す値以下であると判定されると、 本ルーチンを一 旦終了する。
1 2 0において、 条件成立カウンタの値が所定時間 T 0を示す値より も大きいと判定されると、 ディーゼルエンジン 1の運転状態が安定していること が確認される。 従って、 次のステップ 1 3 0においてスロットル弁 4の開度がそ の時の開度に固定される。 スロットル開度を変更すると、 スロッ トル弁 4の下流 での吸気負圧が変化し、 この吸気負圧の変化によって E G R量が変化するととも に吸入空気量が変化することになる。 従って、 E G R装置の異常診断時にはスロ ットル開度を固定することにより、 スロットル開度の変化に基づく吸入空気量の 変化を抑制して E G R装置の異常診断の精度を向上するようにしているのである。 次のステップ 1 4 0において、 吸入空気量の測定基準値を学習済みか否かを示 す基準学習フラグが O Nであるか否かが判定される。 基準学習フラグが O Nでな いと判定されると測定基準値が未学習であるため、 ステップ 1 5 0に進んで吸入 空気量の測定基準値としてその時の吸入空気量 G Aが設定される。 続くステップ 1 6 0において基準学習フラグが O Nに設定され、 処理は図 3のステップ 1 8 0 に進む。 また、 ステップ 1 4 0において基準学習フラグが〇Nであると判定されると、 測定基準値が学習済みであるため、 ステップ 1 7 0に進んで E G R制御弁 9の目 標開度 e p e g f i nが設定される。 この目標開度 e p e g f i nは E G R制御 弁 9の実開度 e p e g a c tから徐変量「 a %」を減ずることにより設定される。 E G R制御弁 9は通常駆動時には目標値にフィードバック制御されており、 本ル 一チンに移行すると、 記憶された移行直前の実開度が初期値となる。 前記徐変量 「 a %」は E G R制御弁 9の全開時における開度に対する割合であり、徐変量「 a」 として正及ぴ負のいずれの値も設定することができる。 従って、 徐変量 「a」 が 正の値であれば E G R制御弁 9はその開度が徐々に小さくなるように制御され、 逆に徐変量 「a」 が負の値であれば E G R制御弁 9はその開度が徐々に大きくな るように制御されることとなる。 前記徐変量 「a」 を正の値にするか負の値にするかは、 E G R制御弁 9の実開 度に基づいて決めても良い。 すなわち E G R制御弁 9の実開度が所定値よりも大 きい時は徐変量「a」 を正の値とし、 逆に実開度が所定値以下の時は徐変量「a」 を負とすることができる。 そして、 この所定値は、 例えば E G R制御弁 9の全閉 状態から 3 0 %開いた値に設定することができる。 このようにすることにより、 誤検出を防止するとともにスモークの発生やドライバビリティの悪化を最小限に 抑制することができる。 すなわち、 E G R制御弁 9の実開度が所定値よりも小さ い時に E G R制御弁 9を徐々に閉じても吸入空気量の変化は少なく、 却って誤検 出のおそれがある。 そのため、 この場合には E G R制御弁 9を徐々に開くことに より吸入空気量の変化がある程度大きくなり、 誤検出を防止することができると ともにスモークの発生やドライバピリティの悪化を最小限に抑制することができ る。 また E G R制御弁 9の実開度が所定値よりも大きい時には、 E G R制御弁 9 を徐々に閉じることによりスモークの発生やドライバピリティの悪化なしに異常 診断を実行することができる。
8 0では E G R制御弁 9の開度に応じた吸入空気量から測定基準値 G Aを減じて E G R制御弁 9の制御開始後の吸入空気量の変化量が検出され、 そ の空気量変化が所定の判定値 Q A 0より大きいか否かが判定される。 この空気量 変化が判定値 QAOより大きいと判定されると、 ステップ 1 90に進み、 空気量 変化が判定値 Q AO以下であると判定されると、 ステップ 220に進む。
7°1 90では、 EGR装置は正常であると診断されて診断結果が正常で ある旨を示す正常判定フラグが O Nに設定されるとともに、 E G R制御弁 9の開 度制御開始後の経過時間を計測する異常カウンタの値がクリアされる。 次のステップ 200において、 EGR装置が異常である旨を示す異常判定フラ グが O Nであるか否かが判定される。 異常判定フラグが O Nであると判定される とステップ 2 10に進み、 異常判定フラグが〇F Fであると判定されるとステツ プ 270に進む。 ステップ 2 10では異常判定フラグが OF Fに設定されるとともに、 診断カウ ンタがクリアされる。 また、 前記ステップ 1 80において空気量変化が判定値 Q AO以下であると判定されると、 ステップ 220において前記異常カウンタの値 がーつアップされる。 ステップ 230において異常カウンタの値が所定時間 T 1を示す値よりも大き いか否かが判定される。 この所定時間 T 1は EG R制御弁 9及び EG R通路 8を 含む EGR装置が正常である場合において、 前記 EGR制御弁 9の開度の徐変量 を 「a%」 とした時に、 空気量変化が前記判定値 Q AOを超える値に設定されて いる。 このステップ 230において、 異常カウンタの値が所定時間 T 1を示す値 以下であると判定されると、 本ルーチンをー且終了する。 異常カウンタの値が所 定時間 T 1を示す値より大きいと半 IJ定されると、 ステップ 240に進んで EGR 装置に異常が有ると診断されて異常判定フラグが ONに設定される。 次のステップ 250において、 正常判定フラグが ONであるか否かが判定され る。 正常判定フラグが O Nであると判定されるとステップ 2 6 0に進み、 正常判 定フラグが O F Fであると判定されるとステップ 2 7 0に進む。 ステップ 2 6 0 では正常判定フラグが O F Fに設定されるとともに、 診断カウンタがクリアされ る。 ステップ 2 1 0及びステップ 2 6 0に続くステップ 2 7 0では、 検出完了フラ グが O Nに設定されるとともに、 診断カウンタの値がインクリメントされる。 な お、検出完了フラグ及ぴ診断力ゥンタは一回の車両減速中に一回しか作動しない。 従って、 一回の車両減速中に異常診断が確定することはない。 これは一回の車両 減速中の誤検出を防止すると同時に、 一度正常判定された場合には異常診断を実 行しないことで、 ドライバに不要な不快感を与えないためでもある。 従って、 少 なくとも 2回の車両減速を経た後でなければ診断結果が確定しないようになって いる。 これにより誤検出のおそれを確実に排除することができるとともに、 不必 要に異常診断処理を実行することが抑制される。 ここで、 一回の減速中とはステ ップ 1 0 0の条件が成立している状態をいう。 また、 連続した複数回の車両減速 における異常診断において、 正常判定と異常判定とが交互になされると、 診断力 ゥンタはリセットされた後に一つインクリメントされるので、 診断カウンタの値 は常に 「1」 となる。 次のステップ 2 8 0では、 診断カウンタの値が所定値 N (本実施形態では N = 2とする)以上であるか否かに基づいて診断結果を確定するか否かが判定される。 診断カウンタの値が 2以上であると判定されると、 ステップ 2 9 0において診断 確定フラグが O Nに設定されるとともに、 診断カウンタがクリアされる。
そして、 診断確定フラグが O Nになった後は異常診断が禁止される。 このように することにより異常診断の回数を必要最小限にし、 よってドライバピリティを確 保するとともにスロッ トル弁 4等の部品の耐久性が維持される。 また、 当然なが ら、 異常診断の精度が向上する。 一方、 ステップ 280において診断カウンタの値が 「1」 であると判定される と、 ステップ 300において診断確定フラグが OF Fに設定され、 本ルーチンを 終了する。 なお、 異常診断の回数を必要最小限にするという観点からは診断回数 の所定値 N= 1に設定するのが望ましい。 また、 前記ステップ 100で、 いずれか 1つの条件が満たされていないと、 前 提条件が未成立と判定されて異常診断の実行が禁止され、 処理はステップ 31 0 に移行する。 ステップ 31 0において、 車速が所定車速 SPD (この場合、 S P D=5 km/時) 以下であり、 かつ検出完了フラグが ONであるか否かが判定さ れる。 車速が所定車速 S P D以下であることは車両がほぼ停止状態であることを 意味する。 ステップ 310で車速が所定車速 S PD以下であり、 かつ検出完了フ ラグが ONであると判定されると、 次のステップ 340で検出完了フラグが OF Fに設定され、 本ルーチンを一旦終了する。 一方、 ステップ 3 10で車速が所定車速 S PDより大きい、 又は検出完了フラ グが OF Fであると判定されると、 ステップ 320に進む。 ステップ 320にお いて、 条件成立カウンタがクリアされるとともに、 基準学習フラグが OF Fに設 定され、 さらに異常カウンタがクリアされる。 そして、 ステップ 330において EGR制御弁 9及びスロットル弁 4が通常駆動され、本ルーチンを一且終了する。 図 4は上記のように構成されたディーゼルエンジン 1における排気還流装置の 異常診断処理の一例を示すタイムチャートである。 なお、 診断カウンタの値 Nを 2とした場合について説明する。 ディーゼルエンジン 1の始動後、 車両が走行され、 車両走行状態において減速 走行に移行して燃料供給量が所定量以下になると、 時刻 t 0において異常診断の 前提条件が成立していると判定される (ステップ 100)。 時刻 t 0〜 t 1までの所定時間 T 0の期間において上記前提条件が成立し続け ると、 ディーゼルエンジン 1の運転状態が安定していることが確認される (ステ ップ 120)。 その結果、 時刻 t 1において異常診断が開始され、 スロットル弁 4 の開度が固定される。 時刻 t 1における吸入空気量 GAが測定基準値として設定 される (ステップ 150)。 時刻 t 1〜 t 2までの所定時間 T 1内において、 E GR制御弁 9の開度が徐変 量 「 a %」 (この場合 a〉 0 ) ずつ変化するように、 E G R制御弁 9が制御される (ステップ 1 70)。 EGR制御弁 9が正常であれば、その開度は徐々に小さくな る。 EGR制御弁 9の開度の減少に伴って EGR量が徐々に減少し、 逆に吸入空 気量は徐々に増加するように変化する。 時刻 t 1〜 t 2の所定時間 T 1内において、 吸入空気量の変化量が判定値 Q A 0より大きいと判定されると、 正常判定フラグが ONに設定される (ステップ 1 90)。 このとき、異常判定フラグが ONである場合には異常判定フラグが OF F にされるとともに、 診断カウンタの値が 「0」 にクリアされる。 そして、 検出完 了フラグが〇Nに設定されるとともに、 診断カウンタがーつィンクリメントされ て、 その値は 「1」 となる。 時刻 t 2において、 所定時間 T 1経過後における吸入空気量の変化量が判定値 Q AO以下であると判定されると、 異常判定フラグが ONに設定される (ステツ プ 240)。 このとき、正常判定フラグが ONである場合には正常判定フラグが O FFにされるとともに、 診断カウンタの値が 「0」 にクリアされる。 そして、 検 出完了フラグが ONに設定されるとともに、 診断カウンタがーつインクリメント されて、 その値は 「1」 となる。 時刻 t 0以降に開始された車両減速状態が時刻 t 2以降においても継続してい る場合には、 検出完了フラグが ONであるため異常診断の前提条件が不成立とな る (ステップ 100)。 そのため、時刻 t 2において条件成立カウンタはクリアさ れるとともに、 基準学習フラグは OFFに設定され、 さらに異常カウンタもタリ ァされる (ステップ 320)。 そして、 EGR制御弁 9及びスロットル弁 4は通常 駆動されて E G R制御が実行される。 車両がさらに減速され、時刻 t 3において車速が所定車速 S PD以下になると、 車両停止状態のアイドル状態であると判定され(ステップ 31 0)、検出完了フラ グが OFFに設定される (ステップ 340)。 この後、 アクセルが踏み込まれて車両が通常走行に移行し、 再度、 車両が減速 走行に移行して燃料供給量が所定量以下になると、 時刻 t 4において異常診断の 前提条件が成立していると判定される (ステップ 100)。 時刻 t 4〜 t 5までの所定時間 T 0の期間において上記前提条件が成立し続け ると、 ディーゼルエンジン 1の運転状態が安定していることが確認される (ステ ップ 1 20)。 その結果、時刻 t 5において異常診断が開始され、 スロットル弁 4 の開度が固定される。 時刻 t 5における吸入空気量 G Aが測定基準値として設定 される (ステップ 1 50)。 時刻 t 5〜 t 6までの所定時間 T 1において、 E G R制御弁 9の開度が徐変量 「a%」 (この場合 a > 0)ずつ変化するように EGR制御弁 9が制御される (ス テツプ 1 70)。 EG R制御弁 9が正常であれば、 その開度は徐々に小さくなり、 E GR制御弁 9の開度の減少に伴って E GR量が徐々に減少し、 逆に吸入空気量 は徐々に増加するように変化する。 時刻 t 5〜 t 6の所定時間 T 1内において、 吸入空気量の変化量が判定値 Q A 0より大きいと判定されると、 正常判定フラグが ONに設定される (ステップ 1 90)。 このとき、異常判定フラグが ONである場合には異常判定フラグが OFF にされるとともに、 診断カウンタの値が 「0」 にクリアされる。 そして、 検出完 了フラグが〇Nに設定されるとともに、 診断カウンタが一っィンクリメントされ て、 その値は 「1」 となる。 時刻 t 6において、 所定時間 T 1経過後における吸入空気量の変化量が判定値 QA0以下であると判定されると、 異常判定フラグが ONに設定される (ステツ プ 240)。 このとき、正常判定フラグが ONである場合には正常判定フラグが O FFにされるとともに、 診断カウンタの値が 「0」 にクリアされる。 そして、 検 出完了フラグが〇 Nに設定されるとともに、 診断カウンタがーつインクリメント されて、 その値は 「1」 となる。 従って、 時刻 t 1〜 t 2における異常診断の診断結果と、 時刻 t 5〜 t 6にお ける異常診断の診断結果とが同一である場合に限り、 診断カウンタの値は 「2」 となる。すると、診断カウンタの値が N以上であると判定され(ステップ 2.90)、 診断確定フラグが ONに設定されて診断結果が確定するとともに、 診断カウンタ がクリアされる。 時刻 t 4以降に開始された車両減速状態が時刻 t 6以降においても継続してい る場合には、 検出完了フラグが ONであるため異常診断の前提条件が不成立とな る (ステップ 100)。 そのため、 時刻 t 6において条件成立カウンタがクリアさ れるとともに基準学習フラグが O F Fに設定され、 さらに異常力ゥンタがクリア され(ステップ 3 20)、 EGR制御弁 9及びスロットル弁 4は通常駆動されて E GR制御が実行される。 車両がさらに減速されて、 車速が所定車速 S PD以下になると、 車両停止状態 のアイドル状態であると判定され(ステップ 310)、検出完了フラグが OF Fに 設定される (ステップ 340)。 この後、 アクセルが踏み込まれて車両が通常走行に移行し、 再度、 車両が減速 走行に移行しても、 診断確定フラグが ONであるため、 異常診断の前提条件が不 成立となる (ステップ 100)。診断確定フラグが ONに設定された後は、ディー ゼルェンジン 1の停止に基づ!/、て診断確定フラグが O F Fに設定される。従って、 ディーゼルエンジン 1の運転中において E G R装置の異常診断の診断結果が確定 すると、 ディーゼルエンジン 1が始動されて停止されるまでの一回のトリップ内 において、 EGR装置の異常診断が繰り返し実行されることはない。 以上説明した本実施の形態によれば、 以下の効果を得ることができる。
(1) EGR装置の異常診断時において、 EGR制御弁 9の開度が徐々に変 化するように EGR制御弁 9が制御される。 そのため、 EGR装置に異常がなげ れば、 EGR量が変化しなかったり急激に増減したりすることはなく、 EGR量 は徐々に変化するようになる。 このような排気還流量の変化に伴って EGR通路 8の吸入空気量が変化することとなり、 所定時間 T 1における吸入空気量の変化 量を検出することにより EGR量の変化量を求めることができる。 従って、 EG R制御弁 9の制御時において所定時間 T 1における吸入空気量の変化量が判定値 QA0以下であるときには EGR装置に異常が有ると診断することができ、 EG R装置の異常診断を容易かつ確実に行うことができる。 しかも、 EGR装置の異 常診断時において E G R量が急激に増減することはないため、 ディーゼルェンジ ン 1の排気ェミツションの悪化を抑制することができるとともに、 燃焼状態の変 化を抑えて機関出力の急激な変動を低減することができ、 ドライバビリティの悪 化を抑制することができる。 (2) E CU 1 9はディーゼルエンジン 1の運転状態が安定しているときに EGR装置の異常診断を行うようにしている。 そのため、 EGR制御弁 9の開度 制御以外の要因に基づく吸入空気量の変化を抑制することができ、 E GR装置の 異常診断の精度を高めることができる。
(3) さらに、 ECU 1 9は EGR装置の異常診断を車両減速中の燃料供給 量が所定量以下の時に行うようにしている。 ディーゼルエンジン 1の燃料供給量 が所定量以下の時には燃焼が行われないため、 EGR装置の異常診断時における 排気エミッションの悪化を確実に抑制することができる。
(4) また、 ECU1 9は EGR装置の異常診断を行うために EGR制御弁 9を制御するとき、 スロットル弁 4の開度を固定するようにしている。 従って、 このスロッ トル開度変化に基づく EGR通路 8の圧力変動を抑制して吸入空気量 の変化を的確に抑制することができるため、 E G R装置の異常診断の精度を高め ることができる。
(5) また、 ECU 1 9は異常診断の回数が N回 (本実施形態では N= 2) となったときに診断結果を確定するようにし、 診断確定した後には同一トリップ 内において新たな異常診断を禁止するようにしている。 そのため、 異常診断の回 数を必要最小限にし、 以てドライバピリティを確保するとともに、 スロットル弁 4、 EGR制御弁 9等の部品の耐久性を維持することができ、 異常診断の精度を 向上することができる。
(第 2実施形態)
以下、 第 2実施形態を図 5〜図 8に従って詳細に説明する。
本実施形態において、 内燃機関及びその制御装置のシステム構成は第 1実施形 態と同様である。 上記第 1実施形態においては、 EGR装置の異常診断において EGR制御弁 9の目標開度 e p e g f i nを設定する際に、' EGR制御弁 9の実 開度 e p e g a c tは考慮されておらず、 EGR制御弁9の実開度e p e g a c tから固定値である徐変量 「a」 を減ずるようにしていた。 この徐変量 「a」 が 正の値であるときには E GR制御弁 9は閉じ側に駆動されることになり、 徐変量
「 a Jが負の値であるときには EGR制御弁 9は開き側に駆動されることになる。 これに対して、 本実施形態では、 E GR装置の異常診断時における EG R制御 弁 9の駆動方向及び徐変量の設定を、 異常診断条件の成立時の E GR制御弁 9の 開度に基づいて設定するようにしている。 次に、 EGR装置の異常診断処理の手順について、 図 5に示すフローチャート を参照して詳細に説明する。 図 5は ECU 1 9が実行する EGR装置の異常診断 処理の一部を示すフローチヤ一トであり、 本処理は上記第 1実施形態における異 常診断処理のステップ 140, 1 50, 160, 1 70を変更したものである。 本処理が開始されると、 ステップ 100, 1 1 0, 1 20, 1 30の処理が順 次実行される。 そして、 ステップ 140において、 吸入空気量の測定基準値の学 習が未だ済んでおらず、 基準学習フラグが O Nでないと判定されると、
41 0に進む。
L 0において、 診断条件成立時における EG R制御弁 9の実開度 e p e g a c tが第 1の所定開度としての所定値 A以上か否かが判定される。 この 所定値 Aは E G R制御弁 9の全開時における開度に対する割合であり、この場合、 Aは 50%に設定されている。 このときの実開度 e p e g a c tが所定値 A以上 であると判定されると、 ステップ 420に進み、 実開度 e p e g a c tが所定値 A未満であると判定されると、 ステップ 430に進む。 7° 430では、 診断条件成立時における EGR制御弁 9の実開度 e p e g a c tが第 3の所定開度としての所定値 B以上か否かが判定される。 この所定 値 Bは EGR制御弁 9の全開時における開度に対する割合であり、 この場合、 B は 30%に設定されている。 このときの実開度 e p e g a c tが所定値 B以上で あると判定されると、 ステップ 440に進み、 実開度 e p e g a c tが所定値 B 未満であると判定されると、 ステップ 450に進む。 ステップ 420では EGR制御弁 9の目標開度 e p e g f i nを設定するため の徐変量 e p e g a d d力 S 「一 m%」 に設定される。 この徐変量 「一 m%」 にお いて符号「一」は E GR制御弁 9の駆動方向を閉じ側に設定することを示し、 「m」 は EGR制御弁 9の全開時における開度に対する割合であって正の値である。 従 つて、 EGR制御弁 9は徐変量 「一 m%」 に基づいて閉じ側に駆動制御されるこ とになる。 また、ステップ 440では EGR制御弁 9の開度の徐変量 e p e g a d d力 S「 + n%」 に設定される。 この徐変量 「+n%」 において符号 「 +」 は EG R制御弁 9の駆動方向を開き側に設定することを示し、 「n」は EGR制御弁 9の全開時に おける開度に対する割合であって正の値である。 従って、 EGR制御弁 9は徐変 量 「+n%」 に基づいて開き側に駆動制御されることになる。 EGR制御弁 9が 閉じ側に駆動されると EGR量が減少し、 吸入空気量が増加するため、 ディーゼ ルエンジン 1の出力の低下が抑えられて、ドライパビリティは維持される。逆に、 EGR制御弁 9が開き側に駆動されると、 EGR量が増加し、 吸入空気量が減少 するため、 ディーゼルエンジン 1の出力が低下して、 ドライバビリティが悪化す ることとなる。 従って、 閉じ側の徐変量 mと開き側の徐変量 nとは m > nの関係 になるように設定されている。 このように、 異常診断条件の成立時における EGR制御弁 9の実開度 e p e g a c tに基づいて、 £01制御弁9の開度の徐変量6 p e g a d dの正 .負を設 定することにより、 図 6に示すように、 EGR制御弁 9の実開度位置からの総駆 動量を大きくすることができる。 すなわち、 図 6の例 EX 1に示すように EGR 制御弁 9の駆動開始時の開度が所定値 A (50%) 以上である場合には、 EGR 制御弁 9を閉じ側に駆動することによって E G R制御弁 9の総駆動量を大きくす ることができる。 また、 図 6の例 EX 2に示すように EG R制御弁 9の駆動開始 時の開度が所定値 A (50%) 未満である場合には、 EGR制御弁 9を開き側に 駆動することによって E GR制御弁 9の総駆動量を大きくすることができる。 こ のように EG R制御弁 9の総駆動量を大きくすることによって、 EGR量の十分 な変化量を得られるようになり、 この EGR量の変化に伴って吸入空気量の十分 な変化量を得ることができる。 また、 ステップ 450では、 £01 制御弁9の開度の徐変量6 p e g a d dが 「0%」 に設定されるとともに、 検出完了フラグが ONに設定される。 このよう にステップ 450において検出完了フラグが ONに設定されると、 次に本異常診 断処理のルーチンが実行されるとき、 前記ステップ 100において異常診断条件 が不成立であると判定されるため、 異常診断処理が禁止される。 これは、 EGR 制御弁 9の実開度が所定値 B未満の E G R量が少ない状態から E G R量を増加さ せると、 ディーゼルエンジン 1の出力低下が著しくなり、 ドライバビリティが悪 ィ匕したり、 スモークの発生を招くためである。 ステップ 420, 440及びステップ 450に続くステップ 460において、 吸入空気量の測定基準値としてその時の吸入空気量 GAが設定される。 続くステ ップ 470において基準学習フラグが ONに設定され、 処理は前記ステップ 1 8 0に進む。 また、 前記ステップ 1 4 0において基準学習フラグが O Nであると判定される と、 測定基準値が学習済みであるため、 ステップ 4 8 0に進む。 ステップ 4 8 0 において、 £ 6 1 制御弁9の開度の徐変量6 p e g a d dがゼロ未満か否かが判 定される。 この徐変量 e p e g a d dがゼロ未満であると判定されると、 ステツ プ 4 9 0に進み、 徐変量 e p e g a d dが 0以上であると判定されると、 ステツ プ 5 1 0に進む。 ステップ 4 9 0では、 そのときの E G R制御弁 9の実開度 e p e g a c tが第 2の所定開度としての所定値 C以下か否かが判定される。 この所定値 Cは E G R 制御弁 9の全開時における開度に対する割合であり、 この場合、 Cは 5 0 %に設 定されている。 このときの実開度 e p e g a c tが所定値 C以下であると判定さ れると、 ステップ 5 0 0に進み、 実開度 e p e g a c tが所定値 Cより大きいと 判定されると、 ステップ 5 3 0に進む。 ステップ 5 0 0では、 前記ステップ 4 2 0にて設定された徐変量 e p e g a d d ( = - m%) に対して補正係数 αを乗ずることにより、 新たな徐変量 e p e g a d dが設定される。この補正係数 は 0 く ひ く 1となるように設定されている。 従って、 このように設定される新たな徐変量 e p e g a d dは小さい値に変更さ れることとなる。 ステップ 5 1 0では、 そのときの E G R制御弁 9の実開度 e p e g a c tが第 2の所定開度としての所定値 D以上か否かが判定される。 この所定値 Dは E G R 制御弁 9の全開時における開度に対する割合であり、 この場合、 Dは 5 0 %に設 定されている。 このときの実開度 e p e g a c tが所定値 D以上であると判定さ れると、 ステップ 5 2 0に進み、 実開度 e p e g a c tが所定値 D未満であると 判定されると、 ステップ 5 3 0に進む。 ステップ 520では、 前記ステップ 440にて設定された徐変量 e p e g a d d ( = +n%) に対して補正係数 iSを乗ずることにより、 新たな徐変量 e p e g a d dが設定される。 この補正係数 は 1 < となるように設定されている。 従 つて、 このように設定される新たな徐変量 e p e g a d dは大きい値に変更され ることとなる。 ステップ 500, 520のように徐変量 e p e g a d dを更新するのは、 図 7 に示すように、 EGR制御弁 9の開度が所定値 C, D以上の場合に、 開度の変化 に対する排気還流量の変化の感度が低下してしまうためである。 E GR制御弁 9 の徐変量を一定値にすると、 EGR制御弁 9の開度が所定値 C, D以上であると き E G R量の変化量は小さいものとなり、 E G R量の所要の変化量を得るために 長い時間が必要となる。 そこで、 EGR制御弁 9の開度が所定値 C, D以上であ るときには徐変量 e p e g a d dを大きな値に変更することにより、 EGR量の 所定の変化量を得るための時間を短縮するようにしている。 すなわち、 図 8に示すように、 EGR制御弁 9の開度が所定値 C, D以上の状 態から E G R制御弁 9の開度を徐変させるとする。 図 8に二点鎖線で示されるよ うに、 EGR制御弁 9の開度が徐変量を一定値として徐変されると、 前記判定値 Q AO相当の EGR量の変化量を得るには、 EGR制御弁 9の駆動開始時期 t 1 0から時刻 t 1 2までの長い時間が必要となる。 これに対して、 図 8に実線で示 されるように、 所定値 C, D以上のときにおいて EGR制御弁 9の開度が徐変量 を前記の一定値よりも大きな値に設定して、 徐変されると、 前記判定値 QA0相 当の EGR量の変化量を得るには、 EGR制御弁 9の駆動開始時期 t 1 0から時 刻 t 1 1までの時間で済み、 EGR量の所定の変化量を得るための時間を短縮す ることができる。 ステップ 500及ぴステップ 520に続くステップ 530において、 EGR制 御弁 9の目標開度 e p e g f i nが設定される。 この目標開度 e p e g f i nは EGR制御弁 9の実開度 e p e g a c tに対して、前記ステップ 420, 440, 500又は 520にて設定された徐変量 e p e g a d dを加えることにより設定 される。 EGR制御弁 9は通常駆動時には目標値にフィードバック制御されてお り、 本ルーチンに移行すると記憶された、 移行直前の実開度が初期値となる。 従 つて、徐変量 e p e g a d dが負の値であれば、 E G R制御弁 9はその開度が徐々 に小さくなるように閉じ側に制御され、 逆に徐変量 e p e g a d dが正の値であ れば、 EGR制御弁 9はその開度が徐々に大きくなるように開き側に制御される こととなる。 ステップ 530の処理が終了すると、 前記ステップ 1 80 (図 3参照) に処理 が移行し、 ステップ 1 80以降の処理が実行され、 異常診断が行われる。
以上説明した本実施の形態によれば、 上記第 1実施形態の (1) 〜 (5) の効 果に加えて、 以下の効果を得ることができるようになる。
( 6 ) 本実施形態では、 異常診断条件の成立時における E GR制御弁 9の開度 に基づいて、 E GR制御弁 9の駆動方向を開き側又は閉じ側になるように設定す るようにした。 そのため、 EGR制御弁 9の総駆動量を確保することができ、 E GR量の変化量を所定量以上とすることができ、 異常診断を確実に行うことがで きる。
(7) 本実施形態では、 EGR制御弁 9を閉じ側に駆動させる徐変量を、 EG R制御弁 9を開き側に駆動させる徐変量よりも大きな値に設定した。 EGR制御 弁 9を閉じ側に駆動する場合には、 EGR量が減少し、 吸入空気量が増加するた め、 ェンジン出力の低下を抑えて、 ドライバビリティを維持することができる。 EGR制御弁 9を開き側に駆動する場合には、 EGR量が増加し、 吸入空気量が 減少してエンジン出力が低下し、 ドライバビリティが悪化するようになるが、 E GR制御弁 9を開き側に駆動させる徐変量を小さな値に設定しているので、 ドラ ィバビリティの悪化を抑制することができる。 これにより、 EGR制御弁 9を開 き側に駆動する場合であれ、 閉じ側に駆動する場合であれ、 ドライバビリティの 悪化を抑制しつつ、 排気還流装置の異常診断を行うことができる。
(8) 本実施形態では、 EGR制御弁 9を開き側又は閉じ側に駆動する際、 EG R制御弁 9の開度が第 2の所定開度 (所定値 C, D) 以上のとき、 EGR制御弁 9の徐変量を大きな値に変更するようにした。 そのため、 EGR量の所定の変化 量を得るための時間を短縮でき、よつて異常診断時間を短縮化することができる。
(9) 本実施形態では、 異常診断条件の成立時における EGR制御弁 9の実開 度 e p e g a c tが第 3の所定開度 (所定値 B) 未満のときには異常診断を禁止 するようにした。 これにより、 EGR装置の異常診断に伴うドライバビリティの 悪化や、 スモークの発生を確実に抑制することができる。 なお、 本発明の実施の形態は、 以下のように変更してもよい。
上記第 1, 第 2実施形態における異常診断の前提条件として、 回転速度偏差厶
NEが所定回転速度 NE 0未満であることに代えて、 車速の変化量が所定値未満 であることを用いてもよい。 上記第 1, 第 2実施形態では、 所定時間 T 1経過後に空気量変化が判定値 Q A 0以下のときには、 ステップ 240において異常判定フラグを ONに設定するよ うにした。 この異常判定フラグに代えて異常計測カウンタを設け、 所定時間 T 1 毎の異常が複数回検出された場合に、 E G R装置の異常有りと診断するようにし てもよい。 上記第 2実施形態では、 E G R制御弁 9の徐変量を設定するための所定値 Aを 一定値としたが、 この所定値 Aはエンジン回転速度及ぴスロッ トル弁 4の開度に 基づいて算出したり、 エンジン回転速度及ぴスロッ トル弁 4の開度にて定義され たマップを参照して求めたりしてもよい。 また、 所定値 Aはエンジン回転速度及 び吸気圧力に基づいて求めるようにしてもよい。 上記第 2実施形態では、 E GR制御弁 9の徐変量を変更するための所定値 C, Dを等しい値に設定したが、 これらを異なる値に設定してもよい。 また、 所定値 C, Dを一定値としたが、 この所定値 C, Dをエンジン回転速度及びスロッ トル 弁 4の開度に基づいて算出したり、 エンジン回転速度及ぴスロッ トル弁 4の開度 にて定義されたマップを参照して求めたりしてもよい。 上記第 1 , 第 2実施形態ではディーゼルエンジン 1の E G R装置の異常診断装 置に具体化したが、 ガソリンエンジンの EGR装置の異常診断装置に具体化して もよい。 なお、 ガソリンエンジンの場合には燃焼室に導入される気体の量がほぼ 一定にならないため、 吸入空気量の変化量に基づいて EG R量の変化量を検出す ることはできない。 従って、 ガソリンエンジンの EGR装置の場合には吸入空気 量の変化量に代えて、 EGR通路 8の吸気圧力の変化量に基づいて異常診断を行 うようにすればよい。 このような排気還流量の変化に伴って EGR通路 8の吸気 圧力が変化することとなり、 所定時間における吸気圧力の変化量を検出すること により、 EGR量の変化量を求めることができる。 従って、 EGR制御弁 9の制 御時において所定時間における吸気圧力の変化量が所定の判定値以下であるとき には、 EGR装置に異常が有ると診断することができ、 EGR装置の異常診断を 容易かつ確実に行うことができる。 上記第 1, 第 2実施形態ではディーゼルエンジン 1の EGR装置の異常診断を 吸入空気量の変化量に基づいて行うようにしたが、 吸入空気量の変化量に代えて EGR通路 8の吸気圧力の変化量に基づいて異常診断を行うようにしてもよい。 (第 3実施形態)
以下、 本発明の第 3実施形態を、 図 9〜図 1 4を参照して詳細に説明する。 図 9に示すディーゼルエンジン 5 0の燃焼室 5 2には、 吸気通路 5 1及ぴ排気 通路 5 3が接続されている。吸気通路 5 1には、その上流側から下流側に向かい、 吸入空気を濾過するエアクリーナ 5 4、 吸入空気量を測定するエアフローメータ 5 5、 吸気通路 5 1の流路面積を変更して吸入空気量を調整するスロットルバル ブ 5 6が設けられている。 スロットルバルブ 5 6は、 ギア群を備えた動力伝達機構 5 9を通じて接続され たステップモータ 5 8によって開閉される。 ステップモータ 5 8は、 ディーゼル エンジン 5 0の各種制御を司る電子制御装置 (E CU) 7 0によって駆動制御さ れる。 動力伝達機構 5 9には、 スロットルバルブ 5 6が全開位置に配置されてい ることを確認する全開スィッチ 5 6 aが設けられている。 E CU 7 0は、 全開ス イッチ 5 6 aにより確認された全開位置を基準とした相対的なステップモータ 5 8のステップ位置に基づいて、 スロットルバルブ 5 6の開度 (スロットル開度) を巴握している。 吸気通路 5 1のスロットルバルブ 5 6の下流には、 吸気通路 5 1の内圧 (吸気 圧) を測定する吸気圧センサ 5 7が設けられるとともに、 排気通路 5 3より分岐 して同吸気通路 5 1に合流する EGR通路 6 0が接続されている。 E GR通路 6 0には、 上記 E CU 7 0により制御されるダイアフラム等のァクチユエータ 6 2 により開閉される EGR制御パルプ 6 1が設けられている。 本実施形態では、 こ れら EGR通路 6 0及び EG R制御パルプ 6 1、 ァクチユエータ 6 2等により E GR装置が構成されている。
E CU 7 0は、 スロットルパルプ 5 6の開度制御を通じて燃焼室 5 2に導入さ れるガスの流量を調整するとともに、 EGR制御バルブ 6 1の開度制御を通じて 吸気通路 5 1に還流される排気ガスの流量(EGR量)を調整している。ここで、 スロットル開度等の他の条件を一定に保持したまま、 EGR制御バルブ 6 1の開 度のみを変更すると、 燃焼室 52に導入されるガスの総流量は一定のまま、 EG R量が変化する。 よって、 スロットルバルブ 56及び E G R制御バルブ 6 1の開 度制御により、 燃焼室 52内に導入されるガスの総流量と、 そのガス中に占める 排気ガスの割合 (EGR率) を自在にコントロールすることができる。 こうして ディーゼルエンジン 50の幅広い運転領域に亘り、 適切な EGR制御を行うこと ができるようになる。 ちなみに、 吸気通路 51の EGR通路 60との合流部よりも上流側に設けられ たエアフローメータ 55では、 燃焼室 52に導入されるガスから EGRを除いた 流量、 すなわち外部から取り込まれた空気の流量のみが検出されることとなる。 一方、 ディーゼルエンジン 50の燃焼室 52には、 インジェクタ 6 3が設けら れている。 このディーゼルエンジン 50には、 コモンレール方式の燃料供給装置 が採用されており、 図示しない燃料タンクから燃料供給ポンプ 64によつて汲み 上げられた燃料を貯留するコモンレール 6 5が設けられている。 燃料供給ポンプ 64は、 ECU 70によって駆動制御され、 同ポンプ 64からの燃料の圧送量の 調整により、 コモンレール 65内の燃料の圧力が最適に保持されている。 コモン レール 6 5に貯留された高圧燃料は、 ディーゼルエンジン 50の各気筒のインジ ェクタ 63に分配供給されている。 上記インジェクタ 63は、 ECU 70によつ て駆動されており、 同 ECU 70の指令に基づいて最適な量の燃料を、 最適なタ ィミングで燃焼室 52に噴射している。 更に ECU 70には、 上記エアフローメータ 55や吸気圧センサ 5 7にカロえ、 エンジン回転速度 n eを検出する NEセンサ 67や、 アクセルペダルの踏み込み 量 a c c pを検出するアクセルセンサ 68、 車速 s p dを検出する車速センサ 6 9を始めとする各種センサ類の検出信号が入力されている。 ECU 70は、 それ らのセンサ類から得られた情報をもとに、 上記スロットル制御や E G R制御、 燃 料噴射制御等のディーゼルエンジン 50の運転制御を実施している。 続いて、 以上のように構成されたディーゼルエンジン 50における EGR装置 の異常診断について説明する。 図 10は、 本実施形態での異常診断処理のメイン ルーチンを示している。 本ルーチンの処理は、 ECU 70によって周期的に実行 される。
ECU 70が本ルーチンの処理に移行すると、 まずステップ 6 10において、 異常診断実行条件が成立しているか否かが判断される。 具体的には、 以下の条件 (a) 〜 (c) の全てが成立した状態が、 現時点に至るまで所定時間 T 1以上系 続しているときに、 異常診断実行条件の成立となる。
条件 (a) アクセルペダルの踏み込み量がゼロ [%] である。
条件 (b) 燃料噴射量が所定値 QF 0以下である。
条件 (c) エンジン 50の回転速度の偏差 ΔΝΕが所定値 NE 0未満である。 なお、 ここでは所定値 QF 0は、 アイドル時の燃料噴射量未満の値に設定され ており、 そうした条件では、 燃焼室 52内でほとんど燃料が燃焼されていない状 態にある。 よって、 以上の条件 (a) 〜 (c) の全ての成立は、 車両減速時の燃 料力ット中であることを意味している。 そうした状態が所定時間 T 1以上継続し ていれば、 ディーゼルエンジン 50の運転状態が安定していると判断できる。 ま た車両減速時の燃料カツト中に異常診断を行うことで、 異常診断のためのスロッ トルバルブ 56や EG R制御バルブ 61の制御が、 ドライバピリティやエンジン
50の運転に大きな影響を与えないようにしている。 ここで、 異常診断実行条件が成立していなければ、 ECU70は、 ステップ 6 90において、 各カウンタ C 1〜C 3の値、 及び測定基準値 G AOをそれぞれク リアし、 AFM (エアフローメータ) 判定完了フラグをオフにセットした後、 本 ルーチンの処理を一旦終了する π 一方、 異常診断実行条件が成立していれば (S 6 10 : YES)、続'
620において、 診断完了フラグがオン (ON) となっているか否かが判断され る。 そして診断完了フラグがオンであれば、 E CU 70は本ルーチンの処理を終 了する。 診断完了フラグは、 今回の異常診断が完了し、 何らかの診断結果 (エアフロー メータ 55の異常判定、 EGRの正常判定、 EGRの異常判定のいずれか) が出 されたときにオンとなる。 したがって、 上記診断結果は、 一回の車両減速中に一 回しか出されないようになつている。 なお、 一度オンにセットされた診断完了フ ラグは、 車両が停止状態 (徐行走行状態も含む) となったときにオフにセットし 直される。 続くステップ 630では、 AFM (エアフローメータ) 判定完了フラグがオン であるか否かが判断される。 AFM判定完了フラグは、 エアフローメータ 55の 異常の有無を判定する 「AFM異常診断処理」 において、 異常の有無の判定が完 了したときにオンとされる。 ここで、 AFM判定完了フラグがオフ (OFF) で あれば、 E CU 70は処理をステップ 640に移行し、 図 1 1に示される AFM 異常診断処理を実行する。 すなわち、 A FM異常診断処理でのエアフローメータ 55の異常の有無の判定が完了するまでは、 ステップ 650以降の処理は実行さ れないこととなる。
<AFM異常診断処理 >
ここで、 図 1 1を参照して、 「AFM異常診断処理」 の詳細について説明する。 本ルーチンを必要に応じて繰り返し実行することで、 エアフローメータ 5 5の異 常診断が行われる。 本ルーチンの処理に移行すると、 ECU 70は、 ステップ 700において、 E GRカツトを実施、 すなわち EG R制御バルブ 6 1を全閉として吸気通路 5 1へ の排気ガスの還流を停止する。 そしてステップ 71 0において ECU 70は、 そ のときのスロットル開度より、 吸入空気量の理論値 g a t hを算出する。 EGR カツト中には、 燃焼室 52に導入されるガスの全てが外部から取り込まれた空気 となり、吸気通路 5 1のエアフローメータ 55の配設部分を流れるガスの流量と、 燃焼室 52に取り込まれるガスの流量とがー致する。 そのため、 吸入空気量をス 口ットル開度から一義的に求めることができる。 そして、 ステップ 720において、 エアフローメータ 55によって実際に検出 された吸入空気量、 すなわち吸入空気量の実測値 g aを読み込み、 次のステップ 730において、 それら実測値 g aと理論値 g a t hとの差 ( | g a t h— g a I ) 力 判定値ひよりも大きいか否かを判断する。 このとき、 本来であれば、 上記実測値 g aと理論値 g a t hとは、 ほぼ同一の 値となるはずである。 そこで、 それらの差が判定値 α以下であれば、 エアフロー メータ 55が正常であると判定し、 ステップ 740において、 エアフローメータ 55が正常であることを示す AFM正常判定フラグをオンとする。 また以前の A FM異常診断処理において、 エアフローメータ 55の異常判定がなされ、 AFM 異常判定フラグがオンとされていれば、 同フラグをオフとする。 そして ECU 7 0は、 ステップ 750において、 A FM判定完了フラグをオンとして本ルーチン の処理を終了する。 一方、 上記実測値 g aと理論値 g a t hとの差が判定値 αよりも大きいときに は (S 730 : YE S), ステップ 760において、 AFM異常判定カウンタ C 1 をインクリメントする。 そして、 続くステップ 770においてそのカウンタ C 1 の値が所定値 T 1を超えているか否かを判断する。 ここでカウンタ C 1の値が所 定値 T 1以下であれば、 そのまま本ルーチンの処理を一且終了する。 またここで、 カウンタ C 1の値が所定値 T 1を超えていれば (S 770 : YE S)、すなわち上記実測値 g aと理論値 g a t hとの差が判定値 αを上回る状態が 一定の時間以上継続していれば、 ステップ 780において、 AFM異常判定フラ グをオンとする。 また以前の A FM異常診断処理において、 A FM正常判定フラ グがオンとされていれば、 同フラグをオフとする。 更に ECU 70は、 AFM異 常履歴フラグをオンとし、 ステップ 750において A FM判定完了フラグをオン とした後、 本ルーチンの処理を終了する。
A FM異常履歴フラグは、 一旦オンにセットされると、 イダニッシヨンスイツ チがオフとなるまでオンのまま保持される。 よって、 A FM異常診断処理で異常 判定がなされた後、 その後の同処理において正常判定がなされれば、 AFM異常 判定フラグはオンからオフに戻されるのに対し、 この A FM異常履歴フラグはォ ンのまま保持される。 なお、 ここでのエアフローメータ 55の異常判定は仮のものであり、 この時点 では、 確定されていない。 異常判定の確定は、 後述の 「異常確定処理」 において 行われる。 以上の A FM異常診断処理は、 異常診断実行条件の成立後、 その実行条件が成 立しなくなる力 \ 正常判定又は異常判定がなされて A FM判定完了フラグがオン となるかのいずれかとなるまで、 繰り返し実行されることとなる。 以上が AFM 異常診断処理の詳細である。 さて、 図 10のメインルーチンのステップ 630において、 以上説明した A F M異常診断処理による判定が完了しており、 A FM判定完了フラグがオンとされ ていれば (YES),続くステップ 650において、 A F M正常判定フラグがオン であるか否かが判断される。 ここで、 A FM正常判定フラグがオンであれば (YE S)、続くステップ 660 において、 AFM異常履歴フラグがオンであるか否かが判断され、 同フラグがォ フであれば (S 660 : NO)、 ステップ 670において ECU 70の処理は、 図 12に示す 「EGR異常診断処理」 に移行する。 一方、 A FM異常履歴フラグがオフであれば (S 660 : YES)、 ECU70 は、 そのまま本ルーチンの処理を終了する。 すなわち、 本ルーチンでは、 たとえ 今回の異常診断において、 エアフローメータ 55の正常判定がなされていても、 ディーゼルエンジン 50の始動後に一度でもエアフローメータ 55の異常判定が なされていれば、 EGR異常診断処理を実行しないようにしている。
<EGR異常診断処理 >
ここで、 上記 「EGR異常診断処理」 の詳細を、 図 1 2を参照して説明する。 本ルーチンの処理を必要に応じて繰り返し実行することで、 E G R装置の異常診 断が行われる。 本ルーチンの処理に移行すると、 E CU 70はまず、ステップ 800において、 スロットル開度を現状の開度に固定する。
続くステップ 810では、 今回の異常診断において、 測定基準値 GA0が学習 されているか否かが判断される。 測定基準値 G AOが設定されていなければ (S 810 : NO), ステップ 220において、 現状の吸入空気量の実測値 g aを測定 基準値 GAOとして設定し、 ー且処理を終了する。 測定基準値 G A 0が学習済みであれば(S 8 10 : YE S)、続くステップ 83 0において、 EGR制御バルブ 6 1の目標開度 e p e g f i nが設定される。 目 標開度 e p e g f i nは EGR制御バルブ 6 1の実開度 e p e g a c ΐに徐変量 「a%」 を加算することにより設定される。 除変量 「a%」 は、 例えば 1 0%程 度に設定されている。また目標開度 e p e g f i n及ぴ実開度 e p e g a c tは、 EGR制御バルブ 6 1の全閉時を◦ %、全開時を 1 00 %として設定されている。 よって、 E G R制御バルブ 6 1はその開度が徐々に大きくなるように制御される こととなる。 なお、 図 10に示すように、 本実施形態では、 EGR異常診断処理の実行に先 立ち、 必ず A FM異常診断処理が実行されており、 その A FM異常診断処理にお いては EG R力ットが実行されている (図 1 1のステップ 700)。 よって、 EG R系の異常判定中に、 EGR制御バルブ 6 1は、 全閉から徐々に開弁側に制御さ れるようになる。 こうして、 EGR制御パルプ 6 1の開度を制御した後、 続くステップ 840に おいて、 EGR制御バルブ 6 1の実開度 e p e g a c tより吸入空気量の変化量 の理論値 Δ g a t hを算出する。 ここでの吸入空気量の変化量は、 上記測定基準 値 GAOの学習時と現時点との吸入空気量の変化量を指している。 スロットル開 度を固定した状態では、 燃焼室 52に導入されるガスの総流量は、 ほぼ一定に保 持されるため、 ここでの吸入空気量の変化量は、 そのときの EGR量とほぼ同一 の値となるはずである。 よって、 ここでは、 EGR制御バルブ 6 1の実開度 e p e g a c tから推定される EGR量を、 吸入空気量変化量の理論値 Δ g a t hと して求めている。 その後、 ECU 70は、 ステップ 850において、 エアフローメータ 5 5によ つて検出されたその時点での吸入空気量の実測値 g aを読み込み、 続くステップ 860において、 上記測定基準値 GA0からその吸入空気量の実測値 g aを減算 することで、 上記吸入空気量変化量の実測値 Δ g aを求めている。 そして、 続くステップ 870において、 以上により求められた吸入空気量変化 量の実測値 Δ g aと理論値 Δ g a t hとの差が、 所定の判定値 を超えているか 否かを判断する。 すなわち、 ここでは、 上記実測値 Δ g aと理論値 Δ g a t hと の間に有意な差が認められるか否かを判断している。
EGR系に異常がなければ、 それら実測値 Δ g aと理論値 Δ g a t hとは、 ほ ぼ同一の値を取るはずである。 そこで、 それらの差 ( | A g a t h— A g a | ) が判定値 j8を超えていなければ(S 870 : NO)、 E CU 70は、 ステップ 88 0において、 E G R正常判定フラグをオン、 診断完了フラグをオンにそれぞれセ ットした後、 処理を終了する。 一方、 上記実測値 Δ g aと理論値 Δ g a t hとの差が判定値 /3を超えていれば (S 870 : YE S)、 ステップ 890において、 EGR異常判定カウンタ C 2の 値をインクリメントする。 そして、 続くステップ 900において、 そのカウンタ C 2の値が所定値 T 2を 上回るか否かを判断する。 ここでカウンタ C 2が所定値 T 2以下であれば (S 9 00 : NO)、 そのまま本ルーチンの処理は一旦終了される。 この場合、 異常診断 実行条件が成立している限り、 本ルーチンの処理が再び実行されることとなる。 また、 カウンタ C 2の値が所定値 T 2を上回っていれば (S 900 : YES)、 すなわち上記実測値 Δ g aと理論値 Δ g a t hとの差が判定値 を上回る状態が 一定の時間以上継続していれば、 ECU70はステップ 910において、 EGR 異常判定フラグをオン、 診断完了フラグをオンにそれぞれセットして、 処理を終 了する。 こうして、 EGR正常判定フラグ又は EG R異常判定フラグのいずれかがオン にセットされた時点で、 診断^了フラグがオンにセッ トされ、 今回の異常診断を 完了することとなる。 以上が、 EGR異常診断処理の詳細である。 このように、 本実施形態では、 エアフローメータ 5 5に異常の無いことが確認 されているときに限り、 そのエアフローメータ 55の検出した吸入空気量に基づ いた EGRの異常判定が行われるようになっている。 ところで、 上述の A FM異常診断処理において、 A FM異常判定フラグがオン とされても、 直ちにエアフローメータ 55に異常があると確定することはできな い。 これは、 EGR制御バルブ 6 1に固着異常が生じて同バルブ 6 1を全閉とす ることができず、 EGRカットを実施不能なときには、 エアフローメータ 55に 何らの異常がなくても、 A FM異常判定フラグがオンにセットされることがある ためである。 そこで、 図 10のメインルーチンのステップ 6 50において、 AFM正常判定 フラグがオフであれば(S 6 50 : N〇)、 すなわち AFM異常診断処理により A FM異常判定フラグがオンにセットされたときには、 ステップ 640において、 ECU 70は、 図 1 3に示す 「異常確定処理」 に移行し、 そこで異常部位の特定 を行う。 以下、 この異常確定処理の詳細を説明する。 ぐ異常確定処理 >
図 1 3は、 異常確定処理のフローチャートを示している。 ECU 70は、 本ル 一チンの処理を必要に応じて繰り返し実行することで、 異常部位の特定を行う。 さて、 本ルーチンの処理に移行すると、 ECU70はまずステップ 1000に おいて、 EGRカットを実行する。 また続くステップ 10 1 0では、 スロットル 開度から吸気圧の理論値 pm t hが算出される。 EGRカット中は、 吸気圧につ いても吸入空気量と同様に、 スロットル開度の関数として一義的に求めることが できる。 ' そして、 ステップ 1020において、 吸気圧センサ 57の検出した吸気圧の実 測値 pmを読み込み、 次のステップ 1030において、 それら実測値 pmと理論 値 pmt hとの差 ( | pmt h— pm I ) 力 判定値 γよりも大きいか否かを判 断する。 ここで、 上記実測値 pmと理論値 pm t hとがほぼ一致していれば、 EGR力 ットが適正に行われていると判断することができる。 そこで上記差 ( | pmt h -pm I ) が判定値 y以下のときには (S 1 030 : NO), ステップ 1040に おいて診断完了フラグをオンとして今回の異常診断を完了する。 これにより、 ェ アフロ一メータ 55の異常判定が確定する。 一方、 上記差 ( | pmt h— pm I ) が判定値 τ よりも大きいときには (S 1 030 : YE S)、 ステップ 1 050において、異常判定カウンタ C 3をインクリ メントする。 そして、 続くステップ 1060においてそのカウンタ C 3の値が所 定値 T 3を上回っているか否かを判断する。 ここでカウンタ C 3の値が所定値 T 3以下であれば(S 1060 :N〇)、そのまま本ルーチンの処理をー且終了する。 ここで、 カウンタ C 3の値が所定値 T 3を上回っていれば (S 1060 : YE S)、すなわち、上記理論値 pmt と実測値 pmとの不一致が所定時間以上継続 していれば、 明らかに吸気圧センサ 57が、 状況に即さない不適切な検出結果を 出力していると判断することができる。 それらエアフローメータ 55及び吸気圧 センサ 57の同時故障が、 確率的にほぼ有り得ないと考えれば、 この場合には、 EGR制御バルブ 6 1の固着異常が発生しているものと判断することができる。 よってその場合には、 ステップ 1 070において、 EGR異常判定フラグをォ ンにセットすると共に、 先の AFM異常診断処理においてオンにセットされてい た AFM異常判定フラグをオフにセットし直す。 そして、 ステップ 1 040にお いて診断完了フラグをオンにセットし、 EGR系に異常有りとの診断結果を確定 して、 今回の異常診断を完了する。 この異常確定処理は、 異常診断実行条件が成立している限り、 診断完— がオンにセットされるまで、 繰り返し実行されることとなる。 以上が異常確定処 理の詳細である。 以上説明したように行われる異常診断は、車両減速時毎に繰り返し実施される。 本実施形態では、 同じ診断結果 (AFM異常判定、 EGR正常判定、 EGR異常 判定のいずれか) が所定回数連続して検出されたときには、 その診断結果は確定 されたものとして、 そのトリップ中は、 異常診断を実施しないようにしている。 以上説明した本実施形態によれば、 次のような効果を奏することができる。
(1) 本実施形態では、 エアフローメータ 55の検出する吸入空気量に基づい て EGR装置の診断を行っているが、 その判定に先立ってエアフローメータ 55 の異常診断を行い、 エアフローメータ 55に異常があることが確認されたときに は、 EGR装置の異常診断を実施しないようにしている。 これにより、 故障した エアフローメータ 55の測定値を用いた異常診断が防止され、 より正確に EGR の異常の検出を行うことができる。 (2) 本実施形態では、 EGR装置の異常診断の直前に、 エアフローメータ 5 5の異常診断を行っている。 そのため、 エアフローメータ 55が正常であること がより保証された状態で EG R装置の異常診断を行うことができ、 EGR装置の 異常の検出精度を更に向上できる。
(3) 本実施形態では、 エアフローメータ 55の異常診断中に EG Rカットを 実施しており、 また EGR装置の異常診断中には EGR制御バルブ 6 1の開度を 強制的に変更する制御を行っており、 それらの診断中、 通常の EGR制御は中断 されるようになつている。 ただし本実施形態では、 エアフローメータ 55の異常 診断の直後に、 連続して EGR装置の異常診断が行われるため、 そうした通常の EGR制御が中断される回数を減らすことができる。
(4) 本実施形態では、 一度、 エアフローメータ 55に異常が有ることが確認 されたときには、 たとえその後にエアフローメータ 55が正常であることが確認 されても、 そのエアフローメータ 55の測定値を用いた EG R装置の異常診断は 行わないようにしている。 すなわち、 一度異常の認められた不安定なセンサ (ェ アフロ一メータ 55) の測定値を用いた EGR装置の異常診断を禁止している。 これにより、 EGRの異常診断の精度を更に高めることができる。
(5) 本実施形態では、 EGR制御バルブ 6 1の開度を徐々に変化させるよう に制御して EGR装置の異常診断を行っている。 そのため、 判定時に EGR量が 急激に変化することはなく、 EGR量の急変がエンジン 50の運転に与える影響
(例えば排気ェミッションの悪化や、 エンジントルクの変動等) を抑えることが できる。 ところで、 EGR量の変化に応じて吸入空気量が変化すれば、 吸気圧センサ 5 7の検出する吸気圧にも変化が生じる。 そのため、 エアフローメータ 55の検出 する吸入空気量の変化量に代えて、 吸気圧センサ 57の検出する吸気圧の変化量 を用いても、 同様に EGR装置の異常診断を行うことができる。 その場合にも、 前もって吸気圧センサ 57の異常診断を実施し、 吸気圧センサ 57の異常が確認 されたときには、 その吸気圧センサ 57の測定値を用いた EGR装置の異常診断 を禁止するようにすれば、 やはり異常診断の精度を高めることができる。 更に、 エアフローメータ 55に異常があっても、 吸気圧の変化量を用いること で、 EGR装置の異常診断を行うことができる。 そこで次のように異常診断を行 うようにすることもできる。 図 14は、 EGR装置の異常診断における ECU 70の処理手順の概略を示す フローチャートである。 図 14のルーチンによる異常診断においても、 EGR装 置の異常診断の実施に先立って、 まずはエアフローメータ 55の異常診断が実施 される (S 1 100)。 この異常診断は、 上述の A FM異常診断処理を通じて行わ れる。 すなわち、 図 1 1のフローチャートの処理を、 必要なだけ繰り返し実行す る。 そして、 その判定の結果、 エアフローメータ 55に異常が無いことが確認され たときには (S 1 1 1 0: N〇)、 そのエアフローメータ 55の検出する吸入空気 量の変化量を用いて EGR装置の異常診断が実施される (S 1 1 20)。 この異常 診断は、 上述の E GR異常診断処理を必要なだけ繰り返し実行することで行われ る。 一方、 エアフローメータ 55に異常が有ることが確認されたときには (S 1 1 10: YE S)、吸気圧センサ 57の検出する吸気圧の変化量を用いて EGR装置 の異常診断が実施される (S 1 1 30)。 このときの異常診断は、 上述の E G R異常診断処理において吸入空気量の変化 量の代わりに吸気圧の変化量を用いたプロセスを通じて行われる。 すなわち、 図 1 2のステップ 8 4 0では E G R制御パルプ 6 1の実開度 e p e g a c tより吸 気圧変化量の理論値が求められ、 ステップ 8 5 0で読み込まれた吸気圧の実測値 よりステップ 8 6 0で吸気圧変化量の実測値を求める。 そして、 ステップ 8 7 0 において、 上記の吸気圧変化量の理論値と実測値との差が所定の判定値を上回る か否かを判断する。 勿論、 ステップ 8 2 0において学習される測定基準値も、 そ の時点での吸気圧の実測値に基づくものとなる。 このように異常診断を行えば、 エアフローメータ 5 5に異常があっても、 E G R装置の異常診断を行うことが可能となる。 勿論、 E G R装置の異常診断に先立 ち、 吸気圧センサの異常診断を行い、 吸気圧センサの異常が確認されなかったと きには吸気圧変化量を用い、 異常が確認されたときには吸入空気量変化量を用い て、 E G R装置の異常診断をそれぞれ行うようにしても良い。 以上説明した実施形態は次のように変更することもできる。
図 1 0のステップ 6 1 0で成立の有無の判断される異常診断の実行条件の内容 は、 適宜変更しても良い。 勿論、 異常診断におけるスロットルバルブ 5 6や E G R制御パルプ 6 1の制御がディーゼルエンジン 5 0の運転に与える影響が小さく、 エンジン運転状態が安定した状況で異常診断が行われるように、 上記実行条件を 設定することが望ましい。 上記実施形態では、 エアフローメータ 5 5の異常診断と E G R装置の異常診断 とを連続して実施するようにしているが、 それらの異常診断をそれぞれ別々の時 期、 或いは別々の状況で行うようにしても良い。 その場合でも、 E G R装置の異 常診断の実施に先立って、 エアフローメータ 5 5の異常診断を実施し、 ェアフロ 一メータ 5 5の異常が確認されたときには'、 E G R装置の異常診断を禁止するよ うにすれば、 誤った E G R装置の異常診断を低減することができる。 上記実施形態では、 吸入空気量変化量又は吸気圧変化量を用いて E G R装置の 異常診断を行えることを示したが、 それら以外のエンジン制御量であっても、 E G R量に対応して値の変化するェンジン制御量であれば、 その変化量を用 、た E G R装置の異常診断を行うことができる。 例えば、 E G R通路 6 0の吸気圧力を 測定するセンサを備えるエンジンであれば、 その E G R通路 6 0の吸気圧力の変 化量に基づいて異常診断を行うことができる。 上記実施形態では、 図 1 0のステップ 6 6 0の処理により、 エアフローメータ 5 5の異常が一度でも確認されると、 その後に同エアフローメータ 5 5の正常復 帰が確認されたときにも、 E G R装置の異常の有無の判定は行わないようにして いるが、 そうした処理を省略しても良い。 すなわち、 以前に異常が確認されたェ アフロ一メータ 5 5が正常復帰したときには、 E G R装置の異常判定の実行を許 可するようにしてもよい。 図 1 1の A F M異常診断処理によるものと異なる方法で、 エアフローメータ 5 5の異常の有無の確認を行うようにしても良い。 上記実施形態では、 A F M異常診断処理によりエアフローメータ 5 5の異常判 定 (A F M異常判定フラグがオン) がなされたときに、 同様の異常判定を吸気圧 センサ 5 7の測定値を用いて行って、 異常部位を特定する異常確定処理を行うよ うにしている。 そうした異常部位の特定を他の方法で行うようにしても良い。 ま たそうした異常部位の特定は、 エアフローメータ 5 5の異常判定後、 直ちに行わ なくても良い。 更に、 異常部位を特定しなくても、 何らかの異常があることだけ を確認すれば良いのであれば、 そうした異常部位の特定を省略しても良い。 上記実施形態での EGR装置の異常の有無の判定は、 必ずしもスロットル開度 を固定した状態で行わなくても良い。 スロッ トル開度が変更されば、 吸入空気量 が変化するが、 そうした吸入空気量の変化量を理論的に求めることはできる。 そ のため、 スロッ トル開度の変更、 及ぴ EGR制御バルブ 6 1の開度変更を併せ考 慮して吸入空気量の変化量の理論値を求め、 それをエアフローメータ 55によつ て検出された吸入空気量の変化量の実測値と比較することで、 EGR装置の異常 の有無を判定することができる。

Claims

請求の範囲
1 . 内燃機関の排気系と、 吸気系のスロッ トル弁の下流とを排気還流通路により 連通し、 該排気還流通路内に設けられた制御弁の開度を制御することにより、 排 気系から吸気系に還流される排気還流量を調整するようにした排気還流装置の異 常診断装置において、
所定の異常診断条件が成立したとき、 前記制御弁の開度が徐々に変化するよう にその制御弁を駆動制御するとともに、 前記制御弁の駆動制御の開始後の所定期 間における吸入空気量の変化量又は吸気圧力の変化量を検出し、 この検出値が所 定の判定値を超えない場合に排気還流装置に異常が有ると診断する排気還流装置 の異常診断装置。
2 . 請求項 1に記載の排気還流装置の異常診断装置において、
前記内燃機関の運転状態が安定しているときに前記排気還流装置の異常診断を 行う排気還流装置の異常診断装置。
3 . 請求項 1及び請求項 2のいずれか一項に記載の排気還流装置の異常診断装置 において、
前記内燃機関の運転状態が車両減速中であって燃料供給量が所定量以下の時に 前記排気還流装置の異常診断を行う排気還流装置の異常診断装置。
4 . 請求項 1乃至 3のいずれか一項に記載の排気還流装置の異常診断装置におい て、
異常診断を行う際、 前記スロットル弁の開度変化を抑制するものである排気還 流装置の異常診断装置。
5 . 請求項 4に記載の排気還流装置の異常診断装置において、 異常診断を行う際、 前記スロットル弁の開度を固定するものである排気還流装
6 . 請求項 1乃至 5のいずれか一項に記載の排気還流装置の異常診断装置におい て、
所定回数診断を繰り返した後、 診断結果を確定し、 診断結果の確定後は同一ト リップ内において異常診断を禁止する排気還流装置の異常診断装置。
7 . 請求項 1乃至 6のいずれか一項に記載の排気還流装置の異常診断装置におい て、
異常診断を行う際、 前記異常診断条件の成立時における前記制御弁の開度に基 づいて前記制御弁の駆動方向を設定するものである排気還流装置の異常診断装置。
8 . 請求項 7に記載の排気還流装置の異常診断装置において、
異常診断を行う際、 前記異常診断条件の成立時における前記制御弁の開度が第 1の所定開度以上のときには、 前記制御弁の駆動方向を閉じ側に設定し、 前記制 御弁の開度が前記第 1の所定開度未満のときには、 前記制御弁の駆動方向を開き 側に設定するものである排気還流装置の異常診断装置。
9 . 請求項 8に記載の排気還流装置の異常診断装置において、
前記制御弁を閉じ側に駆動させる徐変量と前記制御弁を開き側に駆動させる徐 変量とを異なる値に設定するものである排気還流装置の異常診断装置。
1 0 . 請求項 9に記載の排気還流装置の異常診断装置において、
前記制御弁を閉じ側に駆動させる徐変量を前記制御弁を開き側に駆動させる徐 変量よりも大きな値に設定するものである排気還流装置の異常診断装置。
1 1 . 請求項 9及び請求項 1 0のいずれか一項に記載の排気還流装置の異常診断 装置において、
前記制御弁の駆動制御に伴つて該制御弁の開度が第 2の所定開度に達したとき その徐変量を変更するものである排気還流装置の異常診断装置。
1 2 . 請求項 1 1に記載の排気還流装置の異常診断装置において、
前記制御弁の開度の徐変量を変更する際、 前記制御弁の開き側ではその徐変量 が大きくなるように変更し、 前記制御弁の閉じ側ではその徐変量が小さくなるよ うに変更するものである排気還流装置の異常診断装置。
1 3 . 請求項 7に記載の排気還流装置の異常診断装置において、
前記異常診断条件の成立時における前記制御弁の開度が第 3の所定開度未満の ときには異常診断を禁止する排気還流装置の異常診断装置。
補正書の請求の範囲
[2002年 5月 29日 (29. 05. 02) 国際事務局受理:出願当初の請求の範囲
1は補正された;他の請求の範囲は変更なし。 (1頁) ]
1 . (補正) 内燃機関の排気系と、 吸気系のスロットル弁の下流とを排気還流通 路により連通し、 該排気還流通路内に設けられた制御弁の開度を制御することに より、 排気系から吸気系に還流される排気還流量を調整するようにした排気還流 装置の異常診断装置おいて、
所定の異常診断条件が成立したとき、 前記制御弁の開度が徐々に変化するよう にその制御弁を駆動制御するとともに、 前記制御弁の駆動制御の開始後の所定期 間における吸入空気量の変化量又は吸気圧力の変化量を検出し、 この検出値が所 定の判定値を越えない場合に排気還流装置に異常があると診断する異常診断装置 であって、 前記所定期間は、 前記制御弁が徐変されるのに要する時間よりも長く 設定されている排気還流装置の異常診断装置。
2 . 請求項 1に記載の排気還流装置の異常診断装置において、
前記内燃機関の運転状態が安定しているときに前記排気還流装置の異常診断を 行う排気還流装置の異常診断装置。
3 . 請求項 1及び請求項 2のいずれか一項に記載の排気還流装置の異常診断装置 において、
前記内燃機関の運転状態が車両減速中であって燃料供給量が所定量以下の時に 前記排気還流装置の異常診断を行う排気還流装置の異常診断装置。
4 . 請求項 1乃至 3のいずれか一項に記載の排気還流装置の異常診断装置におい て、
異常診断を行う際、 前記スロットル弁の開度変化を抑制するものである排気還
5 . 請求項 4に記載の排気還流装置の異常診断装置において、
49
補正された用紙 (条約第 19条)
PCT/JP2001/011234 2000-12-26 2001-12-21 Dispositif de diagnostic de defaillance destine a un dispositif de recyclage de gaz d'echappement WO2002052143A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01272278A EP1347166B8 (en) 2000-12-26 2001-12-21 Failure diagnosing device for exhaust gas recycling device
PL357588A PL202681B1 (pl) 2000-12-26 2001-12-21 Urządzenie diagnostyczne do wykrywania nieprawidłowości w układzie recyrkulacji spalin
ES01272278T ES2397224T3 (es) 2000-12-26 2001-12-21 Dispositivo para el diagnóstico de fallos para dispositivos de reciclaje de gases de escape
HU0300031A HU228549B1 (hu) 2000-12-26 2001-12-21 Berendezés egy kipufogógáz visszakeringetõ rendszer rendellenes mûködésének a diagnosztizálására

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-395609 2000-12-26
JP2000395609 2000-12-26
JP2001-223523 2001-07-24
JP2001223523A JP4415515B2 (ja) 2000-12-26 2001-07-24 排気還流装置の異常診断装置

Publications (1)

Publication Number Publication Date
WO2002052143A1 true WO2002052143A1 (fr) 2002-07-04

Family

ID=26606699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011234 WO2002052143A1 (fr) 2000-12-26 2001-12-21 Dispositif de diagnostic de defaillance destine a un dispositif de recyclage de gaz d'echappement

Country Status (7)

Country Link
EP (1) EP1347166B8 (ja)
JP (1) JP4415515B2 (ja)
CZ (1) CZ299066B6 (ja)
ES (1) ES2397224T3 (ja)
HU (1) HU228549B1 (ja)
PL (1) PL202681B1 (ja)
WO (1) WO2002052143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220298993A1 (en) * 2021-03-16 2022-09-22 Toyota Jidosha Kabushiki Kaisha Egr valve deterioration degree calculation system, control device for internal combustion engine, and vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257568A1 (de) * 2002-12-10 2004-07-01 Adam Opel Ag Verfahren und Einrichtung zur Regelung der Abgasrückführung bei Verbrennungsmotoren
JP3868926B2 (ja) * 2003-06-03 2007-01-17 ヤンマー株式会社 ディーゼル機関の排気ガス還流制御装置
JP2006242080A (ja) 2005-03-02 2006-09-14 Denso Corp 排気還流装置の異常診断装置
JP4687485B2 (ja) * 2006-02-06 2011-05-25 トヨタ自動車株式会社 リニア制御弁の品質不良の検査方法、及び、検査装置
FR2903774B1 (fr) * 2006-07-17 2008-09-05 Renault Sas Procede de validation d'un diagnostic de fontionnement d'un dispositif.
DE102007009689B4 (de) * 2007-02-28 2017-10-19 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
JP4502035B2 (ja) * 2008-03-28 2010-07-14 トヨタ自動車株式会社 排気再循環装置の異常診断装置
JP2009257280A (ja) * 2008-04-21 2009-11-05 Toyota Motor Corp 排気再循環システムの診断装置
US9010113B2 (en) 2009-09-24 2015-04-21 Toyota Jidosha Kabushiki Kaisha Control apparatus of an internal combustion engine
JP5515830B2 (ja) * 2010-02-17 2014-06-11 トヨタ自動車株式会社 排気還流装置の異常検出装置
JP6123646B2 (ja) * 2013-11-18 2017-05-10 トヨタ自動車株式会社 内燃機関の診断装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323356A (ja) * 1989-06-19 1991-01-31 Honda Motor Co Ltd 内燃エンジンの排気還流制御系の異常検出方法
US5257534A (en) * 1991-03-13 1993-11-02 Mitsubishi Denki K.K. Fault diagnosis device for an exhaust gas recycle control unit
US5309887A (en) * 1992-08-07 1994-05-10 Mitsubishi Denki Kabushiki Kaisha Method of detecting abnormality in exhaust gas recirculation control system of internal combustion engine and apparatus for carrying out the same
JP2001107811A (ja) * 1999-10-12 2001-04-17 Toyota Motor Corp 排気再循環装置の異常検出装置
JP2001159375A (ja) * 1999-12-02 2001-06-12 Nissan Motor Co Ltd Egr装置の診断装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323354A (ja) * 1989-06-19 1991-01-31 Japan Electron Control Syst Co Ltd 内燃機関における排気還流装置の排気還流検出装置
JPH04101060A (ja) * 1990-08-16 1992-04-02 Nissan Motor Co Ltd 直噴式ディーゼルエンジン
JP2564718B2 (ja) * 1991-09-18 1996-12-18 三菱電機株式会社 排気ガス還流制御装置の故障診断装置
JPH06229323A (ja) * 1993-01-30 1994-08-16 Suzuki Motor Corp 排気ガス再循環装置の自己診断装置
JPH0835449A (ja) * 1994-07-25 1996-02-06 Mitsubishi Electric Corp 排気ガス還流制御装置の故障検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323356A (ja) * 1989-06-19 1991-01-31 Honda Motor Co Ltd 内燃エンジンの排気還流制御系の異常検出方法
US5257534A (en) * 1991-03-13 1993-11-02 Mitsubishi Denki K.K. Fault diagnosis device for an exhaust gas recycle control unit
US5309887A (en) * 1992-08-07 1994-05-10 Mitsubishi Denki Kabushiki Kaisha Method of detecting abnormality in exhaust gas recirculation control system of internal combustion engine and apparatus for carrying out the same
JP2001107811A (ja) * 1999-10-12 2001-04-17 Toyota Motor Corp 排気再循環装置の異常検出装置
JP2001159375A (ja) * 1999-12-02 2001-06-12 Nissan Motor Co Ltd Egr装置の診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1347166A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220298993A1 (en) * 2021-03-16 2022-09-22 Toyota Jidosha Kabushiki Kaisha Egr valve deterioration degree calculation system, control device for internal combustion engine, and vehicle
US11473537B2 (en) * 2021-03-16 2022-10-18 Toyota Jidosha Kabushiki Kaisha EGR valve deterioration degree calculation system, control device for internal combustion engine, and vehicle

Also Published As

Publication number Publication date
CZ20023175A3 (en) 2004-03-17
EP1347166B8 (en) 2013-03-27
HUP0300031A2 (en) 2003-04-28
PL357588A1 (en) 2004-07-26
EP1347166A1 (en) 2003-09-24
JP2002256982A (ja) 2002-09-11
ES2397224T3 (es) 2013-03-05
EP1347166B1 (en) 2012-10-17
JP4415515B2 (ja) 2010-02-17
EP1347166A4 (en) 2011-06-22
PL202681B1 (pl) 2009-07-31
CZ299066B6 (cs) 2008-04-16
HU228549B1 (hu) 2013-03-28

Similar Documents

Publication Publication Date Title
JP3680515B2 (ja) 内燃機関の燃料系診断装置
US8307695B2 (en) Cetane number estimation method
JP2724387B2 (ja) 内燃エンジンの排気二次空気供給装置の故障検知方法
US7991539B2 (en) Engine controller
US7104260B2 (en) EGR control unit and method for an internal combustion engine
US7627407B2 (en) Fault determination device and method of negative pressure generation device
US7146268B2 (en) Method and device for operating an internal combustion engine having exhaust-gas recirculation
EP2169199B1 (en) Failure diagnosis apparatus for exhaust pressure sensor
WO2002052143A1 (fr) Dispositif de diagnostic de defaillance destine a un dispositif de recyclage de gaz d&#39;echappement
JP3721671B2 (ja) 車両用故障診断装置
JP3463642B2 (ja) 排気絞り弁の異常検出装置
JP2007009877A (ja) 過給圧制御システムの異常診断装置
JP2003129906A (ja) 排気還流装置の異常診断装置
EP2290210B1 (en) Fuel supply control system for internal combustion engine
US7363920B2 (en) Fuel supply control system for internal combustion engine
JP3601209B2 (ja) 内燃機関の吸気制御装置の故障診断装置
JP3189001B2 (ja) 内燃機関の排気還流装置の診断装置
JP3559164B2 (ja) 内燃機関の大気圧補正進角制御方法
JP3716761B2 (ja) 自動変速機付エンジンの制御装置
JP2004060578A (ja) 内燃機関の制御装置
JP3089390B2 (ja) 内燃機関の排気還流装置における診断装置
JP4404819B2 (ja) 内燃機関の制御装置
KR20040102280A (ko) 차량의 엔진 제어장치 및 방법
JPH11324776A (ja) 内燃機関のアイドル回転制御方法
JPS6355335A (ja) 電子燃料噴射式エンジンの空燃比制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ HU PL

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001272278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV2002-3175

Country of ref document: CZ

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001272278

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2002-3175

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: PV2002-3175

Country of ref document: CZ