JP2010027648A - 半導体装置、半導体製造装置および半導体装置の製造方法 - Google Patents

半導体装置、半導体製造装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2010027648A
JP2010027648A JP2008183607A JP2008183607A JP2010027648A JP 2010027648 A JP2010027648 A JP 2010027648A JP 2008183607 A JP2008183607 A JP 2008183607A JP 2008183607 A JP2008183607 A JP 2008183607A JP 2010027648 A JP2010027648 A JP 2010027648A
Authority
JP
Japan
Prior art keywords
insulating film
film
buried insulating
trench
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008183607A
Other languages
English (en)
Inventor
Yuji Noguchi
裕司 野口
Hiroshi Kubota
浩史 久保田
Nobuhide Yamada
展英 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008183607A priority Critical patent/JP2010027648A/ja
Publication of JP2010027648A publication Critical patent/JP2010027648A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】半導体基板上の凹部が逆テーパ形状やオーバーハング形状を有する場合においても、埋め込み性や膜質の劣化を抑制しつつ、埋め込み絶縁膜の応力を低減することが可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上にトレンチ5を形成し、熱CVD法を用いることで、トレンチ5内の一部を埋め込む埋め込み絶縁膜6を半導体基板1上に成膜し、埋め込み絶縁膜6の成膜時よりも高い温度にて埋め込み絶縁膜6を熱処理した後、熱CVD法を用いることで、トレンチ5内の一部を埋め込む埋め込み絶縁膜7を埋め込み絶縁膜6上に成膜し、埋め込み絶縁膜7の成膜時よりも高い温度にて埋め込み絶縁膜7を熱処理した後、熱CVD法を用いることで、トレンチ5内を完全に埋め込む埋め込み絶縁膜を埋め込み絶縁膜7上に成膜し、埋め込み絶縁膜の成膜時よりも高い温度にて埋め込み絶縁膜を熱処理する。
【選択図】図4

Description

本発明は半導体装置、半導体製造装置および半導体装置の製造方法に関し、特に、STI(Shallow Trench Isolation)の埋め込み絶縁膜の形成方法に適用して好適なものである。
半導体素子の微細化の要求に伴って、フォトリソグラフィーの解像度限界以下のラインアンドスペースを実現するために、側壁転写プロセスが用いられ始めている(特許文献1)。この側壁転写プロセスは、被加工膜上に形成された芯材パターンの側壁に側壁パターンを成膜し、芯材パターンを除去した後に残った側壁パターンをエッチングマスクとして被加工膜をエッチングする方法である。
ここで、この側壁転写プロセスに用いられる側壁パターンは、芯材パターンに接する方の接触面は垂直に切り立っているのに対して、芯材パターンに接しない方の非接触面は上部から下部に向かってなだらかな丸みを帯びた形状になる。このため、側壁パターンをエッチングマスクとして被加工膜をエッチングする時に、側壁パターンの接触面側で挟まれる領域に比べ、側壁パターンの非接触面側で挟まれる領域にイオンが入り込みやすくなり、側壁パターンの非接触面側で挟まれる領域の方がエッチングが進行しやすいため、側壁転写プロセスにてSTIを形成した場合、側壁パターンの非接触面側で挟まれる領域に形成されるトレンチの方が、側壁パターンの接触面側で挟まれる領域に形成されるトレンチよりも深さおよび幅が増大する。
ここで、STIのトレンチに埋め込み絶縁膜を埋め込む方法として、TEOS(テトラエトキシシラン)/O系混合ガスを用いた熱CVD法、HDP(高密度プラズマ)CVD法、塗布法などの方法がある。
しかしながら、このような方法によって、深さおよび幅にばらつきのあるトレンチに埋め込み絶縁膜を一度に埋め込むと、埋め込み絶縁膜の応力が大きくなることから、トレンチ間にはさまれたアクティブ領域において、トレンチの深さ方向に沿うようにして反りが発生し、フラッシュメモリなどの下地構造の変形や電気的特性の劣化などを引き起こすという問題があった。
また、熱CVD法やHDP−CVD法では、トレンチが逆テーパ形状やオーバーハング形状を有する場合やアスペクト比(トレンチの深さと間口幅との比)が3を超える場合には、トレンチの埋め込みが困難となるという問題があった。
また、塗布法では、トレンチが逆テーパ形状やオーバーハング形状を有する場合やアスペクト比が3を超える場合においても、トレンチを良好に埋め込むことができるが、絶縁耐性やウェット処理耐性などの膜質が、熱CVD法やHDP−CVD法にて形成された膜に比べて劣るという問題があった。
特開2008−27978号公報
そこで、本発明の目的は、半導体基板上に形成された凹部が逆テーパ形状やオーバーハング形状を有する場合においても、埋め込み性や膜質の劣化を抑制しつつ、埋め込み絶縁膜の応力を低減することが可能な半導体装置、半導体製造装置および半導体装置の製造方法を提供することである。
上述した課題を解決するために、本発明の一態様によれば、半導体基板上に形成された下地層と、前記下地層の側面に沿って前記半導体基板に形成されたトレンチであって、前記半導体基板の表面部よりも前記トレンチの底部側にて、対向する前記トレンチの一対の側壁間の距離が前記表面部における前記一対の側壁間の距離より大なる部分を有するトレンチと、前記下地層の側面および前記トレンチの前記一対の側壁に沿って形成された第1の埋め込み絶縁膜であって、前記下地層の側面に形成された膜厚より前記一対の側壁それぞれに形成された膜厚が厚く、前記表面部における前記第1の埋め込み絶縁膜間の距離が、前記表面部よりも前記底部側のいずれの部分における前記第1の埋め込み絶縁膜間の距離以上となるように形成された第1の埋め込み絶縁膜と、前記第1の埋め込み絶縁膜の間に形成された第2の埋め込み絶縁膜とを備えることを特徴とする半導体装置を提供する。
また、本発明の一態様によれば、熱CVD法によって成膜処理を行う成膜チャンバと、前記成膜処理の温度よりも高い温度にて熱処理を行う熱処理チャンバと、真空状態を保ったままの状態で、前記成膜チャンバおよび前記熱処理チャンバに半導体ウェハを搬送する搬送チャンバとを備えることを特徴とする半導体製造装置を提供する。
また、本発明の一態様によれば、熱CVD法によって半導体ウェハ上に成膜処理を行う成膜チャンバと、前記成膜処理の温度よりも高い温度にて前記半導体ウェハを前記成膜チャンバ内で前記成膜処理に引き続いて輻射加熱する輻射加熱部とを備えることを特徴とする半導体製造装置を提供する。
また、本発明の一態様によれば、半導体基板に凹部を形成する工程と、熱CVD法によって前記凹部の内面に沿って第1の埋め込み絶縁膜を成膜する工程と、前記第1の埋め込み絶縁膜の成膜時よりも高い温度にて前記第1の埋め込み絶縁膜を熱処理する工程と、熱CVD法によって前記第1の埋め込み絶縁膜上に第2の埋め込み絶縁膜を成膜する工程と、前記第2の埋め込み絶縁膜の成膜時よりも高い温度にて前記第2の埋め込み絶縁膜を熱処理する工程とを備えることを特徴とする半導体装置の製造方法を提供する。
以上説明したように、本発明によれば、半導体基板上に形成された凹部が逆テーパ形状やオーバーハング形状を有する場合においても、埋め込み性や膜質の劣化を抑制しつつ、埋め込み絶縁膜の応力を低減することが可能となる。
以下、本発明の実施形態に係る半導体装置について図面を参照しながら説明する。
(第1実施形態)
図1〜図7は、本発明の第1実施形態に係る半導体装置の製造方法を示す断面図である。
図1において、半導体基板1上にトンネル絶縁膜2を形成した後、CVDなどの方法で電荷保持膜3およびストッパ膜4をトンネル絶縁膜2上に順次積層する。なお、半導体基板1の材質はSiに限定されることなく、例えば、Ge、SiGe、SiC、SiSn、PbS、GaAs、InP、GaP、GaN、ZnSe、GaInAsPなどの中から選択するようにしてもよい。また、トンネル絶縁膜2としては、例えば、シリコン酸化膜を用いることができる。また、電荷保持膜3としては、例えば、半導体基板1上に浮遊ゲート型セルを形成する場合、多結晶シリコンなどを用いることができる。また、半導体基板1上にチャージトラップ型セルを形成する場合、電荷保持膜3として、シリコン窒化膜を用いるようにしてもよい。また、ストッパ膜4としては、例えば、シリコン窒化膜やシリコン酸化膜などを用いることができる。
次に、図2に示すように、例えば、側壁転写プロセスを用いることにより、ストッパ膜4、電荷保持膜3およびトンネル絶縁膜2を通して半導体基板1内に至るトレンチ5を形成し電荷保持膜3を分離する。なお、STIによる耐圧を十分に確保するために、トレンチ5のアスペクト比は、8以上に設定することが好ましい。
また、トレンチ5間の断面積のばらつきは5%以上あってもよいし、10%以上あってもよい。なお、トレンチ5間の断面積のばらつきが5%以上あると、埋め込み材料の応力の影響を受けやすくなるため、トレンチ5間にはさまれたアクティブ領域の反りが現れやすくなる。また、トレンチ5間の断面積のばらつきが10%以上あると、トレンチ5間にはさまれたアクティブ領域の反りが大きくなり、トレンチ5内の埋め込みが不完全になったり、レンチ5内に埋め込まれた埋め込み材料にボイドが現れたりする可能性が大きくなる。
上述した側壁転写プロセスを用いることで、フォトリソグラフィーの解像度限界で得られる配列ピッチの1/2の間隔でトレンチ5を形成することができる。一方、側壁転写プロセスにてトレンチ5を形成した場合、トレンチ5の深さおよび幅にばらつきが発生し、深さが深いトレンチ5と深さが浅いトレンチ5が交互に出現する。また、ストッパ膜4、電荷保持膜3およびトンネル絶縁膜2を通して半導体基板1内にトレンチ5を形成した場合、これらの膜のエッチングレートなどの違いによって、ストッパ膜4、電荷保持膜3およびトンネル絶縁膜2が半導体基板1上でひさし状に張り出したオーバーハング形状となる。
すなわち、このトレンチ5は、それぞれ対向する一対の側壁を有し、半導体基板1の表面部よりトレンチ5の底部側にて、半導体基板1の表面部における一対の側壁間の距離aより一対の側壁間の距離bが大なる部分を有している。
次に、図3に示すように、熱CVD法を用いることで、半導体基板1上およびトレンチ5の内面に沿って埋め込み絶縁膜6を成膜する。なお、埋め込み絶縁膜6の成膜時の原料は、TEOS/O系混合ガスを用いる。また、埋め込み絶縁膜6の成膜時の温度は、375℃〜480℃の範囲内に設定する。
また、埋め込み絶縁膜6の膜厚は、トレンチ5間にはさまれたアクティブ領域に反りが発生しない程度に設定するものとし、例えば、トレンチ5の間口幅の1/5程度以下とすることが好ましい。具体的には、例えば、トレンチ5の間口幅が30nmであるとすると、埋め込み絶縁膜6の膜厚は5nm以下に設定することが好ましい。
ここで、埋め込み絶縁膜6の成膜時の温度を375℃〜480℃の範囲内に設定した上で、原料ガスの流量や圧力を調整することで、トレンチ5内に露出したストッパ膜4、電荷保持膜3およびトンネル絶縁膜2などの下地層の側面よりも半導体基板1の表面での成膜レートを大きくする。これにより、トレンチ5内のストッパ膜4、電荷保持膜3およびトンネル絶縁膜2の側壁、すなわち半導体基板1の表面部に成膜された埋め込み絶縁膜6の膜厚よりも、トレンチ5内の半導体基板1の露出面に成膜された埋め込み絶縁膜6の膜厚を厚くすることができる。この結果、ストッパ膜4、電荷保持膜3およびトンネル絶縁膜2がひさし状に張り出したオーバーハング形状を回避することが可能となり、埋め込み絶縁膜6の成膜後のトレンチ5内の埋め込み性を向上させることができる。すなわち、埋め込み絶縁膜6は、半導体基板1の表面部よりトレンチ5の底部側における埋め込み絶縁膜6間の距離dがいずれの箇所においても、半導体基板1の表面部における埋め込み絶縁膜6間の距離c以下になるよう形成される。図3において、埋め込み絶縁膜6間の距離は、半導体基板1の表面部から所定距離まで等しく形成され、その後、徐々に短くなるよう形成されている。
そして、埋め込み絶縁膜6の形成後、埋め込み絶縁膜6の成膜時よりも高い温度にて埋め込み絶縁膜6を熱処理することで、埋め込み絶縁膜6の応力を緩和する。なお、埋め込み絶縁膜6の熱処理条件は、例えば、850℃、30分に設定する。ここで、埋め込み絶縁膜6の成膜後に熱処理を行うことにより、成膜後に150MPa〜300MPa程度あった埋め込み絶縁膜6の収縮応力を、50MPa以下の収縮応力または50MPa以下の圧縮応力に緩和することができる。
また、埋め込み絶縁膜6の成膜後に熱処理を行うことにより、トレンチ5内のストッパ膜4、電荷保持膜3、トンネル絶縁膜2および半導体基板1の側壁間において、埋め込み絶縁膜6の構造を均一化することができ、熱CVD法による成膜レートが下地依存性を持つ場合においても、埋め込み絶縁膜6上に積層される図4、5の埋め込み絶縁膜7、8の膜厚を均一化することができる。
次に、図4に示すように、熱CVD法を用いることで、トレンチ5内の埋め込み絶縁膜6上に沿って埋め込み絶縁膜7を成膜する。そして、埋め込み絶縁膜7の成膜時よりも高い温度にて埋め込み絶縁膜7を熱処理することで、埋め込み絶縁膜7の応力を緩和する。なお、埋め込み絶縁膜7の成膜処理および熱処理の条件は、埋め込み絶縁膜6の成膜処理および熱処理の条件とそれぞれ同一に設定することができる。
次に、図5に示すように、熱CVD法を用いることで、トレンチ5内を完全に埋め込む埋め込み絶縁膜8を埋め込み絶縁膜7上に成膜する。そして、埋め込み絶縁膜8の成膜時よりも高い温度にて埋め込み絶縁膜8を熱処理することで、埋め込み絶縁膜8の応力を緩和する。なお、埋め込み絶縁膜8の成膜処理および熱処理の条件は、埋め込み絶縁膜6の成膜処理および熱処理の条件とそれぞれ同一に設定することができる。
次に、図6に示すように、CMP(Chemical Mechanical Polishing)法を用いることで、ストッパ膜4が露出するまで埋め込み絶縁膜6、7、8を薄膜化する。そして、ストッパ膜4を除去した後、フッ酸などの薬液を用いることで、トンネル絶縁膜2の高さまで埋め込み絶縁膜6、7、8をウエットエッチングし、フローティングゲート電極3a間に埋め込み絶縁膜6、7、8を落とし込む。
次に、図7に示すように、CVD法などの方法を用いることで、フローティングゲート電極3aの上面および側面が覆われるようにして半導体基板1上にゲート間絶縁膜9を形成する。なお、ゲート間絶縁膜9の材質としては、例えば、シリコン酸化膜を用いるようにしてもよいし、Hf系酸化物などの高誘電率絶縁膜を用いるようにしてもよい。
次に、CVDなどの方法を用いることでゲート間絶縁膜9上に導電膜を形成する。そして、フォトリソグラフィー技術およびドライエッチング技術を用いて導電膜をパターニングすることで、ゲート間絶縁膜9上にコントロールゲート電極10を形成する。なお、コントロールゲート電極10の材質としては、例えば、多結晶シリコンを用いるようにしてもよいし、シリサイドを用いるようにしてもよい。
ここで、1回の成膜処理および1回の熱処理を1サイクルとして複数サイクル繰り返しながら、埋め込み絶縁膜6、7、8をトレンチ5内に形成することで、半導体基板1上に形成されたトレンチ5が逆テーパ形状やオーバーハング形状を有する場合においても、埋め込み性や膜質の劣化を抑制しつつ、埋め込み絶縁膜6、7、8の応力を低減することが可能となる。このため、STIにおける絶縁耐性やウェット処理耐性などを確保しつつ、トレンチ5間にはさまれたアクティブ領域に反りが発生するのを防止することが可能となり、フラッシュメモリなどの下地構造の変形や電気的特性の劣化などを抑制することができる。
なお、上述した実施形態では、TEOS/O系混合ガスを用いた熱CVD法を適用することで、埋め込み絶縁膜6〜8をトレンチ5内に成膜する方法について説明したが、EOS/O系混合ガスを用いた熱CVD法にてトレンチ5内の全体を埋め込む必要はなく、2回目以降の成膜時には、プラズマCVD法、HDP−CVD法または塗布法などにてトレンチ5内を埋め込むようにしてもよい。
また、上述した実施形態では、埋め込み絶縁膜6〜8をトレンチ5内に形成するために、1回の成膜処理および1回の熱処理を1サイクルとして3回繰り返す方法について説明したが、必ずしも3回に限定されることはなく、2回繰り返すようにしてもよいし、4回以上繰り返すようにしてもよい。
また、上述した実施形態では、埋め込み絶縁膜6〜8をトレンチ5内に成膜する時の成膜条件を同一に設定する方法について説明したが、2回目以降の成膜時には、成膜レートの下地依存性がより小さくなるように成膜条件を変更してもよい。
また、上述した実施形態では、埋め込み絶縁膜6〜8をトレンチ5内に形成するために、TEOS/O系混合ガスを用いた熱CVD法を用いる方法について説明したが、SiHCl(ジクロロシラン)/NO系混合ガスを用いたHTO(高温酸化)を適用するようにしてもよいし、HSi[N(CH(トリスジメチルアミノシラン)/O系混合ガスを用いたALD(Atomic Layer Deposition)を適用するようにしてもよい。
また、上述した実施形態では、STIのトレンチ内に埋め込み絶縁膜を形成する方法について説明したが、フラッシュメモリやDRAMなどのワード線間などの埋め込みに適用するようにしてもよい。
(第2実施形態)
図8は、本発明の第2実施形態に係る半導体製造装置の概略構成を示す断面図である。
図8において、半導体製造装置には、成膜チャンバ21、搬送チャンバ31および熱処理チャンバ41が設けられ、成膜チャンバ21および熱処理チャンバ41は、シャッターバルブ45、46をそれぞれ介して搬送チャンバ31に連結されている。
ここで、成膜チャンバ21は、熱CVD法によって半導体ウェハW上に成膜処理を行うことができる。また、熱処理チャンバ41は、成膜チャンバ21での成膜処理の温度よりも高い温度にて半導体ウェハWの熱処理を行うことができる。搬送チャンバ31は、真空状態を保ったままの状態で、成膜チャンバ21および熱処理チャンバ41に半導体ウェハWを搬送することができる。
具体的には、成膜チャンバ21には、成膜チャンバ21内を排気する排気管22が接続されている。そして、成膜チャンバ21内には、半導体ウェハWを載置するテーブル25が設置されるとともに、ガス噴出孔24を介して反応ガスGを成膜チャンバ21内に導入するガス導入部23が設けられている。また、テーブル25下には、半導体ウェハWを抵抗加熱する抵抗加熱部26が設けられている。
また、熱処理チャンバ41には、熱処理チャンバ41内を排気する排気管42が接続されている。そして、熱処理チャンバ41内には、半導体ウェハWを載置するテーブル43が設置されるとともに、半導体ウェハWを輻射加熱するランプ44が設けられている。なお、ランプ44としては、例えば、ハロゲンランプやフラッシュランプなどを用いることができる。
また、搬送チャンバ31には、搬送チャンバ31内を排気する排気管32が接続されている。そして、搬送チャンバ31には、半導体ウェハWを搬送する搬送ロボット33が設けられ、搬送ロボット33には半導体ウェハWを保持する搬送アーム34が設けられている。
そして、搬送ロボット33は、シャッターバルブ45、46が閉じた状態で、例えば、図2のトレンチ5が形成された半導体ウェハWを搬送チャンバ31内に搬送する。そして、成膜チャンバ21、搬送チャンバ31および熱処理チャンバ41内を排気することで、成膜チャンバ21、搬送チャンバ31および熱処理チャンバ41内を所定の真空状態にする。そして、成膜チャンバ21、搬送チャンバ31および熱処理チャンバ41が所定の真空状態に達すると、シャッターバルブ45が開かれる。そして、搬送ロボット33は、図2のトレンチ5が形成された半導体ウェハWを成膜チャンバ21内に搬入し、テーブル25上に載置する。そして、半導体ウェハWがテーブル25上に載置されると、シャッターバルブ45が閉じられる。そして、ガス導入部23を介してTEOS/O系混合ガスなどの反応ガスGを成膜チャンバ21内に導入し、抵抗加熱部26にて半導体ウェハWを成膜温度で加熱しながら、図2のトレンチ5内に図3の埋め込み絶縁膜6を成膜する。
そして、図2のトレンチ5内に埋め込み絶縁膜6が成膜されると、反応ガスGの導入を停止し、成膜チャンバ21内に残留する反応ガスGを排気してから、シャッターバルブ45が開かれる。そして、搬送ロボット33は、シャッターバルブ45が開かれると、埋め込み絶縁膜6が成膜された半導体ウェハWを成膜チャンバ21から搬出する。そして、埋め込み絶縁膜6が成膜された半導体ウェハWが成膜チャンバ21から搬出されると、シャッターバルブ45が閉じられるとともに、ゲートバルブ46が開かれる。そして、搬送ロボット33は、埋め込み絶縁膜6が成膜された半導体ウェハWを熱処理チャンバ41に搬入し、テーブル43上に載置する。そして、半導体ウェハWがテーブル43上に載置されると、ゲートバルブ46が閉じられる。そして、ランプ44にて半導体ウェハWを成膜温度よりも高い熱処理温度で所定時間だけ加熱することで、埋め込み絶縁膜6の応力を緩和させる。
そして、埋め込み絶縁膜6が成膜された半導体ウェハWが熱処理されると、ゲートバルブ46が開かれる。そして、搬送ロボット33は、ゲートバルブ46が開かれると、熱処理された半導体ウェハWを熱処理チャンバ41から搬出する。そして、熱処理された半導体ウェハWが熱処理チャンバ41から搬出されると、ゲートバルブ46が閉じられるとともに、シャッターバルブ45が開かれる。
以後、搬送ロボット33は、成膜チャンバ21→熱処理チャンバ41→成膜チャンバ21→熱処理チャンバ41の順に搬送を行い、成膜チャンバ21および熱処理チャンバ41にて成膜処理および熱処理をそれぞれ繰り返し行わせることで、図3の埋め込み絶縁膜6上に図4、5の埋め込み絶縁膜7、8を順次形成させる。
これにより、図2のトレンチ5が形成された半導体ウェハWを大気に晒すことなく、埋め込み絶縁膜6、7、8をトレンチ5内に形成することができ、埋め込み絶縁膜6、7、8の汚染を防止しつつ、成膜処理および熱処理をそれぞれ繰り返すことが可能となるとともに、スループットの低下を抑制することができる。
(第3実施形態)
図9は、本発明の第3実施形態に係る半導体製造装置の概略構成を示す断面図である。
図9において、半導体製造装置には、成膜チャンバ51が設けられている。ここで、成膜チャンバ51は、熱CVD法によって半導体ウェハW上に成膜処理を行うとともに、成膜処理の温度よりも高い温度にて半導体ウェハWを成膜処理に引き続いて輻射加熱することができる。
具体的には、成膜チャンバ51には、成膜チャンバ51内を排気する排気管52が接続されている。そして、成膜チャンバ51内には、半導体ウェハWを載置するテーブル55が設置されるとともに、ガス噴出孔54を介して反応ガスGまたはパージガスPを成膜チャンバ51内に導入するガス導入部53が設けられている。また、テーブル55下には、半導体ウェハWを輻射加熱するランプ56が設けられている。なお、ランプ56としては、例えば、ハロゲンランプやフラッシュランプなどを用いることができる。
そして、例えば、図2のトレンチ5が形成された半導体ウェハWがテーブル55上に載置されると、成膜チャンバ51内を排気することで、成膜チャンバ51内を所定の真空状態にする。そして、成膜チャンバ51が所定の真空状態に達すると、ガス導入部53を介してTEOS/O系混合ガスなどの反応ガスGを成膜チャンバ51内に導入し、ランプ56にて半導体ウェハWを成膜温度で加熱しながら、図2のトレンチ5内に図3の埋め込み絶縁膜6を成膜する。そして、図2のトレンチ5内に埋め込み絶縁膜6が成膜されると、反応ガスGの導入を停止し、成膜チャンバ51内に残留する反応ガスGを排気してから、ガス導入部53を介してNガスなどのパージガスPを成膜チャンバ51内に導入する。そして、埋め込み絶縁膜6が成膜された半導体ウェハWをランプ56にて成膜温度よりも高い熱処理温度で所定時間だけ加熱することで、埋め込み絶縁膜6の応力を緩和させる。
そして、埋め込み絶縁膜6が成膜された半導体ウェハWを熱処理が完了すると、成膜チャンバ51内に残留するパージガスPを排気してから、ガス導入部53を介して反応ガスGを成膜チャンバ51内に導入する。以後、成膜チャンバ51内で成膜処理および熱処理をそれぞれ繰り返し行わせることで、図3の埋め込み絶縁膜6上に図4、5の埋め込み絶縁膜7、8を順次形成させる。
これにより、成膜処理および熱処理を同一の成膜チャンバ51内でそれぞれ繰り返し行わせることが可能となり、成膜装置と熱処理装置を別個に設ける必要がなくなることから、省スペース化を図ることが可能となるとともに、スループットの低下を抑制することができる。
本発明の第1実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第1実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第1実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第1実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第1実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第1実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第1実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第2実施形態に係る半導体製造装置の概略構成を示す断面図。 本発明の第3実施形態に係る半導体製造装置の概略構成を示す断面図。
符号の説明
1 半導体基板、2 トンネル絶縁膜、3 電荷保持膜、3a フローティングゲート電極、4 ストッパ膜、5 トレンチ、6、7、8 埋め込み絶縁膜、9 ゲート間絶縁膜、10 コントロールゲート電極、21、51 成膜チャンバ、22、32、42、52 排気管、23、53 ガス導入部、24、54 ガス噴出孔、25、43、55 テーブル、26 抵抗加熱部、31 搬送チャンバ、33 搬送ロボット、34 搬送アーム、41 熱処理チャンバ、44、56 ランプ、45、46 シャッターバルブ

Claims (5)

  1. 半導体基板上に形成された下地層と、
    前記下地層の側面に沿って前記半導体基板に形成されたトレンチであって、前記半導体基板の表面部よりも前記トレンチの底部側にて、対向する前記トレンチの一対の側壁間の距離が前記表面部における前記一対の側壁間の距離より大なる部分を有するトレンチと、
    前記下地層の側面および前記トレンチの前記一対の側壁に沿って形成された第1の埋め込み絶縁膜であって、前記下地層の側面に形成された膜厚より前記一対の側壁それぞれに形成された膜厚が厚く、前記表面部における前記第1の埋め込み絶縁膜間の距離が、前記表面部よりも前記底部側のいずれの部分における前記第1の埋め込み絶縁膜間の距離以上となるように形成された第1の埋め込み絶縁膜と、
    前記第1の埋め込み絶縁膜の間に形成された第2の埋め込み絶縁膜とを備えることを特徴とする半導体装置。
  2. 熱CVD法によって成膜処理を行う成膜チャンバと、
    前記成膜処理の温度よりも高い温度にて熱処理を行う熱処理チャンバと、
    真空状態を保ったままの状態で、前記成膜チャンバおよび前記熱処理チャンバに半導体ウェハを搬送する搬送チャンバとを備えることを特徴とする半導体製造装置。
  3. 熱CVD法によって半導体ウェハ上に成膜処理を行う成膜チャンバと、
    前記成膜処理の温度よりも高い温度にて前記半導体ウェハを前記成膜チャンバ内で前記成膜処理に引き続いて輻射加熱する輻射加熱部とを備えることを特徴とする半導体製造装置。
  4. 半導体基板に凹部を形成する工程と、
    熱CVD法によって前記凹部の内面に沿って第1の埋め込み絶縁膜を成膜する工程と、
    前記第1の埋め込み絶縁膜の成膜時よりも高い温度にて前記第1の埋め込み絶縁膜を熱処理する工程と、
    熱CVD法によって前記第1の埋め込み絶縁膜上に第2の埋め込み絶縁膜を成膜する工程と、
    前記第2の埋め込み絶縁膜の成膜時よりも高い温度にて前記第2の埋め込み絶縁膜を熱処理する工程とを備えることを特徴とする半導体装置の製造方法。
  5. 前記半導体基板に凹部を形成する工程は、
    前記半導体基板上に下地層を形成する工程と、
    前記下地層を通して前記半導体基板内にトレンチを形成する工程とを備え、
    前記第1の埋め込み絶縁膜の成膜条件は、前記トレンチ内に露出した前記下地層の表面よりも前記半導体基板の表面での成膜レートが大きくなるように設定されることを特徴とする請求項4に記載の半導体装置の製造方法。
JP2008183607A 2008-07-15 2008-07-15 半導体装置、半導体製造装置および半導体装置の製造方法 Pending JP2010027648A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183607A JP2010027648A (ja) 2008-07-15 2008-07-15 半導体装置、半導体製造装置および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183607A JP2010027648A (ja) 2008-07-15 2008-07-15 半導体装置、半導体製造装置および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010027648A true JP2010027648A (ja) 2010-02-04

Family

ID=41733232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183607A Pending JP2010027648A (ja) 2008-07-15 2008-07-15 半導体装置、半導体製造装置および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2010027648A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906246B2 (en) 2011-03-29 2014-12-09 Tokyo Electron Limited Film deposition apparatus and film deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906246B2 (en) 2011-03-29 2014-12-09 Tokyo Electron Limited Film deposition apparatus and film deposition method

Similar Documents

Publication Publication Date Title
JP4984558B2 (ja) 半導体装置の製造方法
US8211779B2 (en) Method for forming isolation layer in semiconductor device
JP2003197784A (ja) フラッシュメモリセルの製造方法
CN101894789B (zh) 隔离结构的制造方法
JP2003045957A (ja) 半導体装置の素子分離方法
TW201448035A (zh) 半導體裝置之製造方法
KR100748559B1 (ko) 플래시 메모리 장치 및 그 제조 방법
US20090017597A1 (en) Method for manufacturing shallow trench isolation
JP2009099909A (ja) 半導体装置の製造方法
KR101079202B1 (ko) 리세스게이트를 구비하는 반도체 장치 및 그 제조방법
JP2008306139A (ja) 半導体装置の素子分離構造の形成方法、半導体装置の素子分離構造及び半導体記憶装置
KR100559033B1 (ko) 반도체 소자의 쉘로우 트렌치 소자분리막 형성 방법
TWI240357B (en) Shallow trench isolation fabrication
KR100745954B1 (ko) 플래쉬 메모리 소자의 제조방법
JP2010027648A (ja) 半導体装置、半導体製造装置および半導体装置の製造方法
JP2024503439A (ja) Cdに依存する間隙充填及びコンフォーマル膜
KR101077014B1 (ko) 반도체 소자의 소자분리막 제조방법
KR100542394B1 (ko) 플래쉬 메모리 소자의 게이트전극 형성방법
KR100949867B1 (ko) 반도체 소자의 소자분리막 형성 방법
JP2010050145A (ja) 素子分離構造の製造方法および素子分離構造
KR20070000603A (ko) 불 휘발성 메모리의 플로팅 게이트 형성 방법
TW522510B (en) Method for reducing stress and encroachment of sidewall oxide layer of shallow trench isolation
KR20070065482A (ko) 불 휘발성 메모리의 플로팅 게이트 형성 방법
US20090117705A1 (en) Method of forming isolation layer of semiconductor memory device
KR100533966B1 (ko) 트렌치 구조의 소자분리막 및 그 제조 방법