JP5144022B2 - Copper powder manufacturing method and copper powder obtained by the manufacturing method - Google Patents

Copper powder manufacturing method and copper powder obtained by the manufacturing method Download PDF

Info

Publication number
JP5144022B2
JP5144022B2 JP2006082457A JP2006082457A JP5144022B2 JP 5144022 B2 JP5144022 B2 JP 5144022B2 JP 2006082457 A JP2006082457 A JP 2006082457A JP 2006082457 A JP2006082457 A JP 2006082457A JP 5144022 B2 JP5144022 B2 JP 5144022B2
Authority
JP
Japan
Prior art keywords
copper
copper powder
cuprous oxide
powder
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006082457A
Other languages
Japanese (ja)
Other versions
JP2007254846A (en
Inventor
貴彦 坂上
克彦 吉丸
芳信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006082457A priority Critical patent/JP5144022B2/en
Priority to TW096109738A priority patent/TW200744954A/en
Priority to PCT/JP2007/055956 priority patent/WO2007111231A1/en
Priority to KR1020087023094A priority patent/KR20080104020A/en
Priority to CNA2007800073532A priority patent/CN101394961A/en
Publication of JP2007254846A publication Critical patent/JP2007254846A/en
Application granted granted Critical
Publication of JP5144022B2 publication Critical patent/JP5144022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Description

本件発明は、湿式法による銅粉の製造方法に関するもので、特に微粒均一であり、導電性が高い銅粉を効率よく製造する方法及びこの製造方法により製造される銅粉に関する。   The present invention relates to a method for producing copper powder by a wet method, and particularly relates to a method for efficiently producing copper powder that is uniform in fine particles and has high conductivity, and copper powder produced by this production method.

従来から銅粉は、銅ペーストや銅インクの原料として広く用いられてきた。銅ペーストは、その取り扱いの容易さ故に、スクリーン印刷法を用いたプリント配線板の回路形成、各種電気的接点部等に応用され、電気的導通確保の手段に用いられている。その利用分野に応じて銅ペースト粘度を制御するためには、銅粉の各種特性にも配慮する必要がある。   Conventionally, copper powder has been widely used as a raw material for copper paste and copper ink. Because of its easy handling, the copper paste is applied to circuit formation of printed wiring boards using a screen printing method, various electrical contact portions, and the like, and is used as a means for ensuring electrical continuity. In order to control the viscosity of the copper paste according to the application field, it is necessary to consider various characteristics of the copper powder.

例えば、銅ペーストは、粒径数μmの微小な粒子からなる銅粉に樹脂成分を適宜配合してなるものであり、回路形状等の形成に用い、焼成または固化させ導体膜として導電性を発揮するものである。プリント配線板等の小型化を受けて、銅ペーストに用いる銅粉は、当該ペーストにより形成された回路の導電性、信頼性等の点でより高い性質が求められている。   For example, copper paste is made by appropriately blending resin components into copper powder consisting of fine particles with a particle size of several μm, and is used to form circuit shapes, etc., and is fired or solidified to exhibit conductivity as a conductor film To do. In response to miniaturization of printed wiring boards and the like, the copper powder used for the copper paste is required to have higher properties in terms of the conductivity and reliability of the circuit formed by the paste.

そして、銅ペーストに用いる銅粉は、ペースト粘度を減少させ、ペーストとしての取り扱いを容易にし、プリント配線板のビアホールの穴埋め性を向上させることが望まれてきた。この市場要求に応えるため、用いられる銅粉の粒度や比表面積の適正化、粉粒体表面の有機剤による表面処理等の種々の解決手段が採用され、銅ペースト粘度の低減を図ること等が行われてきた。   The copper powder used in the copper paste has been desired to reduce the paste viscosity, facilitate the handling as a paste, and improve the via hole filling property of the printed wiring board. In order to meet this market requirement, various solution means such as optimization of the particle size and specific surface area of the copper powder used, surface treatment with an organic agent on the surface of the granular material, etc. are adopted to reduce the viscosity of the copper paste, etc. Has been done.

この銅粉の製造方法として一般に利用されているのが湿式還元法である。特許文献1には、湿式還元法を用いて、良好な粒径に制御された銅微粉末の製造方法が開示されている。一方、特許文献2では、アトマイズ法を用いて微細配線に対応するために、微細な粒径を有し、表面が平滑な銅粉を効率的に製造する方法が開示されている。   The wet reduction method is generally used as a method for producing this copper powder. Patent Document 1 discloses a method for producing a copper fine powder controlled to have a good particle size using a wet reduction method. On the other hand, Patent Document 2 discloses a method for efficiently producing copper powder having a fine particle diameter and a smooth surface in order to cope with fine wiring using an atomizing method.

特公平5−57324号公報Japanese Patent Publication No. 5-57324 特開2002−343135号公報JP 2002-343135 A

近時、利用技術の進歩に伴い、銅粉の粉体特性の更なる改良が市場において求められている。即ち、表面が平滑、微細且つ粒径均一であり導電性の高い銅粉を低コストで製造する方法が望まれている。ここで、アトマイズ法により製造された微粒銅粉の場合、炭素量が低く、粒度分布、分散性の点でも優れた銅粉を製造することができるが、粗粒を含み、微細配線などには不向きであるとともに不純物を含む傾向があり、収率が低い傾向がある。そして、粗粒を解消するために分級を強化すれば製造コストが高くなるといった問題があった。一方、均一で微細な粒子を得やすい従来の湿式還元法による銅粉は、一次粒子自体は微粒で均一であるものの、有機還元剤を用いることが多く、還元系に含まれる分散剤等に起因した有機剤吸着量が高くなるので、焼成時に吸着した有機物の気散に伴うガスが発生することにより焼成膜の表面に荒れが生じ、且つ内部欠陥が生じやすく、導電性の点で課題となっていた。   Recently, further improvements in the powder characteristics of copper powder have been demanded in the market with the progress of utilization technology. That is, there is a demand for a method for producing copper powder having a smooth surface, a fine surface, and a uniform particle size and high conductivity at a low cost. Here, in the case of fine copper powder produced by the atomization method, it is possible to produce copper powder with low carbon content and excellent particle size distribution and dispersibility. It is unsuitable and tends to contain impurities, and the yield tends to be low. And if classification was strengthened in order to eliminate coarse grains, there was a problem that the manufacturing cost was increased. On the other hand, copper powder by the conventional wet reduction method that is easy to obtain uniform and fine particles, although the primary particles themselves are fine and uniform, often uses an organic reducing agent, which is caused by the dispersant contained in the reducing system. As the amount of organic agent adsorbed becomes high, the gas generated due to the scattering of the organic matter adsorbed during firing generates roughness on the surface of the fired film and easily causes internal defects, which is a problem in terms of conductivity. It was.

また、特許文献1のように、無機還元剤を用いた湿式還元法の場合、上記課題は解消されるものの、得られる銅粉の粒度や収率にバラツキが生じ易いという問題があった。   Moreover, in the case of the wet reduction method using an inorganic reducing agent like patent document 1, although the said subject was eliminated, there existed a problem that the particle size and yield of the obtained copper powder were easy to produce.

ここで、上記特許文献1に開示の製造方法を用いて銅粉を製造した結果を示す。即ち、硫酸銅80kg(320mol)を水に溶解し、温度を40℃に保持しながらアンモニア水を添加し、水溶液のpHを4.0に調製し銅水酸化物スラリーを形成後、水を添加し、全液量を160リットルとした。この溶液の温度を50℃、pH4.0に保持しながら抱水ヒドラジン6.01kg(120.1mol)を添加し、60分間反応させ酸化銅スラリーを生成させた。反応終了後、60分間静置し、上澄液を除去してから水を添加し全液量を160リットルとした。   Here, the result of manufacturing copper powder using the manufacturing method disclosed in Patent Document 1 is shown. That is, 80 kg (320 mol) of copper sulfate was dissolved in water, ammonia water was added while maintaining the temperature at 40 ° C., the pH of the aqueous solution was adjusted to 4.0, a copper hydroxide slurry was formed, and water was added The total liquid volume was 160 liters. While maintaining the temperature of this solution at 50 ° C. and pH 4.0, 6.01 kg (120.1 mol) of hydrazine hydrate was added and reacted for 60 minutes to produce a copper oxide slurry. After completion of the reaction, the mixture was allowed to stand for 60 minutes, and after removing the supernatant, water was added to make the total liquid volume 160 liters.

次に、これを温度50℃に保持しながら、抱水ヒドラジン8.01kg(160.0mol)を添加し、60分間反応させた。これにより亜酸化銅は還元されて金属銅粉末となる。   Next, while maintaining the temperature at 50 ° C., 8.01 kg (160.0 mol) of hydrazine hydrate was added and allowed to react for 60 minutes. Thereby, cuprous oxide is reduced to become metallic copper powder.

次いでこれを自然重力濾過器により濾過し、水にて洗浄後、膠濃度0.5g/lの膠溶液40リットルを通液濾過(水にて通液洗浄濾過、オレイン酸濃度0.2容量%のメタノール溶液9リットルにて通液濾過)の各処理をした後、温度80℃の通常雰囲気で乾燥し銅微粉末20kgを得た。   Next, this was filtered with a natural gravity filter, washed with water, filtered through 40 liters of glue solution with a glue concentration of 0.5 g / l (filtered and washed with water, oleic acid concentration 0.2% by volume) The solution was filtered through 9 liters of methanol solution) and dried in a normal atmosphere at a temperature of 80 ° C. to obtain 20 kg of copper fine powder.

上記で得られた10ロットの銅粉について、ロット毎にD10、D50、D90、標準偏差(SD)、D90/D10、比表面積、タップ充填密度を現行の分析装置を用いて評価し、併せて、各粉体特性について10ロット分の平均値、標準偏差σの各データを算出した。 For the 10 lots of copper powder obtained above, D 10 , D 50 , D 90 , standard deviation (SD), D 90 / D 10 , specific surface area, tap filling density for each lot using the current analyzer In addition, an average value for 10 lots and standard deviation σ data were calculated for each powder characteristic.

以上の工程を経て得られた銅粉の粉体特性の10ロットの平均値は、D10=1.03μm、D50=3.42μm、D90=7.46μm、標準偏差(SD)=2.85μm、D90/D10=7.29、比表面積(SSA)0.89m/g、タップ充填密度(TD)3.4g/ccであり、平均収率は85.8%であった。この結果を表1に示す。なお、収率は、用いた銅塩量から算出される理論上の銅粉量に対する実際に得られた銅粉の量で算出した。 The average value of the powder characteristics of 10 lots of the copper powder obtained through the above steps was D 10 = 1.03 μm, D 50 = 3.42 μm, D 90 = 7.46 μm, and standard deviation (SD) = 2. .85 μm, D 90 / D 10 = 7.29, specific surface area (SSA) 0.89 m 2 / g, tap packing density (TD) 3.4 g / cc, and average yield was 85.8%. . The results are shown in Table 1. The yield was calculated by the amount of copper powder actually obtained relative to the theoretical amount of copper powder calculated from the amount of copper salt used.

Figure 0005144022
Figure 0005144022

表1より、特許文献1で示された銅粉は、収率の平均が85.8%であり、収率の標準偏差σが8.5と、ロット間に変動が大きい。また、粒度に関する特性もロット間でかなり大きなバラツキが生じていることが分かる。即ち、特許文献1に開示の発明は、良好な粉体特性を示す場合もあるが、安定生産の点で更なる改善が望まれる技術であると言える。   From Table 1, the average of the yield of the copper powder shown in Patent Document 1 is 85.8%, and the standard deviation σ of the yield is 8.5. In addition, it can be seen that the characteristics related to the particle size also vary considerably between lots. That is, although the invention disclosed in Patent Document 1 may show good powder characteristics, it can be said that this is a technique for which further improvement is desired in terms of stable production.

そこで、本件発明者は上記特許文献1を検証した。その結果、特許文献1では、銅水酸化物スラリーに水を添加した溶液のpHを保持しながら抱水ヒドラジンを添加、反応させ亜酸化銅スラリーを生成させるとしているが、そのpHを一定範囲内で保持することは可能であるものの、還元反応中常に反応スラリーを一定pHに維持することは困難である。従って、還元時には必ずpH変動があり、このpHの変動状態が安定した収率の阻害や銅粉の特性に悪影響をもたらすものと考えた。   Therefore, the present inventor verified the above-mentioned Patent Document 1. As a result, in Patent Document 1, hydrazine hydrate is added and reacted while maintaining the pH of the solution obtained by adding water to the copper hydroxide slurry to produce a cuprous oxide slurry. However, it is difficult to maintain the reaction slurry at a constant pH throughout the reduction reaction. Therefore, it is considered that there is always a pH change during the reduction, and this pH change state has a negative effect on stable yield inhibition and copper powder characteristics.

本件発明は上記課題を受けて、微粒で均一な粒子の銅粉を湿式還元法により製造する方法であって、導電率を高め、均質で高品質な銅粉を安定的且つ高収率で得られる銅粉の製造方法及びこの製造方法で得られる銅粉を提供するものである。   The present invention is a method for producing fine and uniform copper powder by a wet reduction method in response to the above-mentioned problems, and improves the electrical conductivity and provides a homogeneous and high-quality copper powder in a stable and high yield. The manufacturing method of the copper powder obtained and the copper powder obtained by this manufacturing method are provided.

そこで、本件発明者等は鋭意研究の結果、前記課題を解決するため、以下のような手段を採用した。   Therefore, as a result of intensive studies, the inventors of the present invention have adopted the following means in order to solve the above problems.

本件発明に係る銅粉の製造方法: 銅イオン含有水溶液とアルカリ溶液とを反応させた水酸化銅スラリーを得て(工程1)、当該水酸化銅スラリーに還元剤を添加して第1還元処理を行い亜酸化銅スラリーとして(工程2)、当該亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させ、上澄液を除去して水を添加することにより亜酸化銅粒子を洗浄し洗浄亜酸化銅スラリーとして、当該洗浄亜酸化銅スラリーに還元剤を添加して第2還元処理を行い銅粉を得る(工程3)湿式還元による銅粉製造方法において、第1還元処理は、水酸化銅スラリーに、還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液とを併用して、添加開始時のpHから3を超える変動が生じない速度で、且つ、変動するpHの最低pHが2.8以上となるように当該還元剤とpH調整剤とを、連続添加することを特徴とする製造方法である。 Method for producing copper powder according to the present invention: A copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution and an alkali solution (step 1), and a reducing agent is added to the copper hydroxide slurry to perform a first reduction treatment. As a cuprous oxide slurry (step 2), the cuprous oxide slurry is allowed to stand to precipitate the cuprous oxide particles, and the supernatant is removed and water is added to wash the cuprous oxide particles. As a washed cuprous oxide slurry, a reducing agent is added to the washed cuprous oxide slurry to obtain a copper powder by performing a second reduction treatment (step 3). In the copper powder production method by wet reduction, the first reduction treatment is performed by water By using hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster in combination with a copper oxide slurry, the minimum pH of the fluctuating pH is such that it does not fluctuate more than 3 from the pH at the start of addition. 2.8 or higher Thus, it is a manufacturing method characterized by adding the said reducing agent and a pH adjuster continuously.

ここで、工程2において、水酸化銅スラリーに還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液とを併用して添加する点に特徴がある。上記製造方法は、工程を大きく分類すれば、上記のように工程1〜工程3に分類して考えることが可能である。詳しくは、後述する実施形態の中で説明する。   Here, the process 2 is characterized in that hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster are added to the copper hydroxide slurry in combination. If the said manufacturing method classifies a process roughly, it can classify | categorize into the process 1-the process 3 as mentioned above, and can be considered. Details will be described in an embodiment described later.

また、前記工程2(第1還元処理)において、還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液とを併用して添加することによりpH3.0〜pH7.0の範囲でpHの変動制御をすることが好ましい。   Moreover, in the said process 2 (1st reduction process), the fluctuation | variation control of pH is carried out in the range of pH3.0-pH7.0 by adding together hydrazine as a reducing agent, and ammonia aqueous solution as a pH adjuster. It is preferable to

なお、前記pHの変動制御は、還元剤及びpH調整剤の添加開始時の始点pHと添加終了時の終点pHとの差を3.0以下に制御することが好ましい。   In addition, it is preferable that the fluctuation | variation control of the said pH controls the difference of the starting point pH at the start of addition of a reducing agent and a pH adjuster, and the end point pH at the end of addition to 3.0 or less.

ここで、「始点pH」とは、還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液との併用添加開始前の溶液のpHである。一方、「終点pH」は、還元剤及びpH調整剤の添加終了時の溶液のpHである。   Here, the “starting pH” is the pH of a solution before the combined addition of hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster is started. On the other hand, the “end point pH” is the pH of the solution at the end of the addition of the reducing agent and the pH adjusting agent.

更に、本件発明に係る銅粉の製造方法では、水酸化銅スラリーの作製に際し、銅イオン含有水溶液と反応させるアルカリ溶液は、アンモニア水溶液であることが好ましい。   Furthermore, in the method for producing copper powder according to the present invention, the alkaline solution to be reacted with the copper ion-containing aqueous solution is preferably an aqueous ammonia solution when producing the copper hydroxide slurry.

そして、本件発明に係る銅粉の製造方法では、前記洗浄亜酸化銅スラリーは、pH4.1〜pH6.0であることが好ましい。   And in the manufacturing method of the copper powder concerning this invention, it is preferable that the said washing | cleaning cuprous oxide slurry is pH 4.1-pH 6.0.

本件発明に係る製造方法で得られる銅粉: 上記発明に係る銅粉の製造方法を用いて製造されたことを特徴とする銅粉である。   Copper powder obtained by the production method according to the present invention: A copper powder produced using the method for producing copper powder according to the invention.

本件発本件発明に係る銅粉の製造方法は、亜酸化銅を経て、銅粒子を析出還元させる2段還元プロセスを採用し、特に、銅イオンから亜酸化銅まで還元する間に還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液とを併用して、添加開始時のpHから3を超える変動が生じない速度で、且つ、変動するpHの最低pHが2.8以上となるように当該還元剤とpH調整剤とを、連続添加することで、反応溶液のpHの変動を可能な限り小さく制御することにより、反応スラリーを良好な還元状態とすることができる。これにより銅粉の製造プロセスの工程安定性を高め、凝集の発生を抑えて、粒子のバラツキが少なく、粒度分布がシャープな銅粉とすることができるので、得られる銅粉の粉体特性をより均質にすることができて、収率も向上する。 The method for producing copper powder according to the present invention employs a two-stage reduction process in which copper particles are precipitated and reduced through cuprous oxide, and in particular as a reducing agent during the reduction from copper ions to cuprous oxide. In combination with hydrazines and an aqueous ammonia solution as a pH adjuster, such that the minimum pH of the fluctuating pH is 2.8 or more at a rate that does not cause a fluctuation exceeding 3 from the pH at the start of addition. By continuously adding the reducing agent and the pH adjuster , the reaction slurry can be brought into a good reduced state by controlling the fluctuation of the pH of the reaction solution as small as possible. This improves the process stability of the copper powder manufacturing process, suppresses the occurrence of agglomeration, and makes it possible to obtain a copper powder with a small particle variation and a sharp particle size distribution. It can be made more homogeneous and the yield is improved.

そして、上記銅粉の製造方法を採用することにより、銅粉の安定的な製造が可能となり、製造コストが抑えられるのみならず、粒子のバラツキが少なく、粒度分布がシャープで高品質な銅粉の提供が可能となる。   By adopting the above copper powder manufacturing method, it becomes possible to stably manufacture copper powder, which not only suppresses the manufacturing cost, but also has low particle variation, sharp particle size distribution, and high quality copper powder. Can be provided.

以下、本発明に係る銅粉の製造方法の最良の実施の形態に関して説明する。   Hereinafter, the best embodiment of the method for producing copper powder according to the present invention will be described.

本件発明に係る銅粉の製造方法: 本件発明に係る銅粉の製造方法は、以下の工程1〜工程3に分類して考えることの出来るものである。以下、工程毎に説明する。   The manufacturing method of the copper powder which concerns on this invention: The manufacturing method of the copper powder which concerns on this invention can be classified into the following process 1-process 3, and can be considered. Hereinafter, it demonstrates for every process.

工程1:この工程1では、銅イオン含有水溶液とアルカリ溶液とを反応させた水酸化銅スラリーを得る。即ち、本工程1では、銅イオン含有水溶液とアルカリ溶液とを反応させた水酸化銅スラリーを得る。当該水酸化銅スラリーは、水酸化銅を含有するスラリーを意味し、水酸化銅以外の他の構成成分も含む場合もある。ここで、「銅イオン含有水溶液」と「アルカリ溶液」とに関して説明する。 Step 1: In this step 1, a copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution with an alkaline solution is obtained. That is, in this process 1, the copper hydroxide slurry which made the copper ion containing aqueous solution and alkali solution react is obtained. The said copper hydroxide slurry means the slurry containing copper hydroxide, and may also contain other components other than copper hydroxide. Here, the “copper ion-containing aqueous solution” and the “alkali solution” will be described.

ここで言う銅イオン含有水溶液は、水に水溶性銅塩を加え溶解させたものであり、二価の銅イオンを含むものである。ここで言う銅塩とは、硫酸銅、硝酸銅、酢酸銅、塩化銅等を意図し、特に硫酸銅、硝酸銅が好ましい。そして、この銅塩の含有量は、銅イオン含有水溶液中の銅濃度として2.2mol/l〜3.0mol/lであり、より好ましくは2.5mol/l〜3.0mol/lの濃度とすることが好ましい。銅イオン含有水溶液中の銅濃度として2.2mol/l未満の場合には、溶液中の銅濃度が低すぎ、銅粉粒子の粒径が均一になりにくい。一方、銅イオン含有水溶液中の銅濃度として3.0mol/lを超えると、銅濃度が高くなりすぎて、還元析出する銅粉の粒子の凝集が顕著になるため好ましくない。   The copper ion-containing aqueous solution here is a solution obtained by adding a water-soluble copper salt to water and dissolving it, and contains divalent copper ions. The copper salt here means copper sulfate, copper nitrate, copper acetate, copper chloride, and the like, and copper sulfate and copper nitrate are particularly preferable. And this copper salt content is 2.2 mol / l-3.0 mol / l as a copper concentration in a copper ion containing aqueous solution, More preferably, the concentration of 2.5 mol / l-3.0 mol / l and It is preferable to do. When the copper concentration in the copper ion-containing aqueous solution is less than 2.2 mol / l, the copper concentration in the solution is too low and the particle size of the copper powder particles is difficult to be uniform. On the other hand, if the copper concentration in the copper ion-containing aqueous solution exceeds 3.0 mol / l, the copper concentration becomes too high, and the aggregation of the particles of the copper powder that is reduced and precipitated becomes remarkable.

そして、ここで言うアルカリ溶液とは、水酸化カリウム、水酸化ナトリウム、アンモニア水溶液等を用いる。しかしながら、アンモニア水溶液であることが最も好ましい。これは、後述する工程2における還元反応時のpHの変動を制御することが容易で、且つ、得られる銅粉の粒子表面への残留成分が少ないからである。このアルカリ溶液の添加量は、銅1molに対して1.4mol〜1.8molとなるように用いる。アルカリが銅1molに対して1.4mol未満の場合には、銅粉製造に適した水酸化銅スラリーは得られず、良好な収率が達成できず、得られる銅粉の粉体特性のバラツキも大きくなる。一方、水酸化銅スラリー中のアルカリ濃度が銅1molに対して1.8molを超えると、水酸化銅スラリーのpHが強アルカリになり、還元工程における適正なpH範囲へのコントロールが困難となる。   And the alkaline solution said here uses potassium hydroxide, sodium hydroxide, aqueous ammonia solution, etc. However, an aqueous ammonia solution is most preferred. This is because it is easy to control the fluctuation of pH during the reduction reaction in Step 2 described later, and there are few residual components on the particle surface of the obtained copper powder. The amount of the alkaline solution added is 1.4 mol to 1.8 mol with respect to 1 mol of copper. When the alkali is less than 1.4 mol with respect to 1 mol of copper, a copper hydroxide slurry suitable for copper powder production cannot be obtained, a good yield cannot be achieved, and the powder characteristics of the obtained copper powder vary. Also grows. On the other hand, when the alkali concentration in the copper hydroxide slurry exceeds 1.8 mol with respect to 1 mol of copper, the pH of the copper hydroxide slurry becomes a strong alkali, and it becomes difficult to control to an appropriate pH range in the reduction step.

当該水酸化銅スラリーの調整においては、銅イオン含有水溶液の液温を30℃〜70℃(より好ましくは40℃〜60℃)として、ここに中和剤としてアルカリ溶液を添加してpH3.0〜pH7.0となるように中和するのが好ましい。ここで、銅イオン含有水溶液の液温を30℃〜70℃としたのは、液温が30℃未満の場合には、上述の最低限の量の銅塩を適正に溶解させることができず、適正な銅濃度の溶液とならない。これに対し、銅イオン含有水溶液の液温が70℃を超えるものとすると、結晶性の高い水酸化銅となり易い。その結果、次の工程2において水酸化銅の溶解速度が遅くなり、得られる亜酸化銅粒子が大きくなるので、後工程で均一な銅が得られにくくなり、工程と品質が不安定となる。   In the preparation of the copper hydroxide slurry, the liquid temperature of the copper ion-containing aqueous solution is set to 30 ° C. to 70 ° C. (more preferably 40 ° C. to 60 ° C.). It is preferable to neutralize so as to have a pH of 7.0. Here, the liquid temperature of the copper ion-containing aqueous solution is set to 30 ° C. to 70 ° C. When the liquid temperature is lower than 30 ° C., the above-described minimum amount of copper salt cannot be properly dissolved. It does not become a solution with proper copper concentration. On the other hand, if the liquid temperature of the copper ion-containing aqueous solution exceeds 70 ° C., copper hydroxide with high crystallinity is likely to be obtained. As a result, the dissolution rate of copper hydroxide is slowed down in the next step 2 and the obtained cuprous oxide particles become large, so that it is difficult to obtain uniform copper in the subsequent step, and the process and quality become unstable.

また、水酸化銅スラリーのpHは、3.0〜7.0の範囲に制御することが好ましい。この範囲を外れると、後述する工程2における溶液pHを中性領域に近づけることが困難となる。このpH領域は、上述の水酸化銅スラリー中の銅濃度を2.2mol/l〜3.0mol/lとし、銅1molに対するアルカリ量を1.4mol〜1.8molとしたときに制御できる範囲である。   The pH of the copper hydroxide slurry is preferably controlled in the range of 3.0 to 7.0. If it is out of this range, it will be difficult to bring the solution pH in Step 2 described below closer to the neutral region. This pH region is a range that can be controlled when the copper concentration in the above-described copper hydroxide slurry is 2.2 mol / l to 3.0 mol / l and the alkali amount relative to 1 mol of copper is 1.4 mol to 1.8 mol. is there.

工程2: この工程2では、当該水酸化銅スラリーに還元剤を添加して亜酸化銅スラリーとする第1還元処理を行う。本件発明に係る銅粉の製造方法では、この工程2において、水酸化銅スラリーに還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液とを併用して添加する点に大きな特徴がある。 Process 2: In this process 2, the 1st reduction process which adds a reducing agent to the said copper hydroxide slurry and makes a cuprous oxide slurry is performed. The copper powder production method according to the present invention is greatly characterized in that, in Step 2, hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster are added to the copper hydroxide slurry in combination.

この工程2では、前記水酸化銅スラリーにヒドラジン類(還元剤)を添加して、主に水酸化銅を亜酸化銅にまで還元し、亜酸化銅スラリーを生成させる処理を行う。当該亜酸化銅スラリーは、亜酸化銅を含有するスラリーを意味し、亜酸化銅以外の構成成分を含む場合もある。後述する工程3の洗浄亜酸化銅スラリーについても同様である。本工程で還元剤としてヒドラジン類を用いるのは、亜酸化銅粒子の表面に対して吸着残留する可能性が低く、汚染物質となりにくいためである。そして、ヒドラジン類とは、抱水ヒドラジン、硫酸ヒドラジン、無水ヒドラジンなど種々のものがあるが、最も好ましくは抱水ヒドラジンである。これらヒドラジン類は単独または混合して用いることが可能である。そして、溶液として反応に供されることが好ましい。反応系の溶液に迅速に拡散し、不均一な反応を起こさないからである。   In this step 2, hydrazines (reducing agent) are added to the copper hydroxide slurry to mainly reduce the copper hydroxide to cuprous oxide to produce a cuprous oxide slurry. The said cuprous oxide slurry means the slurry containing a cuprous oxide, and may also contain structural components other than a cuprous oxide. The same applies to the washed cuprous oxide slurry in step 3 described later. The reason why hydrazines are used as a reducing agent in this step is that the possibility of adsorbing and remaining on the surface of the cuprous oxide particles is low and it is difficult to become a contaminant. There are various hydrazines such as hydrazine hydrate, hydrazine sulfate, and anhydrous hydrazine, and hydrazine hydrate is most preferable. These hydrazines can be used alone or in combination. And it is preferable to use for reaction as a solution. This is because it diffuses rapidly into the reaction system solution and does not cause a heterogeneous reaction.

このヒドラジン類の添加量は、水酸化銅スラリー中の銅1molに対して0.3mol〜0.5molとするのが好ましい。ヒドラジン類の添加量が、上記銅1molに対して0.3mol未満の場合には、未反応の水酸化銅が多く残留するため好ましくない。これに対し、ヒドラジン類の添加量が、上記銅1molに対して0.5molを超えるように添加すると、亜酸化銅の段階で還元反応を止めることができず、結果として凝集などを起こし易く良好な粉体特性を備えた銅粉の製造が困難となる。   The amount of hydrazine added is preferably 0.3 mol to 0.5 mol with respect to 1 mol of copper in the copper hydroxide slurry. When the amount of hydrazine added is less than 0.3 mol with respect to 1 mol of copper, a large amount of unreacted copper hydroxide remains, which is not preferable. On the other hand, if the amount of hydrazine added exceeds 0.5 mol with respect to 1 mol of copper, the reduction reaction cannot be stopped at the cuprous oxide stage, and as a result, it is easy to cause aggregation and the like. It becomes difficult to produce copper powder having excellent powder characteristics.

なお、工程2において、前記水酸化銅スラリーを亜酸化銅スラリーに還元する処理では、上述の還元剤としてのヒドラジン類を添加しつつ、pH調整剤としてのアンモニア水溶液も添加して、pH変動を制御しながら還元処理を行う。ここでアンモニア水溶液を用いるのは、水酸化銅スラリー生成にアンモニアを中和剤として用いた場合を考慮すると、中和剤とpH調整剤との種類の整合性が図られて異種成分を可能な限り排除して粒子表面への異種元素吸着を極力避け、得られる銅粉の純度コントロールが容易だからである。また、ヒドラジン類の添加により酸性側にシフトした溶液pHを、精度良く中性に近づけるためにはアンモニアの持つ中和剤としての特徴を利用することが好ましい。   In Step 2, in the process of reducing the copper hydroxide slurry to the cuprous oxide slurry, while adding the hydrazines as the reducing agent described above, an ammonia aqueous solution as the pH adjusting agent is also added to adjust the pH fluctuation. The reduction process is performed while controlling. Here, the aqueous ammonia solution is used in consideration of the case where ammonia is used as a neutralizing agent in the formation of the copper hydroxide slurry. This is because it is easy to control the purity of the obtained copper powder by eliminating as much as possible and avoiding adsorption of different elements to the particle surface as much as possible. Further, in order to bring the solution pH shifted to the acidic side by the addition of hydrazines close to neutrality with high accuracy, it is preferable to use the characteristics of the neutralizing agent possessed by ammonia.

ここで、前記工程2において、水酸化銅スラリーに、ヒドラジン類の添加を開始して工程2が終了するまでの、溶液のpH変動状態を図1に示す。この図1に、ヒドラジンとアンモニア水溶液とを併用した実施例1のpH変動曲線と、ヒドラジンを単独で用いた比較例のpH変動曲線とを示した。これらを対比することから明らかなように、実施例1及び比較例ともに、ヒドラジンの添加が開始されると、水酸化銅スラリーのpHは、一旦急激に酸性側に変化する。その後、アルカリ側に一定幅分のpHがシフトして定常状態となる。このようなpH変動があることを前提として、以下の内容を説明する。   Here, FIG. 1 shows the pH variation state of the solution from the start of the addition of hydrazines to the copper hydroxide slurry until the end of Step 2 in Step 2. FIG. 1 shows a pH fluctuation curve of Example 1 in which hydrazine and an aqueous ammonia solution are used in combination, and a pH fluctuation curve of a comparative example in which hydrazine is used alone. As is clear from the comparison, in both Example 1 and Comparative Example, when the addition of hydrazine is started, the pH of the copper hydroxide slurry once suddenly changes to the acidic side. Thereafter, the pH is shifted to the alkali side by a certain width and a steady state is obtained. The following contents will be described on the assumption that there is such pH fluctuation.

水酸化銅スラリーにヒドラジン類とアンモニア水溶液とを併用して添加することにより、アンモニア水溶液を使用しない場合に比べ、3.0〜7.0の範囲に入るよう、pHの酸性側へのシフト幅が小さくなるように制御するのが好ましい。その結果、粒子の凝集等の影響が少なく、得られる銅粉はより分散性が高く、粒度分布がシャープな銅粉を高収率で製造することができる。   By adding both hydrazines and aqueous ammonia solution to the copper hydroxide slurry, the shift width to the acidic side of the pH so that it falls within the range of 3.0 to 7.0 compared to the case where no aqueous ammonia solution is used. It is preferable to control so as to be small. As a result, the influence of particle aggregation and the like is small, and the obtained copper powder has a higher dispersibility and can produce a copper powder having a sharp particle size distribution in a high yield.

水酸化銅スラリーに対する、上述のヒドラジン類とアンモニア水溶液との添加は、3.0〜7.0の範囲にpH制御するために、以下のようにして行うことがより好ましい。即ち、ヒドラジン類とアンモニア水溶液とは、前記水酸化銅スラリー中の銅1molに対し、添加終了時におけるヒドラジン類が0.3mol〜0.5mol及びアンモニア水溶液が(アンモニアとして)0.2mol〜0.4molの割合となるように連続添加することが好ましく、こうして添加されたスラリーのpHは、還元剤及びpH調整剤の添加開始時の始点pHと添加終了時の終点pHとの差が3.0以下となるように調整すればよい。そして、より望ましくはpH3.5〜5.0の範囲でpHを変動制御することが好ましい。なお、工程1及び工程2に用いるアルカリ量の総量としては、銅1molに対し、アルカリ成分が1.85molから2.0molであることが望ましい。   The addition of the hydrazines and the aqueous ammonia solution to the copper hydroxide slurry is more preferably performed as follows in order to control the pH in the range of 3.0 to 7.0. That is, the hydrazines and the aqueous ammonia solution are 0.3 mol to 0.5 mol of hydrazine at the end of the addition and 0.2 mol to 0.00 mol of ammonia aqueous solution (as ammonia) with respect to 1 mol of copper in the copper hydroxide slurry. Preferably, the slurry is continuously added so as to have a ratio of 4 mol, and the pH of the slurry thus added is 3.0 as the difference between the starting point pH at the start of the addition of the reducing agent and the pH adjusting agent and the end point pH at the end of the addition. What is necessary is just to adjust so that it may become the following. More desirably, it is preferable to control the fluctuation of the pH in the range of pH 3.5 to 5.0. In addition, as a total amount of the alkali amount used for the process 1 and the process 2, it is desirable that an alkali component is 1.85 mol to 2.0 mol with respect to 1 mol of copper.

ここで、ヒドラジン類を単独で添加すると、溶液のpHが添加量に応じて随時変動し、当初のpHから3を超える変動が起こる。この溶液pHの変動があると、得られる亜酸化銅粒子の粒径のバラツキが大きくなり、最終的製品である銅粉粒子の粒度分布が悪化する。その為、ヒドラジン類とアンモニア水溶液とを併用し、これらを連続添加することで、還元操作時の溶液pHの変動を最小限にして、一定のpHに維持するのである。   Here, when hydrazines are added alone, the pH of the solution fluctuates from time to time depending on the amount of addition, resulting in a fluctuation exceeding 3 from the initial pH. If the solution pH varies, the variation in the particle size of the obtained cuprous oxide particles increases, and the particle size distribution of the copper powder particles as the final product deteriorates. Therefore, hydrazines and an aqueous ammonia solution are used in combination, and these are continuously added to minimize fluctuations in the solution pH during the reduction operation and maintain a constant pH.

ここで、ヒドラジン類及びアンモニア水溶液の当該下限値未満の添加量では、水酸化銅の亜酸化銅への還元が良好に行えない。一方、ヒドラジン類及びアンモニア水溶液の当該上限値を超える添加量とすると、亜酸化銅で還元操作を止めることができなくなる。また、上述の添加範囲を外れると、添加溶液のpHを3.0〜7.0の間でpHの変動制御をすることができず、結果として、粉体特性の良好な銅粉を得ることができない。   Here, when the addition amount of the hydrazines and the aqueous ammonia solution is less than the lower limit, the reduction of copper hydroxide to cuprous oxide cannot be performed satisfactorily. On the other hand, when the addition amount of the hydrazines and aqueous ammonia exceeds the upper limit, the reduction operation cannot be stopped with cuprous oxide. Further, if the addition range is out of the above range, the pH variation of the addition solution cannot be controlled between 3.0 and 7.0, and as a result, copper powder having good powder characteristics can be obtained. I can't.

また、前記工程2において、水酸化銅スラリーに、ヒドラジン類の添加を開始すると、溶液のpHが図1の比較例に示すように、一旦急激に酸性側に変動する。この変動幅は、添加量に応じて変化するが、アンモニア水溶液を使用しないと、ヒドラジンの添加を開始した水酸化銅スラリーのpHは、pH2.8を下回る強酸性となる。このような強酸性領域になると、得られる銅粉の粉体特性が劣化し、且つ、製造歩留まりのバラツキが大きくなるのである。そこで、本件発明に係る銅粉の製造方法のように、還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液とを併用して添加することにより、図1の実施例1に示すように、ヒドラジン類の添加を開始した直後のpHの急激な酸性側へのシフトがpH2.8以上のアルカリ側にある状態とし、pH変動曲線の強酸性側へのシフトをトータル的に小さくすることで、得られる銅粉の粉体特性を向上させ、且つ、安定して高い製造歩留まりを得るのである。以上及び以下において、この急激に酸性側に変動し、最も酸性側にあるpHを「最低pH」と称する。   In Step 2, when the addition of hydrazines to the copper hydroxide slurry is started, the pH of the solution once suddenly changes to the acidic side as shown in the comparative example of FIG. The fluctuation range varies depending on the amount of addition, but if an aqueous ammonia solution is not used, the pH of the copper hydroxide slurry from which hydrazine has been added becomes strongly acidic below pH 2.8. In such a strongly acidic region, the powder characteristics of the obtained copper powder deteriorate, and the variation in production yield increases. Therefore, like the method for producing copper powder according to the present invention, by adding hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster in combination, as shown in Example 1 of FIG. Immediately after the start of the addition of hydrazines, the pH suddenly shifts to the acid side, and the pH fluctuation curve shifts to the strongly acidic side, and the shift to the strongly acidic side of the pH fluctuation curve is totally reduced. This improves the powder characteristics of the obtained copper powder and stably obtains a high production yield. In the above and below, the pH that rapidly changes to the acidic side and is the most acidic side is referred to as “lowest pH”.

そして、工程2の際の溶液温度は、40℃〜60℃の温度範囲を採用することが好ましい。40℃未満の温度では、還元反応速度が遅く、工業生産性を満足しない。一方、還元温度が60℃を超えると、還元反応が速くなりすぎて不均一な還元反応が起こるため、得られる銅粉の粉体特性が劣化する。一般的に上記温度範囲において、得られる亜酸化銅の粒径を微粒にしたい場合は低温で一定に保ち、粒径を大きくしたい場合は高めの温度で一定に保つようにすることが好ましい。   And as for the solution temperature in the case of process 2, it is preferable to employ | adopt the temperature range of 40 to 60 degreeC. If the temperature is lower than 40 ° C., the reduction reaction rate is slow and industrial productivity is not satisfied. On the other hand, when the reduction temperature exceeds 60 ° C., the reduction reaction becomes too fast and a non-uniform reduction reaction occurs, so that the powder characteristics of the obtained copper powder deteriorate. In general, in the above temperature range, it is preferable to keep the obtained cuprous oxide particle size constant at a low temperature when it is desired to make it fine, and keep it constant at a higher temperature when it is desired to increase the particle size.

工程3: 本工程3では、当該亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させ、上澄液を除去して水を添加することにより亜酸化銅粒子を洗浄し洗浄亜酸化銅スラリーとして、当該洗浄亜酸化銅スラリーに還元剤を添加して還元処理を行うことにより銅粉を得る。 Step 3: In this step 3, the cuprous oxide slurry is allowed to stand to precipitate the cuprous oxide particles, and the supernatant is removed and water is added to wash the cuprous oxide particles and wash the cuprous oxide. As a slurry, copper powder is obtained by adding a reducing agent to the washed cuprous oxide slurry and performing a reduction treatment.

この工程3では、前記亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させる。この段階での溶液pHは、およそ3.9程度である。そして、その上澄液を除去して水を添加することにより亜酸化銅粒子を洗浄する。このときの洗浄方法に関しては、特段の限定はなく、あらゆる洗浄方法を採用することが可能であるが、以下のようにリパルプ洗浄を採用して、洗浄レベルを洗浄中の亜酸化銅スラリー(以下に言う「洗浄亜酸化銅スラリー」)のpH値で管理することが好ましい。ここで、この洗浄の際に、上澄みを廃棄して、洗浄水を注ぎ足すという操作を複数回行う際の、洗浄水を注いだ場合のスラリー状態を洗浄亜酸化銅スラリーと称する。   In Step 3, the cuprous oxide slurry is allowed to stand to precipitate cuprous oxide particles. The solution pH at this stage is about 3.9. And the cuprous oxide particle is wash | cleaned by removing the supernatant liquid and adding water. There is no particular limitation on the washing method at this time, and any washing method can be adopted. However, the repulp washing is adopted as follows, and the washing level is changed to the cuprous oxide slurry (below). It is preferable to manage with the pH value of the “washed cuprous oxide slurry”). Here, the slurry state when the washing water is poured when the operation of discarding the supernatant and adding the washing water is performed a plurality of times during the washing is referred to as a washed cuprous oxide slurry.

リパルプ洗浄では、洗浄亜酸化銅スラリーのpHが4.1〜6.0の間のいずれか一定のpHになるまで繰り返し洗浄するのが好ましい。洗浄亜酸化銅スラリーのpHが4.1より酸性側にあると、更に還元剤を加え銅粉とする際に得られる銅粉の凝集が強くなり、分散性が劣る等、粉体特性が悪くなる。一方、洗浄亜酸化銅スラリーのpHが6.0よりアルカリ性側にあると、イオン量が少なくて電子の授受反応が悪くなり、更に還元剤を加え銅粉とする際に、凝集が生じて粒子の均一性が低下する等、粉体特性も悪く、還元効率が悪くなる。即ち、pH4.1〜6.0の間は、粒子の凝集を避けるのに適正な範囲であると言える。   In the repulp washing, it is preferable to wash repeatedly until the pH of the washed cuprous oxide slurry becomes any constant pH between 4.1 and 6.0. When the pH of the washed cuprous oxide slurry is more acidic than 4.1, the powder properties are poor, such as the aggregation of the copper powder obtained when adding a reducing agent to make the copper powder becomes stronger and the dispersibility is inferior. Become. On the other hand, when the pH of the washed cuprous oxide slurry is on the alkaline side from 6.0, the amount of ions is small and the electron transfer reaction is worsened. The powder properties are also poor, such as a reduction in uniformity, and the reduction efficiency is poor. That is, it can be said that the pH between 4.1 and 6.0 is an appropriate range for avoiding particle aggregation.

そして、より好ましくは、洗浄亜酸化銅スラリーは、pH4.3〜pH4.7の間のいずれか一定のpHになるまで洗浄する。この洗浄亜酸化銅スラリーのpHを4.3〜4.7とすることにより、凝集抑制に加え粗粒も少なく、微粒でバラツキの少ない良質な銅粉を低コストで得ることができ、この範囲に於いて、微粒且つ高分散性を得るための工程安定性に最も優れるのである。   More preferably, the washed cuprous oxide slurry is washed until a certain pH between pH 4.3 and pH 4.7 is reached. By setting the pH of this washed cuprous oxide slurry to 4.3 to 4.7, it is possible to obtain a high-quality copper powder with less coarse particles, less coarse particles and less variation, at a low cost, in addition to suppressing aggregation. In this case, the process stability for obtaining fine particles and high dispersibility is most excellent.

そして、上述のようにして得られた洗浄亜酸化銅スラリーに還元剤を添加する。この際、添加終了時のpHが7.0〜9.0になるように調整すれば良い。即ち、添加する還元剤量は、ヒドラジン類の場合、添加終了時において、洗浄亜酸化銅スラリーに含まれる銅1molに対して0.4mol〜0.7molの割合で添加することが好ましい。より望ましくは、工程2及び工程3において添加するヒドラジン類の合計量が銅1molに対して0.85mol〜1.2molの割合にする。このpHが9.0よりアルカリ性側にあると、還元剤が多い状態となり微粒が生じやすくなり凝集しやすい。一方、pHが7.0より酸性側であると、粗粒が増えて凝集しやすく、分散性が悪くなる。従って、添加終了時のpHが7.0〜9.0の範囲から外れると、得られる銅粉の粉体特性の劣化が顕著になり、ブロードな粒度分布を示すようになる。   Then, a reducing agent is added to the washed cuprous oxide slurry obtained as described above. At this time, the pH at the end of the addition may be adjusted to 7.0 to 9.0. That is, in the case of hydrazines, the reducing agent to be added is preferably added at a ratio of 0.4 mol to 0.7 mol with respect to 1 mol of copper contained in the washed cuprous oxide slurry at the end of the addition. More desirably, the total amount of hydrazines added in step 2 and step 3 is 0.85 mol to 1.2 mol with respect to 1 mol of copper. When this pH is on the alkaline side from 9.0, the state becomes a state in which there are a lot of reducing agents, and fine particles are likely to be formed and aggregation tends to occur. On the other hand, when the pH is on the acidic side from 7.0, coarse particles increase and the particles tend to aggregate, resulting in poor dispersibility. Accordingly, when the pH at the end of addition is out of the range of 7.0 to 9.0, the powder characteristics of the obtained copper powder are significantly deteriorated, and a broad particle size distribution is exhibited.

還元剤の温度は40℃〜55℃の間の一定のレベルに保つことが好ましい。還元剤の温度が40℃より低いと、還元反応が鈍くなり、工業上望ましい生産性を満たさない。一方、55℃より高いと、還元速度が速くなりすぎて粒径が不揃いとなり易い。また、工程3の還元剤としては、上述の工程2で用いたヒドラジン類を用いることが好ましい。その理由は、還元剤としてのヒドラジン類がもつ還元能が粉体特性の良好な銅粉を得るために適しているからである。また、工程2で用いた還元剤と同種の還元剤を採用することで、銅粉の還元に拘わる異種成分を可能な限り少なくし、銅粉の粒子表面への汚染成分の付着量を減少させるためである。   The temperature of the reducing agent is preferably maintained at a constant level between 40 ° C and 55 ° C. When the temperature of the reducing agent is lower than 40 ° C., the reduction reaction becomes dull and the industrially desirable productivity is not satisfied. On the other hand, when the temperature is higher than 55 ° C., the reduction rate becomes too fast and the particle size tends to be uneven. Further, as the reducing agent in Step 3, it is preferable to use the hydrazines used in Step 2 described above. This is because the reducing ability of hydrazines as a reducing agent is suitable for obtaining copper powder having good powder characteristics. Moreover, by adopting the same reducing agent as the reducing agent used in step 2, the number of different components involved in the reduction of the copper powder is reduced as much as possible, and the amount of contaminating components adhering to the particle surface of the copper powder is reduced. Because.

また、銅粉への還元処理が終了した段階のスラリー状態のまま、流体ミル法(ファインフローミル等)、層流混合法(T.K.フィルミックス等)を用いて、凝集粒子同士を高速で遠心流動するスラリー内で衝突させ、凝集状態を破壊し一次粒子に近付け、同時に粒子表面の平滑化を行う解粒処理を施し、粒子分散性を向上させることも好ましい。   In addition, the agglomerated particles can be separated at high speed using a fluid mill method (such as fine flow mill) or laminar flow mixing method (such as T.K. It is also preferable to improve the particle dispersibility by colliding in a slurry that is centrifugally flowed to break up the aggregated state and bring it closer to the primary particles, and at the same time smoothing the particle surface.

以上のようにして得た銅粉は、濾過、洗浄、乾燥等の一般的工程を経て、銅粉として製品化される。そして、この銅粉は、耐酸化性を向上させるため、必要に応じてオレイン酸、ステアリン酸等の脂肪酸やアミン類による表面処理を施すことも好ましい。また、この乾燥した銅粉の状態でも、必要に応じて分級装置、ハイブリタイザー、ターボクラシファイア等の凝集粒子同士の衝突処理が可能な装置を用いて解粒処理を行い、粒子分散性を向上させることも可能である。   The copper powder obtained as described above is commercialized as copper powder through general steps such as filtration, washing, and drying. The copper powder is preferably subjected to a surface treatment with a fatty acid such as oleic acid or stearic acid or an amine as necessary in order to improve the oxidation resistance. In addition, even in the state of this dried copper powder, particle dispersibility is improved by performing a pulverization process using an apparatus capable of colliding between aggregated particles such as a classifier, a hybridizer, and a turbo classifier as necessary. It is also possible.

以上のことから、本件発明に係る製造方法で得られる銅粉は、微粒でバラツキが少ない粉体特性が均質な銅粉を安定的に製造可能となる。また、粒子表面への異種元素吸着を抑えるので、焼成時のガスの気散を抑えて、焼成膜の内部欠陥を極力避け、導電率の良好な銅粉を製造することができる。   From the above, the copper powder obtained by the production method according to the present invention can stably produce a copper powder that is fine and has uniform powder characteristics with little variation. Further, since adsorption of foreign elements on the particle surface is suppressed, gas diffusion during baking can be suppressed, internal defects of the fired film can be avoided as much as possible, and copper powder with good conductivity can be manufactured.

以下、実施例及び比較例を示して本件発明を具体的に説明する。なお、本件発明は以下の実施例に制限されるものではない。なお、以下の実施例及び比較例における銅粉の製造条件が理解し易いように、表2に製造条件の概略を一覧にして掲載する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples. In addition, in order to make it easy to understand the manufacturing conditions of the copper powder in the following Examples and Comparative Examples, Table 2 lists and summarizes the manufacturing conditions.

Figure 0005144022
Figure 0005144022

工程1: 50℃の純水6.5リットルに硫酸銅5水和物6000g(24.0mol)を添加し、二価の銅イオンを含む銅イオン含有水溶液を準備する。そして、温度50℃に保持した該銅イオン含有水溶液に、アンモニア水溶液(濃度25wt%)2500ml(36.7mol)を30分で添加して中和し、水酸化銅スラリーを得た。その後、当該水酸化銅スラリーに純水を加え、銅濃度を2mol/l、pH6.3とした。 Step 1: 6000 g (24.0 mol) of copper sulfate pentahydrate is added to 6.5 liters of pure water at 50 ° C. to prepare a copper ion-containing aqueous solution containing divalent copper ions. Then, 2500 ml (36.7 mol) of an aqueous ammonia solution (concentration 25 wt%) was added to the copper ion-containing aqueous solution kept at a temperature of 50 ° C. in 30 minutes to neutralize it, thereby obtaining a copper hydroxide slurry. Thereafter, pure water was added to the copper hydroxide slurry to adjust the copper concentration to 2 mol / l and pH 6.3.

工程2: 前記水酸化銅スラリーに還元剤としてのヒドラジン1水和物及びpH調整剤としてのアンモニア水溶液をpH変動制御するために添加した。即ち、pH6.3の前記水酸化銅スラリーの液温を50℃に保ち、ヒドラジン1水和物450g(9.0mol)とアンモニア水溶液(濃度25wt%)590ml(8.7mol)とを30分間かけて連続添加し、添加終了時のpHは3.9とした。ここでのpH変動は、始点pHが6.3で、終点pHが3.9であり、最低pHが3.5、始点pHと終点pHとの差が2.4であった。そして、還元反応を完全に行うため、更に30分間撹拌を続けた。 Step 2: Hydrazine monohydrate as a reducing agent and an aqueous ammonia solution as a pH adjuster were added to the copper hydroxide slurry in order to control pH fluctuation. That is, the liquid temperature of the copper hydroxide slurry at pH 6.3 was kept at 50 ° C., and 450 g (9.0 mol) of hydrazine monohydrate and 590 ml (8.7 mol) of aqueous ammonia (concentration 25 wt%) were applied for 30 minutes. The pH at the end of the addition was 3.9. As for the pH fluctuation, the starting point pH was 6.3, the end point pH was 3.9, the minimum pH was 3.5, and the difference between the starting point pH and the end point pH was 2.4. Then, in order to complete the reduction reaction, stirring was continued for another 30 minutes.

その後、リパルプ洗浄を行った。即ち、工程2の終了したスラリーに純水を加えて18リットルに調整して静置し、静置後の上澄みを14リットル抜く操作をリパルプ洗浄後のpHが4.7になるまで繰り返し、これを洗浄亜酸化銅スラリーとした。   Thereafter, repulp washing was performed. That is, adding pure water to the slurry after step 2 and adjusting to 18 liters, allowing to stand, and removing 14 liters of supernatant after standing until the pH after repulp washing becomes 4.7. Was used as a washed cuprous oxide slurry.

工程3: 次に、前記洗浄亜酸化銅スラリーに水を加え、液温を50℃に維持して、銅濃度を2mol/Lに調整した。その後、ヒドラジン1水和物600g(12.0mol)を30分間で添加した。添加終了時の溶液pHは8.2であった。更に60分間撹拌を行い、還元反応を完全に行わせ銅粉を還元析出させた(第2還元処理)。 Step 3: Next, water was added to the washed cuprous oxide slurry, the liquid temperature was maintained at 50 ° C., and the copper concentration was adjusted to 2 mol / L. Thereafter, 600 g (12.0 mol) of hydrazine monohydrate was added over 30 minutes. The solution pH at the end of the addition was 8.2. The mixture was further stirred for 60 minutes to completely carry out the reduction reaction, thereby reducing and precipitating copper powder (second reduction treatment).

このようにして得た銅粉を濾過して採取した。そして、当該銅粉に、ドテシルアミン1.5gを溶解させたメタノール溶液5リットルに入れ表面処理を施し、30分間撹拌し、80℃×5時間の加熱乾燥を行って粉体を得た。   The copper powder thus obtained was collected by filtration. Then, the copper powder was put into 5 liters of a methanol solution in which 1.5 g of dodecylamine was dissolved, subjected to surface treatment, stirred for 30 minutes, and heated and dried at 80 ° C. for 5 hours to obtain a powder.

この実施例で得られた銅粉の粉体特性及び収率のバラツキを検証するため、上記実施例1で得られた10ロットの銅粉について、ロット毎にD10、D50、D90、標準偏差(SD)、D90/D10、比表面積、タップ充填密度の測定結果と併せて、各特性について10ロット分の平均値、標準偏差σの各データを算出した結果を表3に示す。なお、1ロット毎の標準偏差をSDで表し、10ロット分のデータに対する標準偏差をσで表して両者を区別する。 In order to verify the dispersion of the powder characteristics and the yield of the copper powder obtained in this example, about 10 lots of copper powder obtained in Example 1 above, D 10 , D 50 , D 90 , Table 3 shows the results of calculating the average value for 10 lots and the data of standard deviation σ for each characteristic, together with the measurement results of standard deviation (SD), D 90 / D 10 , specific surface area, and tap filling density. . The standard deviation for each lot is represented by SD, and the standard deviation for the data for 10 lots is represented by σ to distinguish them.

銅粉の粉体特性: 以上の工程を経て得られた銅粉の粉体特性の10ロットの平均値は、D10=0.77μm、D50=1.75μm、D90=3.68μm、標準偏差(SD)=1.14μm、D90/D10=4.77、比表面積(SSA)0.54m/g、タップ充填密度(TD)4.7g/ccであった。 Powder characteristics of copper powder: The average value of the powder characteristics of the copper powder obtained through the above steps for 10 lots is D 10 = 0.77 μm, D 50 = 1.75 μm, D 90 = 3.68 μm, The standard deviation (SD) was 1.14 μm, D 90 / D 10 = 4.77, the specific surface area (SSA) was 0.54 m 2 / g, and the tap packing density (TD) was 4.7 g / cc.

ロット毎の銅粉の収率を算出したところ、いずれも97%以上で、収率の標準偏差σは0.8となり、安定した収率を得ることができた。なお、収率は、用いた銅塩量から算出される理論上の銅粉量に対する実際に得られた銅粉の量で算出した。   When the yield of copper powder for each lot was calculated, all were 97% or more, and the standard deviation σ of the yield was 0.8, and a stable yield could be obtained. The yield was calculated by the amount of copper powder actually obtained relative to the theoretical amount of copper powder calculated from the amount of copper salt used.

Figure 0005144022
Figure 0005144022

工程1: 実施例1と同様の方法で水酸化銅スラリーを得た。 Step 1: A copper hydroxide slurry was obtained in the same manner as in Example 1.

工程2: 前記水酸化銅スラリーに還元剤としてのヒドラジン1水和物及びpH調整剤としてのアンモニア水溶液をpH変動制御するために添加した。即ち、pH6.3の前記水酸化銅スラリーの液温を40℃に保ち、ヒドラジン1水和物450g(9.0mol/l)とアンモニア水溶液(濃度25wt%)350ml(5.1mol)とを15分間かけて連続添加し、添加終了時のpHは4.8とした。ここでのpH変動は、始点pHが6.3で、終点pHが4.8であり、最低pHが3.8、始点pHと終点pHとの差が1.5であった。そして、還元反応を完全に行うため、更に30分間撹拌を続けた。その後、リパルプ洗浄を実施例1と同様に行い、洗浄亜酸化銅スラリーを得た。 Step 2: Hydrazine monohydrate as a reducing agent and an aqueous ammonia solution as a pH adjuster were added to the copper hydroxide slurry in order to control pH fluctuation. That is, the liquid temperature of the copper hydroxide slurry at pH 6.3 was kept at 40 ° C., and 450 g (9.0 mol / l) of hydrazine monohydrate and 350 ml (5.1 mol) of an aqueous ammonia solution (concentration 25 wt%) The addition was continued over a period of time, and the pH at the end of addition was 4.8. As for the pH fluctuation, the starting point pH was 6.3, the end point pH was 4.8, the minimum pH was 3.8, and the difference between the starting point pH and the end point pH was 1.5. Then, in order to complete the reduction reaction, stirring was continued for another 30 minutes. Then, repulp washing | cleaning was performed like Example 1 and the washing | cleaning cuprous oxide slurry was obtained.

工程3: 次に、還元の際の反応スラリーの液温を45℃に維持した以外は実施例1の工程3と同様に行い、銅粉を還元析出させた。 Step 3: Next, copper powder was reduced and deposited in the same manner as in Step 3 of Example 1 except that the liquid temperature of the reaction slurry during the reduction was maintained at 45 ° C.

このようにして得た銅粉を実施例1と同様の後処理を行い、粉体を得た。   The copper powder thus obtained was post-treated in the same manner as in Example 1 to obtain a powder.

実施例2で得られた10ロットの銅粉について、実施例1と同様に、ロット毎にD10、D50、D90、標準偏差(SD)、D90/D10、比表面積、タップ充填密度の測定結果と併せて、各特性について10ロット分の平均値、標準偏差σの各データを算出した。その結果を表4に示す。また、ロット毎の銅粉の収率を算出したところ、いずれも97%以上となり、収率の標準偏差σは0.9となり、安定した収率を得ることができた。 About 10 lots of copper powder obtained in Example 2, as in Example 1, D 10 , D 50 , D 90 , standard deviation (SD), D 90 / D 10 , specific surface area, tap filling for each lot Along with the density measurement results, the average value for 10 lots and the standard deviation σ were calculated for each characteristic. The results are shown in Table 4. Moreover, when the yield of the copper powder for each lot was calculated, all were 97% or more, and the standard deviation σ of the yield was 0.9, and a stable yield could be obtained.

銅粉の粉体特性: 以上の工程を経て得られた銅粉の粉体特性の10ロットの平均値は、D10=0.63μm、D50=1.49μm、D90=3.08μm、標準偏差(SD)=0.91μm、D90/D10=4.89、比表面積0.62m/g、タップ充填密度4.1g/ccであった。 Powder characteristics of copper powder: The average value of 10 powder lot characteristics of copper powder obtained through the above steps was D 10 = 0.63 μm, D 50 = 1.49 μm, D 90 = 3.08 μm, The standard deviation (SD) was 0.91 μm, D 90 / D 10 = 4.89, the specific surface area was 0.62 m 2 / g, and the tap packing density was 4.1 g / cc.

Figure 0005144022
Figure 0005144022

実施例3では、工程3の還元の際の液温を45℃に変更した以外は実施例1と同様の方法で銅粉を得た。なお、工程2でのpH変動は、始点pHが6.3で、終点pHが3.9であり、最低pHが3.5、始点pHと終点pHとの差が2.4であった。   In Example 3, copper powder was obtained in the same manner as in Example 1 except that the liquid temperature during the reduction in Step 3 was changed to 45 ° C. In addition, as for the pH fluctuation in step 2, the starting point pH was 6.3, the end point pH was 3.9, the minimum pH was 3.5, and the difference between the starting point pH and the end point pH was 2.4.

実施例3で得られた10ロットの銅粉について、実施例1と同様に、各ロット毎にD10、D50、D90、標準偏差(SD)、D90/D10、比表面積、タップ充填密度の測定結果と併せて、各特性について10ロット分の平均値、標準偏差σの各データを算出した。結果を表5に示す。ロット毎の銅粉の収率を算出したところ、いずれも97%以上となり、収率の標準偏差σは0.9となり、安定した収率を得ることができた。 About 10 lots of copper powder obtained in Example 3, as in Example 1, D 10 , D 50 , D 90 , standard deviation (SD), D 90 / D 10 , specific surface area, tap for each lot Along with the measurement results of the packing density, the average value for 10 lots and the standard deviation σ were calculated for each characteristic. The results are shown in Table 5. When the yield of the copper powder for each lot was calculated, all were 97% or more, and the standard deviation σ of the yield was 0.9, and a stable yield could be obtained.

銅粉の粉体特性: 以上の工程を経て得られた銅粉の粉体特性の10ロットの平均値は、D10=0.85μm、D50=1.99μm、D90=4.05μm、標準偏差(SD)=1.20μm、D90/D10=4.79、比表面積0.46m/g、タップ充填密度5.0g/ccであった。 Powder characteristics of copper powder: The average value of the powder characteristics of the copper powder obtained through the above steps was 10 lots: D 10 = 0.85 μm, D 50 = 1.99 μm, D 90 = 4.05 μm, The standard deviation (SD) was 1.20 μm, D 90 / D 10 = 4.79, the specific surface area was 0.46 m 2 / g, and the tap packing density was 5.0 g / cc.

Figure 0005144022
Figure 0005144022

比較例Comparative example

工程2においてpH調整剤としてのアンモニア水溶液を用いていない点で実施例と異なる例を比較例として示す。従って、それ以外の工程の説明を割愛する。   An example different from the example in that no aqueous ammonia solution as a pH adjuster is used in step 2 will be shown as a comparative example. Therefore, description of other processes is omitted.

工程2: 前記水酸化銅スラリーの液温を50℃に保ち、ヒドラジン1水和物450g(9.0mol)のみを30分間かけて連続添加した。そして、最低pHが2.4、添加終了時のpHは3.2であった。即ち、水酸化銅スラリー調整工程後のpHは6.3であったので、始点pHと終点pHとの差は3.1となった。この後、還元反応を完全に行うため、更に30分間撹拌を続けた。 Process 2: The liquid temperature of the said copper hydroxide slurry was kept at 50 degreeC, and only hydrazine monohydrate 450g (9.0 mol) was continuously added over 30 minutes. The minimum pH was 2.4, and the pH at the end of the addition was 3.2. That is, since the pH after the copper hydroxide slurry adjustment step was 6.3, the difference between the starting point pH and the ending point pH was 3.1. Thereafter, stirring was continued for another 30 minutes in order to complete the reduction reaction.

その後、リパルプ洗浄を行った。即ち、工程2の終了したスラリーに純水を加えて18リットルに調整して静置し、静置後の上澄みを14リットル抜く操作をリパルプ洗浄後のpHが4.5になるまで繰り返し、これを洗浄亜酸化銅スラリーとした。なお、このとき、上述の実施例での繰り返し洗浄回数(平均2回)に比べ、この比較例の繰り返し洗浄回数はリパルプ洗浄の回数が4回でpH4.5となり、洗浄にコストが係る事が分かる。   Thereafter, repulp washing was performed. That is, adding pure water to the slurry after Step 2 and adjusting to 18 liters, leaving it to stand, and removing 14 liters of the supernatant after standing until the pH after washing with repulp reaches 4.5. Was used as a washed cuprous oxide slurry. At this time, compared with the number of repeated washings in the above-mentioned embodiment (average of 2 times), the number of repeated washings in this comparative example is pH 4.5 when the number of repulp washings is 4 times, and the washing is costly. I understand.

ここで、比較例で得られた10ロットの銅粉について、実施例1と同様に、ロット毎にD10、D50、D90、標準偏差(SD)、D90/D10、タップ充填密度、比表面積の測定結果と併せて、各特性について10ロット分の平均値、標準偏差σの各データを算出した。結果を表6に示す。この結果からわかるように、収率の平均は84.5%と低いものであった。 Here, about 10 lots of copper powder obtained in the comparative example, as in Example 1, D 10 , D 50 , D 90 , standard deviation (SD), D 90 / D 10 , tap filling density for each lot. In addition to the measurement results of the specific surface area, the average value for 10 lots and the standard deviation σ data were calculated for each characteristic. The results are shown in Table 6. As can be seen from this result, the average yield was as low as 84.5%.

Figure 0005144022
Figure 0005144022

銅粉の粉体特性: 比較例で得られた銅粉の粉体特性の10ロットの平均値は、D10=0.63μm、D50=1.71μm、D90=5.13μm、標準偏差(SD)=1.52μm、D90/D10=8.63、比表面積(SSA)1.51m/g、タップ充填密度(TD)3.0g/ccであった。 Powder characteristics of copper powder: The average values of 10 lots of the powder characteristics of the copper powder obtained in the comparative example are: D 10 = 0.63 μm, D 50 = 1.71 μm, D 90 = 5.13 μm, standard deviation (SD) = 1.52 μm, D 90 / D 10 = 8.63, specific surface area (SSA) 1.51 m 2 / g, tap packing density (TD) 3.0 g / cc.

ここで、本件明細書における各特性の評価方法及び評価装置に関して述べておく。体積累積粒径及び粒度分布(D10、D50、D90、SD)の測定は、銅粉0.1gをSNディスパーサント5468の0.1%水溶液(サンノプコ社製)と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320−X100型(Leeds+Northrup社製)を用いて行った。そして、「タップ充填密度」の測定は、パウダースターPT−E(ホソカワミクロン株式会社製)を用いて測定した。比表面積は、試料2.00gを75℃で10分間の脱気処理を行った後、モノソーブ(カンタクロム社製)を用いてBET1点法で測定した。 Here, an evaluation method and an evaluation apparatus for each characteristic in this specification will be described. The volume cumulative particle size and particle size distribution (D 10 , D 50 , D 90 , SD) were measured by mixing 0.1 g of copper powder with a 0.1% aqueous solution of SN Dispersant 5468 (manufactured by San Nopco) After dispersing with a homogenizer (US-300T manufactured by Nippon Seiki Seisakusho Co., Ltd.) for 5 minutes, the measurement was performed using a laser diffraction / scattering particle size distribution analyzer, Micro Trac HRA 9320-X100 (manufactured by Leeds + Northrup). And "tap filling density" was measured using Powder Star PT-E (manufactured by Hosokawa Micron Corporation). The specific surface area was measured by a BET one-point method using a monosorb (manufactured by Cantachrome) after subjecting a sample of 2.00 g to degassing treatment at 75 ° C. for 10 minutes.

[実施例と比較例との対比]
以下、表7に示す実施例と比較例の平均値および標準偏差σを参照して、評価項目毎に実施例と比較例とを対比する。
[Contrast between Example and Comparative Example]
Hereinafter, referring to the average values and standard deviation σ of the examples and comparative examples shown in Table 7, the examples and comparative examples are compared for each evaluation item.

Figure 0005144022
Figure 0005144022

体積累積粒径及び粒度分布:粒度分布においては、比較例のD90がやや大きく、凝集が強いことが窺われるが、粒度分布の平均値には大差ない。しかし、粒度分布の標準偏差に着目すると、比較例に比べ、実施例1〜実施例3の標準偏差σが小さくなっている。即ち、比較例に比べ、実施例1〜実施例3は良好な粒度分布を備え、シャープな粉体特性を備えることが理解できる。 Cumulative volume particle size and particle size distribution: In the particle size distribution, D 90 is slightly larger in the comparative example, it is suggesting a strong cohesion, little difference in the average value of the particle size distribution. However, focusing on the standard deviation of the particle size distribution, the standard deviation σ of Examples 1 to 3 is smaller than that of the comparative example. That is, compared with a comparative example, it can be understood that Examples 1 to 3 have a good particle size distribution and sharp powder characteristics.

タップ充填密度(TD):表7から分かるように、実施例1〜実施例3の方が比較例よりも明らかに高い。従って、実施例の銅粉をペースト化して導体を形成した場合と、比較例の銅粉をペースト化して導体を形成した場合の導体密度は、実施例の方が高く、低抵抗の導体形成が可能となると考えられる。 Tap filling density (TD): As can be seen from Table 7, Examples 1 to 3 are clearly higher than Comparative Examples. Therefore, when the conductor is formed by pasting the copper powder of the example, and when the conductor is formed by pasting the copper powder of the comparative example, the conductor density of the example is higher, and the conductor formation with low resistance is performed. It is considered possible.

比表面積(SSA):実施例1〜実施例3は比較例と比べて低く、一次粒子の粒度が同程度であるとすれば、粒子表面の平滑性は向上していると考えられる。 Specific surface area (SSA): Examples 1 to 3 are lower than the comparative examples, and if the primary particles have the same particle size, the smoothness of the particle surface is considered to be improved.

ロット毎の実施結果:各特性の標準偏差σは実施例1〜実施例3は比較例と比べていずれも小さく、実施例1〜実施例3は比較例に比べて粉体特性のバラツキが少ない均質なものであると言える。特に、収率については、実施例1〜実施例3は比較例と比べて高収率且つ収率変動が少なく安定した生産性で製造でき、結果としてコスト低減に繋がる銅粉の製造方法と言える。 Implementation results for each lot: The standard deviation σ of each characteristic is smaller in each of Examples 1 to 3 than in the comparative example, and Examples 1 to 3 have less variation in powder characteristics as compared to the comparative example. It can be said that it is homogeneous. In particular, regarding the yield, Examples 1 to 3 can be said to be a method for producing a copper powder that can be produced with high yield and less yield fluctuation and stable productivity than the comparative example, resulting in cost reduction. .

以上を総じて考えるに、実施例では工程2において、ヒドラジン類とアンモニア水溶液とを併用添加することによって、一定範囲内でpH変動を制御することができ、pHの変動による凝集等を抑止し、安定した製造工程と、バラツキが少なく粒度分布がシャープな銅粉を収率良く製造することができる。これに対し比較例の銅粉は、粉体特性のバラツキが大きく、収率も低い上に収率の安定性も悪い。これは、工程2における還元剤添加方法に起因しているものと考えられる。   Considering the above as a whole, in Example 2, in Step 2, by adding hydrazines and an aqueous ammonia solution in combination, pH fluctuation can be controlled within a certain range, and aggregation and the like due to pH fluctuation are suppressed and stable. Thus, copper powder with little variation and sharp particle size distribution can be produced with high yield. On the other hand, the copper powder of the comparative example has a large variation in powder characteristics, a low yield, and a poor yield stability. This is considered due to the reducing agent addition method in step 2.

本件発明に係る銅粉の製造方法により、粉体特性に優れた銅粉の生産効率の向上が可能となる。その結果、高品質の銅粉を安価に市場に提供可能となる。また、本件発明に係る銅粉の製造方法は、特殊な添加剤を用いるものでもなく、更には特殊な製造装置を要するものでもないため、既存設備の有効活用が図られ、設備投資の不要なものとなるためコストメリットに優れる。   With the copper powder manufacturing method according to the present invention, it is possible to improve the production efficiency of copper powder having excellent powder characteristics. As a result, high-quality copper powder can be provided to the market at a low cost. In addition, the copper powder production method according to the present invention does not use a special additive, and further does not require a special production apparatus, so that the existing equipment can be effectively used and no capital investment is required. Since it becomes a thing, it is excellent in cost merit.

また、本件発明に係る製造方法は、工程2で用いた還元剤と同種の還元剤を、工程3でも採用することが出来るので、銅粉の還元に拘わる異種成分を少なくすることが出来る。この結果、得られる銅粉の粒子表面への汚染成分の付着量を減少させた銅粉を製造することができ、導電性に優れた高品質な微粒銅粉を提供することが可能となり、微細配線等への利用が有効である。   Moreover, since the manufacturing method which concerns on this invention can also employ | adopt the reducing agent of the same kind as the reducing agent used at the process 2 also at the process 3, the dissimilar component which concerns on reduction | restoration of copper powder can be decreased. As a result, it is possible to produce a copper powder in which the amount of contaminating components attached to the particle surface of the obtained copper powder is reduced, and it is possible to provide a high-quality fine copper powder excellent in conductivity. Use for wiring etc. is effective.

工程2で水酸化銅スラリーにヒドラジン類の添加を開始して工程2が終了するまでの溶液のpH変動状態を示す図である。It is a figure which shows the pH fluctuation state of the solution until the process 2 is complete | finished after the addition of hydrazine is started to the copper hydroxide slurry in the process 2.

Claims (6)

銅イオン含有水溶液とアルカリ溶液とを反応させた水酸化銅スラリーを得て、当該水酸化銅スラリーに還元剤を添加して第1還元処理を行い亜酸化銅スラリーとして、当該亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させ、上澄液を除去して水を添加することにより亜酸化銅粒子を洗浄し洗浄亜酸化銅スラリーとして、当該洗浄亜酸化銅スラリーに還元剤を添加して第2還元処理を行い銅粉を得る湿式還元による銅粉製造方法において、
第1還元処理は、水酸化銅スラリーに、還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液とを併用して、添加開始時のpHから3を超える変動が生じない速度で、且つ、変動するpHの最低pHが2.8以上となるように当該還元剤とpH調整剤とを、連続添加することを特徴とする銅粉の製造方法。
A copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution and an alkali solution is obtained, and a reducing agent is added to the copper hydroxide slurry to perform a first reduction treatment, and the cuprous oxide slurry is obtained as a cuprous oxide slurry. Let stand to precipitate cuprous oxide particles, remove the supernatant and add water to wash the cuprous oxide particles and add a reducing agent to the washed cuprous oxide slurry as a washed cuprous oxide slurry In the copper powder production method by wet reduction to obtain the copper powder by performing the second reduction treatment,
In the first reduction treatment, hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster are used in combination with the copper hydroxide slurry, at a rate that does not cause a variation exceeding 3 from the pH at the start of addition, and A method for producing copper powder , wherein the reducing agent and the pH adjuster are continuously added so that the minimum pH of the fluctuating pH is 2.8 or more .
前記第1還元処理において、水酸化銅スラリーに、還元剤としてのヒドラジン類とpH調整剤としてのアンモニア水溶液とを併用して添加することによりpH3.0〜pH7.0の範囲でpHの変動制御をすることを特徴とする請求項1に記載の銅粉の製造方法。 In the first reduction treatment, hydrazine as a reducing agent and an aqueous ammonia solution as a pH adjusting agent are added to the copper hydroxide slurry in combination to control pH fluctuation in the range of pH 3.0 to pH 7.0. The method for producing copper powder according to claim 1, wherein: 前記pHの変動制御は、還元剤及びpH調整剤の添加開始時の始点pHと添加終了時の終点pHとの差を3.0以下に制御することを特徴とする請求項2に記載の銅粉の製造方法。 3. The copper according to claim 2, wherein the variation control of the pH controls a difference between a starting point pH at the start of addition of the reducing agent and the pH adjusting agent and an end point pH at the end of the addition to 3.0 or less. Powder manufacturing method. 前記アルカリ溶液は、アンモニア水溶液であることを特徴とする請求項1〜請求項3のいずれかに記載の銅粉の製造方法。 The said alkaline solution is ammonia aqueous solution, The manufacturing method of the copper powder in any one of Claims 1-3 characterized by the above-mentioned. 前記洗浄亜酸化銅スラリーは、pH4.1〜pH6.0であることを特徴とする請求項1〜請求項4のいずれかに記載の銅粉の製造方法。 The said washing | cleaning cuprous oxide slurry is pH 4.1-pH 6.0, The manufacturing method of the copper powder in any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜請求項5のいずれかに記載の銅粉の製造方法で得られることを特徴とする銅粉。 It obtains with the manufacturing method of the copper powder in any one of Claims 1-5 , The copper powder characterized by the above-mentioned.
JP2006082457A 2006-03-24 2006-03-24 Copper powder manufacturing method and copper powder obtained by the manufacturing method Active JP5144022B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006082457A JP5144022B2 (en) 2006-03-24 2006-03-24 Copper powder manufacturing method and copper powder obtained by the manufacturing method
TW096109738A TW200744954A (en) 2006-03-24 2007-03-21 Process for production of copper powder and copper powder obtained by the process
PCT/JP2007/055956 WO2007111231A1 (en) 2006-03-24 2007-03-23 Process for production of copper powder and copper powder obtained by the process
KR1020087023094A KR20080104020A (en) 2006-03-24 2007-03-23 Process for production of copper powder and copper powder obtained by the process
CNA2007800073532A CN101394961A (en) 2006-03-24 2007-03-23 Process for production of copper powder and copper powder obtained by the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082457A JP5144022B2 (en) 2006-03-24 2006-03-24 Copper powder manufacturing method and copper powder obtained by the manufacturing method

Publications (2)

Publication Number Publication Date
JP2007254846A JP2007254846A (en) 2007-10-04
JP5144022B2 true JP5144022B2 (en) 2013-02-13

Family

ID=38541149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082457A Active JP5144022B2 (en) 2006-03-24 2006-03-24 Copper powder manufacturing method and copper powder obtained by the manufacturing method

Country Status (5)

Country Link
JP (1) JP5144022B2 (en)
KR (1) KR20080104020A (en)
CN (1) CN101394961A (en)
TW (1) TW200744954A (en)
WO (1) WO2007111231A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719560B (en) 2018-09-21 2021-02-21 日商Jx金屬股份有限公司 Method for imparting easy pulverization to copper powder and manufacturing method of easy pulverization copper powder

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101722314B (en) * 2009-11-20 2014-08-20 云南大学 Method for preparing Cu2O-Cu composite microsphere by adopting bean flour as template
TWI450778B (en) * 2010-01-11 2014-09-01 Oriental Happy Entpr Co Ltd A method of industry-scale for producing sub-micro and nano copper powder
JP2011174144A (en) * 2010-02-25 2011-09-08 Jx Nippon Mining & Metals Corp Fine powder of copper and method for producing the same
KR101796339B1 (en) * 2010-10-06 2017-11-09 아사히 가라스 가부시키가이샤 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
JP5785433B2 (en) * 2011-04-28 2015-09-30 三井金属鉱業株式会社 Low carbon copper particles
CN102274979B (en) * 2011-09-20 2013-04-24 南京林业大学 Method for preparing nano copper powder in micromolecular viscous medium
JP5926644B2 (en) * 2011-09-30 2016-05-25 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method for producing the same
WO2014069698A1 (en) * 2012-11-02 2014-05-08 한국과학기술연구원 Oxidation resistant copper nanoparticles and method for producing same
WO2014080662A1 (en) 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
CN103480855A (en) * 2013-05-28 2014-01-01 昆明物语科技有限公司 Preparation method of superfine copper powder for copper paste
CN103658675B (en) * 2013-12-23 2015-06-24 广东东硕科技有限公司 Copper nanowire and preparation method thereof
CN105705276B (en) 2014-02-14 2018-01-19 三井金属矿业株式会社 Copper powder
CN104028763B (en) * 2014-06-11 2017-01-04 杭州前进齿轮箱集团股份有限公司 A kind of pyrite strengthens the manufacture method of wet copper-based friction plate
CN104858415B (en) * 2015-04-23 2017-03-01 金川集团股份有限公司 A kind of washing methods of super fine silver powder
JP6811012B2 (en) * 2015-12-02 2021-01-13 Dowaエレクトロニクス株式会社 How to make copper powder
KR102282809B1 (en) 2016-08-03 2021-07-27 가부시키가이샤 아데카 Method for manufacturing copper powder
CN111957986B (en) * 2020-08-20 2023-04-18 湖南泽宇新材料有限公司 Spherical nano copper powder and preparation method and application thereof
CN113523269B (en) * 2021-06-08 2023-06-16 五邑大学 Copper powder and preparation method and application thereof
JP7000621B1 (en) * 2021-06-17 2022-01-19 古河ケミカルズ株式会社 Method for manufacturing copper fine particles
JPWO2023223586A1 (en) * 2022-05-18 2023-11-23

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JP2728726B2 (en) * 1989-05-10 1998-03-18 正同化学工業株式会社 Method for producing fine copper powder
JP2638271B2 (en) * 1990-09-06 1997-08-06 住友金属工業株式会社 Production method of copper fine powder
JPH06235006A (en) * 1993-02-09 1994-08-23 Sumitomo Metal Mining Co Ltd Laminated silver powder, flaky silver powder, their production, conductive paste composition and conductive adhesive composition
JP2911429B2 (en) * 1997-06-04 1999-06-23 三井金属鉱業株式会社 Production method of copper fine powder
JP4639395B2 (en) * 2001-08-09 2011-02-23 Dowaエレクトロニクス株式会社 Method for producing silver particles
JP4145127B2 (en) * 2002-11-22 2008-09-03 三井金属鉱業株式会社 Flake copper powder, method for producing the flake copper powder, and conductive paste using the flake copper powder
JP4252349B2 (en) * 2003-04-11 2009-04-08 石原産業株式会社 Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode
JP4208704B2 (en) * 2003-12-04 2009-01-14 石原産業株式会社 Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same
JP2005206931A (en) * 2003-12-26 2005-08-04 Sumitomo Electric Ind Ltd Method for producing metal powder
JP4868716B2 (en) * 2004-04-28 2012-02-01 三井金属鉱業株式会社 Flake copper powder and conductive paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719560B (en) 2018-09-21 2021-02-21 日商Jx金屬股份有限公司 Method for imparting easy pulverization to copper powder and manufacturing method of easy pulverization copper powder

Also Published As

Publication number Publication date
WO2007111231A1 (en) 2007-10-04
JP2007254846A (en) 2007-10-04
KR20080104020A (en) 2008-11-28
CN101394961A (en) 2009-03-25
TW200744954A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
JP5144022B2 (en) Copper powder manufacturing method and copper powder obtained by the manufacturing method
JP5392884B2 (en) Method for producing copper powder
JP5355007B2 (en) Method for producing spherical silver powder
JP6274444B2 (en) Method for producing copper powder
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP6168837B2 (en) Copper fine particles and method for producing the same
JP2010077495A (en) Silver-covered copper fine particle, dispersed liquid thereof and method for producing the same
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
KR20120116013A (en) Spherical copper fine powder and process for production of the same
JP4651533B2 (en) Method for producing copper particles
JP5857703B2 (en) Silver powder
KR20150028970A (en) Silver powder
JP4433743B2 (en) Method for producing copper fine particles
JP4448962B2 (en) Manufacturing method of nickel-coated fine copper powder
JP4756652B2 (en) Drop-shaped copper powder, method for producing drop-shaped copper powder and conductive paste
JP2007197836A (en) Nickel powder
JP2015183200A (en) Silver powder and production method thereof
JP5500237B1 (en) Silver powder
JP5729842B2 (en) Copper powder
JP2009052146A (en) Copper powder and its manufacturing method
JP2010275578A (en) Silver powder and production method therefor
TW202030033A (en) Method for producing monodispersed ag powder
JP2015214759A (en) Silver powder manufacturing method
WO2020017564A1 (en) Method for producing spherical silver powder
JP5445659B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250