JPH04235205A - Production of copper powder - Google Patents

Production of copper powder

Info

Publication number
JPH04235205A
JPH04235205A JP1275591A JP1275591A JPH04235205A JP H04235205 A JPH04235205 A JP H04235205A JP 1275591 A JP1275591 A JP 1275591A JP 1275591 A JP1275591 A JP 1275591A JP H04235205 A JPH04235205 A JP H04235205A
Authority
JP
Japan
Prior art keywords
copper
copper powder
added
particle size
gelatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1275591A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nakada
中田 好和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1275591A priority Critical patent/JPH04235205A/en
Publication of JPH04235205A publication Critical patent/JPH04235205A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain globular copper powder appropriate to a copper paste for the thick-film conductor of an electronic circuit. CONSTITUTION:An aq. copper salt soln. is reduced to obtain copper powder. In this case, gelatin as the protective colloid is firstly added before a nucleus is formed by reduction and secondarily added during the growth of the grain to control the grain growth. Monodisperse globular grains having an extremely narrow grain size distribution and which are not aggregated are obtained in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子回路の厚膜導体を
形成するための銅ペーストとして、特に有用な球状銅粉
の製造方法に関し、さらに詳しくは、粒度分布の極めて
狭く、かつ、凝集していない単分散した球状銅粉の製造
方法に関する。
[Field of Industrial Application] The present invention relates to a method for producing spherical copper powder which is particularly useful as a copper paste for forming thick-film conductors for electronic circuits, and more specifically relates to a method for producing spherical copper powder that has an extremely narrow particle size distribution and is agglomerated. The present invention relates to a method for producing monodispersed spherical copper powder.

【0002】0002

【従来の技術】ガラス、セラミックス等の絶縁性基板上
にスクリーン印刷で塗布した後、焼成することによって
厚膜導体を形成する導体ペーストとしては、現在主に銀
系ペーストが用いられているが、近年銅ペーストを用い
る傾向になりつつあることは周知の通りである。
[Prior Art] Currently, silver-based pastes are mainly used as conductor pastes that are applied to insulating substrates such as glass or ceramics by screen printing and then baked to form thick film conductors. As is well known, there has been a trend in recent years to use copper paste.

【0003】すなわち、銅ペーストは銀系ペーストに比
べて、 (1) マイグレーションが起きにくいのでショートし
にくい、 (2) 導体抵抗および高周波損失が共に小さいので回
路の微細化が可能であり、 (3) 耐半田性に優れるので信頼性が高い、(4) 
低コスト化も可能である 等の利点を有する。
[0003] In other words, compared to silver-based pastes, copper paste has the following advantages: (1) migration is less likely to occur, so short circuits are less likely to occur; (2) conductor resistance and high-frequency loss are both small, making it possible to miniaturize circuits; ) High reliability due to excellent solder resistance, (4)
It has advantages such as cost reduction.

【0004】前記の銅ペーストに用いられる銅粉の粒径
は0.5 〜10μm 程度のものが用いられる。現在
、工業的に行われている銅粉の製造方法としては機械的
粉砕法、溶融銅を噴霧するアトマイズ法、陰極上への電
解析出法、蒸発法および湿式還元法が挙げられる。
The particle size of the copper powder used in the copper paste is approximately 0.5 to 10 μm. Currently, methods for producing copper powder industrially include a mechanical crushing method, an atomizing method in which molten copper is sprayed, an electrolytic deposition method on a cathode, an evaporation method, and a wet reduction method.

【0005】しかし、機械的粉砕法、アトマイズ法およ
び電解析出法で製造した銅粉は粗粒すぎるため、充分に
焼結した厚膜導体が得られず、銅ペースト用には適して
いない。一方、蒸発法で製造した銅粉は粒径が0.1 
μm 以下と極小であり、比表面積が大きく、かつ、か
さ高のため吸油量が多いので、焼成時に焼結クラックが
生ずるという欠点があり、銅ペースト用銅粉には不適切
である。その上、製造に多量の熱エネルギーを必要とす
るのでコストが高いという欠点も有する。ところが、硫
酸銅等の水溶性銅化合物の水溶液をヒドラジン等の還元
剤で還元することにより、銅粉を製造する湿式還元法は
、銅ペーストに適する粒径範囲の銅粉が容易に製造でき
るので、銅ペースト用銅粉には主にこの方法で製造され
た銅粉が用いられている (特公昭61−55562 
号公報、特開昭62−77406 号公報) 。
[0005] However, copper powder produced by mechanical crushing, atomization, and electrolytic deposition has too coarse grains, so that a sufficiently sintered thick film conductor cannot be obtained and is not suitable for use in copper paste. On the other hand, copper powder produced by evaporation method has a particle size of 0.1
It has a very small size of less than μm, has a large specific surface area, and has a large amount of oil absorption due to its bulk, which has the disadvantage of causing sintering cracks during firing, making it unsuitable for copper powder for copper paste. Moreover, it also has the disadvantage of being expensive because it requires a large amount of thermal energy for production. However, the wet reduction method, which produces copper powder by reducing an aqueous solution of water-soluble copper compounds such as copper sulfate with a reducing agent such as hydrazine, can easily produce copper powder with a particle size range suitable for copper paste. Copper powder produced by this method is mainly used for copper powder for copper paste (Japanese Patent Publication No. 61-55562
(Japanese Patent Application Laid-Open No. 62-77406).

【0006】[0006]

【発明が解決しようとする課題】一般的に、銅ペースト
用原料銅粉としては、充填性およびスクリーン印刷性の
点から球状銅粉であることが望ましい。すなわち、不規
則形状の銅粉はブリッジングを起こすので充填性が低く
、充分に焼結した厚膜導体は得られない。さらに、不規
則形状の銅粉は球状銅粉に比べて流動性が悪いので、ス
クリーン印刷の際には滑らかな細線が形成できないとい
う欠点も有する。
Generally speaking, it is desirable that the raw material copper powder for copper paste be spherical copper powder from the viewpoint of filling properties and screen printing properties. That is, irregularly shaped copper powder causes bridging, resulting in poor filling properties and a sufficiently sintered thick film conductor cannot be obtained. Furthermore, since irregularly shaped copper powder has poor fluidity compared to spherical copper powder, it also has the disadvantage that smooth thin lines cannot be formed during screen printing.

【0007】普通、前述の湿式還元法では、銅ペースト
に適した粒径0.5 μm 以上の球状銅粉を製造する
ことは困難である。なぜならば、粒径が0.5 μm 
以上になると、粒子同志の凝集が生じたり、あるいは結
晶面が現われてしまうからである。
[0007] Normally, it is difficult to produce spherical copper powder with a particle size of 0.5 μm or more suitable for copper paste using the above-mentioned wet reduction method. This is because the particle size is 0.5 μm.
This is because, if the temperature exceeds that level, agglomeration of particles may occur or crystal planes may appear.

【0008】さらに、最近は低温焼成によって銅厚膜導
体を形成できる銅ペーストが望まれている。低温での焼
成においても充分に焼結した厚膜導体を形成させるには
、銅粉をできるだけ密に充填させなければならず、この
ためには、粒度分布が極めて狭い単分散銅粉を複数種組
み合わせる必要がある。すなわち、粒径の大きな銅粒子
の間隙に粒径の小さい銅粒子を配置させるのである。 このために粒度分布の極めて狭い単分散した銅粉の製造
が必要とされてきた。
Furthermore, recently there has been a demand for a copper paste that can form copper thick film conductors by low temperature firing. In order to form a thick film conductor that is sufficiently sintered even when fired at low temperatures, it is necessary to pack the copper powder as densely as possible. It is necessary to combine them. That is, copper particles with a small particle size are arranged in the gaps between copper particles with a large particle size. For this reason, it has become necessary to produce monodispersed copper powder with an extremely narrow particle size distribution.

【0009】特開昭62−77406 号公報には反応
溶液中に保護コロイドを添加することで球状銅粉を製造
する方法を提案しているが、その粒度分布は±数μm 
とかなり広いものである。
[0009] JP-A-62-77406 proposes a method for producing spherical copper powder by adding a protective colloid to a reaction solution, but the particle size distribution is ± several μm.
It's quite wide.

【0010】また、特公昭61−55562 号公報に
は酸化銅粉末を保護コロイドを含む水性媒体中でヒドラ
ジン類による還元反応により銅粉を製造する方法が提案
されているが、粒度分布が一定した銅粉を再現性よく製
造するには、原料となる酸化銅粉の粒度分布もその都度
調整しなければならないという問題が存在する。
[0010] Furthermore, Japanese Patent Publication No. 61-55562 proposes a method for producing copper powder by reducing copper oxide powder with hydrazines in an aqueous medium containing a protective colloid. In order to produce copper powder with good reproducibility, there is a problem in that the particle size distribution of copper oxide powder, which is a raw material, must be adjusted each time.

【0011】本発明は上記の従来技術における問題点に
鑑み、銅ペーストに適した、粒度分布が極めて狭く、か
つ、球状で単分散した銅粉の製造方法を提供することを
目的としている。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, it is an object of the present invention to provide a method for producing copper powder which is suitable for copper paste and has an extremely narrow particle size distribution and is spherical and monodispersed.

【0012】0012

【課題を解決するための手段】前記目的を達成するため
、本発明者は鋭意研究を重ねた結果、銅塩水溶液の還元
時に存在する保護コロイドの量によって生成銅粉の粒径
、分布、そして形態が大きく影響されることを知り、そ
の最適量を決定すべく試みたところ、非常に微妙で再現
性に乏しいことが分かり、この点をさらに検討したとこ
ろ、分割添加することによって多少の添加量の変動にか
かわらず粒径分布が改善されるとともにその調節が比較
的容易に行い得ることを知見した。すなわち、銅塩水溶
液に還元剤を添加することにより銅粉を製造する銅粉製
造方法において、保護コロイドを分割添加することによ
り、生成する銅粒子の核生成および粒成長の制御が可能
なことを知見し、粒度分布の狭い球状単分散銅粉を製造
できる本発明を完成するに至った。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventor has conducted intensive research and found that the particle size, distribution, and Knowing that the morphology is greatly affected, we tried to determine the optimal amount, but found that it was very subtle and had poor reproducibility.When we further considered this point, we found that by adding it in portions, we could reduce the amount added. It has been found that the particle size distribution is improved regardless of variations in the particle size, and that its adjustment can be performed relatively easily. In other words, in a copper powder production method in which copper powder is produced by adding a reducing agent to an aqueous copper salt solution, it is possible to control the nucleation and grain growth of the produced copper particles by adding protective colloid in portions. Based on these findings, we have completed the present invention, which enables the production of spherical monodispersed copper powder with a narrow particle size distribution.

【0013】すなわち、本発明は、基本的には、反応溶
液中に保護コロイドを分割添加しながら銅塩水溶液を還
元して銅粉を製造するに当り、金属銅粉への還元に先立
って、銅塩水溶液にアルカリを加えて水酸化銅を生成し
、その後還元糖によって前記水酸化銅から亜酸化銅とし
た後に、銅粉への還元を行うことにより球状銅粉を製造
する方法である。さらに、本発明は、水溶液中の銅イオ
ンを安定化させるために錯化剤を添加することも望まし
い。前記の各工程において、保護コロイドの分割添加は
、銅の核生成前(初期添加)と粒成長中(後添加)の2
段階に分けて行われる。
[0013] That is, the present invention basically involves the production of copper powder by reducing an aqueous copper salt solution while adding a protective colloid to the reaction solution in portions, and prior to the reduction to metallic copper powder, This is a method for producing spherical copper powder by adding an alkali to an aqueous copper salt solution to produce copper hydroxide, and then converting the copper hydroxide into cuprous oxide using reducing sugar, which is then reduced to copper powder. Furthermore, in the present invention, it is also desirable to add a complexing agent to stabilize copper ions in the aqueous solution. In each of the above steps, the protective colloid is added in two parts: before copper nucleation (initial addition) and during grain growth (post addition).
It is done in stages.

【0014】[0014]

【作用】本発明の構成と作用を説明する。本発明で使用
される保護コロイドとは、疎水コロイドの電解質に対す
る不安定度を減らす目的で加えられる親水コロイドをい
う。すなわち、水溶液中の粒子を安定に存在させる作用
をもつ。前記のような保護コロイドとしてはゼラチン、
アラビアゴム、デキストリン、ポリビニルアルコール、
アルブミン、プロタルピン酸、リサルピン酸等があるが
、本発明においては、保護コロイド作用が強く、かつ、
工業的に入手しやすいゼラチンの使用が最も適している
[Operation] The structure and operation of the present invention will be explained. The protective colloid used in the present invention refers to a hydrophilic colloid added for the purpose of reducing the instability of a hydrophobic colloid with respect to an electrolyte. That is, it has the effect of making particles stably exist in an aqueous solution. As the above-mentioned protective colloids, gelatin,
gum arabic, dextrin, polyvinyl alcohol,
There are albumin, protalpic acid, risalpic acid, etc., but in the present invention, they have a strong protective colloid effect and
Gelatin, which is industrially easily available, is most suitable.

【0015】その添加量は特に制限されないが、例えば
生成銅粉末に対して0.8 〜12重量%程度は必要で
あって、本発明ではその量を分割添加するのである。硫
酸銅水溶液に還元剤を添加することで銅粉を製造する際
に、硫酸銅水溶液中にゼラチンを上記量を越えて多量に
添加した場合は、粒径0.5 μm 以下の粒度分布が
極めて狭い球状単分散銅粉が得られる。一方、逆にゼラ
チンを上記量よりも少量添加した場合は一次粒子径0.
5 μm 超の凝集した銅粉が生成する。
The amount added is not particularly limited, but for example, about 0.8 to 12% by weight based on the produced copper powder is required, and in the present invention, this amount is added in portions. When producing copper powder by adding a reducing agent to a copper sulfate aqueous solution, if a large amount of gelatin is added to the copper sulfate aqueous solution in excess of the above amount, the particle size distribution with a particle size of 0.5 μm or less will be extremely low. A narrow spherical monodisperse copper powder is obtained. On the other hand, when gelatin is added in a smaller amount than the above amount, the primary particle size is 0.
Coagulated copper powder with a diameter of more than 5 μm is produced.

【0016】この現象は以下のように説明できる。すな
わち、ゼラチンの添加量が多いと微細な銅の核が多数発
生する。この理由は多量のゼラチンが銅の核に付着する
ことで銅粒子相互の凝集を防ぐため、粒径の小さい核で
も多数が安定に存在するのであると考えられる。しかし
、この場合は粒子数が多いために粒成長はさほど起こら
ず、最終的に得られる銅粉は球状で単分散であるが粒径
は小さい。一方、ゼラチンの添加量が少ないと保護コロ
イド作用が弱まるため、微細な核は安定に存在できず、
比較的粒径の大きな核が少数生成する。しかし、その後
の粒成長段階で容易に凝集してしまうので球状の銅粉は
得られない。
This phenomenon can be explained as follows. That is, when the amount of gelatin added is large, many fine copper nuclei are generated. The reason for this is thought to be that a large amount of gelatin adheres to the copper cores and prevents the copper particles from coagulating with each other, so that a large number of nuclei, even those with small particle diameters, stably exist. However, in this case, since the number of particles is large, grain growth does not occur much, and the copper powder finally obtained is spherical and monodisperse, but the particle size is small. On the other hand, if the amount of gelatin added is small, the protective colloid effect will be weakened, making it impossible for fine nuclei to exist stably.
A small number of nuclei with a relatively large particle size are generated. However, spherical copper powder cannot be obtained because it easily aggregates during the subsequent grain growth stage.

【0017】本発明における保護コロイドとしてのゼラ
チンの分割添加による粒径0.5 μm以上の粒度分布
の狭い球状単分散銅粉の生成過程は以下の通りである。 まず、銅の核が析出する以前の段階、すなわち硫酸銅水
溶液の段階でゼラチンを全添加量の40〜60%を添加
することで、比較的粒径の大きな核を少数生成させる。 その後に残りのゼラチンを追加することで、銅の核を凝
集させることなく粒成長させるので、銅ペーストに適す
る粒径0.5 μm から7μm 程度の範囲内で粒度
分布の極めて狭い球状単分散粒子が得られるのである。 なお、ゼラチンを銅の核生成前に添加しなかった場合に
は、かなり凝集した不定形状の大きな核が生成するため
、粒成長の段階でゼラチンを添加しても球状の銅粉は得
られない。
The process of producing spherical monodisperse copper powder with a particle size of 0.5 μm or more and a narrow particle size distribution by dividing gelatin as a protective colloid in the present invention is as follows. First, by adding gelatin in an amount of 40 to 60% of the total amount at a stage before copper nuclei are precipitated, that is, at the stage of copper sulfate aqueous solution, a small number of nuclei having a relatively large particle size are generated. By subsequently adding the remaining gelatin, grains grow without agglomerating the copper nuclei, resulting in extremely narrow spherical monodisperse particles with a particle size distribution within the range of approximately 0.5 μm to 7 μm, which is suitable for copper paste. is obtained. Note that if gelatin is not added before copper nucleation, large, irregularly shaped nuclei that are quite agglomerated will be generated, so even if gelatin is added at the grain growth stage, spherical copper powder will not be obtained. .

【0018】本発明では代表的な銅塩水溶液として硫酸
銅水溶液を出発原料としているが、他の水溶性銅塩、例
えば、炭酸銅、硝酸銅、塩化銅およびシアン化銅の水溶
液を用いても同様の効果があることは言うまでもない。 ただし、硫酸銅はこれらの銅塩の中で、工業的に最も入
手しやすく、さらに、作業性、廃液処理等から判断して
最も好ましい銅塩である。本発明に用いる硫酸銅水溶液
の濃度は3〜30重量%が好ましい。硫酸銅水溶液の濃
度が3重量%未満では銅粉の収量が低くなり効果的でな
く、30重量%を超えると銅の核生成速度が極めて速く
なって、ゼラチンによる核生成コントロールが難しくな
る。
In the present invention, an aqueous copper sulfate solution is used as a starting material as a typical aqueous copper salt solution, but aqueous solutions of other water-soluble copper salts such as copper carbonate, copper nitrate, copper chloride, and copper cyanide may also be used. Needless to say, it has a similar effect. However, among these copper salts, copper sulfate is industrially the easiest to obtain, and furthermore, it is the most preferred copper salt in terms of workability, waste liquid treatment, etc. The concentration of the copper sulfate aqueous solution used in the present invention is preferably 3 to 30% by weight. If the concentration of the aqueous copper sulfate solution is less than 3% by weight, the yield of copper powder will be low and it will not be effective, and if it exceeds 30% by weight, the rate of copper nucleation will become extremely fast, making it difficult to control nucleation by gelatin.

【0019】本発明における銅粉製造時の反応温度は、
50℃から70℃が望ましい。反応温度が50℃未満で
は反応が完了するまで10時間以上の長時間を要し、7
0℃を超えると銅の核生成から粒成長への時間が短くて
、ゼラチン追加添加のタイミングが難しくなる上に、水
の蒸発も激しく、反応溶液濃度が大きく変化するので銅
の核生成・粒成長抑制が難しくなり、また、多量の熱エ
ネルギーを要するため、設備が大型になってしまうので
好ましくない。本発明における銅粉製造においては、硫
酸銅水溶液中から直接銅を還元析出するよりも、まずア
ルカリで水酸化銅を生成させた後に、還元糖で亜酸化銅
を生成させてから、金属銅を生成させる方が、反応の制
御性と安定性の点から好ましい。
[0019] The reaction temperature during the production of copper powder in the present invention is as follows:
A temperature of 50°C to 70°C is desirable. If the reaction temperature is less than 50°C, it will take a long time of 10 hours or more to complete the reaction.
If the temperature exceeds 0°C, the time from copper nucleation to grain growth is short, making it difficult to determine the timing of additional gelatin addition, and water evaporation is rapid, resulting in large changes in the reaction solution concentration, which slows copper nucleation and grain growth. This is not preferable because it becomes difficult to suppress the growth and requires a large amount of thermal energy, which increases the size of the equipment. In the production of copper powder in the present invention, rather than directly reducing and precipitating copper from an aqueous copper sulfate solution, copper hydroxide is first produced with an alkali, then cuprous oxide is produced with reducing sugar, and then metallic copper is produced. It is preferable to generate it from the viewpoint of controllability and stability of the reaction.

【0020】すなわち、硫酸銅水溶液から直接に銅を還
元析出させた場合は、反応が速すぎて核生成・粒成長プ
ロセスを制御しにくいが、アルカリによる水酸化銅の生
成、そして還元糖による亜酸化銅の生成を経て (還元
糖は金属銅まで還元する還元力はない) 還元剤により
金属銅を析出させた場合は、核生成・粒成長のプロセス
がゆるやかに起こるのでゼラチン添加による粒成長制御
が容易である。
In other words, when copper is reduced and precipitated directly from an aqueous copper sulfate solution, the reaction is too fast and it is difficult to control the nucleation and grain growth processes, but copper hydroxide is produced by the alkali and zinc chloride is produced by the reducing sugar. After producing copper oxide (reducing sugar does not have the reducing power to reduce to metallic copper) When metallic copper is precipitated by a reducing agent, the process of nucleation and grain growth occurs slowly, so grain growth can be controlled by adding gelatin. is easy.

【0021】本発明におけるゼラチンの分割添加のタイ
ミングは、銅の核生成前 (初期添加) と粒成長中 
(後添加) の2つの段階で添加する必要がある。初期
添加のタイミングは硫酸銅水溶液中、水酸化銅生成後お
よび亜酸化銅生成後等の銅の核生成前の段階ではいずれ
でもよいが、ゼラチンの反応溶液中への溶解性の点から
、硫酸銅水溶液の段階が望ましい。後添加の場合は還元
剤添加中および還元剤添加終了後でよい。さらに本発明
においては硫酸銅水溶液中の銅イオンを安定に溶解させ
るために錯化剤を添加することが望ましい。錯化剤とし
てはロッシュル塩、アルギニンおよびグリシン等のアミ
ノ酸、アンモニア等が使用可能である。
[0021] In the present invention, the timing of dividing gelatin addition is before copper nucleation (initial addition) and during grain growth.
It is necessary to add in two stages: (post-addition). The timing of initial addition may be at any stage before copper nucleation, such as in an aqueous solution of copper sulfate, after the formation of copper hydroxide, or after the formation of cuprous oxide, but from the viewpoint of the solubility of gelatin in the reaction solution, sulfuric acid A copper aqueous solution stage is preferred. In the case of post-addition, it may be done during the addition of the reducing agent or after the addition of the reducing agent is completed. Furthermore, in the present invention, it is desirable to add a complexing agent in order to stably dissolve copper ions in the copper sulfate aqueous solution. As the complexing agent, Roschl's salt, amino acids such as arginine and glycine, ammonia, etc. can be used.

【0022】本発明に使用するアルカリとしては、水酸
化ナトリウム(苛性ソーダ)もしくは水酸化カリウムが
、還元糖としてはぶどう糖が挙げられる。なお、ぶどう
糖による水酸化銅の亜酸化銅への還元はpHが約12以
上でなければ起こらないので充分なアルカリを添加する
必要がある。本発明に使用可能な還元剤としては抱水ヒ
ドラジン、ヒドラジン化合物、次亜りん酸アルカリ、水
素化ほう素アルカリおよびホルマリン等があげられるが
、還元力および廃液処理の点から抱水ヒドラジンが好ま
しい。
Examples of the alkali used in the present invention include sodium hydroxide (caustic soda) or potassium hydroxide, and examples of the reducing sugar include glucose. Note that since the reduction of copper hydroxide to cuprous oxide by glucose does not occur unless the pH is about 12 or higher, it is necessary to add sufficient alkali. Reducing agents that can be used in the present invention include hydrazine hydrate, hydrazine compounds, alkali hypophosphite, alkali borohydride, and formalin, but hydrazine hydrate is preferred from the viewpoint of reducing power and waste liquid treatment.

【0023】本発明により製造された銅粉の回収は、水
およびアルコールによるデカンテーションを数回くり返
して洗浄した後、自然重力濾過もしくは減圧濾過等で行
うことができる。回収された銅粉の乾燥は自然雰囲気下
もしくは減圧雰囲気下にて加熱することにより行うこと
ができる。加熱温度は銅粉の酸化を防ぐために90℃以
下が望ましい。本発明により得られた銅粉の粒径はマイ
クロトラックにより測定し、粒子形状は走査型電子顕微
鏡により調査した。
The copper powder produced according to the present invention can be recovered by washing by repeating decantation with water and alcohol several times, and then by natural gravity filtration or vacuum filtration. The recovered copper powder can be dried by heating in a natural atmosphere or a reduced pressure atmosphere. The heating temperature is preferably 90° C. or lower to prevent oxidation of the copper powder. The particle size of the copper powder obtained according to the present invention was measured using a microtrack, and the particle shape was investigated using a scanning electron microscope.

【0024】本発明を実施例と比較例によって具体的に
説明する。
The present invention will be specifically explained using Examples and Comparative Examples.

【実施例1】硫酸銅五水和物40gを200ml の水
に撹拌しながら溶解し、10gのロッシェル塩を添加し
、得られた溶液を55℃に保持した。さらに撹拌しなが
ら、ゼラチン0.30gを添加して完全に溶解させた後
、苛性ソーダ(24 %) を50ml添加して水酸化
銅を生成させ、次いで無水ぶどう糖14.4gを添加し
て亜酸化銅を生成させた。次に、抱水ヒドラジン (8
0%)10ml を1時間かけて添加した後ゼラチンを
0.30g添加して2時間撹拌した。生成した銅粉を水
およびアルコールによりデカンテーションした後、濾別
し減圧雰囲気下にて90℃で乾燥させた。得られた銅粉
は粒度分布が2.54μm ±0.15μm の球状単
分散銅粉であった。
Example 1 40 g of copper sulfate pentahydrate was dissolved in 200 ml of water with stirring, 10 g of Rochelle's salt was added, and the resulting solution was maintained at 55°C. With further stirring, 0.30 g of gelatin was added and completely dissolved, then 50 ml of caustic soda (24%) was added to form copper hydroxide, and then 14.4 g of anhydrous glucose was added to form cuprous oxide. was generated. Next, hydrazine hydrate (8
After adding 10 ml of 0%) over 1 hour, 0.30 g of gelatin was added and stirred for 2 hours. After the produced copper powder was decanted with water and alcohol, it was filtered and dried at 90° C. under a reduced pressure atmosphere. The obtained copper powder was a spherical monodisperse copper powder with a particle size distribution of 2.54 μm ±0.15 μm.

【0025】[0025]

【実施例2】硫酸銅五水和物40gを200ml の水
に撹拌しながら溶解し、10gのロッシェル塩を添加し
、得られた溶液を55℃に保持した。さらに撹拌しなが
ら、ゼラチン0.35gを添加して完全に溶解させた後
、苛性ソーダ(24 %) を50ml添加して水酸化
銅を生成させ、次いで無水ぶどう糖14.4gを添加し
て亜酸化銅を生成させた。次に、抱水ヒドラジン (8
0%) 10mlを1時間かけて添加した後ゼラチンを
0.30g添加して2時間撹拌した。生成した銅粉を水
およびアルコールによりデカンテーションした後、濾別
し減圧雰囲気下にて90℃で乾燥させた。得られた銅粉
は粒度分布が1.63μm ±0.10μm の球状単
分散銅粉であった。実施例1の場合よりも、初期添加の
ゼラチン量が多いため微細な核生成となり、粒度が小さ
い銅粉が得られた。
Example 2 40 g of copper sulfate pentahydrate was dissolved in 200 ml of water with stirring, 10 g of Rochelle's salt was added, and the resulting solution was maintained at 55°C. With further stirring, 0.35 g of gelatin was added and completely dissolved, then 50 ml of caustic soda (24%) was added to form copper hydroxide, and then 14.4 g of anhydrous glucose was added to form cuprous oxide. was generated. Next, hydrazine hydrate (8
0%) was added over 1 hour, and then 0.30 g of gelatin was added and stirred for 2 hours. After the produced copper powder was decanted with water and alcohol, it was filtered and dried at 90° C. under a reduced pressure atmosphere. The obtained copper powder was a spherical monodisperse copper powder with a particle size distribution of 1.63 μm ±0.10 μm. Since the amount of gelatin initially added was larger than in Example 1, fine nucleation occurred and copper powder with small particle size was obtained.

【0026】[0026]

【実施例3】硫酸銅五水和物40gを200ml の水
に撹拌しながら溶解し、10gのロッシェル塩を添加し
、得られた溶液を55℃に保持した。さらに撹拌しなが
ら、ゼラチン0.40gを添加して完全に溶解させた後
、苛性ソーダ(24 %) を50ml添加して水酸化
銅を生成させ、次いで無水ぶどう糖14.4gを添加し
て亜酸化銅を生成させた。次に、抱水ヒドラジン (8
0%) 10mlを1時間かけて添加した後ゼラチンを
0.30g添加して2時間撹拌した。生成した銅粉を水
およびアルコールによりデカンテーションした後、濾別
し減圧雰囲気下にて90℃で乾燥させた。得られた銅粉
は粒度分布が0.90μm ±0.05μm の球状単
分散銅粉であった。この実施例では、初期添加のゼラチ
ン量がさらに多くなった脚気、実施例1および2よりも
粒度がより小さい銅粉となった。
Example 3 40 g of copper sulfate pentahydrate was dissolved in 200 ml of water with stirring, 10 g of Rochelle's salt was added, and the resulting solution was maintained at 55°C. With further stirring, 0.40 g of gelatin was added and completely dissolved, then 50 ml of caustic soda (24%) was added to form copper hydroxide, and then 14.4 g of anhydrous glucose was added to form cuprous oxide. was generated. Next, hydrazine hydrate (8
0%) was added over 1 hour, and then 0.30 g of gelatin was added and stirred for 2 hours. After the produced copper powder was decanted with water and alcohol, it was filtered and dried at 90° C. under a reduced pressure atmosphere. The obtained copper powder was a spherical monodisperse copper powder with a particle size distribution of 0.90 μm ±0.05 μm. In this example, the amount of gelatin initially added was increased, resulting in copper powder with a smaller particle size than in Examples 1 and 2.

【0027】[0027]

【実施例4】硫酸銅五水和物40gを300ml の水
に撹拌しながら溶解し、10gのロッシェル塩を添加し
、得られた溶液を55℃に保持した。さらに撹拌しなが
ら、ゼラチン0.30gを添加して完全に溶解させた後
、苛性ソーダ(24 %) を50ml添加して水酸化
銅を生成させ、次いで無水ぶどう糖14.4gを添加し
て亜酸化銅を生成させた。次に、抱水ヒドラジン (8
0%) 20mlを1時間かけて添加した後ゼラチンを
0.30g添加して3時間撹拌した。生成した銅粉を水
およびアルコールによりデカンテーションした後、濾別
し減圧雰囲気下にて90℃で乾燥させた。得られた銅粉
は粒度分布が3.53μm ±0.20μm の球状単
分散銅粉であった。銅塩水溶液の量が実施例1〜3より
も多くなったことによりゼラチンの保護コロイド作用が
弱まり、粒径の大きい核が生成し、得られた銅粉も大き
い粒度となっている。
Example 4 40 g of copper sulfate pentahydrate was dissolved in 300 ml of water with stirring, 10 g of Rochelle's salt was added, and the resulting solution was maintained at 55°C. With further stirring, 0.30 g of gelatin was added and completely dissolved, then 50 ml of caustic soda (24%) was added to form copper hydroxide, and then 14.4 g of anhydrous glucose was added to form cuprous oxide. was generated. Next, hydrazine hydrate (8
0%) was added over 1 hour, and then 0.30 g of gelatin was added and stirred for 3 hours. After the produced copper powder was decanted with water and alcohol, it was filtered and dried at 90° C. under a reduced pressure atmosphere. The obtained copper powder was a spherical monodisperse copper powder with a particle size distribution of 3.53 μm ±0.20 μm. Since the amount of the copper salt aqueous solution was larger than in Examples 1 to 3, the protective colloid effect of gelatin was weakened, and nuclei with a large particle size were generated, and the obtained copper powder also had a large particle size.

【0028】[0028]

【実施例5】硫酸銅五水和物40gを300ml の水
に撹拌しながら溶解し、10gのロッシェル塩を添加し
、得られた溶液を55℃に保持した。さらに撹拌しなが
ら、ゼラチン0.20gを添加して完全に溶解させた後
、苛性ソーダ(24 %) を50ml添加して水酸化
銅を生成させ、次いで無水ぶどう糖14.4gを添加し
て亜酸化銅を生成させた。次に、抱水ヒドラジン (8
0%) 20mlを1時間かけて添加した後ゼラチンを
0.30g添加して3時間撹拌した。生成した銅粉を水
およびアルコールによりデカンテーションした後、濾別
し減圧雰囲気下にて90℃で乾燥させた。得られた銅粉
は粒度分布が5.14μm ±0.25μm の球状単
分散銅粉であった。前実施例に比べ更に相対的に初期添
加ゼラチンが少なくなった結果、粒径の大きい銅粉が製
造された。
Example 5 40 g of copper sulfate pentahydrate was dissolved in 300 ml of water with stirring, 10 g of Rochelle's salt was added, and the resulting solution was maintained at 55°C. With further stirring, 0.20 g of gelatin was added and completely dissolved, then 50 ml of caustic soda (24%) was added to form copper hydroxide, and then 14.4 g of anhydrous glucose was added to form cuprous oxide. was generated. Next, hydrazine hydrate (8
0%) was added over 1 hour, and then 0.30 g of gelatin was added and stirred for 3 hours. After the produced copper powder was decanted with water and alcohol, it was filtered and dried at 90° C. under a reduced pressure atmosphere. The obtained copper powder was a spherical monodisperse copper powder with a particle size distribution of 5.14 μm ±0.25 μm. As a result of the relatively smaller amount of initially added gelatin compared to the previous example, copper powder with a large particle size was produced.

【0029】[0029]

【比較例1】硫酸銅五水和物40gを200ml の水
に撹拌しながら溶解し、10gのロッシェル塩を添加し
、得られた溶液を55℃に保持した。さらに撹拌しなが
ら、ゼラチン0.40gを添加して完全に溶解させた後
、苛性ソーダ(24 %) を50ml添加して水酸化
銅を生成させ、次いで無水ぶどう糖14.4gを添加し
て亜酸化銅を生成させた。次に、抱水ヒドラジン (8
0%) 10mlを1時間かけて添加して2時間撹拌し
た。生成した銅粉を水およびアルコールによりデカンテ
ーションした後、濾別し減圧雰囲気下にて90℃で乾燥
させた。得られた銅粉は粒度が1.20μm 程度の凝
集した銅粉であった。保護コロイドとしてのゼラチンの
後添加を行わなかった結果、生成した銅の核は微細であ
ったが、凝集した銅粉が生成したことがわかる。
[Comparative Example 1] 40 g of copper sulfate pentahydrate was dissolved in 200 ml of water with stirring, 10 g of Rochelle's salt was added, and the resulting solution was maintained at 55°C. With further stirring, 0.40 g of gelatin was added and completely dissolved, then 50 ml of caustic soda (24%) was added to form copper hydroxide, and then 14.4 g of anhydrous glucose was added to form cuprous oxide. was generated. Next, hydrazine hydrate (8
0%) was added over 1 hour and stirred for 2 hours. After the produced copper powder was decanted with water and alcohol, it was filtered and dried at 90° C. under a reduced pressure atmosphere. The obtained copper powder was agglomerated copper powder with a particle size of about 1.20 μm. It can be seen that as a result of not adding gelatin as a protective colloid, agglomerated copper powder was produced, although the copper nuclei produced were fine.

【0030】[0030]

【比較例2】硫酸銅五水和物40gを200ml の水
に撹拌しながら溶解し、10gのロッシェル塩を添加し
、得られた溶液を55℃に保持した。さらに撹拌しなが
ら、ゼラチン0.60gを添加して完全に溶解させた後
、苛性ソーダ(24 %) を50ml添加して水酸化
銅を生成させ、次いで無水ぶどう糖14.4gを添加し
て亜酸化銅を生成させた。次に、抱水ヒドラジン (8
0%) 10mlを1時間かけて添加して2時間撹拌し
た。生成した銅粉を水およびアルコールによりデカンテ
ーションした後、濾別し減圧雰囲気下にて90℃で乾燥
させた。得られた銅粉は粒度分布が0.35±0.10
μm 程度の球状単分散銅粉であった。比較例1より大
量の保護コロイドの添加により多量の微細な核が生成し
たものの、その後の粒成長が充分でなく、単分散銅粉で
はあるが微粒のため実用性に乏しいものである。
[Comparative Example 2] 40 g of copper sulfate pentahydrate was dissolved in 200 ml of water with stirring, 10 g of Rochelle's salt was added, and the resulting solution was maintained at 55°C. With further stirring, 0.60 g of gelatin was added and completely dissolved, then 50 ml of caustic soda (24%) was added to form copper hydroxide, and then 14.4 g of anhydrous glucose was added to form cuprous oxide. was generated. Next, hydrazine hydrate (8
0%) was added over 1 hour and stirred for 2 hours. After the produced copper powder was decanted with water and alcohol, it was filtered and dried at 90° C. under a reduced pressure atmosphere. The obtained copper powder has a particle size distribution of 0.35±0.10
It was a spherical monodisperse copper powder of about μm size. Although a large amount of fine nuclei were generated by adding a large amount of protective colloid in Comparative Example 1, the subsequent grain growth was insufficient, and although the powder was a monodispersed copper powder, the grains were too small to be practical.

【0031】[0031]

【比較例3】硫酸銅五水和物40gを200ml の水
に撹拌しながら溶解し、10gのロッシェル塩を添加し
、得られた溶液を55℃に保持した。さらに撹拌しなが
ら、苛性ソーダ(24 %) を50ml添加して水酸
化銅を生成させ、次いで無水ぶどう糖14.4gを添加
して亜酸化銅を生成させた。 次に、抱水ヒドラジン (80%) 10mlを1時間
かけて添加した後ゼラチンを0.30g添加して2時間
撹拌した。生成した銅粉を水およびアルコールによりデ
カンテーションした後、濾別し減圧雰囲気下にて90℃
で乾燥させた。
[Comparative Example 3] 40 g of copper sulfate pentahydrate was dissolved in 200 ml of water with stirring, 10 g of Rochelle's salt was added, and the resulting solution was maintained at 55°C. While further stirring, 50 ml of caustic soda (24%) was added to produce copper hydroxide, and then 14.4 g of anhydrous glucose was added to produce cuprous oxide. Next, 10 ml of hydrazine hydrate (80%) was added over 1 hour, and then 0.30 g of gelatin was added and stirred for 2 hours. After decanting the produced copper powder with water and alcohol, it was filtered and heated at 90°C under a reduced pressure atmosphere.
It was dried with.

【0032】得られた銅粉は一次粒子径が2.80μm
 程度の凝集した銅粉であった。保護コロイドを使用し
ていないため、凝集した銅粉が生成した。これらの実施
例、比較例から本発明においては、保護コロイドの使用
条件を変えることにより、所望する粒径の球状単分散銅
粉の製造が可能なことが明らかである。
[0032] The obtained copper powder has a primary particle size of 2.80 μm.
The copper powder was somewhat agglomerated. Since no protective colloid was used, agglomerated copper powder was produced. From these Examples and Comparative Examples, it is clear that in the present invention, by changing the usage conditions of the protective colloid, it is possible to produce spherical monodisperse copper powder with a desired particle size.

【0033】[0033]

【発明の効果】本発明は以上説明したように構成されて
いるから、保護コロイドの作用を巧みに利用して銅粒子
の核生成および粒成長を制御することにより、従来法で
は得られなかった粒度分布が極めて狭い球状単分散銅粉
を簡便な手法と設備を用いて製造しうるもので甚だ画期
的であり、産業上きわめて有用である。
[Effects of the Invention] Since the present invention is constructed as described above, by skillfully utilizing the action of protective colloids to control the nucleation and grain growth of copper particles, it is possible to achieve an advantage that could not be obtained with conventional methods. This invention is extremely innovative and industrially useful because spherical monodisperse copper powder with an extremely narrow particle size distribution can be produced using a simple method and equipment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  反応溶液中に保護コロイドを分割添加
しながら銅塩水溶液を還元して銅粉を製造する方法にお
いて、銅塩水溶液にアルカリを添加して水酸化銅を生成
させ、該水酸化銅を還元糖により亜酸化銅にまで還元し
た後、銅への還元を行うことを特徴とする銅粉の製造方
法。
Claim 1. A method for producing copper powder by reducing an aqueous copper salt solution while adding a protective colloid in portions to a reaction solution, in which an alkali is added to the aqueous copper salt solution to produce copper hydroxide, and the hydroxide is A method for producing copper powder, which comprises reducing copper to cuprous oxide using reducing sugar, and then reducing it to copper.
【請求項2】  保護コロイドの添加は、還元銅の核が
析出する以前の段階から少量づつ分割して行う請求項1
記載の銅粉の製造方法。
[Claim 2] Claim 1: The protective colloid is added in small portions at a stage before the reduced copper nuclei are precipitated.
The method for producing the copper powder described.
【請求項3】  水溶液中の銅イオンを安定に溶解させ
るために錯化剤を添加する請求項1または2記載の銅粉
の製造方法。
3. The method for producing copper powder according to claim 1, wherein a complexing agent is added to stably dissolve copper ions in the aqueous solution.
JP1275591A 1991-01-09 1991-01-09 Production of copper powder Withdrawn JPH04235205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275591A JPH04235205A (en) 1991-01-09 1991-01-09 Production of copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275591A JPH04235205A (en) 1991-01-09 1991-01-09 Production of copper powder

Publications (1)

Publication Number Publication Date
JPH04235205A true JPH04235205A (en) 1992-08-24

Family

ID=11814225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275591A Withdrawn JPH04235205A (en) 1991-01-09 1991-01-09 Production of copper powder

Country Status (1)

Country Link
JP (1) JPH04235205A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174344B1 (en) 1997-06-04 2001-01-16 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP2007314869A (en) * 2006-05-25 2007-12-06 Samsung Electro-Mechanics Co Ltd Method of producing metal nanoparticle and metal nanoparticle produced thereby
JP2008050661A (en) * 2006-08-25 2008-03-06 Shoei Chem Ind Co Method for producing copper powder
US7534283B2 (en) * 2005-03-22 2009-05-19 Dowa Electronics Materials., Ltd. Method of producing copper powder and copper powder
JP2010222706A (en) * 2010-05-10 2010-10-07 Jx Nippon Mining & Metals Corp Production method for fine copper powder
JP2012241213A (en) * 2011-05-17 2012-12-10 Hokkaido Univ Method for producing copper fine particle
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174344B1 (en) 1997-06-04 2001-01-16 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
US6391087B1 (en) 1997-06-04 2002-05-21 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
US7828872B2 (en) 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
EP2452767A1 (en) 2004-08-20 2012-05-16 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
US7534283B2 (en) * 2005-03-22 2009-05-19 Dowa Electronics Materials., Ltd. Method of producing copper powder and copper powder
JP2007314869A (en) * 2006-05-25 2007-12-06 Samsung Electro-Mechanics Co Ltd Method of producing metal nanoparticle and metal nanoparticle produced thereby
JP2008050661A (en) * 2006-08-25 2008-03-06 Shoei Chem Ind Co Method for producing copper powder
JP2010222706A (en) * 2010-05-10 2010-10-07 Jx Nippon Mining & Metals Corp Production method for fine copper powder
JP2012241213A (en) * 2011-05-17 2012-12-10 Hokkaido Univ Method for producing copper fine particle
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle

Similar Documents

Publication Publication Date Title
JP2638271B2 (en) Production method of copper fine powder
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
KR101945166B1 (en) Copper powder for conductive paste and method for manufacturing same
KR101522738B1 (en) Copper Powder For Conductive Paste and Method For Preparation Thereof
JP4821014B2 (en) Copper powder manufacturing method
JPH1088206A (en) Silver powder and manufacture of silver powder
JPH04235205A (en) Production of copper powder
JP4490305B2 (en) Copper powder
JPH07118868A (en) Production of palladium-coated spherical silver powder
JP4639395B2 (en) Method for producing silver particles
CN112264629A (en) Preparation method and application of low-cost high-dispersion silver powder
JPH0557324B2 (en)
JPH10265812A (en) Production of superfine silver particle
JP4406738B2 (en) Manufacturing method of copper powder with small particle size distribution
JP2000001706A (en) High crystal silver particle, its production and conductor paste consisting of high crystal silver particle
WO2019135306A1 (en) Copper nano ink production method and copper nano ink
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
JP3245965B2 (en) Production method of copper powder
JP3122148B2 (en) Method for producing palladium powder
JPS6051522B2 (en) Manufacturing method of silver fine powder
JPH07109505A (en) Production of silver-palladium composite powder and silver-palladium composite powder
JP2002363618A (en) Copper ultrafine grain and production method therefor
JPH03287707A (en) Production of copper powder
JPH0892612A (en) Production of silver powder
JP2016006234A (en) Conductive paste copper powder and production method of the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514