JPH0372683B2 - - Google Patents

Info

Publication number
JPH0372683B2
JPH0372683B2 JP62109389A JP10938987A JPH0372683B2 JP H0372683 B2 JPH0372683 B2 JP H0372683B2 JP 62109389 A JP62109389 A JP 62109389A JP 10938987 A JP10938987 A JP 10938987A JP H0372683 B2 JPH0372683 B2 JP H0372683B2
Authority
JP
Japan
Prior art keywords
solution
reaction
metal
mol
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62109389A
Other languages
Japanese (ja)
Other versions
JPS63274706A (en
Inventor
Hiroshi Kawakami
Mitsuharu Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP10938987A priority Critical patent/JPS63274706A/en
Publication of JPS63274706A publication Critical patent/JPS63274706A/en
Publication of JPH0372683B2 publication Critical patent/JPH0372683B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は金属微粉末の製造法に関し、特に所望
の粒径の金属微粉末を高収率で製造する方法に関
するものである。 [従来の技術] 従来、金属微粉末の製造法には化学的方法と物
理的方法が知られている。 化学的方法には、金属を加熱揮発させ、還元雰
囲気下で金属蒸気を凝縮させる気相法および金属
塩溶液中に還元剤を添加し、金属粉末を得る沈澱
法(特開昭60−238406号公報)等がある。しかし
ながら、気相法は設備が高価で生産性が低く経済
的ではなく、また沈澱法は薬剤の利用率が低く、
大量の純水を消費し、反応初期と終期の液組成が
大巾に変化するので、生成する金属粉末が均質で
なく、生成する粒子も細か過ぎて(例えば、0.01
〜0.03μm)回収作業が困難となり、生産性も低
く、いずれも実用的でない。 その他の化学的方法の中には、主として金属銅
微粉末を製造する方法として、金属塩溶液の電解
法があるが、この方法では金属銅微粉末に酸素や
電解液が混入したり、粒径が不揃いで大きい(例
えば、10〜数10μm)ものが得られる。また、酸
化銅および亜酸化銅の水溶液を還元する方法があ
るが、この方法では純度も高く粒径も1μm程度
のものが得られるが、要求に応じた任意の粒径の
ものを得ることが困難な欠点がある。 他方、物理的方法には、金属を機械的に粉砕す
る方法、溶融金属を噴霧冷却する方法等がある
が、いずれも微粉末を得る事は困難であり、粉末
表面が酸化されるため導電性が悪く、粒度分布も
広く、粒度分布の狭い任意の粒径のものを得るた
めには分級等の操作が必要となり、結果的に高価
となる。 [発明が解決しようとする問題点] 本発明はこの様な従来技術に鑑みてなされたも
のであり、水系化学還元法により、粒度範囲の規
制された所望の粒径を有し、品質が極めて安定し
た不純物の少ない金属微粉末を生産性が高く、高
収率で製造する方法を提供することを目的とする
ものである。 [問題点を解決するための手段] 即ち、本発明は金属イオン、還元剤および錯化
剤よりなる混合水溶液中に反応開始剤を添加し
て、還元反応を生ぜしめた後、金属イオン、還元
剤およびPH調整剤を添加することを特徴とする金
属微粉末の製造法に係わるものである。 以下、本発明を詳細に説明する。 本発明に係わる金属微粉末の製造法は、まず第
1工程において、金属イオンが還元反応を起こし
易いPHに調整した錯化剤水溶液を、50℃以上、好
ましくは60℃〜沸点に加温し、予め溶解した金属
塩水溶液及び還元剤水溶液を適量、前記錯化剤水
溶液に添加し、さらに少量の反応開始剤を加えて
金属の還元反応を開始させる。 金属イオンとしては、特に限定することなく広
範囲のものが使用でき、例えばニツケルイオン、
銅イオン、鉄イオン、コバルトイオン、銀イオ
ン、金イオン等が用いられ、各金属イオンに相当
する金属微粉末が得られるが、これ等の中で特に
ニツケルイオンおよび銅イオンが一般的である。
また、金属イオンには2種以上の金属イオンを用
いることもでき、この場合には合金の金属微粉末
を得ることができる。さらに、前記金属イオンは
使用する還元剤の選択により、Ni−P、Ni−B
合金等を得ることができる。 錯化剤としては、クエン酸、リンゴ酸、乳酸、
酒石酸、グルコン酸等のオキシカルボン酸または
そのアルカリ金属塩、アンモニアまたは硫酸アン
モニウム、塩化アンモニウム等のアンモニウム
塩、エチレンジアミン、エチルアミン、EDTA
等のアミン化合物、ピロリン酸、ヘキサメタりん
酸、トリポリりん酸のアルカリ金属塩等のりん酸
塩化合物、グリシン等のアミノ酸、シアン化合物
の中から選ばれた1種以上の化合物が用いられ
る。 錯化剤水溶液のPHは、反応に使用する還元剤の
種類により決定される範囲に調節する。例えば、
還元剤に次亜リン酸塩を用いる場合はPH4〜8、
水素化ほう素アルカリ、ヒドラジン又はホルマリ
ンを用いる場合はPH8〜13に調節する。 錯化剤水溶液の濃度は0.01〜1mol/が適当
であり、0.01mol/未満では金属イオンの化合
物、例えば水酸化物や亜りん酸塩等が沈澱し易く
なり、1mol/をこえると必要以上の錯化剤を
使用するので不経済となる。 本発明において、金属イオン、還元剤および錯
化剤を混合する方法としては、金属塩および還元
剤を予め適量錯化剤溶液に添加溶解しておくか、
或いは金属塩水溶液及び還元剤水溶液を別にそれ
ぞれ溶解調整したものを、錯化剤溶液に適量添加
すればよいが、必ずしもこれ等の方法に限定され
るものではない。次いで、反応開始剤を少量添加
し反応を開始させる。 次いで、第2工程において、前記反応がおさま
つた後、例えば発泡現象がおさまつた後、前記と
同様の金属塩水溶液および還元剤水溶液を一定の
滴下速度で滴下し反応を続行させる。反応中、溶
液のPHは自動調節装置またはそれに準ずる方法に
より、PH調節剤として水酸化カリウム、水酸化ナ
トリウム水溶液等を添加して始めのPHに保持させ
る。 滴下が終了し反応完了後、溶液を過し、過
残渣をリパルプ洗浄した後乾燥することにより金
属微粉末を得ることができる。 本発明において、金属塩は、目的とする金属イ
オンを有する化合物が用いられ、例えばニツケル
イオンの場合には塩化ニツケル、硫酸ニツケル、
硝酸ニツケル等のニツケル塩、また銅イオンの場
合には硫酸銅、硝酸銅等の銅塩、さらに銀イオン
の場合にはシアン化銀、硝酸銀等が用いられる。
金属塩水溶液の濃度は高い程経済的であり望まし
いので、溶解度近くが用いられる。また、金属塩
の添加量は所望の金属微粉末の粒径により経験的
に算出される。 還元剤は次亜りん酸アルカリ、水素化ほう素ア
ルカリ、アルキルアミンボラン、ヒドラジン、ホ
ルマリン、単糖類、多糖類、酒石酸等が用いら
れ、これ等は金属イオンの種類により適宜選択し
て使用すればよい。 還元剤水溶液の濃度も高い程経済的で望まし
い。 本発明において、金属塩と還元剤の使用量の比
率は使用する還元剤により異なる。 まず、ニツケル塩と還元剤については、次亜り
ん酸アルカリを還元剤として使用する場合、ニツ
ケル塩1molを還元するために次亜りん酸アルカ
リは2.0〜3.0molを必要とする。 水素化ほう素アルカリの場合、同様な理由か
ら、ニツケル塩の1.5〜2.5倍mol、ヒドラジンの
場合は3〜4倍molを使用する。 次に、銅塩と還元剤については、ヒドラジンを
還元剤として用いる場合、銅塩の1〜2倍mol、
ホルマリンを還元剤として用いる場合、銅塩の
2.5〜3.5倍molが必要である。 また、銀塩と還元剤については、ヒドラジンの
場合は2〜3倍mol、ホルマリンの場合は1.5〜
3倍mol、水素化ほう素アルカリの場合は1〜
1.5倍mol、単糖類、多糖類の場合は0.5〜2倍
molが必要である。 PH調整剤には、通常水酸化ナトリウム、水酸化
カリウムが使用され、その使用量は初期のPHを保
持するのに必要な量であればよく、一般には金属
塩の2〜6倍molが使用される。 反応開始剤は、本発明における還元反応を誘起
するものであれば如何なるものでも使用できる
が、その具体例を示すと貴金属イオンおよびその
コロイド、水素化ほう素アルカリ等が挙げられ
る。 反応開始剤の添加量は生成する金属微粉末の1/
1000以下が好ましい。 反応温度は通常50℃以上、好ましくは60℃〜沸
点が望ましく、50℃未満では反応速度が遅く生産
性が低下するので好ましくない。 反応液中には、金属塩、還元剤、PH調整剤等が
含有されているが、必要に応じて、ゼラチンやア
ラビアゴム等の保護コロイド、物性改善剤等を加
えてもさしつかえない。 反応が完了後、過、リパルプ洗浄した後乾燥
することにより金属微粉末を得ることができる。
この場合、金属微粉末の種類によつては、例え
ば、銅微粉末等の酸化され易いものは、微粉末を
反応液と分離し、リパルプ洗浄した後、酸化防止
のため真空乾燥器で乾燥する事が望ましい。ま
た、アルコールやアセトン等の有機溶剤を用い
て、洗浄、脱水処理してもよい。更に、乾燥前に
防錆剤を用いて防錆処理してもさしつかえない。 以上に説明した製造法により、粒度範囲の規制
された所望の粒径を有する金属微粉末を得ること
ができるが、特にニツケル、銅、銀又はそれ等を
少なくとも1種含有する合金で平均粒子径が0.05
〜1μmの範囲の金属微粉末を容易に得ることが
可能である。 [作用] 本発明の金属微粉末の製造法は第1工程におい
て、金属イオン、還元剤および錯化剤よりなる混
合水溶液中に反応開始剤を添加することにより、
還元反応が誘起されて金属の核が形成され、次い
で第2工程において反応系へ金属イオンおよび還
元剤をPHを調整しながら徐々に滴下しながら添加
することにより、反応液中の金属イオン及び還元
剤は常に一定濃度に保持されながら反応は進行す
るので、金属の核を次第に成長せしめ、粒度範囲
を規制された所望の粒径を有する金属微粒子を高
収率で得ることができるものと推定される。 [実施例] 以下、実施例および比較例を示し、本発明をさ
らに具体的に説明する。 実施例 1 第1表に示す各錯化剤水溶液200ml中に硫酸ニ
ツケル10g、次亜りん酸ソーダ12gを添加溶解し
た水溶液を、500mlガラスビーカーに取り湯浴上
で90℃に加温した。次に、水素化ほう素ナトリウ
ムの粉末0.1gを撹拌下の上記溶液に添加した。
反応中、溶液のPHは自動調節装置を用い、160
g/水酸化ナトリウム水溶液を滴下し、始めの
PHに保持させた。 反応がおさまり、発泡が少なくなつてから、
1mol/硫酸ニツケル水溶液及び2.5mol/次
亜りん酸ソーダ水溶液各100mlを1.6ml/分の速度
で上記反応液に滴下した。反応中、溶液のPHは前
記同様に常時一定に保持させた。滴下が終り、発
泡も止んでから溶液を過し、過物を2回リパ
ルプ水洗した後、真空乾燥器で乾燥してりん−ニ
ツケル合金の微粉末を得た。得られたりん−ニツ
ケル合金の微粉末の収量、反応収率、SEM写真
により計測した平均粒子径、BET法の表面積測
定による粒子の比表面積を第2表に示す。
[Industrial Field of Application] The present invention relates to a method for producing fine metal powder, and particularly to a method for producing fine metal powder having a desired particle size at a high yield. [Prior Art] Conventionally, chemical methods and physical methods are known as methods for producing fine metal powder. Chemical methods include a gas phase method in which the metal is heated to volatilize and the metal vapor is condensed in a reducing atmosphere, and a precipitation method in which a reducing agent is added to a metal salt solution to obtain metal powder (Japanese Patent Application Laid-Open No. 60-238406). Public bulletins) etc. However, the gas phase method requires expensive equipment, low productivity, and is not economical, and the precipitation method has a low drug utilization rate.
Since a large amount of pure water is consumed and the liquid composition changes widely between the initial and final stages of the reaction, the metal powder produced is not homogeneous and the particles produced are too fine (for example, 0.01
~0.03 μm) Recovery work becomes difficult, productivity is low, and neither is practical. Among other chemical methods, there is an electrolytic method using a metal salt solution, which is mainly used to produce fine metallic copper powder, but this method does not allow oxygen or electrolyte to mix into the fine metallic copper powder, or The particles are irregular and large (for example, 10 to several tens of μm). There is also a method of reducing an aqueous solution of copper oxide and cuprous oxide, but with this method, particles with high purity and a particle size of about 1 μm can be obtained, but it is not possible to obtain particles of any size according to the requirements. There are difficult drawbacks. On the other hand, physical methods include mechanically pulverizing metals and spray cooling molten metals, but in both cases it is difficult to obtain fine powders, and the powder surface is oxidized, making it less conductive. The particle size distribution is poor and the particle size distribution is wide, and operations such as classification are required to obtain particles of any desired size with a narrow particle size distribution, resulting in high costs. [Problems to be Solved by the Invention] The present invention has been made in view of the above prior art, and uses an aqueous chemical reduction method to obtain particles with a desired particle size within a regulated particle size range and with extremely high quality. The object of the present invention is to provide a method for producing stable metal fine powder with few impurities with high productivity and high yield. [Means for Solving the Problems] That is, the present invention involves adding a reaction initiator to a mixed aqueous solution consisting of metal ions, a reducing agent, and a complexing agent to cause a reduction reaction, and then The present invention relates to a method for producing fine metal powder, which is characterized by adding an agent and a PH regulator. The present invention will be explained in detail below. In the method for producing fine metal powder according to the present invention, in the first step, an aqueous complexing agent solution adjusted to a pH at which metal ions easily undergo a reduction reaction is heated to 50°C or higher, preferably 60°C to the boiling point. Appropriate amounts of a pre-dissolved metal salt aqueous solution and a reducing agent aqueous solution are added to the complexing agent aqueous solution, and a small amount of a reaction initiator is further added to initiate a metal reduction reaction. A wide range of metal ions can be used without particular limitations, such as nickel ions,
Copper ions, iron ions, cobalt ions, silver ions, gold ions, etc. are used, and fine metal powders corresponding to each metal ion are obtained, but among these, nickel ions and copper ions are particularly common.
Moreover, two or more types of metal ions can be used as the metal ions, and in this case, an alloy metal fine powder can be obtained. Furthermore, the metal ions can be Ni-P, Ni-B, etc. depending on the reducing agent used.
Alloys etc. can be obtained. Complexing agents include citric acid, malic acid, lactic acid,
Oxycarboxylic acids such as tartaric acid and gluconic acid or their alkali metal salts, ammonium salts such as ammonia or ammonium sulfate, ammonium chloride, ethylenediamine, ethylamine, EDTA
One or more compounds selected from amine compounds such as pyrophosphoric acid, hexametaphosphoric acid, phosphate compounds such as alkali metal salts of tripolyphosphoric acid, amino acids such as glycine, and cyanide compounds are used. The pH of the complexing agent aqueous solution is adjusted to a range determined by the type of reducing agent used in the reaction. for example,
When using hypophosphite as a reducing agent, PH4-8,
When using alkali borohydride, hydrazine or formalin, adjust the pH to 8-13. The appropriate concentration of the complexing agent aqueous solution is 0.01 to 1 mol/. If it is less than 0.01 mol/, metal ion compounds, such as hydroxides and phosphites, will tend to precipitate. If it exceeds 1 mol/, the concentration will be more than necessary. Since a complexing agent is used, it is uneconomical. In the present invention, the method for mixing metal ions, reducing agents, and complexing agents includes adding and dissolving appropriate amounts of metal salts and reducing agents in a complexing agent solution in advance, or
Alternatively, the metal salt aqueous solution and the reducing agent aqueous solution may be dissolved and adjusted separately, and appropriate amounts thereof may be added to the complexing agent solution, but the method is not necessarily limited to these methods. Next, a small amount of a reaction initiator is added to start the reaction. Next, in the second step, after the reaction has subsided, for example, after the foaming phenomenon has subsided, the same metal salt aqueous solution and reducing agent aqueous solution as above are added dropwise at a constant dropping rate to continue the reaction. During the reaction, the pH of the solution is maintained at the initial pH by adding potassium hydroxide, sodium hydroxide aqueous solution, etc. as a pH regulator using an automatic regulator or a similar method. After the dropping is completed and the reaction is completed, the solution is filtered, the excess residue is washed with repulp, and then dried to obtain fine metal powder. In the present invention, the metal salt used is a compound having a target metal ion; for example, in the case of a nickel ion, nickel chloride, nickel sulfate,
Nickel salts such as nickel nitrate; in the case of copper ions, copper salts such as copper sulfate and copper nitrate; and in the case of silver ions, silver cyanide, silver nitrate, etc. are used.
Since the higher the concentration of the metal salt aqueous solution, the more economical and desirable it is, a concentration close to the solubility is used. Further, the amount of the metal salt added is calculated empirically based on the desired particle size of the metal fine powder. As reducing agents, alkali hypophosphite, alkali borohydride, alkylamine borane, hydrazine, formalin, monosaccharides, polysaccharides, tartaric acid, etc. are used, and these can be selected and used as appropriate depending on the type of metal ion. good. The higher the concentration of the reducing agent aqueous solution is, the more economical and desirable it is. In the present invention, the ratio of the amount of the metal salt to the reducing agent used varies depending on the reducing agent used. First, regarding nickel salt and reducing agent, when using alkali hypophosphite as a reducing agent, 2.0 to 3.0 mol of alkali hypophosphite is required to reduce 1 mol of nickel salt. In the case of alkali boron hydride, 1.5 to 2.5 times the mole of nickel salt is used, and in the case of hydrazine, 3 to 4 times the mole is used for the same reason. Next, regarding the copper salt and reducing agent, when using hydrazine as the reducing agent, 1 to 2 times the mol of the copper salt,
When formalin is used as a reducing agent, the copper salt
2.5-3.5 times mol is required. Regarding silver salts and reducing agents, hydrazine is 2 to 3 times the mole, and formalin is 1.5 to 3 times the mole.
3 times mol, 1 to 1 for alkali boron hydride
1.5 times mol, 0.5 to 2 times for monosaccharides and polysaccharides
mol is required. Sodium hydroxide and potassium hydroxide are usually used as pH adjusters, and the amount used is only the amount necessary to maintain the initial pH, and generally 2 to 6 times the mol of the metal salt is used. be done. Any reaction initiator can be used as long as it induces the reduction reaction in the present invention, and specific examples thereof include noble metal ions and their colloids, alkali boron hydrides, and the like. The amount of reaction initiator added is 1/1 of the amount of metal fine powder produced.
1000 or less is preferable. The reaction temperature is usually 50°C or higher, preferably 60°C to the boiling point. If it is lower than 50°C, the reaction rate is slow and productivity is reduced, which is not preferred. The reaction solution contains metal salts, reducing agents, PH adjusters, etc., but if necessary, protective colloids such as gelatin or gum arabic, physical property improvers, etc. may be added. After the reaction is completed, fine metal powder can be obtained by filtering, repulping, washing, and drying.
In this case, depending on the type of fine metal powder, for example, if it is easily oxidized such as fine copper powder, the fine powder is separated from the reaction liquid, repulped and washed, and then dried in a vacuum dryer to prevent oxidation. things are desirable. Further, cleaning and dehydration treatment may be performed using an organic solvent such as alcohol or acetone. Furthermore, it may be treated with a rust preventive agent before drying. By the production method explained above, it is possible to obtain fine metal powder having a desired particle size with a controlled particle size range, but especially when using nickel, copper, silver, or an alloy containing at least one of these, the average particle size is is 0.05
It is possible to easily obtain metal fine powder in the range of ~1 μm. [Function] In the first step, the method for producing fine metal powder of the present invention includes adding a reaction initiator to a mixed aqueous solution consisting of a metal ion, a reducing agent, and a complexing agent.
A reduction reaction is induced to form a metal nucleus, and then in the second step, metal ions and a reducing agent are gradually added dropwise to the reaction system while adjusting the pH, thereby reducing the metal ions and reduction in the reaction solution. Since the reaction proceeds while the concentration of the agent is always maintained at a constant level, it is presumed that the metal core will gradually grow and that fine metal particles having the desired particle size with a controlled particle size range can be obtained in high yield. Ru. [Example] Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples. Example 1 An aqueous solution in which 10 g of nickel sulfate and 12 g of sodium hypophosphite were added and dissolved in 200 ml of each complexing agent aqueous solution shown in Table 1 was placed in a 500 ml glass beaker and heated to 90° C. on a hot water bath. Next, 0.1 g of sodium borohydride powder was added to the above solution under stirring.
During the reaction, the pH of the solution was adjusted to 160 using an automatic control device.
g/sodium hydroxide aqueous solution was added dropwise, and the initial
It was kept at PH. After the reaction has subsided and foaming has decreased,
100 ml each of 1 mol/aqueous nickel sulfate solution and 2.5 mol/aqueous sodium hypophosphite solution were added dropwise to the above reaction solution at a rate of 1.6 ml/min. During the reaction, the pH of the solution was kept constant as described above. After the dropping was completed and foaming had ceased, the solution was filtered, and the filtered material was washed with repulp water twice, and then dried in a vacuum dryer to obtain a fine powder of phosphorus-nickel alloy. Table 2 shows the yield of the fine powder of the phosphorus-nickel alloy obtained, the reaction yield, the average particle diameter measured by SEM photography, and the specific surface area of the particles measured by surface area measurement using the BET method.

【表】【table】

【表】 実施例 2 硫酸ニツケル53g/、次亜りん酸ソーダ64
g/、酒石酸ソーダ40g/から成る組成でPH
6.5の水溶液200mlをビーカーに取り、湯浴上で80
℃に加温した。次に、20g/塩化パラジウム水
溶液を第3表に示す量を、撹拌下の上記水溶液中
に滴下した。反応中、溶液のPHは自動調節装置を
用い、160g/水酸化ナトリウム水溶液の滴下
により、始めのPHに保持させた。 発泡がおさまつてから、1mol/硫酸ニツケ
ル溶液及び2.5mol/次亜りん酸ソーダ水溶液
を第3表に示す量、それぞれ20ml/分の滴下速度
で滴下した。反応中、溶液のPHは前記と同様にし
て常時一定に保持した。滴下が終り、発泡も止ん
でから、溶液を過し、過物を2回リパルプ水
洗した後、真空乾燥器で乾燥してりん−ニツケル
合金の微粉末を得た。得られたりん−ニツケル合
金の微粉末の収量、反応収率、SEM写真により
計測した平均粒子径、BET法の表面積測定によ
る粒子の比表面積を第4表に示す。
[Table] Example 2 Nickel sulfate 53g/, Sodium hypophosphite 64
g/, PH with a composition consisting of 40 g/ of sodium tartrate
Take 200ml of the aqueous solution of 6.5 in a beaker and heat it on a hot water bath for 80ml.
Warmed to ℃. Next, 20 g/aqueous palladium chloride solution in the amount shown in Table 3 was dropped into the aqueous solution while stirring. During the reaction, the pH of the solution was maintained at the initial pH using an automatic controller by dropping 160 g/aqueous sodium hydroxide solution. After the foaming subsided, 1 mol/nickel sulfate solution and 2.5 mol/aqueous sodium hypophosphite solution were added dropwise in the amounts shown in Table 3 at a dropping rate of 20 ml/min. During the reaction, the pH of the solution was kept constant as described above. After the dropping was completed and foaming had ceased, the solution was filtered, and the filtered material was repulped and washed twice with water, and then dried in a vacuum dryer to obtain a fine powder of phosphorus-nickel alloy. Table 4 shows the yield of the fine powder of the obtained phosphorus-nickel alloy, the reaction yield, the average particle diameter measured by SEM photography, and the specific surface area of the particles measured by surface area measurement using the BET method.

【表】 (注) *は比較例を示す。
[Table] (Note) * indicates a comparative example.

【表】 (注) *は比較例を示す。
実施例 3 硫酸ニツケル53g/、水素化ほう素ナトリウ
ム11g/、エチレンジアミン15g/から成る
組成のPH9.0の水溶液200mlをビーカーに取り、湯
浴上にて80℃に加温した。20g/塩化パラジウ
ム水溶液1mlを撹拌下の上記溶液に滴下した。反
応中溶液のPHは自動調節装置を用い、160g/
水酸化ナトリウム水溶液を滴下し始めのPHに保持
させた。 発泡がおさまつてから、1mol/硫酸ニツケ
ル溶液及び1.5mol/水素化ほう素ナトリウム
水溶液を各500mlを5ml/分の滴下速度で滴下し
た。反応中、溶液のPHは前記と同様にして一定に
保持させた。滴下が終了し、発泡が止んでから、
反応液を過し、過物は2回リパルプ洗浄した
後、真空乾燥器で乾燥してほう素−ニツケル合金
の微粉末を得た。得られたほう素−ニツケル合金
の微粉末の収量は31.58g、反応収率は99.6%、
SEM写真により計測した平均粒径は0.61μm、
BET法の表面測定による粒子の比表面積は0.92
m2/gであつた。 実施例 4 ロツシエル塩の20g/、PH9.0の水溶液200ml
をビーカーに取り、70℃に加温した。次に、
1mol/硫酸ニツケル水溶液及び4mol/ヒド
ラジン水溶液各50mlを10ml/分の速度で撹拌下の
上記溶液に滴下した。又、前薬液を滴下すると同
時に20g/塩化パラジウム水溶液1mlを添加し
た。反応中、溶液のPHは自動調節装置を用い、
160g/の水酸化ナトリウム水溶液を滴下し、
始めのPHを保持させた。 滴下が終了し、発泡がおさまつた後、更に、
1mol/硫酸ニツケル水溶液及び4mol/ヒド
ラジン水溶液各500mlを4ml/分の速度で滴下し
た。反応中、溶液のPHは前記と同様にして一定の
PHに保持した。滴下が終了し、発泡が止んだ後、
溶液を過し、過物を2回リパルプ洗浄した
後、真空乾燥器で乾燥して金属ニツケルの微粉末
を得た。得られた金属ニツケルの微粉末の収量は
31.85g、反応収率は98.6%、SEM写真により計
測した平均粒子径は0.60μm、BET法の表面測定
による粒子の比表面積は1.00m2/gであつた。 比較例 1 1の三口平底フラスコに塩化ニツケル10g、
クエン酸8.8gを入れ、純水800mlで溶解した。そ
の後、三口平底フラスコ内の混合溶液をスタラピ
ースで撹拌しながらフラスコの口に設けたガス吹
込管から窒素ガスを吹き込み充分に脱気した。こ
の際、排気口は空気の逆流を防止するため水封し
ておいた。 次に、水素化ほう素ナトリウム3gを充分に脱
気した純水200mlに溶解させ、この溶液をビユレ
ツトに入れ、撹拌及び窒素の吹き込みを行つてい
る混合溶液中へ20ml/分の速さで滴下し、還元反
応を行つた。以上の操作は常温で実施した。生成
物はメタノールで洗浄した後、過回収した。 得られたほう素−ニツケル合金粉末の収量は
0.21g、反応収率は8.5%、SEM写真により計測
した平均粒子径は0.023μm、BET法の表面測定
による粒子の比表面積は36m2/gであつた。 比較例 2 還元剤をヒドラジン4.5ml、錯化剤をクエン酸
8.8g、反応温度を90℃として比較例1と全く同
様の方法で反応を行わせ、金属ニツケル粉末0.17
gを得た。反応収率は6.9%、SEM写真により計
測した平均粒子径は0.019μm、BET法の表面測
定による粒子の比表面積は35m2/gであつた。 実施例 5 硫酸銅0.2mol/、ホルマリン1mol/、
EDTA0.1mol/から成る組成のPH12.5の水溶液
200mlをビーカーに取り、湯浴上で80℃に加温し
た。次に、塩化パラジウム20g/の水溶液5ml
を撹拌下の上記水溶液中に添加した。反応中、溶
液のPHは自動調節装置を用い、水酸化ナトリウム
100g/水溶液を滴下して12.0〜12.5に保持し
た。 発泡がおさまつてから、1mol/硫酸銅水溶
液及び3mol/ホルマリン水溶液を第5表に示
す量をそれぞれ5ml/分の速度で滴下した。反応
中の溶液のPHは前記と同様12.0〜12.5に保持し
た。滴下が終り、発泡も止んでから、溶液を過
し、過物は2回リパルプ洗浄した後、真空乾燥
器で乾燥して金属銅の微粉末を得た。得られた金
属銅の微粉末の収量、反応収率、SEM写真によ
り計測した平均粒子径、BET法により測定した
比表面積を第5表に示す。
[Table] (Note) * indicates a comparative example.
Example 3 200 ml of an aqueous solution with a pH of 9.0 consisting of 53 g of nickel sulfate, 11 g of sodium borohydride, and 15 g of ethylenediamine was placed in a beaker and heated to 80° C. on a hot water bath. 20 g/1 ml of palladium chloride aqueous solution was added dropwise to the above stirring solution. The pH of the solution during the reaction was adjusted to 160 g/
An aqueous sodium hydroxide solution was added dropwise to maintain the initial pH. After the foaming subsided, 500 ml each of a 1 mol/nickel sulfate solution and a 1.5 mol/aqueous sodium borohydride solution were added dropwise at a rate of 5 ml/min. During the reaction, the pH of the solution was kept constant as described above. After dripping has finished and foaming has stopped,
The reaction solution was filtered, and the residue was repulped twice and dried in a vacuum dryer to obtain a fine powder of boron-nickel alloy. The yield of the obtained boron-nickel alloy fine powder was 31.58 g, the reaction yield was 99.6%,
The average particle size measured by SEM photograph is 0.61μm,
The specific surface area of particles determined by surface measurement using the BET method is 0.92.
m 2 /g. Example 4 20g of Lotsiel salt/200ml of aqueous solution of PH9.0
was placed in a beaker and heated to 70°C. next,
50 ml each of a 1 mol/nickel sulfate aqueous solution and a 4 mol/hydrazine aqueous solution were added dropwise to the above stirring solution at a rate of 10 ml/min. Further, at the same time as the pre-chemical solution was added dropwise, 20 g/1 ml of an aqueous palladium chloride solution was added. During the reaction, the pH of the solution was adjusted using an automatic control device.
Add 160g/aqueous sodium hydroxide solution dropwise,
The initial pH was maintained. After the dripping has finished and the foaming has subsided,
500 ml each of a 1 mol/nickel sulfate aqueous solution and a 4 mol/hydrazine aqueous solution were added dropwise at a rate of 4 ml/min. During the reaction, the pH of the solution is kept constant as above.
Maintained at PH. After the dripping is finished and foaming has stopped,
The solution was filtered, the filtered material was repulped twice, and then dried in a vacuum dryer to obtain a fine powder of nickel metal. The yield of the fine powder of nickel metal obtained is
31.85 g, the reaction yield was 98.6%, the average particle diameter measured by SEM photography was 0.60 μm, and the specific surface area of the particles was 1.00 m 2 /g by surface measurement using the BET method. Comparative Example 1 10g of nickel chloride in the three-necked flat-bottomed flask from 1.
8.8 g of citric acid was added and dissolved in 800 ml of pure water. Thereafter, while stirring the mixed solution in the three-necked flat-bottomed flask with a stirrer piece, nitrogen gas was blown into the flask from a gas blowing tube provided at the mouth of the flask to sufficiently degas the solution. At this time, the exhaust port was sealed with water to prevent backflow of air. Next, 3 g of sodium borohydride was dissolved in 200 ml of thoroughly degassed pure water, this solution was placed in a biuret, and the solution was dropped at a rate of 20 ml/min into the mixed solution that was being stirred and nitrogen was blown into the solution. Then, a reduction reaction was carried out. The above operations were performed at room temperature. The product was washed with methanol and then filtered. The yield of the boron-nickel alloy powder obtained is
0.21 g, reaction yield was 8.5%, average particle diameter measured by SEM photograph was 0.023 μm, and specific surface area of particles was 36 m 2 /g by surface measurement by BET method. Comparative example 2 4.5ml of hydrazine as reducing agent and citric acid as complexing agent
The reaction was carried out in exactly the same manner as in Comparative Example 1 at a reaction temperature of 90°C.
I got g. The reaction yield was 6.9%, the average particle diameter measured by SEM photography was 0.019 μm, and the specific surface area of the particles was 35 m 2 /g by surface measurement using the BET method. Example 5 Copper sulfate 0.2 mol/, formalin 1 mol/,
Aqueous solution with a composition of 0.1 mol/EDTA and a pH of 12.5
200ml was placed in a beaker and heated to 80°C on a hot water bath. Next, 5 ml of an aqueous solution of 20 g of palladium chloride
was added to the above aqueous solution under stirring. During the reaction, the pH of the solution was adjusted using an automatic control device, and the pH of the solution was adjusted to
100g/aqueous solution was added dropwise to maintain the temperature between 12.0 and 12.5. After the foaming subsided, 1 mol/aqueous copper sulfate solution and 3 mol/aqueous formalin solution were each added dropwise in the amounts shown in Table 5 at a rate of 5 ml/min. The pH of the solution during the reaction was maintained at 12.0 to 12.5 as described above. After the dropping was completed and foaming had ceased, the solution was filtered, and the filtered material was repulped twice and dried in a vacuum dryer to obtain a fine powder of metallic copper. Table 5 shows the yield of the obtained metallic copper fine powder, the reaction yield, the average particle diameter measured by SEM photography, and the specific surface area measured by BET method.

【表】 (注) *は比較例を示す。
実施例 6 硫酸銅0.2mol/、ヒドロジン0.8mol、ロツ
シエル塩0.05mol/から成る組成のPH13.0の水
溶液200mlをビーカーに取り、湯浴上で90℃に加
温した。次に、水素化ほう素カリの粉末を少量
(約0.1g)撹拌下の上記水溶液中に添加し、自己
分解反応を誘起させた。反応中、溶液のPHは自動
調節装置を用い、水酸化ナトリウム100g/水
溶液を滴下して、12.5〜13.5に保持した。 発泡がおさまつてから、1mol/硫酸銅水溶
液及び2mol/ヒドラジン水溶液を、第6表に
示す量、それぞれ15ml/分の速度で滴下した。反
応中、溶液のPHは前記と同様12.5〜13.5に保持し
た。滴下が終り、発泡も止んでから、溶液を過
し、過物は2回リパルプ洗浄した後、真空乾燥
器で乾燥して金属銅の微粉末を得た。得られた金
属銅の微粉末の収量、反応収率、SEM写真によ
る平均粒子径の計測値、BET法により測定した
比表面積を第6表に示す。
[Table] (Note) * indicates a comparative example.
Example 6 200 ml of an aqueous solution with a pH of 13.0 consisting of 0.2 mol of copper sulfate, 0.8 mol of hydrozine, and 0.05 mol of Rothsiel's salt was placed in a beaker and heated to 90°C on a water bath. Next, a small amount (approximately 0.1 g) of potassium boron hydride powder was added to the above stirring aqueous solution to induce a self-decomposition reaction. During the reaction, the pH of the solution was maintained at 12.5 to 13.5 using an automatic controller by dropping 100 g of sodium hydroxide/aqueous solution. After the foaming subsided, 1 mol/aqueous copper sulfate solution and 2 mol/aqueous hydrazine solution were added dropwise at a rate of 15 ml/min in the amounts shown in Table 6, respectively. During the reaction, the pH of the solution was maintained at 12.5 to 13.5 as described above. After the dropping was completed and foaming had ceased, the solution was filtered, and the filtered material was repulped twice and dried in a vacuum dryer to obtain a fine powder of metallic copper. Table 6 shows the yield of the obtained metallic copper fine powder, the reaction yield, the average particle diameter measured by SEM photography, and the specific surface area measured by BET method.

【表】 (注) *は比較例を示す。
実施例 7 シアン化銀0.2mol/、水素化ほう素ナトリ
ウム0.2mol、EDTA−4Na0.1mol/からなる
組成のPH13.0の水溶液200mlをビーカーに取り、
湯浴上で80℃に加温した。次に、硝酸銀の10g/
の水溶液10mlを、撹拌下の上記水溶液中に添加
し反応を開始させた。反応中、溶液のPHは自動調
節装置を用い、水酸化ナトリウム200g/水溶
液を滴下して、12〜13に保持した。 発泡がおさまつてから、1mol/シアン化銀
カリウム水溶液及び1.2mol/水素化ほう素ナ
トリウム、5mol/水酸化ナトリウム混合水溶
液1を、それぞれ15ml/分の速度で滴下した。
反応中、溶液のPHは前記と同様に12〜13,に保持
した。 滴下が終り、発泡も止んでから、溶液を過
し、過分は2回リパルプ洗浄した後、真空乾燥
器で乾燥して銀の微粉末を得た。得られた銀の微
粉末の収量は111.85g、反応収率は99.7%、SEM
写真による平均粒子径は0.13μm、BET法により
測定した比表面積は6.60m2/gであつた。 [発明の効果] 以上説明した様に本発明の金属微粉末の製造法
によれば、粒度範囲の規制された所望の粒径を有
し、品質が極めて安定した不純物の少ない金属微
粉末を高収率で得ることができる。特に、平均粒
径0.01〜1μmのニツケル、銅およびNi−P、Ni
−B合金を容易に得ることができることの工業的
価値は極めて高いものである。 また、安価な設備で、生産性も高く、薬剤効率
も100%有効であり、使用する金属塩は100%金属
微粉末に還元され、還元剤の使用量も従来より少
なくて済むので経済性に極めて有利である。さら
に、反応はゆるやかで常に限定された濃度内で行
われるために、安定した一定品位の製品が得られ
る。 本発明に係わる製造法により得られた安定した
品質の金属微粉末又は合金の微粉末は、そのまま
又は更に貴金属被覆することにより、導電性フイ
ラーとして、塗料、樹脂、ゴム、ペースト、接着
剤、インキ等に混練使用される。さらに、合金、
粉末冶金の原料としても利用することができる。
[Table] (Note) * indicates a comparative example.
Example 7 200 ml of an aqueous solution with a pH of 13.0 consisting of 0.2 mol of silver cyanide, 0.2 mol of sodium borohydride, and 0.1 mol of EDTA-4Na was placed in a beaker.
It was heated to 80°C on a hot water bath. Next, 10g of silver nitrate/
10 ml of the aqueous solution was added to the above aqueous solution under stirring to start the reaction. During the reaction, the pH of the solution was maintained at 12 to 13 using an automatic controller by dropping 200 g of sodium hydroxide/aqueous solution. After the foaming subsided, 1 mol/potassium silver cyanide aqueous solution, 1.2 mol/sodium borohydride, and 5 mol/sodium hydroxide mixed aqueous solution 1 were each added dropwise at a rate of 15 ml/min.
During the reaction, the pH of the solution was maintained at 12 to 13, as described above. After the dropping was completed and foaming ceased, the solution was filtered, and the excess was repulped twice and dried in a vacuum dryer to obtain fine silver powder. The yield of the obtained fine silver powder was 111.85 g, the reaction yield was 99.7%, SEM
The average particle diameter according to the photograph was 0.13 μm, and the specific surface area measured by the BET method was 6.60 m 2 /g. [Effects of the Invention] As explained above, according to the method for producing fine metal powder of the present invention, fine metal powder with a desired particle size within a regulated particle size range, extremely stable quality, and few impurities can be produced. It can be obtained in high yield. In particular, nickel, copper, Ni-P, and Ni with an average particle size of 0.01 to 1 μm
The fact that -B alloy can be easily obtained has extremely high industrial value. In addition, the equipment is inexpensive, the productivity is high, and the chemical efficiency is 100% effective.The metal salts used are 100% reduced to fine metal powder, and the amount of reducing agent used is less than before, making it economical. Extremely advantageous. Furthermore, since the reaction is gradual and always takes place within a limited concentration, a stable and constant quality product can be obtained. The stable quality fine metal powder or fine alloy powder obtained by the production method according to the present invention can be used as a conductive filler as it is or by further coating with a noble metal in paints, resins, rubbers, pastes, adhesives, and inks. It is used for kneading etc. Furthermore, alloy,
It can also be used as a raw material for powder metallurgy.

Claims (1)

【特許請求の範囲】 1 金属イオン、還元剤および錯化剤よりなる混
合水溶液中に反応開始剤を添加して、還元反応を
生ぜしめた後、金属イオン、還元剤およびPH調整
剤を添加することを特徴とする金属微粉末の製造
法。 2 金属イオンがニツケルイオン、銅イオン又は
銀イオンである特許請求の範囲第1項記載の金属
微粉末の製造法。 3 還元剤が、次亜リン酸ソーダ、水素化ほう素
アルカリ、ヒドラジン又はホルマリンから選ばれ
たものである特許請求の範囲第1項記載の金属微
粉末の製造法。 4 金属微粉末はニツケル、銅又はそれらの少な
くとも1種を含む合金の微粉末で、平均粒子径が
0.05〜1μmの範囲にある特許請求の範囲第1項乃
至第4項のいずれかの項記載の金属微粉末の製造
法。
[Scope of Claims] 1. A reaction initiator is added to a mixed aqueous solution consisting of a metal ion, a reducing agent, and a complexing agent to cause a reduction reaction, and then a metal ion, a reducing agent, and a PH regulator are added. A method for producing fine metal powder, characterized by: 2. The method for producing fine metal powder according to claim 1, wherein the metal ions are nickel ions, copper ions, or silver ions. 3. The method for producing fine metal powder according to claim 1, wherein the reducing agent is selected from sodium hypophosphite, alkali borohydride, hydrazine, or formalin. 4. Fine metal powder is fine powder of nickel, copper, or an alloy containing at least one of these, and has an average particle size of
A method for producing fine metal powder according to any one of claims 1 to 4, which has a particle size in the range of 0.05 to 1 μm.
JP10938987A 1987-05-02 1987-05-02 Production of metallic fine powder Granted JPS63274706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10938987A JPS63274706A (en) 1987-05-02 1987-05-02 Production of metallic fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10938987A JPS63274706A (en) 1987-05-02 1987-05-02 Production of metallic fine powder

Publications (2)

Publication Number Publication Date
JPS63274706A JPS63274706A (en) 1988-11-11
JPH0372683B2 true JPH0372683B2 (en) 1991-11-19

Family

ID=14508996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10938987A Granted JPS63274706A (en) 1987-05-02 1987-05-02 Production of metallic fine powder

Country Status (1)

Country Link
JP (1) JPS63274706A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632265B1 (en) 1999-11-10 2003-10-14 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
KR20010046141A (en) * 1999-11-10 2001-06-05 구본준 Method for forming a signal line and TFT using the method
JP3597098B2 (en) 2000-01-21 2004-12-02 住友電気工業株式会社 Alloy fine powder, method for producing the same, molding material using the same, slurry, and electromagnetic wave shielding material
US6627118B2 (en) 2000-04-26 2003-09-30 Hitachi Metals, Ltd. Ni alloy particles and method for producing same, and anisotropic conductive film
KR20070083988A (en) * 2004-10-29 2007-08-24 나노다이나믹스 인코퍼레이티드 Aqueous-based method for producing ultra-fine metal powders
JP4679888B2 (en) * 2004-11-26 2011-05-11 日揮触媒化成株式会社 Metal fine particles and method for producing metal fine particles
JP4970851B2 (en) 2006-06-05 2012-07-11 田中貴金属工業株式会社 Colloidal gold production method and colloidal gold
KR100790458B1 (en) * 2006-07-10 2008-01-02 삼성전기주식회사 Copper nano-particles and preparation method thereof
JP5355007B2 (en) * 2008-09-17 2013-11-27 Dowaエレクトロニクス株式会社 Method for producing spherical silver powder
JP5820202B2 (en) 2010-09-30 2015-11-24 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
CN102496404B (en) * 2011-12-27 2013-10-30 华东理工大学 Electrode silver paste used by high efficiency crystal silicon solar cell
CN104174864B (en) * 2013-05-21 2016-06-01 中国科学院理化技术研究所 The preparation method of a kind of nanometer or submicron order Argent grain powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323250A (en) * 1976-08-16 1978-03-03 Denki Kogyo Co Ltd Grounded tower double feeding system
JPS5329240A (en) * 1976-08-31 1978-03-18 Hitachi Shipbuilding Eng Co Connecting process for tig welding electrodes
JPS5754207A (en) * 1980-08-21 1982-03-31 Inco Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323250A (en) * 1976-08-16 1978-03-03 Denki Kogyo Co Ltd Grounded tower double feeding system
JPS5329240A (en) * 1976-08-31 1978-03-18 Hitachi Shipbuilding Eng Co Connecting process for tig welding electrodes
JPS5754207A (en) * 1980-08-21 1982-03-31 Inco Ltd

Also Published As

Publication number Publication date
JPS63274706A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
CN101011747B (en) Method of producing copper powder and copper powder
JP2638271B2 (en) Production method of copper fine powder
US20080028889A1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
US20060107791A1 (en) Silver powder and method for producing same
JP5936783B2 (en) Method for producing nickel powder
CN104096850B (en) The method that silver ammonia complex prepares superfine spherical silver powder is reduced with para-aminophenol
JPH0372683B2 (en)
WO2012067706A1 (en) Reactor and continuous process for producing silver powders
JP3921805B2 (en) Method for producing nickel fine powder
IE910373A1 (en) Process for making finely divided particles of silver metal
JP5421339B2 (en) Nickel powder direct manufacturing method using hydrothermal synthesis method
CN114057242A (en) Method for preparing spherical dinitroso diammine platinum by hydrothermal method and application
JP2011144441A (en) Silver-coated nickel powder and method for producing the same
JP2020007633A (en) Nickel coupling particle and manufacturing method therefor
JPH0557324B2 (en)
JPH02294415A (en) Production of fine copper powder
US5514202A (en) Method for producing fine silver-palladium alloy powder
JP2550586B2 (en) Method for producing fine silver alloy powder
JP2621915B2 (en) Method for producing ultrafine copper powder
JPH0249390B2 (en)
JPH0249364B2 (en)
JPH03180481A (en) Production of copper oxide powder by electrolysis
CN116441528B (en) Superfine spherical nickel powder and preparation method thereof
KR100490678B1 (en) Method for manufacturing nano-scale nickel powders by wet reducing process