JP3820018B2 - Method for producing granular silver powder - Google Patents

Method for producing granular silver powder Download PDF

Info

Publication number
JP3820018B2
JP3820018B2 JP35924897A JP35924897A JP3820018B2 JP 3820018 B2 JP3820018 B2 JP 3820018B2 JP 35924897 A JP35924897 A JP 35924897A JP 35924897 A JP35924897 A JP 35924897A JP 3820018 B2 JP3820018 B2 JP 3820018B2
Authority
JP
Japan
Prior art keywords
ammine complex
heavy metal
silver
salt
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35924897A
Other languages
Japanese (ja)
Other versions
JPH11189812A (en
Inventor
尚男 林
宏之 島村
治 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP35924897A priority Critical patent/JP3820018B2/en
Publication of JPH11189812A publication Critical patent/JPH11189812A/en
Application granted granted Critical
Publication of JP3820018B2 publication Critical patent/JP3820018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は粒状銀粉の製造方法に関し、より詳しくは、電子材料用回路基板に用いられる銀ペーストの原材料として好適な粒状銀粉の製造方法に関する。
【0002】
【従来の技術】
従来、電子材料用回路基板に用いられる銀ペーストの原材料銀粉として、単分散で凝集が少なく、粒度分布が狭い粒状品が求められている。そのような銀粉の製造方法としては、特開平8−134513号公報や、特開平8−176620号公報等に開示されているように、銀塩のアンミン錯体を適当な還元剤を用いて還元する湿式法が知られている。しかし、これらの製造方法においては、得られる銀粉の1次粒子の平均粒径が0.1〜数μm程度の広範囲にわたり、多くの場合、粒形は粒状となる。
【0003】
【発明が解決しようとする課題】
このように、従来の技術においては、0.1〜1μm程度の平均粒径が小さく粒度分布が狭い銀粉の製造が不可能であるか、若しくは不可能でないにしても、より低凝集でかつ粒度分布が狭い銀粉をという要求に対して満足のゆく銀粉が得られなかった。
本発明の目的は、1次粒子の平均粒径が0.1〜1μmであり、低凝集でかつ粒度分布が狭い粒状銀粉の製造方法を提供することにある。
【0004】
【課題を解決するための手段】
発明者らは湿式の中和還元法において、1次粒子の平均粒径が0.1〜1μmであり、低凝集でかつ粒度分布が狭い粒状銀粉を得るための製造方法について鋭意研究を重ねた結果、還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を用い、還元剤として亜硫酸カリを用い、更に保護コロイドとしてアラビアゴムを用いることにより、前記目的が達成されることを見出し、本発明を完成した。
【0005】
即ち、本発明の製造方法は、銀塩のアンミン錯体及び還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を含むスラリーと、還元剤である亜硫酸カリ及び保護コロイドとしてのアラビアゴムを含有する溶液とを混合して該銀塩のアンミン錯体を還元し、生成した銀粒子を回収することを特徴とする粒状銀粉の製造方法である。
【0006】
本発明の製造方法において、1次粒子の平均粒径が0.1〜1μmであり、低凝集でかつ粒度分布が狭い粒状銀粉が製造できる理由、メカニズムについては現時点では究明されていない。しかしながら、本発明者らは銀塩をアンミン錯体化する際の溶液の液性、還元剤の種類、添加剤の種類、処理条件等を種々に変化させて数々の試験を重ねた結果、銀塩のアンミン錯体及び還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を含むスラリーを用い、還元剤として亜硫酸カリを使用し、保護コロイドとしてアラビアゴムを用い、このスラリーと、亜硫酸カリ及びアラビアゴムを含有する溶液とを一時に混合するか、又は一方を分割しながら他方に混合するか、あるいは一方を徐々に他方に混合することにより生成する銀塩の1次粒子の平均粒径を0.1〜1μmの範囲内で調整して所望の値を持つ粒状銀粉が得られることを見出したものである。
【0007】
【発明の実施の形態】
本発明の製造方法においては、還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を用いるが、この重金属塩のアンミン錯体は生成する銀粒子の結晶面の成長方向を限定し、特定の形状の銀粒子を安定して晶出させる性質を有しているので、本発明においてはこの重金属塩のアンミン錯体を「媒晶剤」と表記している。
【0008】
上記の重金属塩のアンミン錯体を構成する重金属塩としては、そのアンミン錯体が還元反応の際に媒晶剤として機能するいかなる重金属塩も使用できるが、概して単価が高いものや、汎用的でないもの、毒性の強いものもあるので、本発明の製造方法においては、Fe、Cr、Al、Pb及びPdからなる群から選ばれた重金属の塩を用いることが好ましい。
【0009】
本発明の製造方法においては、銀塩のアンミン錯体及び還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を含むスラリーを用いるのであるが、このスラリーとして、例えば、該銀塩及び該重金属塩を含む溶液とアンモニア水とを混合し、反応させて得られたものを用いてもよく、又は、本発明の製造方法で生成する銀粒子を濾過により回収した後に濾液として重金属塩のアンミン錯体を含む溶液が残るので、この濾液である該重金属塩のアンミン錯体を含む溶液に銀塩を溶解させ、次いでアンモニア水と混合し、反応させて得られたものを用いてもよく、あるいはこの濾液である該重金属塩のアンミン錯体を含む溶液と該銀塩のアンミン錯体を含むスラリーとを混合して得られたものを用いてもよい。
【0010】
湿式の中和還元法による金属粉末の製造においては、一般的にはヒドラジン、ハイドロサルファイト、チオ硫酸ソーダ、亜硝酸ソーダ、ホルマリン等の還元剤を用いることが多いが、これらの還元剤を使用すると、本発明の製造方法における液性との相性が悪かったり、還元力が不適合であったりするため、得られる銀粉が著しく凝集したり、還元が進まなかったりという結果しか得られない。
【0011】
しかしながら、本発明の製造方法において還元剤として亜硫酸カリを用いることにより銀塩のアンミン錯体のみが還元されて粒状銀粉が得られ、しかも凝集したり、粒度分布にバラツキが生じたりすることはない。この還元処理においては重金属塩のアンミン錯体は還元されず、溶解したままであり、従って、生成銀粒子を濾過により回収した後に濾液として重金属塩のアンミン錯体を含む溶液が残る。この濾液は、前記したようにして、銀塩のアンミン錯体及び重金属塩のアンミン錯体を含むスラリーを調製するのに再利用することができる。
【0012】
本発明の製造方法においては、銀塩のアンミン錯体を還元する際に保護コロイドとしてアラビアゴムを添加することが重要である。
一般的には、保護コロイドとして、反応液中の疎水コロイドの安定度を保つ親水性コロイドが使われることが多い。このような保護コロイドを使用しない場合には、得られる銀粉が著しく凝集したり、粒度分布にバラツキが生じたりし、また、アラビアゴム以外の保護コロイドを用いた場合には、粒状銀粉を得ることは極めて困難である。
【0013】
本発明の製造方法においては、銀塩のアンミン錯体を還元するために、銀塩のアンミン錯体及び重金属塩のアンミン錯体を含むスラリーと、亜硫酸カリ及びアラビアゴムを含有する溶液とを一時に混合するか、又は一方を分割しながら他方に混合するか、あるいは一方を徐々に他方に混合することにより生成する銀塩の1次粒子の平均粒径を調整することができる。例えば、一方を他方に1時間にわたって連続的かつ均一に投入すれば生成する銀塩の1次粒子径が1μm程度の粒状銀粉が得られ、一括で投入すれば生成する銀塩の1次粒子径が0.1μm程度の粒状銀粉が得られる。この0.1μmと1μmとの間の1次粒子径を得ようとする場合には、添加時間を適宜調整すればよいことは言うまでもない。
【0014】
本発明の製造方法においては、上記した諸工程によって生成した銀粒子からなる銀粉を洗浄、濾過、乾燥等の常法に従って回収する。
以上の諸工程により、従来の製造方法では得られなかった、電子材料用回路基板に用いられる銀ペーストの原材料用として好適な粒状銀粉を得ることができる。
【0015】
【実施例】
以下、実施例及び比較例によって本発明を具体的に説明するが、本発明はかかる事例に限定されるものではない。
実施例1
Ag:Pdの重量比が7:3となり、AgとPdとの合計重量が300gとなるような硝酸銀と硝酸パラジウムとの混合溶液300mlを用意し、これにアンモニア水(NH3 濃度25重量%)300mlを加えて硝酸銀のアンミン錯体及び硝酸パラジウムのアンミン錯体を形成させ、これらのアンミン錯体を含むスラリーを得た。
【0016】
一方、純水2.5リットルにアラビアゴム100gを溶解させたものに亜硫酸カリ150gを加え、充分に溶解させた後、濾紙で濾過した。該アラビアゴム含有亜硫酸カリ溶液に上記の硝酸銀のアンミン錯体及び硝酸パラジウムのアンミン錯体を含むスラリーを1時間にわたって均等に投入し、温度を60℃に保持しながら還元反応を行った。生成した銀粉を常法の濾過・洗浄処理・乾燥によって回収した。
上記のようにして回収した粒状銀粉の電子顕微鏡写真(倍率:10000倍)を図1に示す。図1から明らかなように、当該銀粉の形状は均整な形状を呈しており、その1次粒子の平均粒径は約1μmであり、粒度分布の狭い銀粉であることが分かる。
【0017】
実施例2
アラビアゴム含有亜硫酸カリ溶液に硝酸銀のアンミン錯体及び硝酸パラジウムのアンミン錯体を含むスラリーを30分間にわたって均等に投入した以外は、実施例1と同様の方法によって銀粉を回収した。得られた粒状銀粉は均整な形状を呈しており、その1次粒子の平均粒径は約0.5μmであり、粒度分布の狭い銀粉であった。
【0018】
実施例3
アラビアゴム含有亜硫酸カリ溶液に硝酸銀のアンミン錯体及び硝酸パラジウムのアンミン錯体を含むスラリーを一括投入した以外は、実施例1と同様の方法によって銀粉を回収した。得られた粒状銀粉は均整な形状を呈しており、その1次粒子の平均粒径は約0.2μmであり、粒度分布の狭い銀粉であった。
【0019】
比較例1
アンミン錯体を作成する過程で硝酸パラジウムを加えなかった以外は、実施例1と同様の方法によって銀粉を回収した。
このようにして回収した銀粉は実施例1〜3で回収した粒状銀粉に較べて凝集が著しく、銀ペーストの原材料として不適なものであった。
【0020】
比較例2
還元剤として亜硫酸カリの代わりに、ヒドラジン(100%抱水品)47gを用いた以外は、実施例1と同様の方法によって銀粉を回収した。
このようにして回収した銀粉は実施例1〜3で回収した粒状銀粉に較べて凝集が著しく、銀ペーストの原材料として不適なものであった。
【0021】
比較例3
保護コロイドとしてアラビアゴムの代わりに、ポリビニールアルコールを用いた以外は、実施例1と同様の方法によって銀粉を回収した。
このようにして回収した銀粉は実施例1〜3で回収した粒状銀粉に較べて凝集が著しく、銀ペーストの原材料として不適なものであった。
【0022】
【発明の効果】
本発明の製造方法によって得られる銀粉は、従来の製法では得られなかった1次粒子の平均粒径が0.1〜1μmであり、低凝集でかつ粒度分布が狭く、電子材料用回路基板に用いられる銀ペーストの原材料銀粉として好適である。
【図面の簡単な説明】
【図1】 実施例1で得た銀粉の電子顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing granular silver powder, and more particularly to a method for producing granular silver powder suitable as a raw material for a silver paste used for a circuit board for electronic materials.
[0002]
[Prior art]
Conventionally, as a raw material silver powder of a silver paste used for a circuit board for electronic materials, there is a demand for a granular product that is monodispersed and has little aggregation and a narrow particle size distribution. As a method for producing such silver powder, as disclosed in JP-A-8-134513 and JP-A-8-176620, an ammine complex of silver salt is reduced using an appropriate reducing agent. Wet methods are known. However, in these production methods, the average particle size of the primary particles of the obtained silver powder is in a wide range of about 0.1 to several μm, and in many cases, the particle shape is granular.
[0003]
[Problems to be solved by the invention]
As described above, in the conventional technique, it is impossible to produce silver powder having a small average particle size of about 0.1 to 1 μm and a narrow particle size distribution. Satisfactory silver powder was not obtained for the demand for silver powder having a narrow distribution.
An object of the present invention is to provide a method for producing granular silver powder having an average primary particle diameter of 0.1 to 1 μm, low aggregation and a narrow particle size distribution.
[0004]
[Means for Solving the Problems]
In the wet neutralization reduction method, the inventors have conducted extensive research on a production method for obtaining granular silver powder having an average primary particle diameter of 0.1 to 1 μm, low aggregation and a narrow particle size distribution. As a result, it was found that the above-mentioned object was achieved by using an ammine complex of a heavy metal salt that functions as a crystallite during the reduction reaction, using potassium sulfite as the reducing agent, and further using gum arabic as the protective colloid, The present invention has been completed.
[0005]
That is, the production method of the present invention comprises a slurry containing an ammine complex of silver salt and an ammine complex of heavy metal salt that functions as a crystallizing agent in the reduction reaction, potassium sulfite as a reducing agent, and gum arabic as a protective colloid. It is a method for producing granular silver powder, characterized in that the silver salt ammine complex is reduced by mixing with a solution to be contained, and the produced silver particles are recovered.
[0006]
In the production method of the present invention, the reason and mechanism for producing granular silver powder having an average primary particle diameter of 0.1 to 1 μm, low agglomeration and narrow particle size distribution have not been investigated at present. However, the present inventors have conducted a number of tests by varying the liquidity of the silver salt into an ammine complex, the type of reducing agent, the type of additive, the processing conditions, etc. And a slurry containing an ammine complex of a heavy metal salt that functions as a crystallizing agent in the reduction reaction, potassium sulfite is used as the reducing agent, and gum arabic is used as the protective colloid. The average particle size of the primary particles of the silver salt produced by mixing at once with a solution containing gum arabic, mixing one with the other while dividing one, or gradually mixing one with the other It has been found that granular silver powder having a desired value can be obtained by adjusting within a range of 0.1 to 1 μm.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of the present invention, an ammine complex of a heavy metal salt that functions as a crystallization agent in the reduction reaction is used. This ammine complex of the heavy metal salt limits the growth direction of the crystal plane of the silver particles to be produced, and is specified. In the present invention, the ammine complex of heavy metal salt is referred to as “a crystallizing agent”.
[0008]
As the heavy metal salt constituting the ammine complex of the above heavy metal salt, any heavy metal salt in which the ammine complex functions as a crystallizing agent in the reduction reaction can be used. Since some of them are highly toxic, it is preferable to use a heavy metal salt selected from the group consisting of Fe, Cr, Al, Pb and Pd in the production method of the present invention.
[0009]
In the production method of the present invention, a slurry containing a silver salt ammine complex and a heavy metal salt ammine complex that functions as a crystallizing agent in the reduction reaction is used. A solution obtained by mixing and reacting a solution containing a heavy metal salt and aqueous ammonia may be used, or the silver particles produced by the production method of the present invention are recovered by filtration and then the heavy metal salt ammine as a filtrate. Since the solution containing the complex remains, a solution obtained by dissolving the silver salt in the solution containing the ammine complex of the heavy metal salt, which is the filtrate, and then mixing with ammonia water and reacting may be used. A filtrate obtained by mixing a solution containing an ammine complex of a heavy metal salt as a filtrate and a slurry containing an ammine complex of a silver salt may be used.
[0010]
In metal powder production by the wet neutralization reduction method, reducing agents such as hydrazine, hydrosulfite, sodium thiosulfate, sodium nitrite, formalin, etc. are generally used, but these reducing agents are used. Then, since the compatibility with the liquidity in the production method of the present invention is poor or the reducing power is incompatible, only the result that the obtained silver powder is agglomerated remarkably or the reduction does not proceed is obtained.
[0011]
However, by using potassium sulfite as the reducing agent in the production method of the present invention, only the silver salt ammine complex is reduced to obtain a granular silver powder, and there is no aggregation or variation in the particle size distribution. In this reduction treatment, the ammine complex of the heavy metal salt is not reduced and remains dissolved, so that a solution containing the ammine complex of the heavy metal salt remains as a filtrate after the produced silver particles are recovered by filtration. The filtrate can be reused to prepare a slurry containing a silver salt ammine complex and a heavy metal salt ammine complex as described above.
[0012]
In the production method of the present invention, it is important to add gum arabic as a protective colloid when the silver salt ammine complex is reduced.
In general, a hydrophilic colloid that maintains the stability of the hydrophobic colloid in the reaction solution is often used as the protective colloid. When such a protective colloid is not used, the resulting silver powder is agglomerated remarkably or the particle size distribution varies, and when a protective colloid other than gum arabic is used, a granular silver powder is obtained. Is extremely difficult.
[0013]
In the production method of the present invention, in order to reduce the silver salt ammine complex, a slurry containing the silver salt ammine complex and the heavy metal salt ammine complex is mixed with a solution containing potassium sulfite and gum arabic at once. Alternatively, it is possible to adjust the average particle diameter of the primary particles of the silver salt produced by dividing one of them into the other while being divided, or gradually mixing one into the other. For example, a granular silver powder having a primary particle diameter of about 1 μm can be obtained if one is continuously and uniformly added to the other over 1 hour. Gives a granular silver powder of about 0.1 μm. Needless to say, when the primary particle diameter between 0.1 μm and 1 μm is to be obtained, the addition time may be appropriately adjusted.
[0014]
In the production method of the present invention, the silver powder composed of the silver particles produced by the above-described steps is collected according to a conventional method such as washing, filtration, and drying.
Through the above steps, it is possible to obtain a granular silver powder suitable for a raw material of a silver paste used for a circuit board for electronic materials, which was not obtained by a conventional manufacturing method.
[0015]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to this example.
Example 1
Prepare 300 ml of a mixed solution of silver nitrate and palladium nitrate so that the weight ratio of Ag: Pd is 7: 3 and the total weight of Ag and Pd is 300 g, and ammonia water (NH 3 concentration: 25 wt%) 300 ml was added to form an ammine complex of silver nitrate and an ammine complex of palladium nitrate, and a slurry containing these ammine complexes was obtained.
[0016]
On the other hand, 150 g of potassium sulfite was added to 2.5 liters of pure water in which 100 g of gum arabic was dissolved, and the mixture was sufficiently dissolved, followed by filtration with filter paper. The slurry containing the above-mentioned silver nitrate ammine complex and palladium nitrate ammine complex was uniformly added to the gum arabic-containing potassium sulfite solution over 1 hour, and a reduction reaction was carried out while maintaining the temperature at 60 ° C. The produced silver powder was recovered by conventional filtration, washing treatment and drying.
An electron micrograph (magnification: 10000 times) of the granular silver powder recovered as described above is shown in FIG. As is clear from FIG. 1, the shape of the silver powder is a uniform shape, and the average particle diameter of the primary particles is about 1 μm, which indicates that the silver powder has a narrow particle size distribution.
[0017]
Example 2
Silver powder was recovered by the same method as in Example 1, except that the slurry containing the ammine complex of silver nitrate and the ammine complex of palladium nitrate was uniformly added to the gum arabic-containing potassium sulfite solution over 30 minutes. The obtained granular silver powder had a uniform shape, and the average particle diameter of the primary particles was about 0.5 μm, and the silver powder had a narrow particle size distribution.
[0018]
Example 3
Silver powder was recovered in the same manner as in Example 1 except that a slurry containing an ammine complex of silver nitrate and an ammine complex of palladium nitrate was added all at once to the gum arabic-containing potassium sulfite solution. The obtained granular silver powder had an even shape, and the average particle diameter of the primary particles was about 0.2 μm, and the silver powder had a narrow particle size distribution.
[0019]
Comparative Example 1
Silver powder was recovered by the same method as in Example 1 except that palladium nitrate was not added in the process of forming the ammine complex.
Aggregation of the silver powder collected in this way was remarkable compared to the granular silver powder collected in Examples 1 to 3, and was unsuitable as a raw material for the silver paste.
[0020]
Comparative Example 2
Silver powder was recovered in the same manner as in Example 1 except that 47 g of hydrazine (100% hydrated product) was used instead of potassium sulfite as the reducing agent.
Aggregation of the silver powder collected in this way was remarkable compared to the granular silver powder collected in Examples 1 to 3, and was unsuitable as a raw material for the silver paste.
[0021]
Comparative Example 3
Silver powder was recovered by the same method as in Example 1 except that polyvinyl alcohol was used instead of gum arabic as a protective colloid.
Aggregation of the silver powder collected in this way was remarkable compared to the granular silver powder collected in Examples 1 to 3, and was unsuitable as a raw material for the silver paste.
[0022]
【The invention's effect】
The silver powder obtained by the production method of the present invention has an average primary particle size of 0.1 to 1 μm, which is not obtained by a conventional production method, has low aggregation and a narrow particle size distribution, and is used as a circuit board for electronic materials. Suitable as a raw material silver powder for the silver paste used.
[Brief description of the drawings]
1 is an electron micrograph of silver powder obtained in Example 1. FIG.

Claims (6)

銀塩のアンミン錯体及び還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を含むスラリーと、還元剤である亜硫酸カリ及び保護コロイドとしてのアラビアゴムを含有する溶液とを混合して該銀塩のアンミン錯体を還元し、生成した銀粒子を回収することを特徴とする粒状銀粉の製造方法。A slurry containing an ammine complex of silver salt and an ammine complex of heavy metal salt that functions as a crystallizing agent in the reduction reaction is mixed with a solution containing potassium sulfite as a reducing agent and gum arabic as a protective colloid. A method for producing granular silver powder, comprising reducing an ammine complex of a silver salt and recovering the produced silver particles. 銀塩のアンミン錯体及び還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を含むスラリーが、該銀塩及び該重金属塩を含む溶液とアンモニア水とを混合し、反応させて得られたものであることを特徴とする請求項1記載の製造方法。A slurry containing an ammine complex of silver salt and an ammine complex of heavy metal salt that functions as a crystallizing agent during the reduction reaction is obtained by mixing and reacting the silver salt and the solution containing the heavy metal salt with aqueous ammonia. The manufacturing method according to claim 1, wherein 銀塩のアンミン錯体及び還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を含むスラリーが、該重金属塩のアンミン錯体を含む溶液に銀塩を溶解させ、次いでアンモニア水と混合し、反応させて得られたものであることを特徴とする請求項1記載の製造方法。A slurry containing an ammine complex of a silver salt and an ammine complex of a heavy metal salt that functions as a crystallizing agent during the reduction reaction dissolves the silver salt in a solution containing the ammine complex of the heavy metal salt, and then mixed with aqueous ammonia. The production method according to claim 1, which is obtained by reacting. 銀塩のアンミン錯体及び還元反応の際に媒晶剤として機能する重金属塩のアンミン錯体を含むスラリーが、該重金属塩のアンミン錯体を含む溶液と該銀塩のアンミン錯体を含むスラリーとを混合して得られたものであることを特徴とする請求項1記載の製造方法。A slurry containing an ammine complex of a silver salt and an ammine complex of a heavy metal salt that functions as a crystallizing agent during the reduction reaction is mixed with a slurry containing the ammine complex of the heavy metal salt and a slurry containing the ammine complex of the silver salt. The production method according to claim 1, wherein the production method is obtained. 銀塩のアンミン錯体及び重金属塩のアンミン錯体を含むスラリーと、亜硫酸カリ及びアラビアゴムを含有する溶液とを一時に混合するか、又は一方を分割しながら他方に混合するか、あるいは一方を徐々に他方に混合することにより生成する銀塩の1次粒子の平均粒径を調整することを特徴とする請求項1記載の製造方法。A slurry containing an ammine complex of silver salt and an ammine complex of heavy metal salt and a solution containing potassium sulfite and gum arabic are mixed at one time, or one is divided into the other, or one is gradually mixed. 2. The production method according to claim 1, wherein the average particle diameter of primary particles of the silver salt produced by mixing with the other is adjusted. 重金属塩がFe、Cr、Al、Pb及びPdからなる群から選ばれた重金属の塩である請求項1、2、3、4又は5記載の製造方法。The production method according to claim 1, 2, 3, 4, or 5, wherein the heavy metal salt is a salt of heavy metal selected from the group consisting of Fe, Cr, Al, Pb and Pd.
JP35924897A 1997-12-26 1997-12-26 Method for producing granular silver powder Expired - Fee Related JP3820018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35924897A JP3820018B2 (en) 1997-12-26 1997-12-26 Method for producing granular silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35924897A JP3820018B2 (en) 1997-12-26 1997-12-26 Method for producing granular silver powder

Publications (2)

Publication Number Publication Date
JPH11189812A JPH11189812A (en) 1999-07-13
JP3820018B2 true JP3820018B2 (en) 2006-09-13

Family

ID=18463527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35924897A Expired - Fee Related JP3820018B2 (en) 1997-12-26 1997-12-26 Method for producing granular silver powder

Country Status (1)

Country Link
JP (1) JP3820018B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473777B1 (en) * 2001-12-13 2005-03-08 주식회사 트리코유니온 Preparation methods of resin compositions containing silver particles of nano size
JP2006118010A (en) * 2004-10-22 2006-05-11 Toda Kogyo Corp Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
CN100396408C (en) * 2005-07-29 2008-06-25 云南铜业股份有限公司 Production technology of high purity granular silver
JP5332624B2 (en) * 2008-01-22 2013-11-06 三菱マテリアル株式会社 Metal nanoparticle dispersion and method for producing the same
CN102161102B (en) * 2011-02-12 2013-12-11 明基材料有限公司 Nano silver wire and manufacturing method thereof
JP5354041B2 (en) 2012-02-24 2013-11-27 住友金属鉱山株式会社 Silver powder manufacturing method
CN103317147B (en) * 2013-07-11 2015-04-22 苏州大学 Nano-silver colloidal solution, preparation method for nano-silver colloidal solution and application of nano-silver colloidal solution
CN113594483B (en) * 2021-07-28 2023-03-21 宁波中科科创新能源科技有限公司 Preparation method of PtCo intermetallic compound catalyst and fuel cell

Also Published As

Publication number Publication date
JPH11189812A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
US9371572B2 (en) Process for manufacture of nanometric, monodisperse, stable metallic silver and a product obtained therefrom
KR0124053B1 (en) Process for making finely divided, dense packing spherical shaped silver particles
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
JP3429985B2 (en) Method for producing silver powder composed of hexagonal plate-like crystal silver particles
JP3820018B2 (en) Method for producing granular silver powder
JP4144856B2 (en) Method for producing silver powder comprising ultrathin plate-like silver particles
JP2006199982A (en) Method for producing metallic fine powder
JPH04333504A (en) Continuous production of monodisperse fine silver powder
JPS63307206A (en) Production of fine silver particles
JPH0459904A (en) Manufacture of silver fine powder
JP4635262B2 (en) Method for producing metal nanoparticles and metal nanoparticles
JPH0557324B2 (en)
JPH02145422A (en) Production of fine copper oxide powder
JPS63125605A (en) Production of fine metal powder
JPH10265812A (en) Production of superfine silver particle
JP3973236B2 (en) Method for producing monodisperse noble metal powder
JP2550586B2 (en) Method for producing fine silver alloy powder
JPH01104338A (en) Manufacture of silver colloid
JPS63179009A (en) Production of fine silver particles
JP2834199B2 (en) Method for producing ultrafine tungsten particles
JPH0892612A (en) Production of silver powder
JPH0211707A (en) Production of silver fine particle
JPH01104337A (en) Manufacture of silver colloid
JPH032302A (en) Manufacture of high purity copper fine powder
JPH0892611A (en) Production of silver powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees