JP2010087475A - 半導体装置の製造方法及び製造装置 - Google Patents

半導体装置の製造方法及び製造装置 Download PDF

Info

Publication number
JP2010087475A
JP2010087475A JP2009172004A JP2009172004A JP2010087475A JP 2010087475 A JP2010087475 A JP 2010087475A JP 2009172004 A JP2009172004 A JP 2009172004A JP 2009172004 A JP2009172004 A JP 2009172004A JP 2010087475 A JP2010087475 A JP 2010087475A
Authority
JP
Japan
Prior art keywords
processing chamber
substrate
pressure
ultraviolet light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009172004A
Other languages
English (en)
Inventor
Tadashi Ohashi
直史 大橋
Yuichi Wada
優一 和田
Nobuo Owada
伸郎 大和田
Takeshi Taniguchi
武志 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2009172004A priority Critical patent/JP2010087475A/ja
Priority to TW098127610A priority patent/TW201025447A/zh
Priority to KR1020090080425A priority patent/KR20100027975A/ko
Priority to US12/551,816 priority patent/US7955948B2/en
Publication of JP2010087475A publication Critical patent/JP2010087475A/ja
Priority to US13/151,229 priority patent/US20110230061A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31633Deposition of carbon doped silicon oxide, e.g. SiOC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02277Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition the reactions being activated by other means than plasma or thermal, e.g. photo-CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Element Separation (AREA)
  • Chemical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】高いアスペクト比で狭い幅の溝に、シリコン酸化膜を埋め込むことの可能な、スループットの高い半導体製造方法を提供する。
【解決手段】半導体装置の製造方法において、基板を処理室内へ搬入する工程と、炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力の状態にする工程と、処理室内を前記第1の圧力にした状態において、処理室内へ供給されたシリコン化合物ガスに紫外光を照射して、基板上にシリコン酸化膜を形成する工程と、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理工程とを行う。これにより、高アスペクト比で狭い幅の溝内に、緻密なシリコン酸化膜を形成することができる。
【選択図】図1

Description

本発明は、紫外光を用いた基板処理技術に関するものであり、例えば、半導体集積回路(以下、ICという。)が作り込まれる半導体基板(例えば、半導体ウエハ)に、酸化膜等を堆積(デポジション)して成膜等するうえで有効な、半導体装置の製造方法と製造装置に関する。
ICの製造においては、ICの高集積化に伴い、ICを構成するトランジスタ等の回路素子の微細化が求められている。そのため、ICの素子分離形成方法として、現在では、寸法の制御性に優れ、かつ占有面積の小さいSTI(Shallow Trench Isolation)法が用いられている。STI法は、半導体基板に溝を形成した後、TEOS(テトラエトキシシラン)とO(オゾン)を用いた常圧CVD(Chemical Vaper Deposion)法や、TEOSを用いたプラズマCVD法等により、前記形成した溝中に絶縁膜を埋め込むことにより、素子分離領域を形成するものである。
しかし、最近ではますますICの高集積化が進み、素子分離溝の幅が0.1μm以下となり、さらに、素子分離溝の深さと幅との比であるアスペクト比(溝の深さ/溝の幅)が増大してきている。そのため、従来使用されてきた上記常圧CVD法等では、素子分離溝中に、後述するボイドやシームを作ることなく、絶縁膜を埋め込むことが困難となってきている。
その理由の1つは、従来の常圧CVD法等では、溝内の開口部における絶縁膜の成膜速度が、溝内の奥部(底部)における成膜速度よりも速いためである。溝内の開口部における成膜速度が、奥部よりも速いため、奥部へ絶縁膜を十分埋め込む前に、開口部が絶縁膜で塞がれてしまう。このように、溝内の開口部が奥部よりも厚く成膜されることを、オーバーハング(over-hang)と呼ぶ。
溝内の開口部における絶縁膜の成膜速度が、奥部よりも速い理由は、次のとおりである。従来使用されてきた常圧CVD法やプラズマCVD法では、熱等により材料ガスを分解し、化学反応が気相で起こり反応生成物が基板に付着することで絶縁膜が形成される。このため、成膜速度は、材料ガスの供給速度や気相での材料ガスの反応速度、反応生成物の基板への付着確率により律速される。
反応生成物の基板への付着確率が1に近い供給律速の条件では、溝内の開口部への絶縁膜の成膜速度が、溝内の奥部への成膜速度よりも速いため、溝内の奥部へ絶縁膜を十分埋め込む前に、溝内の開口部が絶縁膜で塞がれて、ボイドと呼ばれる空隙が形成される。反応生成物の基板への付着確率が0に近い反応律速の条件でも、絶縁膜は溝の両側の側壁から成長するため、両側の絶縁膜の継ぎ目で、シームと呼ばれるスリット状の欠陥が発生する。このシームという現象は、原理的に100%の段差被覆性を有するALD(Atomic Layer Deposion)法の場合でも、不可避である。微細化技術に対応するALD法に関する基板処理装置が、例えば、特許文献1に開示されている。
オーバーハングによる溝内の開口部の閉塞に対して、例えば、HDP(High Density Plasma)CVD法では、成膜後に、アルゴン等の不活性ガスによるイオンエッチングを行い、成膜時に形成されたオーバーハングを削り、溝内の開口部の修復を行う例がある。しかしながら、この方法でも、溝の幅が65nm以下、かつアスペクト比が5以上の場合は、ボイドを形成することなく、溝内の奥部へ絶縁膜を埋め込むことは困難である。
また、上述した素子の微細化に伴い、個々の素子の電極間隔も狭くなってきている。一般に、IC等の半導体装置においては、半導体基板上に形成されたトランジスタ、抵抗、及びキャパシタ等の素子電極とその上方に形成される金属配線との間に、PMD(Pre Metal Dielectric)膜とよばれる層間絶縁膜が形成されており、このPMD膜は、素子電極と、該素子電極の上層の金属配線との間を絶縁するだけでなく、半導体基板上に形成された素子電極と素子電極の間を埋め込み、各層の平坦性を確保するものである。
従来は、このPMD膜として、ボロン又はリン等の不純物を含んだシリコン酸化膜をCVD法によって堆積したのちに、加熱処理によって絶縁膜をリフローさせることによって素子電極間を埋め込む方法や、シリコン酸化膜の堆積とスパッタエッチングが同時に進行することによって素子電極間を埋め込むHDP−TEOS法が用いられてきた。しかし、素子電極間隔の微細化によって、これらの成膜技術では、素子電極間にボイドやシームを作らずに絶縁膜を埋め込むことが困難となってきている。
その理由は、上述した素子分離溝の場合と同様に、電極間の開口部が塞がるオーバーハングが発生し、電極間の内部にボイドが発生するためである。この対策として、例えば、過水素化シラザン重合体溶液の塗布膜(PSZ:Polysilazane)をスピンコートすることによって、素子間に堆積し、その後、高温水蒸気酸化によって酸化・重合反応を促進させることによって、絶縁膜を形成するSOD(Spin On Dielectric)法を用いた埋め込み技術が開発されている。
しかし、高温水蒸気酸化プロセスは、先に形成されているトンネル絶縁膜の信頼性を劣化させやすい。そのため、水蒸気酸化プロセスの温度や水蒸気量の最適化が図られているが、その最適化は簡単ではない。水蒸気酸化条件(温度等)を軽減し過ぎた場合には、微細な電極間内部でのPSZ膜の酸化反応が充分に進行しないため、素子間の耐圧が低下し、信頼性不良が発生する。
特開2006−80291号公報
本発明の目的は、高いアスペクト比で狭い幅の素子分離溝内に絶縁膜を埋め込むこと、あるいは、間隔の狭い素子電極と素子電極の間に絶縁膜を埋め込むことの可能な、半導体装置の製造方法や製造装置を提供することである。
本願において開示される発明のうち、代表的なものは、次のとおりである。
すなわち、基板を処理室内へ搬入する工程と、炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力の状態にする工程と、処理室内を前記第1の圧力にした状態において、処理室内へ供給されたシリコン化合物ガスに紫外光を照射して、基板上にシリコン酸化膜を形成する工程と、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理工程と、を有する半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、高アスペクト比で狭い幅の溝内に、緻密なシリコン酸化膜を形成することができる。
本発明の半導体装置の製造方法を実施可能な、半導体製造装置の構成例(垂直断面図)である。 本発明の第1実施例における処理工程を示す図である。 本発明の第2実施例における処理工程を示す図である。 本発明の第3実施例における処理工程を示す図である。 本発明により、素子分離溝内にシリコン酸化膜を埋め込んだ事例を示す写真である。
本発明の半導体装置の製造方法を実施する半導体製造装置の構成例について、図1を用いて説明する。図1は、本発明の半導体装置の製造方法を実施可能な半導体製造装置100の垂直断面図である。図1において、1は、その内部で基板を処理する基板処理室、すなわち、本発明の半導体装置製造工程を行う基板処理室。2は処理対象の基板であり、該基板2上にICが形成される。3は、基板2を処理する際に、基板2を載置するサセプタ(基板載置部)。4は、紫外光を発光する発光部。5は、前記発光部4から発光された紫外光を、処理室1内に透過させる透過窓であり、本実施の形態では石英から構成される。6は、基板2を加熱するためのヒータユニットで、本実施の形態では、抵抗ヒータで構成されている。7は、基板2の温度を検出するための温度検出器。8は、有機物(炭素、水素)の残留量を計測する残留ガス計測計。9は、処理室1内の圧力等を制御する制御部である。ヒータユニット6と温度検出器7は、制御部9に電気的に接続される。制御部9は、基板2の温度が所望のタイミングにて所望の温度分布となるように、前記温度検出器7により検出された温度情報に基づいて、ヒータユニット6への通電量を制御する。
本半導体製造装置100においては、発光部4の内部には、エキシマランプを備えるとともに、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)等の希ガスが封入されている。これらの希ガスを封入することにより、紫外光の波長を設定することができる。例えば、Arを封入した場合は波長126nmの紫外光、Krを封入した場合は波長146nmの紫外光、Xeを封入した場合は波長172nmの紫外光を発生することができる。本実施の形態では、Xeを封入して紫外光を発生させる。発生した紫外光は、石英製の透過窓5を通して、基板処理室1内に供給される。
本発明では、波長が200nm以下の真空紫外光を用いることにより、シリコン化合物ガスを効率的に分解するようにしている。波長が200nmより長いと、シリコン化合物ガスを効率的に分解できない。
基板処理室1と発光部4とは、石英製の透過窓5により、気密に分離されている。したがって、発光部4の内部の希ガスは、基板処理室1に流出せず、また、基板処理室1内のシリコン化合物ガス等が、発光部4内に流入することもない。
透過窓5の内側表面(基板処理室1側の面)と、サセプタ3上に載置された基板2との間の距離は、5〜15mmが好ましい。この距離が小さすぎると、シリコン化合物ガスに紫外光が照射される時間が短いため、シリコン化合物ガスが活性化されにくく、分解しにくい。また、この距離が大きすぎると、紫外光により活性化したシリコン化合物ガスが活性を失いやすい。
次に、処理ガス等のガス供給系について説明する。図1に示すように、処理室1のガス導入管14には、シリコン化合物ガス供給管15、不活性ガス供給管45が接続されている。シリコン化合物ガス供給管15には、上流から順に、シリコン化合物ガスを供給するシリコン化合物ガス供給源13、流量制御装置であるMFC(マスフローコントローラ)12、開閉バルブ11がそれぞれ設けられている。不活性ガス供給管45には、上流から順に、例えば、N2(窒素)等の不活性ガスを供給する不活性ガス供給源43、MFC42、開閉バルブ41がそれぞれ設けられている。
MFC12、42及び開閉バルブ11、41は、制御部9に電気的に接続されている。制御部9は、処理室1内に供給するガスの種類が所望のタイミングにて所望のガス種となるよう、また、供給するガスの流量が所望のタイミングにて所望の流量となるよう、MFC12、42及び開閉バルブ11、41を制御する。
シリコン化合物ガスとしては、例えば、OMTS(オクタメチルトリシロキサン:Si(CH)、TMCTS(テトラメチルシクロテトラシロキサン:[(CH)HSiO])、HSQ(ハイドロジェンシルセキオキサン:Hydrogen Silsesquioxane)などのうち、1種類のガスを用いることができる。
また、シリコン化合物ガスを処理室1内に供給するときは、必要に応じ、不活性ガス源43から同時に不活性ガスを供給してもよい。不活性ガスとしては、アルゴン、ヘリウム、窒素ガス等を用いることができる。
次に、処理室1のガス排気系について説明する。図1に示すように、処理室1内の雰囲気を排気するガス排気管64には、上流から順に、残留ガス計測計8、圧力センサ61、圧力調整バルブであるAPC(Auto Pressure Controller)バルブ62、真空排気装置である真空ポンプ63が設けられている。真空ポンプ63は、処理室1内の圧力が所定の圧力(真空度)となるよう、処理室1内を真空排気する。APCバルブ62、圧力センサ61、残留ガス計測計8は、制御部9に電気的に接続されている。制御部9は、処理室1内の圧力が所望のタイミングにて所望の圧力となるように、圧力センサ61により検出された圧力値に基づいて、APCバルブ62の開度を制御する。また、制御部9は、処理室1内の残留ガス濃度が所定の分圧以下となるよう、真空ポンプ63による排気を行う。
前記制御部9は、図示しない操作部、入出力部等を備えており、レシピ(成膜プロセスの制御シーケンス)に基づく温度制御や圧力制御、流量制御および機械駆動制御等を行う。また、制御部9は、ハードウェア構成として、CPU(中央演算ユニット)とメモリとを備えるものである。
以下、図1に示す半導体製造装置100を用いる第1実施例〜第3実施例を説明する。
(第1実施例)
まず、本発明の第1実施例を、図2を用いて説明する。図2は、本発明の第1実施例における処理工程を示す図である。第1実施例は、シリコン基板上の素子分離領域に形成されたトレンチ(溝)内に、図1の半導体製造装置100を用いて、真空紫外光CVD法により、シリコン酸化膜を埋め込むものである。
(A1)トレンチ形成工程
まず、シリコン基板上の素子分離領域に、STI法により、素子分離溝を所望の深さまで形成する。はじめに、図2(a)に示すように、シリコン基板2の表面に、公知の熱酸化法によりシリコン酸化膜(SiO)71を膜厚が5nm程度となるよう形成する。次に、このシリコン酸化膜の上に、公知の減圧CVD法により、シリコン窒化膜(SiN)72を膜厚が200nm程度となるよう堆積する。このシリコン窒化膜72は、シリコン基板に素子分離溝を形成する際の耐エッチングマスクとして使用するものである。
次に、図2(b)に示すように、リソグラフィ工程によってレジストパターン73を形成する。その後に、図2(c)に示すように、RIE(Reactive Ion Etcing)工程により、シリコン窒化膜72及びシリコン酸化膜71を選択的にエッチングし、素子分離溝を形成する際の耐エッチングマスク74を形成する。この状態で、シリコン基板2をRIE工程によってエッチングして、図2(d)に示すように、素子分離溝75を形成する。
(B1)シリコン酸化膜形成工程
上述した(A1)トレンチ形成工程の後、公知の熱酸化法等により熱酸化処理等を行うことにより、素子分離溝の内面にシリコン酸化膜(図示しない)を形成する。上述したように、素子分離溝形成のための耐エッチングマスク74は、シリコン窒化膜72を含んで形成される。このシリコン窒化膜72と、後述する真空紫外光CVD処理により形成されるシリコン酸化膜との界面密着性はあまりよくない。したがって、素子分離溝75を形成した後、後述する真空紫外光CVD処理の前に、素子分離溝75の内面とシリコン窒化膜72の表面に、真空紫外光CVD処理以外の熱酸化処理等によりシリコン酸化膜を形成することが望ましい。これによって、真空紫外光CVD処理によって形成されるシリコン酸化膜との界面密着性が向上する。なお、この熱酸化処理工程は、常に必要ではなく、適宜、省略することができる。
(C1)基板搬入工程
次に、素子分離溝75が形成された基板2が、基板搬入口(図示しない)から基板処理室1内のサセプタ3に載置される。続いて、排気管64を介して真空ポンプ63により、基板処理室1の内部が所定の真空度(例えば、20Pa)に減圧され、ヒータユニット6により、基板2が所定の温度(例えば、80℃)に昇温される。
(D1)成膜工程
次に、図2(e)に示すように、真空紫外光CVDプロセスを用いて、基板上にシリコン酸化膜76を形成する。詳しくは次のとおりである。
成膜工程において、所定の材料ガス(シリコン化合物ガス)が、シリコン化合物ガス供給源13からガス導入管14を介して基板処理室1に供給される。このとき、窒素ガス等の不活性ガスが、不活性ガス供給源43から処理室1に供給されるようにしてもよいが、本実施例では、不活性ガスを供給しない。材料ガスが、基板処理室1に供給されている状態において、真空ポンプ63により基板処理室1内を所定の圧力に調整し、材料ガスに向けて、発光部4から紫外光を照射する。
材料ガスである有機シリコンは、Si−O−Si−R結合(Rは低級アルキル基)の状態にある。本実施例では、材料ガスのシリコン化合物ガスには、ポリシロキサンを用いている。紫外光照射により、ポリシロキサンのSi−O−Si−R結合が分解、すなわち、Rが分離しシロキサン(Si−O結合)になるとともに、シロキサンが励起されて高分子化し、シロキサン(Si−O結合)を含むシリコン酸化膜が生成される。このとき、照射する紫外光の強度を、基板2の表面において3mW/cm以上、100mW/cm以下とするのがよい。紫外光の強度を、3mW/cm以上とすることにより、成膜速度を向上し、また、成膜の表面が平坦となるように、成膜形成中における成膜の流動性を高く維持することができる。本実施例では、50mW/cmとした。
なお、紫外光の強度が大きいほど、成膜の流動性は高くなる。また、材料ガスの圧力が高いほど、分解される材料ガスの分子が多くなるので、成膜の流動性が高くなる。
ここで、成膜の流動性とは、基板に付着した反応生成物の移動し易さである。基板に付着した反応生成物は、基板上において、界面張力により、自身の密度の小さい所へ移動しようとし、また、平坦になろうとする。したがって、成膜の流動性が高いと、溝の奥部まで成膜されやすくなる。
成膜工程においては、基板2の温度を0℃以上100℃以下とし、かつ、基板処理室1内の圧力を20Pa以上100Pa以下とすることが望ましい。20Paより小さい圧力では、成膜速度が低く実用的でない。また、基板に付着した反応生成物の密度が小さいので、成膜の流動性が低い。一方、100Paより大きい圧力では、材料ガスの分子当たりのエネルギが小さく、ガスの分解が進みにくい。
なお、上記の例では、材料ガスを基板処理室1に供給しつつ紫外光を照射するようにしているが、材料ガスを基板処理室1に供給した後、材料ガス供給を停止した状態で、紫外光を照射するようにすることもできる。
(E1)減圧処理工程
その後、図2(f)に示すように、前記成膜工程により堆積したシリコン酸化膜76を減圧処理することによって、シリコン酸化膜76中に含まれる残留有機物濃度の低い、緻密なシリコン酸化膜とする。減圧処理時においては、材料ガスの供給と紫外光の照射を停止し、停止後、基板処理室1内の雰囲気を排気する。こうすることにより、基板処理室1内の圧力が、前記(D1)成膜工程の成膜時における圧力よりも低くなるので、シリコン酸化膜76中に含まれる残留有機物濃度を低くして、緻密な膜とすることができる。
この減圧処理は、上記(D1)成膜工程の後、約30秒以内に0.1Pa以下とすることが望ましい。真空紫外光の照射を停止した後、早急に減圧処理することにより、分解された状態のシリコン化合物を処理することが可能となる。真空紫外光の照射を停止した後、約30秒以内であれば、シリコン化合物が分解された状態、つまり成膜の流動性の高い状態であるので、素子分離溝内にシリコン酸化膜あるいは絶縁膜を形成することが容易となる。逆に、真空紫外光の照射を停止した後、減圧処理するまでの時間が長い場合は、分解された状態のシリコン化合物の一部が再結合してしまい、成膜の流動性を失ってしまう可能性がある。その場合、素子分離溝内にシリコン酸化膜あるいは絶縁膜を形成することはより困難となる。したがって、真空紫外光が照射されたシリコン化合物が、所望の流動性を有している間に、減圧処理することが望ましい。また、真空紫外光の照射を停止した後、早急に減圧処理する場合は、減圧処理前に真空紫外光の照射を停止することが可能となるので、真空紫外光を発光するランプの寿命を延ばすことができる。
なお、減圧処理時において、紫外光を材料ガスに照射するようにしてもよい。このようにすると、減圧処理工程においても、基板に付着したシリコン化合物ガスが紫外光により分解され、成膜の流動性が高まり、素子分離溝内にシリコン酸化膜あるいは絶縁膜を形成することが、より容易となる。
また、上記減圧処理は、材料ガスの供給を停止することなく行うこともできる。上記(D1)成膜工程よりも、基板処理室1内の圧力を低くすることが必要であるから、そのため、例えば、基板処理室1内へのガス供給量を(D1)成膜工程より減少させるか、又は、基板処理室1内からのガス排気量を(D1)成膜工程より増加させるようにする。
ところで、成膜の流動性が高い成膜条件(比較的、圧力が高い条件)では、生成されたシリコン酸化膜中の残留有機物濃度(炭素や水素の濃度)が高い。このため、残留した有機物が後工程で抜け、ボイドの原因になることがある。シリコン酸化膜中の残留有機物濃度を低くするために、上記の(D1)成膜工程に代えて、制御部9は、次のように、成膜処理と減圧処理を交互に行う(M)成膜・減圧工程を行うよう制御することができる。(M)成膜・減圧工程を行う場合は、上記(E1)減圧処理工程は省略できる。
(M)成膜・減圧工程
(M1)最初に、材料ガスの供給と紫外光の照射を行いながら、流動限界以下の圧力である10Pa以下の圧力で、つまり、成膜の流動性がほとんどないような低い圧力で、所定の基板温度(0℃以上100℃以下)で、1〜2nm程度の膜厚の成膜を行う。このようにすると、材料ガスの分子当たりのエネルギが大きいので、基板2のシリコンと密着性がよく、残留有機物濃度の低い、耐熱性の優れた膜を生成できる。
(M2)次に、材料ガスの供給と紫外光の照射を行いながら、高い成膜速度が得られる所定の圧力(20Pa以上100Pa以下)、及び、所定の基板温度(0℃以上100℃以下)で、所定の膜厚、例えば、溝の幅の1/4程度まで成膜を行う。
(M3)材料ガスの供給と紫外光の照射を停止し、停止後、基板処理室1内の雰囲気を排気する。こうすることにより、基板処理室1内の圧力が、前記(M2)の成膜時における圧力よりも低くなるので、膜中に含まれる残留有機物濃度を低くして、緻密な膜とすることができる。すなわち、(M3)工程は、上記(E1)減圧処理工程に相当するものである。このとき、排気中の有機物の分圧が、所定の分圧となるまで、残留ガス計測計8でモニタしながら排気するのが好ましい。この所定の分圧は、適切な値を予め実験等により求めておく。あるいは、排気中の有機物の分圧が所定の分圧となるまでの所定の時間を、予め計測しておき、前記所定の時間、排気するようにしてもよい。
(M4)基板処理室1内の雰囲気を排気した後、材料ガスを供給し、基板処理室1内が所定の圧力(20Pa以上100Pa以下)、及び、所定の基板温度(0℃以上100℃以下)になった後、材料ガスに向けて、発光部4から紫外光を照射する。こうして、所定の膜厚、例えば、溝の幅の3/4程度まで成膜を行う。
(M5)前記(M3)と同様に、材料ガスの供給と紫外光の照射を停止し、停止後、基板処理室1内の雰囲気を排気する。このとき、排気中の有機物の分圧が、所定の分圧となると、排気を終了する。
(M6)基板処理室1内の雰囲気を排気した後、材料ガスを供給し、基板処理室1内が所定の圧力(20Pa以上100Pa以下)、及び、所定の基板温度(0℃以上100℃以下)になった後、材料ガスに向けて、発光部4から紫外光を照射する。こうして、所定の膜厚となるまで、つまり、溝の内部を完全に埋めるまで成膜を行う。
以上の(M2)から(M6)のように、成膜と排気を繰り返すことにより、残留有機物の少ない平坦な絶縁膜を溝の奥部に形成することができる。
なお、上記の(M2)(M4)(M6)における圧力、基板温度は、すべて同一の圧力、基板温度としてもよいし、必要に応じ、異なる圧力、基板温度としてもよい。例えば、(M2)では20〜30Pa、(M4)では30〜40Pa、(M6)では40〜100Paとする。このようにすると、(M2)よりも(M4)の成膜の流動性を高くすることができ、また、(M4)よりも(M6)の成膜の流動性を高くすることができる。したがって、(M2)よりも溝の幅が小さくなっている(M4)や、(M4)よりも溝の幅が小さくなっている(M6)の状態において、絶縁膜を溝内に形成しやすくなる。
また、(M1)と(M2)の間において、(M3)と同様な減圧処理を行うようにしてもよい。しかし、(M1)においては、(M2)よりも低い圧力で、(M2)よりも薄い成膜を行っているので、この(M1)直後の減圧処理は、必ずしも必要ではない。
(F1)基板搬出工程
以上のようにして所望の絶縁膜が形成された後に、窒素ガス等の不活性ガスが、不活性ガス供給源43から処理室1に供給される。不活性ガスにより、基板処理室1内が置換され、大気圧に復帰した後に、処理済みの基板2が処理室1の外部に搬出される。
(G1)熱処理工程
その後、図1の半導体製造装置100とは別の公知の加熱装置において、酸素等の酸化性雰囲気または不活性雰囲気中で、上記(D1)成膜工程よりも高い温度で、基板2を熱処理することにより、さらにシリコン酸化膜76中の有機物密度を低くし、シリコン酸化膜76を緻密化する。この緻密化の熱処理は、700℃から1100℃の範囲で行うことが望ましい。この熱処理温度は高いほどよいが、素子分離溝の埋め込み工程よりも前の工程で形成された形成物により制限される。例えば、後述する第3実施例のように、前の工程で電極を形成した場合は、700℃以上の高温で加熱すると、電極の材質を変質させる。したがって、電極の材質に悪影響を与えない程度の温度で加熱する必要がある。
なお、ここでは加熱処理を、半導体製造装置100とは別の加熱装置で実施しているが、これに限るものではなく、前記(F1)基板搬出工程の前に、基板処理室1内の基板載置部3のヒータ6により加熱処理することもできる。しかし、半導体製造装置100で加熱処理すると、加熱処理に多くの時間をとられる。したがって、別の加熱装置で加熱処理する方が、スループットが向上するので好ましい。
(H1)CMP工程
シリコン酸化膜を緻密化した後に、図2(g)に示すように、CMP(Chemical Mechanical Polishing:化学的、機械的研磨)処理によって、基板上の不要なシリコン酸化膜を除去し、基板2の表面を平坦化する。
(第2実施例)
次に、図3を用いて第2実施例を説明する。図3は、本発明の第2実施例における処理工程を示す図である。第2実施例は、第1実施例と同様に、シリコン基板上の素子分離領域に形成されたトレンチ内に、真空紫外光CVD法により、シリコン酸化膜を埋め込むものである。しかし、第2実施例では、第1実施例と異なり、素子分離溝内の一部に対し、真空紫外光CVD法によりシリコン酸化膜を埋め込むものである。
第2実施例においては、(A2)トレンチ形成工程、(B2)シリコン酸化膜形成工程、(C2)基板搬入工程、(D2)成膜工程、(E2)減圧処理工程、(F2)基板搬出工程、(P)プラズマCVD処理工程、(G2)熱処理工程、(H2)CMP工程の順に処理が行われる。(D2)成膜工程、(P)プラズマCVD処理工程以外の各工程は、それぞれ、第1実施例における各工程と同じ処理なので、説明を省略する。
(D2)成膜工程においても、第1実施例における(D1)成膜工程と同様の真空紫外光CVD処理条件(材料ガス種、圧力、温度等)で、素子分離溝内にシリコン酸化膜を堆積して埋め込む。しかし、(D2)成膜工程においては、図3(a)に示すように、真空紫外光CVD処理により素子分離溝内に堆積するシリコン酸化膜76の表面81は、素子部82の表面83より低い位置とする。その結果、基板2の表面には凹凸が生じる。図3(a)においては、素子部82のシリコン窒化膜72の下方のシリコン酸化膜71の下端に相当する位置まで、すなわち、基板2のシリコン部分の表面位置まで、素子分離溝内にシリコン酸化膜76が形成されている。
(D2)成膜工程の後、図3(b)に示すように、(E2)減圧処理工程により、真空紫外光CVD処理により堆積したシリコン酸化膜76を減圧処理することによって、緻密なシリコン酸化膜とする。
その後、(P)プラズマCVD処理工程において、公知である一般的なプラズマCVD処理により、図3(c)に示すように、素子分離溝内に堆積するシリコン酸化膜の表面84が、素子部82の表面83より高い位置となるまで、シリコン酸化膜85を堆積する。このときに用いるプラズマCVD処理は、高密度プラズマ(HDP)によるHDP−CVD処理が好ましい。その理由は、後述するように、HDP−CVD処理により堆積されるシリコン酸化膜85は密度が大きく、そのエッチングレートは、エッチングストッパ層を形成するシリコン窒化膜72のエッチングレートと同程度だからである。なお、(P)プラズマCVD処理工程において、プラズマCVD処理に代えて、公知の熱CVD処理を行うようにしてもよい。公知の熱CVD処理によっても、真空紫外光CVD処理よりも密度の高いシリコン酸化膜85を形成することができる。
次に、(F2)基板搬出工程において、基板処理室1内から基板2を搬出した後、(G2)熱処理工程において、酸素等の酸化性雰囲気又は不活性雰囲気中で熱処理することにより、さらにシリコン酸化膜76を緻密化する。
その後、図3(d)に示すように、(H2)CMP工程において、基板上の不要なシリコン酸化膜85を除去する。
ここで、真空紫外光CVD処理によるシリコン酸化膜76は、有機物をより多く含むため、シリコン窒化膜72や、プラズマCVD処理又は熱CVD処理により形成されるシリコン酸化膜85よりも、膜密度が低い。したがって、真空紫外光CVD処理によるシリコン酸化膜76のエッチングレートは、エッチングストッパ層を形成するシリコン窒化膜72のエッチングレートよりも大きい。また、プラズマCVD処理又は熱CVD処理によるシリコン酸化膜85のエッチングレートは、エッチングストッパ層を形成するシリコン窒化膜72のエッチングレートと同程度である。したがって、真空紫外光CVD処理によるシリコン酸化膜76と、シリコン窒化膜72とが混在した基板をエッチングする場合は、エッチングレート差に起因した形状劣化、すなわち、基板2の表面に凹凸が発生しやすい。逆に、プラズマCVD処理又は熱CVD処理によるシリコン酸化膜85と、シリコン窒化膜72とが混在した基板をエッチングする場合は、エッチングレート差に起因した形状劣化が発生しにくい。
この第2実施例によると、素子分離溝の埋め込み工程に、真空紫外光CVD処理によるシリコン酸化膜76の堆積と、プラズマCVD処理又は熱CVD処理によるシリコン酸化膜85の堆積とが必要となり、工程数が増加する。しかし、(H2)CMP工程において除去される素子分離溝内のシリコン酸化膜は、(P)プラズマCVD処理工程において堆積したシリコン酸化膜85となる。そのため、素子分離溝埋め込み工程が終了した後、シリコン窒化膜72およびシリコン酸化膜85を除去するためのウエットエッチング処理を実施する際に、素子部のシリコン窒化膜72と、素子分離溝内に埋め込まれたシリコン酸化膜85とのエッチングレート差が小さくなり、該エッチングレート差に起因する基板表面の形状劣化(凹凸)の発生が抑制される。
(第3実施例)
第3実施例は、半導体基板上に形成されたトランジスタ等の素子電極と素子電極の間に、層間絶縁膜(PMD膜)として、真空紫外光CVD法により、シリコン酸化膜を埋め込むものである。
図4を用いて第3実施例を説明する。図4は、本発明の第3実施例における処理工程を示す図である。第3実施例においては、(J)電極形成工程、(K)サイドウォール形成工程、(B3)シリコン酸化膜形成工程、(C3)基板搬入工程、(D3)成膜工程、(E3)減圧処理工程、(F3)基板搬出工程、(G3)熱処理工程、(H3)CMP工程の順に処理が行われる。(J)電極形成工程、(K)サイドウォール形成工程以外の各工程は、それぞれ、第1実施例における各工程と同じ処理なので、説明を省略する。
(J)電極形成工程において、はじめに、図4(a)に示すように、シリコン基板2の表面に、公知の熱酸化法により、ゲート絶縁膜(SiO)91を膜厚が約8nm以下となるよう形成する。さらに、その上にゲート電極膜92として、多結晶シリコン膜を膜厚が100nm程度となるよう形成する。前記電極膜92としては、WSi(タングステンシリサイド)、CoSi(コバルトシリサイド)等を用いた積層膜とすることも可能である。その場合の膜厚は100〜200nmの範囲となる。その後、その上にシリコン窒化膜(SiN)93を形成する。
次に、リソグラフィ工程によってレジストパターンを形成した後に、RIE工程により、シリコン窒化膜93とゲート電極膜92をエッチングすることによって、図4(b)に示すように、ゲート電極95を形成する。
次に、(K)サイドウォール形成工程において、図4(c)に示すように、公知の熱CVD法により、シリコン基板全面に、例えばシリコン窒化膜(SiN)を形成し、その後、公知のエッチバック工程によって、電極の側壁にサイドウォール膜(SiN)96を形成する。
この後、(C3)基板搬入工程において、処理室1内に基板2を搬入した後、(D3)成膜工程において、図4(d)に示すように、図1の装置100を用いて真空紫外光CVD処理を行い、基板2上にシリコン酸化膜97を形成する。なお、第1実施例と同様に、(C3)基板搬入工程の前に、(B3)シリコン酸化膜形成工程を行い、サイドウォール膜であるシリコン窒化膜上に、予めシリコン酸化膜を形成しておいてもよい。
その後、(E3)減圧処理工程において、処理室1内を減圧する。この減圧処理により、図4(e)に示すように、真空紫外光CVD処理により堆積したシリコン酸化膜97を、緻密なシリコン酸化膜とする。
(E3)減圧処理工程の後、(F3)基板搬出工程において、処理済の被処理基板2を基板処理室1から搬出する。
基板2を基板処理室1から搬出した後、(G3)熱処理工程において、公知の加熱装置によって、酸素等の酸化性雰囲気あるいは窒素等の不活性雰囲気中で、熱処理を行う。この熱処理は、電極の材質を変質させないよう、300〜600℃の範囲で行うことが望ましい。このように加熱処理を行うことにより、さらにシリコン酸化膜97を緻密化する。
上記(G3)熱処理工程の後に、図4(f)に示すように、(H3)CMP工程において、CMP処理によってシリコン酸化膜97を平坦化し、その後、公知のプラズマCVD法等によりシリコン酸化膜98を堆積し、その上に第2のゲート電極を形成する。
真空紫外光CVD処理によって、ポリシロキサンを励起して堆積したシリコン酸化膜は、Si−R結合(Rは低級アルキル基)を含むため、一般的な2酸化ケイ素と比較して膜密度が低い。そのため、一般的な2酸化ケイ素の比誘電率がおよそ4.0であるのに対して、真空紫外光CVD処理によって堆積したシリコン酸化膜は、比誘電率が2.6〜3.8の範囲となり、低誘電率絶縁膜となる。そのため、第3実施例の発明を用いると、電極間の絶縁容量を低減することによって信号遅延の改善が可能となり、能動デバイスの動作速度が向上する。
本発明の真空紫外光CVD処理を行った結果を図5に示す。図5は、第1実施例により、素子分離溝内にシリコン酸化膜を埋め込んだ事例を示す写真である。図5の事例では、深さが約1000nm、幅が約100nmの素子分離溝内に、ボイドやシームを発生することなく、シリコン酸化膜を形成した。このように、本発明によれば、ボイドやシームを発生することなく、幅の狭い素子分離溝内にシリコン酸化膜を埋め込むことができる。
以上の、本明細書の記載に基づき、少なくとも次の発明を把握することができる。すなわち、第1の発明は、基板を処理室内へ搬入する工程と、炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力の状態にする工程と、処理室内を前記第1の圧力にした状態において、処理室内へ供給されたシリコン化合物ガスに紫外光を照射して、基板上にシリコン酸化膜を形成する工程と、前記シリコン化合物ガスの処理室内への供給を停止する工程と、前記シリコン化合物ガスの処理室内への供給を停止した状態で、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理工程と、を有する半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、高アスペクト比で狭い幅の溝内に、緻密なシリコン酸化膜を形成することができる。なお、前記減圧処理工程において、シリコン化合物ガスの処理室内への供給を停止しないようにすることも可能である。
第2の発明は、素子間を分離する素子分離溝が形成された基板を処理室内へ搬入する工程と、炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力の状態にする工程と、処理室内を前記第1の圧力にした状態において、処理室内へ紫外光を照射して、前記素子分離溝内に絶縁膜を形成する絶縁膜形成工程と、前記シリコン化合物ガスの処理室内への供給を停止する工程と、前記シリコン化合物ガスの処理室内への供給を停止した状態で、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理工程と、を有する半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、高アスペクト比で狭い幅の溝内に、緻密な絶縁膜を形成することができる。なお、前記減圧処理工程において、シリコン化合物ガスの処理室内への供給を停止しないようにすることも可能である。
第3の発明は、前記第2の発明の半導体装置の製造方法において、前記素子分離溝に隣接する素子形成部の表面にはシリコン窒化膜が形成されており、前記絶縁膜形成工程及び前記減圧処理工程により、前記シリコン窒化膜の表面より低い位置まで、素子分離溝内に絶縁膜を形成した後、熱CVD処理又はプラズマCVD処理により、素子分離溝内に絶縁膜を形成する半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、熱CVD処理又はプラズマCVD処理により形成した絶縁膜と、シリコン窒化膜のエッチングレート差が小さいので、後工程においてシリコン窒化膜のウエットエッチング処理を実施する際に、前記エッチングレート差に起因する基板表面の形状劣化(凹凸化)を抑制することができる。
第4の発明は、前記第1の発明の半導体装置の製造方法において、前記減圧処理工程の後、前記シリコン酸化膜を形成する工程よりも高い温度で前記シリコン酸化膜を形成した基板を熱処理する熱処理工程を行う半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、高アスペクト比で狭い幅の溝内に、緻密なシリコン酸化膜を形成することができる。
第5の発明は、前記第1の発明又は第2の発明の半導体装置の製造方法において、前記減圧処理工程において、処理室内へ紫外光を照射する半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、減圧処理工程においても、基板に付着したシリコン化合物ガスが紫外光により分解され、素子分離溝内にシリコン酸化膜あるいは絶縁膜を形成することがより容易となる。
第6の発明は、前記第1の発明ないし第5の発明の半導体装置の製造方法において、前記シリコン化合物ガスがシロキサンである半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、素子分離溝内にシリコン酸化膜あるいは絶縁膜を、効率よく形成することができる。
第7の発明は、前記第1の発明ないし第6の発明の半導体装置の製造方法において、前記シリコン化合物ガスがOMCTSである半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、素子分離溝内にシリコン酸化膜あるいは絶縁膜を、効率よく形成することができる。
第8の発明は、
素子間を分離する素子分離溝が形成された基板を処理室内へ搬入する工程と、炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力にした状態において、処理室内へ紫外光を照射して、前記素子分離溝内に絶縁膜を形成する第1の絶縁膜形成工程と、前記シリコン化合物ガスの処理室内への供給を停止した状態で、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする第1の減圧処理工程と、前記シリコン化合物ガスを処理室内へ供給して、処理室内を第3の圧力にした状態において、処理室内へ紫外光を照射して、前記素子分離溝内に絶縁膜を形成する第2の絶縁膜形成工程と、前記シリコン化合物ガスの処理室内への供給を停止した状態で、処理室内を前記第3の圧力よりも低い第4の圧力の状態にする第2の減圧処理工程と、を有する半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、絶縁膜形成工程と減圧処理工程をそれぞれ1回だけ行う場合よりも、不純物の少ない絶縁膜を形成することができる。なお、前記減圧処理工程において、シリコン化合物ガスの処理室内への供給を停止しないようにすることも可能である。
第9の発明は、前記第8の発明の半導体装置の製造方法において、前記第3の圧力は前記第1の圧力よりも高い半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、溝の幅が比較的広い状態では、第1の絶縁膜形成工程により、流動性は低いが不純物の少ない絶縁膜を形成し、溝の幅が比較的狭い状態では、第2の絶縁膜形成工程により、不純物は増えるが流動性の高い絶縁膜を形成することができる。したがって、高アスペクト比で狭い幅の溝内に、緻密な絶縁膜を形成することが容易となる。
第10の発明は、基板を処理する処理室と、炭素及び水素を含むシリコン化合物ガスを処理室内へ供給する処理ガス供給部と、処理室内の雰囲気を排気する排気部と、処理室内に紫外光を照射する紫外光発光部と、制御部とを備え、該制御部は、素子分離溝を有する基板が処理室内に存在する状態において、前記シリコン化合物ガスを前記処理ガス供給部から処理室内へ供給し、処理室内を第1の圧力にした状態において、処理室内へ紫外光を照射して、前記素子分離溝内に絶縁膜を形成し、その後、前記シリコン化合物ガスの処理室内への供給を停止し、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理を行う制御部である半導体製造装置。
このように半導体製造装置を構成すると、高アスペクト比で狭い幅の溝内に、緻密なシリコン酸化膜を形成することができる。なお、前記減圧処理を行う工程において、シリコン化合物ガスの処理室内への供給を停止しないようにすることも可能である。
第11の発明は、基板を処理室内へ搬入する工程と、炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力の状態にする工程と、処理室内を前記第1の圧力にした状態において、処理室内へ供給されたシリコン化合物ガスに紫外光を照射して、基板上にシリコン酸化膜を形成する工程と、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理工程と、前記シリコン酸化膜を形成する工程よりも高い温度で前記シリコン酸化膜を形成した基板を熱処理する熱処理工程と、を有する半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、高アスペクト比で狭い幅の溝内に、緻密なシリコン酸化膜を形成することができる。
第12の発明は、シリコン基板上に素子分離溝が形成される素子分離溝形成工程と、該素子分離溝内にシリコン酸化膜が形成される工程と、素子分離溝が形成された基板を処理室内へ搬入する工程と、炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力の状態にする工程と、処理室内を前記第1の圧力にした状態において、処理室内へ紫外光を照射して、前記素子分離溝内に絶縁膜を形成する絶縁膜形成工程と、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理工程と、を有する半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、絶縁膜形成工程において素子分離溝内に絶縁膜を形成する際に、形成される絶縁膜と素子分離溝内表面との界面密着性が向上する。
1 基板処理室、2 基板、3 サセプタ(基板載置部)、4 紫外光発光部、5 紫外光透過窓、6 ヒータユニット、7 温度検出器、8 残留ガス計測計、9 制御部、11 開閉バルブ、12 MFC、13 シリコン化合物ガス源、14 ガス導入管、15 シリコン化合物ガス供給管、41 開閉バルブ、42 MFC、43 不活性ガス源、45 不活性ガス供給管、61 圧力センサ、62 APCバルブ、63 真空ポンプ、64 ガス排気管。

Claims (4)

  1. 基板を処理室内へ搬入する工程と、
    炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力の状態にする工程と、
    処理室内を前記第1の圧力にした状態において、処理室内へ供給されたシリコン化合物ガスに紫外光を照射して、基板上にシリコン酸化膜を形成する工程と、
    前記シリコン化合物ガスの処理室内への供給を停止した状態で、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理工程と、
    を有する半導体装置の製造方法。
  2. 素子間を分離する素子分離溝が形成された基板を処理室内へ搬入する工程と、
    炭素及び水素を含むシリコン化合物ガスを処理室内へ供給して、処理室内を第1の圧力の状態にする工程と、
    処理室内を前記第1の圧力にした状態において、処理室内へ紫外光を照射して、前記素子分離溝内に絶縁膜を形成する絶縁膜形成工程と、
    前記シリコン化合物ガスの処理室内への供給を停止した状態で、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理工程と、
    を有する半導体装置の製造方法。
  3. 前記請求項1又は請求項2に記載された半導体装置の製造方法であって、
    前記減圧処理工程において、処理室内へ紫外光を照射する半導体装置の製造方法。
  4. 基板を処理する処理室と、
    炭素及び水素を含むシリコン化合物ガスを処理室内へ供給する処理ガス供給部と、
    処理室内の雰囲気を排気する排気部と、
    処理室内に紫外光を照射する紫外光発光部と、
    制御部とを備え、
    該制御部は、素子分離溝を有する基板が処理室内に存在する状態において、前記シリコン化合物ガスを前記処理ガス供給部から処理室内へ供給し、処理室内を第1の圧力にした状態において、処理室内へ紫外光を照射して、前記素子分離溝内に絶縁膜を形成し、その後、前記シリコン化合物ガスの処理室内への供給を停止し、処理室内を前記第1の圧力よりも低い第2の圧力の状態にする減圧処理を行う制御部である半導体製造装置。
JP2009172004A 2008-09-03 2009-07-23 半導体装置の製造方法及び製造装置 Pending JP2010087475A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009172004A JP2010087475A (ja) 2008-09-03 2009-07-23 半導体装置の製造方法及び製造装置
TW098127610A TW201025447A (en) 2008-09-03 2009-08-17 Manufacturing method of semiconductor device
KR1020090080425A KR20100027975A (ko) 2008-09-03 2009-08-28 반도체 장치의 제조 방법
US12/551,816 US7955948B2 (en) 2008-09-03 2009-09-01 Manufacturing method of semiconductor device
US13/151,229 US20110230061A1 (en) 2008-09-03 2011-06-01 Manufacturing method of semiconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008226324 2008-09-03
JP2008226325 2008-09-03
JP2008226326 2008-09-03
JP2008226323 2008-09-03
JP2009172004A JP2010087475A (ja) 2008-09-03 2009-07-23 半導体装置の製造方法及び製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011039478A Division JP2011142335A (ja) 2008-09-03 2011-02-25 半導体装置の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
JP2010087475A true JP2010087475A (ja) 2010-04-15

Family

ID=41726099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172004A Pending JP2010087475A (ja) 2008-09-03 2009-07-23 半導体装置の製造方法及び製造装置

Country Status (3)

Country Link
US (2) US7955948B2 (ja)
JP (1) JP2010087475A (ja)
TW (1) TW201025447A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027191A (ja) * 2012-07-30 2014-02-06 Hitachi High-Technologies Corp 光cvd膜の製造方法、及び光cvd膜の製造装置
US8906246B2 (en) 2011-03-29 2014-12-09 Tokyo Electron Limited Film deposition apparatus and film deposition method
US9190299B2 (en) 2011-11-21 2015-11-17 Hitachi Kokusai Electric, Inc. Apparatus for manufacturing semiconductor device, method of manufacturing semiconductor device, and recording medium
KR20170009183A (ko) * 2015-07-16 2017-01-25 삼성전자주식회사 소자 분리막을 포함하는 반도체 장치의 제조 방법
JP2023507878A (ja) * 2020-03-06 2023-02-28 アプライド マテリアルズ インコーポレイテッド 基板のガス放出を管理するためのシステム及び方法
JP7507301B2 (ja) 2020-03-06 2024-06-27 アプライド マテリアルズ インコーポレイテッド 基板のガス放出を管理するためのシステム及び方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087475A (ja) * 2008-09-03 2010-04-15 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び製造装置
US20150187563A1 (en) 2013-12-26 2015-07-02 Applied Materials, Inc. Photo-assisted deposition of flowable films
JP6321579B2 (ja) * 2015-06-01 2018-05-09 株式会社日立国際電気 半導体装置の製造方法、基板処理システム、基板処理装置及びプログラム
KR20190128558A (ko) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조
KR20210010817A (ko) * 2019-07-19 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294430A (ja) * 1988-09-30 1990-04-05 Toshiba Corp 光cvd装置
JP2001210638A (ja) * 2000-01-21 2001-08-03 Hiroshi Kurosawa 絶縁膜の形成方法
JP2002075988A (ja) * 2000-08-30 2002-03-15 Miyazaki Oki Electric Co Ltd 真空紫外光cvdによる層間絶縁膜の製造方法
JP2005159113A (ja) * 2003-11-27 2005-06-16 Oki Electric Ind Co Ltd 膜の形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706572B1 (en) * 1994-08-31 2004-03-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film transistor using a high pressure oxidation step
TWI227531B (en) * 1997-03-05 2005-02-01 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
US6511921B1 (en) * 1999-01-12 2003-01-28 Sumco Phoenix Corporation Methods for reducing the reactivity of a semiconductor substrate surface and for evaluating electrical properties of a semiconductor substrate
JP4914536B2 (ja) * 2001-02-28 2012-04-11 東京エレクトロン株式会社 酸化膜形成方法
JP3926588B2 (ja) * 2001-07-19 2007-06-06 キヤノンマーケティングジャパン株式会社 半導体装置の製造方法
US7335609B2 (en) * 2004-08-27 2008-02-26 Applied Materials, Inc. Gap-fill depositions introducing hydroxyl-containing precursors in the formation of silicon containing dielectric materials
KR20080061197A (ko) * 2006-12-28 2008-07-02 주식회사 하이닉스반도체 반도체 소자의 산화막 형성 방법
US7763522B2 (en) * 2007-08-01 2010-07-27 United Microelectronic Corp. Method of high density plasma gap-filling with minimization of gas phase nucleation
JP2010087475A (ja) * 2008-09-03 2010-04-15 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び製造装置
US8080463B2 (en) * 2009-01-23 2011-12-20 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method and silicon oxide film forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294430A (ja) * 1988-09-30 1990-04-05 Toshiba Corp 光cvd装置
JP2001210638A (ja) * 2000-01-21 2001-08-03 Hiroshi Kurosawa 絶縁膜の形成方法
JP2002075988A (ja) * 2000-08-30 2002-03-15 Miyazaki Oki Electric Co Ltd 真空紫外光cvdによる層間絶縁膜の製造方法
JP2005159113A (ja) * 2003-11-27 2005-06-16 Oki Electric Ind Co Ltd 膜の形成方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906246B2 (en) 2011-03-29 2014-12-09 Tokyo Electron Limited Film deposition apparatus and film deposition method
US9190299B2 (en) 2011-11-21 2015-11-17 Hitachi Kokusai Electric, Inc. Apparatus for manufacturing semiconductor device, method of manufacturing semiconductor device, and recording medium
JP2014027191A (ja) * 2012-07-30 2014-02-06 Hitachi High-Technologies Corp 光cvd膜の製造方法、及び光cvd膜の製造装置
KR20170009183A (ko) * 2015-07-16 2017-01-25 삼성전자주식회사 소자 분리막을 포함하는 반도체 장치의 제조 방법
KR102406977B1 (ko) 2015-07-16 2022-06-10 삼성전자주식회사 소자 분리막을 포함하는 반도체 장치의 제조 방법
JP2023507878A (ja) * 2020-03-06 2023-02-28 アプライド マテリアルズ インコーポレイテッド 基板のガス放出を管理するためのシステム及び方法
US11817297B2 (en) 2020-03-06 2023-11-14 Applied Materials, Inc. System and method for managing substrate outgassing
JP7386342B2 (ja) 2020-03-06 2023-11-24 アプライド マテリアルズ インコーポレイテッド 基板のガス放出を管理するためのシステム及び方法
JP7507301B2 (ja) 2020-03-06 2024-06-27 アプライド マテリアルズ インコーポレイテッド 基板のガス放出を管理するためのシステム及び方法

Also Published As

Publication number Publication date
US7955948B2 (en) 2011-06-07
US20110230061A1 (en) 2011-09-22
TW201025447A (en) 2010-07-01
US20100055926A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP2010087475A (ja) 半導体装置の製造方法及び製造装置
JP5444961B2 (ja) 成膜装置及び成膜方法
TWI479044B (zh) 硼膜界面工程
US7642171B2 (en) Multi-step anneal of thin films for film densification and improved gap-fill
KR101161098B1 (ko) 낮은 에칭 레이트 유전체 라이너들을 이용한 갭충진 향상
KR20090033449A (ko) 보텀-업 방식의 갭필을 위한 유전체 증착 및 에치 백 공정
US10041167B2 (en) Cyclic sequential processes for forming high quality thin films
US20100330773A1 (en) Substrate processing method and substrate processing apparatus
JP2009533846A (ja) 膜緻密化及び改善されたギャップ充填のための薄膜の多段階アニール
TW561554B (en) Filling substrate depressions with SiO2 by HDP vapor phase deposition with participation of H2O2 or H2O as reaction gas
TW202015130A (zh) 半導體裝置之製造方法、基板處理裝置及記錄媒體
KR102141670B1 (ko) 저온 경화 모듈러스 강화
JP2007142155A (ja) 酸化処理方法および半導体装置の製造方法
CN101359596B (zh) 沟槽的填充方法及浅沟槽隔离的制造方法
KR102184690B1 (ko) 오목부의 매립 방법 및 처리 장치
JP2004039990A (ja) 被処理体の酸化方法
TW201715566A (zh) 在間隙填補應用中用來消除二氧化矽膜之原子層沉積物中的裂縫之系統及方法
JP2008199015A (ja) Psz膜の熱処理方法及びこれを適用した半導体素子の素子分離膜形成方法
JP2011142335A (ja) 半導体装置の製造方法及び製造装置
JP2015015272A (ja) 半導体装置の製造方法及び基板処理装置
TW201802957A (zh) 半導體裝置之製造方法、基板處理裝置及程式
JPH04343456A (ja) 半導体装置の製造方法
KR20100027975A (ko) 반도체 장치의 제조 방법
JP2013055179A (ja) 基板処理装置及び半導体装置の製造方法
KR100877257B1 (ko) 반도체 소자의 트렌치 매립방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426