JPH0657314A - Production of fine palladium powder - Google Patents

Production of fine palladium powder

Info

Publication number
JPH0657314A
JPH0657314A JP23138292A JP23138292A JPH0657314A JP H0657314 A JPH0657314 A JP H0657314A JP 23138292 A JP23138292 A JP 23138292A JP 23138292 A JP23138292 A JP 23138292A JP H0657314 A JPH0657314 A JP H0657314A
Authority
JP
Japan
Prior art keywords
palladium
silver
fine
powder
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23138292A
Other languages
Japanese (ja)
Inventor
Masushi Kasai
益志 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23138292A priority Critical patent/JPH0657314A/en
Publication of JPH0657314A publication Critical patent/JPH0657314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the fine palladium powder having a narrow grain size distribution by allowing silver complex ions in an aq. palladium soln. to generate a large quantity of fine nuclei to form crystals at the time of a reduction reaction, thereby increasing the number of particles. CONSTITUTION:The aq. palladium soln. which contains 10 to 60g/l chlorocomplex of palladium chloride and palladium as palladium and 1.8-500ppm silver amine complex as silver with respect to the palladium and is adjusted to 7-11 pH is prepd. This aq. palladium soln. is added at 10-50 deg.C to an aq. soln. contg. a reducing agent to precipitate the fine palladium powder. PdCl2 is preferably used as the palladium chloride and K2(PdCl4), [Na2(PdCl4)], etc., are used as the chlorocomplex of the palladium. Amidinosulfinic acid, sodium hydrogen boride, etc., are preferably used as the reducing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電ペーストの導電材料
として用いるパラジウム微粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine palladium powder used as a conductive material for a conductive paste.

【0002】[0002]

【従来の技術】従来の導電ペースト用のパラジウム微粉
末は、パラジウム塩の水溶液に水酸化ナトリウムなどの
アルカリを加えてpHを調整した後、ホルマリン、蟻
酸、ヒドラジン等の還元剤を加えてパラジウム微粉末を
析出させる方法により製造されている。この方法はパラ
ジウム塩の水溶液中のパラジウム濃度、pH、温度、還
元剤などの調節が難しく、平均粒径が0.1〜1.0μm
のパラジウム微粉末を得ることが容易でなく、かつ粒径
の分布の広いものしか得られなかった。
2. Description of the Related Art Palladium fine powder for a conventional conductive paste is prepared by adding an alkali such as sodium hydroxide to an aqueous solution of palladium salt to adjust the pH, and then adding a reducing agent such as formalin, formic acid and hydrazine to the palladium fine powder. It is manufactured by the method of depositing powder. In this method, it is difficult to control the palladium concentration in the aqueous solution of palladium salt, pH, temperature, reducing agent, etc., and the average particle size is 0.1 to 1.0 μm.
It was not easy to obtain the palladium fine powder, and only the one having a wide particle size distribution was obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明は、平均粒径が
0.1〜1.0μmで粒径の分布の狭いパラジウム微粉末
を容易に製造できる方法を提供することを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily producing a fine palladium powder having an average particle size of 0.1 to 1.0 μm and a narrow particle size distribution.

【0004】[0004]

【課題を解決するための手段】本発明による課題を解決
するための手段は、パラジウム塩化物及び又はパラジウ
ムのクロロ錯体をパラジウムとして10〜60g/l
と、塩化パラジウム及び又は銀アンミン錯体を銀として
前記パラジウム量に対して1.8〜5000ppmとを
含むpH7〜11のパラジウム水溶液を、還元剤を含む
水溶液に温度10〜50℃で添加しパラジウム微粉末を
析出させることを特徴とするパラジウム微粉末の製造方
法にある。
Means for solving the problems according to the present invention include a palladium chloride and / or a chloro complex of palladium as palladium in an amount of 10 to 60 g / l.
And palladium chloride and / or silver ammine complex as silver, and an aqueous palladium solution having a pH of 7 to 11 containing 1.8 to 5000 ppm with respect to the amount of palladium is added to an aqueous solution containing a reducing agent at a temperature of 10 to 50 ° C. A method for producing a fine palladium powder, which comprises depositing the powder.

【0005】パラジウム源として用いるパラジウム塩化
物としては、塩化パラジウム(II)(PdCl2)、パラ
ジウムのクロロ錯体としては、テトラクロロパラジウム
(II)酸カリ〔K2(PdCl4)〕、テトラクロロパラジ
ウム(II)酸ナトリウム〔Na2(PdCl4)〕、ジクロ
ロジアンミンパラジウム(II)〔Pd(NH32Cl2
の内の少なくとも1種が用いられる。
The palladium chloride used as the palladium source is palladium (II) chloride (PdCl 2 ), and the chloro complex of palladium is tetrachloropalladium.
Potassium (II) acid [K 2 (PdCl 4 )], sodium tetrachloropalladium (II) [Na 2 (PdCl 4 )], dichlorodiamminepalladium (II) [Pd (NH 3 ) 2 Cl 2 ]
At least one of the above is used.

【0006】銀源としては、塩化ジアンミン銀(I)
[〔Ag(NH32〕Cl]、硫酸ジアンミン銀(I)
[〔Ag(NH322SO4]、硝酸ジアンミン銀
[〔Ag(NH32〕NO3]の内の少なくとも1種が
用いられ、還元剤としては、アミジノスルフイン酸、水
素化ホウ素ナトリウム、ヒドラジンの内の少なくとも1
種が用いられる。
As a silver source, silver diammine chloride (I)
[[Ag (NH 3 ) 2 ] Cl], silver diammine sulfate (I)
At least one of [[Ag (NH 3 ) 2 ] 2 SO 4 ] and silver diammine nitrate [[Ag (NH 3 ) 2 ] NO 3 ] is used, and the reducing agent is amidinosulfinic acid, hydrogen. At least one of sodium borohydride and hydrazine
Seeds are used.

【0007】[0007]

【作用】本発明はパラジウム水溶液中に銀錯イオンを存
在させ、還元反応時に結晶となる微細な核を多量に発生
させ、粒子数を増加させることにより、結晶の成長を防
止し、得られるパラジウム微粉末の平均粒径が0.1〜
1.0μmで、かつ粒径の分布が狭くなるようにしたも
のである。パラジウム源として、パラジウム塩化物及び
又はパラジウムのクロロ錯体を用いるのは溶解度が非常
に良いからであり、銀源としてジアンミン銀錯体を用い
るのは、銀が〔Ag(NH32-として水溶液中に存
在し、この銀錯体イオンがそれぞれ還元されることによ
り微小な結晶核を生成し、次いで、この核の上にパラジ
ウムが析出するため平均粒径が0.1〜1.0μmで、粒
度分布の狭いパラジウム微粉末が得ることができるもの
と考えられる。
The present invention prevents the growth of crystals by allowing silver complex ions to be present in an aqueous palladium solution to generate a large amount of fine nuclei that become crystals during the reduction reaction, thereby increasing the number of particles, thereby preventing the growth of palladium. The average particle size of the fine powder is 0.1-
It is 1.0 μm and has a narrow particle size distribution. The reason why the palladium chloride and / or the chloro complex of palladium is used as the palladium source is that the solubility is very good, and the reason why the diammine silver complex is used as the silver source is that silver is an aqueous solution as [Ag (NH 3 ) 2 ] −. Which are present in the core, and each of these silver complex ions is reduced to generate a fine crystal nucleus, and then palladium is deposited on the nucleus, so that the average particle diameter is 0.1 to 1.0 μm and the particle diameter is It is considered that a fine palladium powder having a narrow distribution can be obtained.

【0008】水溶液中のパラジウムの濃度を10〜60
g/lとするのは、10g/l未満では、析出するパラ
ジウムの平均粒径が0.1μm以下となり、60g/l
を超えると、平均粒径が1.0μmより大きくなり、凝
集して2次粒子を形成し分散性が悪くなるためである。
The concentration of palladium in the aqueous solution is 10-60.
When the amount is less than 10 g / l, the average particle diameter of precipitated palladium is 0.1 μm or less, and the g / l is 60 g / l.
If it exceeds, the average particle diameter becomes larger than 1.0 μm and aggregates to form secondary particles, resulting in poor dispersibility.

【0009】銀をパラジウムに対して1.8〜5000
ppmとするのは、1.8ppm未満では析出するパラ
ジウムの平均粒径が1.0μmを超えるようになると同
時に、粒度分布が広くなるからである。5000ppm
を超えても平均粒径は0.1μmより小さくならず、多
量に添加する必要を認めないからである。
Silver to palladium is 1.8 to 5000
When the content is less than 1.8 ppm, the average particle size of the precipitated palladium exceeds 1.0 μm and the particle size distribution is broadened. 5000ppm
Even if it exceeds, the average particle size does not become smaller than 0.1 μm, and it is not necessary to add a large amount.

【0010】パラジウム水溶液のpHを7〜11とする
のは、pHが7未満の水溶液を用いると、粒子の成長速
度が遅く、平均粒径0.1μm未満の微粒子しか得られ
ず、pHが11を超えると、核生成速度が粒子の成長速
度より速くなり、平均粒径0.1μm未満の微粒子しか
得られなくなるからである。
The pH of the aqueous palladium solution is set to 7 to 11 because when an aqueous solution having a pH of less than 7 is used, the growth rate of the particles is slow and only fine particles having an average particle size of less than 0.1 μm can be obtained. If it exceeds, the nucleation rate becomes faster than the growth rate of particles, and only fine particles having an average particle size of less than 0.1 μm can be obtained.

【0011】反応温度は10℃より低いと、反応速度が
遅く単位時間当たりのパラジウムの析出量が減少し、経
済性が成り立たず、50℃より高いと、反応速度が速く
なり過ぎて得られるパラジウム微粉末の粒度分布が広く
なる。このため反応温度は10〜50℃の範囲とする。
If the reaction temperature is lower than 10 ° C., the reaction rate is slow and the amount of palladium deposited per unit time is reduced, so that economic efficiency is not realized. If it is higher than 50 ° C., the reaction rate becomes too fast to obtain palladium. The particle size distribution of the fine powder becomes wider. Therefore, the reaction temperature is in the range of 10 to 50 ° C.

【0012】還元剤は一般の使用量に従い1〜2当量を
用いる。又、還元剤水溶液中にパラジウム水溶液を添加
する際の速度は、あまり速いと、生成したパラジウム粒
子の凝集を生じ、反対に長すぎると単位時間当たりの生
産量が低下する。添加中添加量が均一となるようにして
連続的に60分以上120分の範囲で添加するのがよ
い。
The reducing agent is used in an amount of 1 to 2 equivalents according to the general amount used. When the rate of addition of the palladium aqueous solution to the reducing agent aqueous solution is too high, the generated palladium particles agglomerate. On the contrary, when the rate is too long, the production amount per unit time decreases. It is advisable to add continuously for 60 minutes or more and 120 minutes so that the addition amount becomes uniform during addition.

【0013】[0013]

【実施例】パラジウム量で200gのジクロロジアンミ
ンパラジウム(II)を含む水溶液4lを、アンモニア水と
塩酸とでpH10に調整し、Agを種々の量含む塩化ジ
アンミン銀(I)水溶液1.4ml添加し、充分に撹拌し完
全に溶解させ液温を15℃とした。ヒドラジン90g
(1.9当量)純水に溶解して2lとし液温を15℃と
した。ヒドラジンの水溶液にパラジウム含有水溶液を毎
分36mlの割合で約110分かけて連続的に添加し
た。
[Examples] 4 l of an aqueous solution containing 200 g of dichlorodiamminepalladium (II) in a palladium amount was adjusted to pH 10 with aqueous ammonia and hydrochloric acid, and 1.4 ml of an aqueous solution of silver diammine chloride (I) containing various amounts of Ag was added. The solution temperature was set to 15 ° C. by thoroughly stirring and completely dissolving. 90 g of hydrazine
(1.9 equivalents) It was dissolved in pure water to make 2 liters and the liquid temperature was set to 15 ° C. The palladium-containing aqueous solution was continuously added to the hydrazine aqueous solution at a rate of 36 ml / min over about 110 minutes.

【0014】添加終了後、吸引濾過により、パラジウム
微粉末を水溶液と分離し、純水にて洗浄した後、真空乾
燥機を用いて乾燥した。このパラジウム微粉末を電子顕
微鏡で観察したところ、形状はほぼ球状で、凝集部分の
ない単分散のものであった。パラジウム量に対する銀の
添加割合と、これに対するパラジウム微粉末の平均粒径
及び粒径の標準偏差を表1に示す。
After the addition was completed, the fine palladium powder was separated from the aqueous solution by suction filtration, washed with pure water, and then dried using a vacuum dryer. When this fine palladium powder was observed with an electron microscope, it was found to be almost spherical in shape and monodispersed with no agglomerated portions. Table 1 shows the addition ratio of silver to the amount of palladium, the average particle diameter of the palladium fine powder and the standard deviation of the particle diameter.

【0015】[0015]

【表1】 銀量 パラジウム微粉末の パラジウム微粉末の (ppm) 平均粒径(μm) 粒径の標準偏差(μm) 0.0 1.12 0.68 1.8 1.00 0.27 5 0.78 0.21 25 0.49 0.13 130 0.32 0.09 3000 0.15 0.04 5000 0.10 0.03[Table 1] Silver amount Palladium fine powder Palladium fine powder (ppm) Average particle size (μm) Standard deviation of particle size (μm) 0.0 1.12 0.68 1.8 1.8 1.00 0.275 0.78 0.21 25 0.49 0.13 130 0.32 0.09 3000 0.15 0.04 5000 5000 0.10 0.03

【0016】表1より銀の含有量が1.8〜5000p
pmでパラジウムとして平均粒径が1.0〜0.1μmで
粒度分布の狭い微粉末が得られることが分かる。又、銀
を含有しない場合には、平均粒径が1.0μm以下とな
らず、標準偏差も大きくなることが分かる。
From Table 1, the silver content is 1.8 to 5000 p.
It can be seen that a fine powder having a narrow particle size distribution is obtained with an average particle size of 1.0 to 0.1 μm as palladium in pm. Further, it is understood that when silver is not contained, the average particle size does not become 1.0 μm or less and the standard deviation becomes large.

【0017】[0017]

【発明の効果】本発明方法によれば、平均粒径が1〜
0.1μmで、粒度分布の狭いパラジウム微粉末が得ら
れ、導電ペーストの用途にそれぞれ適したパラジウム微
粉末を提供することができる。
According to the method of the present invention, the average particle diameter is 1 to
Palladium fine powder having a narrow particle size distribution of 0.1 μm can be obtained, and the palladium fine powder suitable for each application of the conductive paste can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パラジウム塩化物及び又はパラジウムの
クロロ錯体をパラジウムとして10〜60g/lと、銀
アンミン錯体を銀として前記パラジウム量に対して1.
8〜5000ppmとを含むpH7〜11のパラジウム
水溶液を、還元剤を含む水溶液に温度10〜50℃で添
加しパラジウム微粉末を析出させることを特徴とするパ
ラジウム微粉末の製造方法。
1. A palladium chloride and / or a chloro complex of palladium is used as palladium in an amount of 10 to 60 g / l, and a silver ammine complex is used as silver with respect to the amount of palladium.
A method for producing a fine palladium powder, which comprises adding an aqueous palladium solution having a pH of 7 to 11 containing 8 to 5000 ppm to an aqueous solution containing a reducing agent at a temperature of 10 to 50 ° C. to precipitate fine palladium powder.
【請求項2】 パラジウム塩化物が塩化パラジウム(II)
(PdCl2)、パラジウムのクロロ錯体がテトラクロ
ロパラジウム(II)酸カリ〔K2(PdCl4)〕、テトラ
クロロパラジウム(II)酸ナトリウム〔Na2(PdC
4)〕、ジクロロジアンミンパラジウム(II)〔Pd
(NH32Cl2〕の内の少なくとも1種であり、銀イ
オンが塩化ジアンミン銀(I)[〔Ag(NH32〕C
l]、硫酸ジアンミン銀(I)[〔Ag(NH322SO
4]、硝酸ジアンミン銀[〔Ag(NH32〕NO3]の
内の少なくとも1種であり、還元剤がアミジノスルフイ
ン酸、水素化ホウ素ナトリウム、ヒドラジンの内の少な
くとも1種である請求項1に記載のパラジウム微粉末の
製造方法。
2. The palladium chloride is palladium (II) chloride.
(PdCl 2 ), chloro complex of palladium is potassium tetrachloropalladium (II) acid [K 2 (PdCl 4 )], sodium tetrachloropalladium (II) acid [Na 2 (PdC
l 4 )], dichlorodiamminepalladium (II) [Pd
(NH 3 ) 2 Cl 2 ], and the silver ion is diammine silver chloride (I) [[Ag (NH 3 ) 2 ] C
l], diammine silver sulfate (I) [[Ag (NH 3 ) 2 ] 2 SO
4 ] and at least one of silver diammine nitrate [[Ag (NH 3 ) 2 ] NO 3 ] and the reducing agent is at least one of amidinosulfinic acid, sodium borohydride, and hydrazine. Item 2. A method for producing a palladium fine powder according to Item 1.
JP23138292A 1992-08-06 1992-08-06 Production of fine palladium powder Pending JPH0657314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23138292A JPH0657314A (en) 1992-08-06 1992-08-06 Production of fine palladium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23138292A JPH0657314A (en) 1992-08-06 1992-08-06 Production of fine palladium powder

Publications (1)

Publication Number Publication Date
JPH0657314A true JPH0657314A (en) 1994-03-01

Family

ID=16922743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23138292A Pending JPH0657314A (en) 1992-08-06 1992-08-06 Production of fine palladium powder

Country Status (1)

Country Link
JP (1) JPH0657314A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216544A (en) * 2002-12-25 2004-08-05 Fuji Photo Film Co Ltd Nanoparticle and method of producing nanoparticle
CN105537614A (en) * 2015-12-28 2016-05-04 重庆文理学院 Method for preparing hollow precious metal nano material with cuprous oxide as template
CN105689734A (en) * 2016-02-02 2016-06-22 重庆文理学院 Preparing method for Cu-doped Pt hollow nanometer material
CN112809015A (en) * 2020-12-29 2021-05-18 有研亿金新材料有限公司 Preparation method of low-apparent-density micron palladium powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216544A (en) * 2002-12-25 2004-08-05 Fuji Photo Film Co Ltd Nanoparticle and method of producing nanoparticle
CN105537614A (en) * 2015-12-28 2016-05-04 重庆文理学院 Method for preparing hollow precious metal nano material with cuprous oxide as template
CN105689734A (en) * 2016-02-02 2016-06-22 重庆文理学院 Preparing method for Cu-doped Pt hollow nanometer material
CN112809015A (en) * 2020-12-29 2021-05-18 有研亿金新材料有限公司 Preparation method of low-apparent-density micron palladium powder

Similar Documents

Publication Publication Date Title
JP2638271B2 (en) Production method of copper fine powder
US4863510A (en) Reduction process for preparing copper, silver, and admixed silver-palladium metal particles
JP2000087121A (en) Metal powder, its production and electrically conductive paste
JPS63307206A (en) Production of fine silver particles
JPH0657314A (en) Production of fine palladium powder
JPH0557324B2 (en)
JPS63125605A (en) Production of fine metal powder
JP3820018B2 (en) Method for producing granular silver powder
JPH10265812A (en) Production of superfine silver particle
JPS63307208A (en) Production of fine noble metal powder
JPS63179009A (en) Production of fine silver particles
JPH04235205A (en) Production of copper powder
JPH01104338A (en) Manufacture of silver colloid
JPH0211708A (en) Production of silver colloid
JP3122148B2 (en) Method for producing palladium powder
JPH0247549B2 (en)
JPS6357703A (en) Production of fine metallic powder
JPS63179010A (en) Production of fine silver particles
JPS63186805A (en) Production of fine copper particles
JPH0211707A (en) Production of silver fine particle
JPH0784607B2 (en) Method for producing fine palladium particles
JPH07157806A (en) Production of multiple powder
JPH01225710A (en) Production of fine palladium particles
JPH0784606B2 (en) Method for producing fine palladium particles
JPS60177183A (en) Silver plated composition and its manufacture