JP2638271B2 - Production method of copper fine powder - Google Patents

Production method of copper fine powder

Info

Publication number
JP2638271B2
JP2638271B2 JP2236679A JP23667990A JP2638271B2 JP 2638271 B2 JP2638271 B2 JP 2638271B2 JP 2236679 A JP2236679 A JP 2236679A JP 23667990 A JP23667990 A JP 23667990A JP 2638271 B2 JP2638271 B2 JP 2638271B2
Authority
JP
Japan
Prior art keywords
copper
hydrazine
powder
solution
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2236679A
Other languages
Japanese (ja)
Other versions
JPH04116109A (en
Inventor
好和 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2236679A priority Critical patent/JP2638271B2/en
Publication of JPH04116109A publication Critical patent/JPH04116109A/en
Application granted granted Critical
Publication of JP2638271B2 publication Critical patent/JP2638271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銅微粉末の製造方法に関し、さらに詳しく
は、粒径の揃った球状の銅微粉末の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing copper fine powder, and more particularly, to a method for producing spherical copper fine powder having a uniform particle size.

(従来の技術) ガラス、セラミックス等の絶縁性基板上にスクリーン
印刷法、直接描画法等で塗布した後、焼成することで導
体厚膜を形成する導体ペーストには金、銀、銀/Pb、ニ
ッケル、銅などの粉末が導電粒子として用いられるが、
近年銅導体ペーストを用いる傾向にあることは周知の通
りである。
(Prior art) A conductor paste that forms a conductor thick film by coating on an insulating substrate such as glass or ceramics by a screen printing method, a direct drawing method, etc., and then firing is applied to gold, silver, silver / Pb, Powders of nickel, copper, etc. are used as conductive particles,
It is well known that there is a tendency to use a copper conductor paste in recent years.

銅ペーストに用いられる銅粉の粒径は0.3〜7.0μmで
あるが、緻密な導体厚膜を得るため、2種〜3種の粒系
の揃った整流銅粉を組み合わせると効果的である。さら
に、スクリーン印刷性より、球状銅粉が好ましく、ま
た、球状銅粉は不定形状の銅粉よりも比表面積が小さい
ので、ペースト化に必要な液体有機媒体(ビヒクル)の
量を低減できる。すなわち、吸油量が小さいので、銅粉
の濃度の高い銅ペーストが得られるという特徴を有す
る。
Although the particle size of the copper powder used for the copper paste is 0.3 to 7.0 μm, it is effective to combine two or three types of rectified copper powder with a uniform grain system in order to obtain a dense conductor thick film. Furthermore, spherical copper powder is preferable from the viewpoint of screen printability, and since spherical copper powder has a smaller specific surface area than irregular-shaped copper powder, the amount of liquid organic medium (vehicle) necessary for pasting can be reduced. That is, since the oil absorption is small, a copper paste having a high concentration of copper powder can be obtained.

さらに、球状銅粉は、不定形状の銅粉よりも充填性に
優れるので緻密な焼成膜を得やすい。
Furthermore, since spherical copper powder is more excellent in filling property than copper powder of irregular shape, it is easy to obtain a dense fired film.

このように、銅ペーストに用いる銅粉としては球状の
整粒銅微粉末が要求される。
As described above, a spherical sized copper fine powder is required as the copper powder used for the copper paste.

ここに、「整粒」とは、粒径が揃ったとの趣旨であ
る。
Here, “sizing” means that the particle sizes are uniform.

ところで、従来、銅微粉末の製造方法としては機械的
粉砕法、アトマイズ法、気相還元法、ガス中蒸発法、電
解法等が提案されているが、粒径0.3〜7.0μmの銅微粉
末を効率よく生成させる製造方法としてはヒドラジン還
元法が挙げられる。すなわち、溶液もしくはスラリー中
の銅イオンもしくは銅粉を強力な還元剤であるヒドラジ
ン類で還元して金属粉とする方法である。
By the way, conventionally, as a method for producing copper fine powder, a mechanical pulverization method, an atomizing method, a gas phase reduction method, an in-gas evaporation method, an electrolytic method, and the like have been proposed, but a copper fine powder having a particle size of 0.3 to 7.0 μm has been proposed. A hydrazine reduction method can be cited as a production method for efficiently producing methane. That is, this is a method in which copper ions or copper powder in a solution or slurry is reduced with hydrazines, which are powerful reducing agents, to obtain metal powder.

かかるヒドラジン還元法による銅微粉末製造方法には
これまでにも主に次のような提案がなされている。
Hitherto, the following proposals have mainly been made for the method for producing copper fine powder by the hydrazine reduction method.

炭酸銅水溶液にヒドラジンを加えて加熱することによ
り銅粉を得る方法。(特開昭57−155302号) 水酸化銅スラリーをヒドラジンあるいはヒドラジン化
合物で酸化銅スラリーとした後、更にヒドラジンあるい
はヒドラジン化合物で還元する方法(特開昭62−99406
号)。
A method of obtaining copper powder by adding hydrazine to an aqueous copper carbonate solution and heating. (JP-A-57-155302) A method in which a copper hydroxide slurry is converted into a copper oxide slurry with hydrazine or a hydrazine compound, and further reduced with hydrazine or a hydrazine compound (JP-A-62-99406).
issue).

硫酸銅水溶液をヒドラジンで還元する際に反応溶液に
各種界面活性剤を添加する方法(特開昭62−27508号、
同62−40302号、同62−77407号、同62−77408号)。
A method of adding various surfactants to a reaction solution when reducing an aqueous solution of copper sulfate with hydrazine (JP-A-62-27508,
Nos. 62-40302, 62-77407 and 62-77408).

硫酸銅水溶液をヒドラジンで還元する際に反応溶液中
に保護コロイドを添加する方法(特開昭62−77406
号)。
A method of adding a protective colloid to a reaction solution when reducing an aqueous copper sulfate solution with hydrazine (Japanese Patent Application Laid-Open No. 62-77406)
issue).

硫酸銅水溶液をヒドラジンで還元する際に反応開始剤
を添加する方法(特開昭63−27406号)。
A method in which a reaction initiator is added when reducing an aqueous solution of copper sulfate with hydrazine (JP-A-63-27406).

酸化銅スラリーに保護コロイドを添加する方法(特公
昭61−55562号)。
A method of adding a protective colloid to a copper oxide slurry (Japanese Patent Publication No. 55562/1986).

酸化銅粉末の表面にシランカップリング剤で被覆した
後にヒドラジン還元する方法(特開平2−34708号)。
A method in which the surface of copper oxide powder is coated with a silane coupling agent and then reduced with hydrazine (JP-A-2-34708).

亜酸化銅に酸で不均化反応を起こさせた後ヒドラジン
還元する方法(特開平2−129309号)。
A method in which a disproportionation reaction is caused on cuprous oxide with an acid, followed by hydrazine reduction (JP-A-2-129309).

(発明が解決しようとする課題) 従来のヒドラジン還元法にあって硫酸銅水溶液からヒ
ドラジン還元する際には、2価の銅イオンのすべてが直
接に金属銅に還元するわけでなく、次の反応が混在す
る。Cu2+→Cu(OH)、Cu2+→Cu2O、Cu(OH)→Cu
2O、Cu2+→Cu、Cu(OH)→Cu、Cu2O→Cu。
(Problem to be Solved by the Invention) In the conventional hydrazine reduction method, when hydrazine is reduced from an aqueous solution of copper sulfate, not all divalent copper ions are directly reduced to metallic copper, but the following reaction is performed. Are mixed. Cu 2+ → Cu (OH) 2 , Cu 2+ → Cu 2 O, Cu (OH) 2 → Cu
2 O, Cu 2+ → Cu, Cu (OH) 2 → Cu, Cu 2 O → Cu.

このため、硫酸銅水溶液ヘヒドラジンを添加しただけ
では均一な金属銅への還元反応は起こらず、生成した銅
微粉末は粒度分布が広く、かつ、粒子の形状が不定形に
なる。
For this reason, a uniform reduction reaction to metallic copper does not occur simply by adding the aqueous solution of copper sulfate hehydrazine, and the resulting fine copper powder has a wide particle size distribution and an irregular particle shape.

なお、特開昭62−99406号に開示の発明では、ヒドラ
ジンあるいはヒドラジン化合物により、いったん水酸化
銅より酸化銅を形成させているが、このようにして得ら
れた水酸化銅スラリーにヒドラジンあるいはヒドラジン
化合物を添加すると、瞬時に発泡が生じて(ヒドラジン
の還元作用により発生した窒素ガス)、凝集した粒度分
布の広い酸化銅となり、最終的に得られる銅微粉末も同
様に凝集し、粒径のバラツキが大きくなる。さらに、水
酸化銅スラリーにヒドラジンを添加するとヒドラジンは
容易に酸化銅を金属銅にまで還元してしまうので、均一
な酸化銅を得ることは難しい。
In the invention disclosed in Japanese Patent Application Laid-Open No. 62-99406, copper oxide is once formed from copper hydroxide using hydrazine or a hydrazine compound, and hydrazine or hydrazine is added to the copper hydroxide slurry thus obtained. When the compound is added, foaming occurs instantaneously (nitrogen gas generated by the reduction action of hydrazine), resulting in agglomerated copper oxide having a wide particle size distribution. Variation increases. Furthermore, when hydrazine is added to a copper hydroxide slurry, hydrazine easily reduces copper oxide to metallic copper, so that it is difficult to obtain uniform copper oxide.

また、酸化銅を出発原料とする場合も上述の理由によ
り、整粒銅微粉末を得るには、整粒酸化銅粉を入手しな
ければならず、任意の粒子径に制御した整粒酸化銅粉を
工業的に入手するのは難しくコスト高になる。
In addition, even when copper oxide is used as a starting material, for the above-mentioned reason, in order to obtain a sized copper fine powder, a sized copper oxide powder must be obtained, and the sized copper oxide controlled to an arbitrary particle size. It is difficult and expensive to obtain flour industrially.

かくして、本発明の第1の目的は、整粒銅微粉末を容
易かつ効率よく製造する方法を提供することである。
Thus, a first object of the present invention is to provide a method for easily and efficiently producing sized copper fine powder.

本発明の第2の目的は、球状の整粒銅微粉末を容易か
つ効率よく製造する方法を提供することである。
A second object of the present invention is to provide a method for easily and efficiently producing spherical sized copper fine powder.

(課題を解決するための手段) そこで、本発明者は、整粒微粉末を製造するには整粒
酸化銅粉をヒドラジン還元することが有利であることに
着目し、その整粒酸化銅粉の製造方法について種々検討
を重ねたところ、まずアルカリの添加により水酸化銅を
生成させ、一旦これを還元糖によって酸化銅とし、最後
にヒドラジンを使って還元すると整粒銅微粉末が還元生
成すること、特にヒドラジン添加に先立って反応溶液の
加熱処理を行うことにより球状化が行われ、得られる金
属銅粉も球状化粉となることを知り、本発明を完成し
た。
(Means for Solving the Problems) Therefore, the present inventor focused on the fact that it is advantageous to reduce sized copper oxide powder with hydrazine in order to produce sized fine powders. After various studies on the production method of copper, copper hydroxide was first generated by addition of alkali, this was once converted to copper oxide with a reducing sugar, and finally reduced with hydrazine to produce reduced-sized copper fine powder. In particular, the present inventors have found that spheroidization is performed by heating the reaction solution prior to the addition of hydrazine, and that the resulting metallic copper powder also becomes spheroidized powder, thereby completing the present invention.

本発明は、銅塩水溶液から水酸化銅を析出する段階、
そして得られた水酸化銅をpH12以上に調整してから還元
糖を添加して亜酸化銅にまで還元する段階、次いでこの
ようにして得られた亜酸化銅の反応溶液を50℃以上に調
整した後、ヒドラジン系還元剤を添加して金属銅にまで
還元する段階を経て行われることを特徴とする銅微粉末
の製造方法である。
The present invention is a step of precipitating copper hydroxide from a copper salt aqueous solution,
Then, the obtained copper hydroxide is adjusted to pH 12 or higher, and then a reducing sugar is added to reduce to cuprous oxide.Then, the reaction solution of the cuprous oxide thus obtained is adjusted to 50 ° C or higher. And then reducing to metallic copper by adding a hydrazine-based reducing agent.

本発明はまた別の面からは、ヒドラジン系還元剤を用
いて銅塩水溶液を還元して銅微粉末を製造する方法にお
いて、ヒドラジン系還元剤の添加前に、銅塩水溶液のpH
を12以上に調整した後、還元糖を添加し反応溶液を50℃
以上に調整した後、ヒドラジン系還元剤を添加すること
を特徴とする銅微粉末の製造方法である。
From another aspect, the present invention provides a method for producing a copper fine powder by reducing an aqueous copper salt solution using a hydrazine-based reducing agent, wherein the pH of the aqueous copper salt solution is adjusted before adding the hydrazine-based reducing agent.
After adjusting to 12 or more, reducing sugar was added and the reaction solution was heated to 50 ° C.
A method for producing copper fine powder, characterized by adding a hydrazine-based reducing agent after the above adjustment.

すなわち、本発明によれば、アルカリの添加により2
価の銅イオンから水酸化銅粉が生成し、続いてpHを12以
上に調整してからのぶどう糖添加により水酸化銅粉を亜
酸化銅粉に還元し、その反応溶液を50℃以上に調整し、
その後ヒドラジンにより亜酸化銅粉より金属銅の微粉末
に還元するのである。
That is, according to the present invention, 2
Copper hydroxide powder is generated from the divalent copper ions, then the pH is adjusted to 12 or higher, and then the glucose hydroxide is reduced to cuprous oxide powder by adding glucose, and the reaction solution is adjusted to 50 ° C or higher. And
Thereafter, the powder is reduced from cuprous oxide powder to fine metallic copper powder with hydrazine.

本発明では出発原料としての銅塩水溶液は好ましくは
硫酸銅水溶液であるが、他の銅塩の水溶液、例えば、炭
酸銅、硝酸銅、塩化銅およびシアン化銅の水溶液を用い
ても同様の効果があることは言うまでもない。ただし、
硫酸銅はこれらの銅塩の中で最も工業的に入手しやすく
さらに作業性、廃液処理等から判断して、最も好ましい
銅塩である。
In the present invention, the aqueous copper salt solution as a starting material is preferably an aqueous copper sulfate solution, but the same effect can be obtained by using an aqueous solution of another copper salt, for example, an aqueous solution of copper carbonate, copper nitrate, copper chloride and copper cyanide. Needless to say, there is. However,
Copper sulfate is the most preferred copper salt among these copper salts, because it is most industrially available and is judged from workability, waste liquid treatment and the like.

なお、水溶液中のCu2+イオンを安定に溶解させるため
に錯化剤の使用は有効である。使用可能な錯化剤として
は、酒石酸ナトリウム(ロッシュル塩)、アルギニンま
たはグリシン等のアミノ酸、アンモニアまたはアンモニ
ア化合物等の公知の錯化剤が使用可能であるが、銅ペー
スト用銅粉に適する粒径をもつ銅微粉末を生成させるに
はロッシュル塩が好ましい。
The use of a complexing agent is effective for stably dissolving Cu 2+ ions in an aqueous solution. As a usable complexing agent, known complexing agents such as sodium tartrate (Roschel's salt), amino acids such as arginine or glycine, and ammonia or an ammonia compound can be used. In order to produce copper fine powder having

本発明に使用するpH調整剤としてはpHを12以上に調整
できるアルカリ性pH調整剤が好ましい。その例として、
水酸化ナトリウム、水酸化カリウムが挙げられる。
As the pH adjuster used in the present invention, an alkaline pH adjuster capable of adjusting the pH to 12 or more is preferable. As an example,
Examples include sodium hydroxide and potassium hydroxide.

本発明に用いる還元糖は、ぶどう糖以外に、通常の単
糖類、多糖類等の還元等が使用可能である。
As the reducing sugar used in the present invention, besides glucose, reduction of ordinary monosaccharides, polysaccharides and the like can be used.

還元剤としての本発明において使用するヒドラジン系
還元剤には、ヒドラジン以外にもヒドラジン化合物も包
含され、それらには抱水ヒドラジン、硫酸ヒドラジン、
塩酸ヒドラジン等が挙げられるが、取扱い上の安全性お
よび洗浄性の点から抱水ヒドラジンが好ましい。
The hydrazine-based reducing agent used in the present invention as a reducing agent includes hydrazine compounds in addition to hydrazine, and includes hydrazine hydrate, hydrazine sulfate,
Hydrazine hydrochloride and the like can be mentioned, and hydrazine hydrate is preferred from the viewpoint of safety in handling and detergency.

かかる還元剤としては、上述のヒドラジンおよび/ま
たはヒドラジン化合物以外のものも必要によって配合し
てもよく、次亜リン酸アルカリ、水素化ホウ素アルカリ
およびホルマリン等が挙げられるが、いずれもヒドラジ
ンおよびヒドラジン化合物よりも還元力が劣り生産性は
低いため、ヒドラジンおよび/またはヒドラジン化合物
と併せて使用される。
As such a reducing agent, those other than the above-mentioned hydrazine and / or hydrazine compound may be blended if necessary, and examples thereof include alkali hypophosphite, alkali borohydride, and formalin. It is used in combination with hydrazine and / or a hydrazine compound because it has a lower reducing power and lower productivity.

ヒドラジン系還元剤の量は、その水溶性の程度とも関
係するが、基本的には銅微粉末の理論生成量に必要な量
以上が好ましい。
Although the amount of the hydrazine-based reducing agent is related to the degree of its water solubility, it is basically preferable that the amount is at least the amount required for the theoretical production amount of the copper fine powder.

銅粉の粒径制御は反応溶液の濃度を制御することによ
り行うことができる。一般に、反応溶液の濃度が濃くな
る程銅粉の粒径は小さくなる。
The particle size of the copper powder can be controlled by controlling the concentration of the reaction solution. Generally, as the concentration of the reaction solution increases, the particle size of the copper powder decreases.

なお、生成銅微粉末の流動性、分散性、充填性および
耐酸化性を向上させるために、反応液中にゼラチンやア
ラビアゴム等の保護コロイド、各種界面活性剤、ベンゾ
トリアゾール、オレイン酸等の防錆剤を添加してもさし
つかえない。
In order to improve the fluidity, dispersibility, filling properties and oxidation resistance of the resulting copper fine powder, protective colloids such as gelatin and gum arabic, various surfactants, benzotriazole, oleic acid, etc. No rust inhibitor can be added.

反応液中に生成した銅微粉末の回収はデカンテーショ
ン、自然重力濾過および減圧濾過等で行うことが可能で
ある。
The copper fine powder generated in the reaction solution can be collected by decantation, natural gravity filtration, filtration under reduced pressure, or the like.

回収された銅微粉末の乾燥は自然雰囲気下もしくは真
空雰囲気下で加熱することにより行うことができる。加
熱温度は銅粉の表面の酸化を妨ぐために90℃以下が好ま
しい。
Drying of the recovered copper fine powder can be performed by heating under a natural atmosphere or a vacuum atmosphere. The heating temperature is preferably 90 ° C. or less to prevent oxidation of the surface of the copper powder.

(作用) 本発明による銅微粉末の生成過程は、2価のCuイオン
→水酸化銅→亜酸化銅→銅微粉末であり、各過程がアル
カリ添加、還元糖添加、そしてヒドラジン系還元剤添加
によって経時的に確実に進行する。
(Action) The process of producing the copper fine powder according to the present invention is divalent Cu ion → copper hydroxide → cuprous oxide → copper fine powder, and each process includes addition of alkali, addition of reducing sugar, and addition of hydrazine-based reducing agent. Progresses with time.

すなわち、従来のヒドラジン還元法のようにCu2+イオ
ン、2価の水酸化銅および1価の亜酸化銅等の各状態か
ら金属銅が生成する複雑な反応ではなく、整粒亜酸化銅
の状態から均一に金属銅微粉末が生成するので、極めて
粒度の揃った整粒金属微粉末が得られる。また亜酸化銅
の階段で加熱処理することにより十分な球状化が可能と
なる。以下に各過程について述べる。
That is, it is not a complicated reaction in which metallic copper is generated from various states such as Cu 2+ ion, divalent copper hydroxide and monovalent cuprous oxide as in the conventional hydrazine reduction method. Since the metal copper fine powder is uniformly generated from the state, a sized metal fine powder having extremely uniform particle size can be obtained. In addition, sufficient spheroidization can be achieved by performing heat treatment in the step of cuprous oxide. The following describes each process.

まず、例えば硫酸銅水溶液である銅塩水溶液中のCuイ
オンが、pH調整剤(アルカリ)としての例えば水酸化ナ
トリウム水溶液の添加により、Cuイオンはすべて水酸化
銅粉として沈殿する。次に還元糖である無水ぶどう糖を
添加することにより、上述の水酸化銅粉はすべて亜酸化
銅粉にまで還元される。この生成した亜酸化銅粉は粒度
分布が極めて狭い整粒粉末である。なお、無水ぶどう糖
などの還元糖は、金属銅まで還元する力はなく、生成し
た粉末は完全に亜酸化銅粉である。云い換えれば、この
還元糖は水酸化銅を亜酸化銅粉とするものであれば特定
のものに制限されない。ただし、pHが凡そ11以下である
と、ぶどう糖還元による亜酸化銅は生成せず水酸化銅の
ままである。
First, Cu ions in a copper salt aqueous solution, for example, a copper sulfate aqueous solution, are all precipitated as copper hydroxide powder by addition of, for example, a sodium hydroxide aqueous solution as a pH adjuster (alkali). Next, by adding anhydrous glucose which is a reducing sugar, all the above-mentioned copper hydroxide powder is reduced to cuprous oxide powder. The produced cuprous oxide powder is a sized powder having an extremely narrow particle size distribution. Note that reducing sugars such as anhydrous glucose do not have the power to reduce metal copper, and the resulting powder is completely cuprous oxide powder. In other words, the reducing sugar is not limited to a specific one as long as copper hydroxide is used as cuprous oxide powder. However, when the pH is about 11 or less, cuprous oxide due to glucose reduction is not generated and copper hydroxide remains.

最後にヒドラジン系還元剤を添加することにより、整
粒亜酸化銅粉のみから均一に金属銅への還元が起こるの
で、極めて粒度分布がシャープな整粒銅微粉末が生成す
る。
Finally, the addition of the hydrazine-based reducing agent uniformly reduces only the sized cuprous oxide powder to metallic copper, thereby producing a sized copper fine powder having an extremely sharp particle size distribution.

なお、ヒドラジン系還元剤の添加に先立って、反応液
を50℃以上に保っておくと、球状の整粒銅粉末が得られ
る。より好適な整粒銅粉末を得るためには、確実性を得
るため前記反応液を60℃以上に保っておくことが好まし
い。反応液の温度が50℃未満だと、銅微粉末の生成速度
が遅く、晶癖が生成して粒状になってしまい球状とはな
らないおそれがある。
If the reaction solution is kept at 50 ° C. or higher before the addition of the hydrazine-based reducing agent, spherical sized copper powder can be obtained. In order to obtain more suitable sized copper powder, it is preferable to maintain the reaction solution at 60 ° C. or higher in order to obtain certainty. When the temperature of the reaction solution is lower than 50 ° C., the rate of forming the copper fine powder is low, and there is a possibility that a crystal habit is formed to be granular and not spherical.

次に実施例によって本発明をさらに具体的に説明す
る。
Next, the present invention will be described more specifically with reference to examples.

実施例1 硫酸銅五水和物40gを320mlの水に溶解し、0.811gの酒
石酸ナトリウム二水和物を添加し、得られた溶液を60℃
に保持した。次いで、この溶液中に、水酸化ナトリウム
160gを1の水に溶解した水酸化ナトリウム水溶液を10
0ml添加してpHを12.0に調整した。溶液中には深青色の
水酸化銅粉が生成した。次に無水ぶどう糖14.4gを投入
し、亜酸化銅粒子を生成させた。この亜酸化銅粒子は粒
度分布が4.0μm±0.2μmと極めて狭い立方状粒子であ
った。次いで、反応液を70℃に昇温し抱水ヒドラジン
(80%)を35ml添加し、60分間反応させた。生成した銅
微粉末を濾過後、90℃で真空乾燥を行い、粒径0.5μm
±0.1μmの球状の整粒銅微粉末を得た。
Example 1 40 g of copper sulfate pentahydrate was dissolved in 320 ml of water, 0.811 g of sodium tartrate dihydrate was added, and the resulting solution was heated to 60 ° C.
Held. Then, in this solution, sodium hydroxide
160 g of sodium hydroxide solution dissolved in 1 water
0 ml was added to adjust the pH to 12.0. Deep blue copper hydroxide powder was formed in the solution. Next, 14.4 g of anhydrous glucose was added to generate cuprous oxide particles. The cuprous oxide particles were cubic particles having an extremely narrow particle size distribution of 4.0 μm ± 0.2 μm. Next, the temperature of the reaction solution was raised to 70 ° C., 35 ml of hydrazine hydrate (80%) was added, and the mixture was reacted for 60 minutes. After filtering the generated copper fine powder, vacuum drying was performed at 90 ° C., and the particle size was 0.5 μm.
A spherical sized copper fine powder of ± 0.1 μm was obtained.

実施例2 硫酸銅五水和物40gを320mlの水に溶解し、0.811gの酒
石酸ナトリウム二水和物を添加し、得られた溶液を60℃
に保持した。次いで、この溶液中に、水酸化ナトリウム
160gを1の水に溶解した水酸化ナトリウム水溶液を20
0ml添加してpHを12.6に調整した。溶液中には深青色の
水酸化銅粉が生成した。次に無水ぶどう糖14.4gを投入
して、亜酸化銅粒子を生成させた。この亜酸化銅粒子は
粒度分布が3.9μm±0.2μmと極めて狭い球状粒子であ
った。次いで、反応液を70℃に昇温し、抱水ヒドラジン
(80%)を35ml添加し、60分間反応させた。
Example 2 40 g of copper sulfate pentahydrate was dissolved in 320 ml of water, 0.811 g of sodium tartrate dihydrate was added, and the resulting solution was heated to 60 ° C.
Held. Then, in this solution, sodium hydroxide
A solution of 160 g of sodium hydroxide in 1
The pH was adjusted to 12.6 by adding 0 ml. Deep blue copper hydroxide powder was formed in the solution. Next, 14.4 g of anhydrous glucose was added to generate cuprous oxide particles. The cuprous oxide particles were spherical particles having an extremely narrow particle size distribution of 3.9 μm ± 0.2 μm. Next, the temperature of the reaction solution was raised to 70 ° C., 35 ml of hydrazine hydrate (80%) was added, and the mixture was reacted for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行い、
粒径0.7μm±0.1μmの球状の整粒銅微粉末を得た。
After filtering the generated copper fine powder, perform vacuum drying at 90 ° C,
A spherical sized copper fine powder having a particle size of 0.7 μm ± 0.1 μm was obtained.

実施例3 硫酸銅五水和物40gを320mlの水に溶解し、0.811gの酒
石酸ナトリウムを添加し、得られた溶液を60℃に保持し
た。次いで、この溶液中に、水酸化ナトリウム160gを1
の水に溶解した水酸化ナトリウム水溶液を100ml添加
してpHを12.0に調整した。次に無水ぶどう糖14.4gを投
入して亜酸化銅粒子を生成させた。
Example 3 40 g of copper sulfate pentahydrate was dissolved in 320 ml of water, 0.811 g of sodium tartrate was added, and the resulting solution was kept at 60 ° C. Next, 160 g of sodium hydroxide was added to this solution.
100 ml of an aqueous sodium hydroxide solution dissolved in water was added to adjust the pH to 12.0. Next, 14.4 g of anhydrous glucose was added to generate cuprous oxide particles.

次にこの溶液を50℃にまで冷却した後に抱水ヒドラジ
ン(80%)35mlを添加し、20分間かけて70℃に昇温して
60分間反応させた。
Next, the solution was cooled to 50 ° C, 35 ml of hydrazine hydrate (80%) was added, and the temperature was raised to 70 ° C over 20 minutes.
The reaction was performed for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行い、
粒径1.2μm±0.2μmの球状銅粉を得た。
After filtering the generated copper fine powder, perform vacuum drying at 90 ° C,
A spherical copper powder having a particle size of 1.2 μm ± 0.2 μm was obtained.

実施例4 硫酸銅五水和物40gを420mlの水に溶解し、0.811gの酒
石酸ナトリウム二水和物を添加し、得られた溶液を60℃
に保持した。次いで、この溶液中に、水酸化ナトリウム
320gを1の水に溶解した水酸化ナトリウム水溶液を50
ml添加してpHを12.0に調整した。次に無水ぶどう糖14.0
gを投入して亜酸化銅粒子を生成させた。
Example 4 40 g of copper sulfate pentahydrate was dissolved in 420 ml of water, 0.811 g of sodium tartrate dihydrate was added, and the resulting solution was heated to 60 ° C.
Held. Then, in this solution, sodium hydroxide
50 g of an aqueous sodium hydroxide solution obtained by dissolving 320 g in 1 water
The pH was adjusted to 12.0 by adding ml. Next, anhydrous glucose 14.0
g was added to produce cuprous oxide particles.

次にこの溶液を50℃にまで冷却した後に抱水ヒドラジ
ン(80%)35mlを添加し、20分間かけて70℃に昇温して
60分間反応させた。
Next, the solution was cooled to 50 ° C, 35 ml of hydrazine hydrate (80%) was added, and the temperature was raised to 70 ° C over 20 minutes.
The reaction was performed for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行い、
粒径2.2μm±0.3μmの球状銅粉を得た。
After filtering the generated copper fine powder, perform vacuum drying at 90 ° C,
A spherical copper powder having a particle size of 2.2 μm ± 0.3 μm was obtained.

実施例5 硫酸銅五水和物40gを520mlの水に溶解し、0.811gの酒
石酸ナトリウム二水和物を添加し、得られた溶液を60℃
に保持した。次いで、この溶液中に、水酸化ナトリウム
320gを1の水に溶解した水酸化ナトリウム水溶液を70
ml添加してpHを12.0に調整した。次に無水ぶどう糖14.4
gを投入して亜酸化銅粒子を生成させた。
Example 5 40 g of copper sulfate pentahydrate was dissolved in 520 ml of water, 0.811 g of sodium tartrate dihydrate was added, and the resulting solution was heated to 60 ° C.
Held. Then, in this solution, sodium hydroxide
An aqueous sodium hydroxide solution obtained by dissolving 320 g in
The pH was adjusted to 12.0 by adding ml. Next, anhydrous glucose 14.4
g was added to produce cuprous oxide particles.

次にこの溶液を50℃にまで冷却した後に抱水ヒドラジ
ン(80%)35mlを添加し、20分間かけて70℃に昇温して
60分間反応させた。
Next, the solution was cooled to 50 ° C, 35 ml of hydrazine hydrate (80%) was added, and the temperature was raised to 70 ° C over 20 minutes.
The reaction was performed for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行い、
粒径3.1μm±0.3μmの球状銅粉を得た。
After filtering the generated copper fine powder, perform vacuum drying at 90 ° C,
A spherical copper powder having a particle size of 3.1 μm ± 0.3 μm was obtained.

比較例1 硫酸銅五水和物40gを320mlの水に溶解し、0.811gの酒
石酸ナトリウム二水和物を添加し、得られた溶液を60℃
に保持した。この溶液中に、水酸化ナトリウム160gを1
の水に溶解した水酸化ナトリウム水溶液を70cc添加し
てpHを11.0に調整した。次に無水ぶどう糖14.4gを投入
したが亜酸化銅粉は生成しなかった。次にこの溶液を70
℃にまで昇温し、抱水ヒドラジン(80%)35mlを添加し
たところ激しい発泡が生じた。その後60分間反応させ
た。
Comparative Example 1 40 g of copper sulfate pentahydrate was dissolved in 320 ml of water, and 0.811 g of sodium tartrate dihydrate was added.
Held. 160 g of sodium hydroxide is added to this solution.
70 cc of an aqueous solution of sodium hydroxide dissolved in water was added to adjust the pH to 11.0. Next, 14.4 g of anhydrous glucose was added, but no cuprous oxide powder was generated. Then add this solution to 70
The temperature was raised to ° C., and 35 ml of hydrazine hydrate (80%) was added, resulting in vigorous foaming. Thereafter, the reaction was carried out for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行った
ところ、粒径0.05〜0.2μmの銅粉が得られた。
The resulting copper fine powder was filtered and vacuum-dried at 90 ° C. to obtain a copper powder having a particle size of 0.05 to 0.2 μm.

比較例2 硫酸銅五水和物40gを320mlの水に溶解し、0.811gの酒
石酸ナトリウム二水和物を添加し、該溶液を60℃に保持
した。この溶液中に、水酸化ナトリウム160gを1の水
に溶解した水酸化ナトリウム水溶液を100cc添加してpH
を12.0に調整した。次にこの溶液を25℃に冷却して、抱
水ヒドラジン(80%)を添加したところ、激しい発泡が
起こった。発泡がおさまった後、30分間かけて70℃に昇
温し、60分間反応させた。
Comparative Example 2 40 g of copper sulfate pentahydrate was dissolved in 320 ml of water, 0.811 g of sodium tartrate dihydrate was added, and the solution was kept at 60 ° C. To this solution was added 100 cc of an aqueous solution of sodium hydroxide in which 160 g of sodium hydroxide was dissolved in 1 water, and the solution was adjusted to pH.
Was adjusted to 12.0. The solution was then cooled to 25 ° C. and hydrazine hydrate (80%) was added, causing severe foaming. After the foaming subsided, the temperature was raised to 70 ° C. over 30 minutes, and the reaction was performed for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行った
ところ、粒径0.03〜0.20μmの銅粉を得た。
The resulting fine copper powder was filtered and vacuum-dried at 90 ° C. to obtain a copper powder having a particle size of 0.03 to 0.20 μm.

(発明の効果) 本発明によれば、工業的に入手しやすい安価な原料か
ら高品位の整粒銅微粉末が得られ、銅ペースト用原料銅
粉として甚だ有用である。
(Effect of the Invention) According to the present invention, high-quality sized copper fine powder can be obtained from inexpensive raw materials that are easily available industrially, and are extremely useful as raw material copper powder for copper paste.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅塩水溶液から水酸化銅を析出する段階、
そして得られた水酸化銅をpH12以上に調整してから還元
糖を添加して亜酸化銅にまで還元する段階、次いでこの
ようにして得られた亜酸化銅の反応溶液を50℃以上に調
整した後、ヒドラジン系還元剤を添加して金属銅にまで
還元する段階を経て行われることを特徴とする銅微粉末
の製造方法。
A step of precipitating copper hydroxide from an aqueous copper salt solution;
Then, the obtained copper hydroxide is adjusted to pH 12 or more, and then a reducing sugar is added to reduce it to cuprous oxide, and then the reaction solution of the thus obtained cuprous oxide is adjusted to 50 ° C or more. And then reducing to metallic copper by adding a hydrazine-based reducing agent.
【請求項2】ヒドラジン系還元剤を用いて銅塩水溶液を
還元して銅微粉末を製造する方法において、ヒドラジン
系還元剤の添加前に、銅塩水溶液のpHを12以上に調整し
た後、還元糖を添加し反応溶液を50℃以上に調整した
後、ヒドラジン系還元剤を添加することを特徴とする銅
微粉末の製造方法。
2. A method for producing a copper fine powder by reducing an aqueous copper salt solution using a hydrazine-based reducing agent, wherein the pH of the copper salt aqueous solution is adjusted to 12 or more before adding the hydrazine-based reducing agent. A method for producing fine copper powder, comprising adding a reducing sugar to adjust the reaction solution to 50 ° C. or higher, and then adding a hydrazine-based reducing agent.
JP2236679A 1990-09-06 1990-09-06 Production method of copper fine powder Expired - Lifetime JP2638271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236679A JP2638271B2 (en) 1990-09-06 1990-09-06 Production method of copper fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2236679A JP2638271B2 (en) 1990-09-06 1990-09-06 Production method of copper fine powder

Publications (2)

Publication Number Publication Date
JPH04116109A JPH04116109A (en) 1992-04-16
JP2638271B2 true JP2638271B2 (en) 1997-08-06

Family

ID=17004176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236679A Expired - Lifetime JP2638271B2 (en) 1990-09-06 1990-09-06 Production method of copper fine powder

Country Status (1)

Country Link
JP (1) JP2638271B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743844B1 (en) * 1999-12-01 2007-08-02 도와 마이닝 가부시끼가이샤 Copper powder and process for producing copper powder
US7651782B2 (en) 2006-07-11 2010-01-26 Fujifilm Corporation Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
US7828872B2 (en) 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
CN104625085A (en) * 2015-01-23 2015-05-20 中国矿业大学 Method for simply and stably preparing micro-nano hollow copper
WO2022209558A1 (en) 2021-03-29 2022-10-06 三菱マテリアル株式会社 Copper particles and method for producing same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161271B2 (en) * 1995-02-24 2001-04-25 株式会社村田製作所 Production method of copper powder
JP2911429B2 (en) 1997-06-04 1999-06-23 三井金属鉱業株式会社 Production method of copper fine powder
US6620344B2 (en) 1999-05-28 2003-09-16 Dowa Mining Co., Ltd. Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US6881240B2 (en) 2000-09-18 2005-04-19 Dowa Mining Co., Ltd. Copper powder for electrically conductive paste
JP4204849B2 (en) * 2002-11-12 2009-01-07 Dowaエレクトロニクス株式会社 Production method of fine copper powder
JP4665499B2 (en) * 2004-12-10 2011-04-06 三菱マテリアル株式会社 Metal fine particles, production method thereof, composition containing the same, and use thereof
JP5144022B2 (en) * 2006-03-24 2013-02-13 三井金属鉱業株式会社 Copper powder manufacturing method and copper powder obtained by the manufacturing method
JP4978115B2 (en) * 2006-08-24 2012-07-18 昭栄化学工業株式会社 Method for producing copper powder
JP4725459B2 (en) * 2006-08-25 2011-07-13 昭栄化学工業株式会社 Method for producing copper powder
JP4524477B2 (en) * 2007-01-09 2010-08-18 Dowaエレクトロニクス株式会社 Copper powder for conductive paste
KR100936623B1 (en) * 2007-07-26 2010-01-13 주식회사 엘지화학 Preparation method of copper particles composition
JP4756652B2 (en) * 2007-10-09 2011-08-24 三井金属鉱業株式会社 Drop-shaped copper powder, method for producing drop-shaped copper powder and conductive paste
JP5435611B2 (en) * 2008-10-08 2014-03-05 古河電気工業株式会社 Method for producing copper alloy fine particles
JP5926644B2 (en) 2011-09-30 2016-05-25 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method for producing the same
JP5991510B2 (en) * 2012-03-21 2016-09-14 Dic株式会社 Method for producing copper nanowires
JP5872063B2 (en) 2012-11-26 2016-03-01 三井金属鉱業株式会社 Copper powder
JP6168837B2 (en) * 2013-05-13 2017-07-26 国立大学法人東北大学 Copper fine particles and method for producing the same
CN114682258B (en) * 2022-04-08 2024-04-09 陕西轩意光电科技有限公司 CuO/Cu 2 Preparation method and application of O nano flower-shaped spherical thermal catalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JP2621915B2 (en) * 1988-04-08 1997-06-18 福田金属箔粉工業株式会社 Method for producing ultrafine copper powder
JPH02129309A (en) * 1988-11-07 1990-05-17 Nippon Mining Co Ltd Manufacture of copper fine powder
JP2728726B2 (en) * 1989-05-10 1998-03-18 正同化学工業株式会社 Method for producing fine copper powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
プレ−ティングとコーティング Vol.19,No.5,PP.224−228(1989)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743844B1 (en) * 1999-12-01 2007-08-02 도와 마이닝 가부시끼가이샤 Copper powder and process for producing copper powder
US7828872B2 (en) 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
EP2452767A1 (en) 2004-08-20 2012-05-16 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
KR101310415B1 (en) * 2004-08-20 2013-09-24 이시하라 산교 가부시끼가이샤 Copper microparticle and process for producing the same
US7651782B2 (en) 2006-07-11 2010-01-26 Fujifilm Corporation Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
CN104625085A (en) * 2015-01-23 2015-05-20 中国矿业大学 Method for simply and stably preparing micro-nano hollow copper
WO2022209558A1 (en) 2021-03-29 2022-10-06 三菱マテリアル株式会社 Copper particles and method for producing same

Also Published As

Publication number Publication date
JPH04116109A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
JP2638271B2 (en) Production method of copper fine powder
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
US6120576A (en) Method for preparing nickel fine powder
US7534283B2 (en) Method of producing copper powder and copper powder
WO2012043267A1 (en) Copper powder for conductive paste and method for manufacturing same
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP3570591B2 (en) Production method of copper powder
JP3429985B2 (en) Method for producing silver powder composed of hexagonal plate-like crystal silver particles
JPH09241709A (en) Production of copper powder
JP4639395B2 (en) Method for producing silver particles
JP2009203484A (en) Method for synthesizing wire-shaped metal particle
JPH0557324B2 (en)
JPH0372683B2 (en)
JPH02294415A (en) Production of fine copper powder
JPH04235205A (en) Production of copper powder
JP3820018B2 (en) Method for producing granular silver powder
JP2550586B2 (en) Method for producing fine silver alloy powder
JP2004225087A (en) Method for manufacturing copper powder
JP3245965B2 (en) Production method of copper powder
JP4003222B2 (en) Method for producing scaly nickel powder
KR102271692B1 (en) Method for fabricating Ag-coated Cu powder
JPH0657314A (en) Production of fine palladium powder
JPH0319283B2 (en)
JP3122148B2 (en) Method for producing palladium powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14