KR101502205B1 - 성막 장치 및 성막 방법 - Google Patents

성막 장치 및 성막 방법 Download PDF

Info

Publication number
KR101502205B1
KR101502205B1 KR1020120031394A KR20120031394A KR101502205B1 KR 101502205 B1 KR101502205 B1 KR 101502205B1 KR 1020120031394 A KR1020120031394 A KR 1020120031394A KR 20120031394 A KR20120031394 A KR 20120031394A KR 101502205 B1 KR101502205 B1 KR 101502205B1
Authority
KR
South Korea
Prior art keywords
gas
reaction gas
etching
reaction
substrate
Prior art date
Application number
KR1020120031394A
Other languages
English (en)
Other versions
KR20120112116A (ko
Inventor
히또시 가또오
다께시 구마가이
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20120112116A publication Critical patent/KR20120112116A/ko
Application granted granted Critical
Publication of KR101502205B1 publication Critical patent/KR101502205B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

기판이 적재되는 기판 적재부를 포함하고 진공 용기 내에 회전 가능하게 설치되는 회전 테이블과, 회전 테이블에 있어서의 기판 적재부가 형성되는 면에 대하여 제1 반응 가스를 공급하는 제1 반응 가스 공급부와, 제1 반응 가스 공급부로부터 회전 테이블의 둘레 방향으로 이격하여 설치되어 회전 테이블에 있어서의 기판 적재부가 형성되는 면에 대하여, 제1 반응 가스와 반응하는 제2 반응 가스를 공급하는 제2 반응 가스 공급부와, 제1 및 제2 반응 가스 공급부로부터 회전 테이블의 둘레 방향으로 이격하여 설치되고, 회전 테이블에 있어서의 기판 적재부가 형성되는 면에 대하여, 제1 반응 가스와 제2 반응 가스의 반응성 생성물을 개질하는 개질 가스 및 에칭하는 에칭 가스를 활성화하여 공급하는 활성화 가스 공급부를 포함하는 성막 장치가 제공된다.

Description

성막 장치 및 성막 방법 {FILM DEPOSITION APPARATUS AND FILM DEPOSITION METHOD}
본 출원은, 2011년 3월 29일에 일본 특허청에 출원된 일본 특허 출원 제2011-073193호에 기초하는 우선권을 주장하는 것이며, 그 전체 내용을 여기에 원용한다.
본 발명은, 기판에 대하여 복수의 반응 가스를 교대로 공급하고, 기판 표면에서 반응 가스를 서로 반응시켜, 반응 생성물로부터 구성되는 막을 기판에 성막하는 성막 장치 및 성막 방법에 관한 것이다.
반도체 디바이스의 회로 패턴의 한층 더 미세화에 수반하여, 반도체 디바이스를 구성하는 다양한 막에 대해서도, 한층 더 박막화 및 균일화가 요구되고 있다. 이와 같은 요구에 따르는 성막 방법으로서, 제1 반응 가스를 기판에 공급하여 기판의 표면에 제1 반응 가스를 흡착시키고, 다음에 제2 반응 가스를 기판에 공급하여 기판의 표면에 흡착된 제1 반응 가스와 제2 반응 가스를 반응시킴으로써, 반응 생성물로부터 구성되는 막을 기판에 퇴적하는, 소위 분자층 성막법(원자층 성막법이라고도 함)이 알려져 있다(예를 들어 특허 문헌 1). 이와 같은 성막 방법에 따르면, 반응 가스가 (준) 자기 포화적으로 기판 표면에 흡착할 수 있으므로, 높은 막 두께 제어성, 우수한 균일성 및 우수한 매립 특성을 실현할 수 있다.
일본 특허 출원 공개 제2010-56470호 공보 일본 특허 출원 공개 제2003-142484호 공보
그러나, 회로 패턴의 미세화에 수반하여, 예를 들어 트렌치 소자 분리 구조에 있어서의 트렌치나, 라인ㆍ스페이스ㆍ패턴에 있어서의 스페이스의 어스펙트비가 커짐에 따라서, 분자층 성막법에 있어서도, 트렌치나 스페이스를 매립하는 것이 곤란한 경우가 있다. 예를 들어, 30㎚ 정도의 폭을 갖는 스페이스를 산화 실리콘막으로 매립하려고 하면, 좁은 스페이스의 저부에 반응 가스가 진입되기 어렵기 때문에, 스페이스를 형성하는 라인 측벽의 상단부 근방에서의 막 두께가 두꺼워져, 저부측에서 막 두께가 얇아지는 경향이 있다. 그와 같은, 스페이스에 매립된 산화 실리콘막에는 보이드가 발생하는 경우가 있다. 그러한 산화 실리콘막이, 예를 들어 후속하는 에칭 공정에 있어서 에칭되면, 산화 실리콘막의 상면에, 보이드와 연통하는 개구가 형성되는 경우가 있다. 그렇다면, 그와 같은 개구로부터 보이드에 에칭 가스(또는 에칭액)가 진입되어 오염이 발생되거나, 또는, 이후의 금속화(metallization) 시에 보이드 중에 금속이 인입되어, 결함이 발생되거나 할 가능성이 있다.
이와 같은 문제는, ALD에 한정되지 않고, 화학적 기상 퇴적(CVD)법에 있어서도 발생할 수 있다. 예를 들어, 반도체 기판에 형성되는 접속 구멍을 도전성 물질의 막으로 매립하여, 도전성의 접속 구멍(소위 플러그)을 형성할 때에, 플러그 중에 보이드가 형성되어 버리는 경우가 있다. 이를 억제하기 위해, 접속 구멍을 도전성 물질로 매립할 때에, 접속 구멍의 상부에 형성되는 도전성 물질의 오버행 형상부를 에치백에 의해 제거하는 공정을 반복하여 행함으로써, 보이드가 억제된 도전성 접속 구멍(소위 플러그)을 형성하는 방법이 제안되어 있다(특허 문헌 2).
그러나, 특허 문헌 2에 개시되는 발명에 있어서는, 도전성 물질의 막의 성막과 에치백을 다른 장치로 행하지 않으면 안 되고, 장치간에서의 웨이퍼의 반송이나, 각 장치 내에서의 처리 조건의 안정화에 시간이 걸리므로, 처리량을 향상시킬 수 없다고 하는 문제가 있다.
본 발명은, 상기의 사정을 감안하여 이루어진 것으로, 기판에 형성되는 오목부를 보이드의 형성을 저감하면서, 고처리량으로 매립하는 것이 가능한 성막 방법 및 성막 장치를 제공한다.
본 발명의 제1 형태에 따르면, 오목부를 포함하는 패턴이 형성된 기판을 진공 용기 내로 반입하는 스텝과, 제1 반응 가스 공급부로부터 상기 기판에 대하여 제1 반응 가스를 공급하고, 상기 제1 반응 가스를 상기 기판에 흡착시키는 흡착 스텝과, 제2 반응 가스 공급부로부터 상기 기판에 대하여, 상기 제1 반응 가스와 반응하는 제2 반응 가스를 공급하고, 상기 기판에 흡착되는 상기 제1 반응 가스와 상기 제2 반응 가스를 반응시켜, 상기 기판에 반응 생성물을 형성하는 형성 스텝과, 상기 진공 용기 내에 설치되어 가스를 활성화 가능한 활성화 가스 공급부에 의해 개질 가스를 활성화하여 상기 기판에 공급하고, 상기 반응 생성물을 개질하는 개질 스텝과, 상기 반응 생성물이 형성되지 않는 분위기 하에서, 상기 활성화 가스 공급부에 의해 에칭 가스를 활성화하여 상기 기판에 공급하고, 상기 반응 생성물을 에칭하는 에칭 스텝을 포함하는 성막 방법이 제공된다.
본 발명의 제2 형태에 따르면, 오목부를 포함하는 패턴이 형성된 기판을 진공 용기 내로 반입하는 스텝과, 제1 반응 가스 공급부로부터 상기 기판에 대하여 제1 반응 가스를 공급하고, 상기 제1 반응 가스를 상기 기판에 흡착시키는 흡착 스텝과, 제2 반응 가스 공급부로부터 상기 기판에 대하여, 상기 제1 반응 가스와 반응하는 제2 반응 가스를 공급하고, 상기 기판에 흡착되는 상기 제1 반응 가스와 상기 제2 반응 가스를 반응시켜, 상기 기판에 반응 생성물을 형성하는 형성 스텝과, 상기 진공 용기 내에 설치되어 가스를 활성화 가능한 활성화 가스 공급부에 의해 개질 가스와, 상기 반응 생성물을 에칭하는 에칭 가스를 활성화하여 상기 기판에 공급하고, 상기 반응 생성물의 개질 및 에칭을 행하는 개질-에칭 스텝을 포함하는 성막 방법이 제공된다.
본 발명의 제3 형태에 따르면, 기판이 적재되는 기판 적재부를 포함하고, 진공 용기 내에 회전 가능하게 설치되는 회전 테이블과, 상기 기판 적재부에 적재되는 상기 기판에 대하여 제1 반응 가스를 공급하고, 상기 제1 반응 가스를 상기 기판에 흡착시키는 제1 반응 가스 공급부와, 상기 제1 반응 가스 공급부로부터 상기 회전 테이블의 둘레 방향으로 이격하여 설치되고, 상기 기판에 대하여 제2 반응 가스를 공급하고, 상기 기판에 흡착하는 상기 제1 반응 가스와 상기 제2 반응 가스를 반응시켜 반응 생성물을 상기 기판에 형성하는 제2 반응 가스 공급부와, 상기 제1 및 상기 제2 반응 가스 공급부로부터 상기 회전 테이블의 둘레 방향으로 이격하여 설치되고, 상기 반응 생성물을 개질하는 개질 가스와 상기 반응 생성물을 에칭하는 에칭 가스를 활성화하여 상기 기판에 공급하는 활성화 가스 공급부를 포함하는 성막 장치가 제공된다.
도 1은 본 발명의 실시 형태에 의한 성막 장치를 도시하는 개략 단면도.
도 2는 도 1의 성막 장치를 도시하는 개략 사시도.
도 3은 도 1의 성막 장치를 도시하는 개략 평면도.
도 4는 도 1의 성막 장치에 있어서의 분리 영역을 설명하기 위한 일부 단면도.
도 5는 도 1의 성막 장치를 도시하는 다른 개략 단면도.
도 6은 도 1의 성막 장치에 설치되는 활성화 가스 공급부의 일례를 나타내는 개략 사시도.
도 7은 도 6의 활성화 가스 공급부를 도시하는 사시도.
도 8a는 본 발명의 실시 형태에 의한 성막 방법을 설명하는 도면.
도 8b는 도 8a에 계속해서, 본 발명의 실시 형태에 의한 성막 방법을 설명하는 도면.
도 8c는 도 8b에 계속해서, 본 발명의 실시 형태에 의한 성막 방법을 설명하는 도면.
도 8d는 도 8c에 계속해서, 본 발명의 실시 형태에 의한 성막 방법을 설명하는 도면.
도 9는 본 발명의 다른 실시 형태에 의한 성막 방법을 설명하는 도면.
도 10은 본 발명의 또 다른 실시 형태에 의한 성막 방법을 설명하는 도면.
본 발명의 실시 형태에 따르면, 기판에 형성되는 오목부를 보이드의 형성을 저감하면서, 고처리량으로 매립하는 것이 가능한 성막 방법 및 성막 장치가 제공된다.
이하, 첨부된 도면을 참조하면서, 본 발명의 한정적이 아닌 예시된 실시 형태에 대해서 설명한다. 첨부된 전체 도면 중, 동일 또는 대응하는 부재 또는 부품에 대해서는, 동일 또는 대응하는 참조 부호를 부여하고, 중복되는 설명을 생략한다. 또한, 도면은, 부재 혹은 부품간의 상대비를 나타내는 것을 목적으로 하지 않고, 따라서, 구체적인 두께나 치수는, 이하의 한정적이 아닌 실시 형태에 비추어, 당업자에 의해 결정되어야 할 것이다.
도 1로부터 도 3까지를 참조하면, 본 발명의 실시 형태에 의한 성막 장치는, 거의 원형의 평면 형상을 갖는 편평한 진공 용기(1)와, 이 진공 용기(1) 내에 설치되고, 진공 용기(1)의 중심에 회전 중심을 갖는 회전 테이블(2)을 구비하고 있다. 진공 용기(1)는, 바닥이 있는 원통 형상을 갖는 용기 본체(12)와, 용기 본체(12)의 상면에 대하여, 예를 들어 O링 등의 시일 부재(13)(도 1)를 통하여 기밀하게 착탈 가능하게 배치되는 천장판(11)을 갖고 있다.
회전 테이블(2)은, 중심부에서 원통 형상의 코어부(21)에 고정되고, 이 코어부(21)는, 연직 방향으로 신장하는 회전축(22)의 상단부에 고정되어 있다. 회전축(22)은 진공 용기(1)의 저부(14)를 관통하고, 그 하단부가 회전축(22)(도 1)을 연직축 주위로 회전시키는 구동부(23)에 설치되어 있다. 회전축(22) 및 구동부(23)는, 상면이 개방된 통 형상의 케이스체(20) 내에 수납되어 있다. 이 케이스체(20)는 그 상면에 설치된 플랜지 부분이 진공 용기(1)의 저부(14)의 하면에 기밀하게 설치되어 있고, 케이스체(20)의 내부 분위기와 외부 분위기의 기밀 상태가 유지되어 있다.
회전 테이블(2)의 표면부에는, 도 2 및 도 3에 도시하는 바와 같이 회전 방향(둘레 방향)을 따라서 복수(도시하는 예에서는 5매)의 기판인 반도체 웨이퍼(이하 「웨이퍼」라고 함)(W)를 적재하기 위한 원형 형상의 오목부(24)가 형성되어 있다. 또한 도 3에는 편의상 1개의 오목부(24)에만 웨이퍼(W)를 나타낸다. 이 오목부(24)는, 웨이퍼(W)의 직경보다도 예를 들어 4㎜ 약간 큰 내경과, 웨이퍼(W)의 두께와 거의 동등한 깊이를 갖고 있다. 따라서, 웨이퍼(W)를 오목부(24)에 적재하면, 웨이퍼(W)의 표면과 회전 테이블(2)의 표면[웨이퍼(W)가 적재되지 않는 영역]이 동일한 높이로 된다. 오목부(24)의 저면에는, 웨이퍼(W)의 이면을 지지하여 웨이퍼(W)를 승강시키기 위한 예를 들어 3개의 승강 핀이 관통하는 관통 구멍(모두 도시하지 않음)이 형성되어 있다.
도 2 및 도 3에 도시하는 바와 같이, 회전 테이블(2)의 상방에는, 각각 예를 들어 석영으로 이루어지는 반응 가스 노즐(31), 반응 가스 노즐(32), 분리 가스 노즐(41, 42) 및 활성화 가스 인젝터(220)가 진공 용기(1)의 둘레 방향[회전 테이블(2)의 회전 방향]으로 서로 간격을 두고 배치되어 있다. 도시하는 예에서는, 후술하는 반송구(15)로부터 시계 방향[회전 테이블(2)의 회전 방향]으로 활성화 가스 인젝터(220), 분리 가스 노즐(41), 반응 가스 노즐(31), 분리 가스 노즐(42) 및 반응 가스 노즐(32)이 이 순서대로 배열되어 있고, 이들의 활성화 가스 인젝터(220) 및 노즐(31, 32, 41, 42)은, 각 노즐(31, 32, 41, 42)의 기단부인 가스 도입 포트(31a, 32a, 41a, 42a)를 용기 본체(12)의 외주벽에 고정함으로써, 진공 용기(1)의 외주벽으로부터 진공 용기(1) 내에 도입되고, 용기 본체(12)의 반경 방향을 따라서 회전 테이블(12)에 대하여 수평으로 신장되도록 설치되어 있다. 활성화 가스 인젝터(220)에 대해서는 후에 설명한다.
반응 가스 노즐(31)은, 도시하지 않은 배관 및 유량 조정기 등을 통하여, 제1 반응 가스로서의 Si(실리콘) 함유 가스의 공급원(도시하지 않음)에 접속되어 있다. 반응 가스 노즐(32)은, 도시하지 않은 배관 및 유량 조정기 등을 통하여, 제2 반응 가스로서의 산화 가스의 공급원(도시하지 않음)에 접속되어 있다. 분리 가스 노즐(41, 42)은, 모두 도시하지 않은 배관 및 유량 조정 밸브 등을 통하여, 분리 가스로서의 질소(N2) 가스의 공급원(도시하지 않음)에 접속되어 있다.
Si 함유 가스로서는, 예를 들어 유기 아미노실란 가스를 사용할 수 있고, 산화 가스로서는, 예를 들어 O3(오존) 가스 혹은 O2(산소) 가스 또는 이들의 혼합 가스를 사용할 수 있다.
반응 가스 노즐(31, 32)에는, 회전 테이블(2)을 향하여 개방되는 복수의 가스 토출 구멍(33)이, 반응 가스 노즐(31, 32)의 길이 방향을 따라서, 예를 들어 10㎜의 간격으로 배열되어 있다. 반응 가스 노즐(31)의 하방 영역은, Si 함유 가스를 웨이퍼(W)에 흡착시키기 위한 제1 처리 영역(P1)으로 된다. 반응 가스 노즐(32)의 하방 영역은, 제1 처리 영역(P1)에 있어서 웨이퍼(W)에 흡착된 Si 함유 가스를 산화시키는 제2 처리 영역(P2)으로 된다.
도 2 및 도 3을 참조하면, 분리 가스 노즐(41, 42)과 함께 분리 영역(D)을 구성하는, 천장판(11)의 이면으로부터 회전 테이블(2)을 향하여 돌출되는 볼록 형상부(4)가 진공 용기(1)에 형성되어 있다. 볼록 형상부(4)는, 정상부가 원호 형상으로 절단된 부채형의 평면 형상을 갖고, 본 실시 형태에 있어서는, 내측 원호가 돌출부(5)(후술)에 연결되고, 외측 원호가, 진공 용기(1)의 용기 본체(12)의 내주면을 따르도록 배치되어 있다.
반응 가스 노즐(31)로부터 반응 가스 노즐(32)까지 회전 테이블(2)의 동심원을 따른 진공 용기(1)의 단면을 도시하는 도 4를 참조하면, 진공 용기(1) 내에는, 볼록 형상부(4)에 의해, 볼록 형상부(4)의 하면인 평탄한 낮은 천장면(44)(제1 천장면)과, 이 천장면(44)의 둘레 방향 양측에 위치하는, 천장면(44)보다도 높은 천장면(45)(제2 천장면)이 존재한다. 천장면(44)은, 정상부가 원호 형상으로 절단된 부채형의 평면 형상을 갖고 있다. 또한, 도시한 바와 같이, 볼록 형상부(4)에는 둘레 방향 중앙에 있어서, 반경 방향으로 신장하도록 형성된 홈부(43)가 형성되고, 분리 가스 노즐(42)이 홈부(43) 내에 수용되어 있다. 또 하나의 볼록 형상부(4)에도 마찬가지로 홈부(43)가 형성되고, 여기에 분리 가스 노즐(41)이 수용되어 있다. 또한, 높은 천장면(45)의 하방의 공간에 반응 가스 노즐(31, 32)이 각각 설치되어 있다. 이들의 노즐(31, 32)은, 천장면(45)으로부터 이격하여 웨이퍼(W)의 근방에 설치되어 있다. 또한, 설명의 편의상, 도 4에 도시하는 바와 같이, 반응 가스 노즐(31)이 설치되는, 높은 천장면(45)의 하방의 공간을 공간(481)으로 하고, 반응 가스 노즐(32)이 설치되는, 높은 천장면(45)의 하방의 공간을 공간(482)으로 한다.
천장면(44)은, 회전 테이블(2)에 대하여, 협소한 공간인 분리 공간(H)을 형성하고 있다. 분리 공간(H)은, 제1 영역(P1)으로부터의 Si 함유 가스와, 제2 영역(P2)으로부터의 산화 가스를 분리할 수 있다. 구체적으로는, 분리 가스 노즐(42)로부터 N2 가스를 토출하면, N2 가스는, 분리 공간(H)을 통과하여 공간(481) 및 공간(482)을 향하여 흐른다. 이때, 공간(481, 482)에 비해 용적이 작은 분리 공간(H)을 N2 가스가 흐르기 때문에, 분리 공간(H)의 압력은 공간(481, 482)의 압력에 비해 높게 할 수 있다. 즉, 공간(481, 482)의 사이에 압력 장벽이 형성된다. 또한, 분리 공간(H)으로부터 공간(481, 482)으로 유출되는 N2 가스가, 제1 영역(P1)으로부터의 Si 함유 가스와, 제2 영역(P2)으로부터의 산화 가스에 대한 카운터 플로우로서 작용한다. 따라서, Si 함유 가스도 산화 가스도 분리 공간(H)으로 유입되는 것은 거의 불가능하다. 따라서, 진공 용기(1) 내에 있어서 Si 함유 가스와 산화 가스가 혼합되어, 반응하는 것이 억제된다.
한편, 천장판(11)의 하면에는, 도 2 및 도 3에 도시하는 바와 같이, 회전 테이블(2)을 고정하는 코어부(21)의 외주를 둘러싸는 돌출부(5)가 설치되어 있다. 이 돌출부(5)는, 본 실시 형태에 있어서는, 볼록 형상부(4)에 있어서의 회전 중심측의 부위와 연속되어 있고, 그 하면이 천장면(44)과 동일한 높이로 형성되어 있다.
또한, 도 2 및 도 3에 있어서는, 설명의 편의상, 천장면(45)보다도 낮고 또한 분리 가스 노즐(41, 42)보다도 높은 위치에서 용기 본체(12)가 절단되어 있는 바와 같이, 용기 본체(12) 및 그 내부를 도시하고 있다.
앞서 참조한 도 1은, 도 3의 I-I'선을 따른 단면도이며, 천장면(45)이 설치되어 있는 영역을 나타내고 있는 한편, 도 5는, 천장면(44)이 설치되어 있는 영역을 나타내는 단면도이다. 도 5에 도시하는 바와 같이, 부채형의 볼록 형상부(4)의 주연부[진공 용기(1)의 외측 테두리측의 부위]에는, 회전 테이블(2)의 외측 단부면에 대향하도록 L자형으로 굴곡되는 굴곡부(46)가 형성되어 있다. 이 굴곡부(46)는, 볼록 형상부(4)와 마찬가지로, 분리 영역(D)의 양측으로부터 반응 가스가 침입되는 것을 억제하여, 양쪽 반응 가스의 혼합을 억제한다. 부채형의 볼록 형상부(4)는 천장판(11)에 설치되고, 천장판(11)이 용기 본체(12)로부터 제거할 수 있게 되어 있으므로, 굴곡부(46)의 외주면과 용기 본체(12) 사이에는 약간 간극이 있다. 굴곡부(46)의 내주면과 회전 테이블(2)의 외측 단부면의 간극 및 굴곡부(46)의 외주면과 용기 본체(12)의 간극은, 예를 들어 회전 테이블(2)의 표면에 대한 천장면(44)의 높이와 마찬가지의 치수로 설정되어 있다.
용기 본체(12)의 내주벽은, 분리 영역(D)에 있어서는 도 4에 도시하는 바와 같이 굴곡부(46)의 외주면과 접근하여 수직면에 형성되어 있지만, 분리 영역(D) 이외의 부위에 있어서는, 도 1에 도시하는 바와 같이 예를 들어 회전 테이블(2)의 외측 단부면과 대향하는 부위로부터 저부(14)에 걸쳐서 외방측으로 움푹 들어가 있다. 이하, 설명의 편의상, 직사각형의 단면 형상을 갖는, 이 움푹 들어간 부분을 배기 영역으로 기재한다. 구체적으로는, 제1 처리 영역(P1)에 연통하는 배기 영역을 제1 배기 영역(E1)으로 기재하고, 제2 처리 영역(P2)에 연통하는 영역을 제2 배기 영역(E2)으로 기재한다. 이들의 제1 배기 영역(E1) 및 제2 배기 영역(E2)의 저부에는, 도 1 내지 도 3에 도시하는 바와 같이, 각각, 제1 배기구(610) 및 제2 배기구(620)가 형성되어 있다. 제1 배기구(610) 및 제2 배기구(620)는, 도 1에 도시하는 바와 같이 각각 배기관(630)을 통하여 진공 배기 수단인 예를 들어 진공 펌프(640)에 접속되어 있다. 또한 도 1 중, 참조 부호 650은 압력 조정 수단이다.
회전 테이블(2)과 진공 용기(1)의 저부(14) 사이의 공간에는, 도 1 및 도 4에 도시하는 바와 같이 가열 수단인 히터 유닛(7)이 설치되고, 회전 테이블(2)을 통하여 회전 테이블(2) 상의 웨이퍼(W)가, 프로세스 레시피로 결정된 온도(예를 들어 450℃)로 가열된다. 회전 테이블(2)의 주연 부근의 하방측에는, 회전 테이블(2)의 상방 공간으로부터 배기 영역(E1, E2)에 이르기까지의 분위기와 히터 유닛(7)이 놓여져 있는 분위기를 구획하여 회전 테이블(2)의 하방 영역에의 가스의 침입을 억제하기 위해, 링 형상의 커버 부재(71)가 설치되어 있다(도 5). 이 커버 부재(71)는, 회전 테이블(2)의 외측 테두리부 및 외측 테두리부보다도 외주측을 하방측으로부터 면하도록 설치된 내측 부재(71a)와, 이 내측 부재(71a)와 진공 용기(1)의 내벽면 사이에 설치된 외측 부재(71b)를 구비하고 있다. 외측 부재(71b)는, 분리 영역(D)에 있어서 볼록 형상부(4)의 외측 테두리부에 형성된 굴곡부(46)의 하방에서, 굴곡부(46)와 근접하여 설치되고, 내측 부재(71a)는, 회전 테이블(2)의 외측 테두리부 하방(및 외측 테두리부보다도 약간 외측의 부분의 하방)에 있어서, 히터 유닛(7)을 전체 둘레에 걸쳐서 둘러싸고 있다.
히터 유닛(7)이 배치되어 있는 공간보다도 회전 중심측의 부위에 있어서의 저부(14)는, 회전 테이블(2)의 하면의 중심부 부근에 있어서의 코어부(21)에 접근하도록 상방측으로 돌출되어 돌출부(12a)를 이루고 있다. 이 돌출부(12a)와 코어부(21) 사이는 좁은 공간으로 되어 있고, 또한 저부(14)를 관통하는 회전축(22)의 관통 구멍의 내주면과 회전축(22)의 간극이 좁아져 있고, 이들 좁은 공간은 케이스체(20)에 연통하고 있다. 그리고 케이스체(20)에는 퍼지 가스인 N2 가스를 좁은 공간 내에 공급하여 퍼지하기 위한 퍼지 가스 공급관(72)이 설치되어 있다. 또한 진공 용기(1)의 저부(14)에는, 히터 유닛(7)의 하방에 있어서 둘레 방향으로 소정의 각도 간격으로, 히터 유닛(7)의 배치 공간을 퍼지하기 위한 복수의 퍼지 가스 공급관(73)이 설치되어 있다[도 5에는 하나의 퍼지 가스 공급관(73)을 도시함]. 또한, 히터 유닛(7)과 회전 테이블(2) 사이에는, 히터 유닛(7)이 설치된 영역에의 가스의 침입을 억제하기 위해, 외측 부재(71b)의 내주벽[내측 부재(71a)의 상면]으로부터 돌출부(12a)의 상단부 사이를 둘레 방향에 걸쳐서 덮는 덮개 부재(7a)가 설치되어 있다. 덮개 부재(7a)는 예를 들어 석영으로 제작할 수 있다.
또한, 진공 용기(1)의 천장판(11)의 중심부에는 분리 가스 공급관(51)이 접속되어 있고, 천장판(11)과 코어부(21) 사이의 공간(52)에 분리 가스인 N2 가스를 공급하도록 구성되어 있다. 이 공간(52)에 공급된 분리 가스는, 돌출부(5)와 회전 테이블(2)의 좁은 간극(50)을 통하여 회전 테이블(2)의 웨이퍼 적재 영역측의 표면을 따라서 주연을 향하여 토출된다. 공간(50)은 분리 가스에 의해 공간(481) 및 공간(482)보다도 높은 압력으로 유지될 수 있다. 따라서, 공간(50)에 의해, 제1 처리 영역(P1)에 공급되는 Si 함유 가스와 제2 처리 영역(P2)에 공급되는 산화 가스가, 중심 영역(C)을 통과하여 혼합되는 것이 억제된다. 즉, 공간(50)[또는 중심 영역(C)]은 분리 공간(H)[또는 분리 영역(D)]과 마찬가지로 기능할 수 있다.
또한, 진공 용기(1)의 측벽에는, 도 2, 도 3에 도시하는 바와 같이, 외부의 반송 아암(10)과 회전 테이블(2) 사이에서 기판인 웨이퍼(W)의 전달을 행하기 위한 반송구(15)가 형성되어 있다. 이 반송구(15)는 도시하지 않은 게이트 밸브에 의해 개폐된다. 또한 회전 테이블(2)에 있어서의 웨이퍼 적재 영역인 오목부(24)는 이 반송구(15)에 면하는 위치에서 반송 아암(10)과의 사이에서 웨이퍼(W)의 전달이 행해지므로, 회전 테이블(2)의 하방측에 있어서 전달 위치에 대응하는 부위에, 오목부(24)를 관통하여 웨이퍼(W)를 이면으로부터 들어올리기 위한 전달용의 승강 핀 및 그 승강 기구(모두 도시하지 않음)가 설치되어 있다.
다음에, 도 3, 도 6 및 도 7을 참조하면서, 활성화 가스 인젝터(220)에 대해서 설명한다. 활성화 가스 인젝터(220)는, 웨이퍼(W) 상에 성막된 막에 대하여 활성화된 개질 가스 및 에칭 가스를 공급하고, 그 막을 개질하는 동시에 에칭할 수 있다. 도 6 및 도 7에 도시하는 바와 같이, 활성화 가스 인젝터(220)에는, 개질 가스 및 에칭 가스를 진공 용기(1) 내에 공급하는 개질 가스 공급부로서 기능하는 가스 도입 노즐(34)이 설치되어 있다. 가스 도입 노즐(34)은, 가스 도입 노즐(34)의 길이 방향을 따라서 소정의 간격으로 형성된 복수의 가스 구멍(341)을 갖고 있다. 가스 도입 노즐(34)은 예를 들어 석영 글래스로 제작할 수 있다. 또한, 가스 도입 노즐(34)보다도 회전 테이블(2)의 회전 방향 하류측에는, 가스 도입 노즐(34)로부터 도입되는 개질 가스 및 에칭 가스를 플라즈마화하기 위해, 서로 평행한 1쌍의 막대 형상의 시스관(35a, 35b)으로 이루어지는 플라즈마 발생부(80)가 배치되어 있다. 시스관(35a, 35b)은, 서로 평행해지도록 설치되어 있고, 서로 동등한 길이를 갖고 있다.
가스 도입 노즐(34) 및 플라즈마 발생부(80)는, 회전 테이블(2)의 거의 중심을 향하는 방향, 또한 회전 테이블(2)의 접선 방향에 직교하는 방향으로, 회전 테이블(2)의 상면과 평행하게 연장되어 있다. 또한, 가스 도입 노즐(34) 및 플라즈마 발생부(80)는, 용기 본체(12)의 외주면에 설치된 도입관(80a)에 의해, 진공 용기(1) 내의 기밀이 유지되도록 지지되어 있다.
도 3에 도시하는 바와 같이, 가스 도입 노즐(34)에는, 가스 도입관(271)의 일단부가 접속되고, 가스 도입관(271)의 타단부에는, 개질 가스 도입관(251)과 에칭 가스 도입관(261)이 접속되어 있다. 개질 가스 도입관(251)에는, 개폐 밸브(252) 및 유량 조정기(253)를 통하여, 개질 가스가 저류된 개질 가스 공급원(254)이 접속되어 있다. 개질 가스로서는, 예를 들어 산소(O2) 가스를 사용할 수 있고, O2 가스 대신에 또는 O2 가스와 함께, 예를 들어 아르곤(Ar) 가스 또는 헬륨(He) 가스 등의 희가스를 사용해도 된다. 또한, 에칭 가스 도입관(261)에는, 개폐 밸브(262) 및 유량 조정기(263)를 통하여, 에칭 가스가 저류된 에칭 가스 공급원(264)이 접속되어 있다. 에칭 가스로서는, 에칭 대상막을 에칭 가능한 가스를 사용할 수 있고, 본 실시 형태에 있어서는, 산화 실리콘막을 에칭하는 예를 들어 트리플루오로메탄(CHF3) 등의 하이드로플루오르카본, 4불화메탄(CF4) 등의 플루오르카본 등의 불소계 가스를 사용할 수 있다.
한편, 플라즈마 발생부(80)는, 도 7에 도시하는 바와 같이, 서로 평행하게 연장되는 시스관(35a, 35b)과, 시스관(35a) 내에 삽입되어 있는 전극(36a)과, 시스관(35b) 내에 삽입되어 있는 전극(36b)을 갖고 있다. 시스관(35a, 35b)은, 예를 들어 석영, 알루미나(산화 알루미늄), 또는 이트리아(산화 이트륨, Y2O3) 등의 절연체에 의해 제작되어 있다. 전극(36a, 36b)은, 평행 전극으로서 기능하고, 예를 들어 니켈 합금이나 티탄 등으로부터 제작되어 있다. 도 3에 도시하는 바와 같이, 전극(36a, 36b)에는, 정합기(225)를 통하여 고주파 전원(224)이 접속되어 있다. 예를 들어 13.56㎒, 예를 들어 500W의 고주파 전력이 고주파 전원(224)으로부터 전극(36a, 36b)에 공급된다. 또한, 시스관(35a, 35b)은, 도 7에 도시하는 바와 같이, 기단부측[진공 용기(1)의 내벽측]에 있어서 보호관(37)에 삽입되어 있다. 보호관(37)은 도 5 등에서는 생략되어 있다. 또한, 도 6 이외에서는, 시스관(35a, 35b)을 간략화하고 있다.
도 6 및 도 7에 도시하는 바와 같이, 용기 본체(12)의 내부에 있어서, 활성화 가스 인젝터(220)에는, 가스 도입 노즐(34) 및 시스관(35a, 35b)을 덮는 커버체(221)가 설치되어 있다. 커버체(221)는 예를 들어 석영 등의 절연체에 의해 제작되어 있다. 또한, 커버체(221)에 있어서의 회전 테이블(2)의 대략 반경 방향으로 연장되는 하단부 테두리에는 기류 규제판(222)이 설치되어 있다. 기류 규제판(222)은, 커버체(221)와 마찬가지로 예를 들어 석영 글래스 등의 절연체에 의해 제작되어 있다. 또한, 커버체(221)는, 기류 규제판(22)의 하면과 회전 테이블(2)의 상면의 간격 t(도 7)가, 이 간격 t를 통과하여 커버체(221)의 내부에 가스가 유입되는 것을 억제할 수 있는 정도로 작아지도록, 예를 들어 천장판(11)의 하면으로부터 현수되어 있다. 또한, 기류 규제판(222)의 폭 u(도 7)는, 회전 테이블(2)의 외주를 향하는 방향을 따라서 퍼져 있다. 회전 테이블(2)의 외주측에 있어서는, 가스의 회전 방향을 따른 유속이 빨라지지만, 기류 규제판(22)의 폭 u가 외주를 향할수록 퍼져 있으므로, 커버체(221)의 내부에의 가스의 유입을 억제할 수 있다.
또한, 본 실시 형태에 의한 성막 장치에는, 장치 전체의 동작의 컨트롤을 행하기 위한 컴퓨터로 이루어지는 제어부(100)가 설치되어 있고, 이 제어부(100)의 메모리 내에는, 제어부(100)의 제어 하에, 후술하는 성막 방법을 성막 장치에 실시시키는 프로그램이 저장되어 있다. 이 프로그램은 후술하는 장치의 동작을 실행하도록 스텝군이 조립되어 있고, 하드 디스크, 콤팩트 디스크, 광자기 디스크, 메모리 카드, 플렉시블 디스크 등의 기억부(101)로부터 제어부(100) 내에 인스톨된다.
다음에, 본 발명의 실시 형태에 의한 성막 방법에 대해서 본 실시 형태에 의한 성막 장치를 사용하여 행하는 경우를 예로 들어 설명한다. 이하에서는, 반응 가스 노즐(32)로부터 공급되는 산화 가스로서 O3 가스를 사용하고, 활성화 가스 인젝터(220)로부터 공급되는 개질 가스로서 O2 가스와 Ar 가스의 혼합 가스(이하, O2/Ar 가스라고 기재함), 에칭 가스로서 CHF3 가스를 사용하는 것으로 한다. 또한, 사용하는 웨이퍼(W)에는 도 8a의 (a)에 도시하는 바와 같은 라인ㆍ스페이스ㆍ패턴이 형성되어 있는 것으로 하고, 스페이스 S를 산화 실리콘으로 매립하는 경우를 설명한다. 스페이스 S는, 오목 형상으로 만곡한 측벽을 갖고, 상단부 및 저부에 비해, 이들의 사이에 있어서의 폭이 넓어져 있다.
(웨이퍼의 반입 스텝)
우선, 도시하지 않은 게이트 밸브를 개방하고, 외부로부터 반송 아암(10)에 의해 반송구(15)를 통하여 웨이퍼(W)를 회전 테이블(2)의 오목부(24) 내에 전달한다. 이 전달은, 오목부(24)가 반송구(15)에 면하는 위치에 정지하였을 때에 오목부(24)의 저면의 관통 구멍을 통하여 진공 용기(1)의 저부측으로부터 도시하지 않은 승강 핀이 승강함으로써 행해진다. 이와 같은 웨이퍼(W)의 전달을 회전 테이블(2)을 간헐적으로 회전시켜 행하고, 회전 테이블(2)의 5개의 오목부(24) 내에 각각 웨이퍼(W)를 적재한다.
(보호층 성막 스텝)
계속해서 게이트 밸브를 폐쇄하고, 진공 펌프(640)에 의해 진공 용기(1) 내를 진공 상태로 한 후, 분리 가스 노즐(41, 42)로부터 분리 가스인 N2 가스를 소정의 유량으로 토출하고, 분리 가스 공급관(51) 및 퍼지 가스 공급관(72, 72)으로부터도 N2 가스를 소정의 유량으로 토출한다. 이에 수반하여, 압력 조정 수단(650)에 의해 진공 용기(1) 내를 미리 설정한 처리 압력으로 조정한다. 계속해서, 회전 테이블(2)을 시계 방향으로 예를 들어 20rpm의 회전 속도로 회전시키면서 히터 유닛(7)에 의해 웨이퍼(W)를 예를 들어 450℃로 가열한다.
이 후, 반응 가스 노즐(31, 32)로부터 각각 Si 함유 가스 및 O3 가스를 토출한다. 또한, 가스 도입 노즐(34)로부터 O2/Ar 가스만을 토출하고, 각각의 시스관(35a, 35b)간에 13.56㎒의 주파수를 갖는 고주파를 400W의 전력으로 공급한다. 이에 의해, 활성화 가스 인젝터(220)의 커버체(221)의 내부 공간[플라즈마 발생부(80) 근방]에 있어서 산소 플라즈마가 생성된다.
회전 테이블(2)의 회전에 의해, 웨이퍼(W)는, 제1 처리 영역(P1), 분리 영역(D), 제2 처리 영역(P2), 개질 영역(150)[활성화 가스 인젝터(220)의 하방 영역, 도 3 및 도 6 참조], 분리 영역(D)을 통과한다. 제1 처리 영역(P1)에 있어서, 도 8a의 (b)에 도시하는 바와 같이, 웨이퍼(W)의 표면 및 스페이스 S 내의 측벽 및 저부에 Si 함유 가스가 흡착되고, Si 함유 가스 분자층(61)이 형성되고, 제2 처리 영역(P2)에 있어서, 도 8a의 (c)에 도시하는 바와 같이, 웨이퍼(W) 상에 흡착된 Si 함유 가스가 O3 가스에 의해 산화되어 하나 또는 복수 분자층의 산화 실리콘막(62)이 퇴적된다.
산화 실리콘막(62) 중에는, 예를 들어 Si 함유 가스 중에 포함되는 잔류기 때문에, 수분(OH기)이나 유기물 등의 불순물이 포함되어 있는 경우가 있다. 그러나, 웨이퍼(W)가 개질 영역(150)에 도달하면, 산소 플라즈마에 의해 산화 실리콘막(62)이 개질된다. 구체적으로는, 산화 실리콘막(62)이 산소 플라즈마에 노출됨으로써, 예를 들어 산화 실리콘막 중에 남는 유기 불순물이 산화되어 기상 중에 방출되거나, 플라즈마 중의 고에너지 입자의 충격에 의해 산화 실리콘막 내의 원소가 재배열되어 산화 실리콘막의 치밀화(고밀도화)가 의도되거나 하게 된다. 이와 같이 웨이퍼(W)[회전 테이블(2)]가 1 회전하는 동안에, 하나 또는 복수 분자층의 산화 실리콘막(62)이 퇴적되어 개질되고, 고품위의 산화 실리콘막(63)[도 8a의 (d)]이 웨이퍼(W)에 형성된다. 그 후, 웨이퍼(W)의 회전을 소정의 횟수 반복하면, 산화 실리콘막(63)은, 소정의 막 두께(예를 들어 5㎚ 내지 100㎚)를 갖는 것에 이른다. 여기까지의 스텝에서 얻어지는 산화 실리콘막은, 웨이퍼(W)의 표면 및 스페이스 S의 내벽이, 이후에 공급되는 에칭 가스에 의해 부식되어지는 것을 방지하는 보호층으로서 기능한다.
(제1 스텝)
다음에, 활성화 가스 인젝터(220)의 가스 도입 노즐(34)로부터 O2/Ar 가스에 더하여 CHF3 가스를 공급하고, 웨이퍼(W)의 회전을 더 계속함으로써, 도 8a의 (a) 내지 (d)를 참조하면서 설명한 Si 함유 가스의 흡착, O3 가스에 의한 Si 함유 가스의 산화 및 산화 실리콘막의 개질을 반복한다. 이 경우에는, 퇴적된 산화 실리콘막(62)이 개질되는 동시에, 전극(36a, 36b)간에 공급되는 고주파에 의해 CHF3 가스가 활성화되기 때문에, 산화 실리콘막(62, 63)이 에칭된다. 즉, 제1 스텝에 있어서는, 산화 실리콘의 퇴적과 에칭이, 퇴적 속도 > 에칭 속도로 되도록 동시에 행해진다. 또한, 이때, CHF3 가스의 공급량, 진공 용기(1) 내의 압력, 고주파 전력 등의 성막 조건은, 산화 실리콘막의 에칭 속도가, 스페이스 S의 개구 부근에서 크고, 스페이스 S의 저부측에서 작아지도록[환언하면, 산화 실리콘막의 퇴적 속도가, 스페이스 S의 개구 부근에서 느리게 저부측에서 빠르게 되도록] 설정된다. 이와 같은 조건은, 예비 실험 등으로부터 미리 결정할 수 있다. 그와 같은 조건에 따르면, 스페이스 S의 개구가 산화 실리콘으로 폐색되는 일 없이, 산화 실리콘의 퇴적이 계속된다.
(제2 스텝)
소정의 횟수 웨이퍼(W)가 회전하면, 스페이스 S의 측벽 및 저부에 퇴적되는 산화 실리콘막(64)의 단면은, 대략, 도 8b의 (e)에 도시하게 된다. 즉, 스페이스 S의 저부측에서의 막 두께는, 스페이스 S의 개구 부근 및 웨이퍼(W)의 표면에 있어서의 막 두께보다도 두꺼워지고, 스페이스 S의 측벽에 있어서, 약간 오목 형상으로 만곡되어 있다[오목 형상의 만곡 정도는, 원래의 스페이스 S의 측벽에 있어서의 오목 형상의 만곡 정도보다도 경감되어 있음].
다음에, 회전 테이블(2)의 회전, 웨이퍼(W)의 가열, 반응 가스 노즐(32)로부터의 O3 가스의 공급, 활성화 가스 인젝터(220)의 가스 도입 노즐(34)로부터의 O2/Ar 가스 및 CHF3 가스의 공급 및 활성화 가스 인젝터(220)의 전극(36a, 36b)에의 고주파의 공급 등을 제1 스텝일 때와 동일한 조건으로 계속하면서, 반응 가스 노즐(31)로부터의 Si 함유 가스의 공급만을 정지한다. 이로 인해, 산화 실리콘의 퇴적이 정지되지만, 산화 실리콘막(64)의 에칭은 계속된다. 산화 실리콘막(64)의 에칭 속도는, 스페이스 S의 개구 부근에서 빠르고 저부측에서 느리기 때문에, 소정의 시간이 경과된 후, 산화 실리콘막(64)은, 도 8b의 (f)에 도시하는 바와 같이, 스페이스 S는, 개구가 넓고 저부를 향하여 폭이 좁아지는 테이퍼 형상의 단면 형상을 갖게 된다. 또한, 이 에칭의 시간은, 웨이퍼(W)의 상면 및 스페이스 S의 개구 부근에서 웨이퍼(W)가 노출되지 않는 정도로, 예를 들어 예비 실험 등으로부터 결정할 수 있다.
(제3 스텝)
다음에, 반응 가스 노즐(31)로부터의 Si 함유 가스의 공급을 재개한다. 이에 의해, 제1 스텝과 마찬가지로 산화 실리콘의 퇴적과 에칭이 동시에 행해지게 된다. 즉, 웨이퍼(W)가 제1 처리 영역(P1)을 통과할 때에, 도 8c의 (g)에 도시하는 바와 같이, 테이퍼 형상의 단면 형상을 갖는 스페이스 S의 내면에 Si 함유 가스가 흡착되어 Si 함유 가스 분자층(61)이 형성되고, 처리 영역(P2)을 통과할 때에, Si 함유 가스 분자층(61)이 O3 가스에 의해 산화되어 산화 실리콘막(62)이 형성되고, 처리 영역(150)을 통과할 때에, 산화 실리콘막(62)이 개질되는 동시에 에칭되어, 개질된 산화 실리콘막(63)이 얻어진다. 이것을 계속하면, 스페이스 S의 양쪽의 측벽에 형성되는 산화 실리콘막(63)이 서로 근접함으로써, 스페이스 S가 매립되는 것보다도 오히려, 테이퍼 각도가 작아지도록, 환언하면, 스페이스 S의 저부로부터 산화 실리콘막(63)이 두꺼워지도록 하여 스페이스 S가 매립되어 간다. 그리고, 소정의 시간이 경과되면, 도 8d에 도시하는 바와 같이, 보이드가 형성되는 일 없이, 스페이스 S가 산화 실리콘막(66)으로 매립되는 데 이른다.
이후, 반응 가스 노즐(31)로부터의 Si 함유 가스의 공급, 반응 가스 노즐(32)로부터의 O3 가스의 공급, 활성화 가스 인젝터(220)의 가스 도입 노즐(34)로부터의 O2/Ar 가스 및 CHF3 가스의 공급과 활성화 가스 인젝터(220)의 전극(36a, 36b)에의 고주파의 공급을 정지하고, 진공 용기(1) 내를 N2 가스에 의해 퍼지한 후, 웨이퍼 반입 스텝에 있어서의 수순과 반대의 수순에 의해 웨이퍼(W)가 진공 용기(1)로부터 반출된다. 이상에 의해, 본 실시 형태에 의한 산화 실리콘막의 성막 방법이 종료된다.
이상 설명한 바와 같이, 본 실시 형태에 있어서는, 반응 가스 노즐(31), 반응 가스 노즐(32) 및 활성화 가스 인젝터(220)가 하나의 진공 용기(1) 내에 설치된 성막 장치에 있어서, 반응 가스 노즐(31)로부터 Si 함유 가스가 공급되는 제1 처리 영역(P1)과, 반응 가스 노즐(32)로부터 O3 가스가 공급되는 제2 처리 영역(P2)과, 산소 플라즈마 및 활성화된 CHF3 가스가 공급되는 처리 영역(150)을, 회전 테이블(2)의 회전에 의해 웨이퍼(W)가 통과한다. 이로 인해, 제1 처리 영역(P1)에 있어서 웨이퍼(W)에 흡착되는 Si 함유 가스가, 제2 처리 영역(P2)에 있어서 O3 가스에 의해 산화되고, 웨이퍼(W) 상에 산화 실리콘막(62)이 형성된다. 이 산화 실리콘막(62)은, 처리 영역(150)에 있어서 산소 플라즈마에 의해 개질되는 동시에, 활성화된 CHF3 가스에 의해 에칭된다(제1 스텝). 이때, 산화 실리콘막(63)의 퇴적 속도는, 외관상, 스페이스 S의 개구 부근에서 느리고 저부에서 빠르기 때문에, 스페이스 S의 개구가 페색되기 어렵다. 따라서, 스페이스 S 내가 매립되기 전에, 스페이스 S의 개구가 폐색되어 버리면, 스페이스 S 내에는 보이드가 형성되게 되지만, 본 실시 형태에 따르면, 보이드의 형성을 경감하는 것이 가능해진다.
또한, 본 실시 형태에 있어서는, 제2 스텝으로서, Si 함유 가스의 공급을 정지하여 에칭이 행해지고, 스페이스 S의 단면을, 저부로부터 개구를 향하는 방향을 따라서 폭이 확대되는 테이퍼 형상으로 할 수 있다[도 8b의 (f) 참조]. 이 후, 제1 스텝과 마찬가지의 제3 스텝을 행하면, 스페이스 S는, 스페이스 S의 저부에 퇴적되는 산화 실리콘막의 막 두께가 두꺼워지도록 매립된다.
또한, ALD에 의해 스페이스를 산화 실리콘으로 매립하려고 하면, 스페이스의 양쪽의 측벽에 성막되는 산화 실리콘막의 표면이 서로 근접해 있고, 서로 접촉하여 스페이스가 매립되는 경향이 있다. 이와 같은 경우, 특히, 양측으로부터 산화 실리콘막의 표면이 접하기 직전에 있어서는 양자간의 간극이 매우 좁기 때문에, 부생성물이 외부로 배기되기 어려워진다. 그로 인해, 부생성물이 산화 실리콘 중에 도입되어 버릴 가능성이 있다. 이 경우, 서로의 표면이 접촉한 계면(심)에 있어서는 불순물 농도가 높아지거나, 심에 있어서 산소 원자와 실리콘 원자 사이의 결합손(結合手)이 형성되지 않고 다수의 결함이 생성되거나 할 우려가 있다. 즉, 이와 같은 심 근방에 있어서는, 산화 실리콘의 막질이 악화되어 있을 가능성이 있다. 이 경우, 예를 들어 이후의 에칭 공정에 있어서, 심을 따라서 에칭이 빠르게 진행되어 홈이 형성될 가능성이 있다.
그러나, 본 실시 형태에 의한 성막 방법에 따르면, 스페이스 S의 양 측벽에 퇴적되는 산화 실리콘막의 표면이 서로 근접하여 심을 형성하는 것이 억제되기 때문에, 심면 및 그 근방에 있어서의 산화 실리콘의 성질의 악화를 억제할 수 있다.
또한, 반응 가스 노즐(31), 반응 가스 노즐(32) 및 활성화 가스 인젝터(220)가 하나의 진공 용기(1) 내에 설치된 본 발명의 실시 형태에 의한 성막 장치에 있어서 본 발명의 실시 형태에 의한 성막 방법을 실시함으로써, 산화 실리콘막의 퇴적, 개질 및 에칭을 하나의 진공 용기(1) 내에서 행할 수 있다. 따라서, 퇴적과 에칭을 다른 장치에서 행하는 경우에 비해, 웨이퍼(W)의 반송 시간이 필요가 없기 때문에, 처리량을 향상시킬 수 있다고 하는 이점이 있다. 또한, 반응 가스 노즐(31)로부터 Si 함유 가스가 웨이퍼(W)의 표면에 흡착되고, 흡착된 Si 함유 가스가 산화 가스에 의해 산화되어 산화 실리콘의 분자층이 형성된 직후에 개질을 행할 수 있기 때문에, 활성화된 개질 가스는 분자층 레벨의 막 두께를 갖는 산화 실리콘막에 대하여 작용하게 되어, 개질 효율이 향상된다.
또한, 도 8a의 (a) 내지 도 8d까지를 참조하면서, 도 8a의 (a)에 도시하는 바와 같은 측벽이 오목 형상으로 만곡된 스페이스 S를 매립하는 경우에 대해서 설명하였지만, 본 실시 형태에 의한 성막 방법은, 그와 같은 스페이스 S에만 적용되는 것은 아니다. 예를 들어, 도 9에 도시하는 바와 같이 측벽이 평탄한 직사각형의 단면 형상을 갖는 스페이스 S에 대해서도, 보이드의 형성을 억제하면서 매립할 수 있다. 즉, 우선, 상술한 웨이퍼 반입 스텝으로부터 제1 스텝까지를 행하여 소정의 막 두께를 갖는(개질되어 고품위인) 산화 실리콘막(64)[도 9의 (a) 참조]이 퇴적된다. 다음에, 제2 스텝을 행하면, 도 9의 (b)에 도시하는 바와 같이, 저부로부터 개구를 향하는 방향을 따라서 폭이 확대되는 테이퍼 형상의 스페이스가 형성된다. 그리고, 제3 스텝을 행하면, 보이드가 형성되지 않고, 웨이퍼(W)의 스페이스가 산화 실리콘막(66)에 의해 매립될 수 있다.
또한, 도 10에 도시하는, 저부로부터 개구를 향하는 방향을 따라서 폭이 좁아지는 역 테이퍼 형상의 스페이스를 매립하는 것도 가능하다. 즉, 우선, 상술한 웨이퍼 반입 스텝으로부터 제1 스텝까지를 행하여 소정의 막 두께를 갖는(개질되어 고품위인) 산화 실리콘막(64)[도 10의 (a) 참조]이 퇴적된다. 도시하는 바와 같이, 활성화 가스 인젝터(220)에 의해 에칭도 행해지기 때문에, 스페이스 S의 역 테이퍼 형상의 단면 형상은 완화되어 있다. 다음에, 제2 스텝을 행한 후에, 도 10의 (b)에 도시하는 바와 같이, 스페이스 S의 단면 형상이 대략 직사각형으로 된 것으로 한다. 이와 같은 직사각형의 단면 형상은, 도 9의 (a)에 도시하는 웨이퍼(W)에 형성되는 스페이서(S)의 단면 형상과 거의 마찬가지이다. 따라서, 도 9의 (a)로부터 도 9의 (c)까지를 참조하면서 설명한 성막 방법을 행함으로써, 도 10의 (c)에 도시하는 바와 같이 역 테이퍼 형상의 단면을 갖는 스페이스 S도 또한 매립할 수 있다. 즉, 이 경우에는, 상술한 웨이퍼 반입 스텝으로부터 제1 스텝을 행한 후, 제2 스텝, 제3 스텝(제1 스텝과 실질적으로 동일), 제2 스텝 및 제3 스텝이 행해지게 된다. 환언하면, 본 실시 형태에 의한 성막 방법에 있어서, 제2 스텝의 횟수는 1회로 한정되지 않고, 제1 스텝(또는 제3 스텝)과 교대로 복수회 행해도 된다.
여기서 각 스텝에 있어서의 성막 조건을 예시하면, 이하와 같다. 단, 이하의 성막 조건은 본 발명을 한정하는 것은 아니다. 성막 조건은, 사용하는 성막 장치의 형상이나 사이즈, 성막하는 막의 재질, 사용하는 반응 가스, 개질 가스 및 에칭 가스에 따라서 적절하게 결정되어야 할 것이다.
(1) 보호층 성막 스텝
ㆍ회전 테이블(2)의 회전 속도:1rpm 내지 500rpm[300㎜ 직경의 웨이퍼(W)를 사용하는 경우]
ㆍ진공 용기(1) 내의 압력:133Pa(1Torr)
ㆍ반응 가스 노즐(31)로부터의 Si 함유 가스의 유량:100sccm
ㆍ반응 가스 노즐(32)로부터의 O3 가스의 유량:10000sccm
ㆍ활성화 가스 인젝터(220)로부터의 O2/Ar 가스의 유량:10000sccm(O2 가스 유량:1000sccm, Ar 가스 유량:9000sccm)
ㆍ활성화 가스 인젝터(220)에 공급되는 고주파 전력:500 내지 900W(주파수 13.56㎒)
(2) 제1 스텝 및 제3 스텝
ㆍ활성화 가스 인젝터(220)로부터의 CHF3 가스의 유량:0.5 내지 3sccm
ㆍ회전 테이블(2)의 회전 속도:1 내지 500rpm
(그 밖의 조건은, 보호층 성막 스텝과 동일함)
(3) 제2 스텝
ㆍ반응 가스 노즐(31)로부터의 Si 함유 가스의 유량:0sccm
(그 밖의 조건은, 제1 스텝 및 제3 스텝과 동일함)
이상, 실시 형태를 참조하면서 본 발명을 설명하였지만, 본 발명은 개시된 실시 형태에 한정되는 것이 아니라, 첨부된 특허청구의 범위 내에서 다양한 변형이나 변경이 가능하다.
예를 들어, 저부로부터 개구를 향하는 방향을 따라서 폭이 확대되는 테이퍼 형상의 단면 형상을 갖는 스페이스를 산화 실리콘으로 매립하는 경우에는, 제2 스텝을 행하지 않고, 제1 스텝에 있어서의 퇴적(개질을 포함해도 되고, 이하 동일함)과 동시의 에칭만으로도 매립할 수 있다. 또한, 그와 같은 스페이스에 있어서는, 제1 스텝 및 제3 스텝에 있어서는 퇴적만 행하고, 제2 스텝에서의 에칭을 행함으로써 매립하는 것이 가능하다.
또한, 플라즈마 발생 수단(80)은, 2개 이상 설치해도 된다. 또한, 상술한 바와 같이 평행 전극[전극(36a, 36b)]을 사용하여 용량 결합형 플라즈마를 발생시켰지만, 코일형의 전극을 사용하여 유도 결합형의 플라즈마를 발생시켜도 된다.
또한, 상술한 실시 형태에 있어서는, 보호층 성막 스텝을 설명하였지만, 스페이스 S의 내면이, 활성화된 개질 가스나 에칭 가스에 의해 부식되지 않는 경우에는, 보호층 성막 스텝은 불필요하다. 예를 들어, Si 기판에 형성된 스페이스에 대하여 예를 들어 질화 실리콘막 등의 보호층이 형성되어 있는 경우에는, 보호층 성막 스텝을 행하지 않고, 제1 스텝으로부터 시작해도 된다.
또한, 제2 스텝에 있어서는, 상술한 바와 같이, Si 함유 가스의 공급을 정지하여 산화 실리콘의 퇴적을 정지한다. Si 함유 가스의 공급량은, 상술한 바와 같이, O3 가스(산화 가스)의 공급량이나 N2 가스의 공급에 대하여 대폭으로 적기 때문에, Si 함유 가스의 공급을 정지해도 진공 용기(1) 내의 압력 변동은 적어, 가스의 흐름이 흐트러지는 일은 거의 없다. 따라서, Si 함유 가스의 공급만을 정지하는 것으로는, 웨이퍼(W)의 면내 및 면 사이에 있어서의 막 두께나 막질의 균일성에 악영향을 주는 일이 없다고 하는 이점이 있다. 그러나, 산화 가스의 공급량이 적은 경우에는, 산화 가스의 공급을 정지해도 된다. 또한, Si 함유 가스의 공급을 정지하는 동시에, N2 가스나 희가스 등의 불활성 가스를 반응 가스 노즐(31)로부터 공급하도록, 반응 가스 노즐(31)에 대한 가스 공급계를 구성해도 된다.
상술한 각 예에서는, 가스 공급계[노즐(31 내지 34, 41, 42)(300)]에 대하여 회전 테이블(2)을 회전시켰지만, 이 회전 테이블(2)에 대하여 가스 공급계를 회전시켜도 된다.
또한, 상술한 예에서는 2 종류의 반응 가스를 사용하여 반응 생성물을 형성하는 예에 대해서 설명하였지만, 2 종류 이상 예를 들어 3 종류 혹은 4 종류의 반응 가스를 사용하여 반응 생성물을 형성하는 경우에 본 발명을 적용해도 된다.
상술한 산화 실리콘막을 성막하기 위한 Si 함유 가스로서는, 제1 반응 가스로서 BTBAS[비스터셜부틸아미노실란], DCS[디클로로실란], HCD[헥사클로로디실란], 3DMAS[트리스디메틸아미노실란], 모노아미노실란 등을 사용해도 된다. 또한, TMA[트리메틸알루미늄], TEMAZ[테트라키스에틸메틸아미노지르코늄], TEMAH[테트라키스에틸메틸아미노하프늄], Sr(THD)2[스트론튬비스테트라메틸헵탄디오나토], Ti(MPD)(THD)[티타늄메틸펜탄디오나토비스테트라메틸헵탄디오나토] 등을 제1 반응 가스로서 사용하여, 산화 알루미늄막, 산화 지르코늄막, 산화 하프늄막, 산화 스트론튬막, 산화 티탄막 등을 각각 성막해도 된다. 이들의 반응 가스를 산화하는 산화 가스인 제2 반응 가스로서는, 수증기 등을 채용해도 된다. 또한, 제2 반응 가스로서 O3 가스를 사용하지 않는 프로세스 예를 들어 TiN(질화 티탄)막 등에 있어서 TiN막의 개질을 행하는 경우에는, 가스 도입 노즐(34)로부터 공급하는 플라즈마 발생용의 개질 가스로서는, NH3(암모니아) 가스 등의 N(질소) 함유 가스를 사용해도 된다. 또한, 개질 가스 및 에칭 가스에 대해서는 성막하는 막의 재료에 따라서 적절하게 선택해도 된다.
또한, 분리 가스로서는, 질소(N2) 가스에 한정되지 않고, 아르곤(Ar) 가스 등의 희가스를 사용해도 된다.
또한, 본 발명은 웨이퍼에 형성된 트렌치나 라인ㆍ스페이스ㆍ패턴뿐만 아니라, 예를 들어, 웨이퍼 상에 형성된 메탈 라인에 의해 형성되는 라인ㆍ스페이스ㆍ패턴 등에 대해서도 적용 가능하다.

Claims (13)

  1. 오목부를 포함하는 패턴이 형성된 기판을 진공 용기 내로 반입하는 스텝과,
    제1 반응 가스 공급부로부터 상기 기판에 대하여 제1 반응 가스를 공급하고, 상기 제1 반응 가스를 상기 기판에 흡착시키는 흡착 스텝과,
    제2 반응 가스 공급부로부터 상기 기판에 대하여, 상기 제1 반응 가스와 반응하는 제2 반응 가스를 공급하고, 상기 기판에 흡착되는 상기 제1 반응 가스와 상기 제2 반응 가스를 반응시켜, 상기 기판에 반응 생성물을 형성하는 형성 스텝과,
    상기 진공 용기 내에 설치되어 가스를 활성화 가능한 활성화 가스 공급부에 의해, 개질 가스와, 상기 반응 생성물을 에칭하는 에칭 가스를 활성화하여 상기 기판에 공급하고, 상기 반응 생성물의 개질 및 에칭을 행하는 개질-에칭 스텝과,
    상기 반응 생성물이 형성되지 않는 분위기 하에서, 상기 활성화 가스 공급부에 의해 에칭 가스를 활성화하여 상기 기판에 공급하고, 상기 반응 생성물을 에칭하는 에칭 스텝을 포함하고,
    상기 에칭 스텝은, 상기 흡착 스텝과 상기 형성 스텝과 상기 개질-에칭 스텝을 이 순서대로 반복하여 행한 후에 행해지는, 성막 방법.
  2. 제1항에 있어서, 상기 개질-에칭 스텝에 앞서서, 상기 흡착 스텝, 상기 형성 스텝 및 상기 활성화 가스 공급부에 의해 상기 개질 가스를 활성화하여 상기 기판에 공급하고, 상기 반응 생성물을 개질하는 개질 스텝을 이 순서대로 1 또는 2 이상 반복하는 스텝을 더 포함하는, 성막 방법.
  3. 제1항 또는 제2항에 있어서, 상기 에칭 스텝 후에, 상기 흡착 스텝, 상기 형성 스텝 및 상기 개질-에칭 스텝을 이 순서대로 1 또는 2 이상 반복하는 스텝을 더 포함하는, 성막 방법.
  4. 제1항 또는 제2항에 있어서, 상기 개질-에칭 스텝에 있어서 상기 개질 가스가 고주파에 의해 활성화되는, 성막 방법.
  5. 제1항 또는 제2항에 있어서, 상기 에칭 스텝에 있어서 상기 에칭 가스가 고주파에 의해 활성화되는, 성막 방법.
  6. 기판이 적재되는 기판 적재부를 포함하고, 진공 용기 내에 회전 가능하게 설치되는 회전 테이블과,
    상기 기판 적재부에 적재되는 상기 기판에 대하여 제1 반응 가스를 공급하고, 상기 제1 반응 가스를 상기 기판에 흡착시키는 제1 반응 가스 공급부와,
    상기 제1 반응 가스 공급부로부터 상기 회전 테이블의 둘레 방향으로 이격하여 설치되고, 상기 기판에 대하여 제2 반응 가스를 공급하고, 상기 기판에 흡착하는 상기 제1 반응 가스와 상기 제2 반응 가스를 반응시켜 반응 생성물을 상기 기판에 형성하는 제2 반응 가스 공급부와,
    상기 제1 및 상기 제2 반응 가스 공급부로부터 상기 회전 테이블의 둘레 방향으로 이격하여 설치되고, 상기 반응 생성물을 개질하는 개질 가스와 상기 반응 생성물을 에칭하는 에칭 가스를 활성화하여 상기 기판에 공급하는 활성화 가스 공급부와,
    상기 제1 반응 가스, 상기 제2 반응 가스, 상기 개질 가스 및 상기 에칭 가스를 공급한 상태에서 상기 회전 테이블을 회전시킨 후, 상기 제1 반응 가스의 공급을 정지한 상태에서 상기 회전 테이블을 회전시키도록, 상기 회전 테이블, 상기 제1 반응 가스 공급부, 상기 제2 반응 가스 공급부 및 상기 활성화 가스 공급부를 제어하는 제어부를 포함하는, 성막 장치.
  7. 제6항에 있어서, 상기 활성화 가스 공급부가, 상기 개질 가스 및 상기 에칭 가스를 활성화하는 고주파 전력이 공급되는 전극을 포함하는, 성막 장치.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
KR1020120031394A 2011-03-29 2012-03-28 성막 장치 및 성막 방법 KR101502205B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011073193A JP5599350B2 (ja) 2011-03-29 2011-03-29 成膜装置及び成膜方法
JPJP-P-2011-073193 2011-03-29

Publications (2)

Publication Number Publication Date
KR20120112116A KR20120112116A (ko) 2012-10-11
KR101502205B1 true KR101502205B1 (ko) 2015-03-12

Family

ID=46989140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120031394A KR101502205B1 (ko) 2011-03-29 2012-03-28 성막 장치 및 성막 방법

Country Status (5)

Country Link
US (1) US8906246B2 (ko)
JP (1) JP5599350B2 (ko)
KR (1) KR101502205B1 (ko)
CN (1) CN102732854B (ko)
TW (1) TWI497592B (ko)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416448B2 (en) * 2008-08-29 2016-08-16 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and computer-readable storage medium for film deposition method
JP5107185B2 (ja) 2008-09-04 2012-12-26 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
US9297072B2 (en) 2008-12-01 2016-03-29 Tokyo Electron Limited Film deposition apparatus
JP5423529B2 (ja) 2010-03-29 2014-02-19 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
US20140124788A1 (en) * 2012-11-06 2014-05-08 Intermolecular, Inc. Chemical Vapor Deposition System
JP5913079B2 (ja) * 2012-12-21 2016-04-27 東京エレクトロン株式会社 成膜方法
JP6010451B2 (ja) * 2012-12-21 2016-10-19 東京エレクトロン株式会社 成膜方法
JP6115244B2 (ja) * 2013-03-28 2017-04-19 東京エレクトロン株式会社 成膜装置
US9798317B2 (en) 2013-07-03 2017-10-24 Tokyo Electron Limited Substrate processing method and control apparatus
JP2015056632A (ja) * 2013-09-13 2015-03-23 東京エレクトロン株式会社 シリコン酸化膜の製造方法
JP6262115B2 (ja) 2014-02-10 2018-01-17 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP6221932B2 (ja) * 2014-05-16 2017-11-01 東京エレクトロン株式会社 成膜装置
US9396983B2 (en) * 2014-06-02 2016-07-19 Epistar Corporation Susceptor
JP6294194B2 (ja) * 2014-09-02 2018-03-14 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP6388552B2 (ja) * 2015-03-03 2018-09-12 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP6388553B2 (ja) * 2015-03-03 2018-09-12 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP6412466B2 (ja) * 2015-06-02 2018-10-24 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP6494443B2 (ja) * 2015-06-15 2019-04-03 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6468955B2 (ja) 2015-06-23 2019-02-13 東京エレクトロン株式会社 シリコン含有膜の成膜方法及び成膜装置
JP6447393B2 (ja) * 2015-07-06 2019-01-09 東京エレクトロン株式会社 成膜処理装置、成膜処理方法及び記憶媒体
JP6735549B2 (ja) * 2015-11-04 2020-08-05 東京エレクトロン株式会社 基板処理装置、基板処理方法及びリング状部材
JP6587514B2 (ja) * 2015-11-11 2019-10-09 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP6545094B2 (ja) * 2015-12-17 2019-07-17 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6723135B2 (ja) * 2015-12-25 2020-07-15 東京エレクトロン株式会社 保護膜形成方法
JP6548586B2 (ja) 2016-02-03 2019-07-24 東京エレクトロン株式会社 成膜方法
US10115601B2 (en) * 2016-02-03 2018-10-30 Tokyo Electron Limited Selective film formation for raised and recessed features using deposition and etching processes
JP6583081B2 (ja) * 2016-03-22 2019-10-02 東京エレクトロン株式会社 半導体装置の製造方法
JP6608332B2 (ja) * 2016-05-23 2019-11-20 東京エレクトロン株式会社 成膜装置
JP6733516B2 (ja) 2016-11-21 2020-08-05 東京エレクトロン株式会社 半導体装置の製造方法
JP6869024B2 (ja) * 2016-12-20 2021-05-12 東京エレクトロン株式会社 パーティクル除去方法及び基板処理方法
JP7203515B2 (ja) * 2017-06-06 2023-01-13 アプライド マテリアルズ インコーポレイテッド 連続した堆積-エッチング-処理方法を使用した酸化ケイ素及び窒化ケイ素のボトムアップ成長
JP2019079867A (ja) * 2017-10-20 2019-05-23 漢民科技股▲分▼有限公司 気相成膜装置
JP2019096666A (ja) * 2017-11-20 2019-06-20 東京エレクトロン株式会社 エッチング方法及びこれを用いた窪みパターンの埋め込み方法
US11037780B2 (en) * 2017-12-12 2021-06-15 Asm Ip Holding B.V. Method for manufacturing semiconductor device with helium-containing gas
JP6843087B2 (ja) * 2018-03-12 2021-03-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP7278146B2 (ja) 2019-05-20 2023-05-19 東京エレクトロン株式会社 成膜方法
JP2022133762A (ja) * 2021-03-02 2022-09-14 東京エレクトロン株式会社 成膜方法、処理装置及び処理システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040026374A1 (en) * 2002-08-06 2004-02-12 Tue Nguyen Assembly line processing method
KR100818714B1 (ko) * 2007-04-10 2008-04-02 주식회사 하이닉스반도체 반도체 소자의 소자분리막 형성방법
JP2008235857A (ja) * 2006-12-07 2008-10-02 Applied Materials Inc 薄膜プロセスの方法
JP2010245448A (ja) * 2009-04-09 2010-10-28 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565759B1 (en) * 1999-08-16 2003-05-20 Vanguard International Semiconductor Corporation Etching process
JP2003078034A (ja) * 2001-09-06 2003-03-14 Hitachi Ltd 半導体集積回路装置の製造方法
JP2003142484A (ja) 2001-10-31 2003-05-16 Mitsubishi Electric Corp 半導体装置の製造方法
US6869880B2 (en) * 2002-01-24 2005-03-22 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
US7081414B2 (en) * 2003-05-23 2006-07-25 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US6903031B2 (en) * 2003-09-03 2005-06-07 Applied Materials, Inc. In-situ-etch-assisted HDP deposition using SiF4 and hydrogen
KR100554828B1 (ko) * 2004-04-08 2006-02-22 주식회사 하이닉스반도체 반도체 소자의 소자 분리막 형성 방법
CN1787186A (zh) * 2004-12-09 2006-06-14 富士通株式会社 半导体器件制造方法
US7482247B1 (en) * 2004-12-30 2009-01-27 Novellus Systems, Inc. Conformal nanolaminate dielectric deposition and etch bag gap fill process
JP5023505B2 (ja) * 2006-02-09 2012-09-12 東京エレクトロン株式会社 成膜方法、プラズマ成膜装置及び記憶媒体
KR101060633B1 (ko) * 2006-07-20 2011-08-31 신에쓰 가가꾸 고교 가부시끼가이샤 반도체 디바이스의 제조 방법 및 기판 처리 장치
JP2008078253A (ja) * 2006-09-20 2008-04-03 Sony Corp 半導体装置の製造方法
KR101275025B1 (ko) * 2007-07-12 2013-06-14 삼성전자주식회사 반도체 소자용 배선 구조물 및 이의 형성방법
KR100905278B1 (ko) * 2007-07-19 2009-06-29 주식회사 아이피에스 박막증착장치, 박막증착방법 및 반도체 소자의 갭-필 방법
US7867921B2 (en) * 2007-09-07 2011-01-11 Applied Materials, Inc. Reduction of etch-rate drift in HDP processes
US7745350B2 (en) * 2007-09-07 2010-06-29 Applied Materials, Inc. Impurity control in HDP-CVD DEP/ETCH/DEP processes
KR101002493B1 (ko) * 2007-12-28 2010-12-17 주식회사 하이닉스반도체 반도체 메모리 소자의 소자 분리막 형성 방법
JP5190307B2 (ja) * 2008-06-29 2013-04-24 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP2010027648A (ja) 2008-07-15 2010-02-04 Toshiba Corp 半導体装置、半導体製造装置および半導体装置の製造方法
US7972968B2 (en) * 2008-08-18 2011-07-05 Applied Materials, Inc. High density plasma gapfill deposition-etch-deposition process etchant
JP5195174B2 (ja) 2008-08-29 2013-05-08 東京エレクトロン株式会社 成膜装置及び成膜方法
JP2010087475A (ja) 2008-09-03 2010-04-15 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び製造装置
JP5107185B2 (ja) * 2008-09-04 2012-12-26 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
US7910491B2 (en) * 2008-10-16 2011-03-22 Applied Materials, Inc. Gapfill improvement with low etch rate dielectric liners
CN101996922B (zh) * 2009-08-13 2013-09-04 上海丽恒光微电子科技有限公司 Soi晶片及其形成方法
JP2012104695A (ja) * 2010-11-11 2012-05-31 Elpida Memory Inc 半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040026374A1 (en) * 2002-08-06 2004-02-12 Tue Nguyen Assembly line processing method
JP2008235857A (ja) * 2006-12-07 2008-10-02 Applied Materials Inc 薄膜プロセスの方法
KR100818714B1 (ko) * 2007-04-10 2008-04-02 주식회사 하이닉스반도체 반도체 소자의 소자분리막 형성방법
JP2010245448A (ja) * 2009-04-09 2010-10-28 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体

Also Published As

Publication number Publication date
US20120267341A1 (en) 2012-10-25
CN102732854A (zh) 2012-10-17
KR20120112116A (ko) 2012-10-11
TWI497592B (zh) 2015-08-21
US8906246B2 (en) 2014-12-09
TW201304003A (zh) 2013-01-16
JP2012209394A (ja) 2012-10-25
JP5599350B2 (ja) 2014-10-01
CN102732854B (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
KR101502205B1 (ko) 성막 장치 및 성막 방법
CN108456870B (zh) 成膜方法以及成膜装置
JP5310283B2 (ja) 成膜方法、成膜装置、基板処理装置及び記憶媒体
JP5375852B2 (ja) 成膜装置、成膜方法及び記憶媒体
JP5287592B2 (ja) 成膜装置
JP5423529B2 (ja) 成膜装置、成膜方法及び記憶媒体
JP5181100B2 (ja) 基板処理装置、基板処理方法及び記憶媒体
JP5131240B2 (ja) 成膜装置、成膜方法及び記憶媒体
JP2010239103A (ja) 活性化ガスインジェクター、成膜装置及び成膜方法
KR101879022B1 (ko) 기판 처리 방법 및 기판 처리 장치
CN105938796B (zh) 基板处理装置以及基板处理方法
JP2019033228A (ja) シリコン窒化膜の成膜方法及び成膜装置
KR101989657B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102640001B1 (ko) 성막 방법
JP5750190B2 (ja) 成膜装置及び成膜方法
KR102106666B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기판 보유 지지 부재
JP7175209B2 (ja) 成膜方法
JP5447632B2 (ja) 基板処理装置
TW201804511A (zh) 成膜裝置
KR20190058299A (ko) 에칭 방법 및 이것을 사용한 오목부 패턴의 매립 방법
JP5692337B2 (ja) 成膜装置、成膜方法及び記憶媒体

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180219

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190218

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200218

Year of fee payment: 6