JP4978115B2 - Method for producing copper powder - Google Patents

Method for producing copper powder Download PDF

Info

Publication number
JP4978115B2
JP4978115B2 JP2006227724A JP2006227724A JP4978115B2 JP 4978115 B2 JP4978115 B2 JP 4978115B2 JP 2006227724 A JP2006227724 A JP 2006227724A JP 2006227724 A JP2006227724 A JP 2006227724A JP 4978115 B2 JP4978115 B2 JP 4978115B2
Authority
JP
Japan
Prior art keywords
copper
copper powder
powder
cuprous oxide
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006227724A
Other languages
Japanese (ja)
Other versions
JP2008050650A (en
Inventor
修嗣 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2006227724A priority Critical patent/JP4978115B2/en
Publication of JP2008050650A publication Critical patent/JP2008050650A/en
Application granted granted Critical
Publication of JP4978115B2 publication Critical patent/JP4978115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は微細な銅粉末の製造方法に関し、特に、エレクトロニクス用の導体ペースト、導電性塗料、導電性接着剤等の導電性フィラーとして有用な、凝集の少ない球状の高分散性銅粉末の製造方法に関する。   The present invention relates to a method for producing fine copper powder, and in particular, a method for producing a spherical highly dispersible copper powder with little aggregation useful as a conductive filler such as a conductive paste for electronics, a conductive paint, and a conductive adhesive. About.

銅粉末は安価で導電性が高いため、エレクトロニクス分野において、導体回路、電子部品の電極、電磁波シールド層等を形成するための厚膜導体ペースト、導電性塗料、導電性インクおよび導電性接着剤等(以下、総称して「導体ペースト」とする)の導電性フィラーとして広く用いられている。このような用途においては、主として球状、多角形状、粒状、樹枝状あるいはフレーク状の銅粉末が、用途や目的に応じて使用される。   Copper powder is inexpensive and highly conductive, so in the electronics field, thick film conductor paste, conductive paint, conductive ink, conductive adhesive, etc. for forming conductor circuits, electrodes of electronic components, electromagnetic shielding layers, etc. It is widely used as a conductive filler (hereinafter collectively referred to as “conductor paste”). In such applications, mainly spherical, polygonal, granular, dendritic or flaky copper powder is used depending on the application and purpose.

ここで、近年では、電子部品の小型化、高性能化に伴い、高精細な導体パターンや非常に薄く緻密な電極層を高い精度で形成することのできる導体ペーストが要望されている。このため、微細で大きさや形状が揃っておりかつ凝集が少なく、導体ペースト中での分散性が優れた球状の銅粉末が求められている。また、一般に銅粉末は大気中で酸化し易いため、耐酸化性に優れていることも求められている。   Here, in recent years, with the miniaturization and high performance of electronic components, there has been a demand for a conductive paste capable of forming a high-definition conductor pattern and a very thin and dense electrode layer with high accuracy. For this reason, there is a demand for a spherical copper powder that is fine, has a uniform size and shape, has little aggregation, and is excellent in dispersibility in a conductor paste. Moreover, since copper powder is generally easy to oxidize in air | atmosphere, it is calculated | required that it is excellent in oxidation resistance.

このような銅粉末を製造する方法の一つに、亜酸化銅(CuO)をヒドラジン系還元剤により還元する方法、または、銅塩水溶液に水酸化アルカリを添加して水酸化銅を生成させ、これを還元糖で還元して亜酸化銅を生成させ、得られた亜酸化銅をヒドラジン系還元剤により還元する方法が知られている(特許文献1〜3参照)。これらの方法は、比較的粒度の揃った微細な銅粉末を得ることができるため、広く採用されている。
特開平2−294414号公報 特開平4−116109号公報 特開平5−221637号公報
One method for producing such copper powder is to reduce cuprous oxide (Cu 2 O) with a hydrazine-based reducing agent, or to produce copper hydroxide by adding an alkali hydroxide to an aqueous copper salt solution. There is known a method of reducing this with a reducing sugar to produce cuprous oxide and reducing the obtained cuprous oxide with a hydrazine-based reducing agent (see Patent Documents 1 to 3). These methods are widely adopted because fine copper powder having a relatively uniform particle size can be obtained.
JP-A-2-294414 JP-A-4-116109 JP-A-5-221737

しかしながら、特許文献2〜3に記載の方法では、得られる銅粉末の粒径が比較的大きく、0.5μm以下の銅粉末が得られないという問題がある。一方、特許文献1に記載の方法では、極めて微細な銅粉末が得られるが、銅微粒子同士が融着してしまい導体ペースト中での分散性が悪くなったり、異形粒子や粗大粒子が混入してしまい均一形状の粒度の揃った球状粒子が得られにくいという問題もある。また、微細な銅粉末は活性が高く極めて酸化し易いため、銅粉末の生成や分離直後および/または保存中に酸化されてしまい、導電性が低下しないように取り扱うことが難しいという問題もある。   However, the methods described in Patent Documents 2 to 3 have a problem that the obtained copper powder has a relatively large particle size, and a copper powder of 0.5 μm or less cannot be obtained. On the other hand, in the method described in Patent Document 1, an extremely fine copper powder is obtained, but the copper fine particles are fused to each other so that the dispersibility in the conductor paste is deteriorated, or irregularly shaped particles or coarse particles are mixed. As a result, there is a problem that it is difficult to obtain spherical particles having a uniform particle size. Further, since the fine copper powder has high activity and is very easy to oxidize, it is oxidized immediately after the copper powder is produced and separated and / or during storage, and it is difficult to handle so that the conductivity is not lowered.

特に、導体ペーストを用いて微細な導体パターン(例えば、パターン幅およびパターン間隔が100μm以下であるような高精細な導体パターン)や、薄くかつ導電性の高い緻密な電極層を形成するためには、極めて微細で導電性能の優れた球状銅粉末を使用することが必要である。そのためには、平均粒径が0.5μm以下、さらには0.1μm以下で、分散性および耐酸化性が優れた銅微粉末を使用することが望ましいが、特許文献1〜3に記載の方法では、このような用途に適した、凝集が少なくかつ安定な導電性能を有する球状の銅微粉末を、再現性良く得ることが難しいという問題があった。   In particular, in order to form a fine conductor pattern (for example, a high-definition conductor pattern having a pattern width and pattern interval of 100 μm or less) or a thin and highly conductive electrode layer using a conductor paste It is necessary to use a spherical copper powder that is extremely fine and has excellent conductive performance. For this purpose, it is desirable to use a copper fine powder having an average particle size of 0.5 μm or less, more preferably 0.1 μm or less, and excellent dispersibility and oxidation resistance. Then, there existed a problem that it was difficult to obtain the spherical copper fine powder suitable for such a use with few aggregation and stable conductive performance with sufficient reproducibility.

また、特許文献1〜3に記載の方法で使用される有機系の錯化剤の中には、生成する銅粒子と化合物を作って強固に結合し、洗浄等でも除去されずに粉末表面に残留することがある。このように有機物が表面に強固に結合した銅粉末を用いて製造された導体ペーストは、非酸化性雰囲気で焼成した場合、有機物が分解除去されにくく、炭素質残渣となって電子部品の電気特性に悪影響を及ぼすことがある。   In addition, among the organic complexing agents used in the methods described in Patent Documents 1 to 3, the resulting copper particles and compounds are made and bonded firmly, and are not removed by washing or the like. May remain. Thus, the conductive paste manufactured using copper powder with organic substances firmly bonded to the surface is hard to decompose and remove organic substances when baked in a non-oxidizing atmosphere, and becomes a carbonaceous residue. May be adversely affected.

本発明の目的は、導体ペースト等の導電性フィラーとして適しており、極めて微細でかつ耐酸化性が優れ、粒度の揃った(好ましくは平均粒径0.5μm以下)球状の非凝集銅粉末を、簡単な工程で製造する方法を提供することにある。また本発明の他の目的は、生成銅粉末中に残留しやすい錯化剤を使用することなく、微細で凝集が抑制された、分散性の良好な銅粉末を効率よく製造することにある。   The object of the present invention is a spherical non-aggregated copper powder that is suitable as a conductive filler such as a conductor paste, is extremely fine, has excellent oxidation resistance, and has a uniform particle size (preferably an average particle size of 0.5 μm or less). Another object of the present invention is to provide a method of manufacturing by a simple process. Another object of the present invention is to efficiently produce a fine, finely dispersed copper powder with good dispersibility, without using a complexing agent that tends to remain in the resulting copper powder.

前記課題を解決するために、請求項1に記載の発明は、
銅塩水溶液に水酸化アルカリおよび還元糖を混合することにより亜酸化銅を生成させ、該亜酸化銅をヒドラジン系還元剤で還元することにより金属銅を得る銅粉末の製造方法において、
前記銅塩水溶液に水溶性銀塩を予め溶解させた後、前記水酸化アルカリおよび前記還元糖を混合することを特徴とする。
In order to solve the above problem, the invention according to claim 1 is:
In the method for producing copper powder, a cuprous oxide is produced by mixing an alkali hydroxide and a reducing sugar in a copper salt aqueous solution, and the cuprous oxide is reduced with a hydrazine-based reducing agent to obtain metallic copper.
A water-soluble silver salt is previously dissolved in the copper salt aqueous solution, and then the alkali hydroxide and the reducing sugar are mixed.

請求項2に記載の発明は、請求項1に記載の銅粉末の製造方法において、
前記銅塩水溶液中の銅原子に対して銀が原子換算で0.1〜5モル%となるように前記水溶性銀塩を溶解させることを特徴とする。
Invention of Claim 2 is a manufacturing method of the copper powder of Claim 1,
The water-soluble silver salt is dissolved so that silver is 0.1 to 5 mol% in terms of atoms with respect to copper atoms in the copper salt aqueous solution.

本発明は、銅塩水溶液から亜酸化銅を形成するに際し、銅塩水溶液に水溶性銀塩を予め溶解させ、これに水酸化アルカリおよび還元糖を混合して析出させた亜酸化銅をヒドラジン系還元剤で還元することにより、残留しやすい錯化剤を使用することなく、走査型電子顕微鏡(SEM)観察による粒径が概ね0.02〜0.5μmの、微細で凝集が抑制された球状の銅粉末を製造することができる。また、このようにして得られる銅粉末は、微細であるにもかかわらず、良好な耐酸化性を有しているため保存安定性が優れ、取扱いも容易である。また酸化の程度が少ないため導電性能も優れた銅粉末とすることが可能である。   In the present invention, when forming cuprous oxide from an aqueous copper salt solution, a water-soluble silver salt is previously dissolved in the aqueous copper salt solution, and mixed with an alkali hydroxide and a reducing sugar to precipitate the cuprous oxide, which is hydrazine-based. By reducing with a reducing agent, a fine spherical particle with a particle size of approximately 0.02 to 0.5 μm observed with a scanning electron microscope (SEM) is suppressed without using a complexing agent that tends to remain. Copper powder can be produced. Moreover, although the copper powder obtained in this way is fine, it has good oxidation resistance and thus has excellent storage stability and is easy to handle. In addition, since the degree of oxidation is small, it is possible to obtain a copper powder having excellent conductive performance.

以下に、本発明に係る銅粉末の製造方法の一実施形態について説明する。   Below, one Embodiment of the manufacturing method of the copper powder which concerns on this invention is described.

まず、銅塩水溶液中に水溶性銀塩を添加、溶解し、これに水酸化アルカリおよび還元糖を反応させて亜酸化銅を還元析出させる。銅塩水溶液に水酸化アルカリおよび還元糖を添加する際、水酸化アルカリと還元糖の添加順に制限はなく、水酸化アルカリを添加した後還元糖を添加しても、還元糖を加えた後水酸化アルカリを加えてもよい。また水酸化アルカリと還元糖の混合溶液を予め用意し、両者を同時に添加することとしてもよい。また、還元糖溶液を母液とし、これに予め銀塩を溶解させた銅塩水溶液と水酸化アルカリとを添加することとしてもよい。   First, a water-soluble silver salt is added and dissolved in an aqueous copper salt solution, and this is reacted with an alkali hydroxide and a reducing sugar to reduce and precipitate cuprous oxide. When adding alkali hydroxide and reducing sugar to an aqueous copper salt solution, there is no restriction on the order of addition of alkali hydroxide and reducing sugar. Even if reducing sugar is added after adding alkali hydroxide, water after adding reducing sugar is added. An alkali oxide may be added. Alternatively, a mixed solution of alkali hydroxide and reducing sugar is prepared in advance, and both may be added simultaneously. Alternatively, a reducing sugar solution may be used as a mother liquor, and an aqueous copper salt solution in which a silver salt is previously dissolved and an alkali hydroxide may be added thereto.

本発明で使用される銅塩は、水溶性の銅化合物であって、銀と不溶性の析出物を形成する陰イオンが含まれていないものであれば適用可能であるが、比較的容易に入手可能な硫酸銅、硝酸銅、酢酸銅等を用いるのが好ましい。銅塩水溶液の濃度は、銅塩の種類にもよるが、通常10〜40重量%の濃度であることが望ましい。10重量%未満の銅塩濃度では製造効率が低く、40重量%より高い濃度では、反応が不均一となりやすく、微細で凝集が抑制された銅粉末を製造することが困難になる。   The copper salt used in the present invention can be applied as long as it is a water-soluble copper compound and does not contain an anion that forms an insoluble precipitate with silver. It is preferable to use possible copper sulfate, copper nitrate, copper acetate and the like. The concentration of the aqueous copper salt solution is usually 10 to 40% by weight, although it depends on the type of copper salt. When the copper salt concentration is less than 10% by weight, the production efficiency is low, and when the concentration is higher than 40% by weight, the reaction tends to be non-uniform, and it becomes difficult to produce a copper powder that is fine and suppressed in aggregation.

本発明で使用される銀塩は、水溶性のものであれば特に制限はないが、例えば硝酸塩などが好ましい。具体的には、例えば、金属銀、酸化銀、炭酸銀等を硝酸等に溶解したものが挙げられる。銀塩の添加量は、銀原子換算で、銅原子に対して0.1〜5モル%とすることが望ましい。添加量が0.1モル%未満では、微細で粒度の揃った球状の銅粉末が得られるという効果が小さい。一方、添加量が5モル%より多い場合、目的の銅粉末は得られるものの、高価な銀を多量に使用することになるため、コスト的に望ましくない。   The silver salt used in the present invention is not particularly limited as long as it is water-soluble, but for example, nitrate is preferable. Specifically, for example, metal silver, silver oxide, silver carbonate or the like dissolved in nitric acid or the like can be used. The addition amount of the silver salt is preferably 0.1 to 5 mol% with respect to copper atoms in terms of silver atoms. When the addition amount is less than 0.1 mol%, the effect of obtaining a fine and uniform spherical copper powder is small. On the other hand, when the addition amount is more than 5 mol%, the target copper powder can be obtained, but a large amount of expensive silver is used, which is undesirable in terms of cost.

本発明で使用される水酸化アルカリに特に制限はなく、アルカリ金属の水酸化物や水酸化アンモニウム等を用いることができるが、中でも、水酸化ナトリウム、水酸化カリウムが好適に使用される。水酸化アルカリは、銅塩水溶液に固体のまま添加してもよく、水溶液にして添加してもよい。本発明においては、水酸化アルカリを銅塩水溶液に添加することにより、亜酸化銅への還元に先立って水酸化銅が生成すると考えられる。水酸化アルカリの添加量は、銅塩に対して当量の1〜1.5倍の範囲が好ましく、特に、水酸化アルカリの添加後のpHが8〜13の範囲となるように添加することが好ましい。pHが8未満では未反応の銅イオンが廃液中に多く残留してしまい、かつ、還元糖による亜酸化銅への還元反応が十分に進まないおそれがある。pHが13より高いと、本発明の効果は損なわないが、水酸化アルカリの使用量が多くなることからコストが高くなり、また過剰に添加されたアルカリ金属イオンが残留した場合には、導体ペーストの特性を損なうおそれがある。   There is no restriction | limiting in particular in the alkali hydroxide used by this invention, Although an alkali metal hydroxide, ammonium hydroxide, etc. can be used, Sodium hydroxide and potassium hydroxide are used suitably especially. The alkali hydroxide may be added as a solid to the copper salt aqueous solution or may be added as an aqueous solution. In this invention, it is thought that copper hydroxide produces | generates prior to the reduction | restoration to cuprous oxide by adding alkali hydroxide to copper salt aqueous solution. The addition amount of the alkali hydroxide is preferably in the range of 1 to 1.5 times the equivalent to the copper salt, and in particular, added so that the pH after addition of the alkali hydroxide is in the range of 8 to 13. preferable. If the pH is less than 8, a large amount of unreacted copper ions remain in the waste liquid, and the reduction reaction to cuprous oxide by reducing sugars may not proceed sufficiently. If the pH is higher than 13, the effect of the present invention is not impaired, but the cost increases because the amount of alkali hydroxide used increases, and when excessively added alkali metal ions remain, the conductor paste There is a risk of damaging the characteristics.

本発明で使用される還元糖としても特に限定はなく、グルコース、フルクトース、ラクトース等、還元性を有する糖類を適宜用いることができる。還元糖は、銅塩水溶液に固体のまま添加してもよいが、予め水溶液にして添加してもよい。また、還元糖は、銅塩に対して反応当量の1〜2倍の範囲で添加することが好ましい。添加量が当量未満では亜酸化銅への還元反応が十分に進まないおそれがある。一方、添加量が当量の2倍より多くなると、廃液の処理が煩雑になりコストが高くなる。   The reducing sugar used in the present invention is not particularly limited, and reducing sugars such as glucose, fructose, and lactose can be appropriately used. The reducing sugar may be added as a solid to the copper salt aqueous solution, but may be added in advance as an aqueous solution. Moreover, it is preferable to add reducing sugar in the range of 1-2 times the reaction equivalent with respect to copper salt. If the amount added is less than an equivalent amount, the reduction reaction to cuprous oxide may not proceed sufficiently. On the other hand, if the amount added is more than twice the equivalent amount, the treatment of the waste liquid becomes complicated and the cost increases.

本発明において亜酸化銅を析出させる際、亜酸化銅への還元反応を効率良く進行させるためには、反応溶液を40〜80℃程度に加熱することが望ましい。この場合、水酸化アルカリおよび/または還元糖を加える前に予め銅塩水溶液を加熱しておいてもよく、また、水酸化アルカリおよび/または還元糖を加えた後に加熱を開始してもよい。40℃より低いと、銅塩に対して当量以上の還元糖が添加されても亜酸化銅への還元反応が十分に進まないおそれがある。   When precipitating cuprous oxide in the present invention, it is desirable to heat the reaction solution to about 40 to 80 ° C. in order to efficiently advance the reduction reaction to cuprous oxide. In this case, the aqueous copper salt solution may be heated in advance before adding the alkali hydroxide and / or reducing sugar, or the heating may be started after adding the alkali hydroxide and / or reducing sugar. When it is lower than 40 ° C., there is a possibility that the reduction reaction to cuprous oxide does not proceed sufficiently even if an equivalent or more reducing sugar is added to the copper salt.

続いて、このようにして得られた亜酸化銅のスラリーにヒドラジン系還元剤を添加して還元し、金属銅を生成させて銅粉末を得る。この際、未反応の銅塩や還元糖が過剰に残留していると、亜酸化銅から銅への還元反応が十分に進まないおそれがあるため、反応液から溶液部分を除去して亜酸化銅を分離した後、水に再分散させてスラリーとし、このスラリーにヒドラジン系還元剤を添加して還元反応を進めることが好ましい。反応液の除去量は、反応液濃度によっても異なるため限定されないが、通常、亜酸化銅スラリーに対して、80体積%以上の溶液部分を除去することが望ましい。溶液部分の除去方法として特に制限はなく、例えば、析出した亜酸化銅の沈殿を静置して沈降させた後上澄みを除去する方法や、濾過により固液分離を行う方法が、好適な例として挙げられる。   Subsequently, a hydrazine-based reducing agent is added to the thus obtained cuprous oxide slurry for reduction to produce metallic copper to obtain copper powder. At this time, if unreacted copper salt or reducing sugar remains excessively, the reduction reaction from cuprous oxide to copper may not proceed sufficiently. After separating copper, it is preferable to re-disperse in water to make a slurry, and to add a hydrazine-based reducing agent to the slurry to advance the reduction reaction. The removal amount of the reaction solution is not limited because it varies depending on the concentration of the reaction solution, but it is usually desirable to remove a solution portion of 80% by volume or more with respect to the cuprous oxide slurry. There is no particular limitation on the method for removing the solution part. For example, a method of removing the supernatant after allowing the precipitated cuprous oxide precipitate to settle and a method of performing solid-liquid separation by filtration are preferable examples. Can be mentioned.

本発明で使用されるヒドラジン系還元剤としては、ヒドラジン、水和ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン、塩酸ヒドラジンなどを用いることができる。ヒドラジン系還元剤は、そのまま、または予め水溶液にして亜酸化銅スラリーに添加される。ヒドラジン系還元剤は、反応当量の1〜1.9倍の範囲で添加することが好ましい。ヒドラジン系還元剤の添加量は、当量未満では銅への還元反応が十分に進まないおそれがある。一方、ヒドラジン系還元剤の添加量が当量の1.9倍を越えても差し支えないが、コストが高くなるうえに、廃液の処理が煩雑になる。   As the hydrazine reducing agent used in the present invention, hydrazine, hydrated hydrazine, hydrazine sulfate, hydrazine carbonate, hydrazine hydrochloride and the like can be used. The hydrazine-based reducing agent is added to the cuprous oxide slurry as it is or as an aqueous solution in advance. The hydrazine-based reducing agent is preferably added in the range of 1 to 1.9 times the reaction equivalent. If the addition amount of the hydrazine-based reducing agent is less than the equivalent, the reduction reaction to copper may not proceed sufficiently. On the other hand, the amount of hydrazine reducing agent added may exceed 1.9 times the equivalent, but the cost increases and the treatment of the waste liquid becomes complicated.

亜酸化銅から金属銅への還元反応を効率良く進行させるためには、還元時に亜酸化銅が含まれるスラリーが50〜90℃に加熱されていることが望ましい。この場合、ヒドラジン系還元剤を添加する前に予め亜酸化銅スラリーを加熱しておいてもよく、またはヒドラジン系還元剤を加えた後に加熱を開始してもよい。   In order to efficiently proceed the reduction reaction from cuprous oxide to metallic copper, it is desirable that the slurry containing cuprous oxide is heated to 50 to 90 ° C. during the reduction. In this case, the cuprous oxide slurry may be heated in advance before adding the hydrazine-based reducing agent, or heating may be started after adding the hydrazine-based reducing agent.

また、ヒドラジン系還元剤を添加する際、還元反応によって生じる急激な発泡を抑制するために、消泡剤を添加することが好ましい。これにより、より少ない反応容積で銅粉末を製造することができ、容積あたりの製造効率を高めることができる。消泡剤としては水溶性のものであれば限定されず、シリコーン系消泡剤、界面活性剤、ポリエーテル、高級アルコールなどの有機系消泡剤等を用いることができる。   Further, when adding a hydrazine-based reducing agent, it is preferable to add an antifoaming agent in order to suppress rapid foaming caused by the reduction reaction. Thereby, copper powder can be manufactured with a smaller reaction volume, and the manufacturing efficiency per volume can be improved. The antifoaming agent is not limited as long as it is water-soluble, and organic antifoaming agents such as silicone antifoaming agents, surfactants, polyethers and higher alcohols can be used.

以上のように、本発明において、微少量の水溶性銀塩の存在下で亜酸化銅の生成を行うことにより、極めて微細で凝集が抑制された銅粉末が得られる。この機構は必ずしも明らかではないが、水酸化アルカリにより水酸化銅が生成する工程、還元糖により亜酸化銅が生成する工程、ヒドラジン系還元剤を加え亜酸化銅から金属銅が生成する工程の各工程において、銀塩から生成し反応溶液に共存する微量の酸化銀または金属銀が、水酸化銅、亜酸化銅および金属銅の粒成長を阻害するのではないかと考えられる。また、生成する銅粉末の耐酸化性が向上し、極めて微細であるにもかかわらず、保存安定性が良好で取り扱いの容易な銅粉末が得られる。   As described above, in the present invention, copper powder is produced in the presence of a minute amount of a water-soluble silver salt, whereby a copper powder that is extremely fine and suppressed in aggregation is obtained. Although this mechanism is not necessarily clear, each of the process of producing copper hydroxide by alkali hydroxide, the process of producing cuprous oxide by reducing sugar, and the process of producing metal copper from cuprous oxide by adding a hydrazine reducing agent. In the process, it is considered that a small amount of silver oxide or metallic silver produced from a silver salt and coexisting in the reaction solution may inhibit grain growth of copper hydroxide, cuprous oxide and metallic copper. Moreover, the oxidation resistance of the produced copper powder is improved, and a copper powder having good storage stability and easy handling can be obtained despite being extremely fine.

なお、生成した銅粉末は、耐酸化性や導体ペースト中での分散安定性をさらに改善するために、各種表面処理剤を用いて通常の方法で表面処理を行なってもよい。表面処理剤としては、一般的に使用されている公知のものが適用可能である。例えば、トリアゾール類、脂肪酸、脂肪族アミン、脂肪族アミド、シランカップリング剤等のシラン化合物などが挙げられる。表面処理剤の量は、通常の範囲であり、銅粉末に対して0.05〜3.0重量%とすることが望ましい。表面処理剤の量が0.05重量%よりも少ない場合には、耐酸化性やペースト中での分散安定性の改善効果が不十分である。一方、表面処理剤の量が3.0重量%を越えると、電気特性に悪影響を与えるおそれがある。   In addition, in order to further improve the oxidation resistance and the dispersion stability in the conductor paste, the produced copper powder may be subjected to a surface treatment by a usual method using various surface treatment agents. As the surface treatment agent, known ones that are generally used can be applied. Examples thereof include silane compounds such as triazoles, fatty acids, aliphatic amines, aliphatic amides, and silane coupling agents. The amount of the surface treatment agent is in a normal range, and is desirably 0.05 to 3.0% by weight with respect to the copper powder. When the amount of the surface treatment agent is less than 0.05% by weight, the effect of improving the oxidation resistance and the dispersion stability in the paste is insufficient. On the other hand, when the amount of the surface treatment agent exceeds 3.0% by weight, there is a risk of adversely affecting electrical characteristics.

以下に本発明の実施例を示してより具体的に説明するが、本発明はこれに限定されるものではない。なお、以下の例において、平均粒径は、SEMによって観察される任意の視野の画像において、無作為に選択した100個の独立した粒子の粒径から計算した平均値である。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In the following examples, the average particle diameter is an average value calculated from the particle diameters of 100 independent particles randomly selected in an image of an arbitrary field of view observed by SEM.

[実施例1]
硫酸銅五水和物450gおよび硝酸銀2g(銀原子換算で銅に対して0.65mol%)を、予め55℃に加熱した蒸留水1500gに溶解した後、攪拌しながら、水酸化カリウム280g(当量の1.2倍)およびグルコース250g(当量の1.6倍)を添加して亜酸化銅の沈殿を得た。反応終了後、亜酸化銅を分離し、蒸留水を加えて再分散させ、総量500mLの亜酸化銅スラリーとした。この亜酸化銅スラリーを60℃に加熱し、ヒドラジンの80%水溶液30mLを蒸留水70mLで希釈した還元剤溶液を添加して亜酸化銅を還元し、銅粉末スラリーを生成した。得られたスラリーを濾過し、蒸留水で十分に洗浄して銅粉末を得た。次いで、得られた銅粉末を脂肪族アミンを含有する水溶液に分散させ、再度濾過した後、乾燥することにより表面処理を行なった。
[Example 1]
After dissolving 450 g of copper sulfate pentahydrate and 2 g of silver nitrate (0.65 mol% with respect to copper in terms of silver atom) in 1500 g of distilled water heated to 55 ° C. in advance, 280 g of potassium hydroxide (equivalent) And 1.2 g of glucose (1.6 times the equivalent) were added to obtain a cuprous oxide precipitate. After completion of the reaction, the cuprous oxide was separated, and distilled water was added and redispersed to obtain a cuprous oxide slurry having a total amount of 500 mL. This cuprous oxide slurry was heated to 60 ° C., and a reducing agent solution obtained by diluting 30 mL of an 80% aqueous solution of hydrazine with 70 mL of distilled water was added to reduce the cuprous oxide, thereby producing a copper powder slurry. The obtained slurry was filtered and sufficiently washed with distilled water to obtain a copper powder. Next, the obtained copper powder was dispersed in an aqueous solution containing an aliphatic amine, filtered again, and dried to perform surface treatment.

X線回折装置(理学電機株式会社製)を用いて得られた粉末のX線回折パターンを観察したところ、金属銅とほぼ同一のパターンが得られ、銀や酸化銅に帰属されるピークは観察されなかった。   When the X-ray diffraction pattern of the powder obtained using an X-ray diffractometer (manufactured by Rigaku Corporation) was observed, a pattern almost identical to that of metallic copper was obtained, and peaks attributed to silver and copper oxide were observed. Was not.

また、SEM(株式会社日立製作所製)を用いて得られた粉末を観察し、粒径がほぼ0.15〜0.3μmの範囲内で平均粒径約0.25μmの大きさが揃った微細粒子からなる球状の銅粉末であることを確認した。また、粒子同士の融着はほとんど見られず、単分散に近いものであった。得られたSEM像を図1に示す。   In addition, the powder obtained using SEM (manufactured by Hitachi, Ltd.) was observed, and the fine particles having an average particle size of about 0.25 μm and a particle size in the range of about 0.15 to 0.3 μm were obtained. It was confirmed that the copper powder was spherical. Moreover, the fusion | melting of particle | grains was hardly seen but it was a thing close to monodispersion. The obtained SEM image is shown in FIG.

[実施例2]
硝酸銀の量を3g(銀原子換算で銅に対して0.97モル%)とする以外は、実施例1と同様にして銅粉末を得た。
[Example 2]
A copper powder was obtained in the same manner as in Example 1 except that the amount of silver nitrate was 3 g (0.97 mol% based on copper in terms of silver atoms).

得られた粉末のX線回折パターンを観察したところ、実施例1と同様、金属銅とほぼ同一のパターンが得られた。SEM観察により、粒径がほぼ0.1〜0.2μmの範囲内で平均粒径約0.15μmの大きさが揃った球状の微細粒子からなる、単分散に近い銅粉末であることを確認した。   When the X-ray diffraction pattern of the obtained powder was observed, almost the same pattern as that of metallic copper was obtained as in Example 1. SEM observation confirms that the copper powder is close to monodisperse consisting of spherical fine particles with an average particle size of approximately 0.15 μm and a particle size of approximately 0.1 to 0.2 μm. did.

[実施例3]
硝酸銀の量を6g(銀原子換算で銅に対して2.0モル%)とする以外は、実施例1と同様にして銅粉末を得た。
[Example 3]
A copper powder was obtained in the same manner as in Example 1 except that the amount of silver nitrate was 6 g (2.0 mol% based on copper in terms of silver atoms).

得られた粉末のX線回折パターンを観察したところ、実施例1と同様、金属銅とほぼ同一のパターンが得られた。SEM観察により、粒径がほぼ0.05〜0.15μmの範囲内で平均粒径約0.09μmの大きさが揃った球状の微細粒子からなる、単分散に近い銅粉末であることを確認した。   When the X-ray diffraction pattern of the obtained powder was observed, almost the same pattern as that of metallic copper was obtained as in Example 1. SEM observation confirms that the copper powder is close to monodisperse, consisting of spherical fine particles with an average particle size of approximately 0.09 μm within a particle size range of 0.05 to 0.15 μm. did.

[比較例1]
硝酸銀を添加しない以外は実施例1と同様にして銅粉末を得た。
[Comparative Example 1]
A copper powder was obtained in the same manner as in Example 1 except that silver nitrate was not added.

得られた粉末のX線回折パターンを観察したところ、金属銅のピークの他に酸化銅のピークが観察された。SEM観察により、粒径がほぼ0.1〜1.0μmの範囲内で平均粒径約0.42μmの大きさや形状がばらついた粒子からなる銅粉末であることを確認した。得られたSEM像を図2に示す。   When an X-ray diffraction pattern of the obtained powder was observed, a copper oxide peak was observed in addition to the metal copper peak. By SEM observation, it was confirmed that the powder was a copper powder composed of particles having an average particle size of about 0.42 μm and a variation in size and shape within a range of about 0.1 to 1.0 μm. The obtained SEM image is shown in FIG.

[比較例2]
硝酸銀に代えて、酢酸アミン13.5gを銅塩水溶液に添加した以外は、実施例1と同様にして銅粉末を製造した。
[Comparative Example 2]
A copper powder was produced in the same manner as in Example 1 except that 13.5 g of amine acetate was added to the copper salt aqueous solution instead of silver nitrate.

得られた粉末のX線回折パターンからは、金属銅の他、微量の酸化銅のピークが観察された。SEM観察により、0.6〜1.0μm程度の粒子が多数凝集して粗大化した粉末であることが観察された。   From the X-ray diffraction pattern of the obtained powder, a trace of copper oxide was observed in addition to metallic copper. By SEM observation, it was observed that the particles were aggregated and coarsened by a large number of particles having a size of about 0.6 to 1.0 μm.

[比較例3]
硝酸銀に代えて、エチレンジアミン3.0gおよびヒドロキシエチルセルロース0.3gを銅塩水溶液に添加した以外は、実施例1と同様にして銅粉末を製造した。
[Comparative Example 3]
A copper powder was produced in the same manner as in Example 1 except that 3.0 g of ethylenediamine and 0.3 g of hydroxyethylcellulose were added to the copper salt aqueous solution instead of silver nitrate.

得られた粉末のX線回折パターンを観察したところ、金属銅の他、微量の酸化銅のピークが観察された。SEM観察により、0.2〜0.5μmの球状粒子のほかに、1.0μm程度の大きさを有する板状粒子が混在することが観察された。   When the X-ray diffraction pattern of the obtained powder was observed, a trace of copper oxide was observed in addition to copper metal. By SEM observation, it was observed that plate-like particles having a size of about 1.0 μm were mixed in addition to the spherical particles of 0.2 to 0.5 μm.

実施例1で得られた粉末のSEM像である。2 is a SEM image of the powder obtained in Example 1. 比較例1で得られた粉末のSEM像である。2 is a SEM image of the powder obtained in Comparative Example 1.

Claims (2)

銅塩水溶液に水酸化アルカリおよび還元糖を混合することにより亜酸化銅を生成させ、該亜酸化銅をヒドラジン系還元剤で還元することにより金属銅を得る銅粉末の製造方法において、
前記銅塩水溶液に水溶性銀塩を予め溶解させた後、前記水酸化アルカリおよび前記還元糖を混合することを特徴とする銅粉末の製造方法。
In the method for producing copper powder, a cuprous oxide is produced by mixing an alkali hydroxide and a reducing sugar in a copper salt aqueous solution, and the cuprous oxide is reduced with a hydrazine-based reducing agent to obtain metallic copper.
A method for producing a copper powder, comprising dissolving a water-soluble silver salt in the copper salt aqueous solution in advance and then mixing the alkali hydroxide and the reducing sugar.
前記銅塩水溶液中の銅原子に対して銀が原子換算で0.1〜5モル%となるように前記水溶性銀塩を溶解させることを特徴とする請求項1に記載の銅粉末の製造方法。   The said water-soluble silver salt is dissolved so that silver may become 0.1-5 mol% in conversion of an atom with respect to the copper atom in the said copper salt aqueous solution, The manufacture of the copper powder of Claim 1 characterized by the above-mentioned. Method.
JP2006227724A 2006-08-24 2006-08-24 Method for producing copper powder Active JP4978115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227724A JP4978115B2 (en) 2006-08-24 2006-08-24 Method for producing copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227724A JP4978115B2 (en) 2006-08-24 2006-08-24 Method for producing copper powder

Publications (2)

Publication Number Publication Date
JP2008050650A JP2008050650A (en) 2008-03-06
JP4978115B2 true JP4978115B2 (en) 2012-07-18

Family

ID=39234974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227724A Active JP4978115B2 (en) 2006-08-24 2006-08-24 Method for producing copper powder

Country Status (1)

Country Link
JP (1) JP4978115B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126942A (en) * 2010-12-14 2012-07-05 Jx Nippon Mining & Metals Corp Fine spherical copper powder and method for producing the same
JP5926644B2 (en) * 2011-09-30 2016-05-25 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method for producing the same
WO2014104032A1 (en) * 2012-12-25 2014-07-03 戸田工業株式会社 Method for producing copper powder, copper powder, and copper paste
CN103042231B (en) * 2013-01-11 2014-09-03 哈尔滨工业大学 Preparation method of precious metal nano-particles
KR102282809B1 (en) * 2016-08-03 2021-07-27 가부시키가이샤 아데카 Method for manufacturing copper powder
CN106493381B (en) * 2016-09-21 2018-02-27 宁波大学 A kind of preparation method and applications of silver/cuprous oxide micro-nano structure composite
CN117083137A (en) * 2021-03-30 2023-11-17 三井金属矿业株式会社 Copper particles and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576003A (en) * 1978-11-30 1980-06-07 Matsushita Electric Works Ltd Production of ultrafine metal particle
JP2638271B2 (en) * 1990-09-06 1997-08-06 住友金属工業株式会社 Production method of copper fine powder
JP4433743B2 (en) * 2003-09-25 2010-03-17 住友金属鉱山株式会社 Method for producing copper fine particles
JP4428085B2 (en) * 2004-02-26 2010-03-10 住友金属鉱山株式会社 Method for producing copper fine particles
JP4449676B2 (en) * 2004-03-25 2010-04-14 住友金属鉱山株式会社 Method for producing copper fine particles

Also Published As

Publication number Publication date
JP2008050650A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4978115B2 (en) Method for producing copper powder
JP6274444B2 (en) Method for producing copper powder
JP5820202B2 (en) Copper powder for conductive paste and method for producing the same
JP5003895B2 (en) Silver fine particles and method for producing the same, and method for producing a conductive film
JP2009074152A (en) Method for producing copper powder, and copper powder
EP1747830A1 (en) Flaky copper powder, process for producing the same, and conductive paste
JP4725459B2 (en) Method for producing copper powder
JP5675899B2 (en) Conductive member
WO2016185628A1 (en) Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
KR20170130530A (en) Silver coating powder and conductive paste using it, a conductive paint, a conductive sheet
JP2013541640A (en) Silver particles and method for producing the same
JP4651533B2 (en) Method for producing copper particles
JP5778941B2 (en) Method for producing silver-coated flake copper powder
JP5922388B2 (en) Silver powder for sintered conductive paste
JP4746534B2 (en) Method for producing silver nanoparticles
JP4100244B2 (en) Nickel powder and method for producing the same
JP2020139178A (en) Silver powder and method for producing the same
JP2012140661A (en) Flat copper particle
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
JP2018104724A (en) Production method of silver-coated copper powder
JP6332125B2 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2009013482A (en) Nickel powder or nickel alloy powder, and production method therefor
JP3786191B2 (en) Method for producing metal fine powder and conductive paste using the same
TW201338893A (en) Silver powder
JP2008223101A (en) Method for producing metal grain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250